Sample records for metal immobilization literature

  1. Metal Immobilization Influence On Bioavailability And Remediation For Urban Environments

    EPA Science Inventory

    Immobilization of soil contaminants, such as lead, via phosphate amendments to alter the chemical environment of metals into highly insoluble forms is a well established process. The literature has documented numerous examples of highly contaminated Pb sites at shooting ranges, b...

  2. Heavy metal removal by caustic-treated yeast immobilized in alginate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Y.; Wilkins, E.

    1995-12-31

    Saccharomyces cerevisiae yeast biomass was treated with hot alkali to increase its biosorption capacity for heavy metals and then was immobilized in alginate gel. Biosorption capacities for Cu{sup 2+}, Cd{sup 2+}, and Zn{sup 2+} on alginate gel, native yeast, native yeast immobilized in alginate gel, and caustic-treated yeast immobilized in alginate gel were all compared. Immobilized yeasts could be reactivated and reused in a manner similar to the ion exchange resins. Immobilized caustic-treated yeast has high heavy metal biosorption capacity and high metal removal efficiency in a rather wide acidic pH region. The biosorption isotherm of immobilized caustic-treated yeast wasmore » studied, and empirical equations were obtained. The initial pH of polluted water affected the metal removal efficiency significantly, and the equilibrium biosorption capacity seemed to be temperature independent at lower initial metal concentrations.« less

  3. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review.

    PubMed

    Guo, Bin; Liu, Bo; Yang, Jian; Zhang, Shengen

    2017-05-15

    Safe disposal of solid wastes containing heavy metals is a significant task for environment protection. Immobilization treatment is an effective technology to achieve this task. Cementitious material treatments and thermal treatments are two types of attractive immobilization treatments due to that the heavy metals could be encapsulated in their dense and durable wasteforms. This paper discusses the heavy metal immobilization mechanisms of these methods in detail. Physical encapsulation and chemical stabilization are two fundamental mechanisms that occur simultaneously during the immobilization processes. After immobilization treatments, the wasteforms build up a low permeable barrier for the contaminations. This reduces the exposed surface of wastes. Chemical stabilization occurs when the heavy metals transform into more stable and less soluble metal bearing phases. The heavy metal bearing phases in the wasteforms are also reviewed in this paper. If the heavy metals are incorporated into more stable and less soluble metal bearing phases, the potential hazards of heavy metals will be lower. Thus, converting heavy metals into more stable phases during immobilization processes should be a common way to enhance the immobilization effect of these immobilization methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Immobilizer-assisted management of metal-contaminated agricultural soils for safer food production.

    PubMed

    Kim, Kwon-Rae; Kim, Jeong-Gyu; Park, Jeong-Sik; Kim, Min-Suk; Owens, Gary; Youn, Gyu-Hoon; Lee, Jin-Su

    2012-07-15

    Production of food crops on metal contaminated agricultural soils is of concern because consumers are potentially exposed to hazardous metals via dietary intake of such crops or crop derived products. Therefore, the current study was conducted to develop management protocols for crop cultivation to allow safer food production. Metal uptake, as influenced by pH change-induced immobilizing agents (dolomite, steel slag, and agricultural lime) and sorption agents (zeolite and compost), was monitored in three common plants representative of leafy (Chinese cabbage), root (spring onion) and fruit (red pepper) vegetables, in a field experiment. The efficiency of the immobilizing agents was assessed by their ability to decrease the phytoavailability of metals (Cd, Pb, and Zn). The fruit vegetable (red pepper) showed the least accumulation of Cd (0.16-0.29 mgkg(-1) DW) and Pb (0.2-0.9 mgkg(-1) DW) in edible parts regardless of treatment, indicating selection of low metal accumulating crops was a reasonable strategy for safer food production. However, safer food production was more likely to be achievable by combining crop selection with immobilizing agent amendment of soils. Among the immobilizing agents, pH change-induced immobilizers were more effective than sorption agents, showing decreases in Cd and Pb concentrations in each plant well below standard limits. The efficiency of pH change-induced immobilizers was also comparable to reductions obtained by 'clean soil cover' where the total metal concentrations of the plow layer was reduced via capping the surface with uncontaminated soil, implying that pH change-induced immobilizers can be practically applied to metal contaminated agricultural soils for safer food production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. [Immobilization impact of different fixatives on heavy metals contaminated soil].

    PubMed

    Wu, Lie-shan; Zeng, Dong-mei; Mo, Xiao-rong; Lu, Hong-hong; Su, Cui-cui; Kong, De-chao

    2015-01-01

    Four kinds of amendments including humus, ammonium sulfate, lime, superphosphate and their complex combination were added to rapid immobilize the heavy metals in contaminated soils. The best material was chosen according to the heavy metals' immobilization efficiency and the Capacity Values of the fixative in stabilizing soil heavy metals. The redistributions of heavy metals were determined by the European Communities Bureau of Referent(BCR) fraction distribution experiment before and after treatment. The results were as follows: (1) In the single material treatment, lime worked best with the dosage of 2% compared to the control group. In the compound amendment treatments, 2% humus combined with 2% lime worked best, and the immobilization efficiency of Pb, Cu, Cd, Zn reached 98.49%, 99.40%, 95.86%, 99.21%, respectively. (2) The order of Capacity Values was lime > humus + lime > ammonium sulfate + lime > superphosphate > ammonium sulfate + superphosphate > humus + superphosphate > humus > superphosphate. (3) BCR sequential extraction procedure results indicated that 2% humus combined with 2% lime treatment were very effective in immobilizing heavy metals, better than 2% lime treatment alone. Besides, Cd was activated firstly by 2% humus treatment then it could be easily changed into the organic fraction and residual fraction after the subsequent addition of 2% lime.

  6. Application of carbon nanotubes to immobilize heavy metals in contaminated soils

    NASA Astrophysics Data System (ADS)

    Matos, Martim P. S. R.; Correia, António Alberto S.; Rasteiro, Maria G.

    2017-04-01

    The contamination of soils with heavy metals is a growing concern in modern societies. To avoid the spread of contamination, soil stabilization techniques can be applied mixing materials with the soil in order to partially immobilize heavy metals. Carbon nanotubes (CNTs) are nanomaterials known for its exceptional properties, like high surface area and adsorption capacity. Due to these unique properties, the potential use of CNTs in heavy metal contaminated water has been studied, with very satisfactory results; however, their application in contaminated soils is practically unexplored. This experimental work is focused on studying the potential of using CNTs in soil remediation, especially to immobilize the heavy metals ions: lead (Pb2+), copper (Cu2+), nickel (Ni2+), and zinc (Zn2+), commonly present in contaminated soils. In order to avoid CNT agglomeration, which originates the loss of their beneficial properties, an aqueous suspension of CNTs was prepared using a non-ionic surfactant combined with ultrasonic energy to promote CNTs dispersion. Then, the soil, with and without the addition of CNTs, was subjected to adsorption tests to evaluate the CNT capacity to improve heavy metal immobilization. To validate the adsorption test results, permeability tests were executed, simulating the conditions of a real-case scenario. The results obtained led to the conclusion that the addition of a small amount of dispersed CNTs can successfully increase the adsorption capacity of the soil and consequently improve the immobilization of heavy metals in the soil matrix. The immobilization percentage varies with the different heavy metals under study.

  7. Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals.

    PubMed

    Kumari, Deepika; Qian, Xin-Yi; Pan, Xiangliang; Achal, Varenyam; Li, Qianwei; Gadd, Geoffrey Michael

    2016-01-01

    Rapid urbanization and industrialization resulting from growing populations contribute to environmental pollution by toxic metals and radionuclides which pose a threat to the environment and to human health. To combat this threat, it is important to develop remediation technologies based on natural processes that are sustainable. In recent years, a biomineralization process involving ureolytic microorganisms that leads to calcium carbonate precipitation has been found to be effective in immobilizing toxic metal pollutants. The advantage of using ureolytic organisms for bioremediating metal pollution in soil is their ability to immobilize toxic metals efficiently by precipitation or coprecipitation, independent of metal valence state and toxicity and the redox potential. This review summarizes current understanding of the ability of ureolytic microorganisms for carbonate biomineralization and applications of this process for toxic metal bioremediation. Microbial metal carbonate precipitation may also be relevant to detoxification of contaminated process streams and effluents as well as the production of novel carbonate biominerals and biorecovery of metals and radionuclides that form insoluble carbonates. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    PubMed

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology.

    PubMed

    Derakhshan Nejad, Zahra; Jung, Myung Chae; Kim, Ki-Hyun

    2018-06-01

    The major frequent contaminants in soil are heavy metals which may be responsible for detrimental health effects. The remediation of heavy metals in contaminated soils is considered as one of the most complicated tasks. Among different technologies, in situ immobilization of metals has received a great deal of attention and turned out to be a promising solution for soil remediation. In this review, remediation methods for removal of heavy metals in soil are explored with an emphasis on the in situ immobilization technique of metal(loid)s. Besides, the immobilization technique in contaminated soils is evaluated through the manipulation of the bioavailability of heavy metals using a range of soil amendment conditions. This technique is expected to efficiently alleviate the risk of groundwater contamination, plant uptake, and exposure to other living organisms. The efficacy of several amendments (e.g., red mud, biochar, phosphate rock) has been examined to emphasize the need for the simultaneous measurement of leaching and the phytoavailability of heavy metals. In addition, some amendments that are used in this technique are inexpensive and readily available in large quantities because they have been derived from bio-products or industrial by-products (e.g., biochar, red mud, and steel slag). Among different amendments, iron-rich compounds and biochars show high efficiency to remediate multi-metal contaminated soils. Thereupon, immobilization technique can be considered a preferable option as it is inexpensive and easily applicable to large quantities of contaminants derived from various sources.

  10. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOEpatents

    Wang, Yifeng; Miller, Andy; Bryan, Charles R.; Kruichak, Jessica Nicole

    2015-11-17

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  11. Immobilized materials for removal of toxic metal ions from surface/groundwaters and aqueous waste streams.

    PubMed

    Zawierucha, Iwona; Kozlowski, Cezary; Malina, Grzegorz

    2016-04-01

    Heavy metals from industrial processes are of special concern because they produce chronic poisoning in the aquatic environment. More strict environmental regulations on the discharge of toxic metals require the development of various technologies for their removal from polluted streams (i.e. industrial wastewater, mine waters, landfill leachate, and groundwater). The separation of toxic metal ions using immobilized materials (novel sorbents and membranes with doped ligands), due to their high selectivity and removal efficiency, increased stability, and low energy requirements, is promising for improving the environmental quality. This critical review is aimed at studying immobilized materials as potential remediation agents for the elimination of numerous toxic metal (e.g. Pb, Cd, Hg, and As) ions from polluted streams. This study covers the general characteristics of immobilized materials and separation processes, understanding of the metal ion removal mechanisms, a review of the application of immobilized materials for the removal of toxic metal ions, as well as the impacts of various parameters on the removal efficiency. In addition, emerging trends and opportunities in the field of remediation technologies using these materials are addressed.

  12. Long-term sustainability of metal immobilization by soil amendments: cyclonic ashes versus lime addition.

    PubMed

    Ruttens, A; Adriaensen, K; Meers, E; De Vocht, A; Geebelen, W; Carleer, R; Mench, M; Vangronsveld, J

    2010-05-01

    A soil column leaching experiment was used to gain insight into the long-term metal immobilization capacity of cyclonic ashes (CAH) compared to lime (LIME). Twenty six years of rainfall were simulated. Initially, all amended soils were brought to an equal soil pH. This was done to obtain optimal conditions for the detection of metal immobilization mechanisms different from just a pH effect. During the simulation period, soil pH in all treatments decreased in parallel. However, the evolution of metal mobility and phytoavailability showed a clearly distinct pattern. The strong reduction in metal immobilizing efficiency observed in the lime treatment at the end of the simulation period was much less pronounced, or even absent, in the CAH treatments. Moreover, metal accumulation in plants grown on the CAH amended soil was significantly lower compared to the untreated and the lime treated soil. CAH + SS treatment delivered the strongest reductions in metal mobility and bioavailability. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Enhanced heavy metal immobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Sakita, Shogo; Kakeda, Mitsunori

    2012-10-01

    This study investigated the use of a nanometallic Ca and CaO dispersion mixture for the immobilization of heavy metals (As, Cd, Cr and Pb) in contaminated soil. Simple grinding achieved 85-90% heavy metal immobilization, but it can be enhanced further to 98-100% by addition of a nanometallic Ca/CaO dispersion mixture produced by grinding. Observations using SEM-EDS elemental maps and semi-quantitative analysis showed that the amounts of As, Cd, Cr, and Pb measurable on the soil particle surface decrease after nanometallic Ca/CaO treatment. The leachable heavy metal concentrations were reduced after nanometallic Ca/CaO treatment to concentrations lower than the Japan soil elution standard regulatory threshold: <0.01 mg L(-1) for As, Cd, and Pb; and 0.05 mg L(-1) for Cr. Effects of soil moisture and pH on heavy metal immobilization were not strongly influenced. The most probable mechanisms for the enhancement of heavy metal immobilization capacity with nanometallic Ca/CaO treatment might be due to adsorption and entrapment of heavy metals into newly formed aggregates, thereby prompting aggregation of soil particles and enclosure/binding with Ca/CaO-associated immobile salts. Results suggest that the nanometallic Ca/CaO mixture is suitable for use in immobilization of heavy-metal-contaminated soil under normal moisture conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Immobilization of metals in contaminated soils using natural polymer-based stabilizers.

    PubMed

    Tao, Xue; Li, Aimin; Yang, Hu

    2017-03-01

    Three low-cost natural polymer materials, namely, lignin (Ln), carboxymethyl cellulose, and sodium alginate, were used for soil amendment to immobilize lead and cadmium in two contaminated soil samples collected from a mining area in Nanjing, China. The remediation effects of the aforementioned natural polymers were evaluated by toxicity characteristic leaching procedure (TCLP) and sequential extractions. The stabilizers could lower the bioavailability of Pb and Cd in the contaminated soils, and the amount of the exchangeable forms of the aforementioned two metals were reduced evidently. TCLP results showed that the leaching concentrations of Pb and Cd were decreased by 5.46%-71.1% and 4.25%-49.6%, respectively, in the treated soils. The contents of the organic forms of the two metals both increased with the increase in stabilizer dose on the basis of the redistribution of metal forms by sequential extractions. These findings were due to the fact that the abundant oxygen-containing groups on the polymeric amendments were effective in chelating and immobilizing Pb and Cd, which have been further confirmed from the metal adsorptions in aqueous solutions. Moreover, Ln achieved the greatest effect among the three polymers under study because of the former's distinct three-dimensional molecular structure, showing the preferential immobilization of Pb over Cd in soils also. Thus, the above-mentioned natural polymers hold great application potentials for reducing metal ion entry into the food chain at a field scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Position of Immobilization After First-Time Traumatic Anterior Glenohumeral Dislocation: A Literature Review

    PubMed Central

    Gutkowska, Olga; Martynkiewicz, Jacek; Gosk, Jerzy

    2017-01-01

    Anterior glenohumeral dislocation affects about 2% of the general population during the lifetime. The incidence of traumatic glenohumeral dislocation ranges from 8.2 to 26.69 per 100 000 population per year. The most common complication is recurrent dislocation occurring in 17–96% of the patients. The majority of patients are treated conservatively by closed reduction and immobilization in internal rotation for 2–3 weeks. However, no clear conservative treatment protocol exists. Immobilization in external rotation can be considered an alternative. A range of external rotation braces are commercially available. The purpose of this work was to review the current literature on conservative management of glenohumeral dislocation and to compare the results of immobilization in internal and external rotation. A comprehensive literature search and review was performed using the keywords “glenohumeral dislocation”, “shoulder dislocation”, “immobilization”, “external rotation”, and “recurrent dislocation” in PubMed, MEDLINE, Cochrane Library, Scopus, and Google Scholar databases from their inceptions to May 2016. Three cadaveric studies, 6 imaging studies, 10 clinical studies, and 4 meta-analyses were identified. The total number of 734 patients were included in the clinical studies. Literature analysis revealed better coaptation of the labrum on the glenoid rim in external rotation in cadaveric and imaging studies. However, this tendency was not confirmed by lower redislocation rates or better quality of life in clinical studies. On the basis of the available literature, we cannot confirm the superiority of immobilization in external rotation after glenohumeral dislocation when compared to internal rotation. A yet-to-be-determined group of patients with specific labroligamentous injury pattern may benefit from immobilization in external rotation. Further studies are needed to identify these patients. PMID:28710344

  16. Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand.

    PubMed

    Brown, Loren; Seaton, Kenneth; Mohseni, Ray; Vasiliev, Aleksey

    2013-10-15

    The objective of this work was the development of an efficient adsorbent for irreversible immobilization of heavy metals in contaminated soils. The adsorbent was prepared by pillaring of montmorillonite with silica followed by grafting of a chelate ligand on its surface. Obtained adsorbent was mesoporous with high content of adsorption sites. Its structure was studied by BET adsorption of N2, dynamic light scattering, and scanning electron microscopy. The adsorption capacity of the organoclay was measured by its mixing with contaminated kaolin and soil samples and by analysis of heavy metal contents in leachate. Deionized water and 50% acetic acid were used for leaching of metals from the samples. As it was demonstrated by the experiments, the adsorbent was efficient in immobilization of heavy metals not only in neutral aqueous media but also in the presence of weak acid. As a result, the adsorbent can be used for reduction of heavy metal leaching from contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Metal-Chelate Immobilization of Lipase onto Polyethylenimine Coated MCM-41 for Apple Flavor Synthesis.

    PubMed

    Sadighi, Armin; Motevalizadeh, Seyed Farshad; Hosseini, Morteza; Ramazani, Ali; Gorgannezhad, Lena; Nadri, Hamid; Deiham, Behnaz; Ganjali, Mohammad Reza; Shafiee, Abbas; Faramarzi, Mohammad Ali; Khoobi, Mehdi

    2017-08-01

    An enzyme immobilized on a mesoporous silica nanoparticle can serve as a multiple catalyst for the synthesis of industrially useful chemicals. In this work, MCM-41 nanoparticles were coated with polyethylenimine (MCM-41@PEI) and further modified by chelation of divalent metal ions (M = Co 2+ , Cu 2+ , or Pd 2+ ) to produce metal-chelated silica nanoparticles (MCM-41@PEI-M). Thermomyces lanuginosa lipase (TLL) was immobilized onto MCM-41, MCM-41@PEI, and MCM-41@PEI-M by physical adsorption. Maximum immobilization yield and efficiency of 75 ± 3.5 and 65 ± 2.7% were obtained for MCM@PEI-Co, respectively. The highest biocatalytic activity at extremely acidic and basic pH (pH = 3 and 10) values were achieved for MCM-PEI-Co and MCM-PEI-Cu, respectively. Optimum enzymatic activity was observed for MCM-41@PEI-Co at 75 °C, while immobilized lipase on the Co-chelated support retained 70% of its initial activity after 14 days of storage at room temperature. Due to its efficient catalytic performance, MCM-41@PEI-Co was selected for the synthesis of ethyl valerate in the presence of valeric acid and ethanol. The enzymatic esterification yield for immobilized lipase onto MCM-41@PEI-Co was 60 and 53%, respectively, after 24 h of incubation in n-hexane and dimethyl sulfoxide media. Graphical Abstract Divalent metal chelated polyethylenimine coated MCM-41 (MCM-41@PEI-M) was used for immobilization of Thermomyces lanuginosa lipase catalyzing green apple flavor preparation.

  18. Immobilized metal ion affinity electrophoresis. A study with several model proteins containing histidine.

    PubMed

    Goubran-Botros, H; Nanak, E; Abdul Nour, J; Birkenmeir, G; Vijayalakshmi, M A

    1992-04-24

    Immobilized metal ion affinity electrophoresis (IMA-Elec) is one among the many methods derived from the immobilized metal ion affinity chromatography. Two approaches for incorporating the metal ligand, were studied. One was in the form of insoluble particulate material based on Sepharose 6B and the other in the form of soluble polymer based on polyethylene glycol (PEG) 5000. Both the polymers coupled with iminodiacetate and metallized with copper or zinc were used as ligands, incorporated into soluble agarose as the electrophoretic gel. Several histidine-containing model proteins were studied with both the systems and their metal binding strengths were determined as the dissociation constants, Kd. The results clearly demonstrated that the mechanism of protein recognition by immobilized copper or zinc via the accessible histidyl residues was maintained in the IMA-Elec system. Proteins with increasing numbers of histidine residues showed increasing binding strength (lower Kd values). While this basic mechanism was conserved, the supporting polymers (Sepharose 6B and the PEG 5000) showed significant differences in the metal binding to the protein. The polysaccharide Sepharose 6B enhanced the binding strength compared with PEG 5000. The optimum electrophoretic parameters were determined to be current intensities up to 20 mA and pH ca. 7.0. At pH greater than 8.0, a significant decrease in the affinity was observed, this decrease being greater with PEG 5000 than Sepharose 6B as supporting material.

  19. Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads.

    PubMed

    Ahmad, Ashfaq; Bhat, A H; Buang, Azizul

    2018-02-01

    In this study freely suspended and Ca-alginate immobilized C. vulgaris cells were used for the biosorption of Fe(II), Mn(II), and Zn(II) ions, from the aqueous solution. Experimental data showed that biosorption capacity of algal cells was strongly dependent on the operational condition such as pH, initial metal ions concentration, dosages, contact time and temperature. The maximum biosorption of Fe(II) 43.43, Mn(II) 40.98 and Zn(II) 37.43 mg/g was achieved with Ca-alginate immobilized algal cells at optimum pH of 6.0, algal cells dosage 0.6 g/L, and contact time of 450 min at room temperature. The biosorption efficiency of freely suspended and immobilized C. vulgaris cells for heavy metals removal from the industrial wastewater was validated. Modeling of biosorption kinetics showed good agreements with pseudo-second-order. Langmuir and D-R isotherm models exhibited the best fit of experimental data. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) revealed that the biosorption of considered metal ions was feasible, spontaneous and exothermic at 25-45°C. The SEM showed porous morphology which greatly helps in the biosorption of heavy metals. The Fourier transform infrared spectrophotometer (FTIR) and X-rays Photon Spectroscopy (XPS) data spectra indicated that the functional groups predominately involved in the biosorption were C-N, -OH, COO-, -CH, C=C, C=S and -C-. These results shows that immobilized algal cells in alginate beads could potentially enhance the biosorption of considered metal ions than freely suspended cells. Furthermore, the biosorbent has significantly removed heavy metals from industrial wastewater at the optimized condition.

  20. Localization of heavy metals immobilized on specific organic and mineral parts of a wood-derived biochar

    NASA Astrophysics Data System (ADS)

    Rees, Frédéric; Watteau, Françoise; Morel, Jean-Louis

    2013-04-01

    Biochar has been intensively investigated over recent years, not only as a promising carbon sequestration or fertilizing agent in soils but also as a possible new sorbent to remediate contaminated soils. A few studies have revealed its high potential for heavy metals immobilization depending on the nature of biochar and trace elements. The mechanisms behind this immobilization remain however unclear: some authors have hypothesized a high sorption capacity due to biochar large surface area while others have suggested that this immobilization is mainly due to soil pH increase. In particular, the distinction between heavy metals specific sorption in biochar pores and heavy metals precipitation in or outside biochar particles is often impossible to make while it is of primary importance to evaluate biochar ability to retain these pollutants on a long-time scale. In order to evaluate the main heavy metal immobilization effects on a standard biochar and to identify the most successful biochar parts of the sample, we examined biochar particles after heavy metals immobilization in batch experiments designed to mimic real chemical processes in soils. A biochar derived from hard and soft wood and pyrolyzed at about 450°C was put in contact with relatively low concentrations of heavy metals (Pb, Cu, Cd, Zn, Ni) in an initially acidic Ca(NO3)2 solution. Following a one-week adsorption and a one-week desorption step, we recovered the biochar particles and observed them using scanning electron microscopy coupled to energy dispersive x-ray spectroscopy, focusing especially on the changes in mineral phases and the location of each of the retained heavy metals on biochar particles. We were able to distinguish different structures in the biochar samples which were linked to the degree of pyrolysis and the exact nature of the raw wood biomass. We detected the presence of concentrated metals zones (e.g. lead) in specific locations of the organic particles depending on the original

  1. Modified clay sorbents for wastewater treatment and immobilization of heavy metals in soils

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Klavins, Maris; Vincevica-Gaile, Zane; Stapkevica, Mara

    2014-05-01

    Soil and groundwater pollution with heavy metals is the result of both, anthropogenic and natural processes in the environment. Anthropogenic influence in great extent appears from industry, mining, treatment of metal ores and waste incineration. Contamination of soil and water can be induced by diffuse sources such as applications of agrochemicals and fertilizers in agriculture, air pollution from industry and transport, and by point sources, e.g., wastewater streams, runoff from dump sites and factories. Treatment processes used for metal removal from polluted soil and water include methodologies based on chemical precipitation, ion exchange, carbon adsorption, membrane filtration, adsorption and co-precipitation. Optimal removal of heavy metal ions from aqueous medium can be achieved by adsorption process which is considered as one of the most effective methods due to its cost-effectiveness and high efficiency. Immobilization of metals in contaminated soil also can be done with different adsorbents as the in situ technology. Use of natural and modified clay can be developed as one of the solutions in immobilization of lead, zinc, copper and other elements in polluted sites. Within the present study clay samples of different geological genesis were modified with sodium and calcium chlorides, iron oxyhydroxides and ammonium dihydrogen phosphate in variable proportions of Ca/P equimolar ratio to test and compare immobilization efficiency of metals by sorption and batch leaching tests. Sorption capacity for raw clay samples was considered as relatively lower referring to the modified species of the same clay type. In addition, clay samples were tested for powder X-ray difractometry, cation exchange, surface area properties, elemental composition, as well as scanning electron microscopy pictures of clay sample surface structures were obtained. Modified clay sorbents were tested for sorption of lead as monocontaminant and for complex contamination of heavy metals. The

  2. Novel synthesis and applications of Thiomer solidification for heavy metals immobilization in hazardous ASR/ISW thermal residue.

    PubMed

    Baek, Jin Woong; Mallampati, Srinivasa Reddy; Park, Hung Suck

    2016-03-01

    The present paper reports the novel synthesis and application of Thiomer solidification for heavy metal immobilization in hazardous automobile shredder residues and industrial solid waste (ASR/ISW) thermal residues. The word Thiomer is a combination of the prefix of a sulfur-containing compound "Thio" and the suffix of "Polymer" meaning a large molecule compound of many repeated subunits. To immobilize heavy metals, either ASR/ISW thermal residues (including bottom and fly ash) was mixed well with Thiomer and heated at 140°C. After Thiomer solidification, approximately 91-100% heavy metal immobilization was achieved. The morphology and mineral phases of the Thiomer-solidified ASR/ISW thermal residue were characterized by field emission-scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction (XRD), which indicated that the amounts of heavy metals detectable on the ASR/ISW thermal residue surface decreased and the sulfur mass percent increased. XRD indicated that the main fraction of the enclosed/bound materials on the ASR/ISW residue contained sulfur associated crystalline complexes. The Thiomer solidified process could convert the heavy metal compounds into highly insoluble metal sulfides and simultaneously encapsulate the ASR/ISW thermal residue. These results show that the proposed method can be applied to the immobilization of ASR/ISW hazardous ash involving heavy metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evaluation of Quantitative Performance of Sequential Immobilized Metal Affinity Chromatographic Enrichment for Phosphopeptides

    PubMed Central

    Sun, Zeyu; Hamilton, Karyn L.; Reardon, Kenneth F.

    2014-01-01

    We evaluated a sequential elution protocol from immobilized metal affinity chromatography (SIMAC) employing gallium-based immobilized metal affinity chromatography (IMAC) in conjunction with titanium-dioxide-based metal oxide affinity chromatography (MOAC). The quantitative performance of this SIMAC enrichment approach, assessed in terms of repeatability, dynamic range, and linearity, was evaluated using a mixture composed of tryptic peptides from caseins, bovine serum albumin, and phosphopeptide standards. While our data demonstrate the overall consistent performance of the SIMAC approach under various loading conditions, the results also revealed that the method had limited repeatability and linearity for most phosphopeptides tested, and different phosphopeptides were found to have different linear ranges. These data suggest that, unless additional strategies are used, SIMAC should be regarded as a semi-quantitative method when used in large-scale phosphoproteomics studies in complex backgrounds. PMID:24096195

  4. Epsilon Metal Waste Form for Immobilization of Noble Metals from Used Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, Jarrod V.; Strachan, Denis M.; Rohatgi, Aashish

    2013-10-01

    Epsilon metal (ε-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass and thus the processing problems related there insolubility in glass. This work focused on the processing aspects of the epsilonmore » metal waste form development. Epsilon metal is comprised of refractory metals resulting in high reaction temperatures to form the alloy, expected to be 1500 - 2000°C making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).« less

  5. Epsilon metal waste form for immobilization of noble metals from used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Crum, Jarrod V.; Strachan, Denis; Rohatgi, Aashish; Zumhoff, Mac

    2013-10-01

    Epsilon metal (ɛ-metal), an alloy of Mo, Pd, Rh, Ru, and Tc, is being developed as a waste form to treat and immobilize the undissolved solids and dissolved noble metals from aqueous reprocessing of commercial used nuclear fuel. Epsilon metal is an attractive waste form for several reasons: increased durability relative to borosilicate glass, it can be fabricated without additives (100% waste loading), and in addition it also benefits borosilicate glass waste loading by eliminating noble metals from the glass, thus the processing problems related to their insolubility in glass. This work focused on the processing aspects of the epsilon metal waste form development. Epsilon metal is comprised of refractory metals resulting in high alloying temperatures, expected to be 1500-2000 °C, making it a non-trivial phase to fabricate by traditional methods. Three commercially available advanced technologies were identified: spark-plasma sintering, microwave sintering, and hot isostatic pressing, and investigated as potential methods to fabricate this waste form. Results of these investigations are reported and compared in terms of bulk density, phase assemblage (X-ray diffraction and elemental analysis), and microstructure (scanning electron microscopy).

  6. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil.

    PubMed

    Seshadri, B; Bolan, N S; Choppala, G; Kunhikrishnan, A; Sanderson, P; Wang, H; Currie, L D; Tsang, Daniel C W; Ok, Y S; Kim, G

    2017-10-01

    Shooting range soils contain mixed heavy metal contaminants including lead (Pb), cadmium (Cd), and zinc (Zn). Phosphate (P) compounds have been used to immobilize these metals, particularly Pb, thereby reducing their bioavailability. However, research on immobilization of Pb's co-contaminants showed the relative importance of soluble and insoluble P compounds, which is critical in evaluating the overall success of in situ stabilization practice in the sustainable remediation of mixed heavy metal contaminated soils. Soluble synthetic P fertilizer (diammonium phosphate; DAP) and reactive (Sechura; SPR) and unreactive (Christmas Island; CPR) natural phosphate rocks (PR) were tested for Cd, Pb and Zn immobilization and later their mobility and bioavailability in a shooting range soil. The addition of P compounds resulted in the immobilization of Cd, Pb and Zn by 1.56-76.2%, 3.21-83.56%, and 2.31-74.6%, respectively. The reactive SPR significantly reduced Cd, Pb and Zn leaching while soluble DAP increased their leachate concentrations. The SPR reduced the bioaccumulation of Cd, Pb and Zn in earthworms by 7.13-23.4% and 14.3-54.6% in comparison with earthworms in the DAP and control treatment, respectively. Bioaccessible Cd, Pb and Zn concentrations as determined using a simplified bioaccessibility extraction test showed higher long-term stability of P-immobilized Pb and Zn than Cd. The differential effect of P-induced immobilization between P compounds and metals is due to the variation in the solubility characteristics of P compounds and nature of metal phosphate compounds formed. Therefore, Pb and Zn immobilization by P compounds is an effective long-term remediation strategy for mixed heavy metal contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nutrient and pollutant metals within earthworm residues are immobilized in soil during decomposition

    PubMed Central

    Richardson, J.B; Renock, D.J; Görres, J.H; Jackson, B.P; Webb, S.M; Friedland, A.J

    2016-01-01

    Earthworms are known to bioaccumulate metals, making them a potential vector for metal transport in soils. However, the fate of metals within soil upon death of earthworms has not been characterized. We compared the fate of nutrient (Ca, Mg, Mn) and potentially toxic (Cu, Zn, Pb) metals during decomposition of Amynthas agrestis and Lumbricus rubellus in soil columns. Cumulative leachate pools, exchangeable pools (0.1 M KCl + 0.01 M acetic acid extracted), and stable pools (16 M HNO3 + 12 M HCl extracted) were quantified in the soil columns after 7, 21, and 60 days of decomposition. Soil columns containing A. agrestis and L. rubellus had significantly higher cumulative leachate pools of Ca, Mn, Cu, and Pb than Control soil columns. Exchangeable and stable pools of Cu, Pb, and Zn were greater for A. agrestis and L. rubellus soil columns than Control soil columns. However, we estimated that > 98 % of metals from earthworm residues were immobilized in the soil in an exchangeable or stable form over the 60 days using a mass balance approach. Micro-XRF images of longitudinal thin sections of soil columns after 60 days containing A. agrestis confirm metals immobilization in earthworm residues. Our research demonstrates that nutrient and toxic metals are stabilized in soil within earthworm residues. PMID:28163331

  8. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization.

    PubMed

    Zhai, Xiuqing; Li, Zhongwu; Huang, Bin; Luo, Ninglin; Huang, Mei; Zhang, Qiu; Zeng, Guangming

    2018-09-01

    The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl 3 ) and in situ immobilization (with lime, biochar, and black carbon). The results showed that the removal rate of Cd, Pb, Zn, and Cu was 62.9%, 52.1%, 30.0%, and 16.7%, respectively, when washed with FeCl 3 . After the combined remediation (immobilization with 1% (w/w) lime), the contaminated soils showed 36.5%, 73.6%, 70.9%, and 53.4% reductions in the bioavailability of Cd, Cu, Pb, and Zn (extracted with 0.11M acetic acid), respectively, than those of the soils washed with FeCl 3 only. However, the immobilization with 1% (w/w) biochar or 1% (w/w) carbon black after washing exhibited low effects on stabilizing the metals. The differences in effects between the immobilization with lime, biochar, and carbon black indicated that the soil pH had a significant influence on the lability of heavy metals during the combined remediation process. The activity of the soil enzymes (urease, sucrase, and catalase) showed that the addition of all the materials, including lime, biochar, and carbon black, exhibited positive effects on microbial remediation after soil washing. Furthermore, lime was the most effective material, indicating that low soil pH and high acid-soluble metal concentrations might restrain the activity of soil enzymes. Soil pH and nutrition were the major considerations for microbial remediation during the combined remediation. These findings suggest that the combination of soil washing and in situ immobilization is an effective method to amend the soils contaminated with multiple heavy metals. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks.

    PubMed

    Liu, Xiao; Qi, Wei; Wang, Yuefei; Su, Rongxin; He, Zhimin

    2017-11-16

    Metal-organic frameworks (MOFs) have drawn extensive research interest as candidates for enzyme immobilization owing to their tunable porosity, high surface area, and excellent chemical/thermal stability. Herein, we report a facile and universal strategy for enzyme immobilization using highly stable hierarchically porous metal-organic frameworks (HP-MOFs). The HP-MOFs were stable over a wide pH range (pH = 2-11 for HP-DUT-5) and met the catalysis conditions of most enzymes. The as-prepared hierarchical micro/mesoporous MOFs with mesoporous defects showed a superior adsorption capacity towards enzymes. The maximum adsorption capacity of HP-DUT-5 for glucose oxidase (GOx) and uricase was 208 mg g -1 and 225 mg g -1 , respectively. Furthermore, we constructed two multi-enzyme biosensors for glucose and uric acid (UA) by immobilizing GOx and uricase with horseradish peroxidase (HRP) on HP-DUT-5, respectively. These sensors were efficiently applied in the colorimetric detection of glucose and UA and showed good sensitivity, selectivity, and recyclability.

  10. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    PubMed

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes

    PubMed Central

    Zhao, Chen-Zi; Zhang, Xue-Qiang; Cheng, Xin-Bing; Zhang, Rui; Xu, Rui; Chen, Peng-Yu; Peng, Hong-Jie; Huang, Jia-Qi

    2017-01-01

    Lithium metal is strongly regarded as a promising electrode material in next-generation rechargeable batteries due to its extremely high theoretical specific capacity and lowest reduction potential. However, the safety issue and short lifespan induced by uncontrolled dendrite growth have hindered the practical applications of lithium metal anodes. Hence, we propose a flexible anion-immobilized ceramic–polymer composite electrolyte to inhibit lithium dendrites and construct safe batteries. Anions in the composite electrolyte are tethered by a polymer matrix and ceramic fillers, inducing a uniform distribution of space charges and lithium ions that contributes to a dendrite-free lithium deposition. The dissociation of anions and lithium ions also helps to reduce the polymer crystallinity, rendering stable and fast transportation of lithium ions. Ceramic fillers in the electrolyte extend the electrochemically stable window to as wide as 5.5 V and provide a barrier to short circuiting for realizing safe batteries at elevated temperature. The anion-immobilized electrolyte can be applied in all–solid-state batteries and exhibits a small polarization of 15 mV. Cooperated with LiFePO4 and LiNi0.5Co0.2Mn0.3O2 cathodes, the all–solid-state lithium metal batteries render excellent specific capacities of above 150 mAh⋅g−1 and well withstand mechanical bending. These results reveal a promising opportunity for safe and flexible next-generation lithium metal batteries. PMID:28973945

  12. Immobilization of heavy metals in electroplating sludge by biochar and iron sulfide.

    PubMed

    Lyu, Honghong; Gong, Yanyan; Tang, Jingcshun; Huang, Yao; Wang, Qilin

    2016-07-01

    Electroplating sludge (ES) containing large quantities of heavy metals is regarded as a hazardous waste in China. This paper introduced a simple method of treating ES using environmentally friendly fixatives biochar (BC) and iron sulfide (FeS), respectively. After 3 days of treatment with FeS at a FeS-to-ES mass ratio of 1:5, the toxicity characteristic leaching procedure (TCLP)-based leachability of total Cr (TCr), Cu(II), Ni(II), Pb(II), and Zn(II) was decreased by 59.6, 100, 63.8, 73.5, and 90.5 %, respectively. After 5 days of treatment with BC at a BC-to-ES mass ratio of 1:2, the TCLP-based leachability was declined by 35.1, 30.6, 22.3, 23.1, and 22.4 %, respectively. Pseudo first-order kinetic model adequately simulated the sorption kinetic data. Structure and morphology analysis showed that adsorption, electrostatic attraction, surface complexation, and chemical precipitation were dominant mechanisms for heavy metals immobilization by BC, and that chemical precipitation (formation of metal sulfide and hydroxide precipitates), iron exchange (formation of CuFeS2), and surface complexation were mainly responsible for heavy metals removal by FeS. Economic costs of BC and FeS were 500 and 768 CNY/t, lower than that of Na2S (940 CNY/t). The results suggest that BC and FeS are effective, economic, and environmentally friendly fixatives for immobilization of heavy metals in ES before landfill disposal.

  13. Metal organic frameworks for enzyme immobilization in biofuel cells

    NASA Astrophysics Data System (ADS)

    Bodell, JaDee

    Interest in biofuel cells has been rapidly expanding as an ever-growing segment of the population gains access to electronic devices. The largest areas of growth for new populations using electronic devices are often in communities without electrical infrastructure. This lack of infrastructure in remote environments is one of the key driving factors behind the development of biofuel cells. Biofuel cells employ biological catalysts such as enzymes to catalyze oxidation and reduction reactions of select fuels to generate power. There are several benefits to using enzymes to catalyze reactions as compared to traditional fuel cells which use metal catalysts. First, enzymes are able to catalyze reactions at or near room temperature, whereas traditional metal catalysts are only efficient at very high temperatures. Second, biofuel cells can operate under mild pH conditions which is important for the eventual design of safe, commercially viable devices. Also, biofuel cells allow for implantable and flexible technologies. Finally, enzymes exhibit high selectivity and can be combined to fully oxidize or reduce the fuel which can generate several electrons from a single molecule of fuel, increasing the overall device efficiency. One of the main challenges which persist in biofuel cells is the instability of enzymes over time which tend to denature after hours or days. For a viable commercial biofuel cell to be produced, the stability of enzymes must be extended to months or years. Enzymes have been shown to have improved stability after being immobilized. The focus of this research was to find a metal organic framework (MOF) structure which could successfully immobilize enzymes while still allowing for electron transport to occur between the catalytic center of the enzyme and the electrode surface within a biofuel cell for power generation. Four MOF structures were successfully synthesized and were subsequently tested to determine the MOF's ability to immobilize the following

  14. Kinetics of heavy metal removal in a suspended and immobilized bioreactors

    NASA Astrophysics Data System (ADS)

    Kutty, S. R. M.; Ezechi, E. H.; Khaw, S. G.; Lai, C. L.; Isa, M. H.

    2017-06-01

    The capacity of microorganisms to remove heavy metal from wastewater has been a subject of diverse interest. Whereas some heavy metals are essential for effective microbial activity, some heavy metals could be toxic to the microorganisms at concentrations higher than their minimal inhibitory limit. The kinetics of Zn2+ removal from aqueous solution was evaluated in terms of substrate removal rate for two identical suspended and immobilized bioreactors. The suspended growth bioreactor was used as a control system (CS) and contains only biomass. The immobilized bioreactor (IB) contains both biomass and microwave incinerated rice husk ash (MIRHA). The bioreactors were operated at a fixed HRT of 29.1 hours, whereas Zn2+ influent concentration was varied in the range of 0.5, 1, 2, 5, 10 and 15 mg/L. At steady state conditions, the results show that Zn2+ removal was in the range of 72, 75, 72.5, 68.2, 70.3 and 58.7% for CS, whereas it was in the range of 88, 90, 83, 88.6, 86.2 and 83.7% for IB. The substrate removal rate was found as 1.1856 g/L.d for CS and 4.2693 g/L.d for IB. The results clearly show that Zn2+ removal was more favorable in IB, indicating that the performance of the bioreactor was enhanced by the addition of MIRHA.

  15. Biochar immobilizes soil-borne arsenic but not cationic metals in the presence of low-molecular-weight organic acids.

    PubMed

    Alozie, Nneka; Heaney, Natalie; Lin, Chuxia

    2018-07-15

    A batch experiment was conducted to examine the effects of biochar on the behaviour of soil-borne arsenic and metals that were mobilized by three low-molecular-weight organic acids. In the presence of citric acid, oxalic acid and malic acid at a molar concentration of 0.01M, the surface of biochar was protonated, which disfavours adsorption of the cationic metals released from the soil by organic acid-driven mobilization. In contrast, the oxyanionic As species were re-immobilized by the protonated biochar effectively. Biochar could also immobilize oxyanionic Cr species but not cationic Cr species. The addition of biochar increased the level of metals in the solution due to the release of the biochar-borne metals under attack by LMWOAs via cation exchange. Biochar could also have the potential to enhance reductive dissolution of iron and manganese oxides in the soil, leading to enhanced release of trace elements bound to these oxides. The findings obtained from this study have implications for evaluating the role of biochar in immobilizing trace elements in rhizosphere. Adsorption of cationic heavy metals on biochar in the presence of LMWOAs is unlikely to be a mechanism responsible for the impeded uptake of heavy metals by plants growing in heavy metal-contaminated soils. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent.

    PubMed

    Lee, Chi-Hyeon; Truc, Nguyen Thi Thanh; Lee, Byeong-Kyu; Mitoma, Yoshiharu; Mallampati, Srinivasa Reddy

    2015-10-15

    This study was conducted to synthesize and apply a nano-size calcium dispersed reagent as an immobilization material for heavy metal-contaminated automobile shredder residues (ASR) dust/thermal residues in dry condition. Simple mixing with a nanometallic Ca/CaO/PO4 dispersion mixture immobilized 95-100% of heavy metals in ASR dust/thermal residues (including bottom ash, cavity ash, boiler and bag filter ash). The quantity of heavy metals leached from thermal residues after treatment by nanometallic Ca/CaO/PO4 was lower than the Korean standard regulatory limit for hazardous waste landfills. The morphology and elemental composition of the nanometallic Ca/CaO-treated ASR residue were characterized by field emission scanning election microscopy combined with electron dispersive spectroscopy (FE-SEM/EDS). The results indicated that the amounts of heavy metals detectable on the ASR thermal residue surface decreased and the Ca/PO4 mass percent increased. X-ray diffraction (XRD) pattern analysis indicated that the main fraction of enclosed/bound materials on ASR residue included Ca/PO4- associated crystalline complexes, and that immobile Ca/PO4 salts remarkably inhibited the desorption of heavy metals from ASR residues. These results support the potential use of nanometallic Ca/CaO/PO4 as a simple, suitable and highly efficient material for the gentle immobilization of heavy metals in hazardous ASR thermal residue in dry condition. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. The role of biochar, natural iron oxides, and nanomaterials as soil amendments for immobilizing metals in shooting range soil.

    PubMed

    Rajapaksha, Anushka Upamali; Ahmad, Mahtab; Vithanage, Meththika; Kim, Kwon-Rae; Chang, Jun Young; Lee, Sang Soo; Ok, Yong Sik

    2015-12-01

    High concentration of toxic metals in military shooting range soils poses a significant environmental concern due to the potential release of metals, such as Pb, Cu, and Sb, and hence requires remediation. The current study examined the effectiveness of buffalo weed (Ambrosia trifida L.) biomass and its derived biochars at pyrolytic temperatures of 300 and 700 °C, natural iron oxides (NRE), gibbsite, and silver nanoparticles on metal immobilization together with soil quality after 1-year soil incubation. Destructive (e.g., chemical extractions) and non-destructive (e.g., molecular spectroscopy) methods were used to investigate the immobilization efficacy of each amendment on Pb, Cu, and Sb, and to explore the possible immobilization mechanisms. The highest immobilization efficacy was observed with biochar produced at 300 °C, showing the maximum decreases of bioavailability by 94 and 70% for Pb and Cu, respectively, which were attributed to the abundance of functional groups in the biochar. Biochar significantly increased the soil pH, cation exchange capacity, and P contents. Indeed, the scanning electron microscopic elemental dot mapping and X-ray absorption fine structure spectroscopic (EXAFS) studies revealed associations of Pb with P (i.e., the formation of stable chloropyromorphite [Pb5(PO4)3Cl]) in the biomass- or biochar-amended soils. However, no amendment was effective on Sb immobilization.

  18. Immobilized Metal Affinity Chromatography Coupled to Multiple Reaction Monitoring Enables Reproducible Quantification of Phospho-signaling*

    PubMed Central

    Kennedy, Jacob J.; Yan, Ping; Zhao, Lei; Ivey, Richard G.; Voytovich, Uliana J.; Moore, Heather D.; Lin, Chenwei; Pogosova-Agadjanyan, Era L.; Stirewalt, Derek L.; Reding, Kerryn W.; Whiteaker, Jeffrey R.; Paulovich, Amanda G.

    2016-01-01

    A major goal in cell signaling research is the quantification of phosphorylation pharmacodynamics following perturbations. Traditional methods of studying cellular phospho-signaling measure one analyte at a time with poor standardization, rendering them inadequate for interrogating network biology and contributing to the irreproducibility of preclinical research. In this study, we test the feasibility of circumventing these issues by coupling immobilized metal affinity chromatography (IMAC)-based enrichment of phosphopeptides with targeted, multiple reaction monitoring (MRM) mass spectrometry to achieve precise, specific, standardized, multiplex quantification of phospho-signaling responses. A multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay targeting phospho-analytes responsive to DNA damage was configured, analytically characterized, and deployed to generate phospho-pharmacodynamic curves from primary and immortalized human cells experiencing genotoxic stress. The multiplexed assays demonstrated linear ranges of ≥3 orders of magnitude, median lower limit of quantification of 0.64 fmol on column, median intra-assay variability of 9.3%, median inter-assay variability of 12.7%, and median total CV of 16.0%. The multiplex immobilized metal affinity chromatography- multiple reaction monitoring assay enabled robust quantification of 107 DNA damage-responsive phosphosites from human cells following DNA damage. The assays have been made publicly available as a resource to the community. The approach is generally applicable, enabling wide interrogation of signaling networks. PMID:26621847

  19. Production of polygalacturonase from Coriolus versicolor grown on tomato pomace and its chromatographic behaviour on immobilized metal chelates.

    PubMed

    do Rosário Freixo, Maria; Karmali, Amin; Arteiro, José Maria

    2008-06-01

    Tomato pomace and pectin were used as the sole carbon sources for the production of polygalacturonase from a strain of Coriolus versicolor in submerged culture. The culture of C. versicolor grown on tomato pomace exhibited a peak of polygalacturonase activity (1,427 U/l) on the third day of culture with a specific activity of 14.5 U/mg protein. The production of polygalacturonase by C. versicolor grown on pectin as a sole carbon source increased with the time of cultivation, reaching a maximum activity of 3,207 U/l of fermentation broth with a specific activity of 248 U/mg protein. The levels of different isoenzymes of polygalacturonase produced during the culture growth were analysed by native PAGE. Differential chromatographic behaviour of lignocellulosic enzymes produced by C. versicolor (i.e. polygalacturonase, xylanase and laccase) was studied on immobilized metal chelates. The effect of ligand concentration, pH, the length of spacer arm and the nature of metal ion were studied for enzyme adsorption on immobilized metal affinity chromatography (IMAC). The adsorption of these lignocellulosic enzymes onto immobilized metal chelates was pH-dependent since an increase in protein adsorption was observed as the pH was increased from 6.0 to 8.0. The adsorption of polygalacturonase as well as other enzymes to immobilized metal chelates was due to coordination of histidine residues which are available at the protein surface since the presence of imidazole in the equilibration buffer abolished the adsorption of the enzyme to immobilized metal chelates. A one-step purification of polygalacturonase from C. versicolor was devised by using a column of Sepharose 6B-EPI 30-IDA-Cu(II) and purified enzyme exhibited a specific activity of about 150 U/mg protein, final recovery of enzyme activity of 100% and a purification factor of about 10. The use of short spacer arm and the presence of imidazole in equilibration buffer exhibited a higher selectivity for purification of

  20. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils.

    PubMed

    Igalavithana, Avanthi Deshani; Lee, Sung-Eun; Lee, Young Han; Tsang, Daniel C W; Rinklebe, Jörg; Kwon, Eilhann E; Ok, Yong Sik

    2017-05-01

    In order to determine the efficacy of vegetable waste and pine cone biochar for immobilization of metal/metalloid (lead and arsenic) and abundance of microbial community in different agricultural soils, we applied the biochar produced at two different temperatures to two contaminated soils. Biochar was produced by vegetable waste, pine cone, and their mixture (1:1 ww -1 ) at 200 °C (torrefied biomass) and 500 °C (biochar). Contaminated soils were incubated with 5% (ww -1 ) torrefied biomass or biochar. Sequential extraction, thermodynamic modeling, and scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy were used to evaluate the metal immobilization. Microbial communities were characterized by microbial fatty acid profiles and microbial activity was assessed by dehydrogenase activity. Vegetable waste and the mixture of vegetable waste and pine cone biochar exhibited greater ability for Pb immobilization than pine cone biochar and three torrefied biomass, and vegetable waste biochar was found to be most effective. However, torrefied biomass was most effective in increasing both microbial community and dehydrogenase activity. This study confirms that vegetable waste could be a vital biomass to produce biochar to immobilize Pb, and increase the microbial communities and enzyme activity in soils. Biomass and pyrolytic temperature were not found to be effective in the immobilization of As in this study. Copyright © 2017. Published by Elsevier Ltd.

  1. Immobilized fluid membranes for gas separation

    DOEpatents

    Liu, Wei; Canfield, Nathan L; Zhang, Jian; Li, Xiaohong Shari; Zhang, Jiguang

    2014-03-18

    Provided herein are immobilized liquid membranes for gas separation, methods of preparing such membranes and uses thereof. In one example, the immobilized membrane includes a porous metallic host matrix and an immobilized liquid fluid (such as a silicone oil) that is immobilized within one or more pores included within the porous metallic host matrix. The immobilized liquid membrane is capable of selective permeation of one type of molecule (such as oxygen) over another type of molecule (such as water). In some examples, the selective membrane is incorporated into a device to supply oxygen from ambient air to the device for electrochemical reactions, and at the same time, to block water penetration and electrolyte loss from the device.

  2. TOXIC METALS IN THE ENVIRONMENT: THERMODYNAMIC CONSIDERATIONS FOR POSSIBLE IMMOBILIZATION STRATEGIES FOR PB, CD, AS, AND HG

    EPA Science Inventory

    The contamination of soils by toxic metals is a widespread, serious problem that demands immediate action either by removal or immobilization, which is defined as a process which puts the metal into a chemical form, probably as a mineral, which will be inert and highly insoluble ...

  3. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite).

    PubMed

    Chaturvedi, Pranav Kumar; Seth, Chandra Shekhar; Misra, Virendra

    2006-08-01

    Release of heavy metals onto the soil as a result of agricultural and industrial activities may pose a serious threat to the environment. This study investigated the kinetics of sorption of heavy metals on the non-humus soil amended with (1:3) humus soil and 1% hydroxyapatite used for in situ immobilization and leachability of heavy metals from these soils. For this, a batch equilibrium experiment was performed to evaluate metal sorption in the presence of 0.05 M KNO(3) background electrolyte solutions. The Langmuir isotherms applied for sorption studies showed that the amount of metal sorbed on the amended soil decreased in the order of Pb(2+)>Zn(2+)>Cd(2+). The data suggested the possibility of immobilization of Pb due to sorption process and immobilization of Zn and Cd by other processes like co-precipitation and ion exchange. The sorption kinetics data showed the pseudo-second-order reaction kinetics rather than pseudo-first-order kinetics. Leachability study was performed at various pHs (ranging from 3 to 10). Leachability rate was slowest for the Pb(2+) followed by Zn(2+) and Cd(2+). Out of the metal adsorbed on the soil only 6.1-21.6% of Pb, 7.3-39% of Zn and 9.3-44.3% of Cd leached out from the amended soil.

  4. Biochar- and phosphate-induced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater.

    PubMed

    Liang, Yuan; Cao, Xinde; Zhao, Ling; Arellano, Eduardo

    2014-03-01

    Long-term wastewater irrigation or solid waste disposal has resulted in the heavy metal contamination in both soil and groundwater. It is often separately implemented for remediation of contaminated soil or groundwater at a specific site. The main objective of this study was to demonstrate the hypothesis of simultaneous remediation of both heavy metal contaminated soil and groundwater by integrating the chemical immobilization and pump-and-treat methods. To accomplish the objective, three experiments were conducted, i.e., an incubation experiment was first conducted to determine how dairy-manure-derived biochar and phosphate rock tailing induced immobilization of Cd in the Cd-contaminated soils; second, a batch sorption experiment was carried out to determine whether the pre-amended contaminated soil still had the ability to retain Pb, Zn and Cd from aqueous solution. BCR sequential extraction as well as XRD and SEM analysis were conducted to explore the possible retention mechanism; and last, a laboratory-scale model test was undertaken by leaching the Pb, Zn, and Cd contaminated groundwater through the pre-amended contaminated soils to demonstrate how the heavy metals in both contaminated soil and groundwater were simultaneously retained and immobilized. The incubation experiment showed that the phosphate biochar were effective in immobilizing soil Cd with Cd concentration in TCLP (toxicity characteristics leaching procedure) extract reduced by 19.6 % and 13.7 %, respectively. The batch sorption experiment revealed that the pre-amended soil still had ability to retain Pb, Zn, and Cd from aqueous solution. The phosphate-induced metal retention was mainly due to the metal-phosphate precipitation, while both sorption and precipitation were responsible for the metal stabilization in the biochar amendment. The laboratory-scale test demonstrated that the soil amended with phosphate removed groundwater Pb, Zn, and Cd by 96.4 %, 44.6 %, and 49.2 %, respectively, and the

  5. Metal immobilization by sludge-derived biochar: roles of mineral oxides and carbonized organic compartment.

    PubMed

    Zhang, Weihua; Huang, Xinchen; Jia, Yanming; Rees, Frederic; Tsang, Daniel C W; Qiu, Rongliang; Wang, Hong

    2017-04-01

    Pyrolyzing sludge into biochar is a potentially promising recycling/disposal solution for municipal wastewater sludge, and the sludge-derived biochar (SDBC) presents an excellent sorbent for metal immobilization. As SDBC is composed of both mineral oxides and carbonized organic compartment, this study therefore compared the sorption behaviour of Pb and Zn on SDBC to those of individual and mixture of activated carbon (AC) and amorphous aluminium oxide (Al 2 O 3 ). Batch experiments were conducted at 25 and 45 °C, and the metal-loaded sorbents were artificially aged in the atmosphere for 1-60 days followed by additional sorption experiments. The Pb sorption was generally higher than Zn sorption, and the co-presence of Pb reduced Zn sorption on each studied sorbent. Higher sorption capacities were observed at 45 °C than 25 °C for SDBC and AC, while the opposite was shown for Al 2 O 3 , indicating the significance of temperature-dependent diffusion processes in SDBC and AC. Nevertheless, metal sorption was more selective on Al 2 O 3 that showed a greater affinity towards Pb over Zn under competition, correlating with the reducible fraction of sequential extraction. Furthermore, significant amounts of Pb and Zn were additionally sorbed on SDBC following 30-day ageing. The X-ray diffraction revealed the formation of metal-phosphate precipitates, while the X-ray photoelectron spectroscopy showed a larger quantity of metal-oxygen bonding after 30-day ageing of metal-loaded SDBC. The results may imply favourable long-term transformation and additional sorption capacity of SDBC. In conclusion, SDBC resembles the sorption characteristics of both organic and mineral sorbents in different aspects, presenting an appropriate material for metal immobilization during soil amendment.

  6. Simultaneous immobilization of metals and arsenic in acidic polluted soils near a copper smelter in central Chile.

    PubMed

    Cárcamo, Valeska; Bustamante, Elena; Trangolao, Elizabeth; de la Fuente, Luz María; Mench, Michel; Neaman, Alexander; Ginocchio, Rosanna

    2012-05-01

    Acidic and metal(oid)-rich topsoils resulted after 34 years of continuous operations of a copper smelter in the Puchuncaví valley, central Chile. Currently, large-scale remediation actions for simultaneous in situ immobilization of metals and As are needed to reduce environmental risks of polluted soils. Aided phytostabilization is a cost-effective alternative, but adequate local available soil amendments have to be identified and management options have to be defined. Efficacy of seashell grit (SG), biosolids (B), natural zeolite (Z), and iron-activated zeolite (AZ), either alone or in mixtures, was evaluated for reducing metal (Cu and Zn) and As solubilization in polluted soils under laboratory conditions. Perennial ryegrass was used to test phytotoxicity of experimental substrates. Soil neutralization to a pH of 6.5 with SG, with or without incorporation of AZ, significantly reduces metal (Cu and Zn) solubilization without affecting As solubilization in soil pore water; furthermore, it eliminates phytotoxicity and excessive metal(oid) accumulation in aerial plant tissues. Addition of B or Z to SG-amended soil does not further reduce metal solubilization into soil pore water, but increase As solubilization due to excessive soil neutralization (pH > 6.5); however, no significant As increase occurs in aerial plant tissues. Simultaneous in situ immobilization of metal(oid) in acidic topsoils is possible through aided phytostabilization.

  7. Potential immobilized Saccharomyces cerevisiae as heavy metal removal

    NASA Astrophysics Data System (ADS)

    Raffar, Nur Izzati Abdul; Rahman, Nadhratul Nur Ain Abdul; Alrozi, Rasyidah; Senusi, Faraziehan; Chang, Siu Hua

    2015-05-01

    Biosorption of copper ion using treated and untreated immobilized Saccharomyces cerevisiae from aqueous solution was investigate in this study. S.cerevisiae has been choosing as biosorbent due to low cost, easy and continuously available from various industries. In this study, the ability of treated and untreated immobilized S.cerevisiae in removing copper ion influence by the effect of pH solution, and initial concentration of copper ion with contact time. Besides, adsorption isotherm and kinetic model also studied. The result indicated that the copper ion uptake on treated and untreated immobilized S.cerevisiae was increased with increasing of contact time and initial concentration of copper ion. The optimum pH for copper ion uptake on untreated and treated immobilized S.cerevisiae at 4 and 6. From the data obtained of copper ion uptake, the adsorption isotherm was fitted well by Freundlich model for treated immobilized S.cerevisiae and Langmuir model for untreated immobilized S.cerevisiae according to high correlation coefficient. Meanwhile, the pseudo second order was described as suitable model present according to high correlation coefficient. Since the application of biosorption process has been received more attention from numerous researchers as a potential process to be applied in the industry, future study will be conducted to investigate the potential of immobilized S.cerevisiae in continuous process.

  8. The enhancement of the hydrolysis of bamboo biomass in ionic liquid with chitosan-based solid acid catalysts immobilized with metal ions.

    PubMed

    Cheng, Jie; Wang, Nan; Zhao, Dezhou; Qin, Dandan; Si, Wenqing; Tan, Yunfei; Wei, Shun'an; Wang, Dan

    2016-11-01

    Three kinds of sulfonated cross-linked chitosan (SCCR) immobilized with metal ions of Cu(2+), Fe(3+) and Zn(2+) individually were synthesized and firstly used as solid acid catalysts in the hydrolysis of bamboo biomass. FTIR spectra showed that metal ions had been introduced into SCCR and the N-metal ions coordinate bound was formed. The particle sizes of these catalysts were about 500-1000μm with a pore size of 50-160μm. All of the three kinds of catalysts performed well for bamboo hydrolysis with 1-butyl-3-methyl-imidazolium chloride used as solvent. The most effective one was sulfonated cross-linked chitosan immobilized with Fe(3+) (Fe(3+)-SCCR). TRS yields were up to 73.42% for hydrolysis of bamboo powder in [C4mim]Cl with Fe(3+)-SCCR at 120°C and 20RPM after 24h. These novel chitosan-based metal ions immobilized solid acid catalysts with ionic liquids as the solvent might be promising to facilitate cost-efficient conversion of biomass into biofuels and bioproducts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification.

    PubMed

    Cao, Yu; Wu, Zhuofu; Wang, Tao; Xiao, Yu; Huo, Qisheng; Liu, Yunling

    2016-04-28

    Bacillus subtilis lipase (BSL2) has been successfully immobilized into a Cu-BTC based hierarchically porous metal-organic framework material for the first time. The Cu-BTC hierarchically porous MOF material with large mesopore apertures is prepared conveniently by using a template-free strategy under mild conditions. The immobilized BSL2 presents high enzymatic activity and perfect reusability during the esterification reaction. After 10 cycles, the immobilized BSL2 still exhibits 90.7% of its initial enzymatic activity and 99.6% of its initial conversion.

  10. One step bioconversion of waste precious metals into Serratia biofilm-immobilized catalyst for Cr(VI) reduction.

    PubMed

    Yong, P; Liu, W; Zhang, Z; Beauregard, D; Johns, M L; Macaskie, L E

    2015-11-01

    For reduction of Cr(VI) the Pd-catalyst is excellent but costly. The objectives were to prove the robustness of a Serratia biofilm as a support for biogenic Pd-nanoparticles and to fabricate effective catalyst from precious metal waste. Nanoparticles (NPs) of palladium were immobilized on polyurethane reticulated foam and polypropylene supports via adhesive biofilm of a Serratia sp. The biofilm adhesion and cohesion strength were unaffected by palladization and catalytic biofilm integrity was also shown by magnetic resonance imaging. Biofilm-Pd and mixed precious metals on biofilm (biofilm-PM) reduced 5 mM Cr(VI) to Cr(III) when immobilized in a flow-through column reactor, at respective flow rates of 9 and 6 ml/h. The lower activity of the latter was attributed to fewer, larger, metal deposits on the bacteria. Activity was lost in each case at pH 7 but was restored by washing with 5 mM citrate solution or by exposure of columns to solution at pH 2, suggesting fouling by Cr(III) hydroxide product at neutral pH. A 'one pot' conversion of precious metal waste into new catalyst for waste decontamination was shown in a continuous flow system based on the use of Serratia biofilm to manufacture and support catalytic Pd-nanoparticles.

  11. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration.

    PubMed

    Ren, Sizhu; Feng, Yuxiao; Wen, Huan; Li, Conghai; Sun, Baoting; Cui, Jiandong; Jia, Shiru

    2018-05-25

    CO 2 capture by immobilized carbonic anhydrase (CA) has become an alternative and environmental friendly approach in CO 2 sequestration technology. However, the immobilized CA usually exhibits low CO 2 sequestration efficiency due to no gas adsorption function for the conventional CA supports. Metal organic frameworks (MOFs) are an excellent material for gas adsorption and enzyme immobilization. Herein, a combined immobilization system of CA and ZIF-8 with cruciate flower-like morphology for CO 2 adsorption was prepared for the first time by adsorbing CA onto ZIF-8. The immobilization efficiency was greater than 95%, and the maximum activity recovery reached 75%, indicating the highly efficient immobilization process. The resultant CA@ZIF-8 composites exhibited outstanding thermostability, the tolerance against denaturants, and reusability compared with free CA. Furthermore, we demonstrated for the first time that the shape of ZIF-8 could be controlled by adjusting concentrations of Zn 2+ ions at the high concentration of 2-methylimidazole (1 M). More importantly, we also demonstrated the applicability of the CA@ZIF-8 composites to the sequestration of CO 2 in carbonate minerals. The yields of the CaCO 3 obtained by using CA@ZIF-8 composites were 22-folds compared to free CA. Thus, this CA@ZIF-8 composite can be successfully used as a robust biocatalyst for sequestration of CO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal-Organic Framework: A Double Solvents Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aijaz, Arshad; Karkamkar, Abhijeet J.; Choi, Young Joon

    2012-08-29

    Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework MIL-101 without deposition of Pt nanoparticles on the external surfaces of framework by using a 'double solvents' method. The resulting Pt@MIL-101 composites with different Pt loadings represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis; solid-phase ammonia borane thermal dehy-drogenation and gas-phase CO oxidation. The observed excellent catalytic performances are at-tributed to the small Pt nanoparticles within the pores of MIL-101. 'We are thankful to AIST and METI for financial support. TA & AK are thankful formore » support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is operated by Battelle.'« less

  13. Heavy metal-immobilizing organoclay facilitates polycyclic aromatic hydrocarbon biodegradation in mixed-contaminated soil.

    PubMed

    Biswas, Bhabananda; Sarkar, Binoy; Mandal, Asit; Naidu, Ravi

    2015-11-15

    Soils contaminated with a mixture of heavy metals and polycyclic aromatic hydrocarbons (PAHs) pose toxic metal stress to native PAH-degrading microorganisms. Adsorbents such as clay and modified clay minerals can bind the metal and reduce its toxicity to microorganisms. However, in a mixed-contaminated soil, an adsorption process more specific to the metals without affecting the bioavailability of PAHs is desired for effective degradation. Furthermore, the adsorbent should enhance the viability of PAH-degrading microorganisms. A metal-immobilizing organoclay (Arquad(®) 2HT-75-bentonite treated with palmitic acid) (MIOC) able to reduce metal (cadmium (Cd)) toxicity and enhance PAH (phenanthrene) biodegradation was developed and characterized in this study. The MIOC differed considerably from the parent clay in terms of its ability to reduce metal toxicity (MIOC>unmodified bentonite>Arquad-bentonite). The MIOC variably increased the microbial count (10-43%) as well as activities (respiration 3-44%; enzymatic activities up to 68%), and simultaneously maintained phenanthrene in bioavailable form in a Cd-phenanthrene mixed-contaminated soil over a 21-day incubation period. This study may lead to a new MIOC-assisted bioremediation technique for PAHs in mixed-contaminated soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Effect of SiO2 on immobilization of metals and encapsulation of a glass network in slag.

    PubMed

    Kuo, Yi-Ming; Lin, Ta-Chang; Tsai, Perng-Jy

    2003-11-01

    The final disposal of ash from an incinerator is of special concern because of the possibility of its releasing toxic substances. Melting/vitrification has been regarded as a prospective technology of ash treatment. The object of this investigation was to evaluate the effect of silica (SiO2) addition on the immobilization of hazardous metals and the encapsulation of a glass network during the vitrification process. Four specimens with SiO2/fly ash mixing ratios of 0, 0.1, 0.2, and 0.3, respectively, were tested. The mobility of metals in slag was then estimated by a sequential extraction procedure. X-ray diffraction analysis indicates that SiO2 leads to the polymerization of silicates. The encapsulation of aluminum, calcium, and magnesium would not be observed unless adequate amount of SiO2 was added. It was also found that SiO2 addition enhances the formation of a compact and interconnected glass network structure and, thus, contributes to the chemical stability of metals in slag. After vitrification, the mobility of cadmium, copper, iron, chromium, nickel, lead, and zinc was significantly reduced. However, there is no significant correlation between the immobilization of these metals and the addition of SiO2.

  15. Dual mechanochemical immobilization of heavy metals and decomposition of halogenated compounds in automobile shredder residue using a nano-sized metallic calcium reagent.

    PubMed

    Mallampati, Srinivasa Reddy; Lee, Byoung Ho; Mitoma, Yoshiharu; Simion, Cristian

    2016-11-01

    Simultaneous immobilization of heavy metals and decomposition of halogenated organic compounds in different fractions of automobile shredder residue (ASR) were achieved with a nano-sized metallic calcium through a 60-min ball milling treatment. Heavy metal (HM) immobilization and chlorinated/brominated compound (CBC) decomposition efficiencies both reached 90-100 %, after ball milling with nanometallic calcium/calcium oxide (Ca/CaO) dispersion, regardless of ASR particle size (1.0, 0.45-1.0, and 0.250 mm). Concentrations of leachable HMs substantially decreased to a level lower than the regulatory standard limits (Co and Cd 0.3 mg L -1 ; Cr 1.5 mg L -1 ; Fe, Pb, and Zn 3.0 mg L -1 ; Mn and Ni 1 mg L -1 ) proposed by the Korean hazardous waste elution standard regulatory threshold. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) element maps/spectra showed that while the amounts of HMs and CBCs detectable in ASR significantly decreased, the calcium mass percentage increased. X-ray powder diffraction (XRD) patterns indicate that the main fraction of enclosed/bound materials on ASR includes Ca-associated crystalline complexes that remarkably inhibit HM desorption and simultaneously transform dangerous CBCs into harmless compounds. The use of a nanometallic Ca/CaO mixture in a mechanochemical process to treat hazardous ASR (dry conditions) is an innovative approach to remediate cross-contaminated residues with heavy metals and halogenated compounds.

  16. Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue.

    PubMed

    Lee, Sang Soo; Lim, Jung Eun; El-Azeem, Samy A M Abd; Choi, Bongsu; Oh, Sang-Eun; Moon, Deok Hyun; Ok, Yong Sik

    2013-03-01

    Heavy metal contamination of agricultural soils has received great concern due to potential risk to human health. Cadmium and Pb are largely released from abandoned or closed mines in Korea, resulting in soil contamination. The objective of this study was to evaluate the effects of eggshell waste in combination with the conventional nitrogen, phosphorous, and potassium fertilizer (also known as NPK fertilizer) or the rapeseed residue on immobilization of Cd and Pb in the rice paddy soil. Cadmium and Pb extractabilities were tested using two methods of (1) the toxicity characteristics leaching procedure (TCLP) and (2) the 0.1 M HCl extraction. With 5 % eggshell addition, the values of soil pH were increased from 6.33 and 6.51 to 8.15 and 8.04 in combination with NPK fertilizer and rapeseed residue, respectively, compared to no eggshell addition. The increase in soil pH may contribute to heavy metal immobilization by altering heavy metals into more stable in soils. Concentrations of TCLP-extracted Cd and Pb were reduced by up to 67.9 and 93.2 % by addition of 5 % eggshell compared to control. For 0.1 M HCl extraction method, the concentration of 0.1 M HCl-Cd in soils treated with NPK fertilizer and rapeseed residue was significantly reduced by up to 34.01 and 46.1 %, respectively, with 5 % eggshell addition compared to control. A decrease in acid phosphatase activity and an increase in alkaline phosphatase activity at high soil pH were also observed. Combined application of eggshell waste and rapeseed residue can be cost-effective and beneficial way to remediate the soil contaminated with heavy metals.

  17. Application of Local Adsorbant From Southeast Sulawesi Clay Immobilized Saccharomyces Cerevisiae Bread’s Yeast Biomass for Adsorption Of Mn(Ii) Metal Ion

    NASA Astrophysics Data System (ADS)

    R, Halimahtussaddiyah; Mashuni; Budiarni

    2017-05-01

    Southeast Sulawesi has a great stock of clay. It is probably to use as a source of adsorbent. The adsorbent capacity of clay can be largered with teratment using bread’s yeast as biomass. At this research, study of analysis adsorption of Mn(II) metal ion on clay immobilized Saccharomyces cerevisiae bread’s yeast biomass adsorbent has been conducted. The aims of this research were to determine the effects of contact time, pH and concentration of Mn(II) metal ion and to determine the adsorption capacity of clay immobilized S. cerevisiae biomass for adsorbtion of Mn(II) metal ion. Activated clay was synthesized by reaction of clay with KMnO4, H2SO4 and HCl. S. cerevisiae biomass was result by bread’s yeast mashed. Immobilization of S. cerevisiae biomass into clay was done by mixing of ratio of S. cerevisiae bread’s yeast biomass and clay equal to 1:3 (mass of biomassa : mass of clay). The adsorption capacity was determined by using Freundlich and Langmuir adsorption isoterms. The results of FTIR spectrums showed that the functional groups of clay immobilized S. cerevisiae biomass were Si-OH (wave number 1643 cm-1), Si-O-Si (wave number 1033 cm-1), N-H (wave number 2337 cm-1), O-H (wave number 3441cm-1), and C-H (wave number 2931 cm-1). The result of adsorption capacity from Mn(II) metal ion of contact time optimum 120 minutes, pH optimun at 7 and concentration optimum 50 mg/L were 1,816 mg/g; 0,509 mg/g and 2,624mg/g respectively. The adsorption capacity of Mn(II) metal ion with ratio 1:3 (biomass : clay) was 0,1045 mg/g. Type of isothermal adsorption followed the Freunlich adsorption.

  18. Evaluation of immobilized metal membrane affinity chromatography for purification of an immunoglobulin G1 monoclonal antibody.

    PubMed

    Serpa, Gisele; Augusto, Elisabeth Fátima Pires; Tamashiro, Wirla Maria Silva Cunha; Ribeiro, Mariana Borçoe; Miranda, Everson Alves; Bueno, Sônia Maria Alves

    2005-02-25

    The large scale production of monoclonal antibodies (McAbs) has gaining increased relevance with the development of the hybridoma cell culture in bioreactors creating a need for specific efficient bioseparation techniques. Conventional fixed bead affinity adsorption commonly applied for McAbs purification has the drawback of low flow rates and colmatage. We developed and evaluated a immobilized metal affinity chromatographies (IMAC) affinity membrane for the purification of anti-TNP IgG(1) mouse McAbs. We immobilized metal ions on a poly(ethylene vinyl alcohol) hollow fiber membrane (Me(2+)-IDA-PEVA) and applied it for the purification of this McAbs from cell culture supernatant after precipitation with 50% saturation of ammonium sulphate. The purity of IgG(1) in the eluate fractions was high when eluted from Zn(2+) complex. The anti-TNP antibody could be eluted under conditions causing no loss of antigen binding capacity. The purification procedure can be considered as an alternative to the biospecific adsorbent commonly applied for mouse IgG(1) purification, the protein G-Sepharose.

  19. Immobilization of metal wastes by reaction with H2S in anoxic basins: concept and elaboration.

    PubMed

    Schuiling, R D

    2013-10-01

    Metal wastes are produced in large quantities by a number of industries. Their disposal in isolated waste deposits is certain to cause many subsequent problems, because every material will sooner or later return to the geochemical cycle. The sealing of disposal sites usually starts to leak, often within a short time after the disposal site has been filled. The contained heavy metals are leached from the waste deposit and will contaminate the soil and the groundwater. It is evident that storage as metal sulfides in a permanently anoxic environment is the only safe way to handle metal wastes. The world's largest anoxic basin, the Black Sea, can serve as a georeactor. The metal wastes are sustainably transformed into harmless and immobile solids. These are incorporated in the lifeless bottom muds, where they are stored for millions of years.

  20. Biological approaches to tackle heavy metal pollution: A survey of literature.

    PubMed

    Jacob, Jaya Mary; Karthik, Chinnannan; Saratale, Rijuta Ganesh; Kumar, Smita S; Prabakar, Desika; Kadirvelu, K; Pugazhendhi, Arivalagan

    2018-07-01

    Pollution by heavy metals has been identified as a global threat since the inception of industrial revolution. Heavy metal contamination induces serious health and environmental hazards due to its toxic nature. Remediation of heavy metals by conventional methods is uneconomical and generates a large quantity of secondary wastes. On the other hand, biological agents such as plants, microorganisms etc. offer easy and eco-friendly ways for metal removal; hence, considered as efficient and alternative tools for metal removal. Bioremediation involves adsorption, reduction or removal of contaminants from the environment through biological resources (both microorganisms and plants). The heavy metal remediation properties of microorganisms stem from their self defense mechanisms such as enzyme secretion, cellular morphological changes etc. These defence mechanisms comprise the active involvement of microbial enzymes such as oxidoreductases, oxygenases etc, which influence the rates of bioremediation. Further, immobilization techniques are improving the practice at industrial scales. This article summarizes the various strategies inherent in the biological sorption and remediation of heavy metals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized Enzymes.

    PubMed

    Sirisha, V L; Jain, Ankita; Jain, Amita

    Immobilized enzymes can be used in a wide range of processes. In recent years, a variety of new approaches have emerged for the immobilization of enzymes that have greater efficiency and wider usage. During the course of the last two decades, this area has rapidly expanded into a multidisciplinary field. This current study is a comprehensive review of a variety of literature produced on the different enzymes that have been immobilized on various supporting materials. These immobilized enzymes have a wide range of applications. These include applications in the sugar, fish, and wine industries, where they are used for removing organic compounds from waste water. This study also reviews their use in sophisticated biosensors for metabolite control and in situ measurements of environmental pollutants. Immobilized enzymes also find significant application in drug metabolism, biodiesel and antibiotic production, bioremediation, and the food industry. The widespread usage of immobilized enzymes is largely due to the fact that they are cheaper, environment friendly, and much easier to use when compared to equivalent technologies. © 2016 Elsevier Inc. All rights reserved.

  2. Protein immobilization techniques for microfluidic assays

    PubMed Central

    Kim, Dohyun; Herr, Amy E.

    2013-01-01

    Microfluidic systems have shown unequivocal performance improvements over conventional bench-top assays across a range of performance metrics. For example, specific advances have been made in reagent consumption, throughput, integration of multiple assay steps, assay automation, and multiplexing capability. For heterogeneous systems, controlled immobilization of reactants is essential for reliable, sensitive detection of analytes. In most cases, protein immobilization densities are maximized, while native activity and conformation are maintained. Immobilization methods and chemistries vary significantly depending on immobilization surface, protein properties, and specific assay goals. In this review, we present trade-offs considerations for common immobilization surface materials. We overview immobilization methods and chemistries, and discuss studies exemplar of key approaches—here with a specific emphasis on immunoassays and enzymatic reactors. Recent “smart immobilization” methods including the use of light, electrochemical, thermal, and chemical stimuli to attach and detach proteins on demand with precise spatial control are highlighted. Spatially encoded protein immobilization using DNA hybridization for multiplexed assays and reversible protein immobilization surfaces for repeatable assay are introduced as immobilization methods. We also describe multifunctional surface coatings that can perform tasks that were, until recently, relegated to multiple functional coatings. We consider the microfluidics literature from 1997 to present and close with a perspective on future approaches to protein immobilization. PMID:24003344

  3. An amperometric biosensor based on horseradish peroxidase immobilized onto maize tassel-multi-walled carbon nanotubes modified glassy carbon electrode for determination of heavy metal ions in aqueous solution.

    PubMed

    Moyo, Mambo; Okonkwo, Jonathan O; Agyei, Nana M

    2014-03-05

    A biosensor for trace metal ions based on horseradish peroxidase (HRP) immobilized on maize tassel-multiwalled carbon nanotube (MT-MWCNT) through electrostatic interactions is described herein. The biosensor was characterized using Fourier transform infrared (FTIR), UV-vis spectrometry, voltammetric and amperometric methods. The FTIR and UV-vis results inferred that HRP was not denatured during its immobilization on MT-MWCNT composite. The biosensing principle was based on the determination of the cathodic responses of the immobilized HRP to H₂O₂, before and after incubation in trace metal standard solutions. Under optimum conditions, the inhibition rates of trace metals were proportional to their concentrations in the range of 0.092-0.55 mg L⁻¹, 0.068-2 mg L⁻¹ for Pb²⁺ and Cu²⁺ respectively. The limits of detection were 2.5 μg L⁻¹ for Pb²⁺ and 4.2 μg L⁻¹ for Cu²⁺. Representative Dixon and Cornish-Bowden plots were used to deduce the mode of inhibition induced by the trace metal ions. The inhibition was reversible and mixed for both metal ions. Furthermore, the biosensor showed good stability, selectivity, repeatability and reproducibility. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Subcritical water treatment of explosive and heavy metals co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals.

    PubMed

    Islam, Mohammad Nazrul; Jung, Ho-Young; Park, Jeong-Hun

    2015-11-01

    Co-contamination of explosives and heavy metals (HMs) in soil, particularly army shooting range soil, has received increasing environmental concern due to toxicity and risks to ecological systems. In this study, a subcritical water (SCW) extraction process was used to remediate the explosives-plus-HMs-co-contaminated soil. A quantitative evaluation of explosives in the treated soil, compared with untreated soil, was applied to assess explosive removal. The immobilization of HMs was assessed by toxicity characteristic leaching procedure tests, and by investigating the migration of HMs fractions. The environmental risk of HMs in the soil residue was assessed according to the risk assessment code (RAC) and ecological risk indices (Er and RI). The results indicated that SCW treatment could eliminate the explosives, >99%, during the remediation, while the HM was effectively immobilized. The effect of water temperature on reducing the explosives and the risk of HMs in soil was observed. A marked increase in the non-bioavailable concentration of each HM was observed, and the leaching rate of HMs was decreased by 70-97% after SCW treatment at 250 °C, showing the effective immobilization of HMs. According to the RAC or RI, each tested HM showed no or low risk to the environment after treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Polymeric brushes as functional templates for immobilizing ribonuclease A: study of binding kinetics and activity.

    PubMed

    Cullen, Sean P; Liu, Xiaosong; Mandel, Ian C; Himpsel, Franz J; Gopalan, Padma

    2008-02-05

    The ability to immobilize proteins with high binding capacities on surfaces while maintaining their activity is critical for protein microarrays and other biotechnological applications. We employed poly(acrylic acid) (PAA) brushes as templates to immobilize ribonuclease A (RNase A), which is commonly used to remove RNA from plasmid DNA preparations. The brushes are grown by surface-anchored atom-transfer radical polymerization (ATRP) initiators. RNase A was immobilized by both covalent esterification and a high binding capacity metal-ion complexation method to PAA brushes. The polymer brushes immobilized 30 times more enzyme compared to self-assembled monolayers. As the thickness of the brush increases, the surface density of the RNase A increases monotonically. The immobilization was investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The activity of the immobilized RNase A was determined using UV absorbance. As much as 11.0 microg/cm(2) of RNase A was bound to PAA brushes by metal-ion complexation compared to 5.8 microg/cm(2) by covalent immobilization which is 30 and 16 times the estimated mass bound in a monolayer. The calculated diffusion coefficient D was 0.63 x 10(-14) cm(2)/s for metal-ion complexation and 0.71 x 10(-14) cm(2)/s for covalent immobilization. Similar values of D indicate that the binding kinetics is similar, but the thermodynamic equilibrium coverage varies with the binding chemistry. Immobilization kinetics and thermodynamics were characterized by ellipsometry for both methods. A maximum relative activity of 0.70-0.80 was reached between five and nine monolayers of the immobilized enzyme. However, the relative activity for covalent immobilization was greater than that of metal-ion complexation. Covalent esterification resulted in similar temperature dependence as free enzyme, whereas metal-ion complexation showed no

  6. Heterofunctional Magnetic Metal-Chelate-Epoxy Supports for the Purification and Covalent Immobilization of Benzoylformate Decarboxylase From Pseudomonas Putida and Its Carboligation Reactivity.

    PubMed

    Tural, Servet; Tural, Bilsen; Demir, Ayhan S

    2015-09-01

    In this study, the combined use of the selectivity of metal chelate affinity chromatography with the capacity of epoxy supports to immobilize poly-His-tagged recombinant benzoylformate decarboxylase from Pseudomonas putida (BFD, E.C. 4.1.1.7) via covalent attachment is shown. This was achieved by designing tailor-made magnetic chelate-epoxy supports. In order to selectively adsorb and then covalently immobilize the poly-His-tagged BFD, the epoxy groups (300 µmol epoxy groups/g support) and a very small density of Co(2+)-chelate groups (38 µmol Co(2+)/g support) was introduced onto magnetic supports. That is, it was possible to accomplish, in a simple manner, the purification and covalent immobilization of a histidine-tagged recombinant BFD. The magnetically responsive biocatalyst was tested to catalyze the carboligation reactions. The benzoin condensation reactions were performed with this simple and convenient heterogeneous biocatalyst and were comparable to that of a free-enzyme-catalyzed reaction. The enantiomeric excess (ee) of (R)-benzoin was obtained at 99 ± 2% for the free enzyme and 96 ± 3% for the immobilized enzyme. To test the stability of the covalently immobilized enzyme, the immobilized enzyme was reused in five reaction cycles for the formation of chiral 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde, and it retained 96% of its original activity after five reaction cycles. © 2015 Wiley Periodicals, Inc.

  7. Effect of immobilized biosorbents on the heavy metals (Cu2+) biosorption with variations of temperature and initial concentration of waste

    NASA Astrophysics Data System (ADS)

    Siwi, W. P.; Rinanti, A.; Silalahi, M. D. S.; Hadisoebroto, R.; Fachrul, M. F.

    2018-01-01

    The aims of research is to studying the efficiency of copper removal by combining immobilized microalgae with optimizations of temperature and initial Copper concentration. The research was conducted in batch culture with temperature variations of 25°C, 30°C, and 35°C, as well as initial Cu2+ concentrations (mg/l) of 3, 5, 10, 15 and 20 using monoculture of S. cerevisiae, Chlorella sp., and mixed culture of them both as immobilized biosorbents. The optimum adsorption of 83.4% obtained in temperature of 30°C with an initial waste concentration of 17.62 mg/l, initial biomass concentration of 200 mg, pH of 4, and 120 minutes detention time by the immobilized mixed culture biosorbent. The cell morphology examined using Scanning Electron Microscope (SEM) has proved that the biosorbent surface was damaged after being in contact with copper (waste), implying that heavy metals (molecules) attach to different functional cell surfaces and change the biosorbent surface. The adsorption process of this research follows Langmuir Isotherm with the R2 value close to 1. The immobilized mixed culture biosorbent is capable of optimally removing copper at temperature of 30°C and initial Cu2+ concentration of 17.62 mg/l.

  8. Biosensor for metal analysis and speciation

    DOEpatents

    Aiken, Abigail M.; Peyton, Brent M.; Apel, William A.; Petersen, James N.

    2007-01-30

    A biosensor for metal analysis and speciation is disclosed. The biosensor comprises an electron carrier immobilized to a surface of an electrode and a layer of an immobilized enzyme adjacent to the electrode. The immobilized enzyme comprises an enzyme having biological activity inhibited by a metal to be detected by the biosensor.

  9. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions

    PubMed Central

    Tikekar, Mukul D.; Archer, Lynden A.; Koch, Donald L.

    2016-01-01

    Ion transport–driven instabilities in electrodeposition of metals that lead to morphological instabilities and dendrites are receiving renewed attention because mitigation strategies are needed for improving rechargeability and safety of lithium batteries. The growth rate of these morphological instabilities can be slowed by immobilizing a fraction of anions within the electrolyte to reduce the electric field at the metal electrode. We analyze the role of elastic deformation of the solid electrolyte with immobilized anions and present theory combining the roles of separator elasticity and modified transport to evaluate the factors affecting the stability of planar deposition over a wide range of current densities. We find that stable electrodeposition can be easily achieved even at relatively high current densities in electrolytes/separators with moderate polymer-like mechanical moduli, provided a small fraction of anions are immobilized in the separator. PMID:27453943

  10. Immobilization of metals in contaminated soil from E-waste recycling site by dairy-manure-derived biochar.

    PubMed

    Chen, Zhiliang; Zhang, Jianqiang; Liu, Minchao; Wu, Yingxin; Yuan, Zhihui

    2017-08-24

    E-waste is a growing concern around the world and varieties of abandoned E-waste recycling sites, especially in urban area, need to remediate immediately. The impacts of dairy-manure-derived biochars (BCs) on the amelioration of soil properties, the changes in the morphologies as well as the mobility of metals were studied to test their efficacy in immobilization of metals for a potential restoration of vegetation landscape in abandoned E-waste recycling site. The amendment with BCs produced positive effects on bioavailability and mobility reduction for Pb, Cd, Zn and Cu depending on BC ratio and incubation time. The BCs promoted the transformation of species of heavy metals to a more stable fraction, and the metals concentrations in Toxicity Characteristic Leaching Procedure extract declined significantly, especially Pb and Cu. Besides, the BCs ameliorated the substrate with increasing the soil pH, cations exchangeable capacity and available phosphorous, which suggested BC as a potential amendment material for abandoned E-waste recycling sites before restoration of vegetation landscape. Generally, the BC modified by alkaline treatment has a higher efficacy, probably due to increase of specific surface area and porosity as well as the functional groups after alkaline treatment.

  11. A novel approach of utilization of the fungal conidia biomass to remove heavy metals from the aqueous solution through immobilization

    NASA Astrophysics Data System (ADS)

    Cai, Chun-Xiang; Xu, Jian; Deng, Nian-Fang; Dong, Xue-Wei; Tang, Hao; Liang, Yu; Fan, Xian-Wei; Li, You-Zhi

    2016-11-01

    The biomass of filamentous fungi is an important cost-effective biomass for heavy metal biosorption. However, use of free fungal cells can cause difficulties in the separation of biomass from the effluent. In this study, we immobilized the living conidia of the heavy metal-resistant Penicillium janthinillum strain GXCR by polyvinyl alcohol (PVA)-sodium alginate (SA) beads to remove heavy metals from an aqueous solution containing a low concentration (70 mg/L) of Cu, Pb, and Cd. The PVA-SA-conidia beads showed perfect characters of appropriate mechanical strength suitable for metal removal from the dynamic wastewater environment, an ideal settleability, easy separation from the solution, and a high metal biosorption and removal rate even after four cycles of successive sorption-desorption of the beads, overcoming disadvantages when fungal biomasses alone are used for heavy metal removal from wastewater. We also discuss the major biosorption-affecting factors, biosorption models, and biosorption mechanisms.

  12. A novel approach of utilization of the fungal conidia biomass to remove heavy metals from the aqueous solution through immobilization

    PubMed Central

    Cai, Chun-Xiang; Xu, Jian; Deng, Nian-Fang; Dong, Xue-Wei; Tang, Hao; Liang, Yu; Fan, Xian-Wei; Li, You-Zhi

    2016-01-01

    The biomass of filamentous fungi is an important cost-effective biomass for heavy metal biosorption. However, use of free fungal cells can cause difficulties in the separation of biomass from the effluent. In this study, we immobilized the living conidia of the heavy metal-resistant Penicillium janthinillum strain GXCR by polyvinyl alcohol (PVA)-sodium alginate (SA) beads to remove heavy metals from an aqueous solution containing a low concentration (70 mg/L) of Cu, Pb, and Cd. The PVA-SA-conidia beads showed perfect characters of appropriate mechanical strength suitable for metal removal from the dynamic wastewater environment, an ideal settleability, easy separation from the solution, and a high metal biosorption and removal rate even after four cycles of successive sorption-desorption of the beads, overcoming disadvantages when fungal biomasses alone are used for heavy metal removal from wastewater. We also discuss the major biosorption-affecting factors, biosorption models, and biosorption mechanisms. PMID:27848987

  13. Role of sodium ions in the vitrification process: glass matrix modification, slag structure depolymerization, and influence of metal immobilization.

    PubMed

    Kuo, Yi-Ming

    2014-07-01

    This study investigates the role of Na ions, a common flux, in the vitrification process. Artificial glass systems composed of Al2O3, CaO, and SiO2 with various Na concentrations were melted at 1450 degrees C. The specimens were cooled by air cooling and water quenching and the metal mobility was evaluated using a sequential extraction procedure. The X-ray diffraction analysis and scanning electron microscopy observations showed that Na ions governed the air-cooled slag's structure. Na ions initially depolymerized CaSiO3-linked chains into CaSiO3 chains, and further cut them into shorter and nonuniform ones, making the slag structure amorphous. With even more Na ions, CaSiO3 chains were divided into single SiO4 tetrahedrons and formed Na-related crystals (Na2Ca3Si2O8 and NaAlSiO4). The phase distributions of Al, Cr, Cu Mn, and Ni showed that Na has a positive effect on the immobilization of heavy metals at suitable concentrations, but a negative effect when in excess amounts. Implications: Vitrification has been widely used to treat hazardous materials. The Na-bearing additives were often used as a flux to improve the melting process. This study described the role of Na played in the vitrification process. The Na ions acted as glass modifier and depolymerize the chain structure of slag. With adequate addition amount of Na ions, the immobilization of heavy metals was improved. The results provided much information about the crystalline phase variation, metal mobility, and surface characteristics while Na serves as a flux.

  14. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan.

    PubMed

    Turan, Veysel; Khan, Shahbaz Ali; Mahmood-Ur-Rahman; Iqbal, Muhammad; Ramzani, Pia Muhammad Adnan; Fatima, Maryam

    2018-06-12

    Depleting aquifers, lack of planning and low socioeconomic status of Pakistani farmers have led them to use wastewater (WW) for irrigating their crops causing food contamination with heavy metals and ultimately negative effects on human health. This study evaluates the effects of chitosan (CH) and biochar (BC) on growth and nutritional quality of brinjal plant together with in situ immobilization of heavy metals in a soil polluted with heavy metals due to irrigation with wastewater (SPHIW) and further irrigated with the same WW. Both CH and BC were applied at three different rates i.e. low rate [(LR), BC0.5%, CH0.5% and BC0.25%+CH0.25%], medium rate [(MR), BC1%, CH1% and BC0.5%+CH0.5%] and high rate [(HR), BC1.5%, CH1.5% and BC0.75%+CH0.75%]. Result revealed that brinjal growth, antioxidant enzymes, and fruit nutritional quality significantly improved from LR to HR for each amendment, relative to control. However, these results were more prominent with BC alone and BC+CH, compared with CH alone at each rate. Similarly, with few exceptions, significant reduction in Ni, Cd, Co, Cr and Pb concentrations in the root, shoot and fruit were found in sole CH treatment both at LR and MR but in both CH and BC+CH treatments at HR, relative to control. Interestingly, the concentrations of Fe in the roots, shoots and fruit were more pronounced at BC treatments relative to CH and BC+CH treatments at each rate, compared to control. Overall, the BC+CH treatment at HR was the most effective treatment for in situ immobilization of heavy metals in SPHIW and further irrigated with the same WW, compared to rest of the treatments. This study indicates that BC0.75%+CH0.75% treatment can be used to reduce mobility and bioavailability of heavy metals in SPHIW and facilitates plant growth by improving the antioxidant system. However, the feasibility of BC0.75%+CH0.75% treatment should also be tested at the field scale. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Immobilization of cobalt by sulfate-reducing bacteria in subsurface sediments

    USGS Publications Warehouse

    Krumholz, Lee R.; Elias, Dwayne A.; Suflita, Joseph M.

    2003-01-01

    We investigated the impact of sulfate-reduction on immobilization of metals in subsurface aquifers. Co 2+ was used as a model for heavy metals. Factors limiting sulfate-reduction dependent Co 2+ immobilization were tested on pure cultures of sulfate-reducing bacteria, and in sediment columns from a landfill leachate contaminated aquifer. In the presence of 1 mM Co 2+ , the growth of pure cultures of sulfate-reducing bacteria was not impacted. Cultures of Desulfovibrio desulfuricans, Desulfotomaculum gibsoniae , and Desulfomicrobium hypogeia removed greater than 99.99% of the soluble Co 2+ when CoCl 2 was used with no chelators. The above cultures and Desulfoarcula baarsi removed 98-99.94% of the soluble Co(II) when the metal was complexed with the model ligand nitrilotriacetate (Co-NTA). Factors controlling the rate of sulfate-reduction based Co 2+ precipitation were investigated in sediment-cobalt mixtures. Several electron donors were tested and all but toluene accelerated soluble Co 2+ loss. Ethanol and formate showed the greatest stimulation. All complex nitrogen sources tested slowed and decreased the extent of Co 2+ removal from solution relative to formate-amended sediment incubations. A range of pH values were tested (6.35-7.81), with the more alkaline incubations exhibiting the largest precipitation of Co 2+ . The immobilization of Co 2+ in sediments was also investigated with cores to monitor the flow of Co 2+ through undisturbed sediments. An increase in the amount of Co 2+ immobilized as CoS was observed as sulfate reduction activity was stimulated in flow through columns. Both pure culture and sediment incubation data indicate that stimulation of sulfate reduction is a viable strategy in the immobilization of contaminating metals in subsurface systems.

  16. Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea.

    PubMed

    Ok, Yong Sik; Kim, Sung-Chul; Kim, Dong-Kuk; Skousen, Jeffrey G; Lee, Jin-Soo; Cheong, Young-Wook; Kim, Su-Jung; Yang, Jae E

    2011-01-01

    The cadmium (Cd) content of rice grain grown in metal-contaminated paddy soils near abandoned metal mines in South Korea was found to exceed safety guidelines (0.2 mg Cd kg⁻¹) set by the Korea Food and Drug Administration (KFDA). However, current remediation technologies for heavy metal-contaminated soils have limited application with respect to rice paddy soils. Laboratory and greenhouse experiments were conducted to assess the effects of amending contaminated rice paddy soils with zerovalent iron (ZVI), lime, humus, compost, and combinations of these compounds to immobilize Cd and inhibit Cd translocation to rice grain. Sequential extraction analysis revealed that treatment with the ameliorants induced a 50-90% decrease in the bioavailable Cd fractions when compared to the untreated control soil. When compared to the control, Cd uptake by rice was decreased in response to treatment with ZVI + humus (69%), lime (65%), ZVI + compost (61%), compost (46%), ZVI (42%), and humus (14%). In addition, ameliorants did not influence rice yield when compared to that of the control. Overall, the results of this study indicated that remediation technologies using ameliorants effectively reduce Cd bioavailability and uptake in contaminated rice paddy soils.

  17. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection

    NASA Astrophysics Data System (ADS)

    Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen

    2016-03-01

    Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn2+ and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn2+ and adenosine monophosphate (AMP) with a simple mixing step. Most

  18. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils.

    PubMed

    Huang, Guoyong; Su, Xiaojuan; Rizwan, Muhammad Shahid; Zhu, Yifei; Hu, Hongqing

    2016-08-01

    Soil contamination with toxic metals has increasingly become a global concern over the past few decades. Phosphate and carbonate compounds are good passivation materials for Pb immobilization, while the effect of phosphate and carbonate on the immobilization of multiple heavy metals (Pb, Cu, and Cd) in contaminated soils was seldom investigated. In this study, bone meal (BM), phosphate rock (PR), oxalic acid-activated phosphate rock (APR), super phosphate (SP), and calcium carbonate (CC) were added to the contaminated soils to evaluate the effect of phosphate materials and calcium carbonate on the immobilization of Pb, Cu, and Cd. The results showed that the pH of the treated soils increased 1.3-2.7, except SP which decreased 0.5 at most. Compared to the control treatment, all phosphates and calcium carbonate added to the polluted soils increased the fraction of residual metals, and the application of APR, PR, BM, and CC significantly reduced exchangeable and carbonate-bound fraction metals. PR and APR were the most effective for the immobilization of Pb, Cu, and Cd in the soils among these materials. Moreover, the concentrations of all metals in the toxicity characteristic leaching procedure (TCLP) leachate decreased with increasing amounts of amendments, and the concentrations of Pb in the TCLP leachate for soils treated with PR and APR were below the nonhazardous regulatory limit of 5 mg L(-1) (US Environmental Protection Agency). Based on our results, phosphate rock and oxalic acid-activated phosphate rock are effective in the immobilization of multiple metals by reducing their mobility in the co-contaminated soils.

  19. Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection.

    PubMed

    Liang, Hao; Jiang, Shuhui; Yuan, Qipeng; Li, Guofeng; Wang, Feng; Zhang, Zijie; Liu, Juewen

    2016-03-21

    Preserving enzyme activity and promoting synergistic activity via co-localization of multiple enzymes are key topics in bionanotechnology, materials science, and analytical chemistry. This study reports a facile method for co-immobilizing multiple enzymes in metal coordinated hydrogel nanofibers. Specifically, four types of protein enzymes, including glucose oxidase, Candida rugosa lipase, α-amylase, and horseradish peroxidase, were respectively encapsulated in a gel nanofiber made of Zn(2+) and adenosine monophosphate (AMP) with a simple mixing step. Most enzymes achieved quantitative loading and retained full activity. At the same time, the entrapped enzymes were more stable against temperature variation (by 7.5 °C), protease attack, extreme pH (by 2-fold), and organic solvents. After storing for 15 days, the entrapped enzyme still retained 70% activity while the free enzyme nearly completely lost its activity. Compared to nanoparticles formed with AMP and lanthanide ions, the nanofiber gels allowed much higher enzyme activity. Finally, a highly sensitive and selective biosensor for glucose was prepared using the gel nanofiber to co-immobilize glucose oxidase and horseradish peroxidase for an enzyme cascade system. A detection limit of 0.3 μM glucose with excellent selectivity was achieved. This work indicates that metal coordinated materials using nucleotides are highly useful for interfacing with biomolecules.

  20. Immobilized metal affinity cryogel-based high-throughput platform for screening bioprocess and chromatographic parameters of His6-GTPase.

    PubMed

    Sarkar, Joyita; Kumar, Ashok

    2017-04-01

    Among various tools of product monitoring, chromatography is of vital importance as it also extends to the purification of product. Immobilized metal affinity cryogel (Cu(II)-iminodiacetic acid- and Ni(II)-nitrilotriacetic acid-polyacrylamide) minicolumns (diameter 8 mm, height 4 mm, void volume 250 μl) were inserted in open-ended 96-well plate and different chromatographic parameters and bioprocess conditions were analysed. The platform was first validated with lysozyme. Optimum binding of lysozyme (∼90%) was achieved when 50 μg of protein in 20 mM Tris, pH 8.0 was applied to the minicolumns with maximum recovery (∼90%) upon elution with 300 mM imidazole. Thereafter, the platform was screened for chromatographic conditions of His 6 -GTPase. Since cryogels have large pore size, they can easily process non-clarified samples containing debris and particulate matters. The bound enzymes on the gel retain its activity and therefore can be assayed on-column by adding substrate and then displacing the product. Highest binding of His 6 -GTPase was achieved when 50 μl of non-clarified cell lysate was applied to the cryogel and subsequently washed with 50 mM Tris, 150 mM NaCl, 5 mM MgCl 2 , 10 mM imidazole, pH 8.0 with dynamic and static binding capacities of ∼1.5 and 3 activity units. Maximum recovery was obtained upon elution with 300 mM imidazole with a purification fold of ∼10; the purity was also analysed by SDS-PAGE. The platform showed reproducible results which were validated by Bland-Altman plot. The minicolumn was also scaled up for chromatographic capture and recovery of His 6 -GTPase. The bioprocess conditions were monitored which displayed that optimum production of His 6 -GTPase was attained by induction with 200 μM isopropyl-β-D-thiogalactoside at 25 °C for 12 h. It was concluded that immobilized metal affinity cryogel-based platform can be successfully used as a high-throughput platform for screening of bioprocess and

  1. Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil.

    PubMed

    Wu, Bin; Cheng, Guanglei; Jiao, Kai; Shi, Wenjin; Wang, Can; Xu, Heng

    2016-08-15

    To develop an eco-friendly and efficient route to remediate soil highly polluted with heavy metals, the idea of mycoextraction combined with metal immobilization by carbonaceous sorbents (biochar and activated carbon) was investigated in this study. Results showed that the application of carbonaceous amendments decreased acid soluble Cd and Cu by 5.13-14.06% and 26.86-49.58%, respectively, whereas the reducible and oxidizable fractions increased significantly as the amount of carbonaceous amendments added increased. The biological activities (microbial biomass, soil enzyme activities) for treatments with carbonaceous sorbents were higher than those of samples without carbonaceous amendments. Clitocybe maxima (C. maxima) simultaneously increased soil enzyme activities and the total number of microbes. Biochar and activated carbon both showed a positive effect on C. maxima growth and metal accumulation. The mycoextraction efficiency of Cd and Cu in treatments with carbonaceous amendments enhanced by 25.64-153.85% and 15.18-107.22%, respectively, in response to that in non-treated soil, which showed positive correlation to the augment of biochar and activated carbon in soil. Therefore, this work suggested the effectiveness of mycoextraction by C. maxima combined the application of biochar and activated carbon in immobilising heavy metal in contaminated soil. Copyright © 2016. Published by Elsevier B.V.

  2. Immobilized enzyme reactors in HPLC and its application in inhibitor screening: A review

    PubMed Central

    Fang, Si-Meng; Wang, Hai-Na; Zhao, Zhong-Xi; Wang, Wei-Hong

    2011-01-01

    This paper sets out to summarize the literatures based on immobilized enzyme bio-chromatography and its application in inhibitors screening in the last decade. In order to screen enzyme inhibitors from a mass of compounds in preliminary screening, multi-pore materials with good biocompatibility are used for the supports of immobilizing enzymes, and then the immobilized enzyme reactor applied as the immobilized enzyme stationary phase in HPLC. Therefore, a technology platform of high throughput screening is gradually established to screen the enzyme inhibitors as new anti-tumor drugs. Here, we briefly summarize the selective methods of supports, immobilization techniques, co-immobilized enzymes system and the screening model. PMID:29403726

  3. The effect of biomass concentration on polymer alginate in the immobilized biosorbent formation during the sorption processof heavy metal Cu2+

    NASA Astrophysics Data System (ADS)

    Rinanti, A.; Jonathan, D.; Silalahi, M. D. S.; Fachrul, M. F.; Hadisoebroto, R.

    2018-01-01

    A research in environmental biotechnology has been done to analysis adsorption of ion Cu2+ by biomass of microalgae (Chlorella sp, Ankistrodesmus braunii, Scenedesmus quadricauda) and Saccharomyces cerevisiae onto alginate polymeras immobilized biosorbent on laboratory scale. The purpose of this study is to achieve the optimum biomass concentration which gives the best biosorption performance. Biosorption of Cu2+ was carried out in continuous fixed-bed column reactor system, volume of 1.5 L, equipped with peristaltic pump with a flow rate of 13 mL/min. Biosorption of Cu2+ was investigated using immobilized biosorbent with concentration of (g biomass/g polymer) 0.25; 0.5; 1, at pH4,initial concentration Cu2+15 mg/L and 26°C±1. The results of this study showed that the increasing of biomass concentration (0 to 0.5 g/g) would result in better biosorption performance but soon decreased its performance at biomass concentration of 1 g/g. Biosorption capacity and highest removal efficiency of 0.1025 mg Cu2+/g biosorbent and 66.36% occurred by immobilized biosorbent with 0.5 g/g concentration. The connection between the variation of biomass concentration in alginate to the biosorption performance by immobilized biosorbent shown by breakthrough curve, total adsorbed metal mass(qtotal ), efficiency of removal (%R) and biosorption capacity at breakthrough(qe ). Excessive biomass concentrations lead to reduced porosity of the beads thus slowing down the adsorption process.

  4. Efficient fabrication of high-capacity immobilized metal ion affinity chromatographic media: The role of the dextran-grafting process and its manipulation.

    PubMed

    Zhao, Lan; Zhang, Jingfei; Huang, Yongdong; Li, Qiang; Zhang, Rongyue; Zhu, Kai; Suo, Jia; Su, Zhiguo; Zhang, Zhigang; Ma, Guanghui

    2016-03-01

    Novel high-capacity Ni(2+) immobilized metal ion affinity chromatographic media were prepared through the dextran-grafting process. Dextran was grafted to an allyl-activated agarose-based matrix followed by functionalization for the immobilized metal ion affinity chromatographic media. With elaborate regulation of the allylation degree, dextran was completely or partly grafted to agarose microspheres, namely, completely dextran-grafted agarose microspheres and partly dextran-grafted ones, respectively. Confocal laser scanning microscope results demonstrated that a good adjustment of dextran-grafting degree was achieved, and dextran was distributed uniformly in whole completely dextran-grafted microspheres, while just distributed around the outside of the partly dextran-grafted ones. Flow hydrodynamic properties were improved greatly after the dextran-grafting process, and the flow velocity increased by about 30% compared with that of a commercial chromatographic medium (Ni Sepharose FF). A significant improvement of protein binding performance was also achieved by the dextran-grafting process, and partly dextran-grafted Ni(2+) chelating medium had a maximum binding capacity for His-tagged lactate dehydrogenase about 2.5 times higher than that of Ni Sepharose FF. The results indicated that this novel chromatographic medium is promising for applications in high-efficiency and large-scale protein purification. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Bioreactors with immobilized lipases: state of the art.

    PubMed

    Balcão, V M; Paiva, A L; Malcata, F X

    1996-05-01

    This review attempts to provide an updated compilation of studies reported in the literature pertaining to reactors containing lipases in immobilized forms, in a way that helps the reader direct a bibliographic search and develop an integrated perspective of the subject. Highlights are given to industrial applications of lipases (including control and economic considerations), as well as to methods of immobilization and configurations of reactors in which lipases are used. Features associated with immobilized lipase kinetics such as enzyme activities, adsorption properties, optimum operating conditions, and estimates of the lumped parameters in classical kinetic formulations (Michaelis-Menten model for enzyme action and first-order model for enzyme decay) are presented in the text in a systematic tabular form.

  6. Toxic metal immobilization in contaminated sediment using bentonite- and kaolinite-supported nano zero-valent iron

    NASA Astrophysics Data System (ADS)

    Tomašević, D. D.; Kozma, G.; Kerkez, Dj. V.; Dalmacija, B. D.; Dalmacija, M. B.; Bečelić-Tomin, M. R.; Kukovecz, Á.; Kónya, Z.; Rončević, S.

    2014-08-01

    The objective of this study was to investigate the possibility of using supported nanoscale zero-valent iron with bentonite and kaolinite for immobilization of As, Pb and Zn in contaminated sediment from the Nadela river basin (Serbia). Assessment of the sediment quality based on the pseudo-total metal content (As, Pb and Zn) according to the corresponding Serbian standards shows its severe contamination, such that it requires disposal in special reservoirs and, if possible, remediation. A microwave-assisted sequential extraction procedure was employed to assess potential metal mobility and risk to the aquatic environment. According to these results, As showed lower risk to the environment than Pb and Zn, which both represent higher risk to the environment. The contaminated sediment, irrespective of the different speciation of the treated metals, was subjected to the same treatment. Semi-dynamic leaching test, based on leachability index and effective diffusion coefficients, was conducted for As-, Pb- and Zn-contaminated sediments in order to assess the long-term leaching behaviour. In order to simulate "worst case" leaching conditions, the test was modified using acetic and humic acid solution as leachants instead of deionized water. A diffusion-based model was used to elucidate the controlling leaching mechanisms; in the majority of samples, the controlling leaching mechanism appeared to be diffusion. Three different single-step leaching tests were applied to evaluate the extraction potential of examined metals. Generally, the test results indicated that the treated sediment is safe for disposal and could even be considered for "controlled utilization".

  7. Monolith-based immobilized metal affinity chromatography increases production efficiency for plasmid DNA purification.

    PubMed

    Shin, Min Jae; Tan, Lihan; Jeong, Min Ho; Kim, Ji-Heung; Choe, Woo-Seok

    2011-08-05

    Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Metal immobilization in hazardous contaminated minesoils after marble slurry waste application. A field assessment at the Tharsis mining district (Spain).

    PubMed

    Fernández-Caliani, J C; Barba-Brioso, C

    2010-09-15

    A one-year field trial was conducted at the abandoned mine site of Tharsis (Spain) in order to assess the potential value of waste sludge generated during the processing of marble stone, as an additive for assisting natural remediation of heavily contaminated acid mine soils. An amendment of 22 cmol(c) of lime per kilogram of soil was applied to raise the pH level from 3.2 to above 6. The amendment application was effective in reducing concentrations of Al, Fe, Mn, sulfate and potentially hazardous trace elements (mainly Cu, Pb, Zn and Cd) in the most labile metal pools (water-soluble and EDTA-extractable fractions). Geochemical equilibrium calculations indicate that sulfate complexes and free metal ions were the dominant aqueous species in the soil solution. Metal coprecipitation with nanocrystalline ferric oxyhydroxides may be the major chemical mechanism of amendment-induced immobilization. The alleviating effect of the soil amendment on the metal bioavailability and phytotoxicity showed promise for assisting natural revegetation of the mine land. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Nanoengineered analytical immobilized metal affinity chromatography stationary phase by atom transfer radical polymerization: Separation of synthetic prion peptides

    PubMed Central

    McCarthy, P.; Chattopadhyay, M.; Millhauser, G.L.; Tsarevsky, N.V.; Bombalski, L.; Matyjaszewski, K.; Shimmin, D.; Avdalovic, N.; Pohl, C.

    2010-01-01

    Atom transfer radical polymerization (ATRP) was employed to create isolated, metal-containing nanoparticles on the surface of non-porous polymeric beads with the goal of developing a new immobilized metal affnity chromatography (IMAC) stationary phase for separating prion peptides and proteins. Transmission electron microscopy was used to visualize nanoparticles on the substrate surface. Individual ferritin molecules were also visualized as ferritin–nanoparticle complexes. The column's resolving power was tested by synthesizing peptide analogs to the copper binding region of prion protein and injecting mixtures of these analogs onto the column. As expected, the column was capable of separating prion-related peptides differing in number of octapeptide repeat units (PHGGGWGQ), (PHGGGWGQ)2, and (PHGGGWGQ)4. Unexpectedly, the column could also resolve peptides containing the same number of repeats but differing only in the presence of a hydrophilic tail, Q → A substitution, or amide nitrogen methylation. PMID:17481564

  10. Development of a Novel Optical Biosensor for Detection of Organophoshorus Pesticides Based on Methyl Parathion Hydrolase Immobilized by Metal-Chelate Affinity

    PubMed Central

    Lan, Wensheng; Chen, Guoping; Cui, Feng; Tan, Feng; Liu, Ran; Yushupujiang, Maolidan

    2012-01-01

    We have developed a novel optical biosensor device using recombinant methyl parathion hydrolase (MPH) enzyme immobilized on agarose by metal-chelate affinity to detect organophosphorus (OP) compounds with a nitrophenyl group. The biosensor principle is based on the optical measurement of the product of OP catalysis by MPH (p-nitrophenol). Briefly, MPH containing six sequential histidines (6× His tag) at its N-terminal was bound to nitrilotriacetic acid (NTA) agarose with Ni ions, resulting in the flexible immobilization of the bio-reaction platform. The optical biosensing system consisted of two light-emitting diodes (LEDs) and one photodiode. The LED that emitted light at the wavelength of the maximum absorption for p-nitrophenol served as the signal light, while the other LED that showed no absorbance served as the reference light. The optical sensing system detected absorbance that was linearly correlated to methyl parathion (MP) concentration and the detection limit was estimated to be 4 μM. Sensor hysteresis was investigated and the results showed that at lower concentration range of MP the difference got from the opposite process curves was very small. With its easy immobilization of enzymes and simple design in structure, the system has the potential for development into a practical portable detector for field applications. PMID:23012501

  11. Stable ABTS Immobilized in the MIL-100(Fe) Metal-Organic Framework as an Efficient Mediator for Laccase-Catalyzed Decolorization.

    PubMed

    Liu, Youxun; Geng, Yuanyuan; Yan, Mingyang; Huang, Juan

    2017-06-02

    The successful encapsulation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), a well-known laccase mediator, within a mesoporous metal-organic framework sample (i.e., MIL-100(Fe)) was achieved using a one-pot hydrothermal synthetic method. The as-prepared ABTS@MIL-100(Fe) was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, nitrogen sorption, and cyclic voltammetry (CV). Our ABTS@MIL-100(Fe)-based electrode exhibited an excellent electrochemical response, indicating that MIL-100(Fe) provides an appropriate microenvironment for the immobilization and electroactivity of ABTS molecules. ABTS@MIL-100(Fe) was then evaluated as an immobilized laccase mediator for dye removal using indigo carmine (IC) as a model dye. Through the application of laccase in combination with a free (ABTS) or immobilized (ABTS@MIL-100(Fe)) mediator, decolorization yields of 95% and 94%, respectively, were obtained for IC after 50 min. In addition, following seven reuse cycles of ABTS@MIL-100(Fe) for dye treatment, a decolorization yield of 74% was obtained. Dye decolorization occurred through the breakdown of the chromophoric group by the Laccase/ABTS@MIL-100(Fe) system, and a catalytic mechanism was proposed. We therefore expect that the stability, reusability, and validity of ABTS@MIL-100(Fe) as a laccase mediator potentially render it a promising tool for dye removal, in addition to reducing the high running costs and potential toxicity associated with synthetic mediators.

  12. Immobilization of antibacterial chlorhexidine on stainless steel using crosslinking polydopamine film: Towards infection resistant medical devices.

    PubMed

    Mohd Daud, Nurizzati; Saeful Bahri, Ihda Fithriyana; Nik Malek, Nik Ahmad Nizam; Hermawan, Hendra; Saidin, Syafiqah

    2016-09-01

    Chlorhexidine (CHX) is known for its high antibacterial substantivity and is suitable for use to bio-inert medical devices due to its long-term antibacterial efficacy. However, CHX molecules require a crosslinking film to be stably immobilized on bio-inert metal surfaces. Therefore, polydopamine (PDA) was utilized in this study to immobilize CHX on the surface of 316L type stainless steel (SS316L). The SS316L disks were pre-treated, modified with PDA film and immobilized with different concentrations of CHX (10mM-50mM). The disks were then subjected to various surface characterization analyses (ATR-FTIR, XPS, ToF-SIMS, SEM and contact angle measurement) and tested for their cytocompatibility with human skin fibroblast (HSF) cells and antibacterial activity against Escherichia coli and Staphylococcus aureus. The results demonstrated the formation of a thin PDA film on the SS316L surface, which acted as a crosslinking medium between the metal and CHX. CHX was immobilized via a reduction process that covalently linked the CHX molecules with the functional group of PDA. The immobilization of CHX increased the hydrophobicity of the disk surfaces. Despite this property, a low concentration of CHX optimized the viability of HSF cells without disrupting the morphology of adherent cells. The immobilized disks also demonstrated high antibacterial efficacy against both bacteria, even at a low concentration of CHX. This study demonstrates a strong beneficial effect of the crosslinked PDA film in immobilizing CHX on bio-inert metal, and these materials are applicable in medical devices. Specifically, the coating will restrain bacterial proliferation without suffocating nearby tissues. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Phyto-dehydration of confined polluted sludge: impacts on C-storage and heavy metal immobilization in plant tissues

    NASA Astrophysics Data System (ADS)

    Liberati, Dario; Sconocchia, Paolo; Ricci, Anna; Gigliotti, Giovanni; Tacconi, Chiara; De Angelis, Paolo

    2017-04-01

    Transpiration of plants can be used to control or remove water in artificial basins containing polluted flooded sediments (phyto-dehydration), with the aim to reduce the risk of environment contamination due to water/sediment spillage. At the same time plants can reduce the risks associated to the pollutants, reducing their mobility by the adsorption in the rhizosphere, uptake and accumulation in tissues, and providing organiccompounds contributing to bind heavy metals. We tested, at pilot scale, a phytodeydration approach to be applied to a storage pond containing sludge with high zinc and copper concentrations (3200 and 1000 µg/Kg, respectively). The sludge derives from the biodigestion of pig slurries, and for most of the year is covered by a water layer due to rainfall. The phyto-dehydration approach was tested in a two years long mesocosm-scale experiment. Inside the mesocosms we maintained the same sludge/water stratification observed in the pond; the helophyte species Phragmites australis was planted over a floating frame inside half of the mesocosms. Mesocosms with P.australis and control mesocosms without plants, were monitored during the test to assess the water consumption, CO2 and CH4 gas exchanges and plant functioning. At the end of the second year we analysed the changes on the carbon pool of the sludge and the immobilization of heavy metals in the plant tissues. After two years, the total organic carbon content of the sludge has been reduced in the control mesocosms, while in the P. australis mesocosms remain close to the initial values. Zinc and copper immobilization in the plant tissues, was characterised by: a very low concentration of zinc (5 µg/kg ) in leaves, intermediates values in culms and rhizomes (49 and 30 µg/kg) and higher values in roots (222 and 114 µg/kg). In conclusion, in addition to the reduction of the sludge spillage risks, the phyto-dehydration approach based on P. australis reduced the carbon loss of the sludge, and

  14. Comparative Effects of Biochar, Slag and Ferrous-Mn Ore on Lead and Cadmium Immobilization in Soil.

    PubMed

    Mehmood, Sajid; Rizwan, Muhammad; Bashir, Saqib; Ditta, Allah; Aziz, Omar; Yong, Li Zhe; Dai, Zhihua; Akmal, Muhammad; Ahmed, Waqas; Adeel, Muhammad; Imtiaz, Muhammad; Tu, Shuxin

    2018-02-01

    A variety of remediation approaches have been applied to the heavy metals-contaminated soils, however, the immobilization of metals in co-contaminated soils still not cleared. Therefore, an incubation study was conducted to evaluate the instantaneous effects of different concentrations of biochar (BC), slag (SL) and Fe-Mn ore (FMO) on immobilization of Pb and Cd through the Toxicity Characteristic Leaching Procedure (TCLP) by following the the European Community Bureau of Reference (BCR), CaCl 2 and NH 4 NO 3 . The sequential extraction of BCR showed decrease in acid soluble fractions, while the residual proportions of Pb and Cd were enhanced with increasing concentrations of SL and BC. Addition of BC significantly lowered the extractable fractions of both metals by TCLP, NH 4 NO 3 and CaCl 2 as compared to SL and FMO. Among all amendments, BC incorporation into co-contaminated soil offered promising results for Pb and Cd immobilization. Overall, all amendments showed positive and long-term impact on the reclamation of co-contaminated soil with heavy metals and could deserve advance monitoring studies on a field scale.

  15. Bioremediation of contaminated surface water by immobilized Micrococcus roseus.

    PubMed

    Li, H; Li, P; Hua, T; Zhang, Y; Xiong, X; Gong, Z

    2005-08-01

    The problems caused by contaminated surface water have gradually become more serious in recent years. Although various remediation technologies were investigated, unfortunately, no efficient method was developed. In this paper, a new bioremediation technology was studied using Micrococcus roseus, which was immobilized in porous spherical beads by an improved polyvinyl alcohol (PVA) - sodium alginate (SA) embedding method. The experimental results indicated that COD removal rate could reach 64.7 % within 72 hours when immobilized M. roseus beads were used, which was ten times as high as that of free cells. The optimum inoculation rate of immobilized M. roseus beads was 10 % (mass percent of the beads in water sample, g g(-1)). Suitable aeration was proved necessary to enhance the bioremediation process. The immobilized cells had an excellent tolerance to pH and temperature changes, and were also more resistant to heavy metal stress compared with free cells. The immobilized M. roseus beads had an excellent regeneration capacity and could be reused after 180-day continuous usage. The Scanning Electronic Microscope (SEM) analysis showed that the bead microstructure was suitable for M. roseus growth, however, some defect structures should still be improved.

  16. Radiofrequency treatment enhances the catalytic function of an immobilized nanobiohybrid catalyst

    NASA Astrophysics Data System (ADS)

    San, Boi Hoa; Ha, Eun-Ju; Paik, Hyun-Jong; Kim, Kyeong Kyu

    2014-05-01

    Biocatalysis, the use of enzymes in chemical transformation, has undergone intensive development for a wide range of applications. As such, maximizing the functionality of enzymes for biocatalysis is a major priority to enable industrial use. To date, many innovative technologies have been developed to address the future demand of enzymes for these purposes, but maximizing the catalytic activity of enzymes remains a challenge. In this study, we demonstrated that the functionality of a nanobiocatalyst could be enhanced by combining immobilization and radiofrequency (RF) treatment. Aminopeptidase PepA-encapsulating 2 nm platinum nanoparticles (PepA-PtNPs) with the catalytic activities of hydrolysis and hydrogenation were employed as multifunctional nanobiocatalysts. Immobilizing the nanobiocatalysts in a hydrogel using metal chelation significantly enhanced their functionalities, including catalytic power, thermal-stability, pH tolerance, organic solvent tolerance, and reusability. Most importantly, RF treatment of the hydrogel-immobilized PepA-PtNPs increased their catalytic power by 2.5 fold greater than the immobilized PepA. Our findings indicate that the catalytic activities and functionalities of PepA-PtNPs are greatly enhanced by the combination of hydrogel-immobilization and RF treatment. Based on our findings, we propose that RF treatment of nanobiohybrid catalysts immobilized on the bulk hydrogel represents a new strategy for achieving efficient biocatalysis.Biocatalysis, the use of enzymes in chemical transformation, has undergone intensive development for a wide range of applications. As such, maximizing the functionality of enzymes for biocatalysis is a major priority to enable industrial use. To date, many innovative technologies have been developed to address the future demand of enzymes for these purposes, but maximizing the catalytic activity of enzymes remains a challenge. In this study, we demonstrated that the functionality of a nanobiocatalyst

  17. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2,4,6-trichlorophenol

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Wang, Lu; Gao, Congwei; Zhao, Chaoyue; Wang, Yang; Wang, Jianmin

    2018-02-01

    Hemin immobilized into copper-based metal-organic frameworks was successfully prepared and used as a new electrode material for sensitive electrochemical biosensing. X-ray diffraction patterns, Fourier transform infrared spectra, scanning electron microscopy, UV-vis absorption spectroscopy, and cyclic voltammetry were used to characterize the resultant composites. Due to the interaction between the copper atom groups and hemin, the constrained environment in Cu-MOF-74 acts as a matrix to avoid the dimerization of enzyme molecules and retain its biological activity. The hemin/Cu-MOF composites demonstrated enhanced electrocatalytical activity and high stability towards the oxidation of 2,4,6-trichlorophenol. Under optimum experimental conditions, the sensor showed a wide linear relationship over the range of 0.01-9 μmol L-1 with a detection limit (3σ) of 0.005 μmol L-1. The relative standard deviations were 4.6% and 3.5% for five repeated measurements of 0.5 and 5 μmol L-1 2,4,6-trichlorophenol, respectively. The detection platforms for 2,4,6-trichlorophenol developed here not only indicate that hemin/Cu-MOF-74 possesses intrinsic biological reactivity, but also enable further work to be conducted towards the application of enzyme-containing metal-organic frameworks in electrochemical biosensors.

  18. Hemin immobilized into metal-organic frameworks as an electrochemical biosensor for 2,4,6-trichlorophenol.

    PubMed

    Zhang, Ting; Wang, Lu; Gao, Congwei; Zhao, Chaoyue; Wang, Yang; Wang, Jianmin

    2018-02-16

    Hemin immobilized into copper-based metal-organic frameworks was successfully prepared and used as a new electrode material for sensitive electrochemical biosensing. X-ray diffraction patterns, Fourier transform infrared spectra, scanning electron microscopy, UV-vis absorption spectroscopy, and cyclic voltammetry were used to characterize the resultant composites. Due to the interaction between the copper atom groups and hemin, the constrained environment in Cu-MOF-74 acts as a matrix to avoid the dimerization of enzyme molecules and retain its biological activity. The hemin/Cu-MOF composites demonstrated enhanced electrocatalytical activity and high stability towards the oxidation of 2,4,6-trichlorophenol. Under optimum experimental conditions, the sensor showed a wide linear relationship over the range of 0.01-9 μmol L -1 with a detection limit (3σ) of 0.005 μmol L -1 . The relative standard deviations were 4.6% and 3.5% for five repeated measurements of 0.5 and 5 μmol L -1 2,4,6-trichlorophenol, respectively. The detection platforms for 2,4,6-trichlorophenol developed here not only indicate that hemin/Cu-MOF-74 possesses intrinsic biological reactivity, but also enable further work to be conducted towards the application of enzyme-containing metal-organic frameworks in electrochemical biosensors.

  19. Chemical Immobilization Effect on Lithium Polysulfides for Lithium-Sulfur Batteries.

    PubMed

    Li, Caixia; Xi, Zhucong; Guo, Dexiang; Chen, Xiangju; Yin, Longwei

    2018-01-01

    Despite great progress in lithium-sulfur batteries (LSBs), great obstacles still exist to achieve high loading content of sulfur and avoid the loss of active materials due to the dissolution of the intermediate polysulfide products in the electrolyte. Relationships between the intrinsic properties of nanostructured hosts and electrochemical performance of LSBs, especially, the chemical interaction effects on immobilizing polysulfides for LSB cathodes, are discussed in this Review. Moreover, the principle of rational microstructure design for LSB cathode materials with strong chemical interaction adsorbent effects on polysulfides, such as metallic compounds, metal particles, organic polymers, and heteroatom-doped carbon, is mainly described. According to the chemical immobilizing mechanism of polysulfide on LSB cathodes, three kinds of chemical immobilizing effects, including the strong chemical affinity between polar host and polar polysulfides, the chemical bonding effect between sulfur and the special function groups/atoms, and the catalytic effect on electrochemical reaction kinetics, are thoroughly reviewed. To improve the electrochemical performance and long cycling life-cycle stability of LSBs, possible solutions and strategies with respect to the rational design of the microstructure of LSB cathodes are comprehensively analyzed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Slow pyrolyzed biochars from crop residues for soil metal(loid) immobilization and microbial community abundance in contaminated agricultural soils.

    PubMed

    Igalavithana, Avanthi Deshani; Park, Jinje; Ryu, Changkook; Lee, Young Han; Hashimoto, Yohey; Huang, Longbin; Kwon, Eilhann E; Ok, Yong Sik; Lee, Sang Soo

    2017-06-01

    This study evaluated the feasibility of using biochars produced from three types of crop residues for immobilizing Pb and As and their effects on the abundance of microbial community in contaminated lowland paddy (P-soil) and upland (U-soil) agricultural soils. Biochars were produced from umbrella tree [Maesopsis eminii] wood bark [WB], cocopeat [CP], and palm kernel shell [PKS] at 500 °C by slow pyrolysis at a heating rate of 10 °C min -1 . Soils were incubated with 5% (w w -1 ) biochars at 25 °C and 70% water holding capacity for 45 d. The biochar effects on metal immobilization were evaluated by sequential extraction of the treated soil, and the microbial community was determined by microbial fatty acid profiles and dehydrogenase activity. The addition of WB caused the largest decrease in Pb in the exchangeable fraction (P-soil: 77.7%, U-soil: 91.5%), followed by CP (P-soil: 67.1%, U-soil: 81.1%) and PKS (P-soil: 9.1%, U-soil: 20.0%) compared to that by the control. In contrast, the additions of WB and CP increased the exchangeable As in U-soil by 84.6% and 14.8%, respectively. Alkalinity and high phosphorous content of biochars might be attributed to the Pb immobilization and As mobilization, respectively. The silicon content in biochars is also an influencing factor in increasing the As mobility. However, no considerable effects of biochars on the microbial community abundance and dehydrogenase activity were found in both soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification.

    PubMed

    Guo, Fuyu; Ding, Changfeng; Zhou, Zhigao; Huang, Gaoxiang; Wang, Xingxiang

    2018-06-04

    Chemical immobilization is a practical approach to remediate heavy metal contamination in agricultural soils. However, the potential remobilization risks of immobilized metals are a major environmental concern, especially in acid rain zones. In the present study, changes in the immobilization efficiency of several amendments as affected by simulated soil acidification were investigated to evaluate the immobilization remediation stability of several amendments on two cadmium (Cd) contaminated soils. Amendments (hydrated lime, hydroxyapatite and biochar) effectively immobilized Cd, except for organic fertilizer, and their immobilizations were strongly decreased by the simulated soil acidification. The ratio of changes in CaCl 2 -extractable Cd: pH (△CaCl 2 -Cd/△pH) can represent the Cd remobilization risk of different amended soils. Hydroxyapatite and biochar had a stronger durable immobilizing effect than did hydrated lime, particularly in soil with a lower pH buffering capacity, which was further confirmed by the Cd concentration and accumulation in lettuce. These results can be attributed to that hydroxyapatite and biochar transformed greater proportions of exchangeable Cd to other more stable fractions than lime. After 48 weeks of incubation, in soil with a lower pH buffering capacity, the immobilization efficiencies of lime, hydroxyapatite, biochar and organic fertilizer in the deionized water group (pH 6.5) were 71.7%, 52.7%, 38.6% and 23.9%, respectively, and changed to 19.1%, 33.6%, 26.5% and 5.0%, respectively, in the simulated acid rain group (pH 2.5). The present study provides a simple method to preliminarily estimate the immobilization efficiency of amendments and predict their stability in acid rain regions before large-scale field application. In addition, hydrated lime is recommended to be combined with other acid-stable amendments (such as hydroxyapatite or biochar) to remediate heavy metal-contaminated agricultural soils in acid precipitation

  2. Selective detection and recovery of gold at tannin-immobilized non-conducting electrode.

    PubMed

    Banu, Khaleda; Shimura, Takayoshi; Sadeghi, Saman

    2015-01-01

    A tannin-immobilized glassy carbon electrode (TIGC) was prepared via electrochemical oxidation of the naturally occurring polyphenolic mimosa tannin, which generated a non-conducting polymeric film (NCPF) on the electrode surface. The fouling of the electrode surface by the electropolymerized film was evaluated by monitoring the electrode response of ferricyanide ions as a redox marker. The NCPF was permselective to HAuCl4, and the electrochemical reduction of HAuCl4 to metallic gold at the TIGC electrode was evaluated by recording the reduction current during cyclic voltammetry measurement. In the mixed electrolyte containing HAuCl4 along with FeCl3 and/or CuCl2, the NCPF remained selective toward the electrochemical reduction of HAuCl4 into the metallic state. The chemical reduction of HAuCl4 into metallic gold was also observed when the NCPF was inserted into an acidic gold solution overnight. The adsorption capacity of Au(III) on tannin-immobilized carbon fiber was 29±1.45 mg g(-1) at 60°C. In the presence of excess Cu(II) and Fe(III), tannin-immobilized NCPF proved to be an excellent candidate for the selective detection and recovery of gold through both electrochemical and chemical processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol.

    PubMed

    Wu, Lingxia; Lu, Xianbo; Dhanjai; Wu, Zhong-Shuai; Dong, Yanfeng; Wang, Xiaohui; Zheng, Shuanghao; Chen, Jiping

    2018-06-01

    MXene-Ti 3 C 2 , as a new class of two-dimensional (2D) transition metal carbides (or nitrides), has been synthesized by exfoliating pristine Ti 3 AlC 2 phases with hydrofluoric acid. The SEM and XRD images show that the resultant MXene possesses a graphene-like 2D nanostructure. and the surface of MXene has been partially terminated with -OH, thus providing a favorable microenvironment for enzyme immobilization and retaining their bioactivity and stability. Considering the unique metallic conductivity, biocompatibility and good dispersion in aqueous phase, the as-prepared MXene was explored as a new matrix to immobilize tyrosinase (a model enzyme) for fabricating a mediator-free biosensor for ultrasensitive and rapid detection of phenol. The varying electrochemical measurements were used to investigate the electrochemical performance of MXene-based tyrosinase biosensors. The results revealed that the direct electron transfer between tyrosinase and electrode could be easily achieved via a surface-controlled electrochemical process. The fabricated MXene-based tyrosinase biosensors exhibited good analytical performance over a wide linear range from 0.05 to 15.5 μmol L -1 , with a low detection limit of 12 nmol L -1 and a sensitivity of 414.4 mA M -1 . The proposed biosensing approach also demonstrated good repeatability, reproducibility, long-term stability and high recovery for phenol detection in real water samples. With those excellent performances, MXene with graphene-like structure is proved to be a robust and versatile electrochemical biosensing platform for enzyme-based biosensors and biocatalysis, and has wide potential applications in biomedical detection and environmental analysis. Copyright © 2018. Published by Elsevier B.V.

  4. Immobilization of Pb, Cd, and Zn in a contaminated soil using eggshell and banana stem amendments: metal leachability and a sequential extraction study.

    PubMed

    Ashrafi, Mehrnaz; Mohamad, Sharifah; Yusoff, Ismail; Shahul Hamid, Fauziah

    2015-01-01

    Heavy-metal-contaminated soil is one of the major environmental pollution issues all over the world. In this study, two low-cost amendments, inorganic eggshell and organic banana stem, were applied to slightly alkaline soil for the purpose of in situ immobilization of Pb, Cd, and Zn. The artificially metal-contaminated soil was treated with 5% eggshell or 10% banana stem. To simulate the rainfall conditions, a metal leaching experiment for a period of 12 weeks was designed, and the total concentrations of the metals in the leachates were determined every 2 weeks. The results from the metal leaching analysis revealed that eggshell amendment generally reduced the concentrations of Pb, Cd, and Zn in the leachates, whereas banana stem amendment was effective only on the reduction of Cd concentration in the leachates. A sequential extraction analysis was carried out at the end of the experiment to find out the speciation of the heavy metals in the amended soils. Eggshell amendment notably decreased mobility of Pb, Cd, and Zn in the soil by transforming their readily available forms to less accessible fractions. Banana stem amendment also reduced exchangeable form of Cd and increased its residual form in the soil.

  5. Two-step purification of His-tagged Nef protein in native condition using heparin and immobilized metal ion affinity chromatographies.

    PubMed

    Finzi, Andrés; Cloutier, Jonathan; Cohen, Eric A

    2003-07-01

    The Nef protein encoded by human immunodeficiency virus type 1 (HIV-1) has been shown to be an important factor of progression of viral growth and pathogenesis in both in vitro and in vivo. The lack of a simple procedure to purify Nef in its native conformation has limited molecular studies on Nef function. A two-step procedure that includes heparin and immobilized metal ion affinity chromatographies (IMACs) was developed to purify His-tagged Nef (His(6)-Nef) expressed in bacteria in native condition. During the elaboration of this purification procedure, we identified two closely SDS-PAGE-migrating contaminating bacterial proteins, SlyD and GCHI, that co-eluted with His(6)-Nef in IMAC in denaturing condition and developed purification steps to eliminate these contaminants in native condition. Overall, this study describes a protocol that allows rapid purification of His(6)-Nef protein expressed in bacteria in native condition and that removes metal affinity resin-binding bacterial proteins that can contaminate recombinant His-tagged protein preparation.

  6. Viability of a nanoremediation  process in single or multi-metal(loid) contaminated soils.

    PubMed

    Gil-Díaz, M; Pinilla, P; Alonso, J; Lobo, M C

    2017-01-05

    The effectiveness of single- and multi-metal(loid) immobilization of As, Cd, Cr, Pb and Zn using different doses of nanoscale zero-valent iron (nZVI) was evaluated and compared in two different soils, a calcareous and an acidic one. The effectiveness of nZVI to immobilize metal(loid)s in soil strongly depended on the metal characteristics, soil properties, dose of nZVI and presence of other metal(loid)s. In the case of single contamination, this nanoremediation strategy was effective for all of the metal(loid)s studied except for Cd. When comparing the two soils, anionic metal(loid)s (As and Cr) were more easily retained in acidic soil, whereas cationic metal(loid)s (Cd, Pb and Zn), were immobilized more in calcareous soil. In multi-metal(loid) contaminated soils, the presence of several metal(loid)s affected their immobilization, which was probably due to the competitive phenomenon between metal(loid) ions, which can reduce their sorption or produce synergistic effects. At 10% of nZVI, As, Cr and Pb availability decreased more than 82%, for Zn it ranged between 31 and 75% and for Cd between 13 and 42%. Thus, the application of nZVI can be a useful strategy to immobilize As, Cr, Pb and Zn in calcareous or acidic soils in both single- or multi-metal(loid) contamination conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Functionalization of paramagnetic nanoparticles for protein immobilization and purification.

    PubMed

    Carneiro, Lara A B C; Ward, Richard J

    2018-01-01

    A paramagnetic nanocomposite coated with chitosan and N-(5-Amino-1-carboxy-pentyl) iminodiacetic acid (NTA) that is suitable for protein immobilization applications has been prepared and characterized. The nanoparticle core was synthesized by controlled aggregation of Fe 3 O 4 under alkaline conditions, and Transmission Electron Microscopy revealed a size distribution of 10-50 nm. The nanoparticle core was coated with chitosan and derivatized with glutaraldehyde and NTA, as confirmed by Fourier Transform Infrared Spectroscopy. The final nanoparticles were used as a metal affinity matrix to separate a recombinant polyhistidine-tagged β-galactosidase from Bacillus subtilis directly from E. coli cell lysates with high purity (>95%). After loading with Ni 2+ , nanoparticles demonstrated a binding capacity of 250 μg of a polyhistidine-tagged β-galactosidase per milligram of support. The immobilized enzyme retained 80% activity after 9 cycles of washing, and the immobilized recombinant protein could be eluted with high purity with imidazole. The applications for these nanomagnetic composites extend beyond protein purification, and can also be used for immobilizing enzymes, where the β-galactosidase immobilized on the nanomagnetic support was used in multiple cycles of catalytic reactions with no significant loss of catalytic activity. Copyright © 2017. Published by Elsevier Inc.

  8. Selective retention of basic compounds by metal aquo-ion affinity chromatography.

    PubMed

    Asakawa, Yoshiki; Yamamoto, Eiichi; Asakawa, Naoki

    2014-10-01

    A novel metal aquo-ion affinity chromatography has been developed for the analysis of basic compounds using heat-treated silica gel containing hydrated metal cations (metal aquo-ions) as the packing material. The packing materials of the metal aquo-ion affinity chromatography were prepared by the immobilization of a single metal component such as Fe(III), Al(III), Ag(I), and Ni(II) on silica gel followed by extensive heat treatment. The immobilized metals form aquo-ions to present cation-exchange ability for basic analytes and the cation-exchange ability for basic analytes depends on pKa of the immobilized metal species. In the present study, to evaluate the retention characteristics of metal aquo-ion affinity chromatography, the on-line solid-phase extraction of drugs was investigated. Obtained data clearly evidence the selective retention capability of metal aquo-ion affinity chromatography for basic analytes with sufficient capacity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

    NASA Astrophysics Data System (ADS)

    Tozsin, Gulsen

    2016-01-01

    Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sulfide- bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neutralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment ( t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sulfate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

  10. Process Of Bonding A Metal Brush Structure To A Planar Surface Of A Metal Substrate

    DOEpatents

    Slattery, Kevin T.; Driemeyer, Daniel E.; Wille; Gerald W.

    1999-11-02

    Process for bonding a metal brush structure to a planar surface of a metal substrate in which an array of metal rods are retained and immobilized at their tips by a common retention layer formed of metal, and the brush structure is then joined to a planar surface of a metal substrate via the retention layer.

  11. Evaluation of potential for reuse of industrial wastewater using metal-immobilized catalysts and reverse osmosis.

    PubMed

    Choi, Jeongyun; Chung, Jinwook

    2015-04-01

    This report describes a novel technology of reusing the wastewater discharged from the display manufacturing industry through an advanced oxidation process (AOP) with a metal-immobilized catalyst and reverse osmosis (RO) in the pilot scale. The reclaimed water generated from the etching and cleaning processes in display manufacturing facilities was low-strength organic wastewater and was required to be recycled to secure a water source. For the reuse of reclaimed water to ultrapure water (UPW), a combination of solid-phase AOP and RO was implemented. The removal efficiency of TOC by solid-phase AOP and RO was 92%. Specifically, the optimal acid, pH, and H2O2 concentrations in the solid-phase AOP were determined. With regard to water quality and operating costs, the combination of solid-phase AOP and RO was superior to activated carbon/RO and ultraviolet AOP/anion polisher/coal carbon. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Application of eggshell waste for the immobilization of cadmium and lead in a contaminated soil.

    PubMed

    Ok, Yong Sik; Lee, Sang Soo; Jeon, Weon-Tai; Oh, Sang-Eun; Usman, Adel R A; Moon, Deok Hyun

    2011-01-01

    Liming materials have been used to immobilize heavy metals in contaminated soils. However, no studies have evaluated the use of eggshell waste as a source of calcium carbonate (CaCO₃) to immobilize both cadmium (Cd) and lead (Pb) in soils. This study was conducted to evaluate the effectiveness of eggshell waste on the immobilization of Cd and Pb and to determine the metal availability following various single extraction techniques. Incubation experiments were conducted by mixing 0-5% powdered eggshell waste and curing the soil (1,246 mg Pb kg⁻¹ soil and 17 mg Cd kg⁻¹ soil) for 30 days. Five extractants, 0.01 M calcium chloride (CaCl₂), 1 M CaCl₂, 0.1 M hydrochloric acid (HCl), 0.43 M acetic acid (CH₃COOH), and 0.05 M ethylendiaminetetraacetic acid (EDTA), were used to determine the extractability of Cd and Pb following treatments with CaCO₃ and eggshell waste. Generally, the extractability of Cd and Pb in the soils decreased in response to treatments with CaCO₃ and eggshell waste, regardless of extractant. Using CaCl₂ extraction, the lowest Cd concentration was achieved upon both CaCO₃ and eggshell waste treatments, while the lowest Pb concentration was observed using HCl extraction. The highest amount of immobilized Cd and Pb was extracted by CH₃COOH or EDTA in soils treated with CaCO₃ and eggshell waste, indicating that remobilization of Cd and Pb may occur under acidic conditions. Based on the findings obtained, eggshell waste can be used as an alternative to CaCO₃ for the immobilization of heavy metals in soils.

  13. Efficacy of woody biomass and biochar for alleviating heavy metal bioavailability in serpentine soil.

    PubMed

    Bandara, Tharanga; Herath, Indika; Kumarathilaka, Prasanna; Hseu, Zeng-Yei; Ok, Yong Sik; Vithanage, Meththika

    2017-04-01

    Crops grown in metal-rich serpentine soils are vulnerable to phytotoxicity. In this study, Gliricidia sepium (Jacq.) biomass and woody biochar were examined as amendments on heavy metal immobilization in a serpentine soil. Woody biochar was produced by slow pyrolysis of Gliricidia sepium (Jacq.) biomass at 300 and 500 °C. A pot experiment was conducted for 6 weeks with tomato (Lycopersicon esculentum L.) at biochar application rates of 0, 22, 55 and 110 t ha -1 . The CaCl 2 and sequential extractions were adopted to assess metal bioavailability and fractionation. Six weeks after germination, plants cultivated on the control could not survive, while all the plants were grown normally on the soils amended with biochars. The most effective treatment for metal immobilization was BC500-110 as indicated by the immobilization efficiencies for Ni, Mn and Cr that were 68, 92 and 42 %, respectively, compared to the control. Biochar produced at 500 °C and at high application rates immobilized heavy metals significantly. Improvements in plant growth in biochar-amended soil were related to decreasing in metal toxicity as a consequence of metal immobilization through strong sorption due to high surface area and functional groups.

  14. Immobilized lipid-bilayer materials

    DOEpatents

    Sasaki, Darryl Y.; Loy, Douglas A.; Yamanaka, Stacey A.

    2000-01-01

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  15. One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating technique combined with polysaccharide incorporated sol--gel process.

    PubMed

    Li, Feng; Li, Xue-Mei; Zhang, Shu-Sheng

    2006-10-06

    A simple and reliable one-pot approach using surface imprinting coating technique combined with polysaccharide incorporated sol-gel process was established to synthesize a new organic-inorganic hybrid matrix possessing macroporous surface and functional ligand. Using mesoporous silica gel being a support, immobilized metal affinity adsorbent with a macroporous shell/mesoporous core structure was obtained after metal ion loading. In the prepared matrix, covalently bonded coating and morphology manipulation on silica gel was achieved by using one-pot sol-gel process starting from an inorganic precursor, -glycidoxypropyltrimethoxysiloxane (GPTMS), and a functional biopolymer, chitosan (CS) at the atmosphere of imprinting polyethylene glycol (PEG). Self-hydrolysis of GPTMS, self-condensation, and co-condensation of silanol groups (Si-OH) from siloxane and silica gel surface, and in situ covalent cross-linking of CS created an orderly coating on silica gel surface. PEG extraction using hot ammonium hydroxide solution gave a chemically and mechanically stabilized pore structure and deactivated residual epoxy groups. The prepared matrix was characterized by using X-ray energy dispersion spectroscopy (EDX), scanning electron microscopy (SEM) and mercury intrusion porosimetry. The matrix possessed a high capacity for copper ion loading. Protein adsorption performance of the new immobilized metal affinity adsorbent was evaluated by batch adsorption and column chromatographic experiment using bovine serum albumin (BSA) as a simple model protein. Under the optimized coating conditions, the obtained macroporous surface resulted in a fast kinetics and high capability for protein adsorption, while the matrix non-charged with metal ions offered a low non-specific adsorption.

  16. Metal-immobilizing Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 increase biomass and reduce heavy metal accumulation of radish under field conditions.

    PubMed

    Han, Hui; Sheng, Xiafang; Hu, Jingwen; He, Linyan; Wang, Qi

    2018-06-18

    In this study, metal-tolerant bacteria Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 were compared for their Cd and Pb immobilization in solution and impacts on biomass and Cd and Pb uptake in a radish in metal-contaminated soils under field conditions. Strains CL-1 and X30 significantly reduced water-soluble Cd and Pb concentrations (45-67%) and increased the pH in solution compared to the controls. These strains significantly increased the biomass (25-99%) and decreased edible tissue Cd and Pb uptake in the radish (37-81%) and DTPA-extractable Cd and Pb contents (18-44%) of the rhizosphere soil compared to the un-inoculated controls. Strain CL-1 had higher potential to reduce edible tissue Cd and Pb uptake in the radish and DTPA-extractable Cd content than strain X30. Also, these strains significantly increased Cd translocation factor and strain CL-1 also significantly increased Pb translocation factor of the radish. Furthermore, strain CL-1 significantly increased the ratio of small soil aggregates (< 0.25 mm and 0.25-0.50 mm) of the rhizosphere soil. The results showed that these strains reduced the edible tissue Cd and Pb uptake through decreasing Cd and Pb availability in the soil and increasing Cd or Pb translocation from the roots to the leaves of the radish. The results also suggested the bacteria-related differences in reduced heavy metal uptake in the radish and the mechanisms involved under field conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Immobilization of copper flotation waste using red mud and clinoptilolite.

    PubMed

    Coruh, Semra

    2008-10-01

    The flash smelting process has been used in the copper industry for a number of years and has replaced most of the reverberatory applications, known as conventional copper smelting processes. Copper smelters produce large amounts of copper slag or copper flotation waste and the dumping of these quantities of copper slag causes economic, environmental and space problems. The aim of this study was to perform a laboratory investigation to assess the feasibility of immobilizing the heavy metals contained in copper flotation waste. For this purpose, samples of copper flotation waste were immobilized with relatively small proportions of red mud and large proportions of clinoptilolite. The results of laboratory leaching demonstrate that addition of red mud and clinoptilolite to the copper flotation waste drastically reduced the heavy metal content in the effluent and the red mud performed better than clinoptilolite. This study also compared the leaching behaviour of metals in copper flotation waste by short-time extraction tests such as the toxicity characteristic leaching procedure (TCLP), deionized water (DI) and field leach test (FLT). The results of leach tests showed that the results of the FLT and DI methods were close and generally lower than those of the TCLP methods.

  18. Effects of metal ions on the catalytic degradation of dicofol by cellulase.

    PubMed

    Zhai, Zihan; Yang, Ting; Zhang, Boya; Zhang, Jianbo

    2015-07-01

    A new technique whereby cellulase immobilized on aminated silica was applied to catalyze the degradation of dicofol, an organochlorine pesticide. In order to evaluate the performance of free and immobilized cellulase, experiments were carried out to measure the degradation efficiency. The Michaelis constant, Km, of the reaction catalyzed by immobilized cellulase was 9.16 mg/L, and the maximum reaction rate, Vmax, was 0.40 mg/L/min, while that of free cellulase was Km=8.18 mg/L, and Vmax=0.79 mg/L/min, respectively. The kinetic constants of catalytic degradation were calculated to estimate substrate affinity. Considering that metal ions may affect enzyme activity, the effects of different metal ions on the catalytic degradation efficiency were explored. The results showed that the substrate affinity decreased after immobilization. Monovalent metal ions had no effect on the reaction, while divalent metal ions had either positive or inhibitory effects, including activation by Mn2+, reversible competition with Cd2+, and irreversible inhibition by Pb2+. Ca2+ promoted the catalytic degradation of dicofol at low concentrations, but inhibited it at high concentrations. Compared with free cellulase, immobilized cellulase was affected less by metal ions. This work provided a basis for further studies on the co-occurrence of endocrine-disrupting chemicals and heavy metal ions in the environment. Copyright © 2015. Published by Elsevier B.V.

  19. Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels.

    PubMed

    Vareda, João P; Valente, Artur J M; Durães, Luisa

    2016-11-01

    Heavy metals are dangerous pollutants that in spite of occurring naturally are released in major amounts to the environment due to anthropogenic activities. After being released in the environment, the heavy metals end up in the soils where they accumulate as they do not degrade, adversely affecting the biota. Because of the dynamic equilibria between soil constituents, the heavy metals may be present in different phases such as the solid phase (immobilized contaminants) or dissolved in soil solution. The latter form is the most dangerous because the ions are mobile, can leach and be absorbed by living organisms. Different methods for the decontamination of polluted soils have been proposed and they make use of two different approaches: mobilizing the heavy metals, which allows their removal from soil, or immobilization that maintains the metal concentrations in soils but keeps them in an inert form due to mechanisms like precipitation, complexation or adsorption. Mobilization of the heavy metals is known to cause leaching and increase plant uptake, so this treatment can cause greater problems. Aerogels are incredible nanostructured, lightweight materials with high surface area and tailorable surface chemistry. Their application in environmental cleaning has been increasing in recent years and very promising results have been obtained. The functionalization of the aerogels can give them the ability to interact with heavy metals, retaining the latter via strong adsorptive interactions. Thus, this review surveys the existing literature for remediation of soils using an immobilization approach, i.e. with soil amendments that increase the soil sorption/retention capacity for heavy metals. The considered framework was a set of heavy metals with relevance in polluted Iberian soils, namely Cd, Cr, Cu, Ni, Pb and Zn. Moreover, other adsorbents, especially aerogels, have been used for the removal of these contaminants from aqueous media; because groundwater and soil

  20. Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of Tannase from Lactobacillus plantarum.

    PubMed

    Curiel, Jose Antonio; Betancor, Lorena; de las Rivas, Blanca; Muñoz, Rosario; Guisan, Jose M; Fernández-Lorente, Gloria

    2010-05-26

    A recombinant tannase from Lactobacillus plantarum , overexpressed in Escherichia coli , was purified in a single step by metal chelate affinity chromatography on poorly activated nickel supports. It was possible to obtain 0.9 g of a pure enzyme by using only 20 mL of chromatographic support. The pure enzyme was immobilized and stabilized by multipoint covalent immobilization on highly activated glyoxyl agarose. Derivatives obtained by multipoint and multisubunit immobilization were 500- and 1000-fold more stable than both the soluble enzyme and the one-point-immobilized enzyme in experiments of thermal and cosolvent inactivation, respectively. In addition, up to 70 mg of pure enzyme was immobilized on 1 g of wet support. The hydrolysis of tannic acid was optimized by using the new immobilized tannase derivative. The optimal reaction conditions were 30% diglyme at pH 5.0 and 4 degrees C. Under these conditions, it was possible to obtain 47.5 mM gallic acid from 5 mM tannic acid as substrate. The product was pure as proved by HPLC. On the other hand, the immobilized biocatalyst preserved >95% of its initial activity after 1 month of incubation under the optimal reaction conditions.

  1. Synchrotron Analysis Of Metal Immobilization In Sediments

    EPA Science Inventory

    Heavy metal contamination is a problem at many marine and fresh water environments as a result of industrial and military activities. Metals such as lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) are common contaminants in sediments due to many Navy activities. The mobile...

  2. Immobilized Metal Affinity Chromatography Co-Purifies TGF-β1 with Histidine-Tagged Recombinant Extracellular Proteins

    PubMed Central

    Kaur, Jasvir; Reinhardt, Dieter P.

    2012-01-01

    Extracellular recombinant proteins are commonly produced using HEK293 cells as histidine-tagged proteins facilitating purification by immobilized metal affinity chromatography (IMAC). Based on gel analyses, this one-step purification typically produces proteins of high purity. Here, we analyzed the presence of TGF-β1 in such IMAC purifications using recombinant extracellular fibrillin-1 fragments as examples. Analysis of various purified recombinant fibrillin-1 fragments by ELISA consistently revealed the presence of picomolar concentrations of active and latent TGF-β1, but not of BMP-2. These quantities of TGF-β1 were not detectable by Western blotting and mass spectrometry. However, the amounts of TGF-β1 were sufficient to consistently trigger Smad2 phosphorylation in fibroblasts. The purification mechanism was analyzed to determine whether the presence of TGF-β1 in these protein preparations represents a specific or non-specific co-purification of TGF-β1 with fibrillin-1 fragments. Control purifications using conditioned medium from non-transfected 293 cells yielded similar amounts of TGF-β1 after IMAC. IMAC of purified TGF-β1 and the latency associated peptide showed that these proteins bound to the immobilized nickel ions. These data clearly demonstrate that TGF-β1 was co-purified by specific interactions with nickel, and not by specific interactions with fibrillin-1 fragments. Among various chromatographic methods tested for their ability to eliminate TGF-β1 from fibrillin-1 preparations, gel filtration under high salt conditions was highly effective. As various recombinant extracellular proteins purified in this fashion are frequently used for experiments that can be influenced by the presence of TGF-β1, these findings have far-reaching implications for the required chromatographic schemes and quality controls. PMID:23119075

  3. Characterization and immobilization of arylsulfatase on modified magnetic nanoparticles for desulfation of agar.

    PubMed

    Xiao, Qiong; Yin, Qin; Ni, Hui; Cai, Huinong; Wu, Changzheng; Xiao, Anfeng

    2017-01-01

    Carboxyl functioned magnetic nanoparticles (CMNPs) were prepared by a simple co-precipitation method and characterized by Fourier transform infrared spedtroscopy and scanning electron microscope. The prepared CMNPs were used for covalent immobilization of the arylsulfatase which could be applied in desulfation of agar. The optimal immobilizaion conditions were obtained as follows: glutaraldehyde concentration 1.0% (v/v), cross-linking time 3h, immobilization time 3h, immobilization temperature 5°C and enzyme dose 0.62U. Increase in properties of the arylsulfatase such as optimum temperature and pH was observed after immobilization. Immobilization led to increased tolerance of enzyme to some metal ions, inhibitors and detergents. The K m and k cat of the immobilized enzyme for hydrolysis of p-NPS at pH 7.5 and at 50°C were determined to be 0.89mmol/L and 256.91s -1 , respectively. The relative desulfuration rates of immobilized arylsulfatase maintained 61.7% of its initial desulfuration rates after seven cycles. After the reaction of agar with immobilized arylsulfatase for 90min at 50°C, 46% of the sulfate in the agar was removed. These results showed that the immobilization of arylsulfatase onto CMNPs is an efficient and simple way for preparation of stable arylsulfatase and have a great potential for application in enzymatic desulfation of agar. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Evaluation of Phosphate Fertilizers for the Immobilization of Cd in Contaminated Soils

    PubMed Central

    Yan, Yin; Zhou, Yi Qun; Liang, Cheng Hua

    2015-01-01

    A laboratory investigation was conducted to evaluate the efficiency of four phosphate fertilizers, including diammonium phosphate (DAP), potassium phosphate monobasic (MPP), calcium superphosphateon (SSP), and calcium phosphate tribasic (TCP), in terms of the toxicity and bioavailability of Cd in contaminated soils. The efficiency of immobilization was evaluated on the basis of two criteria: (a) the reduction of extractable Cd concentration below the TCLP regulatory level and (b) the Cd changes associated with specific operational soil fractions on the basis of sequential extraction data. Results showed that after 50 d immobilization, the extractable concentrations of Cd in DAP, MPP, SSP, and TCP treated soils decreased from 42.64 mg/kg (in the control) to 23.86, 21.86, 33.89, and 35.59 mg/kg, respectively, with immobilization efficiency in the order of MPP > DAP > SSP > TCP. Results from the assessment of Cd speciation via the sequential extraction procedure revealed that the soluble exchangeable fraction of Cd in soils treated with phosphate fertilizers, especially TCP, was considerably reduced. In addition, the reduction was correspondingly related to the increase in the more stable forms of Cd, that is, the metal bound to manganese oxides and the metal bound to crystalline iron oxides. Treatment efficiency increased as the phosphate dose (according to the molar ratio of PO4/Cd) increased. Immobilization was the most effective under the molar ratio of PO4/Cd at 4:1. PMID:25915051

  5. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  6. Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms

    PubMed Central

    Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A.; Kelly, Shelly D.

    2014-01-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. PMID:25128347

  7. Immobilization of Technetium in a Metallic Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Frank; D. D. Keiser, Jr.; K. C. Marsden

    Fission-product technetium accumulated during treatment of spent nuclear fuel will ultimately be disposed of in a geological repository. The exact form of Tc for disposal has yet to be determined; however, a reasonable solution is to incorporate elemental Tc into a metallic waste form similar to the waste form produced during the pyrochemical treatment of spent, sodium-bonded fuel. This metal waste form, produced at the Idaho National Laboratory, has undergone extensive qualification examination and testing for acceptance to the Yucca Mountain geological repository. It is from this extensive qualification effort that the behavior of Tc and other fission products inmore » the waste form has been elucidated, and that the metal waste form is extremely robust in the retention of fission products, such as Tc, in repository like conditions. This manuscript will describe the metal waste form, the behavior of Tc in the waste form; and current research aimed at determining the maximum possible loading of Tc into the metal waste and subsequent determination of the performance of high Tc loaded metal waste forms.« less

  8. Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites.

    PubMed

    Yang, Zhihui; Liang, Lifen; Yang, Weichun; Shi, Wei; Tong, Yunping; Chai, Liyuan; Gao, Shikang; Liao, Qi

    2018-04-01

    Self-aggregation of bulk nano-hydroxyapatites (n-HAPs) undermines their immobilization efficiencies of heavy metals in the contaminated soils. Here, the low-cost, easily obtained, and environment-friendly filamentous fungi have been introduced for the bio-matrices of the hybrid bio-nanocomposites to potentially solve such problem of n-HAPs. According to SEM, TEM, XRD, and FT-IR analyses, n-HAPs were successfully coated onto the fungal hyphae and their self-aggregation was improved. The immobilization efficiencies of diethylene-triamine-pentaacetic acid (DTPA)-extractable Cd and Pb in the contaminated soils by the bio-nanocomposites were individually one to four times of that by n-HAPs or the fungal hyphae. Moreover, the Aspergillus niger-based bio-nanocomposite (ANHP) was superior to the Penicillium Chrysogenum F1-based bio-nanocomposite (PCHP) in immobilization of Cd and Pb in the contaminated soils. In addition, the results of XRD showed that one of the potential mechanisms of metal immobilization by the hybrid bio-nanocomposites was dissolution of n-HAPs followed by precipitation of new metal phosphate minerals. Our results suggest that the hybrid bio-nanocomposite (ANHP) can be recognized as a promising soil amendment candidate for effective remediation on the soils simultaneously contaminated by Cd and Pb.

  9. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar.

    PubMed

    Cao, Xinde; Ma, Lena; Liang, Yuan; Gao, Bin; Harris, Willie

    2011-06-01

    Biochar produced from waste biomass is increasingly being recognized as a green, cost-effective amendment for environmental remediation. This work was to determine the ability of biochar to immobilize heavy metal Pb and organic pesticide atrazine in contaminated soils. Biochar prepared from dairy manure was incubated with contaminated soils at rates of 0, 2.5, and 5.0% by weight for 210 d. A commercial activated carbon (AC) was included as a comparison. The AC was effective in immobilizing atrazine, but was ineffective for Pb. However, biochar was effective in immobilizing both atrazine and Pb and the effectiveness was enhanced with increasing incubation time and biochar rates. After 210 d, soils treated with the highest rate of 5.0% biochar showed more than 57% and 66% reduction in Pb and atrazine concentrations in 0.01 M CaCl(2) extraction, respectively. Lead and atrazine concentrations in the toxicity characteristic leaching procedure solutions were reduced by 70-89% and 53-77%, respectively. Uptake of Pb and atrazine by earthworms (Eisenia fetida) was reduced by up to 79% and 73%. Phosphorus originally contained in biochar reacted with soil Pb to form insoluble hydroxypyromorphite Pb(5)(PO(4))(3)(OH), as determined by X-ray diffraction, which was presumably responsible for soil Pb immobilization, whereas atrazine stabilization may result from its adsorption by biochar demonstrated by the significant exponential decrease of extractable atrazine with increasing organic C in biochar (r(2) > 0.97, p < 0.05). The results highlighted the potential of dairy-manure biochar as a unique amendment for immobilization of both heavy metal and organic contaminants in cocontaminated soils.

  10. Yarrowia lipolytica morphological mutant enables lasting in situ immobilization in bioreactor.

    PubMed

    Vandermies, Marie; Kar, Tambi; Carly, Frédéric; Nicaud, Jean-Marc; Delvigne, Frank; Fickers, Patrick

    2018-04-26

    In the present study, we have isolated and characterized a Yarrowia lipolytica morphological mutant growing exclusively in the pseudohyphal morphology. The gene responsible for this phenotype, YALI0E06519g, was identified as homologous to the mitosis regulation gene HSL1 from Saccharomyces cerevisiae. Taking advantage of its morphology, we achieved the immobilization of the Δhsl1 mutant on the metallic structured packing of immobilized-cell bioreactors. We obtained significant cell retention and growth on the support during shake flask and bioreactor experiments without an attachment step prior to the culture. The system of medium aspersion on the packing ensured oxygen availability in the absence of agitation and minimized the potential release of cells in the culture medium. Additionally, the metallic packing proved its facility of cleaning and sterilization after fermentation. This combined use of morphological mutation and bioreactor design is a promising strategy to develop continuous processes for the production of recombinant protein and metabolites using Y. lipolytica. Graphical Abstract.

  11. Magnetic mesoporous silica nanoparticles: fabrication and their laccase immobilization performance.

    PubMed

    Wang, Feng; Guo, Chen; Yang, Liang-rong; Liu, Chun-Zhao

    2010-12-01

    Newly large-pore magnetic mesoporous silica nanoparticles (MMSNPs) with wormhole framework structures were synthesized for the first time by using tetraethyl orthosilicate as the silica source and amine-terminated Jeffamine surfactants as template. Iminodiacerate was attached on these MMSNPs through a silane-coupling agent and chelated with Cu(2+). The Cu(2+)-chelated MMSNPs (MMSNPs-CPTS-IDA-Cu(2+)) showed higher adsorption capacity of 98.1 mg g(-1)-particles and activity recovery of 92.5% for laccase via metal affinity adsorption in comparison with MMSNPs via physical adsorption. The Michaelis constant (K(m)) and catalytic constant (k(cat)) of laccase immobilized on the MMSNPs-CPTS-IDA-Cu(2+) were 3.28 mM and 155.4 min(-1), respectively. Storage stability and temperature endurance of the immobilized laccase on MMSNPs-CPTS-IDA-Cu(2+) increased significantly, and the immobilized laccase retained 86.6% of its initial activity after 10 successive batch reactions operated with magnetic separation. 2010 Elsevier Ltd. All rights reserved.

  12. Immobilization of molecular catalysts in supported ionic liquid phases.

    PubMed

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  13. Arsenate immobilization associated with microbial oxidation of ferrous ion in complex acid sulfate water.

    PubMed

    Ma, Yingqun; Lin, Chuxia

    2012-05-30

    Chemical, XRD, SEM, RS, FTIR and XPS techniques were used to investigate arsenate immobilization associated with microbial Fe(2+) oxidation in a complex acid sulfate water system consisting of a modified 9 K solution (pH 2.0) plus As, Cu, Cd, Pb, Zn and Mn. At a 1:12.5:70 molar ratio of As:Fe:S, schweretmannite formation was impeded. This was in contrast with the predominant presence of schwertmannite when the heavy metals were absent, suggesting that a schwertmannite binding model is not valid for explaining arsenate immobilization in the complex system. In this study, arsenate was initially immobilized through co-precipitation with non-Fe metals and phosphate. Subsequently when sufficient Fe(3+) was produced from Fe(2+) oxidation, formation of a mixed iron, arsenate and phosphate phase predominated. The last stage involved surface complexation of arsenate species. Pb appeared to play an insignificant role in arsenate immobilization due to its strong affinity for sulfate to form anglesite. Phosphate strongly competed with arsenate for the available binding sites. However, As exhibited an increased capacity to compete with P and S for available binding sites from the co-precipitation to surface complexation stage. Adsorbed As tended to be in HAsO(4)(2-) form. The scavenged arsenate species was relatively stable after 2464-h aging. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Recoverable immobilization of transuranic elements in sulfate ash

    DOEpatents

    Greenhalgh, Wilbur O.

    1985-01-01

    Disclosed is a method of reversibly immobilizing sulfate ash at least about 20% of which is sulfates of transuranic elements. The ash is mixed with a metal which can be aluminum, cerium, samarium, europium, or a mixture thereof, in amounts sufficient to form an alloy with the transuranic elements, plus an additional amount to reduce the transuranic element sulfates to elemental form. Also added to the ash is a fluxing agent in an amount sufficient to lower the percentage of the transuranic element sulfates to about 1% to about 10%. The mixture of the ash, metal, and fluxing agent is heated to a temperature sufficient to melt the fluxing agent and the metal. The mixture is then cooled and the alloy is separated from the remainder of the mixture.

  15. Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization.

    PubMed

    Cowan, Don A; Fernandez-Lafuente, Roberto

    2011-09-10

    The immobilization of proteins (mostly typically enzymes) onto solid supports is mature technology and has been used successfully to enhance biocatalytic processes in a wide range of industrial applications. However, continued developments in immobilization technology have led to more sophisticated and specialized applications of the process. A combination of targeted chemistries, for both the support and the protein, sometimes in combination with additional chemical and/or genetic engineering, has led to the development of methods for the modification of protein functional properties, for enhancing protein stability and for the recovery of specific proteins from complex mixtures. In particular, the development of effective methods for immobilizing large multi-subunit proteins with multiple covalent linkages (multi-point immobilization) has been effective in stabilizing proteins where subunit dissociation is the initial step in enzyme inactivation. In some instances, multiple benefits are achievable in a single process. Here we comprehensively review the literature pertaining to immobilization and chemical modification of different enzyme classes from thermophiles, with emphasis on the chemistries involved and their implications for modification of the enzyme functional properties. We also highlight the potential for synergies in the combined use of immobilization and other chemical modifications. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Immobilization of polygalacturonase from Aspergillus niger onto activated polyethylene and its application in apple juice clarification.

    PubMed

    Saxena, Shivalika; Shukla, Surendra; Thakur, Akhilesh; Gupta, Reena

    2008-03-01

    The present work is focused on efficient immobilization of polygalacturonase on polyethylene matrix, followed by its application in apple juice clarification. Immobilization of polygalacturonase on activated polyethylene and its use in apple juice clarification was not reported so far. Aspergillus niger Van Tieghem (MTCC 3323) produced polygalacturonase when grown in modified Riviere's medium containing pectin as single carbon source by fed-batch culture. The enzyme was precipitated with ethanol and purified by gel filtration chromatography (Sephacryl S-100) and immobilized onto glutaraldehyde-activated polyethylene. The method is very simple and time saving for enzyme immobilization. Various characteristics of immobilized enzyme such as optimum reaction temperature and pH, temperature and pH stability, binding kinetics, efficiency of binding, reusability and metal ion effect on immobilized enzymes were evaluated in comparison to the free enzyme. Both the free and immobilized enzyme showed maximum activity at a temperature of 45 degrees C and pH 4.8. Maximum binding efficiency was 38%. The immobilized enzyme was reusable for 3 cycles with 50% loss of activity after the third cycle. Twenty-four U of immobilized enzyme at 45 degrees C and 1 h incubation time increased the transmittance of the apple juice by about 55% at 650 nm. The immobilized enzyme can be of industrial advantage in terms of sturdiness, availability, inertness, low price, reusability and temperature stability.

  17. Immobilization of Chromium from Liquid Waste of Electroplating Home-Industries by Fly Ash Geopolymerization

    NASA Astrophysics Data System (ADS)

    Fansuri, H.; Erviana, E.; Rosyidah, M.; Iqbal, R. M.; Utomo, W. P.; Nurlina

    2018-05-01

    Immobilization is one of methods that can be used to overcome the problem of water pollution by heavy metals, such as chromium, which is possibly produced in an electroplating home-industry. One method that can be used to immobilize heavy metals is by using the waste water as a reactant in a geopolymerization process. The resulting geopolymer will contain such heavy metals and keep them from being dispersed into the environment. In this research, the immobilization was carried out by geopolymerization of fly ash from PT. IPMOMI (International Power Mitsui Operation and Maintenance) in Probolinggo, Indonesia, which pass through 60 (FA 60), 100 (FA 100), and 200 (FA 200) mesh sieve and using wastewater from electroplating home-industries in Ngingas Village, Sidoarjo-Indonesia, or a solution of Cr(NO3)3.9H2O as one of its reactants. The composition of the geopolymerization follows the results of previous research, i.e using the ratio of Solid to Liquid (S/L) = 3.59, Na2O/SiO2 = 0.67, H2O/Na2O = 3.33 and SiO2/Al2O3 = 6.46. Experimental results show that the compressive strength of geopolymers without heavy metals addition increases when the particle size decreases. Geopolymer made of FA 100 has the highest compressive strength i.e 35.05 MPa. The addition of a chromium-containing wastewater in FA 100 geopolymerization produce a geopolymer with a lower compressive strength i.e 26.42 MPa while the addition of Cr(NO3)3·9H2O solution produce geopolymer with compressive strength of 24.47 MPa. The SEM-EDX photo shows that chrome was evenly dispersed in the geopolymer. Leaching test with TCLP method (Toxicity Characteristic Leaching Procedure) on the geopolymer product showed that no chrome content in the leachate was found. This suggests that chromium is immobilized by geopolymers very well.

  18. Enhanced uranium immobilization and reduction by Geobacter sulfurreducens biofilms.

    PubMed

    Cologgi, Dena L; Speers, Allison M; Bullard, Blair A; Kelly, Shelly D; Reguera, Gemma

    2014-11-01

    Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Catalytic characteristics and application of l-asparaginase immobilized on aluminum oxide pellets.

    PubMed

    Agrawal, Sarika; Sharma, Isha; Prajapati, Bhanu Pratap; Suryawanshi, Rahul Kumar; Kango, Naveen

    2018-07-15

    l-asparaginase from Escherichia coli (l-ASNase) was covalently immobilized on aluminum oxide pellets (AlOPs) using a cross-linking agent, glutaraldehyde. Maximum immobilization yield (85.0%) was obtained after optimizing immobilization parameters using response surface methodology (RSM). Both free and immobilized l-ASNase (AlOP-ASNase) were optimally active at 37°C and pH7.5. However, the bioconjugate exhibited enhanced activity and stability at different pH and temperatures. It had higher affinity (low K m ) and was comparatively more stable in presence of some solvents (ethyl acetate, acetone, acetonitrile), metal ions (Ag + , Zn 2+ ) and β-mercaptoethanol. AlOP-ASNase was reused in a glass column reactor for l-asparagine hydrolysis upto nine successive cycles without any loss in activity. The AlOP-ASNase was effective in lowering l-asparagine level in blanched potato chips indicating its potential use in mitigating acrylamide formation in starchy foods. This cost-effective enzyme preparation had shelf-life of more than 30days and can be effectively used in starch based food industries. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Immobilization of mercury and zinc in an alkali-activated slag matrix.

    PubMed

    Qian, Guangren; Sun, Darren Delai; Tay, Joo Hwa

    2003-07-04

    The behavior of heavy metals mercury and zinc immobilized in an alkali-activated slag (AAS) matrix has been evaluated using physical property tests, pore structure analysis and XRD, TG-DTG, FTIR and TCLP analysis. Low concentrations (0.5%) of mercury and zinc ions had only a slight affect on compressive strength, pore structure and hydration of AAS matrixes. The addition of 2% Hg ions to the AAS matrix resulted in a reduction in early compressive strength but no negative effects were noticed after 28 days of hydration. Meanwhile, 2% Hg ions can be effectively immobilized in the AAS matrix with the leachate meeting the USEPA TCLP mercury limit. For a 2% Zn-doped AAS matrix, the hydration of the AAS paste was greatly retarded and the zinc concentration in the leachate from this matrix was higher than 5mg/l even at 28 days. Based on these results, we conclude that the physical encapsulation and chemical fixation mechanisms were likely to be responsible for the immobilization of Hg ions in the AAS matrix while only chemical fixation mechanisms were responsible for the immobilization of Zn ions in the AAS matrix.

  1. Processes for Removal and Immobilization of 14C, 129I, and 85Kr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strachan, Denis M.; Bryan, Samuel A.; Henager, Charles H.

    2009-10-05

    This is a white paper covering the results of a literature search and preliminary experiments on materials and methods to remove and immobilize gaseous radionuclided that come from the reprocessing of spent nuclear fuel.

  2. In situ immobilization on the silica gel surface and adsorption capacity of polymer-based azobenzene on toxic metal ions

    NASA Astrophysics Data System (ADS)

    Savchenko, Irina; Yanovska, Elina; Sternik, Dariusz; Kychkyruk, Olga; Ol'khovik, Lidiya; Polonska, Yana

    2018-03-01

    In situ immobilization of poly[(4-methacryloyloxy-(4'-carboxy)azobenzene] on silica gel surface has been performed by radical polymerization of monomer. The fact of polymer immobilization is confirmed by IR spectroscopy. TG and DSC-MS analysis showed that the mass of the immobilized polymer was 10.61%. The SEM-microphotograph-synthesized composite analysis showed that the immobilized polymer on the silica gel surface is placed in the form of fibers. It has been found that the synthesized composite exhibits the sorption ability in terms of microquantities of Cu(II), Cd(II), Pb(II), Mn(II) and Fe(III) ions in a neutral aqueous medium. The quantitative sorption of microquantities of Pb(II) and Fe(III) ions has been recorded. It has been found that immobilization of the silica gel surface leads to an increase in its sorption capacitance for Fe(III), Cu(II) and Pb(II) ions by half.

  3. Living organisms as an alternative to hyphenated techniques for metal speciation. Evaluation of baker's yeast immobilized on silica gel for Hg speciation*1

    NASA Astrophysics Data System (ADS)

    Pérez-Corona, Teresa; Madrid-Albarrán, Yolanda; Cámara, Carmen; Beceiro, Elisa

    1998-02-01

    The use of living organisms for metal preconcentration and speciation is discussed. Among substrates, Saccharomyces cerevisiae baker's yeast has been successfully used for the speciation of mercury [Hg(II) and CH 3Hg +], selenium [Se(IV) and Se(VI)] and antimony [Sb(III) and Sb(V)]. To illustrate the capabilities of these organisms, the analytical performance of baker's yeast immobilized on silica gel for on-line preconcentration and speciation of Hg(II) and methylmercury is reported. The immobilized cells were packed in a PTFE microcolumn, through which mixtures of organic and inorganic mercury solutions were passed. Retention of inorganic and organic mercury solutions took place simultaneously, with the former retained in the silica and the latter on the yeast. The efficiency uptake for both species was higher than 95% over a wide pH range. The speciation was carried out by selective and sequential elution with 0.02 mol L -1 HCl for methylmercury and 0.8 mol L -1 CN - for Hg(II). This method allows both preconcentration and speciation of mercury. The preconcentration factors were around 15 and 100 for methylmercury and mercury(II), respectively. The method has been successfully applied to spiked sea water samples.

  4. Efficient Production of Prebiotic Gluco-oligosaccharides in Orange Juice Using Immobilized and Co-immobilized Dextransucrase.

    PubMed

    Tingirikari, Jagan Mohan Rao; Gomes, Wesley Faria; Rodrigues, Sueli

    2017-12-01

    Dextransucrase from Leuconostoc mesenteroides NRRL B-512F was subjected to immobilization and co-immobilization with dextranase from Chaetomium erraticum. Immobilization has enhanced the operational and storage stability of dextransucrase. Two hundred milligrammes (2.4 IU/mg) of alginate beads (immobilized and co-immobilized) were found to be optimum for the production of gluco-oligosaccharides (GOS) in orange juice with a high degree of polymerization. The pulp of the orange juice did not interfere in the reaction. In the batch process, co-immobilized dextransucrase (41 g/L) produced a significantly higher amount of GOS than immobilized dextransucrase (37 g/L). Alginate entrapment enhanced the thermal stability of dextransucrase for up to 3 days in orange juice at 30 °C. The production of GOS in semi-continuous process was 39 g/L in co-immobilized dextransucrase and 33 g/L in immobilized dextransucrase. Thus, immobilization technology offers a great scope in terms of reusability and efficient production of a value added functional health drink.

  5. CORRELATING METAL SPECIATION IN SOILS TO RISK

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  6. Potential of Cassia alata L. Coupled with Biochar for Heavy Metal Stabilization in Multi-Metal Mine Tailings.

    PubMed

    Huang, Lige; Li, Yuanyuan; Zhao, Man; Chao, Yuanqing; Qiu, Rongliang; Yang, Yanhua; Wang, Shizhong

    2018-03-12

    To explore the effect of different biochars on Cassia alata L. growth and heavy metal immobilization in multi-metal mine tailings, a 100-day pot experiment was conducted. Three biochars derived from Hibiscus cannabinus core (HB), sewage sludge (SB) and chicken manure (MB), were added to mine tailings at rates of 0.4%, 1% and 3% ( w / w ). The results showed that the root biomass, shoot biomass, plant height and root length were 1.2-2.8, 1.7-3.2, 1-1.5 and 1.6-3.3 times of those in the control group, respectively. Pb, Zn, Cu, Cd and As contents in the shoot decreased by 63.9-89.5%, 46.9-66.0%, 32.7-62.4%, 40.4-76.4% and 54.9-77.5%, respectively. The biochar significantly increased the pH and decreased the mild acid-soluble Pb and Cu concentrations in the mine tailings. Specifically, SB immobilized Pb and Cu better than MB and HB did, although it did not immobilize As, Zn or Cd. Meanwhile, more attention should be paid to the potential As release as the biochar application rate increases. In conclusion, Cassia alata L. coupled with 3% of SB could be an effective measure for restoring multi-metal mine tailings. This study herein provided a promising ecological restoration technique for future practice of heavy metal stabilization in mine tailings.

  7. Immobilization of Rose Waste Biomass for Uptake of Pb(II) from Aqueous Solutions

    PubMed Central

    Ansari, Tariq Mahmood; Hanif, Muhammad Asif; Mahmood, Abida; Ijaz, Uzma; Khan, Muhammad Aslam; Nadeem, Raziya; Ali, Muhammad

    2011-01-01

    Rosa centifolia and Rosa gruss an teplitz distillation waste biomass was immobilized using sodium alginate for Pb(II) uptake from aqueous solutions under varied experimental conditions. The maximum Pb(II) adsorption occurred at pH 5. Immobilized rose waste biomasses were modified physically and chemically to enhance Pb(II) removal. The Langmuir sorption isotherm and pseudo-second-order kinetic models fitted well to the adsorption data of Pb(II) by immobilized Rosa centifolia and Rosa gruss an teplitz. The adsorbed metal is recovered by treating immobilized biomass with different chemical reagents (H2SO4, HCl and H3PO4) and maximum Pb(II) recovered when treated with sulphuric acid (95.67%). The presence of cometals Na, Ca(II), Al(III), Cr(III), Cr(VI), and Cu(II), reduced Pb(II) adsorption on Rosa centifolia and Rosa gruss an teplitz waste biomass. It can be concluded from the results of the present study that rose waste can be effectively used for the uptake of Pb(II) from aqueous streams. PMID:21350666

  8. Evaluation of immobilized metal-ion affinity chromatography (IMAC) as a technique for IgG(1) monoclonal antibodies purification: the effect of chelating ligand and support.

    PubMed

    Bresolin, I T L; Borsoi-Ribeiro, M; Tamashiro, W M S C; Augusto, E F P; Vijayalakshmi, M A; Bueno, S M A

    2010-04-01

    Monoclonal antibodies (MAbs) have been used for therapies and some analytical procedures as highly purified molecules. Many techniques have been applied and studied, focusing on monoclonal antibodies purification. In this study, an immobilized metal affinity chromatography membrane was developed and evaluated for the purification of anti-TNP IgG(1) mouse MAbs from cell culture supernatant after precipitation with a 50% saturated ammonium sulfate solution. The chelating ligands iminodiacetic acid, carboxymethylated aspartic acid (CM-Asp), nitrilotriacetic acid, and tris (carboxymethyl) ethylenediamine in agarose gels with immobilized Ni(II) and Zn(II) ions were compared for the adsorption and desorption of MAbs. The most promising chelating ligand--CM-Asp--was then coupled to poly(ethylene vinyl alcohol) (PEVA) hollow fiber membranes. According to SDS-PAGE and ELISA analyses, a higher selectivity and a purification factor of 85.9 (fraction eluted at 500 mM Tris) were obtained for IgG(1) using PEVA-CM-Asp-Zn(II). The anti-TNP MAb could be eluted under mild pH conditions causing no loss of antigen binding capacity.

  9. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis.

    PubMed

    Liu, Tingting; Liu, Zhengang; Zheng, Qingfu; Lang, Qianqian; Xia, Yu; Peng, Nana; Gai, Chao

    2018-01-01

    The heavy metals distribution during hydrothermal carbonization (HTC) of sewage sludge, and pyrolysis of the resultant hydrochar was investigated and compared with raw sludge pyrolysis. The results showed that HTC reduced exchangeable/acid-soluble and reducible fraction of heavy metals and lowered the potential risk of heavy metals in sewage sludge. The pyrolysis favored the transformation of extracted/mobile fraction of heavy metals to residual form especially at high temperature, immobilizing heavy metals in the chars. Compared to the chars from raw sludge pyrolysis, the chars derived from hydrochar pyrolysis was more alkaline and had lower risk and less leachable heavy metals, indicating that pyrolysis imposed more positive effect on immobilization of heavy metals for the hydrochar than for sewage sludge. The present study demonstrated that HTC is a promising pretreatment prior to pyrolysis from the perspective of immobilization of heavy metals in sewage sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. In Situ Immobilization of Selenium in Sediment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Robert C.; Stewart, Thomas Austin

    2014-09-01

    This project focused on the use of a sorbent, carbonated apatite, to immobilize selenium in the environment. It is know that apatite will sorb selenium and based on the mechanism of sorption it is theorized that carbonated apatite will be more effective that pure apatite. Immobilization of selenium in the environment is through the use of a sorbent in a permeable reactive barrier (PRB). A PRB can be constructed by trenching and backfill with the sorbent or in the case of apatite as the sorbent formed in situ using the apatite forming solution of Moore (2003, 2004). There is verymore » little data on selenium sorption by carbonated apatite in the literature. Therefore, in this work, the basic sorptive properties of carbonated apatite were investigated. Carbonated apatite was synthesized by a precipitation method and characterized. Batch selenium kinetic and equilibrium experiments were performed. The results indicate the carbonated apatite contained 9.4% carbonate and uptake of selenium as selenite was rapid; 5 hours for complete uptake of selenium vs. more than 100 hours for pure hydroxyapatite reported in the literature. Additionally, the carbonated apatite exhibited significantly higher distribution coefficients in equilibrium experiments than pure apatite under similar experimental conditions. The next phase of this work will be to seek additional funds to continue the research with the goal of eventually demonstrating the technology in a field application.« less

  11. Limb immobilization and corticobasal syndrome.

    PubMed

    Graff-Radford, Jonathan; Boeve, Bradley F; Drubach, Daniel A; Knopman, David S; Ahlskog, J Eric; Golden, Erin C; Drubach, Dina I; Petersen, Ronald C; Josephs, Keith A

    2012-12-01

    Recently, we evaluated two patients with corticobasal syndrome (CBS) who reported symptom onset after limb immobilization. Our objective was to investigate the association between trauma, immobilization and CBS. The charts of forty-four consecutive CBS patients seen in the Mayo Clinic Alzheimer Disease Research Center were reviewed with attention to trauma and limb immobilization. 10 CBS patients (23%) had immobilization or trauma on the most affected limb preceding the onset or acceleration of symptoms. The median age at onset was 61. Six patients manifested their first symptoms after immobilization from surgery or fracture with one after leg trauma. Four patients had pre-existing symptoms of limb dysfunction but significantly worsened after immobilization or surgery. 23 percent of patients had immobilization or trauma of the affected limb. This might have implications for management of CBS, for avoiding injury, limiting immobilization and increasing movement in the affected limb. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Immobilization of magnetic nanoparticles onto conductive surfaces modified by diazonium chemistry.

    PubMed

    Ktari, Nadia; Quinson, Jonathan; Teste, Bruno; Siaugue, Jean-Michel; Kanoufi, Frédéric; Combellas, Catherine

    2012-08-28

    Core-shell γ-Fe(2)O(3)@SiO(2) nanoparticles (NPs) substituted by PEG and NH(2) groups may be immobilized on metal surfaces (glassy carbon or gold) substituted by 4-carboxyphenyl groups through electrostatic interactions. Such immobilization is evidenced by (i) IRRAS owing to the Si-O band, (ii) SEM images, which show that the surface coverage by the NPs is nearly 100%, and (iii) the NPs film thickness measured by ellipsometry or AFM, which corresponds to about one NPs monolayer. Such NPs film is permeable to redox probes, which allows us to propose electrochemical methods based on direct or local measurements as a way to inspect the NPs assembly steps through their ability to alter mass and charge transfer. This process also applies to patterned polystyrene surfaces, and selective immobilization of NPs substituted by amino groups was carried out onto submillimeter patterns obtained by local oxidation. Biological applications are then expected for hyperthermia activation of the NPs to trigger cellular death. Finally, some tests were performed to further derivatize the immobilized NPs onto surfaces through either a covalent bond or electrostatic interactions. Future work will be dedicated to the recovery of such Janus NPs from the substrate surface.

  13. Geometry-dependent DNA-TiO2 immobilization mechanism: A spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Silva-Moraes, M. O.; Garcia-Basabe, Y.; de Souza, R. F. B.; Mota, A. J.; Passos, R. R.; Galante, D.; Fonseca Filho, H. D.; Romaguera-Barcelay, Y.; Rocco, M. L. M.; Brito, W. R.

    2018-06-01

    DNA nucleotides are used as a molecular recognition system on electrodes modified to be applied in the detection of various diseases, but immobilization mechanisms, as well as, charge transfers are not satisfactorily described in the literature. An electrochemical and spectroscopic study was carried out to characterize the molecular groups involved in the direct immobilization of DNA structures on the surface of nanostructured TiO2 with the aim of evaluating the influence of the geometrical aspects. X-ray photoelectron spectroscopy at O1s and P2p core levels indicate that immobilization of DNA samples occurs through covalent (Psbnd Osbnd Ti) bonds. X-ray absorption spectra at the Ti2p edge reinforce this conclusion. A new species at 138.5 eV was reported from P2p XPS spectra analysis which plays an important role in DNA-TiO2 immobilization. The Psbnd Osbnd Ti/Osbnd Ti ratio showed that quantitatively the DNA immobilization mechanism is dependent on their geometry, becoming more efficient for plasmid ds-DNA structures than for PCR ds-DNA structures. The analysis of photoabsorption spectra at C1s edge revealed that the molecular groups that participate in the C1s → LUMO electronic transitions have different pathways in the charge transfer processes at the DNA-TiO2 interface. Our results may contribute to additional studies of immobilization mechanisms understanding the influence of the geometry of different DNA molecules on nanostructured semiconductor and possible impact to the charge transfer processes with application in biosensors or aptamers.

  14. Amending the seedling bed of eggplant with biochar can further immobilize Cd in contaminated soils.

    PubMed

    Li, Zhongyang; Qi, Xuebin; Fan, Xiangyang; Du, Zhenjie; Hu, Chao; Zhao, Zhijuan; Isa, Yunusa; Liu, Yuan

    2016-12-01

    Untreated municipal sewage is a potential source of Cd but has been used for irrigating vegetables in many countries in recent years. In growing vegetables and fruits in greenhouses, seedling breeding method is generally used in which the seedlings are transplanted into soils together with their seedling culture. Biochar has been increasingly used to amend soils contaminated by heavy metals, but there are few studies on the effectiveness of different ways of applying the biochar. In this paper, we investigated the efficacy of immobilizing Cd by amending eggplant seedling bed with biochar before transplanting them to biochar-amended soil contaminated by Cd. The results showed that, in comparison with traditional seedling method (without adding biochar), amending the seedling bed by biochar not only had a positive effect on plant growth and production, but further reduced the Cd concentration in the roots, shoots and the fruits by 12.2%, 12.5% and 18.5%, respectively. Furthermore, it increased the pH in rhizosphere to 8.83, reduced the exchangeable Cd concentration in soil by 28.6%, and decreased the Cd bio-accumulation factor from 0.36 to 0.32. Phytochelatin synthesis could be induced when plants are exposed to Cd and it has been used in the literature as a biomarker for evaluating metal toxicity. Our results showed that the seedling culture amended with biochar reduced phytochelatin synthesis in both roots and shoots. It can therefore be concluded that amending the eggplant seedlings bed with biochar can further enhance the effectiveness of remediating Cd contamination in soil after transplanting the plants into soil also amended with biochar. We found a new method to further immobilize Cd in contaminated soils by amending the seedling bed with biochar. Copyright © 2016. Published by Elsevier B.V.

  15. Exploiting multi-function Metal-Organic Framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing.

    PubMed

    Dong, Sheying; Zhang, Dandan; Suo, Gaochao; Wei, Wenbo; Huang, Tinglin

    2016-08-31

    A novel multi-function Metal-Organic Framework composite Ag@Zn-TSA (zinc thiosalicylate, Zn(C7H4O2S), Zn-TSA) was synthesized as highly efficient immobilization matrixes of myoglobin (Mb)/glucose oxidase (GOx) for electrochemical biosensing. The electrochemical biosensors based on Ag@Zn-TSA composite and ionic liquid (IL) modified carbon paste electrode (CPE) were fabricated successfully. Furthermore, the properties of the sensors were discussed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and amperometric current-time curve, respectively. The results showed the proposed biosensors had wide linear response to hydrogen peroxide (H2O2) in the range of 0.3-20,000 μM, to nitrite (NO2(-)) for 1.3 μM-1660 μM and 2262 μM-1,33,000 μM, to glucose for 2.0-1022 μM, with a low detection limit of 0.08 μM for H2O2, 0.5 μM for NO2(-), 0.8 μM for glucose. The values of the apparent heterogeneous electron transfer rate constant (ks) for Mb and GOx were estimated as 2.05 s(-1) and 2.45 s(-1), respectively. Thus, Ag@Zn-TSA was a kind of ideal material as highly efficient immobilization matrixes for sensitive electrochemical biosensing. In addition, this work indicated that MOF nanocomposite had a great potential for constructing wide range of sensing interface. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching of Waste Printed Circuit Boards.

    PubMed

    Nie, Hongyan; Zhu, Nengwu; Cao, Yanlan; Xu, Zhiguo; Wu, Pingxiao

    2015-10-01

    The bioleaching parameters of metal concentrates from waste printed circuit boards by Acidithiobacillus ferrooxidans immobilized on cotton gauze in a two-step reactor were investigated in this study. The results indicated that an average ferrous iron oxidation rate of 0.54 g/(L·h) and a ferrous iron oxidation ratio of 96.90 % were obtained after 12 h at aeration rate of 1 L/min in bio-oxidation reactor. After 96 h, the highest leaching efficiency of copper reached 91.68 % under the conditions of the content of the metal powder 12 g/L, the retention time 6 h, and the aeration rate 1 L/min. The bioleaching efficiency of copper could be above 91.12 % under repeated continuous batch operation. Meanwhile, 95.32 % of zinc, 90.32 % of magnesium, 86.31 % of aluminum, and 59.07 % of nickel were extracted after 96 h. All the findings suggested that the recovery of metal concentrates from waste printed circuit boards via immobilization of A. ferrooxidans on cotton gauze was feasible.

  17. Options for the Separation and Immobilization of Technetium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serne, R Jeffrey; Crum, Jarrod V.; Riley, Brian J.

    will be the processing of ion exchange eluate. The second objective of this report is to assess the compatibility of the available waste forms with the anticipated waste streams. Two major categories of Tc-specific waste forms are considered in this report including mineral and metal waste forms. Overall, it is concluded that a metal alloy waste form is the most promising and mature Tc-specific waste form and offers several benefits. One obvious advantage of the disposition of Tc in the metal alloy waste form is the significant reduction of the generated waste form volume, which leads to a reduction of the required storage facility footprint. Among mineral waste forms, glass-bonded sodalite and possibly goethite should also be considered for the immobilization of Tc.« less

  18. Effect of immobilization conditions on the properties of β-galactosidase immobilized in xanthan/chitosan multilayers

    NASA Astrophysics Data System (ADS)

    Yovcheva, T.; Vasileva, T.; Viraneva, A.; Cholev, D.; Bodurov, I.; Marudova, M.; Bivolarski, V.; Iliev, I.

    2017-01-01

    The effect of lactose concentration on the activity of the immobilised enzyme β-galactosidase from Aspergillus niger has been evaluated, considering future applications for the production of galactooligosaccahrides with prebiotic potential. The following enzyme was immobilized in xanthan and chitosan polyelectrolyte multilayers (PEMs) deposited by dip coating method on polylactic acid positively corona charged pads. The pads were charged in a corona discharge system, consisting of a corona electrode (needle), a grounded plate, and a metal grid placed between them. Positive 5 kV voltage was applied to the corona electrode. 1 kV voltage of the same polarity as that of the corona electrode was applied to the grid. The chitosan layers were crosslinked with sodium tripolyphosphate (Na-TPP). The enzyme showed a temperature optimum at 50 °C and a pH optimum at 5.0. The immobilization was carried out over the different adsorption time and optimum conditions were determined. These results give insights for further optimization of transgalactosydase reactions in order to produce galactooligosaccharides with specific structure and having pronounced better prebiotic properties. For the determination of the surface morphology of the investigated samples an atomic force microscope was used and root mean square roughness was obtained.

  19. Reversible and oriented immobilization of ferrocene-modified proteins.

    PubMed

    Yang, Lanti; Gomez-Casado, Alberto; Young, Jacqui F; Nguyen, Hoang D; Cabanas-Danés, Jordi; Huskens, Jurriaan; Brunsveld, Luc; Jonkheijm, Pascal

    2012-11-21

    Adopting supramolecular chemistry for immobilization of proteins is an attractive strategy that entails reversibility and responsiveness to stimuli. The reversible and oriented immobilization and micropatterning of ferrocene-tagged yellow fluorescent proteins (Fc-YFPs) onto β-cyclodextrin (βCD) molecular printboards was characterized using surface plasmon resonance (SPR) spectroscopy and fluorescence microscopy in combination with electrochemistry. The proteins were assembled on the surface through the specific supramolecular host-guest interaction between βCD and ferrocene. Application of a dynamic covalent disulfide lock between two YFP proteins resulted in a switch from monovalent to divalent ferrocene interactions with the βCD surface, yielding a more stable protein immobilization. The SPR titration data for the protein immobilization were fitted to a 1:1 Langmuir-type model, yielding K(LM) = 2.5 × 10(5) M(-1) and K(i,s) = 1.2 × 10(3) M(-1), which compares favorably to the intrinsic binding constant presented in the literature for the monovalent interaction of ferrocene with βCD self-assembled monolayers. In addition, the SPR binding experiments were qualitatively simulated, confirming the binding of Fc-YFP in both divalent and monovalent fashion to the βCD monolayers. The Fc-YFPs could be patterned on βCD surfaces in uniform monolayers, as revealed using fluorescence microscopy and atomic force microscopy measurements. Both fluorescence microscopy imaging and SPR measurements were carried out with the in situ capability to perform cyclic voltammetry and chronoamperometry. These studies emphasize the repetitive desorption and adsorption of the ferrocene-tagged proteins from the βCD surface upon electrochemical oxidation and reduction, respectively.

  20. Field Deployment for In-situ Metal and Radionuclide Stabilization by Microbial Metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turick, C. E.; Knox, A. S.; Dixon, K. L.

    2005-09-26

    A novel biotechnology is reported here that was demonstrated at SRS that facilitates metal and actinide immobilization by incorporating the physiology and ecology of indigenous bacteria. This technology is based on our previous work with pyomelanin-producing bacteria isolated from SRS soils. Through tyrosine supplementation, overproduction of pyomelanin was achieved, which lead ultimately to metal and actinide immobilization, both in-vitro and in-situ. Pyomelanin is a recalcitrant microbial pigment and a humic type compound in the class of melanin pigments. Pyomelanin has electron shuttling and metal chelation capabilities and thus accelerates the bacterial reduction and/or immobilization of metals. Pyomelanin is produced outsidemore » the cell and either diffuses away or attaches to the cell surface. In either case, the reduced pyomelanin is capable of transferring electrons to metals as well as chelating metals. Because of its recalcitrance and redox cycling properties, pyomelanin molecules can be used over and over again for metal transformation. When produced in excess, pyomelanin produced by one bacterial species can be used by other species for metal reduction, thereby extending the utility of pyomelanin and further accelerating metal immobilization rates. Soils contaminated with Ni and U were the focus of this study in order to develop in-situ, metal bioimmobilization technologies. We have demonstrated pyomelanin production in soil from the Tims Branch area of SRS as a result of tyrosine amendments. These results were documented in laboratory soil column studies and field deployment studies. The amended soils demonstrated increased redox behavior and sequestration capacity of U and transition metals following pyomelanin production. Treatments incorporating tyrosine and lactate demonstrated the highest levels of pyomelanin production. In order to determine the potential use of this technology at other areas of SRS, pyomelanin producing bacteria were also

  1. Status of plutonium ceramic immobilization processes and immobilization forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, B.B.; Van Konynenburg, R.A.; Vance, E.R.

    1996-05-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R&D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologicmore » time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi{sub 2}O{sub 7}), the desired actinide host phase, with lesser amounts of hollandite (BaAl{sub 2}Ti{sub 6}O{sub 16}) and rutile (TiO{sub 2}). Alternative actinide host phases are also being considered. These include pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}), zircon (ZrSiO{sub 4}), and monazite (CePO{sub 4}), to name a few of the most promising. R&D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO{sub 2} powder, cold press and sinter fabrication methods, and immobilization form formulation issues.« less

  2. Immobilization of radioactive and hazardous wastes in a developed sulfur polymer cement (SPC) matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagdy, M.; Azim, Abdel; El-Gammal, Belal

    Available in abstract form only. Full text of publication follows: A process has been developed for the immobilization Cs, Sr, Ce, Pb, and Cr in forms that is non-dispersible and could be safely immobilized. The simulated radioactive wastes of Cs, Sr, and Ce, and the hazardous wastes of Cr, and Pb were immobilized in the stable form of sulfur polymer cement (SPC). In this process, the contaminants (in a single form) were added to the sulfur mixture of sulfur and aromatic /or aliphatic hydrocarbons that used as polymerizing agents for sulfur (95% S, and 5% organic polymer by weight). Durabilitymore » of the fabricated SPC matrices was assessed in terms of their water of immersion, porosity, and compressive strength. The water immersion, and open porosity were found to be less than 2.5% for all the prepared matrices, whereas the compressive strength was in the range between 62.4 and 142.3 Kg.cm{sup -2}, depending on the composition of the prepared matrix. The prepared SPC matrices that characterized by X-ray diffraction (XRD) showed that the different added contaminants were stabilized during the solidification process during their reaction with sulfur and the organic polymer to form the corresponding metal sulfides. Toxicity Characteristic Leaching Procedure (TCLP), and the IAEA standard method have assessed the leachability of the prepared waste matrices. The TCLP results showed that most the concentration of the contaminants released were under their detection limit. The leach index for the investigated metals from the prepared SPC matrices was in the range of 9-11. The order of release of the investigated metals was Sr>Cs>Pb>Cr>Ce for the aliphatic polymer, and Sr>Cr>Pb>Cs>Ce for the aromatic one. The results obtained revealed a high performance for the prepared SPC matrices, as they are of low cost effect, highly available materials, and possessed good mechanical and leaching properties. Key Words: SPC/ Matrices/ Immobilization/ Wastes/ Leachability. (authors)« less

  3. Biogeochemical Gradients in Wetland Sediments and their Effect on the Fate Trace Metals

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Choi, J.; Xu, S.

    2005-12-01

    The interactions between sediment biogeochemistry processes and higher plants play a major role on trace metal mobility in wetlands. Most wetland sediments are characterized by steep redox gradients, resulting from the sequential utilization of different electron acceptors during the degradation of organic matter provided by leaf litter and root turnover. Metals in wetland sediments may be immobilized due to precipitation or adsorption to different organic and inorganic sediment constituents. Adsorption onto iron, and manganese oxides, are important in the rhizosphere where iron oxyhydroxide plaques may form on the surface of roots. As the sediments becomes more reduced, bioavailable iron and manganese oxides are used as electron acceptor and are gradually depleted, resulting in the mobilization of some adsorbed species (i.e., As(V), phosphate, etc.), the reduction of some trace metals such as Cr(VI) (which is then immobilized as Cr(III)), and for more reduced conditions the immobilization of trace metals (i.e., Cd, Pb, Zn) as sulfides. Results from numerical simulations, laboratory experiments, and field measurements will be presented, showing how redox gradients and hence, trace-metal immobilization, in wetlands respond to external forcing functions such as changes in nutrient loading, plant distribution, seasonal and diurnal plant activity (specifically evapotranspiration and oxygen release), and temporal or spatial changes in the profile of iron and manganese oxides.

  4. Steady-state generation of hydrogen peroxide: kinetics and stability of alcohol oxidase immobilized on nanoporous alumina.

    PubMed

    Kjellander, Marcus; Götz, Kathrin; Liljeruhm, Josefine; Boman, Mats; Johansson, Gunnar

    2013-04-01

    Alcohol oxidase from Pichia pastoris was immobilized on nanoporous aluminium oxide membranes by silanization and activation by carbonyldiimidazole to create a flow-through enzyme reactor. Kinetic analysis of the hydrogen peroxide generation was carried out for a number of alcohols using a subsequent reaction with horseradish peroxidase and ABTS. The activity data for the immobilized enzyme showed a general similarity with literature data in solution, and the reactor could generate 80 mmol H2O2/h per litre reactor volume. Horseradish peroxidase was immobilized by the same technique to construct bienzymatic modular reactors. These were used in both single pass mode and circulating mode. Pulsed injections of methanol resulted in a linear relation between response and concentration, allowing quantitative concentration measurement. The immobilized alcohol oxidase retained 58 % of initial activity after 3 weeks of storage and repeated use.

  5. Potential of Cassia alata L. Coupled with Biochar for Heavy Metal Stabilization in Multi-Metal Mine Tailings

    PubMed Central

    Huang, Lige; Li, Yuanyuan; Zhao, Man; Chao, Yuanqing; Qiu, Rongliang; Yang, Yanhua

    2018-01-01

    To explore the effect of different biochars on Cassia alata L. growth and heavy metal immobilization in multi-metal mine tailings, a 100-day pot experiment was conducted. Three biochars derived from Hibiscus cannabinus core (HB), sewage sludge (SB) and chicken manure (MB), were added to mine tailings at rates of 0.4%, 1% and 3% (w/w). The results showed that the root biomass, shoot biomass, plant height and root length were 1.2–2.8, 1.7–3.2, 1–1.5 and 1.6–3.3 times of those in the control group, respectively. Pb, Zn, Cu, Cd and As contents in the shoot decreased by 63.9–89.5%, 46.9–66.0%, 32.7–62.4%, 40.4–76.4% and 54.9–77.5%, respectively. The biochar significantly increased the pH and decreased the mild acid-soluble Pb and Cu concentrations in the mine tailings. Specifically, SB immobilized Pb and Cu better than MB and HB did, although it did not immobilize As, Zn or Cd. Meanwhile, more attention should be paid to the potential As release as the biochar application rate increases. In conclusion, Cassia alata L. coupled with 3% of SB could be an effective measure for restoring multi-metal mine tailings. This study herein provided a promising ecological restoration technique for future practice of heavy metal stabilization in mine tailings. PMID:29534505

  6. Amperometric biosensors for the determination of heavy metals

    NASA Astrophysics Data System (ADS)

    Compagnone, Dario; Palleschi, Giuseppe; Varallo, Giuseppe; Imperiali, PierLuigi

    1995-10-01

    A bioelectrochemical method for the determination of heavy metal ions has been developed. This method is based on the inhibition effect of metal ions on the enzymatic activity of oxidase enzymes. The enzymatic activity was determined with an amperometric hydrogen peroxide probe. The inhibition effect on enzymes in solution and covalently immobilized on polymeric supports has been evaluated. Hg(II) was the metal ion that inhibited almost all the enzymes, particularly glycerol-3-P oxidase. Hg(II) was detected in the 0.05/0.5 ppm range with the enzyme in solution. Calibration curves for Hg(II) were also obtained with the other oxidase enzymes in the 0.5/10 ppm range. The other metal ions tested inhibited the enzymes more specifically. The metal ion/enzyme systems which gave the best inhibition were Se(IV)/glutathione oxidase, Ni(II)/sarcosine oxidase, V(V)/glutathione oxidase, Cu(II)/alcohol oxidase from Pichia Pastoris and Cd(II)/D-aminoacid oxidase. All these metal ions were detected in the 0.1/10 ppm range using the enzymes in solution or covalently immobilized.

  7. Utilization of spent coffee grounds for isolation and stabilization of Paenibacillus chitinolyticus CKS1 cellulase by immobilization.

    PubMed

    Buntić, Aneta V; Pavlović, Marija D; Antonović, Dušan G; Šiler-Marinković, Slavica S; Dimitrijević-Branković, Suzana I

    2016-08-01

    This study has explored the feasibility of using spent coffee grounds as a good supporting material for the Paenibacillus chitinolyticus CKS1 cellulase immobilization. An optimal operational conditions in a batch-adsorption system were found to be: carrier mass of 12 g/L, under the temperature of 45 °C and no pH adjustments. The immobilization yield reached about 71%. An equilibrium establishment between the cellulase and the carrier surface occurred within 45 min, whereas the process kinetics may be predicted by the pseudo-second-order model. An immobilized cellulase preparation expressed very good avicelase activity, this reached up to 2.67 U/g, and revealed an improved storage stability property, compared to free enzyme sample counterpart. The addition of metal ions, such as K(+) and Mg(2+) did not affect positively immobilization yield results, but on the contrary, contributed to an improved bio-activities of the immobilized cellulase, thus may be employed before each enzyme application. The method developed in this study offers a cheap and effective alternative for immediate enzyme isolation from the production medium and its stabilization, compared to other carriers used for the immobilization.

  8. Study on the adsorption of bacteria in ceramsite and their synergetic effect on adsorption of heavy metals.

    PubMed

    Qiu, Shan; Ma, Fang; Huang, Xu; Xu, Shanwen

    2014-01-01

    In this paper, heavy metal adsorption by ceramsite with or without Bacillus subtilis (B. subtilis) immobilization was studied, and the synergetic effect of ceramsite and bacteria was discussed in detail. To investigate the roles of the micro-pore structure of ceramsite and bacteria in removing heavy metals, the amount of bacteria immobilized on the ceramsite was determined and the effect of pH was evaluated. It was found that the immobilization of B. subtilis on the ceramsite was attributed to the electrostatic attraction and covalent bond. The scanning electron microscopy results revealed that, with the presence of ceramsite, there was the conglutination of B. subtilis cells due to the cell outer membrane dissolving. In addition, the B. subtilis immobilized ceramsite showed a different adsorption capacity for different heavy metals, with the adsorption capacity ranking of La(3+) > Cu(2+) > Mg(2+) > Na(+).

  9. [Immobilization technology and mechanism of fly ash using H3PO4].

    PubMed

    Wang, Jun; Jiang, Jian-Guo; Sui, Ji-Chao; Yang, Shi-Jian

    2006-08-01

    Chemical composition and toxicity leaching characteristics of fly ash was analyzed. The experiment results show that many heavy metals were contained; leaching concentration of Pb is 67.03 mg/L, which exceeds the limit of identification standard for hazardous wastes. Effect of input mass of H3PO4 on immobilization of heavy metals and its long-term environmental stability was studied. The results show that when input 8% - 14% (H3PO4 mass/ fly ash mass) of H3PO4 sound immobilization effect can be achieved; 8% and 12% of H3PO4 will bring a satisfactory environmental stability of heavy metals, while more H3PO4 led to less buffer capacity to acid conditions. In fly ash treated by 12% H3PO4, a small quantity of crystal Cr2P2O7, ZnP2, Pb3P4O13, Pb3P2O7, NaZnPO4, NaPbP3O9, Ca2ZnSi2O7 can be detected by XRD; many independent fly ash particles and bar-shaped Pb5 (PO4)3Cl with a diameter of 0.3 - 0.5 microm were observed by SEM; concentrated heavy metal materials were not obtained by CHBr3 floatation. Conclusions can be drawn that, through neutralization reaction of H3PO4 with strongly alkaline fly ash, stabilization reaction conditions were improved, entrapped heavy metals were chemically activated and PO4(3-) needed in stabilization was produced. Activated heavy metals combined with PO4(3-) on surface of fly ash,generated phosphates existing as forms of solid solution in SiO2, CaCO3, CaSO4, KCl, NaCl.

  10. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal.

    PubMed

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-05

    Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400-800°C and an impregnating concentration ≨0.5wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Leaching potential of pervious concrete and immobilization of Cu, Pb and Zn using pervious concrete.

    PubMed

    Solpuker, U; Sheets, J; Kim, Y; Schwartz, F W

    2014-06-01

    This paper investigates the leaching potential of pervious concrete and its capacity for immobilizing Cu, Pb and Zn, which are common contaminants in urban runoff. Batch experiments showed that the leachability of Cu, Pb and Zn increased when pH<8. According to PHREEQC equilibrium modeling, the leaching of major ions and trace metals was mainly controlled by the dissolution/precipitation and surface complexation reactions, respectively. A 1-D reactive transport experiment was undertaken to better understand how pervious concrete might function to attenuate contaminant migration. A porous concrete block was sprayed with low pH water (pH=4.3±0.1) for 190 h. The effluent was highly alkaline (pH~10 to 12). In the first 50 h, specific conductance and trace-metal were high but declined towards steady state values. PHREEQC modeling showed that mixing of interstitial alkaline matrix waters with capillary pore water was required in order to produce the observed water chemistry. The interstitial pore solutions seem responsible for the high pH values and relatively high concentrations of trace metals and major cations in the early stages of the experiment. Finally, pervious concrete was sprayed with a synthetic contaminated urban runoff (10 ppb Cu, Pb and Zn) with a pH of 4.3±0.1 for 135 h. It was found that Pb immobilization was greater than either Cu or Zn. Zn is the most mobile among three and also has the highest variation in the observed degree of immobilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The immobilization of heavy metals in soil by bioaugmentation of a UV-mutant Bacillus subtilis 38 assisted by NovoGro biostimulation and changes of soil microbial community.

    PubMed

    Wang, Ting; Sun, Hongwen; Mao, Hongjun; Zhang, Yanfeng; Wang, Cuiping; Zhang, Zhiyuan; Wang, Baolin; Sun, Lei

    2014-08-15

    Bacillus subtilis 38 (B38) is a mutant species of Bacillus subtilis acquired by UV irradiation with high cadmium tolerance. This study revealed that B38 was a good biosorbent for the adsorption of multiple heavy metals (cadmium, chromium, mercury, and lead). Simultaneous application of B38 and NovoGro (SNB) exhibited a synergetic effect on the immobilization of heavy metals in soil. The heavy metal concentrations in the edible part of the tested plants (lettuce, radish, and soybean) under SNB treatment decreased by 55.4-97.9% compared to the control. Three single extraction methods, diethylenetriaminepentaacetic acid (DTPA), Mehlich 3 (M3), and the first step of the Community Bureau of Reference method (BCR1), showed good predictive capacities for metal bioavailability to leafy, rhizome, and leguminous plant, respectively. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles revealed that NovoGro could enhance the proliferation of both exotic B38 and native microbes. Finally, the technology was checked in the field, the reduction in heavy metal concentrations in the edible part of radish was in the range between 30.8% and 96.0% after bioremediation by SNB treatment. This study provides a practical strategy for the remediation of farmland contaminated by multiple heavy metals. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Chemical stabilization of metals and arsenic in contaminated soils using oxides--a review.

    PubMed

    Komárek, Michael; Vaněk, Aleš; Ettler, Vojtěch

    2013-01-01

    Oxides and their precursors have been extensively studied, either singly or in combination with other amendments promoting sorption, for in situ stabilization of metals and As in contaminated soils. This remediation option aims at reducing the available fraction of metal(loid)s, notably in the root zone, and thus lowering the risks associated with their leaching, ecotoxicity, plant uptake and human exposure. This review summarizes literature data on mechanisms involved in the immobilization process and presents results from laboratory and field experiments, including the subsequent influence on higher plants and aided phytostabilization. Despite the partial successes in the field, recent knowledge highlights the importance of long-term and large-scale field studies evaluating the stability of the oxide-based amendments in the treated soils and their efficiency in the long-term. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Evaluating the Long-Term Stability of Metals Precipitated In-Situ

    EPA Science Inventory

    Because metals (including metals and metalloids) cannot be destroyed, unlike organic contaminants, in-situ approaches for their removal from groundwater necessarily involves fixation/immobilization in the solid aquifer matrix. Consequently, the success of precipitation based in...

  15. Plutonium immobilization in glass and ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knecht, D.A.; Murphy, W.M.

    1996-05-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposiummore » papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.« less

  16. Gamma-Aminobutyric Acid Production Using Immobilized Glutamate Decarboxylase Followed by Downstream Processing with Cation Exchange Chromatography

    PubMed Central

    Lee, Seungwoon; Ahn, Jungoh; Kim, Yeon-Gu; Jung, Joon-Ki; Lee, Hongweon; Lee, Eun Gyo

    2013-01-01

    We have developed a gamma-aminobutyric acid (GABA) production technique using his-tag mediated immobilization of Escherichia coli-derived glutamate decarboxylase (GAD), an enzyme that catalyzes the conversion of glutamate to GABA. The GAD was obtained at 1.43 g/L from GAD-overexpressed E. coli fermentation and consisted of 59.7% monomer, 29.2% dimer and 2.3% tetramer with a 97.6% soluble form of the total GAD. The harvested GAD was immobilized to metal affinity gel with an immobilization yield of 92%. Based on an investigation of specific enzyme activity and reaction characteristics, glutamic acid (GA) was chosen over monosodium glutamate (MSG) as a substrate for immobilized GAD, resulting in conversion of 2.17 M GABA in a 1 L reactor within 100 min. The immobilized enzymes retained 58.1% of their initial activities after ten consecutive uses. By using cation exchange chromatography followed by enzymatic conversion, GABA was separated from the residual substrate and leached GAD. As a consequence, the glutamic acid was mostly removed with no detectable GAD, while 91.2% of GABA was yielded in the purification step. PMID:23322022

  17. From physical inactivity to immobilization: Dissecting the role of oxidative stress in skeletal muscle insulin resistance and atrophy.

    PubMed

    Pierre, Nicolas; Appriou, Zephyra; Gratas-Delamarche, Arlette; Derbré, Frédéric

    2016-09-01

    In the literature, the terms physical inactivity and immobilization are largely used as synonyms. The present review emphasizes the need to establish a clear distinction between these two situations. Physical inactivity is a behavior characterized by a lack of physical activity, whereas immobilization is a deprivation of movement for medical purpose. In agreement with these definitions, appropriate models exist to study either physical inactivity or immobilization, leading thereby to distinct conclusions. In this review, we examine the involvement of oxidative stress in skeletal muscle insulin resistance and atrophy induced by, respectively, physical inactivity and immobilization. A large body of evidence demonstrates that immobilization-induced atrophy depends on the chronic overproduction of reactive oxygen and nitrogen species (RONS). On the other hand, the involvement of RONS in physical inactivity-induced insulin resistance has not been investigated. This observation outlines the need to elucidate the mechanism by which physical inactivity promotes insulin resistance. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Method of stripping metals from organic solvents

    DOEpatents

    Todd, Terry A [Aberdeen, ID; Law, Jack D [Pocatello, ID; Herbst, R Scott [Idaho Falls, ID; Romanovskiy, Valeriy N [St. Petersburg, RU; Smirnov, Igor V [St.-Petersburg, RU; Babain, Vasily A [St-Petersburg, RU; Esimantovski, Vyatcheslav M [St-Petersburg, RU

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  19. Solid phase immobilization of optically responsive liposomes insol-gel materials for chemical and biological sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Stacey A.; Charych, Deborah H.; Loy, Douglas A.

    1997-04-01

    Liposomes enhanced with surface recognition groups have previously been found to have high affinity for heavy metal ions and virus particles with unique fluorescent and colorimetric responses, respectively. These lipid aggregate systems have now been successfully immobilized in a silica matrix via the sol-gel method, affording sensor materials that are robust, are easily handled, and offer optical clarity. The mild processing conditions allow quantitative entrapment of preformed liposomes without modification of the aggregate structure. Lipid extraction studies of immobilized nonpolymerized liposomes showed no lipid leakage in aqueous solution over a period of 3 months. Heavy metal fluorescent sensor materials preparedmore » with 5 percent N-[8-[1-octadecyl-2-(9-(1-pyrenyl)nonyl)-rac-glyceroyl]-3,6-dioxaoctyl]imino acid/distearylphosphatidylcholineliposomes exhibited a 4-50-fold enhancement in sensitivity to various metal ions compared to that of the liposomes in free solution. Through ionic attraction the anionic silicate surface, at the experimental pH of 7.4, may act as a preconcentrator of divalent metal ions, boosting the gel's internal metal concentration. Entrapped sialic acid-coated polydiacetylene liposomes responded with colorimetric signaling to influenza virus X31, although slower than the free liposomes in solution. The successful transport of the virus (50-100 nm diameter) reveals a large pore diameter of the gel connecting the liposome to the bulk solution. The porous and durable silica matrix additionally provides a protective barrier to biological attack (bacterial, fungal) and allows facile recycling of the liposome heavy metal sensor.« less

  20. Strategies for an enzyme immobilization on electrodes: Structural and electrochemical characterizations

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Muthurasu, A.

    2012-04-01

    In this paper, we propose various strategies for an enzyme immobilization on electrodes (both metal and semiconductor electrodes). In general, the proposed methodology involves two critical steps viz., (1) chemical modification of substrates using functional monolayers [Langmuir - Blodgett (LB) films and/or self-assembled monolayers (SAMs)] and (2) anchoring of a target enzyme using specific chemical and physical interactions by attacking the terminal functionality of the modified films. Basically there are three ways to immobilize an enzyme on chemically modified electrodes. First method consists of an electrostatic interaction between the enzyme and terminal functional groups present within the chemically modified films. Second and third methods involve the introduction of nanomaterials followed by an enzyme immobilization using both the physical and chemical adsorption processes. As a proof of principle, in this work we demonstrate the sensing and catalytic activity of horseradish peroxidase (HRP) anchored onto SAM modified indium tin oxide (ITO) electrodes towards hydrogen peroxide (H2O2). Structural characterization of such modified electrodes is performed using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The binding events and the enzymatic reactions are monitored using electrochemical techniques mainly cyclic voltammetry (CV).

  1. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs.

    PubMed

    Saini, Vipin K; Pires, João

    2017-05-01

    Reticulated foam shaped adsorbents are more efficient for the removal of volatile organic compounds (VOCs), particularly from low VOC-concentration indoor air streams. In this study composite structure of zeolite and metal organic frameworks (MOFs), referred as ZMF, has been fabricated by immobilization of fine MOF-199 powder on foam shaped Zeolite Socony Mobil-5 (ZSM-5) Zeolitic structure, referred as ZF. The ZMF possess a uniform and well-dispersed coating of MOF-199 on the porous framework of ZF. It shows higher surface area, pore volume, and VOCs adsorption capacity, as compared to ZF-structure. Post-fabrication changes in selective adsorption properties of ZMF were studied with three common indoor VOCs (benzene, n-hexane, and cyclohexane), using gravimetric adsorption technique. The adsorption capacity of ZMF with different VOCs follow the order of benzene>n-hexane>cyclohexane. In comparison with MOF-199 and ZF, the composite structure ZMF shows improvement in selectivity for benzene from other two VOCs. Further, improvement in efficiency and stability of prepared ZMF was found to be associated with its high MOF loading capacity and unique morphological and structural properties. The developed composite structure with improved VOCs removal and recyclability could be a promising material for small to limited scale air pollution treatment units. Copyright © 2016. Published by Elsevier B.V.

  2. Role of Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 as Bioindicators and Immobilizers of Chromium in a Contaminated Natural Environment.

    PubMed

    Millach, Laia; Solé, Antoni; Esteve, Isabel

    2015-01-01

    The aim of this work was to study the potential of the two phototrophic microorganisms, both isolated from Ebro Delta microbial mats, to be used as bioindicators and immobilizers of chromium. The results obtained indicated that (i) the Minimum Metal Concentration (MMC) significantly affecting Chlorophyll a intensity in Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 was 0.25 µM and 0.75 µM, respectively, these values being lower than those established by current legislation, and (ii) Scenedesmus sp. DE2009 was able to immobilize chromium externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Additionally, this microorganism maintained high viability, including at 500 µM. Based on these results, we postulate that Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 are good chromium-indicators of cytotoxicity and, further, that Scenedesmus sp. DE2009 plays an important role in immobilizing this metal in a contaminated natural environment.

  3. Role of Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 as Bioindicators and Immobilizers of Chromium in a Contaminated Natural Environment

    PubMed Central

    2015-01-01

    The aim of this work was to study the potential of the two phototrophic microorganisms, both isolated from Ebro Delta microbial mats, to be used as bioindicators and immobilizers of chromium. The results obtained indicated that (i) the Minimum Metal Concentration (MMC) significantly affecting Chlorophyll a intensity in Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 was 0.25 µM and 0.75 µM, respectively, these values being lower than those established by current legislation, and (ii) Scenedesmus sp. DE2009 was able to immobilize chromium externally in extracellular polymeric substances (EPS) and intracellularly in polyphosphate (PP) inclusions. Additionally, this microorganism maintained high viability, including at 500 µM. Based on these results, we postulate that Geitlerinema sp. DE2011 and Scenedesmus sp. DE2009 are good chromium-indicators of cytotoxicity and, further, that Scenedesmus sp. DE2009 plays an important role in immobilizing this metal in a contaminated natural environment. PMID:26167488

  4. Microorganism immobilization

    DOEpatents

    Compere, Alicia L.; Griffith, William L.

    1981-01-01

    Live metabolically active microorganisms are immobilized on a solid support by contacting particles of aggregate material with a water dispersible polyelectrolyte such as gelatin, crosslinking the polyelectrolyte by reacting it with a crosslinking agent such as glutaraldehyde to provide a crosslinked coating on the particles of aggregate material, contacting the coated particles with live microorganisms and incubating the microorganisms in contact with the crosslinked coating to provide a coating of metabolically active microorganisms. The immobilized microorganisms have continued growth and reproduction functions.

  5. Materials and processes for the effective capture and immobilization of radioiodine: A review

    DOE PAGES

    Riley, Brian J.; Vienna, John D.; Strachan, Denis M.; ...

    2015-12-02

    In this study, the immobilization of radioiodine produced from reprocessing used nuclear fuel is a growing priority for research and development of nuclear waste forms. This review provides a comprehensive summary of the current issues surrounding processing and containment of 129I, the isotope of greatest concern due to its long half-life of 1.6 × 10 7 y and potential incorporation into the human body. Strategies for disposal of radioiodine, captured by both wet scrubbing and solid sorbents, are discussed, as well as potential iodine waste streams for insertion into an immobilization process. Next, consideration of direct disposal of salts, incorporationmore » into glasses, ceramics, cements, and other phases is discussed. The bulk of the review is devoted to an assessment of various sorbents for iodine and of waste forms described in the literature, particularly inorganic minerals, ceramics, and glasses. This review also contains recommendations for future research needed to address radioiodine immobilization materials and processes.« less

  6. Comparison of Zirconium Phosphonate-Modified Surfaces for Immobilizing Phosphopeptides and Phosphate-Tagged Proteins.

    PubMed

    Forato, Florian; Liu, Hao; Benoit, Roland; Fayon, Franck; Charlier, Cathy; Fateh, Amina; Defontaine, Alain; Tellier, Charles; Talham, Daniel R; Queffélec, Clémence; Bujoli, Bruno

    2016-06-07

    Different routes for preparing zirconium phosphonate-modified surfaces for immobilizing biomolecular probes are compared. Two chemical-modification approaches were explored to form self-assembled monolayers on commercially available primary amine-functionalized slides, and the resulting surfaces were compared to well-characterized zirconium phosphonate monolayer-modified supports prepared using Langmuir-Blodgett methods. When using POCl3 as the amine phosphorylating agent followed by treatment with zirconyl chloride, the result was not a zirconium-phosphonate monolayer, as commonly assumed in the literature, but rather the process gives adsorbed zirconium oxide/hydroxide species and to a lower extent adsorbed zirconium phosphate and/or phosphonate. Reactions giving rise to these products were modeled in homogeneous-phase studies. Nevertheless, each of the three modified surfaces effectively immobilized phosphopeptides and phosphopeptide tags fused to an affinity protein. Unexpectedly, the zirconium oxide/hydroxide modified surface, formed by treating the amine-coated slides with POCl3/Zr(4+), afforded better immobilization of the peptides and proteins and efficient capture of their targets.

  7. Continuous citric acid production in repeated-fed batch fermentation by Aspergillus niger immobilized on a new porous foam.

    PubMed

    Yu, Bin; Zhang, Xin; Sun, Wenjun; Xi, Xun; Zhao, Nan; Huang, Zichun; Ying, Zhuojun; Liu, Li; Liu, Dong; Niu, Huanqing; Wu, Jinglan; Zhuang, Wei; Zhu, Chenjie; Chen, Yong; Ying, Hanjie

    2018-06-20

    The efficiency of current methods for industrial production of citric acid is limited. To achieve continuous citric acid production with enhanced yield and reduced cost, immobilized fermentation was employed in an Aspergillus niger 831 repeated fed-batch fermentation system. We developed a new type of material (PAF201), which was used as a carrier for the novel adsorption immobilization system. Hydrophobicity, pore size and concentration of carriers were researched in A. niger immobilization. The efficiency of the A. niger immobilization process was analyzed by scanning electron microscopy. Then eight-cycle repeated fed-batch cultures for citric acid production were carried out over 600 h, which showed stable production with maximum citric acid concentrations and productivity levels of 162.7 g/L and 2.26 g L -1  h -1 , respectively. Compared with some other literatures about citric acid yield, PAF201 immobilization system is 11.3% higher than previous results. These results indicated that use of the new adsorption immobilization system could greatly improve citric acid productivity in repeated fed-batch fermentation. Moreover, these results could provide a guideline for A.niger or other filamentous fungi immobilization in industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Antibody immobilization using pneumatic spray: comparison with the avidin-biotin bridge immobilization method.

    PubMed

    Figueroa, Jhon; Magaña, Sonia; Lim, Daniel V; Schlaf, Rudy

    2012-12-14

    The formation of a thin antibody film on a glass surface using pneumatic spray was investigated as a potential immobilization technique for capturing pathogenic targets. Goat-Escherichia coli O157:H7 IgG films were made by pneumatic spray and compared against the avidin-biotin bridge immobilized films by assaying with green fluorescent protein (GFP) transformed E. coli O157:H7 cells and fluorescent reporter antibodies. Functionality, stability, and immobilization of the films were tested. The pneumatic spray films had lower fluorescence intensity values than the avidin-biotin bridge films but resulted in similar detection for E. coli O157:H7 at 10(5)-10(7)cells/ml sample concentrations with no detection of non-E. coli O157:H7 strains. Both methods also resulted in similar percent capture efficiencies. The results demonstrated that immobilization of antibody via pneumatic spray did not render the antibody non-functional and produced stable antibody films. The amount of time necessary for immobilization of the antibody was reduced significantly from 24h for the avidin-biotin bridge to 7 min using the pneumatic spray technique, with additional benefits of greatly reduced use of materials and chemicals. The pneumatic spray technique promises to be an alternative for the immobilization of antibodies on glass slides for capturing pathogenic targets and use in biosensor type devices. Copyright © 2012. Published by Elsevier B.V.

  9. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes

    PubMed Central

    Mohamad, Nur Royhaila; Marzuki, Nur Haziqah Che; Buang, Nor Aziah; Huyop, Fahrul; Wahab, Roswanira Abdul

    2015-01-01

    The current demands of sustainable green methodologies have increased the use of enzymatic technology in industrial processes. Employment of enzyme as biocatalysts offers the benefits of mild reaction conditions, biodegradability and catalytic efficiency. The harsh conditions of industrial processes, however, increase propensity of enzyme destabilization, shortening their industrial lifespan. Consequently, the technology of enzyme immobilization provides an effective means to circumvent these concerns by enhancing enzyme catalytic properties and also simplify downstream processing and improve operational stability. There are several techniques used to immobilize the enzymes onto supports which range from reversible physical adsorption and ionic linkages, to the irreversible stable covalent bonds. Such techniques produce immobilized enzymes of varying stability due to changes in the surface microenvironment and degree of multipoint attachment. Hence, it is mandatory to obtain information about the structure of the enzyme protein following interaction with the support surface as well as interactions of the enzymes with other proteins. Characterization technologies at the nanoscale level to study enzymes immobilized on surfaces are crucial to obtain valuable qualitative and quantitative information, including morphological visualization of the immobilized enzymes. These technologies are pertinent to assess efficacy of an immobilization technique and development of future enzyme immobilization strategies. PMID:26019635

  10. Covalent immobilization of metal organic frameworks onto chemical resistant poly(ether ether ketone) jacket for stir bar extraction.

    PubMed

    Wang, Chenlu; Zhou, Wei; Liao, Xiaoyan; Wang, Xuemei; Chen, Zilin

    2018-09-26

    Preparation of stir bar extraction (SBSE) device with high physical and chemical stability is important and challenging by date. A novel poly (ether ether ketone) (PEEK) tube with excellent mechanical property and chemical stability was firstly used as jacket of metal bar for preparation of stir bar. By employing covalent modification method, the inherent chemical resistant problem of PEEK which restricts the modification of sorbents was well solved. After functionalization, plenty of benzoic acid groups were formed onto the PEEK jacket. Metal organic frameworks of aluminium-based Materials of Institute Lavoisier-68 (MIL-68) was in situ immobilized onto the PEEK surface (MIL-68@PEEK) by the bonding with benzoic acid groups. Afterwards, a facile dumbbell-shaped structure was designed for reducing the friction between sorbents and bottom of container. Due to superior property of the PEEK jacket and the covalent modification method, the MIL-68 modified PEEK jacket SBSE device showed good robustness. After coupling with HPLC-MS/MS, the MIL-68@PEEK-based SBSE device was used to analyse of three parabens including methyl paraben, ethyl paraben and propyl paraben. The method had low limit detection up to 1 pg mL -1 with good linearity (R 2  ≥ 0.9978) and good reproducibility (relative standard deviation ≤ 9.74%). The method has been applied to the detection of parabens in cosmetics and rabbit plasma after painted with cosmetics with recoveries between 73.25% and 104.23%. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Impacts of Steel-Slag-Based Silicate Fertilizer on Soil Acidity and Silicon Availability and Metals-Immobilization in a Paddy Soil

    PubMed Central

    Ning, Dongfeng; Liang, Yongchao; Liu, Zhandong; Xiao, Junfu; Duan, Aiwang

    2016-01-01

    Slag-based silicate fertilizer has been widely used to improve soil silicon- availability and crop productivity. A consecutive early rice-late rice rotation experiment was conducted to test the impacts of steel slag on soil pH, silicon availability, rice growth and metals-immobilization in paddy soil. Our results show that application of slag at a rate above higher or equal to 1 600 mg plant-available SiO2 per kg soil increased soil pH, dry weight of rice straw and grain, plant-available Si concentration and Si concentration in rice shoots compared with the control treatment. No significant accumulation of total cadmium (Cd) and lead (Pb) was noted in soil; rather, the exchangeable fraction of Cd significantly decreased. The cadmium concentrations in rice grains decreased significantly compared with the control treatment. In conclusion, application of steel slag reduced soil acidity, increased plant–availability of silicon, promoted rice growth and inhibited Cd transport to rice grain in the soil-plant system. PMID:27973585

  12. Polymer coating for immobilizing soluble ions in a phosphate ceramic product

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    2000-01-01

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  13. Improving Properties of a Novel β-Galactosidase from Lactobacillus plantarum by Covalent Immobilization.

    PubMed

    Benavente, Rocio; Pessela, Benevides C; Curiel, Jose Antonio; de las Rivas, Blanca; Muñoz, Rosario; Guisán, Jose Manuel; Mancheño, Jose M; Cardelle-Cobas, Alejandra; Ruiz-Matute, Ana I; Corzo, Nieves

    2015-04-30

    A novel β-galactosidase from Lactobacillus plantarum (LPG) was over-expressed in E. coli and purified via a single chromatographic step by using lowly activated IMAC (immobilized metal for affinity chromatography) supports. The pure enzyme exhibited a high hydrolytic activity of 491 IU/mL towards o-nitrophenyl β-D-galactopyranoside. This value was conserved in the presence of different divalent cations and was quite resistant to the inhibition effects of different carbohydrates. The pure multimeric enzyme was stabilized by multipoint and multisubunit covalent attachment on glyoxyl-agarose. The glyoxyl-LPG immobilized preparation was over 20-fold more stable than the soluble enzyme or the one-point CNBr-LPG immobilized preparation at 50 °C. This β-galactosidase was successfully used in the hydrolysis of lactose and lactulose and formation of different oligosaccharides was detected. High production of galacto-oligosaccharides (35%) and oligosaccharides derived from lactulose (30%) was found and, for the first time, a new oligosaccharide derived from lactulose, tentatively identified as 3'-galactosyl lactulose, has been described.

  14. Universal biomimetic preparation and immobilization of layered double hydroxide films and adsorption behavior

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Zhang, Wenpeng; Chen, Zilin

    2017-01-01

    Preparation and immobilization of layered double hydroxides (LDHs) film onto multiple substrates is important and challenging in functional materials fields by date. In this work, a simple and universal polydopamine (PD)-based layer-by-layer assembly strategy was developed for the immobilization of LDHs film onto surfaces such as polypropylene chip, glass slides and metal coins. The surface of substrates was firstly modified by polydopamine functionalization, and then LDHs film was synthesized via urea method and directly immobilized on the PD layer by in situ growing strategy in one step. The PD layer as well as the final LDHs film was characterized by energy dispersive X-ray spectroscopy, scanning electron microscope, infrared spectroscopy, X-ray diffraction pattern and X-ray photoelectron spectra. It has been demonstrated the formation of the dense and homogeneous nanoscaled LDHs film with 400 nm thickness. Adsorption behavior of the fabricated NiAl-LDHs film toward anionic dyes and pharmaceuticals was further assessed. To demonstrate their extensive application, fast and high efficient adsorption of anionic dyes and pharmaceuticals was achieved by NiAl-LDHs-modified polypropylene centrifugal tube.

  15. Synthesis of a Polyhistidine-bearing Amphipol and its Use for Immobilizing Membrane Proteins.

    PubMed

    Giusti, Fabrice; Kessler, Pascal; Hansen, Randi Westh; Della Pia, Eduardo A; Le Bon, Christel; Mourier, Gilles; Popot, Jean-Luc; Martinez, Karen L; Zoonens, Manuela

    2015-12-14

    Amphipols (APols) are short amphipathic polymers that stabilize membrane proteins (MPs) in aqueous solutions. In the present study, A8-35, a polyacrylate-based APol, was grafted with hexahistidine tags (His6-tags). The synthesis and characterization of this novel functionalized APol, named HistAPol, are described. Its ability to immobilize MPs on nickel ion-bearing surfaces was tested using two complementary methods, immobilized metal affinity chromatography (IMAC) and surface plasmon resonance (SPR). Compared to a single His6-tag fused at one extremity of a MP, the presence of several His6-tags carried by the APol belt surrounding the transmembrane domain of a MP increases remarkably the affinity of the protein/APol complex for nickel ion-bearing SPR chips, whereas it does not show such a strong effect on an IMAC resin. HistAPol-mediated immobilization, which allows reversibility of the interaction and easy regeneration of the supports and dispenses with any genetic modification of the target protein, provides a novel, promising tool for attaching MPs onto solid supports while stabilizing them.

  16. Immobilization of MSWI fly ash through geopolymerization: effects of water-wash.

    PubMed

    Zheng, Lei; Wang, Chengwen; Wang, Wei; Shi, Yunchun; Gao, Xingbao

    2011-02-01

    The present research explored the role played by water-wash on geopolymerization for the immobilization and solidification of municipal solid waste incineration (MSWI) fly ash. The water-wash pretreatment substantially promoted the early strength of geopolymer and resulted in a higher ultimate strength compared to the counterpart without water-wash. XRD pattern of water-washed fly ash (WFA) revealed that NaCl and KCl were nearly eliminated in the WFA. Aside from geopolymer, ettringite (Ca(6)Al(2)(SO(4))(3)(OH)(12)·26H(2)O) was formed in MSWI fly ash-based geopolymer (Geo-FA). Meanwhile, calcium aluminate hydrate (Ca(2)Al(OH)(7)·3H(2)O), not ettringite, appeared in geopolymer that was synthesized with water-washed fly ash (Geo-WFA). Leached Geo-WFA (Geo-WFA-L) did not exhibit any signs of deterioration, while there was visual cracking on the surface of leached Geo-FA (Geo-FA-L). The crack may be caused by the migration of K(+), Na(+), and Cl(-) ions outside Geo-FA and the negative effect from crystallization of expansive compounds can not be excluded. Furthermore, transformation of calcium aluminate hydrate in Geo-WFA to ettringite in Geo-WFA-L allowed the reduction of the pore size of the specimen. IR spectrums suggested that Geo-WFA can supply more stable chemical encapsulation for heavy metals. Static monolithic leaching tests were conducted for geopolymers to estimate the immobilization efficiency. Heavy metal leaching was elucidated using the first-order reaction/diffusion model. Combined with the results from compressive strength and microstructure of samples, the effects of water-wash on immobilization were inferred in this study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Purification and immobilization of the recombinant Brassica oleracea Chlorophyllase 1 (BoCLH1) on DIAION®CR11 as potential biocatalyst for the production of chlorophyllide and phytol.

    PubMed

    Chou, Yi-Li; Ko, Chia-Yun; Chen, Long-Fang O; Yen, Chih-Chung; Shaw, Jei-Fu

    2015-02-24

    Recombinant Brassica oleracea chlorophyllase 1 (BoCLH1) with a protein molecular weight of 38.63 kDa was successfully expressed in E. coli and could catalyze chlorophyll (Chl) hydrolysis to chlorophyllide and phytol in vitro. In this study, we used DIAION®CR11, a highly porous cross-linked polystyrene divinylbenzene-based metal chelator, for purifying and immobilizing the poly (His)-tagged enzyme. The Cu(II) showed the highest protein adsorption (9.2 ± 0.43 mg/g gel) and enzyme activity (46.3 ± 3.14 U/g gel) for the immobilization of the poly (His)-tagged recombinant BoCLH1 compared with other metal chelators. Biochemical analysis of the immobilized enzyme showed higher chlorophyllase activity for Chl a hydrolysis in a weak base environment (pH 8.0), and activity above 70% was in a high-temperature environment, compared with the free enzyme. In addition, compared with free BoCLH1, the enzyme half-life (t1/2) of the immobilized BoCLH1 increased from 25.42 to 54.35 min (approximately two-fold) at 60 °C. The immobilized enzyme retained a residual activity of approximately 60% after 17 cycles in a repeated-batch operation. Therefore, DIAION®CR11Cu(II)-immobilized recombinant BoCLH1 can be repeatedly used to lower the cost and is potentially useful for the industrial production of chlorophyllide and phytol.

  18. An overview of biofunctionalization of metals in Japan

    PubMed Central

    Hanawa, Takao

    2009-01-01

    Surface modification is an important and predominant technique for obtaining biofunction and biocompatibility in metals for biomedical use. The surface modification technique is a process that changes the surface composition, structure and morphology of a material, leaving the bulk mechanical properties intact. A tremendous number of surface modification techniques using dry and wet processes to improve the hard tissue compatibility of titanium have been developed. Some are now commercially available. Most of these processes have been developed by Japanese institutions since the 1990s. A second approach is the immobilization of biofunctional molecules to the metal surface to control the adsorption of proteins and adhesion of cells, platelets and bacteria. The immobilization of poly(ethylene glycol) to a metal surface with electrodeposition and its effect on biofunction are reviewed. The creation of a metal–polymer composite is another way to obtain metal-based biofunctional materials. The relationship between the shear bonding strength and the chemical structure at the bonding interface of a Ti-segmentated polyurethane composite through a silane coupling agent is explained. PMID:19158014

  19. Immobilized Cell Research

    DTIC Science & Technology

    1990-10-31

    specifically with the biotech nologi cal side of cellular immobilization, there aje aspects of this research that have importance in other fields. 20 C...meetings dealt lem facing the Navy. The techniques reviewed here specifically with the biotechnological side of cellular im- should be of particular...phenomena. types of organisms, and the many techniques used to compare cellular physiologies. Undoubtedly, any tech- Why Use Immobilized Cells in

  20. Characterization and decolorization applicability of xerogel matrix immobilized manganese peroxidase produced from Trametes versicolor IBL-04.

    PubMed

    Iqbal, Hafiz Muhammad Nasir; Asgher, Muhammad

    2013-05-01

    A novel manganese peroxidase (MnP) isolated from solid state culture of Trametes versicolor IBL-04 was immobilized using xerogel matrix composed of trimethoxysilane (TMOS) and propyltetramethoxysilane (PTMS). FTIR spectroscopy confirmed the successful entrapment of MnP into the xerogel matrix. An immobilization efficiency of 92.2% was achieved with a purified active fraction containing 2 mg/mL MnP. After 24 h incubation at varying pH and temperatures, the immobilized MnP retained 82 and 75% activity at pH 4 and 80°C, respectively. Xerogel matrix immobilization enhanced the catalytic efficiency of entrapped MnP. Metal ions including Cu2+, Mn2+ and Fe2+ stimulated enzyme activity while cysteine, EDTA and Ag+ inhibited the activity. MnP preserved 82% of its initial activity during oxidation of MnSO4 in 10 consecutive cycles, demonstrating the reusability of xerogel entrapped MnP. The immobilized MnP could be stored for up to 75 days at 4°C without significant activity loss. To explore the industrial applicability of MnP, the immobilized MnP was tested for decolorization of textile industry effluent in a Packed Bed Reactor System (PBRS). After five consecutive cycles, 98.8% decolorization of effluent was achieved within 5 h. The kinetic properties, storage stability and reusability of entrapped MnP from T. versicolor IBL-04 reflect its prospects as biocatalyst for bioremediation and other industrial applications.

  1. Adsorption and Wetting in Model Mesoporous Silicas and in Complex Metal Oxide Catalysts

    NASA Astrophysics Data System (ADS)

    Jayaraman, Karthik

    The surface of most metal oxides is covered by hydroxyl groups which influence many surface phenomena such as adsorption and wetting, catalysis and surface reactions. Surface chemistry of silica is a subject of exhaustive studies owing to a wide variety of practical applications of silica. In Chapter 1, a brief review of classification, synthesis and characterization of silica is provided. The hydroxylation of silica surface i.e the number of hydroxyl (-OH) groups on the surface is of utmost importance for its practical applications. In Chapter 2, a brief introduction to surface hydration of silica is provided followed by the gas adsorption measurements and characterization. Pore wetting is critical to many applications of mesoporous adsorbents, catalysts, and separation materials. In the work presented in Chapter 3, we employed the combined vapor adsorption study using nitrogen (77K) and water (293K) isotherms to evaluate the water contact angles for a series of ordered mesoporous silicas (ex:SBA-15). The proposed method of contact angle relies on the statistical film thickness (t-curve) of the adsorbed water. There were no t-curves for water for dehydroxylated or hydrophobic surfaces in literature and we addressed this issue by measuring t-curves for a series of model surfaces with known and varying silanol coverage. Using the radius of menisci ((H2O)), statistical film thickness t(H2O) from water isotherm, and the true radius of pores (rp(N 2)), from nitrogen isotherms, the water contact angle inside pores were calculated. As it was anticipated, the results obtained showed that the silica pore contact angles were strongly influenced by the number of the surface silanol groups and, therefore, by the thermal and hydration treatments of silicas. Phthalocyanines (Pcs) present an interesting class of catalytically active of molecules with unique spectroscopic, photoelectric, and sometimes magnetic properties. In the work presented in Chapter 4, we have undertaken a

  2. Uranium speciation and stability after reductive immobilization in aquifer sediments

    NASA Astrophysics Data System (ADS)

    Sharp, Jonathan O.; Lezama-Pacheco, Juan S.; Schofield, Eleanor J.; Junier, Pilar; Ulrich, Kai-Uwe; Chinni, Satya; Veeramani, Harish; Margot-Roquier, Camille; Webb, Samuel M.; Tebo, Bradley M.; Giammar, Daniel E.; Bargar, John R.; Bernier-Latmani, Rizlan

    2011-11-01

    It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO 2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron release. Despite initial augmentation with Shewanella oneidensis, bacteria belonging to the phylum Firmicutes dominated the biostimulated columns. The immobilization of uranium (˜1 mmol U per kg sediment) enabled analysis by X-ray absorption spectroscopy (XAS). Tetravalent uranium associated with these sediments did not have spectroscopic signatures representative of U-U shells or crystalline UO 2. Analysis by microfocused XAS revealed concentrated micrometer regions of solid U(IV) that had spectroscopic signatures consistent with bulk analyses and a poor proximal correlation (μm scale resolution) between U and Fe. A plausible explanation, supported by biogeochemical conditions and spectral interpretations, is uranium association with phosphoryl moieties found in biomass; hence implicating direct enzymatic uranium reduction. After the immobilization phase, two months of in situ exposure to oxic influent did not result in substantial uranium remobilization. Ex situ flow-through experiments demonstrated more rapid uranium mobilization than observed in column oxidation studies and indicated that sediment-associated U(IV) is more mobile than biogenic UO 2. This work suggests that in situ uranium bioimmobilization studies and subsurface modeling parameters should be expanded to account for non-uraninite U(IV) species associated with biomass.

  3. Efficient magnetic recycling of covalently attached enzymes on carbon-coated metallic nanomagnets.

    PubMed

    Zlateski, Vladimir; Fuhrer, Roland; Koehler, Fabian M; Wharry, Scott; Zeltner, Martin; Stark, Wendelin J; Moody, Thomas S; Grass, Robert N

    2014-04-16

    In the pursuit of robust and reusable biocatalysts for industrial synthetic chemistry, nanobiotechnology is currently taking a significant part. Recently, enzymes have been immobilized on different nanoscaffold supports. Carbon coated metallic nanoparticles were found to be a practically useful support for enzyme immobilization due to their large surface area, high magnetic saturation, and manipulatable surface chemistry. In this study carbon coated cobalt nanoparticles were chemically functionalized (diazonium chemistry), activated for bioconjugation (N,N-disuccinimidyl carbonate), and subsequently used in enzyme immobilization. Three enzymes, β-glucosidase, α-chymotrypsin, and lipase B were successfully covalently immobilized on the magnetic nonsupport. The enzyme-particle conjugates formed retained their activity and stability after immobilization and were efficiently recycled from milliliter to liter scales in short recycle times.

  4. Enhanced enzyme stability through site-directed covalent immobilization.

    PubMed

    Wu, Jeffrey Chun Yu; Hutchings, Christopher Hayden; Lindsay, Mark Jeffrey; Werner, Christopher James; Bundy, Bradley Charles

    2015-01-10

    Breakthroughs in enzyme immobilization have enabled increased enzyme recovery and reusability, leading to significant decreases in the cost of enzyme use and fueling biocatalysis growth. However, current enzyme immobilization techniques suffer from leaching, enzyme stability, and recoverability and reusability issues. Moreover, these techniques lack the ability to control the orientation of the immobilized enzymes. To determine the impact of orientation on covalently immobilized enzyme activity and stability, we apply our PRECISE (Protein Residue-Explicit Covalent Immobilization for Stability Enhancement) system to a model enzyme, T4 lysozyme. The PRECISE system uses non-canonical amino acid incorporation and the Huisgen 1,3-dipolar cycloaddition "click" reaction to enable directed enzyme immobilization at rationally chosen residues throughout an enzyme. Unlike previous site-specific systems, the PRECISE system is a truly covalent immobilization method. Utilizing this system, enzymes immobilized at proximate and distant locations from the active site were tested for activity and stability under denaturing conditions. Our results demonstrate that orientation control of covalently immobilized enzymes can provide activity and stability benefits exceeding that of traditional random covalent immobilization techniques. PRECISE immobilized enzymes were 50 and 73% more active than randomly immobilized enzymes after harsh freeze-thaw and chemical denaturant treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Removal of heavy metals from artificial metals contaminated water samples based on micelle-templated silica modified with pyoverdin I.

    PubMed

    Tansupo, Panadda; Worakarn, Chamonkolpradit; Saksit, Chanthai; Ruangviriyachai, Chalerm

    2009-01-01

    The micelle-templated silica (MTS) was firstly chemically modified with 3-glycidoxypropyl-trimethoxysilane (GPTMS) before immobilized with pyoverdin I. The characteristics of pyoverdin I-anchored onto the modified MTS were investigated using fluorescence, infrared spectra and scanning electron microscopy. The specific surface area of all materials was calculated by Brunauer, Emmett and Teller (BET) method using nitrogen isotherm adsorption data. As the results, the surface area of commercial silica gel decreased from 609.2 to 405.4 m2/g, it indicated that the pyoverdin I could be immobilized onto the surface of silica solid support. This adsorbent was used for extraction of Fe(III), Cu(II), Zn(II), and Pb(II) in artificial metals contaminated water. Experimental conditions for effective adsorption of trace levels of metal ions were optimized with respect to different experimental parameters using batch procedure. The optimum pH value for the removal of metal ions simultaneously on this adsorbent was 4.0. Complete desorption of the adsorbed metal ions from the adsorbent was carried out using 0.25 mol/L of EDTA. The effect of different cations and anions on the adsorption of these metals on adsorbent was studied and the results showed that the proposed adsorbent could be applied to the highly saline samples and the sample which contains some transition metals.

  6. Effects of immobilization on spermiogenesis

    NASA Technical Reports Server (NTRS)

    Meitner, E. R.

    1980-01-01

    The influence of immobilization stress on spermiogenesis in rats was investigated. After 96 hour immobilization, histological changes began to manifest themselves in the form of practically complete disappearance of cell population of the wall of seminiferous tubule as well as a markedly increased number of cells with pathologic mitoses. Enzymological investigations showed various changes of activity (of acid and alkaline phosphatase and nonspecific esterase) in the 24, 48, and 96 hour immobilization groups.

  7. A new insight into the immobilization mechanism of Zn on biochar: the role of anions dissolved from ash

    PubMed Central

    Qian, Tingting; Wang, Yujun; Fan, Tingting; Fang, Guodong; Zhou, Dongmei

    2016-01-01

    Biochar is considered to be a promising material for heavy metal immobilization in soil. However, the immobilization mechanisms of Zn2+ on biochars derived from many common waste biomasses are not completely understood. Herein, biochars (denoted as PN350, PN550, WS350, and WS550) derived from pine needle (PN) and wheat straw (WS) were prepared at two pyrolysis temperatures (350 °C and 550 °C). The immobilization behaviors and mechanisms of Zn2+ on these biochars were systematically investigated. The results show that compared with biochars produced at low temperature, biochars produced at high temperature contained higher amounts of ash and exhibited much higher sorption capacities of Zn2+. By using Zn K-edge EXAFS spectroscopy, we find that the formation of various Zn precipitates/minerals, which was caused by the release of OH−, CO32−, and Si species from biochar, was the immobilization mechanism of Zn2+ on PN and WS biochars. Hydrozincite and Zn(OH)2 were the main species formed on PN350, PN550, and WS350; while on WS550, besides hydrozincite, a large fraction of hemimorphite was formed. The occurrence of hydrozincite and hemimorphite on biochar during Zn2+ immobilization is firstly reported in our study, which provides a new insight into the immobilization mechanism of Zn2+ on biochar. PMID:27641899

  8. A new insight into the immobilization mechanism of Zn on biochar: the role of anions dissolved from ash

    NASA Astrophysics Data System (ADS)

    Qian, Tingting; Wang, Yujun; Fan, Tingting; Fang, Guodong; Zhou, Dongmei

    2016-09-01

    Biochar is considered to be a promising material for heavy metal immobilization in soil. However, the immobilization mechanisms of Zn2+ on biochars derived from many common waste biomasses are not completely understood. Herein, biochars (denoted as PN350, PN550, WS350, and WS550) derived from pine needle (PN) and wheat straw (WS) were prepared at two pyrolysis temperatures (350 °C and 550 °C). The immobilization behaviors and mechanisms of Zn2+ on these biochars were systematically investigated. The results show that compared with biochars produced at low temperature, biochars produced at high temperature contained higher amounts of ash and exhibited much higher sorption capacities of Zn2+. By using Zn K-edge EXAFS spectroscopy, we find that the formation of various Zn precipitates/minerals, which was caused by the release of OH-, CO32-, and Si species from biochar, was the immobilization mechanism of Zn2+ on PN and WS biochars. Hydrozincite and Zn(OH)2 were the main species formed on PN350, PN550, and WS350; while on WS550, besides hydrozincite, a large fraction of hemimorphite was formed. The occurrence of hydrozincite and hemimorphite on biochar during Zn2+ immobilization is firstly reported in our study, which provides a new insight into the immobilization mechanism of Zn2+ on biochar.

  9. A new insight into the immobilization mechanism of Zn on biochar: the role of anions dissolved from ash.

    PubMed

    Qian, Tingting; Wang, Yujun; Fan, Tingting; Fang, Guodong; Zhou, Dongmei

    2016-09-19

    Biochar is considered to be a promising material for heavy metal immobilization in soil. However, the immobilization mechanisms of Zn(2+) on biochars derived from many common waste biomasses are not completely understood. Herein, biochars (denoted as PN350, PN550, WS350, and WS550) derived from pine needle (PN) and wheat straw (WS) were prepared at two pyrolysis temperatures (350 °C and 550 °C). The immobilization behaviors and mechanisms of Zn(2+) on these biochars were systematically investigated. The results show that compared with biochars produced at low temperature, biochars produced at high temperature contained higher amounts of ash and exhibited much higher sorption capacities of Zn(2+). By using Zn K-edge EXAFS spectroscopy, we find that the formation of various Zn precipitates/minerals, which was caused by the release of OH(-), CO3(2-), and Si species from biochar, was the immobilization mechanism of Zn(2+) on PN and WS biochars. Hydrozincite and Zn(OH)2 were the main species formed on PN350, PN550, and WS350; while on WS550, besides hydrozincite, a large fraction of hemimorphite was formed. The occurrence of hydrozincite and hemimorphite on biochar during Zn(2+) immobilization is firstly reported in our study, which provides a new insight into the immobilization mechanism of Zn(2+) on biochar.

  10. Simultaneous decontamination of cross-polluted soils with heavy metals and PCBs using a nano-metallic Ca/CaO dispersion mixture.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Sakita, Shogo; Simion, Cristian

    2014-01-01

    In the present work, we investigated the use of nano-metallic calcium (Ca) and calcium oxide (CaO) dispersion mixture for the simultaneous remediation of contaminated soils with both heavy metals (As, Cd, Cr, and Pb) and polychlorinated biphenyls (PCBs). Regardless of soil moisture content, nano-metallic Ca/CaO dispersion mixture achieved about 95-99% of heavy metal immobilization by a simple grinding process. During the same treatment, reasonable PCB hydrodechlorination efficiencies were obtained (up to 97%), though higher hydrodechlorination efficiency by preliminary drying of soil was observed.

  11. Copper immobilization by biochar and microbial community abundance in metal-contaminated soils.

    PubMed

    Moore, Francisca; González, María-Eugenia; Khan, Naser; Curaqueo, Gustavo; Sanchez-Monedero, Miguel; Rilling, Joaquín; Morales, Esteban; Panichini, Marcelo; Mutis, Ana; Jorquera, Milko; Mejias, Jaime; Hirzel, Juan; Meier, Sebastián

    2018-03-01

    Biochar (BC) is gaining attention as a soil amendment that can remediate metal polluted soils. The simultaneous effects of BC on copper (Cu) mobility, microbial activities in soil using metallophytes have scarcely been addressed. The objective of this study was to evaluate the effects of biochar BCs on Cu immobilization and over soil microbial communities in a Cu-contaminated soil evaluated over a two-year trial. A Cu-contaminated soil (338mgkg -1 ) was incubated with chicken manure biochar (CMB) or oat hull biochar (OHB) at rates of 1 and 5% w/w. Metallophyte Oenothera picensis was grown over one season (six months). The above process was repeated for 3 more consecutive seasons using the same soils. The BCs increased the soil pH and decreased the Cu exchangeable fraction Cu by 5 and 10 times (for OHB and CMB, respectively) by increasing the Cu bound in organic matter and residual fractions, and its effects were consistent across all seasons evaluated. BCs provided favorable habitat for microorganisms that was evident in increased microbial activity. The DHA activity was increased in all BC treatments, reaching a maximum of 7 and 6 times higher than control soils in CMB and OHB. Similar results were observed in microbial respiration, which increased 53% in OHB and 61% in CMB with respect to control. The BCs produced changes in microbial communities in all seasons evaluated. The fungal and bacterial richness were increased by CMB and OHB treatments; however, no clear effects were observed in the microbial diversity estimators. The physiochemical and microbiological effects produced by BC result in an increase of plant biomass production, which was on average 3 times higher than control treatments. However, despite being a metallophyte, O. picensis did not uptake Cu efficiently. Root and shoot Cu concentrations decreased or changed insignificantly in most BC treatments. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  12. Modification of Immobead 150 support for protein immobilization: effects on the properties of immobilized Aspergillus oryzae β-galactosidase.

    PubMed

    Gennari, Adriano; Herrmann Mobayed, Francielle; da Silva Rafael, Ruan; Rodrigues, Rafael C; Sperotto, Raul Antonio; Volpato, Giandra; Volken de Souza, Claucia Fernanda

    2018-05-01

    We studied the modification of Immobead 150 support by either introducing aldehyde groups using glutaraldehyde (Immobead-Glu) or carboxyl groups through acid solution (Immobead-Ac) for enzyme immobilization by covalent attachment or ion exchange, respectively. These two types of immobilization were compared with the use of epoxy groups that are now provided on a commercial support. We used Aspergillus oryzae β-galactosidase (Gal) as a model protein, immobilizing it on unmodified (epoxy groups, Immobead-Epx) and modified supports. Immobilization yield and efficiency were tested as a function of protein loading (10 to 500 mg.g -1 support). Gal was efficiently immobilized on the Immobeads with an immobilization efficiency higher than 75% for almost all supports and protein loads. Immobilization yields significantly decreased when protein loadings were higher than 100 mg.g -1 support. Gal immobilized on Immobead-Glu and Immobead-Ac retained approximately 60% of its initial activity after 90 days of storage at 4°C. The three immobilized Gal derivatives presented higher half-lifes than the soluble enzyme, where the half-lifes were twice higher than the free Gal at 73°C. All the preparations were moderately operationally stable when tested in lactose solution, whey permeate, cheese whey, and skim milk, and retained approximately 50% of their initial activity after 20 cycles of hydrolyzing lactose solution. The modification of the support with glutaraldehyde provided the most stable derivative during cycling in cheese whey hydrolysis. Our results suggest that the Immobead 150 is a promising support for Gal immobilization. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  13. Biodiesel production with immobilized lipase: A review.

    PubMed

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors.

    PubMed

    Schmidt, J E; Ahring, B K

    1999-03-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and mumax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor.

  15. Immobilization Patterns and Dynamics of Acetate-Utilizing Methanogens Immobilized in Sterile Granular Sludge in Upflow Anaerobic Sludge Blanket Reactors

    PubMed Central

    Schmidt, Jens Ejbye; Ahring, Birgitte Kjær

    1999-01-01

    Sterile granular sludge was inoculated with either Methanosarcina mazeii S-6, Methanosaeta concilii GP-6, or both species in acetate-fed upflow anaerobic sludge blanket (UASB) reactors to investigate the immobilization patterns and dynamics of aceticlastic methanogens in granular sludge. After several months of reactor operation, the methanogens were immobilized, either separately or together. The fastest immobilization was observed in the reactor containing M. mazeii S-6. The highest effluent concentration of acetate was observed in the reactor with only M. mazeii S-6 immobilized, while the lowest effluent concentration of acetate was observed in the reactor where both types of methanogens were immobilized together. No changes were observed in the kinetic parameters (Ks and μmax) of immobilized M. concilii GP-6 or M. mazeii S-6 compared with suspended cultures, indicating that immobilization does not affect the growth kinetics of these methanogens. An enzyme-linked immunosorbent assay using polyclonal antibodies against either M. concilii GP-6 or M. mazeii S-6 showed significant variations in the two methanogenic populations in the different reactors. Polyclonal antibodies were further used to study the spatial distribution of the two methanogens. M. concilii GP-6 was immobilized only on existing support material without any specific pattern. M. mazeii S-6, however, showed a different immobilization pattern: large clumps were formed when the concentration of acetate was high, but where the acetate concentration was low this strain was immobilized on support material as single cells or small clumps. The data clearly show that the two aceticlastic methanogens immobilize differently in UASB systems, depending on the conditions found throughout the UASB reactor. PMID:10049862

  16. Does immobilization after arthroscopic rotator cuff repair increase tendon healing? A systematic review and meta-analysis.

    PubMed

    Shen, Chong; Tang, Zhi-Hong; Hu, Jun-Zu; Zou, Guo-Yao; Xiao, Rong-Chi; Yan, Dong-Xue

    2014-09-01

    To determine whether immobilization after arthroscopic rotator cuff repair improved tendon healing compared with early passive motion. A systematic electronic literature search was conducted to identify randomized controlled trials (RCTs) comparing early passive motion with immobilization after arthroscopic rotator cuff repair. The primary outcome assessed was tendon healing in the repaired cuff. Secondary outcome measures were range of motion (ROM) and American Shoulder and Elbow Surgeons (ASES) shoulder scale, Simple Shoulder Test (SST), Constant, and visual analog scale (VAS) for pain scores. Pooled analyses were performed using a random effects model to obtain summary estimates of treatment effect with 95% confidence intervals. Heterogeneity among included studies was quantified. Three RCTs examining 265 patients were included. Meta-analysis revealed no significant difference in tendon healing in the repaired cuff between the early-motion and immobilization groups. A significant difference in external rotation at 6 months postoperatively favored early motion over immobilization, but no significant difference was observed at 1 year postoperatively. In one study, Constant scores were slightly higher in the early-motion group than in the immobilization group. Two studies found no significant difference in ASES, SST, or VAS score between groups. We found no evidence that immobilization after arthroscopic rotator cuff repair was superior to early-motion rehabilitation in terms of tendon healing or clinical outcome. Patients in the early-motion group may recover ROM more rapidly. Level II; systematic review of levels I and II studies.

  17. Increased biomass and quality and reduced heavy metal accumulation of edible tissues of vegetables in the presence of Cd-tolerant and immobilizing Bacillus megaterium H3.

    PubMed

    Wang, Qi; Zhang, Wen-Ji; He, Lin-Yan; Sheng, Xia-Fang

    2018-02-01

    A Cd-resistant and immobilizing Bacillus megaterium H3 was characterized for its impact on the biomass and quality and heavy metal uptake of edible tissues of two vegetables (Brassica campestris L. var. Aijiaohuang and Brassica rapa L. var. Shanghaiqing) grown in heavy metal-polluted soil. The impact of strain H3 on the soil quality was also evaluated. The increase in the edible tissue biomass and the contents of soluble proteins and vitamin C of the vegetables inoculated with strain H3 ranged from 18% to 33%, 17% to 31%, and 15% to 19%, respectively, compared with the controls. Strain H3 significantly decreased the edible tissue Cd and Pb contents of the two greens (41-80%), DTPA-extractable Cd content (35-47%) of the rhizosphere soils, and Cd and Pb translocation factors (25-56%) of the greens compared with the controls. Moreover, strain H3 significantly increased the organic matter content (17-21%) and invertase activity (13-14%) of the rhizosphere soils compared with the controls. Our results demonstrated the increased edible tissue biomass and quality, decreased Cd and Pb uptake of the edible tissues, and improved soil quality in the presence of strain H3. The results also suggested an effective bacterial-enhanced technique for decreased metal uptake of greens and improved vegetable and soil qualities in the metal-contaminated soils. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane.

    PubMed

    Li, Pei-Zhou; Aranishi, Kengo; Xu, Qiang

    2012-03-28

    Highly dispersed Ni nanoparticles have been successfully immobilized by the zeolitic metal-organic framework ZIF-8 via sequential deposition-reduction methods, which show high catalytic activity and long durability for hydrogen generation from hydrolysis of aqueous ammonia borane (NH(3)BH(3)) at room temperature. This journal is © The Royal Society of Chemistry 2012

  19. Characterization and immobilization on nickel-chelated Sepharose of a glutamate decarboxylase A from Lactobacillus brevis BH2 and its application for production of GABA.

    PubMed

    Lee, Ji-Yeon; Jeon, Sung-Jong

    2014-01-01

    A gene encoding glutamate decarboxylase A (GadA) from Lactobacillus brevis BH2 was expressed in a His-tagged form in Escherichia coli cells, and recombinant protein exists as a homodimer consisting of identical subunits of 53 kDa. GadA was absolutely dependent on the ammonium sulfate concentration for catalytic activity and secondary structure formation. GadA was immobilized on the metal affinity resin with an immobilization yield of 95.8%. The pH optima of the immobilized enzyme were identical with those of the free enzyme. However, the optimum temperature for immobilized enzyme was 5 °C higher than that for the free enzyme. The immobilized GadA retained its relative activity of 41% after 30 reuses of reaction within 30 days and exhibited a half-life of 19 cycles within 19 days. A packed-bed bioreactor with immobilized GadA showed a maximum yield of 97.8% GABA from 50 mM l-glutamate in a flow-through system under conditions of pH 4.0 and 55 °C.

  20. Heavy metal immobilization via microbially induced carbonate precipitation and co-precipitation

    NASA Astrophysics Data System (ADS)

    Lauchnor, E. G.; Stoick, E.

    2017-12-01

    Microbially induced CaCO3 precipitation (MICP) has been successfully used in applications such as porous media consolidation and sealing of leakage pathways in the subsurface, and it has the potential to be used for remediation of metal and radionuclide contaminants in surface and groundwater. In this work, MICP is investigated for removal of dissolved heavy metals from contaminated mine discharge water via co-precipitation in CaCO3 or formation of other metal carbonates. The bacterially catalyzed hydrolysis of urea produces inorganic carbon and ammonium and increases pH and the saturation index of carbonate minerals to promote precipitation of CaCO3. Other heavy metal cations can be co-precipitated in CaCO3 as impurities or by replacing Ca2+ in the crystal lattice. We performed laboratory batch experiments of MICP in alkaline mine drainage sampled from an abandoned mine site in Montana and containing a mixture of heavy metals at near neutral pH. Both a model bacterium, Sporosarcina pasteurii, and a ureolytic bacterium isolated from sediments on the mine site were used to promote MICP. Removal of dissolved metals from the aqueous phase was determined via inductively coupled plasma mass spectrometry and resulting precipitates were analyzed via electron microscopy and energy dispersive x-ray spectroscopy (EDX). Both S. pasteurii and the native ureolytic isolate demonstrated ureolysis, increased the pH and promoted precipitation of CaCO3 in batch tests. MICP by the native bacterium reduced concentrations of the heavy metals zinc, copper, cadmium, nickel and manganese in the water. S. pasteurii was also able to promote MICP, but with less removal of dissolved metals. Analysis of precipitates revealed calcium carbonate and phosphate minerals were likely present. The native isolate is undergoing identification via 16S DNA sequencing. Ongoing work will evaluate biofilm formation and MICP by the isolate in continuous flow, gravel-filled laboratory columns. This research

  1. Analysis of removal of cadmium by action of immobilized Chlorella sp. micro-algae in alginate beads

    PubMed Central

    Valdez, Christian; Perengüez, Yomaira; Mátyás, Bence; Guevara, María Fernanda

    2018-01-01

    Cadmium (Cd) is a metal that can negatively interfere with the metabolic systems of living beings. The objective of this work was to evaluate the capacity for cadmium removal in aqueous solutions by immobilized Chlorella sp. in calcium alginate beads. Beads without Chlorella sp. were used as a control. All the treatments were established in triplicate for 80 min, at four concentrations of cadmium (0, 20, 100 and 200 ppm), taking samples of aqueous solution every 10 min, to be read using atomic absorption equipment. The study determined that the treatment of alginate beads with immobilized Chlorella sp. removed 59.67% of cadmium at an initial concentration of 20 ppm, this being the best removal result. PMID:29399326

  2. Detection of trace heavy metal ions in water by nanostructured porous Si biosensors.

    PubMed

    Shtenberg, Giorgi; Massad-Ivanir, Naama; Segal, Ester

    2015-07-07

    A generic biosensing platform, based on nanostructured porous Si (PSi), Fabry-Pérot thin films, for label-free monitoring of heavy metal ions in aqueous solutions by enzymatic activity inhibition, is described. First, we show a general detection assay by immobilizing horseradish peroxidase (HRP) within the oxidized PSi nanostructure and monitor its catalytic activity in real time by reflective interferometric Fourier transform spectroscopy. Optical studies reveal the high specificity and sensitivity of the HRP-immobilized PSi towards three metal ions (Ag(+) > Pb(2+) > Cu(2+)), with a detection limit range of 60-120 ppb. Next, we demonstrate the concept of specific detection of Cu(2+) ions (as a model heavy metal) by immobilizing Laccase, a multi-copper oxidase, within the oxidized PSi. The resulting biosensor allows for specific detection and quantification of copper ions in real water samples by monitoring the Laccase relative activity. The optical biosensing results are found to be in excellent agreement with those obtained by the gold standard analytical technique (ICP-AES) for all water samples. The main advantage of the presented biosensing concept is the ability to detect heavy metal ions at environmentally relevant concentrations using a simple and portable experimental setup, while the specific biosensor design can be tailored by varying the enzyme type.

  3. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil.

    PubMed

    Park, Jin Hee; Bolan, Nanthi; Megharaj, Mallavarapu; Naidu, Ravi

    2011-01-30

    Lead (Pb), a highly toxic heavy metal forms stable compounds with phosphate (P). The potential of phosphate solubilizing bacteria (PSB) to immobilize Pb by enhancing solubilization of insoluble P compounds was tested in this research. Eighteen different PSB strains isolated from P amended and Pb contaminated soils were screened for their efficiency in P solubilization. The PSB isolated from P amended soils solubilized 217-479 mg/L of P while the PSB from Pb contaminated soil solubilized 31-293 mg/L of P. Stepwise multiple regression analysis and P solubility kinetics indicated that the major mechanism of P solubilization by PSB is the pH reduction through the release of organic acids. From the isolated bacteria, two PSB were chosen for Pb immobilization and these bacteria were identified as Pantoea sp. and Enterobacter sp., respectively. The PSB significantly increased P solubilization by 25.0% and 49.9% in the case of Pantoea sp., and 63.3% and 88.6% in the case of Enterobacter sp. for 200 and 800 mg/kg of rock phosphate (RP) addition, respectively, thereby enhancing the immobilization of Pb by 8.25-13.7% in the case of Pantoea sp. and 14.7-26.4% in the case of Enterobacter sp. The ability of PSB to solubilize P, promote plant growth, and immobilize Pb can be used for phytostabilization of Pb contaminated soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Efficient biodegradation of cyanide and ferrocyanide by Na-alginate beads immobilized with fungal cells of Trichoderma koningii.

    PubMed

    Zhou, Xiaoying; Liu, Lixing; Chen, Yunpeng; Xu, Shufa; Chen, Jie

    2007-09-01

    Cyanide or metal cyanide contaminations have become serious environmental and food-health problems. A fungal mutant of Trichoderma koningii, TkA8, constructed by restriction enzyme-mediated integration, has been verified to have a high cyanide degradation ability in our previous study. In this study, the mutant cells were entrapped in sodium-alginate (Na-alginate) immobilization beads to degrade cyanide and ferrocyanide in a liquid mineral medium. The results showed that the fungus in immobilization beads consisting of 3% Na-alginate and 3% CaCl2 could degrade cyanide more efficiently than a nonimmobilized fungal culture. For maximum degradation efficiency, the optimal ratio of Na-alginate and wet fungal biomass was 20:1 (m/m) and the initial pH was 6.5. In comparison, cell immobilization took at least 3 and 8 days earlier, respectively, to completely degrade cyanide and ferrocyanide. In addition, we showed that the immobilized beads could be easily recovered from the medium and reused for up to 5 batches without significant losses of fungal remediation abilities. The results of this study provide a promising alternative method for the large-scale remediation of soil or water systems from cyanide contamination.

  5. Removal of mercury from its aqueous solution using charcoal-immobilized papain (CIP).

    PubMed

    Dutta, Susmita; Bhattacharyya, Aparupa; De, Parameswar; Ray, Parthasarathi; Basu, Srabanti

    2009-12-30

    In the present work mercury has been eradicated from its aqueous solution using papain, immobilized on activated charcoal by physical adsorption method. Operating parameters for adsorption of papain on activated charcoal like pH, amount of activated charcoal, initial concentration of papain in solution have been varied in a suitable manner for standardization of operating conditions for obtaining the best immobilized papain sample based on their specific enzymatic activity. The immobilized papain sample obtained at initial papain concentration 40.0 g/L, activated charcoal amount 0.5 g and pH 7 shows the best specific enzymatic activity. This sample has been designated as charcoal-immobilized papain (CIP) and used for further studies of mercury removal. Adsorption equilibrium data fit most satisfactorily with the Langmuir isotherm model for adsorption of papain on activated charcoal. Physicochemical characterization of CIP has been done. The removal of mercury from its simulated solution of mercuric chloride using CIP has been studied in a lab-scale batch contactor. The operating parameters viz., the initial concentration of mercury in solution, amount of CIP and pH have been varied in a prescribed manner. Maximum removal achieved in the batch study was about 99.4% at pH 7, when initial metal concentration and weight of CIP were 20.0mg/L and 0.03 g respectively. Finally, the study of desorption of mercury has been performed at different pH values for assessment of recovery process of mercury. The results thus obtained have been found to be satisfactory.

  6. Stability improvement of immobilized lactoperoxidase using polyaniline polymer.

    PubMed

    Jafary, Fariba; Kashanian, Soheila; Sharieat, Ziadin Samsam; Jafary, Farzaneh; Omidfar, Kobra; Paknejad, Maliheh

    2012-12-01

    Enzyme engineering via immobilization techniques is perfectly compatible against the other chemical or biological approximate to improve enzyme functions and stability. In this study lactoperoxidase was immobilized onto polyaniline polymer activated with glutaraldehyde as a bifunctional agent, to improve enzyme properties. Polyaniline polymer was used due its unique physical and chemical properties to immobilize lactoperoxidase (LPO). The optimum activity of immobilized LPO was observed at pH 6 and 55 °C, which has been increased about 10 °C for the immobilized enzyme. The immobilized enzyme maintained absolutely active for 60 days whereas the native enzyme lost 80 % of its initial activity within this period of time. Moreover, the immobilized enzyme can be reused for several times without loss of activity. The kinetic parameter studies showed slight differences between free and immobilized enzymes. The K(m) and K(m.app) were calculated to be 0.6 and 0.4; also V(max) and V(max.app) were 1.3 and 0.9 respectively.

  7. Immobilized Lactase in the Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Allison, Matthew J.; Bering, C. Larry

    1998-10-01

    Immobilized enzymes have many practical applications. They may be used in clinical, industrial, and biotechnological laboratories and in many clinical diagnostic kits. For educational purposes, use of immobilized enzymes can easily be taught at the undergraduate or even secondary level. We have developed an immobilized enzyme experiment that combines many practical techniques used in the biochemistry laboratory and fits within a three-hour time frame. In this experiment, lactase from over-the-counter tablets for patients with lactose intolerance is immobilized in polyacrylamide, which is then milled into small beads and placed into a chromatography column. A lactose solution is added to the column and the eluant is assayed using the glucose oxidase assay, available as a kit. We have determined the optimal conditions to give the greatest turnover of lactose while allowing the immobilized enzymes to be active for long periods at room temperature.

  8. Management of immobilization and its complication for elderly.

    PubMed

    Laksmi, Purwita W; Harimurti, Kuntjoro; Setiati, Siti; Soejono, Czeresna H; Aries, Wanarani; Roosheroe, Arya Govinda

    2008-10-01

    Increased life expectancy have an effect on the rising percentage of elderly population in Indonesia and health problem associated with the elderly, particularly immobilization. Immobilization may cause various complications, especially when it has been overlooked without any appropriate and proper medical care in keeping with the procedures. High incidence of immobilization in elderly and the life-threatening complication call for an agreement on management of immobilization and its complication. Management of immobilization needs interdisciplinary team-work cooperation, the patients and their family. The management may be commenced through a complete geriatric review, formulating functional goals and constructing therapeutic plan. Various medical conditions and external factors that may act as risk factors of immobilization as well as drugs intake that may exaggerate the immobilization should be evaluated and optimally managed. Any complication due to immobilization and other concomitant disease/condition should be recognized and managed comprehensively in order to reduce morbidity and mortality. Management of immobilization and its complications include pharmacological and non-pharmacological treatment, i.e. various mobility exercises, utilization of ambulatory device and supporting appliance for assisting patients in stand-up position, as well as the management of urinary voiding and defecation.

  9. Excess Weapons Plutonium Immobilization in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L.; Borisov, G.B.

    2000-04-15

    The joint goal of the Russian work is to establish a full-scale plutonium immobilization facility at a Russian industrial site by 2005. To achieve this requires that the necessary engineering and technical basis be developed in these Russian projects and the needed Russian approvals be obtained to conduct industrial-scale immobilization of plutonium-containing materials at a Russian industrial site by the 2005 date. This meeting and future work will provide the basis for joint decisions. Supporting R&D projects are being carried out at Russian Institutes that directly support the technical needs of Russian industrial sites to immobilize plutonium-containing materials. Special R&Dmore » on plutonium materials is also being carried out to support excess weapons disposition in Russia and the US, including nonproliferation studies of plutonium recovery from immobilization forms and accelerated radiation damage studies of the US-specified plutonium ceramic for immobilizing plutonium. This intriguing and extraordinary cooperation on certain aspects of the weapons plutonium problem is now progressing well and much work with plutonium has been completed in the past two years. Because much excellent and unique scientific and engineering technical work has now been completed in Russia in many aspects of plutonium immobilization, this meeting in St. Petersburg was both timely and necessary to summarize, review, and discuss these efforts among those who performed the actual work. The results of this meeting will help the US and Russia jointly define the future direction of the Russian plutonium immobilization program, and make it an even stronger and more integrated Russian program. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing the work into one place for four days to review and discuss their work with each other; and (2) Publish a meeting summary and a proceedings to compile reports of all the

  10. Immobilization of Paecilomyces variotii tannase and properties of the immobilized enzyme.

    PubMed

    Schons, Patrícia Fernanda; Lopes, Fernanda Cristina Rezende; Battestin, Vania; Macedo, Gabriela Alves

    2011-01-01

    Tannase produced by Paecilomyces variotii was encapsulated in sodium alginate beads and used for the effective hydrolysis of tannic acid; the efficiency of hydrolysis was comparable to that of the free enzyme. The alginate beads retained 100% of their efficiency in the first three rounds of successive use and 60% in rounds 4 and 5. The response surface methodology showed that the best conditions to hydrolysis of tannic acid by immobilized tannase were: sodium alginate 5.2%, CaCl₂ 0.55 M and 9 h to curing time. The optimized process resulted in 2.4 times more hydrolysed tannic acid than that obtained before optimization. The optimum pH for the actions of both the encapsulated and the free enzymes was 5.5. The optimum temperature of the reaction was determined to be 40 °C for the free enzyme and 60 °C for the immobilized form. The immobilization process improved the stability at low pH.

  11. Recent developments and applications of immobilized laccase.

    PubMed

    Fernández-Fernández, María; Sanromán, M Ángeles; Moldes, Diego

    2013-12-01

    Laccase is a promising biocatalyst with many possible applications, including bioremediation, chemical synthesis, biobleaching of paper pulp, biosensing, textile finishing and wine stabilization. The immobilization of enzymes offers several improvements for enzyme applications because the storage and operational stabilities are frequently enhanced. Moreover, the reusability of immobilized enzymes represents a great advantage compared with free enzymes. In this work, we discuss the different methodologies of enzyme immobilization that have been reported for laccases, such as adsorption, entrapment, encapsulation, covalent binding and self-immobilization. The applications of laccase immobilized by the aforementioned methodologies are presented, paying special attention to recent approaches regarding environmental applications and electrobiochemistry. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Metal transformation as a strategy for bacterial detoxification of heavy metals.

    PubMed

    Essa, Ashraf M M; Al Abboud, Mohamed A; Khatib, Sayeed I

    2018-01-01

    Microorganisms can modify the chemical and physical characters of metals leading to an alteration in their speciation, mobility, and toxicity. Aqueous heavy metals solutions (Hg, Cd, Pb, Ag, Cu, and Zn) were treated with the volatile metabolic products (VMPs) of Escherichia coli Z3 for 24 h using aerobic bioreactor. The effect of the metals treated with VMPs in comparison to the untreated metals on the growth of E. coli S1 and Staphylococcus aureus S2 (local isolates) was examined. Moreover, the toxic properties of the treated and untreated metals were monitored using minimum inhibitory concentration assay. A marked reduction of the treated metals toxicity was recorded in comparison to the untreated metals. Scanning electron microscopy and energy dispersive X-ray analysis revealed the formation of metal particles in the treated metal solutions. In addition to heavy metals at variable ratios, these particles consisted of carbon, oxygen, sulfur, nitrogen elements. The inhibition of metal toxicity was attributed to the existence of ammonia, hydrogen sulfide, and carbon dioxide in the VMPs of E. coli Z3 culture that might responsible for the transformation of soluble metal ions into metal complexes. This study clarified the capability of E. coli Z3 for indirect detoxification of heavy metals via the immobilization of metal ions into biologically unavailable species. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Estimation of the mass-balance of selected metals in four sanitary landfills in Western Norway, with emphasis on the heavy metal content of the deposited waste and the leachate.

    PubMed

    Øygard, Joar Karsten; Måge, Amund; Gjengedal, Elin

    2004-07-01

    A worst-case simulation of the mass-balance for metals in the waste deposited during 1 year and the levels of cadmium (Cd), lead (Pb), mercury (Hg), chromium (Cr) and iron (Fe) in the leachate was calculated for four sanitary landfills in Western Norway. Estimates of the levels of metal content in mixed municipal solid waste (MSW) were found by using recent literature values calculated in a mass-balance study at a Norwegian waste incinerator plant. Leachate from the landfills were sampled and analyzed monthly during 1 year, and from these measurements the total annual discharge of the selected metals through the leachate was determined. The levels of the measured heavy metals in the leachate were low. For Cd less than 0.06%, for Pb less than 0.01% and for Hg less than 0.02% of the estimated year's deposited mass of metals were leached from the landfills during the year of investigation. The high retention of these metals are most likely due to sulfide precipitation, but also due to the immobile condition of the metals in their original deposited solid state (plastics, ceramics, etc.). The percentage of Cr leached was relatively higher, but less than 1.0% per year. The mass balance of Fe suggests that this element is more mobile under the prevailing conditions. The percentage of Fe leached varied and was estimated to be between 1.9% and 18%. The present study clearly supports the theory that MSW only to a small extent will lead to discharge of metals if deposited at well-constructed sanitary landfills with top layers.

  14. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  15. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-11-13

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  16. Biochips: non-conventional strategies for biosensing elements immobilization.

    PubMed

    Marquette, Christophe A; Corgier, Benjamin P; Heyries, Kevin A; Blum, Loic J

    2008-01-01

    The present article draws a general picture of non-conventional methods for biomolecules immobilization. The technologies presented are based either on original solid supports or on innovative immobilization processes. Polydimethylsiloxane elastomer will be presented as a popular immobilization support within the biochip developer community. Electro-addressing of biomolecules at the surface of conducting biochips will appear to be an interesting alternative to immobilization processes based on surface functionalization. Finally, bead-assisted biomolecules immobilization will be presented as an open field of research for biochip developments.

  17. Immobilization of chloroperoxidase on mesoporous materials for the oxidation of 4,6-dimethyldibenzothiophene, a recalcitrant organic sulfur compound present in petroleum fractions.

    PubMed

    Terrés, Eduardo; Montiel, Mayra; Le Borgne, Sylvie; Torres, Eduardo

    2008-01-01

    The catalytic potential of chloroperoxidase (CPO) immobilized on mesoporous materials was evaluated for the oxidation of 4,6-dimethyldibenzothiophene in water/acetonitrile mixtures. Two different types of materials were used for the immobilization: a metal containing Al-MCM-41 material with a pore size of 26 A and SBA-16 materials with three different pore sizes: 40, 90 and 117 A. The SBA-16 40 A did not retain any CPO. The nature and the pore size of the material affected the catalytic activity of the enzyme as well as its stability. Compared to the free enzyme, the thermal stability of CPO at 45 degrees C was two and three times higher than when immobilized on Al-MCM-41 and SBA-16 90 A, respectively.

  18. Surface cell immobilization within perfluoroalkoxy microchannels

    NASA Astrophysics Data System (ADS)

    Stojkovič, Gorazd; Krivec, Matic; Vesel, Alenka; Marinšek, Marjan; Žnidaršič-Plazl, Polona

    2014-11-01

    Perfluoroalkoxy (PFA) is one of the most promising materials for the fabrication of cheap, solvent resistant and reusable microfluidic chips, which have been recently recognized as effective tools for biocatalytic process development. The application of biocatalysts significantly depends on efficient immobilization of enzymes or cells within the reactor enabling long-term biocatalyst use. Functionalization of PFA microchannels by 3-aminopropyltriethoxysilane (ATPES) and glutaraldehyde was used for rapid preparation of microbioreactors with surface-immobilized cells. X-ray photoelectron spectroscopy and scanning electron microscopy were used to accurately monitor individual treatment steps and to select conditions for cell immobilization. The optimized protocol for Saccharomyces cerevisiae immobilization on PFA microchannel walls comprised ethanol surface pretreatment, 4 h contacting with 10% APTES aqueous solution, 10 min treatment with 1% glutaraldehyde and 20 min contacting with cells in deionized water. The same protocol enabled also immobilization of Escherichia coli, Pseudomonas putida and Bacillus subtilis cells on PFA surface in high densities. Furthermore, the developed procedure has been proved to be very efficient also for surface immobilization of tested cells on other materials that are used for microreactor fabrication, including glass, polystyrene, poly (methyl methacrylate), polycarbonate, and two olefin-based polymers, namely Zeonor® and Topas®.

  19. Carbodiimide for Covalent α-Amylase Immobilization onto Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Milani, Zeinab Mortazavi; Jalal, Razieh; Goharshadi, Elaheh K.

    Covalent cross-linking of enzymes to magnetite (Fe3O4) nanoparticles (MNPs) is one of the useful enzyme immobilization methods which provides repeated use of the catalyst, facilitates enzyme separation from the reaction mixture, and sometimes improves biocatalysts stability. The aim of this study was to immobilize α-amylase onto MNPs via covalent attachment using carbodiimide (CDI) molecules. MNPs were synthesized by the co-precipitation method. The size and the structure of the particles were characterized by X-ray diffraction and transmission electron microscopy. The effects of different operational conditions of direct α-amylase binding on MNPs in the presence of CDI were investigated by using the shaking method. Fourier transform infrared spectroscopy was used to confirm the success of immobilization. The optimum conditions and catalytic properties of immobilized α-amylase were also evaluated. The efficiency of immobilization and the residual activity of the immobilized α-amylase were dependent on the mass ratio of MNPs: CDI: α-amylase and the immobilization temperature. The optimum pH for the free and immobilized amylase was 6. The free and immobilized α-amylase showed maximum activity at 20∘C and 35∘C, respectively. The immobilized α-amylase was more thermostable than the free one. The retained activity for free α-amylase after 19 storage days was 57.7% whereas it was 100% for the immobilized α-amylase. In repeated batch experiments, the immobilized α-amylase retained a residual activity of 45% after 11 repeated uses. The Km and Vmax values for the immobilized enzyme were larger than those of the free enzyme. The immobilization of α-amylase on MNPs using CDI improves its stability and reusability.

  20. Are metals emitted from electronic cigarettes a reason for health concern? A risk-assessment analysis of currently available literature.

    PubMed

    Farsalinos, Konstantinos E; Voudris, Vassilis; Poulas, Konstantinos

    2015-05-15

    Studies have found that metals are emitted to the electronic cigarette (EC) aerosol. However, the potential health impact of exposure to such metals has not been adequately defined. The purpose of this study was to perform a risk assessment analysis, evaluating the exposure of electronic cigarette (EC) users to metal emissions based on findings from the published literature. Two studies were found in the literature, measuring metals emitted to the aerosol from 13 EC products. We estimated that users take on average 600 EC puffs per day, but we evaluated the daily exposure from 1200 puffs. Estimates of exposure were compared with the chronic Permissible Daily Exposure (PDE) from inhalational medications defined by the U.S. Pharmacopeia (cadmium, chromium, copper, lead and nickel), the Minimal Risk Level (MRL) defined by the Agency for Toxic Substances and Disease Registry (manganese) and the Recommended Exposure Limit (REL) defined by the National Institute of Occupational Safety and Health (aluminum, barium, iron, tin, titanium, zinc and zirconium). The average daily exposure from 13 EC products was 2.6 to 387 times lower than the safety cut-off point of PDEs, 325 times lower than the safety limit of MRL and 665 to 77,514 times lower than the safety cut-off point of RELs. Only one of the 13 products was found to result in exposure 10% higher than PDE for one metal (cadmium) at the extreme daily use of 1200 puffs. Significant differences in emissions between products were observed. Based on currently available data, overall exposure to metals from EC use is not expected to be of significant health concern for smokers switching to EC use, but is an unnecessary source of exposure for never-smokers. Metal analysis should be expanded to more products and exposure can be further reduced through improvements in product quality and appropriate choice of materials.

  1. Analysis of nucleotides and oligonucleotides immobilized as self-assembled monolayers by static secondary ion mass spectrometry.

    PubMed

    Patrick, J S; Cooks, R G; Pachuta, S J

    1994-11-01

    Nucleic acid constituents can be bound to a metal surface in the form of self-assembled monolayers. Binding is achieved either through ionic interactions with a self-assembled 2-aminoethanethiol monolayer or by direct covalent binding of a dithiophosphate oligonucleotide to a metal surface through a sulfur-metal bond. Nucleotides, polynucleotides (both normal and a dithiophosphate analog) and double-stranded DNA have all been bound to surfaces. When the surfaces are interrogated using static secondary ion mass spectrometry (SIMS), the surface-bound nucleic acid constituents are observed in the form of the characteristic protonated nucleic acid base ions (BH2+). While a silver foil substrate was found to provide the highest absolute signal, vapor-deposited gold yields the best signal-to-noise ratio for ionically bound deoxyguanosine monophosphate. Under comparable conditions, a Cs+ projectile produces a 10-fold increase in the secondary ion signal relative to a Ga+ projectile. The experiment has been extended to a triple-quadrupole instrument where tandem mass spectrometric experiments on ionically immobilized dGMP showed the characteristic loss of ammonia from the released BH2+ ion. When a 'biomimetic' surface formed by ionically immobilizing double-stranded DNA is exposed to a solution containing ethidium bromide, ions corresponding to the non-covalent adduct are readily detectable using SIMS. This adduct and the nucleic acid constituents can be monitored at levels below 10 fmol.

  2. Nanoporous Gold for Enzyme Immobilization.

    PubMed

    Stine, Keith J; Jefferson, Kenise; Shulga, Olga V

    2017-01-01

    Nanoporous gold (NPG) is a material of emerging interest for immobilization of biomolecules, especially enzymes. The material provides a high surface area form of gold that is suitable for physisorption or for covalent modification by self-assembled monolayers. The material can be used as a high surface area electrode and with immobilized enzymes can be used for amperometric detection schemes. NPG can be prepared in a variety of formats from alloys containing between 20 and 50 % atomic composition of gold and less noble element(s) by dealloying procedures. Materials resembling NPG can be prepared by hydrothermal and electrodeposition methods. Related high surface area gold structures have been prepared using templating approaches. Covalent enzyme immobilization can be achieved by first forming a self-assembled monolayer on NPG bearing a terminal reactive functional group followed by conjugation to the enzyme through amide linkages to lysine residues. Enzymes can also be entrapped by physisorption or immobilized by electrostatic interactions.

  3. An approach for liposome immobilization using sterically stabilized micelles (SSMs) as a precursor for bio-layer interferometry-based interaction studies.

    PubMed

    Wallner, Jakob; Lhota, Gabriele; Schosserer, Markus; Vorauer-Uhl, Karola

    2017-06-01

    Non-fluidic bio-layer interferometry (BLI) has rapidly become a standard tool for monitoring almost all biomolecular interactions in a label-free, real-time and high-throughput manner. High-efficiency screening methods which measure the kinetics of liposomes with a variety of compounds require the immobilization of liposomes. In this work, a method is described for immobilizing liposomes for interaction studies, based on the biophysical principles of this biosensor platform. The immobilization approach includes the loading of DSPE-PEG (2000) -biotin containing sterically stabilized micelles (SSMs) which are restructured in a buffer change step, resulting in an accessible substrate for liposome immobilization. Liposomes in a concentration of 5mM of varying composition and fluidity were immobilized on the sensor surface by inserting the hydrophobic residues of the former loaded SSMs. This proof of principle was carried out using Cytochrome C as a membrane-interacting model protein. The binding of Cytochrome C to the immobilized liposomes was demonstrated, and the derived kinetic and affinity constants were similar to values given in the literature. In order to obtain a detailed understanding of this surface, and to show the integrity of the liposomes, confocal fluorescence microscopy was used. Images of immobilized liposomes containing calcein in the aqueous core indicated intact vesicles. A combination of this simple liposome immobilization approach, the possibility of automation on BLI systems with high throughput within an acceptable timescale and excellent reproducibility makes this assay suitable for basic research as well as for industrial and regulatory applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Antimicrobial activity of immobilized lactoferrin and lactoferricin.

    PubMed

    Chen, Renxun; Cole, Nerida; Dutta, Debarun; Kumar, Naresh; Willcox, Mark D P

    2017-11-01

    Lactoferrin and lactoferricin were immobilized on glass surfaces via two linkers, 4-azidobenzoic acid (ABA) or 4-fluoro-3-nitrophenyl azide (FNA). The resulting surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The antimicrobial activity of the surfaces was determined using Pseudomonas aeruginosa and Staphylococcus aureus strains by fluorescence microscopy. Lactoferrin and lactoferricin immobilization was confirmed by XPS showing significant increases (p < 0.05) in nitrogen on the glass surface. The immobilization of both proteins slightly increased the overall hydrophobicity of the glass. Both lactoferrin and lactoferricin immobilized on glass significantly (p < 0.05) reduced the numbers of viable bacterial cells adherent to the glass. For P. aeruginosa, the immobilized proteins consistently increased the percentage of dead cells compared to the total cells adherent to the glass surfaces (p < 0.03). Lactoferrin and lactoferricin were successfully immobilized on glass surfaces and showed promising antimicrobial activity against pathogenic bacteria. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2612-2617, 2017. © 2016 Wiley Periodicals, Inc.

  5. Detection of Metallothionein in Javanese Medaka (Oryzias javanicus), Using a scFv-Immobilized Protein Chip

    PubMed Central

    Lee, Euiyeon; Jeon, Hyunjin; Kang, Chungwon; Woo, Seonock; Yum, Seungshic; Kwon, Youngeun

    2018-01-01

    Environmental pollution by various industrial chemicals and biological agents poses serious risks to human health. Especially, marine contamination by potentially toxic elements (PTEs) has become a global concern in recent years. Many efforts have been undertaken to monitor the PTE contamination of the aquatic environment. However, there are few approaches available to assess the PTE exposure of aquatic organisms. In this research, we developed a strategy to evaluate the heavy metal exposure of marine organisms, by measuring the expression levels of metallothionein protein derived from Oryzias javanicus (OjaMT). OjaMT is a biomarker of heavy metal exposure because the expression level increases upon heavy metal exposure. The developed assay is based on a real-time, label-free surface plasmon resonance (SPR) measurement. Anti-OjaMT antibody and anti-OjaMT single-chain fragment of variable region (scFv) were used as detection probes. Two types of SPR sensor chips were fabricated, by immobilizing antibody or Cys3-tagged scFv (scFv-Cys3) in a controlled orientation and were tested for in situ label-free OjaMT detection. Compared to the antibody-presenting sensor chips, the scFv-presenting sensor chips showed improved performance, displaying enhanced sensitivity and enabling semi-quantitative detection. The portable SPR system combined with scFv-immobilized sensor chips is expected to provide an excellent point-of-care testing system that can monitor target biomarkers in real time. PMID:29614840

  6. [Immobilization of Candida sp. lipase on resin D301].

    PubMed

    Wang, Yanhua; Zhu, Kai; Liu, Hui; Han, Pingfang; Wei, Ping

    2009-12-01

    We immobilized Candida sp. lipase onto seven kinds of industrial adsorption and ion exchange resins. By determining the activity of each immobilized enzyme, the weakly basic anionic exchange resin of D301 showed the best results for the immobilization of Candida sp. lipase. Comparing the scanning electron micrographs of D301 with Novozym 435 (immobilized Candida antarctica lipase B from Novo Nordisk Corp.), we selected D301 as a carrier for the immobilization of Candida sp. lipase. And we pretreated the resin D301 with the bifunctional agent glutaraldehyde and crosslinked it with Candida sp. lipase. The optimal conditions for the immobilization of Candida sp. lipase were as follows: 8 mL of the amount of 5% glutaraldehyde solution, five hours of the time pretreated D301 with glutaraldehyde, 1.0 g/L the concentration of Candida sp. lipase used, pH of the phosphate buffered, 6.0 and 10 hours of time for immobilization, respectively. The activity of immobilized enzyme was over 35 U/mg and the efficiency of immobilization was around 3.5 Ul(mg x h).

  7. Three MOF-Templated Carbon Nanocomposites for Potential Platforms of Enzyme Immobilization with Improved Electrochemical Performance.

    PubMed

    Dong, Sheying; Peng, Lei; Wei, Wenbo; Huang, Tinglin

    2018-05-02

    An efficient and facile metal-organic framework (MOF)-template strategy for preparing carbon nanocomposites has been developed. First of all, a series of metal ions, including Fe 3+ , Zr 4+ , and La 3+ , were respectively connected with 2-aminoterephthalate (H 2 ATA) to form three metal-organic frameworks (MOFs) and then three novel MOF-derived materials were obtained by annealing them at 550 °C under N 2 atmosphere. The morphologies and microstructure results showed that they still retained the original structure of MOFs and formed carbon-supported metal oxide hybrid nanomaterials. Interestingly, it was found that La-MOF-NH 2 and its derived materials were first reported, which had wool-ball-like structure formed by many streaky-shaped particles intertwining each other. Furthermore, these MOF-derived materials were all successfully used as effective immobilization matrixes of acetylcholinesterase (AChE) to construct biosensors for the detection of methyl parathion. Especially, [La-MOF-NH 2 ] N 2 with wool-ball-like structure not only provided more active sites of multicontents to increase AChE immobilization amount but also facilitated the accessibility of electron transfer and shorten their diffusion length on the surface of electrode. Under optimal conditions, the biosensor based on [La-MOF-NH 2 ] N 2 displayed the widest linear range of 1.0 × 10 -13 -5.0 × 10 -9 g mL -1 and the lowest detection limit of 5.8 × 10 -14 g mL -1 in three biosensors. This study illustrates the feasibility and the potential of a series of MOF-derived materials for biosensors with improved electrochemical performance.

  8. Chitosan-rectorite nanospheres immobilized on polystyrene fibrous mats via alternate electrospinning/electrospraying techniques for copper ions adsorption

    NASA Astrophysics Data System (ADS)

    Tu, Hu; Huang, Mengtian; Yi, Yang; Li, Zhenshun; Zhan, Yingfei; Chen, Jiajia; Wu, Yang; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2017-12-01

    Chitosan (CS), as a kind of well characterized biopolymer, has been used for heavy metal adsorption due to its low cost and high efficacy. However, when used directly, chitosan particles had small surface area and weak mechanical strength which is unfavorable to metal adsorption and reused. Besides, it cannot be easily recycled that may cause a secondary pollution. In this paper, CS and layered silicate rectorite (REC) were fully mixed and the mixtures were subsequently electrosprayed nano-sized spheres, which were immobilized on the surface of electrospun polystyrene (PS) mats for metal adsorption. The morphology analysis taken from SEM confirmed that CS-REC nanospheres were loaded on the surface of PS fibrous mats. Small Angle X-ray diffraction patterns showed that the interlayer distance of REC in composite mats was enlarged by the intercalation of CS chains; such structure meant bigger surface area which was helpful for metal adsorption. The data of contact angle implied that PS mats coated with CS-REC nanospheres exhibited better hydrophilicity than PS mats, which was conductive to adsorption rate. Besides, the copper ions adsorption of composite mats was tested at different conditions including the adsorption time, the initial pH and the initial concentration of copper ion. The results demonstrated that PS mats coated with CS-REC nanospheres had the adsorption capacity up to 134 mg/g. In addition, the addition of REC containing Ca2+ could also improve the metal adsorption because of cation exchange. The desorption assay indicated that PS mats immobilized with CS and CS-REC still kept high adsorption ability which retained 74% and 78% after three adsorption-desorption cycles.

  9. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  10. Hard template synthesis of metal nanowires

    NASA Astrophysics Data System (ADS)

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-11-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  11. Hard template synthesis of metal nanowires.

    PubMed

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed.

  12. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants.

    PubMed

    Al-Wabel, Mohammad I; Usman, Adel R A; El-Naggar, Ahmed H; Aly, Anwar A; Ibrahim, Hesham M; Elmaghraby, Salem; Al-Omran, Abdulrasoul

    2015-07-01

    The objective of this study was to assess the use of Concarpus biochar as a soil amendment for reducing heavy metal accessibility and uptake by maize plants (Zea mays L.). The impacts of biochar rates (0.0, 1.0, 3.0, and 5.0% w/w) and two soil moisture levels (75% and 100% of field capacity, FC) on immobilization and availability of Fe, Mn, Zn, Cd, Cu and Pb to maize plants as well as its application effects on soil pH, EC, bulk density, and moisture content were evaluated using heavy metal-contaminated soil collected from mining area. The biochar addition significantly decreased the bulk density and increased moisture content of soil. Applying biochar significantly reduced NH4OAc- or AB-DTPA-extractable heavy metal concentrations of soils, indicating metal immobilization. Conocarpus biochar increased shoot dry biomass of maize plants by 54.5-102% at 75% FC and 133-266% at 100% FC. Moreover, applying biochar significantly reduced shoot heavy metal concentrations in maize plants (except for Fe at 75% FC) in response to increasing application rates, with a highest decrease of 51.3% and 60.5% for Mn, 28% and 21.2% for Zn, 60% and 29.5% for Cu, 53.2% and 47.2% for Cd at soil moisture levels of 75% FC and 100% FC, respectively. The results suggest that biochar may be effectively used as a soil amendment for heavy metal immobilization and in reducing its phytotoxicity.

  13. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants

    PubMed Central

    Al-Wabel, Mohammad I.; Usman, Adel R.A.; El-Naggar, Ahmed H.; Aly, Anwar A.; Ibrahim, Hesham M.; Elmaghraby, Salem; Al-Omran, Abdulrasoul

    2014-01-01

    The objective of this study was to assess the use of Concarpus biochar as a soil amendment for reducing heavy metal accessibility and uptake by maize plants (Zea mays L.). The impacts of biochar rates (0.0, 1.0, 3.0, and 5.0% w/w) and two soil moisture levels (75% and 100% of field capacity, FC) on immobilization and availability of Fe, Mn, Zn, Cd, Cu and Pb to maize plants as well as its application effects on soil pH, EC, bulk density, and moisture content were evaluated using heavy metal-contaminated soil collected from mining area. The biochar addition significantly decreased the bulk density and increased moisture content of soil. Applying biochar significantly reduced NH4OAc- or AB-DTPA-extractable heavy metal concentrations of soils, indicating metal immobilization. Conocarpus biochar increased shoot dry biomass of maize plants by 54.5–102% at 75% FC and 133–266% at 100% FC. Moreover, applying biochar significantly reduced shoot heavy metal concentrations in maize plants (except for Fe at 75% FC) in response to increasing application rates, with a highest decrease of 51.3% and 60.5% for Mn, 28% and 21.2% for Zn, 60% and 29.5% for Cu, 53.2% and 47.2% for Cd at soil moisture levels of 75% FC and 100% FC, respectively. The results suggest that biochar may be effectively used as a soil amendment for heavy metal immobilization and in reducing its phytotoxicity. PMID:26150758

  14. Immobilization of Lecitase® Ultra onto a novel polystyrene DA-201 resin: characterization and biochemical properties.

    PubMed

    Liu, Ning; Fu, Min; Wang, Yong; Zhao, Qiangzhong; Sun, Weizheng; Zhao, Mouming

    2012-11-01

    A simple, rapid, and economic method of enzyme immobilization was developed for phospholipase Lecitase® ultra (LU) via interfacial adsorption. The effect of nature of the polystyrene supports and the kinetic behavior and stability of immobilized lecitase® ultra (IM-LU) were evaluated. Six macroporous resins (AB-8, X-5, DA-201, NKA-9, D101, D4006) and two anion resins (D318 and D201) were studied as the supports. DA-201 resin was selected because of its best immobilization effect for LU. Immobilization conditions were investigated, including immobilization time, pH, and enzyme concentration. IM-LU with a lipase activity of 1,652.4 ± 8.6 U/g was obtained. The adsorption process was modeled by Langmuir and Freundlich equations, and the experimental data were better fit for the former one. The kinetic constant (K (m)) values were found to be 192.7 ± 2.2 mM for the free LU and 249.3 ± 5.4 mM for the IM-LU, respectively. The V (max) value of free LU (169.5 ± 4.3 mM/min) was higher than that of the IM-LU (53.8 ± 1.5 mM/min). Combined strategies of scanning electron micrograph, thermogravimetric analysis, and Fourier transform infrared (FTIR) spectroscopy were employed to characterize the IM-LU. FTIR spectroscopy showed that the secondary conformation of the enzyme had changed after immobilization, through which a decrease of α-helix content and an increase of β-sheet content were observed. The IM-LU possessed an improved thermal stability as well as metal ionic tolerance when compared with its free form. The reusability of IM-LU was also evaluated through catalyzing esterification reaction between oleic acid and glycerol. It exhibited approximately 70 % of relative esterification efficiency after six successive cycles. This immobilized enzyme on hydrophobic support may well be used for the synthesis of structural lipids in lipid area.

  15. In Situ Immobilization of Uranium in Structured Porous Media (Invited)

    NASA Astrophysics Data System (ADS)

    Brooks, S. C.; Gu, B.; Wu, W.; Spalding, B. P.; Watson, D. B.; Jardine, P.

    2009-12-01

    Defense related activities have resulted in broad areas of uranium contaminated groundwater across the U. S. Department of Energy complex. For example, past waste disposal practices at the DOE’s Y-12 site generated a plume of uranium and nitrate contamination in the underlying vadose and saturated zones which extends more than 120 meters deep and thousands of meters along geologic strike. Several DOE sponsored research programs have enabled the study of multiple biotic and abiotic methods of immobilizing uranium in situ at the site. These include biostimulation of metal reducing bacteria to promote reduction of the more soluble U(VI) to the sparingly soluble U(IV) and pH manipulation to immobilize U(VI) through its interactions (e.g., sorption, coprecipitation) with incipient aluminum oxyhydroxide minerals. The application of laboratory based results to the field site must also account for (i) the structured media which can impose incomplete mixing conditions and (ii) steep geochemical gradients or transition zones which differ significantly from the typically well mixed laboratory conditions. In this presentation results of several of these studies will be reviewed and lessons learned summarized.

  16. [Immobilization of introduced bacteria and degradation of pyrene and benzo(alpha) pyrene in soil by immobilized bacteria].

    PubMed

    Wang, Xin; Li, Peijun; Song, Shouzhi; Zhong, Yong; Zhang, Hui; Verkhozina, E V

    2006-11-01

    In this study, introduced bacteria were applied in the bioremediation of pyrene and benzo (alpha) pyrene in organic pollutants-contaminated soils, aimed to test whether it was feasible to introduce bacteria to environmental engineering. Three introduced bacteria were immobilized separately or together to degrade the pyrene and benzo (alpha) pyrene in soil, taking dissociated bacteria as the control, and comparing with three indigenous bacteria. The results showed that immobilized introduced bacteria, either single or mixed, had higher degradation efficiency than dissociated bacteria. Compared with indigenous bacteria, some introduced bacteria had predominance to some degree. The introduced bacteria-mixture had better degradation efficiency after being immobilized. The degradation rate of pyrene and benzo(alpha) pyrene after treated with immobilized bacteria-( B61-B67)-mixture for 96 hours was 43.49% and 38.55%, respectively.

  17. Immobilization of antibacterial metallic cations (Ga3+, Zn2+ and Co2+) in a polypyrrole coating formed on Nitinol.

    PubMed

    Saugo, M; Brugnoni, L I; Flamini, D O; Saidman, S B

    2018-05-01

    Gallium, zinc and cobalt species were immobilized in hollow rectangular-sectioned microtubes of polypyrrole (PPy) electrosynthesized on Nitinol (NiTi) alloy by means of two different methods. One of them involved the immobilization after the PPy electropolymerization and the other one during the electrosynthesis process. The antibacterial activity of the coating against Escherichia coli (E. coli) was evaluated and the best results were obtained with gallium species. Characterization results demonstrated that gallium is incorporated into the PPy matrix as Ga 3+ ions. The PPy film with gallium species incorporated during the electropolymerization exhibited a good corrosion protection performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Hydrolysis of triacetin catalyzed by immobilized lipases: effect of the immobilization protocol and experimental conditions on diacetin yield.

    PubMed

    Hernandez, Karel; Garcia-Verdugo, Eduardo; Porcar, Raul; Fernandez-Lafuente, Roberto

    2011-05-06

    The effect of the immobilization protocol and some experimental conditions (pH value and presence of acetonitrile) on the regioselective hydrolysis of triacetin to diacetin catalyzed by lipases has been studied. Lipase B from Candida antarctica (CALB) and lipase from Rhizomucor miehei (RML) were immobilized on Sepabeads (commercial available macroporous acrylic supports) activated with glutaraldehyde (covalent immobilization) or octadecyl groups (adsorption via interfacial activation). All the biocatalysts accumulated diacetin. Covalently immobilized RML was more active towards rac-methyl mandelate than the adsorbed RML. However, this covalent RML preparation presented the lowest activity towards triacetin. For this reason, this preparation was discarded as biocatalyst for this reaction. At pH 7, acyl migration occurred giving a mixture of 1,2 and 1,3 diacetin, but at pH 5.5, only 1,2 diacetin was produced. Yields were improved at acidic pH values and in the presence of 20% acetonitrile (to over 95%). RML immobilized on octadecyl Sepabeads was proposed as optimal preparation, mainly due to its higher specific activity. Each enzyme preparation presented very different properties. Moreover, changes in the reaction conditions affected the various immobilized enzymes in a different way. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Novel immobilization process of a thermophilic catalase: efficient purification by heat treatment and subsequent immobilization at high temperature.

    PubMed

    Xu, Juan; Luo, Hui; López, Claudia; Xiao, Jing; Chang, Yanhong

    2015-10-01

    The main goal of the present work is to investigate a novel process of purification and immobilization of a thermophilic catalase at high temperatures. The catalase, originated from Bacillus sp., was overexpressed in a recombinant Escherichia coli BL21(DE3)/pET28-CATHis and efficiently purified by heat treatment, achieving a threefold purification. The purified catalase was then immobilized onto an epoxy support at different temperatures (25, 40, and 55 °C). The immobilizate obtained at higher temperatures reached its maximum activity in a shorter time than that obtained at lower temperatures. Furthermore, immobilization at higher temperatures required a lower ionic strength than immobilization at lower temperatures. The characteristics of immobilized enzymes prepared at different temperatures were investigated. The high-temperature immobilizate (55 °C) showed the highest thermal stability, followed by the 40 °C immobilizate. And the high-temperature immobilizate (55 °C) had slightly higher operational stability than the 25 °C immobilizate. All of the immobilized catalase preparations showed higher stability than the free enzyme at alkaline pH 10.0, while the alkali resistance of the 25 °C immobilizate was slightly better than that of the 40 and 55 °C immobilizates.

  20. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils.

    PubMed

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun

    2015-05-30

    Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm(3) g(-1) and 76.9 m(2) g(-1), respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P<0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. INTEGRATED BIOREACTOR SYSTEM FOR THE TREATMENT OF CYANIDE, METALS AND NITRATES IN MINE PROCESS WATER

    EPA Science Inventory

    An innovative biological process is described for the tratment of cyanide-, metals- and nitrate-contaminated mine process water. The technology was tested for its ability to detoxify cyanide and nitrate and to immobilize metals in wastewater from agitation cyanide leaching. A pil...

  2. Stability studies of immobilized lipase on rice husk and eggshell membrane

    NASA Astrophysics Data System (ADS)

    Abdulla, R.; Sanny, S. A.; Derman, E.

    2017-06-01

    Lipase immobilization for biodiesel production is gaining importance day by day. In this study, lipase from Burkholderia cepacia was immobilized on activated support materials namely rice husk and egg shell membrane. Both rice husk and eggshell membrane are natural wastes that holds a lot of potential as immobilization matrix. Rice husk and eggshell membrane were activated with glutaraldehyde. Lipase was immobilized on the glutaraldehyde-activated support material through adsorption. Immobilization efficiency together with enzyme activity was observed to choose the highest enzyme loading for further stability studies. Immobilization efficiency of lipase on rice husk was 81 as compared to an immobilization efficiency of 87 on eggshell membrane. Immobilized lipase on eggshell membrane exhibited higher enzyme activity as compared to immobilized lipase on rice husk. Eggshell membrane also reported higher stability than rice husk as immobilization matrix. Both types of immobilized lipase retatined its activity after ten cycles of reuse. In short, eggshell membrane showed to be a better immobilization platform for lipase as compared to rice husk. However, with further improvement in technique of immobilization, the stability of both types of immobilized lipase can be improved to a greater extent.

  3. Controlled immobilization of His-tagged proteins for protein-ligand interaction experiments using Ni²⁺-NTA layer on glass surfaces.

    PubMed

    Cherkouk, Charaf; Rebohle, Lars; Lenk, Jens; Keller, Adrian; Ou, Xin; Laube, Markus; Neuber, Christin; Haase-Kohn, Cathleen; Skorupa, Wolfgang; Pietzsch, Jens

    2015-01-01

    Gold surfaces functionalized with nickel-nitrilotriacetic acid (Ni²⁺-NTA) as self-assembled monolayers (SAM) to immobilize histidine (His)-tagged biomolecules are broadly reported in the literature. However, the increasing demand of using microfluidic systems and biosensors takes more and more advantage on silicon technology which provides dedicated glass surfaces and substantially allows cost and resource savings. Here we present a novel method for the controlled oriented immobilization of His-tagged proteins on glass surfaces functionalized with a Ni²⁺-NTA layer. Exemplarily, the protein pattern morphology after immobilization on the Ni²⁺-NTA layer of His6-tagged soluble receptor for advanced glycation endproducts (sRAGE) was investigated and compared to non-oriented immobilization of sRAGE on amino SAM by using scanning electron microscopy (SEM). Moreover, we demonstrated interaction of immobilized sRAGE with three structurally different ligands, S100A12, S100A4, and glycated low density lipoproteins (glycLDL), by means of peak-force tapping atomic force microscopy (PF-AFM). We showed a clear discrimination of different protein-ligand orientations by differential height measurements.

  4. Is electroconvulsive therapy safe in the presence of an intracranial metallic object?: case report and review of the literature.

    PubMed

    Mortier, Philippe; Sienaert, Pascal; Bouckaert, Filip

    2013-09-01

    Little is known about the use of electroconvulsive therapy (ECT) in patients with intracranial metallic objects. Theoretically, electric current might cause heating of the metal and damage of the surrounding brain tissue. Moreover, intracranial foreign objects increase the risk for epileptic phenomena and could thus complicate the treatment course. The case of a man with intracranial bullet fragments as a result of a headshot, treated with ECT for mania, is presented. We conducted a PubMed literature search for other relevant cases. In our patient, ECT was completed without complication. Electroconvulsive therapy was safely administered in 22 published cases of patients with intracranial metallic objects. After carefully weighing benefits and risks in each individual case, psychiatrists should not be reluctant to use ECT in patients with intracranial metallic objects. Apart from avoiding empirical dosage titration to minimize the exposure to current, positioning the electrodes to avoid the electric current of heating the metal, and continuing antiepileptic agents in high-risk patients, no precautions need to be considered.

  5. Biosorption of Cr (VI) ions from electroplating industrial effluent using immobilized Aspergillus niger biomass.

    PubMed

    Chhikara, S; Dhankhar, R

    2008-09-01

    A fungus, Aspergillus niger was chemically treated with 0.1 M H2SO4 and 0.1 N NaOH to form biosorbent and it was immobilized in calcium alginate beads. The biosorption capacity of immobilized biosorbents for Cr (VI) was found to depend on pH, contact time, biosorbent dose and initial concentration of Cr (VI). The maximum uptake of Cr (VI) was 92.5, 95.9 and 98.4 mg respectively at a pH of 1.5 and with an increase in pH up to 10.5 the metal uptake decreased gradually up to 38.75, 50.19 and 65.28 mg respectively for acid treated, untreated and base treated fungal biosorbents. Increase in biosorbent dose up to 1 g of biomass and contact time up to 60 min resulted in an increase in biosorption from 19.6, 15.6 and 26.1 mg at a biosorbent dose of 0.1 g 100 ml(-1) to 92.45, 95.7 and 98.52 mg at a biosorbent dose of 1.0 g 100 ml(-1) and then further increase in adsorbent dose and contact time did not resulted in more Cr (VI) adsorption by per unit weight of biosorbent. The value of Kad (adsorption rate constant) revealed the pseudo-first order nature of biosorption. The percentage metal uptake by the biosorbent was found to decrease upto 62.33, 52.67 and 83.5 percent respectively for acid treated, untreated and base treated fungal biosorbents at the 300 mgl(-1) Cr (VI) ion concentration. The resulted data was found to fit well in Langmuir model of adsorption isotherm with a high value of correlation coefficient. The value of Qmax, b (Langmuir constants), R(L) (separation factor) and delta G (Gibb's free energy) revealed the favourable nature of adsorption. The biosorbed metal was eluted from the biosorbent by using 0.1 M H2SO4 as elutant. Immobilized biosorbent can be reused for five consecutive biosorption/desorption cycles without apparent loss of efficiency after its reconditioning. The biosorbent was found to perform well in the electroplating industrial effluent.

  6. Immobilization of microorganisms for detection by solid-phase immunoassays.

    PubMed Central

    Ibrahim, G F; Lyons, M J; Walker, R A; Fleet, G H

    1985-01-01

    Several cultures of gram-negative and gram-positive bacteria were successfully immobilized with titanous hydroxide. The immobilization efficiency for the microorganisms investigated in saline and broth media ranged from 80.2 to 99.9%. The immobilization of salmonellae was effective over a wide pH range. The presence of buffers, particularly phosphate buffer, drastically reduced the immobilization rate. However, buffers may be added to immunoassay systems after immobilization of microorganisms. The immobilization process involved only one step, i.e., shaking 100 microliter of culture with 50 microliter of titanous hydroxide suspension in polystyrene tubes for only 10 min. The immobilized cells were so tenaciously bound that vigorous agitation for 24 h did not result in cell dissociation. The nonspecific binding of 125I-labeled antibody from rabbits and 125I-labeled protein A by titanous hydroxide was inhibited in the presence of 2% gelatin and amounted to only 5.6 and 3.9%, respectively. We conclude that this immobilization procedure is a potentially powerful tool which could be utilized in solid-phase immunoassays concerned with the diagnosis of microorganisms. PMID:3900128

  7. Immobilization thresholds of electrofishing relative to fish size

    USGS Publications Warehouse

    Dolan, C.R.; Miranda, L.E.

    2003-01-01

    Fish size and electrical waveforms have frequently been associated with variation in electrofishing effectiveness. Under controlled laboratory conditions, we measured the electrical power required by five electrical waveforms to immobilize eight fish species of diverse sizes and shapes. Fish size was indexed by total body length, surface area, volume, and weight; shape was indexed by the ratio of body length to body depth. Our objectives were to identify immobilization thresholds, elucidate the descriptors of fish size that were best associated with those immobilization thresholds, and determine whether the vulnerability of a species relative to other species remained constant across electrical treatments. The results confirmed that fish size is a key variable controlling the immobilization threshold and further suggested that the size descriptor best related to immobilization is fish volume. The peak power needed to immobilize fish decreased rapidly with increasing fish volume in small fish but decreased slowly for fish larger than 75-100 cm 3. Furthermore, when we controlled for size and shape, different waveforms did not favor particular species, possibly because of the overwhelming effect of body size. Many of the immobilization inconsistencies previously attributed to species might simply represent the effect of disparities in body size.

  8. Glass former composition and method for immobilizing nuclear waste using the same

    DOEpatents

    Cadoff, Laurence H.; Smith-Magowan, David B.

    1988-01-01

    An alkoxide glass former composition has silica-containing constituents present as solid particulates of a particle size of 0.1 to 0.7 micrometers in diameter in a liquid carrier phase substantially free of dissolved silica. The glass former slurry is resistant to coagulation and may contain other glass former metal constituents. The immobilization of nuclear waste employs the described glass former by heating the same to reduce the volume, mixing the same with the waste, and melting the resultant mixture to encapsulate the waste in the resultant glass.

  9. Kinetics of Electrocatalysis of Dibromoalkyl Reductions Using Electrodes with Covalently Immobilized Metallotetraphenylporphyrins.

    DTIC Science & Technology

    1981-01-29

    Technical Report Using Electrodes with Covalently Immobilized Metal l otetraphenyl porphyri ns G. PERFORMING ORG. REPORT NUMBER 7. AU𔄁IOR(’.) 0...and CH2BrCHBrCH 3 at the surfaces of electrodes to which cobalt(II) or copper (II) tetra(p-aminophenyl)porphyrin has been covalently attached is strongly...27514 ABSTRACT The reduction of PhCHBrCH 2 Br, PhCHBrCHBrPh, and CH2BrCHBrCH3 at the surfaces of electrodes to which cobalt(lI) or copper (If) tetra(p

  10. [Immobilization of pectawamorine G10x by gel entrapment].

    PubMed

    Bogatskiĭ, A V; Davidenko, T I; Areshidze, I V; Gren', T A; Sevast'ianov, O V

    1979-01-01

    Polyacrylamide gel immobilization of pectawamorine G10x was investigated. Its pectinesterase and polygalacturonase activity and stability in storage were measured. The degree of pectawamorine binding during gel immobilization was 80--90%, 55% of initial activity being retained. Thermal stability of the immobilized and native preparations was equal. Pectinesterase activity of the gel immobilized enzyme increased during storage.

  11. Immobilization of Fe chelators on sepharose gel and its effect on their chemical properties.

    PubMed

    Yehuda, Zehava; Hadar, Yitzhak; Chen, Yona

    2003-09-24

    Iron chelates are usually costly and easily leached beyond the root zone. This creates a need to frequently replenish the rhizosphere with chelated Fe and might contaminate groundwater with organic compounds and metals. The development of a slow-release Fe fertilizer that will efficiently supply Fe to plants while exhibiting high resistance toward leaching and/or degradation in the rhizosphere has been the focus of this study. Desferrioxamine B (DFOB) and ethylenediaminebis(o-hydroxyphenylacetic acid) (EDDHA) were immobilized on Sepharose. (13)C NMR and FTIR measurements confirmed that coupling of DFOB to the gel did not appear to influence its ability to chelate Fe(3+) or its binding nature. Isotherms for the immobilized ligands were determined in the presence of 1 mM HEDTA, at 25 degrees C and at an ionic strength of 0.1 M. The isotherms showed a high affinity of Fe(3+) to the ligands and binding up to saturation level throughout the pH range examined (4.0-9.0). The K(app) values for the immobilized Fe chelates were determined using a modified Scatchard model and found to be lower than the soluble ones. This decrease in K(app) might facilitate Fe uptake from these chelates by plants.

  12. Accumulation of uranium by immobilized persimmon tannin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, Takashi; Nakajima, Akira

    1994-01-01

    We have discovered that the extracted juice of unripe astringent persimmon fruit, designated as kakishibu or shibuol, has an extremely high affinity for uranium. To develop efficient adsorbents for uranium, we tried to immobilize kakishibu (persimmon tannin) with various aldehydes and mineral acids. Persimmon tannin immobilized with glutaraldehyde can accumulate 1.71 g (14 mEq U) of uranium per gram of the adsorbent. The uranium accumulating capacity of this adsorbent is several times greater than that of commercially available chelating resins (2-3 mEq/g). Immobilized persimmon tannin has the most favorable features for uranium recovery; high selective adsorption ability, rapid adsorption rate,more » and applicability in both column and batch systems. The uranium retained on immobilized persimmon tannin can be quantitatively and easily eluted with a very dilute acid, and the adsorbent can thus be easily recycled in the adsorption-desorption process. Immobilized persimmon tannin also has a high affinity for thorium. 23 refs., 13 figs., 7 tabs.« less

  13. Ceramic membrane microfilter as an immobilized enzyme reactor.

    PubMed

    Harrington, T J; Gainer, J L; Kirwan, D J

    1992-10-01

    This study investigated the use of a ceramic microfilter as an immobilized enzyme reactor. In this type of reactor, the substrate solution permeates the ceramic membrane and reacts with an enzyme that has been immobilized within its porous interior. The objective of this study was to examine the effect of permeation rate on the observed kinetic parameters for the immobilized enzyme in order to assess possible mass transfer influences or shear effects. Kinetic parameters were found to be independent of flow rate for immobilized penicillinase and lactate dehydrogenase. Therefore, neither mass transfer nor shear effects were observed for enzymes immobilized within the ceramic membrane. Both the residence time and the conversion in the microfilter reactor could be controlled simply by regulating the transmembrane pressure drop. This study suggests that a ceramic microfilter reactor can be a desirable alternative to a packed bed of porous particles, especially when an immobilized enzyme has high activity and a low Michaelis constant.

  14. Biosorption of lead by citrobacter freundii immobilized on hazelnut shells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bueyuekguengoer, H.; Wilk, M.; Schubert, H.

    1996-12-31

    Biosorption of lead from aqueous solutions by living and immobilized cell of C. freundii was examined as a function of metal concentration in a batch laboratory bioreactor. Lead concentrations were analyzed using Atomic Absorption Spectrophotometer (AAS). X-ray Energy Dispersion (EDX) analyses were made in order to determine the accumulation of lead on the cells and shell surfaces. Before and after the experiments the biomaterials and adsorbents were examined by Scanning Electron Microscopy (SEM). Biosorption was detected over a range of initial lead concentrations from 25{times}10{sup -3} to 200{times}10{sup -3} kg/m{sup 3}. 15 refs., 4 figs.

  15. Short-duration electrical immobilization of lake trout

    USGS Publications Warehouse

    Gaikowski, Mark P.; Gingerich, William H.; Gutreuter, Steve

    2001-01-01

    Chemical anesthetics induce stress responses, and most leave residues in fish tissues that require a certain withdrawal time before the animal can be released into the environment. Therefore, alternatives are needed in cases when fish must be released immediately, for example, during egg-collecting operations or after implanting elastomer tags. To evaluate pulsed direct current as an alternative method of immobilization, individual lake trout Salvelinus namaycush were electrically immobilized using various pulsed-DC voltage gradients and shock durations. Duration of opercular recovery and narcosis were measured for individual fish. Fish were euthanized 24 h after electrical immobilization and processed for lateral radiograph analysis and assessment of perivertebral hemorrhaging by dissection. Survival of lake trout after electrical immobilization at 0.6 V/cm for 30 or 40 s or 0.8 V/cm for 5 or 15 s was monitored for 81 or 84 d after immobilization. Mean narcosis duration increased with voltage gradient and shock duration. Larger fish had longer periods of narcosis at the same combination of voltage gradient and shock duration. Radiological evaluation indicated that 9 of 28 fish in the oldest age-class tested had detectable injuries of the vertebral column, but all but one were in the lowest injury category. Although vertebral column injuries were observed in most small fish, the majority of vertebral column injuries were minor compressions involving two to seven vertebrae. Of the 82 lake trout electrically immobilized to assess long-term survival, only 5 died (6%). Our data suggest that lake trout could be electrically immobilized for a sufficient period to allow field workers to collect length and weight data and implant visible implant tags or colored elastomer tags. The technique we used, however, is probably not appropriate for procedures that require immobilization for more than 2a??3 min.

  16. Metabolic alkalosis during immobilization in monkeys (M. nemestrina)

    NASA Technical Reports Server (NTRS)

    Young, D. R.; Yeh, I.; Swenson, R. S.

    1983-01-01

    The systemic and renal acid-base response of monkeys during ten weeks of immobilization was studied. By three weeks of immobilization, arterial pH and bicarbonate concentrations were elevated (chronic metabolic alkalosis). Net urinary acid excretion increased in immobilized animals. Urinary bicarbonate excretion decreased during the first three weeks of immobilization, and then returned to control levels. Sustained increases in urinary ammonium excretion were seen throughout the time duration of immobilization. Neither potassium depletion nor hypokalemia was observed. Most parameters returned promptly to the normal range during the first week of recovery. Factors tentatively associated with changes in acid-base status of monkeys include contraction of extracellular fluid volume, retention of bicarbonate, increased acid excretion, and possible participation of extrarenal buffers.

  17. Immobilization of ammonia-oxidizing bacteria by polyvinyl alcohol and sodium alginate.

    PubMed

    Dong, Yuwei; Zhang, Yanqiu; Tu, Baojun

    Ammonia-oxidizing bacteria were immobilized by polyvinyl alcohol (PVA) and sodium alginate. The immobilization conditions and ammonia oxidation ability of the immobilized bacteria were investigated. The following immobilization conditions were observed to be optimal: PVA, 12%; sodium alginate, 1.1%; calcium chloride, 1.0%; inoculum concentration, 1.3 immobilized balls/mL of immobilized medium; pH, 10; and temperature, 30°C. The immobilized ammonia-oxidizing bacteria exhibited strong ammonia oxidation ability even after being recycled four times. The ammonia nitrogen removal rate of the immobilized ammonia-oxidizing bacteria reached 90.30% under the optimal immobilization conditions. When compared with ammonia-oxidizing bacteria immobilized by sodium alginate alone, the bacteria immobilized by PVA and sodium alginate were superior with respect to pH resistance, the number of reuses, material cost, heat resistance, and ammonia oxidation ability. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets

    NASA Astrophysics Data System (ADS)

    de Queiroz, Alvaro Antonio Alencar; Vitolo, Michele; de Oliveira, Rômulo Cesar; Higa, Olga Zazuco

    1996-06-01

    The graft copolymer poly(ethylene-g-acrylic acid) (LDPE-g-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto low density polyethylene (LDPE) pellets, and characterized by infrared photoacoustic spectroscopy and scanning electron microscopy (SEM). The presence of the grafted poly(acrylic acid) (PAA) was established. Invertase was immobilized onto the graft polymer and the thermodynamic parameters of the soluble and immobilized enzyme were determined. The Michaelis constant, Km, and the maximum reaction velocity, Vmax, were determined for the free and the immobilized invertase. The Michaelis constant, Km was larger for the immobilized invertase than for the free enzyme, whereas Vmax was smaller for the immobilized invertase. The thermal stability of the immobilized invertase was higher than that of the free enzyme.

  19. Intrinsic kinetic parameters of substrate utilization by immobilized anaerobic sludge.

    PubMed

    Zaiat, M; Vieira, L G; Foresti, E

    1997-01-20

    This article presents a method for evaluating the intrinsic kinetic parameters of the specific substrate utilization rate (r) equation and discusses the results obtained for anaerobic sludge-bed samples taken from a horizontal-flow anaerobic immobilized sludge (HAIS) reactor. This method utilizes a differential reactor filled with polyurethane foam matrices containing immobilized anaerobic sludge which is subjected to a range of feeding substrate flow rates. The range of liquid superficial velocities thus obtained are used for generating data of observed specific substrate utilization rates (r(obs)) under a diversity of external mass transfer resistance conditions. The r(obs) curves are then adjusted to permit their extrapolation for the condition of no external mass transfer resistance, and the values determined are used as a test for the condition of absence of limitation of internal mass transfer. The intrinsic parameters r(max), the maximum specific substrate utilization rate, and K(s), the half-velocity coefficient, are evaluated from the r values under no external mass transfer resistance and no internal mass transfer limitation. The application of such a method for anaerobic sludge immobilized in polyurethane foam particles treating a glucose substrate at 30 degrees C resulted in intrinsic r(max) and K(s), respectively, of 0.330 mg chemical oxygen demand (COD) . mg(-1) volatile suspended solids (VSS) . h(-1) and 72 mg COD . L(-1). In comparison with the values found in the literature, intrinsic r(max) is significantly high and intrinsic K(s) is relatively low. (c) 1997 John Wiley & Sons, Inc.

  20. Hard template synthesis of metal nanowires

    PubMed Central

    Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2014-01-01

    Metal nanowires (NWs) have attracted much attention because of their high electron conductivity, optical transmittance, and tunable magnetic properties. Metal NWs have been synthesized using soft templates such as surface stabilizing molecules and polymers, and hard templates such as anodic aluminum oxide, mesoporous oxide, carbon nanotubes. NWs prepared from hard templates are composites of metals and the oxide/carbon matrix. Thus, selecting appropriate elements can simplify the production of composite devices. The resulting NWs are immobilized and spatially arranged, as dictated by the ordered porous structure of the template. This avoids the NWs from aggregating, which is common for NWs prepared with soft templates in solution. Herein, the hard template synthesis of metal NWs is reviewed, and the resulting structures, properties and potential applications are discussed. PMID:25453031

  1. Highly efficient method towards in situ immobilization of invertase using cryogelation.

    PubMed

    Olcer, Zehra; Ozmen, Mehmet Murat; Sahin, Zeynep M; Yilmaz, Faruk; Tanriseven, Aziz

    2013-12-01

    A novel method was developed for the immobilization of Saccharomyces cerevisiae invertase within supermacroporous polyacrylamide cryogel and was used to produce invert sugar. First, the cross-linking of invertase with soluble polyglutaraldehyde (PGA) was carried out prior to immobilization in order to increase the bulkiness of invertase and thus preventing the leakage of the cross-linked enzyme after immobilization by entrapment. And then, in situ immobilization of PGA cross-linked invertase within cryogel synthesis was achieved by free radical polymerization in semi-frozen state. The method resulted in 100 % immobilization and 74 % activity yields. The immobilized invertase retained all the initial activity for 30 days and 30 batch reactions. Immobilization had no effect on optimum temperature and it was 60 °C for both free and immobilized enzyme. However, optimum pH was affected upon immobilization. Optimum pH values for free and immobilized enzyme were 4.5 and 5.0, respectively. The immobilized enzyme was more stable than the free enzyme at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes and microorganisms.

  2. Silica-Immobilized Enzyme Reactors (Postprint)

    DTIC Science & Technology

    2007-09-01

    mode of action of drugs such as aspirin and ibuprofen .[61] Serotonin reuptake inhibitors and monoamine oxidase inhibitors can function as...immobilizing PGA onto chromatography supports and using the enantiomeric selectivity of the enzyme to resolve racemic mixtures.[100] Immobilization onto...column. J. Chroma- togr. B. Biomed. Sci. Appl. 2001, 753, 375–383. 37. Jadaud, P.; Wainer, I.W. The stereochemical resolution of the enantiomers of

  3. Enzymes immobilized in mesoporous silica: a physical-chemical perspective.

    PubMed

    Carlsson, Nils; Gustafsson, Hanna; Thörn, Christian; Olsson, Lisbeth; Holmberg, Krister; Åkerman, Björn

    2014-03-01

    Mesoporous materials as support for immobilized enzymes have been explored extensively during the last two decades, primarily not only for biocatalysis applications, but also for biosensing, biofuels and enzyme-controlled drug delivery. The activity of the immobilized enzymes inside the pores is often different compared to that of the free enzymes, and an important challenge is to understand how the immobilization affects the enzymes in order to design immobilization conditions that lead to optimal enzyme activity. This review summarizes methods that can be used to understand how material properties can be linked to changes in enzyme activity. Real-time monitoring of the immobilization process and techniques that demonstrate that the enzymes are located inside the pores is discussed by contrasting them to the common practice of indirectly measuring the depletion of the protein concentration or enzyme activity in the surrounding bulk phase. We propose that pore filling (pore volume fraction occupied by proteins) is the best standard for comparing the amount of immobilized enzymes at the molecular level, and present equations to calculate pore filling from the more commonly reported immobilized mass. Methods to detect changes in enzyme structure upon immobilization and to study the microenvironment inside the pores are discussed in detail. Combining the knowledge generated from these methodologies should aid in rationally designing biocatalyst based on enzymes immobilized in mesoporous materials. © 2013 Elsevier B.V. All rights reserved.

  4. Advances in ethanol production using immobilized cell systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaritis, A.; Merchant, F.J.A.

    The application of immobilized cell systems for the production of ethanol has resulted in substantial improvements in the efficiency of the process when compared to the traditional free cell system. In this review, the various methods of cell immobilization employed in ethanol production systems have been described in detail. Their salient features, performance characteristics, advantages and limitations have been critically assessed. More recently, these immobilized cell systems have also been employed for the production of ethanol from non-conventional feedstocks such as Jerusalem artichoke extracts, cheese whey, cellulose, cellobiose and xylose. Ethanol production by immobilized yeast and bacterial cells has beenmore » attempted in various bioreactor types. Although most of these studies have been carried out using laboratory scale prototype bioreactors, it appears that only fluidized bed, horizontally packed bed bioreactors and tower fermenters may find application on scale-up. Several studies have indicated that upon immobilization, yeast cells performing ethanol fermentation exhibit more favourable physiological and metabolic properties. This, in addition to substantial improvements in ethanol productivities by immobilized cell systems, is indicative of the fact that future developments in the production of ethanol and alcoholic beverages will be directed towards the use of immobilized cell systems. 291 references.« less

  5. Geochemical and mineralogical study of a site severely polluted with heavy metals (Maatheide, Lommel, Belgium)

    NASA Astrophysics Data System (ADS)

    Horckmans, L.; Swennen, R.; Deckers, J.

    2006-07-01

    The former zinc smelter site ‘de Maatheide’ in Lommel (Belgium) was severely polluted with heavy metals and the pollution spread into the surroundings by rain water leaching and wind transportation. This study focuses on the processes of immobilization and natural attenuation that took place on the site. Three important factors were found. Firstly, the high pH values (pH 7-8) in the topsoil influence the mobility of heavy metals. Secondly, the spodic horizons below the polluted top layer seem to accumulate heavy metals, thereby slowing down their release into the environment. Finally, the glassy phases and iron oxi/hydroxides that are present can encapsulate heavy metals during their formation/recrystallization, thereby immobilizing them. An additional shielding effect results from the reaction rims of goethite around the contaminant phases, which partially inhibit the weathering process and release of contaminants. This shielding effect is an important factor to take into account when modelling contaminant release.

  6. The immobilization of lipase on PVDF-co-HFP membrane

    NASA Astrophysics Data System (ADS)

    Kayhan, Naciye; Eyüpoǧlu, Volkan; Adem, Şevki

    2016-04-01

    Lipase is an enzyme having a lot of different industrial applications such as biodiesel production, biopolymer synthesis, enantiopure pharmaceutical productions, agrochemicals, etc. Its immobilized form on different substances is more conventional and useful than its free form. Supporting material was prepared using PVDF-co-HFP in laboratory conditions and attached 1,4-diaminobutane (DA) and epichlorohydrin (EPI) ligands to the membrane to immobilize lipase enzyme. The immobilization conditions such as enzyme amount, pH, the concentration of salt, thermal stability and activity were stabilized for our experimental setup. Then, biochemical characterizations were performed on immobilized lipase PVDF-co-HFP regarding optimal pH activity, temperature and thermal stability. Also, the desorption ratios of immobilized enzyme in two different pathway were investigated to confirm immobilization stability for 24 hours.

  7. Evaluation of oriented lysozyme immobilized with monoclonal antibody

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Okada, Keigo; Shigyo, Ayako; Man, Naoki; Karen, Akiya

    2008-12-01

    The orientation of a lysozyme immobilized with a monoclonal antibody was evaluated based on determination of the uppermost surface structure using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Specific peaks of the oriented lysozyme immobilized with monoclonal anti-lysozyme antibody were obtained in comparison with reference samples, non-oriented immobilized lysozyme and immobilized anti-lysozyme antibody. All samples were freeze-dried before TOF-SIMS measurement, and then each sample was measured using TOF-SIMS with a bismuth cluster ion source. TOF-SIMS spectra were analyzed to select peaks specific to the oriented immobilized lysozyme as well as to identify their chemical formula and ensemble of amino acids. The possible chemical formulae of the lysozyme fragments were then investigated with an element matching program and a residue matching program. The results from TOF-SIMS spectra analysis were compared to the amino acid sequence of the lysozyme and its three-dimensional structure registered in the protein data bank. Finally, the fragment-ion-generating regions of the oriented immobilized lysozyme were determined based on the suggested residues and the three-dimensional structure.

  8. Short-Term Limb Immobilization Affects Cognitive Motor Processes

    ERIC Educational Resources Information Center

    Toussaint, Lucette; Meugnot, Aurore

    2013-01-01

    We examined the effects of a brief period of limb immobilization on the cognitive level of action control. A splint placed on the participants' left hand was used as a means of immobilization. We used a hand mental rotation task to investigate the immobilization-induced effects on motor imagery performance (Experiments 1 and 2) and a number mental…

  9. Heavy metal pollution in immobile and mobile components of lentic ecosystems-a review.

    PubMed

    Meena, Ramakrishnan Anu Alias; Sathishkumar, Palanivel; Ameen, Fuad; Yusoff, Abdull Rahim Mohd; Gu, Feng Long

    2018-02-01

    With growing population and urbanization, there is an increasing exploitation of natural resources, and this often results to environmental pollution. In this review, the levels of heavy metal in lentic compartments (water, sediment, fishes, and aquatic plants) over the past two decades (1997-2017) have been summarized to evaluate the current pollution status of this ecosystem. In all the compartments, the heavy metals dominated are zinc followed by iron. The major reason could be area mineralogy and lithogenic sources. Enormous quantity of metals like iron in estuarine sediment is a very natural incident due to the permanently reducing condition of organic substances. Contamination of cadmium, lead, and chromium was closely associated with anthropogenic origin. In addition, surrounding land use and atmospheric deposition could have been responsible for substantial pollution. The accumulation of heavy metals in fishes and aquatic plants is the result of time-dependent deposition in lentic ecosystems. Moreover, various potential risk assessment methods for heavy metals were discussed. This review concludes that natural phenomena dominate the accumulation of essential heavy metals in lentic ecosystems compared to anthropogenic sources. Amongst other recent reviews on heavy metals from other parts of the world, the present review is executed in such a way that it explains the presence of heavy metals not only in water environment, but also in the whole of the lentic system comprising sediment, fishes, and aquatic plants.

  10. Quantifying protein microstructure and electrostatic effects on the change in Gibbs free energy of binding in immobilized metal affinity chromatography.

    PubMed

    Pathange, Lakshmi P; Bevan, David R; Zhang, Chenming

    2008-03-01

    Electrostatic forces play a major role in maintaining both structural and functional properties of proteins. A major component of protein electrostatics is the interactions between the charged or titratable amino acid residues (e.g., Glu, Lys, and His), whose pK(a) (or the change of the pK(a)) value could be used to study protein electrostatics. Here, we report the study of electrostatic forces through experiments using a well-controlled model protein (T4 lysozyme) and its variants. We generated 10 T4 lysozyme variants, in which the electrostatic environment of the histidine residue was perturbed by altering charged and neutral amino acid residues at various distances from the histidine (probe) residue. The electrostatic perturbations were theoretically quantified by calculating the change in free energy (DeltaDeltaG(E)) using Coulomb's law. On the other hand, immobilized metal affinity chromatography (IMAC) was used to quantify these perturbations in terms of protein binding strength or change in free energy of binding (DeltaDeltaG(B)), which varies from -0.53 to 0.99 kcal/mol. For most of the variants, there is a good correlation (R(2) = 0.97) between the theoretical DeltaDeltaG(E) and experimental DeltaDeltaG(B) values. However, there are three deviant variants, whose histidine residue was found to be involved in site-specific interactions (e.g., ion pair and steric hindrance), which were further investigated by molecular dynamics simulation. This report demonstrates that the electrostatic (DeltaDeltaG(Elec)) and microstructural effects (DeltaDeltaG(Micro)) in a protein can be quantified by IMAC through surface histidine mediated protein-metal ion interaction and that the unique microstructure around a histidine residue can be identified by identifying the abnormal binding behaviors during IMAC.

  11. Immobilization of Aspergillus niger xylanase on magnetic latex beads.

    PubMed

    Tyagi, R; Gupta, M N

    1995-04-01

    Xylanase from Pectinex 3XL was purified 70-fold by precipitation with an enteric polymer, Eudragit S-100. The purified xylanase was immobilized on magnetic latex beads via carbodi-imide coupling. The immobilized preparation showed 80% of the total activity bound to the beads. The pH optimum remained unchanged at 6.0 and the Km increased from 0.25 g/100 ml (free enzyme) to 0.39 g/100 ml on immobilization. Immobilization resulted in significant thermal stability at 60 degrees C. The time course of hydrolysis of xylan at 60 degrees C by free enzyme as well as immobilized enzyme was also studied.

  12. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase

    NASA Astrophysics Data System (ADS)

    Konwarh, Rocktotpal; Karak, Niranjan; Rai, Sudhir Kumar; Mukherjee, Ashis Kumar

    2009-06-01

    Nanotechnology holds the prospect for avant-garde changes to improve the performance of materials in various sectors. The domain of enzyme biotechnology is no exception. Immobilization of industrially important enzymes onto nanomaterials, with improved performance, would pave the way to myriad application-based commercialization. Keratinase produced by Bacillus subtilis was immobilized onto poly(ethylene glycol)-supported Fe3O4 superparamagnetic nanoparticles. The optimization process showed that the highest enzyme activity was noted when immobilized onto cyanamide-activated PEG-assisted MNP prepared under conditions of 25 °C and pH 7.2 of the reaction mixture before addition of H2O2 (3% w/w), 2% (w/v) PEG6000 and 0.062:1 molar ratio of PEG to FeCl2·4H2O. Further statistical optimization using response surface methodology yielded an R2 value that could explain more than 94% of the sample variations. Along with the magnetization studies, the immobilization of the enzyme onto the PEG-assisted MNP was characterized by UV, XRD, FTIR and TEM. The immobilization process had resulted in an almost fourfold increase in the enzyme activity over the free enzyme. Furthermore, the immobilized enzyme exhibited a significant thermostability, storage stability and recyclability. The leather-industry-oriented application of the immobilized enzyme was tested for the dehairing of goat-skin.

  13. Methane storage in metal-organic frameworks.

    PubMed

    He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin

    2014-08-21

    Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.

  14. Effects of the immobilization supports on the catalytic properties of immobilized mushroom tyrosinase: a comparative study using several substrates.

    PubMed

    Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio

    2007-09-30

    Mushroom tyrosinase was immobilized from an extract onto glass beads covered with one of the following compounds: the crosslinked totally cinnamoylated derivatives of glycerine, D-sorbitol, D-manitol, 1,2-O-isopropylidene-alpha-D-glucofuranose, D-glucuronic acid, D-gulonic acid, sucrose, D-glucosone, D-arabinose, D-fructose, D-glucose, ethyl-D-glucopyranoside, inuline, dextrine, dextrane or starch, or the partially cinnamoylated derivative 3,5,6-tricinnamoyl-D-glucofuranose which was obtained by the acid hydrolysis of 1,2-O-isopropylidene-alpha-d-glucofuranose. The enzyme was immobilized by direct adsorption onto the support and the quantity of tyrosinase immobilized was found to increase with the hydrophobicity of the supports. The kinetic constants of immobilized tyrosinase acting on the substrates, 4-tert-butylcatechol, dopamine and DL-dopa, were studied. When immobilized tyrosinase acted on 4-tert-butylcatechol, the values of K(m)(app) were lower than these obtained for tyrosinase in solution while, when dopamine and DL-dopa were used, the K(m)(app) were higher. The order of the substrates as regards their ionizable groups, DL-dopa (two ionizable groups)>dopamine (one ionizable group)>4-tert-butylcatechol (no ionizable group) coincided with the order of the K(m)(app) values shown by tyrosinase immobilized on the hydrophobic supports, and was the inverse of that observed for tyrosinase in solution. The K(m)(app) values of immobilized tyrosinase were in all cases higher than those of soluble tyrosinase and depended on the nature of the support and the hydrophobicity of the substrate, meaning that it is possible to design supports with different degrees of selectivity towards a mixture of enzyme substrates in the reaction medium.

  15. Fungal nanoscale metal carbonates and production of electrochemical materials.

    PubMed

    Li, Qianwei; Gadd, Geoffrey Michael

    2017-09-01

    Fungal biomineralization of carbonates results in metal removal from solution or immobilization within a solid matrix. Such a system provides a promising method for removal of toxic or valuable metals from solution, such as Co, Ni, and La, with some carbonates being of nanoscale dimensions. A fungal Mn carbonate biomineralization process can be applied for the synthesis of novel electrochemical materials. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  16. Immobilized chiral tropine ionic liquid on silica gel as adsorbent for separation of metal ions and racemic amino acids.

    PubMed

    Qian, Guofei; Song, Hang; Yao, Shun

    2016-01-15

    Tropine-type chiral ionic liquid with proline anion was immobilized on silica gel by chemical modification method for the first time, which was proved by elemental, infrared spectrum and thermogravimetric analysis. Secondly, the performance of this kind of ionic liquid-modified silica gel was investigated in the adsorption of some metal ions, which included Cu(2+), Fe(3+), Mn(2+) and Ni(2+). Then the effects of time, initial concentration and temperature on adsorption for Cu(2+) ions were studied in detail, which was followed by the further research of adsorption kinetics and thermodynamics. The adsorption could be better described by pseudo-second-order kinetics model and that the process was spontaneous, exothermic and entropy decreasing. In the mode of 'reuse after adsorption', the ionic liquid-modified silica gel with saturated adsorption of Cu(2+) was finally used in resolution of racemic amino acids for the first time. The static experiment showed that adsorption rate of two enantiomers was obviously different. Inspired by this, the complex was packed in chromatographic column for the separation of racemic amino acids and d-enantiomers were firstly eluted by water or ethanol. Steric hindrance was found as one of key influencing factors for its effect on the stability of the complex. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Biosorption of americium-241 by immobilized Rhizopus arrihizus.

    PubMed

    Liao, Jiali; Yang, Yuanyou; Luo, Shunzhong; Liu, Ning; Jin, Jiannan; Zhang, Taiming; Zhao, Pengji

    2004-01-01

    Rhizopus arrihizus (R. arrihizus), a fungus, which in previous experiments had shown encouraging ability to remove 241Am from solutions, was immobilized by calcium alginate and other reagents. The various factors affecting 241Am biosorption by the immobilized R. arrihizus were investigated. The results showed that not only can immobilized R. arrihizus adsorb 241Am as efficiently as free R. arrihizus, but that also can be used repeatedly or continuously. The biosorption equilibrium was achieved within 2 h, and more than 94% of 241Am was removed from 241Am solutions of 1.08 MBq/l by immobilized R. arrihizu in the pH range 1-7. Temperature did not affect the adsorption on immobilized R. arrihizus in the range 15-45 degrees C. After repeated adsorption for 8 times, the immobilized R. arrihizus still adsorbed more than 97% of 241Am. At this time, the total adsorption of 241Am was more than 88.6 KBq/g, and had not yet reached saturation. Ninety-five percent of the adsorbed 241Am was desorbed by saturated EDTA solution and 98% by 2 mol/l HNO(3).

  18. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.

    PubMed

    Antonkiewicz, Jacek; Para, Andrzej

    2016-01-01

    Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.

  19. Metal binding characterization and conformational studies using Raman microscopy of resin-bound poly(aspartic acid).

    PubMed

    Stair, Jacqueline L; Holcombe, James A

    2007-03-01

    The metal binding capacities, conditional stability constants, and secondary structure of immobilized polyaspartic acid (PLAsp) (n = 6, 20, and 30) on TentaGel resin were determined when binding Mg2+, Co2+, Cd2+, and Ni2+. Metal binding to the synthesized peptides was evaluated using breakthrough curves from a packed microcolumn and flame atomic absorption spectrophotometry (FAAS) detection. The metal capacities reached values of 590, 2160, and 3710 mumol of metal/g of resin for the 6-mer, 20-mer, and 30-mer, respectively, and this resulted in 2-3 residues per metal for all peptides and metals tested. Surprisingly, the concentrated environment of the resin along with the spatial distribution of attachment groups allowed for most residues to participate in metal binding regardless of the peptide length. Conditional stability constants calculated using single metal binding isotherms indicated that binding strength decreased as the chain length increased on the resin. Raman microscopy on single beads was used to determine PLAsp secondary structure, and all peptides were of a mixed conformation (i.e., beta-sheets, alpha-helices, random chain, etc.) during neutral conditioning and metal binding. Uniquely, the longer 20-mer and 30-mer peptides showed a distinct change from a mixed conformation to beta-sheets and alpha-helices during metal release with acid. This study confirms that metal release by longer immobilized peptides is often assisted by a conformational change, which easily spoils the binding cavity, while shorter peptides may release metal primarily by H+ displacement.

  20. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure.

    PubMed

    Meng, Jun; Tao, Mengming; Wang, Lili; Liu, Xingmei; Xu, Jianming

    2018-08-15

    Biochar has been utilized as a good amendment to immobilize heavy metals in contaminated soils. However, the effectiveness of biochar in metal immobilization depends on biochar properties and metal species. In this study, the biochars produced from co-pyrolysis of rice straw with swine manure at 400°C were investigated to evaluate their effects on bioavailability and chemical speciation of four heavy metals (Cd, Cu, Pb and Zn) in a Pb-Zn contaminated soil through incubation experiment. Results showed that co-pyrolysis process significantly change the yield, ash content, pH, and electrical conductivity (EC) of the blended biochars compared with the single straw/manure biochar. The addition of these biochars significantly increased the soil pH, EC, and dissolved organic carbon (DOC) concentrations. The addition of biochars at a rate of 3% significantly reduced the CaCl 2 -extractable metal concentrations in the order of Pb>Cu>Zn>Cd. The exchangeable heavy metals decreased in all the biochar-amended soils whereas the carbonate-bound metal speciation increased. The increase in soil pH and the decrease in the CaCl 2 extractable metals indicated that these amendments can directly transform the highly availability metal speciation to the stable speciation in soils. In conclusion, biochar derived from co-pyrolysis of rice straw with swine manure at a mass ratio of 3:1 could most effectively immobilize the heavy metals in the soil. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar.

    PubMed

    Fang, Shen'en; Tsang, Daniel C W; Zhou, Fengsha; Zhang, Weihua; Qiu, Rongliang

    2016-04-01

    Currently, sludge pyrolysis has been considered as a promising technology to solve disposal problem of municipal sewage sludge, recover sludge heating value, sequester carbon and replenish nutrients in farmland soils. The resultant sludge-derived biochar (SDBC) is potentially an excellent stabilizing agent for metal species. This study applied the SDBC into four soils that had been contaminated in field with cationic Pb(II) and Cd(II)/Ni(II), and anionic Cr(VI) and As(III), respectively. The performance of metal stabilization under various operational and environmental conditions was evaluated with acid batch extraction and column leaching tests. Results indicated the SDBC could effectively stabilize these metals, which was favored by elevated temperature and longer aging. Periodic temperature decrease from 45 to 4 °C resulted in the release of immobilized Cr(VI) and As(III) but not Pb(II). However, a longer aging time offset such metal remobilization. This was possibly because more Pb was strongly bound and even formed stable precipitates, as shown by XRD and sequential extraction results. With increasing time, Cr(VI) was sorbed and partly reduced to Cr(III), while immobilized As(III) was co-oxidized to As(V) as indicated by XPS spectra. Column tests revealed that adding SDBC as a separate layer was unfavorable because the concentrated Cd(II) and Ni(II) in localized positions increased the peak levels of metal release under continuous acid leaching. In contrast, uniformly mixed SDBC could effectively delay the metal breakthrough and reduce their released amounts. Yet, a long-term monitoring may be required for evaluating the potential leaching risks and bioavailability/toxicity of these immobilized and transformed species in the SDBC-amended soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Enzyme Engineering for In Situ Immobilization.

    PubMed

    Rehm, Fabian B H; Chen, Shuxiong; Rehm, Bernd H A

    2016-10-14

    Enzymes are used as biocatalysts in a vast range of industrial applications. Immobilization of enzymes to solid supports or their self-assembly into insoluble particles enhances their applicability by strongly improving properties such as stability in changing environments, re-usability and applicability in continuous biocatalytic processes. The possibility of co-immobilizing various functionally related enzymes involved in multistep synthesis, conversion or degradation reactions enables the design of multifunctional biocatalyst with enhanced performance compared to their soluble counterparts. This review provides a brief overview of up-to-date in vitro immobilization strategies while focusing on recent advances in enzyme engineering towards in situ self-assembly into insoluble particles. In situ self-assembly approaches include the bioengineering of bacteria to abundantly form enzymatically active inclusion bodies such as enzyme inclusions or enzyme-coated polyhydroxyalkanoate granules. These one-step production strategies for immobilized enzymes avoid prefabrication of the carrier as well as chemical cross-linking or attachment to a support material while the controlled oriented display strongly enhances the fraction of accessible catalytic sites and hence functional enzymes.

  3. Halloysite Clay Nanotubes for Enzyme Immobilization.

    PubMed

    Tully, Joshua; Yendluri, Raghuvara; Lvov, Yuri

    2016-02-08

    Halloysite clay is an aluminosilicate nanotube formed by rolling flat sheets of kaolinite clay. They have a 15 nm lumen, 50-70 nm external diameter, length of 0.5-1 μm, and different inside/outside chemistry. Due to these nanoscale properties, they are used for loading, storage, and controlled release of active chemical agents, including anticorrosions, biocides, and drugs. We studied the immobilization in halloysite of laccase, glucose oxidase, and lipase. Overall, negatively charged proteins taken above their isoelectric points were mostly loaded into the positively charged tube's lumen. Typical tube loading with proteins was 6-7 wt % from which one-third was released in 5-10 h and the other two-thirds remained, providing enhanced biocatalysis in nanoconfined conditions. Immobilized lipase showed enhanced stability at acidic pH, and the optimum pH shifted to more alkaline pH. Immobilized laccase was more stable with respect to time, and immobilized glucose oxidase showed retention of enzymatic activity up to 70 °C, whereas the native sample was inactive.

  4. Protein immobilization onto various surfaces using a polymer-bound isocyanate

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Jin; Cha, Eun Ji; Park, Hee-Deung

    2015-01-01

    Silane coupling agents have been widely used for immobilizing proteins onto inorganic surfaces. However, the immobilization method using silane coupling agents requires several treatment steps, and its application is limited to only surfaces containing hydroxyl groups. The aim of this study was to develop a novel method to overcome the limitations of the silane-based immobilization method using a polymer-bound isocyanate. Initially, polymer-bound isocyanate was dissolved in organic solvent and then was used to dip-coat inorganic surfaces. Proteins were then immobilized onto the dip-coated surfaces by the formation of urea bonds between the isocyanate groups of the polymer and the amine groups of the protein. The reaction was verified by FT-IR in which NCO stretching peaks disappeared, and CO and NH stretching peaks appeared after immobilization. The immobilization efficiency of the newly developed method was insensitive to reaction temperatures (4-50 °C), but the efficiency increased with reaction time and reached a maximum after 4 h. Furthermore, the method showed comparable immobilization efficiency to the silane-based immobilization method and was applicable to surfaces that cannot form hydroxyl groups. Taken together, the newly developed method provides a simple and efficient platform for immobilizing proteins onto surfaces.

  5. Ethanol production using immobilized Saccharomyces cerevisiae in lyophilized cellulose gel.

    PubMed

    Winkelhausen, Eleonora; Velickova, Elena; Amartey, Samuel A; Kuzmanova, Slobodanka

    2010-12-01

    A new lyophilization technique was used for immobilization of Saccharomyces cerevisiae cells in hydroxyethylcellulose (HEC) gels. The suitability of the lyophilized HEC gels to serve as immobilization matrices for the yeast cells was assessed by calculating the immobilization efficiency and the cell retention in three consecutive batches, each in duration of 72 h. Throughout the repeated batch fermentation, the immobilization efficiency was almost constant with an average value of 0.92 (12-216 h). The maximum value of cell retention was 0.24 g immobilized cells/g gel. Both parameters indicated that lyophilized gels are stable and capable of retaining the immobilized yeast cells. Showing the yeast cells propagation within the polymeric matrix, the scanning electron microscope images also confirmed that the lyophilization technique for immobilization of S. cerevisiae cells in the HEC gels was successful. The activity of the immobilized yeast cells was demonstrated by their capacity to convert glucose to ethanol. Ethanol yield of 0.40, 0.43 and 0.30 g ethanol/g glucose corresponding to 79%, 84% and 60% of the theoretical yield was attained in the first, second and third batches, respectively. The cell leakage was less than 10% of the average concentration of the immobilized cells.

  6. Aroma formation by immobilized yeast cells in fermentation processes.

    PubMed

    Nedović, V; Gibson, B; Mantzouridou, T F; Bugarski, B; Djordjević, V; Kalušević, A; Paraskevopoulou, A; Sandell, M; Šmogrovičová, D; Yilmaztekin, M

    2015-01-01

    Immobilized cell technology has shown a significant promotional effect on the fermentation of alcoholic beverages such as beer, wine and cider. However, genetic, morphological and physiological alterations occurring in immobilized yeast cells impact on aroma formation during fermentation processes. The focus of this review is exploitation of existing knowledge on the biochemistry and the biological role of flavour production in yeast for the biotechnological production of aroma compounds of industrial importance, by means of immobilized yeast. Various types of carrier materials and immobilization methods proposed for application in beer, wine, fruit wine, cider and mead production are presented. Engineering aspects with special emphasis on immobilized cell bioreactor design, operation and scale-up potential are also discussed. Ultimately, examples of products with improved quality properties within the alcoholic beverages are addressed, together with identification and description of the future perspectives and scope for cell immobilization in fermentation processes. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Removal of acetaminophen in water by laccase immobilized in barium alginate.

    PubMed

    Ratanapongleka, Karnika; Punbut, Supot

    2018-02-01

    This research has focused on the optimization of immobilized laccase condition and utilization in degradation of acetaminophen contaminated in aqueous solution. Laccase from Lentinus polychrous was immobilized in barium alginate. The effects of laccase immobilization such as sodium alginate concentration, barium chloride concentration and gelation time were studied. The optimal conditions for immobilization were sodium alginate 5% (w/v), barium chloride 5% (w/v) and gelation time of 60 min. Immobilized laccase was then used for acetaminophen removal. Acetaminophen was removed quickly in the first 50 min. The degradation rate and percentage of removal increased when the enzyme concentration increased. Immobilized laccase at 0.57 U/g-alginate showed the maximum removal at 94% in 240 min. The removal efficiency decreased with increasing initial acetaminophen concentration. The K m value for immobilized laccase (98.86 µM) was lower than that of free laccase (203.56 µM), indicating that substrate affinity was probably enhanced by immobilization. The immobilized enzyme exhibited high activity and good acetaminophen removal at pH 7 and temperature of 35°C. The activation energies of free and immobilized laccase for degradation of acetaminophen were 8.08 and 17.70 kJ/mol, respectively. It was also found that laccase stability to pH and temperature increased after immobilization. Furthermore, immobilized laccase could be reused for five cycles. The capability of removal and enzyme activity were retained above 70%.

  8. Polymer-Immobilized Photosensitizers for Continuous Eradication of Bacteria

    PubMed Central

    Valkov, Anton; Nakonechny, Faina; Nisnevitch, Marina

    2014-01-01

    The photosensitizers Rose Bengal (RB) and methylene blue (MB), when immobilized in polystyrene, were found to exhibit high antibacterial activity in a continuous regime. The photosensitizers were immobilized by dissolution in chloroform, together with polystyrene, with further evaporation of the solvent, yielding thin polymeric films. Shallow reservoirs, bottom-covered with these films, were used for constructing continuous-flow photoreactors for the eradication of Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli and wastewater bacteria under illumination with visible white light using a luminescent lamp at a 1.8 mW·cm−2 fluence rate. The bacterial concentration decreased by two to five orders of magnitude in separate reactors with either immobilized RB or MB, as well as in three reactors connected in series, which contained one of the photosensitizers. Bacterial eradication reached more than five orders of magnitude in two reactors connected in series, where the first reactor contained immobilized RB and the second contained immobilized MB. PMID:25158236

  9. Change in blood glucose level in rats after immobilization

    NASA Technical Reports Server (NTRS)

    Platonov, R. D.; Baskakova, G. M.; Chepurnov, S. A.

    1981-01-01

    Experiments were carried out on male white rats divided into four groups. In group one the blood glucose level was determined immediately after immobilization. In the other three groups, two hours following immobilization, the blood glucose level was determined every 20 minutes for 3 hours 40 minutes by the glucose oxidase method. Preliminary immobilization for 2 hours removed the increase in the blood glucose caused by the stress reaction. By the 2nd hour of immobilization in the presence of continuing stress, the blood glucose level stabilized and varied within 42 + or - 5.5 and 47 + or - 8.1 mg %. Within 2 hours after the immobilization, the differences in the blood glucose level of the rats from the control groups were statistically insignificant.

  10. Tannin-immobilized mesoporous silica bead (BT-SiO2) as an effective adsorbent of Cr(III) in aqueous solutions.

    PubMed

    Huang, Xin; Liao, Xuepin; Shi, Bi

    2010-01-15

    This study describes a new approach for the preparation of tannin-immobilized adsorbent by using mesoporous silica bead as the supporting matrix. Bayberry tannin-immobilized mesoporous silica bead (BT-SiO2) was characterized by powder X-ray diffraction to verify the crystallinity, field-emission scanning electron microscopy to observe the surface morphology, and surface area and porosity analyzer to measure the mesoporous porous structure. Subsequently, the adsorption experiments to Cr(III) were applied to evaluate the adsorption performances of BT-SiO2. It was found that the adsorption of Cr(III) onto BT-SiO2 was pH-dependent, and the maximum adsorption capacity was obtained in the pH range of 5.0-5.5. The adsorption capacity was 1.30 mmol g(-1) at 303 K and pH 5.5 when the initial concentration of Cr(III) was 2.0 mmol L(-1). Based on proton nuclear magnetic resonance (HNMR) analyses, the adsorption mechanism of Cr(III) on BT-SiO2 was proved to be a chelating interaction. The adsorption kinetic data can be well described using pseudo-first-order model and the equilibrium data can be well fitted by the Langmuir isothermal model. Importantly, no bayberry tannin was leached out during the adsorption process and BT-SiO2 can simultaneously remove coexisting metal ions from aqueous solutions. In conclusion, this study provides a new strategy for the preparation of tannin-immobilized adsorbents that are highly effective in removal of heavy metals from aqueous solutions.

  11. Use of wastewater ER sludges for the immobilization of heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, S.; Murray, D.; Urasa, I.T.

    1996-10-01

    The distribution, mobility, and bioavailability of heavy metals in soils, surface water, and ground water have been of major interest and concern from both environmental and geochemical standpoints. Wastewater sludges represent an important anthropogenic factor whose impact on these processes is not fully understood. In the past, incineration and landfilling were common practices for discarding wastewater sludges. However, as local and state laws governing the disposal of these materials have become more stringent, land application has been used as an alternative. Reported studies have shown that the impact of land application of sludges can vary widely and is influenced bymore » a number of factors, including the source of the sludge; the organic matter content of the sludge; the form in which the sludge is applied; and the prevailing conditions of the receiving soils. It has also been shown that sewage sludge can have solubilizing effects on solid-phase heavy metals, thereby causing geochemical shifts of the insoluble fractions of metals to the more soluble forms. The work presented in this paper utilized synthetic minerals, standard solutions, sludges, and agricultural soils obtained from different sources to determine the mechanisms involved in the mineralization of heavy metals by sludge; the influence of soil conditions; interelemental effects; the influence of natural organic matter; and possible microbial activity that may come into play. Several types of sludge were evaluated for lead binding capacity.« less

  12. Tandem Nitrogen Functionalization of Porous Carbon: Toward Immobilizing Highly Active Palladium Nanoclusters for Dehydrogenation of Formic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhangpeng; Yang, Xinchun; Tsumori, Nobuko

    2017-03-10

    Highly dispersed palladium nanoclusters (Pd NCs) immobilized by a nitrogen (N)-functionalized porous carbon support (N-MSC-30) are synthesized by a wet chemical reduction method, wherein the N-MSC-30 prepared by a tandem low temperature heat-treatment approach proved to be a distinct support for stabilizing the Pd NCs. The prepared Pd/N-MSC-30 shows extremely high catalytic activity and recyclability for the dehydrogenation of formic acid (FA), affording the highest turnover frequency (TOF = 8414 h -1) at 333 K, which is much higher than that of the Pd catalyst supported on the N-MSC-30 prepared via a one-step process. This tandem heat treatment strategy providesmore » a facile and effective synthetic methodology to immobilize ultrafine metal NPs on N-functionalized carbon materials, which have tremendous application prospects in various catalytic fields.« less

  13. Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.

    PubMed

    Cha, Jaehyun; Kwon, Inchan

    2018-02-27

    Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A simple and robust approach to immobilization of antibody fragments.

    PubMed

    Ikonomova, Svetlana P; He, Ziming; Karlsson, Amy J

    2016-08-01

    Antibody fragments, such as the single-chain variable fragment (scFv), have much potential in research and diagnostics because of their antigen-binding ability similar to a full-sized antibody and their ease of production in microorganisms. Some applications of antibody fragments require immobilization on a surface, and we have established a simple immobilization method that is based on the biotin-streptavidin interaction and does not require a separate purification step. We genetically fused two biotinylation tags-the biotin carboxyl carrier protein (BCCP) or the AviTag minimal sequence-to six different scFvs (scFv13R4, scFvD10, scFv26-10, scFv3, scFv5, and scFv12) for site-specific biotinylation in vivo by endogenous biotin ligases produced by Escherichia coli. The biotinylated scFvs were immobilized onto streptavidin-coated plates directly from cell lysates, and immobilization was detected through enzyme-linked immunosorbent assays. All scFvs fusions were successfully immobilized, and scFvs biotinylated via the BCCP tag tended to immobilize better than those biotinylated via the AviTag, even when biotinylation efficiency was improved with the biotin ligase BirA. The ability of immobilized scFvs to bind antigens was confirmed using scFv13R4 and scFvD10 with their respective targets β-galactosidase and bacteriophage lambda head protein D (gpD). The immobilized scFv13R4 bound to β-galactosidase at the same level for both biotinylation tags when the surface was saturated with the scFv, and immobilized scFvs retained their functionality for at least 100days after immobilization. The simplicity and robustness of our method make it a promising approach for future applications that require antibody fragment immobilization. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Surface plasmon resonance measurement of pH-induced responses of immobilized biomolecules: conformational change or electrostatic interaction effects?

    PubMed

    Paynter, Sally; Russell, David A

    2002-10-01

    Recently, the observation of pH-induced conformational changes of biomolecules supported on carboxymethyldextran (CMD)-coated surfaces measured using surface plasmon resonance (SPR) has been reported. However, it is apparent that the evidence reported in the literature is ambiguous. The research presented in this paper describes investigations to study the changing SPR signal of immobilized biomolecules as a function of varying pH, to provide a detailed understanding of the origin of the pH-induced changes in the SPR profile. SPR measurements were performed with cytochrome c, concanavalin A, and poly-L-lysine, biomolecules that exhibit diverse conformational responses to changing pH, covalently immobilized onto CMD-coated supports. These SPR measurements were supported by circular dichroism (CD) solution studies. The SPR profiles recorded were not consistent with the conformational transitions of the biomolecules as observed using CD. An alternative explanation for the observed shifts in SPR is proposed, which explains the SPR profiles in terms of electrostatic interaction effects between the immobilized biomolecules and the carboxymethyldextran matrix.

  16. Immobilization of Fast Reactor First Cycle Raffinate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langley, K. F.; Partridge, B. A.; Wise, M.

    This paper describes the results of work to bring forward the timing for the immobilization of first cycle raffinate from reprocessing fuel from the Dounreay Prototype Fast Reactor (PFR). First cycle raffinate is the liquor which contains > 99% of the fission products separated from spent fuel during reprocessing. Approximately 203 m3 of raffinate from the reprocessing of PFR fuel is held in four tanks at the UKAEA's site at Dounreay, Scotland. Two methods of immobilization of this high level waste (HLW) have been considered: vitrification and cementation. Vitrification is the standard industry practice for the immobilization of first cyclemore » raffinate, and many papers have been presented on this technique elsewhere. However, cementation is potentially feasible for immobilizing first cycle raffinate because the heat output is an order of magnitude lower than typical HLW from commercial reprocessing operations such as that at the Sellafield site in Cumbria, England. In fact, it falls within the upper end of the UK definition of intermediate level waste (ILW). Although the decision on which immobilization technique will be employed has yet to be made, initial development work has been undertaken to identify a suitable cementation formulation using inactive simulant of the raffinate. An approach has been made to the waste disposal company Nirex to consider the disposability of the cemented product material. The paper concentrates on the process development work that is being undertaken on cementation to inform the decision making process for selection of the immobilization method.« less

  17. Effect of protein load on stability of immobilized enzymes.

    PubMed

    Fernandez-Lopez, Laura; Pedrero, Sara G; Lopez-Carrobles, Nerea; Gorines, Beatriz C; Virgen-Ortíz, Jose J; Fernandez-Lafuente, Roberto

    2017-03-01

    Different lipases have been immobilized on octyl agarose beads at 1mg/g and at maximum loading, via physical interfacial activation versus the octyl layer on the support. The stability of the preparations was analyzed. Most biocatalysts had the expected result: the apparent stability increased using the highly loaded preparations, due to the diffusional limitations that reduced the initial observed activity. However, lipase B from Candida antarctica (CALB) was significantly more stable using the lowly loaded preparation than the maximum loaded one. This negative effect of the enzyme crowding on enzyme stability was found in inactivations at pH 5, 7 or 9, but not in inactivations in the presence of organic solvents. The immobilization using ethanol to reduce the immobilization rate had no effect on the stability of the lowly loaded preparation, while the highly loaded enzyme biocatalysts increased their stabilities, becoming very similar to that of the lowly loaded preparation. Results suggested that CALB molecules immobilized on octyl agarose may be closely packed together due to the high immobilization rate and this produced some negative interactions between immobilized enzyme molecules during enzyme thermal inactivation. Slowing-down the immobilization rate may be a solution for this unexpected problem. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Immobilized humic substances and immobilized aggregates of humic substances as sorbent for solid phase extraction.

    PubMed

    Erny, Guillaume L; Gonçalves, Bruna M; Esteves, Valdemar I

    2013-09-06

    In this work, humic substances (HS) immobilized, as a thin layer or as aggregates, on silica gel were tested as material for solid phase extraction. Some triazines (simazine, atrazine, therbutylazine, atrazine-desethyl-desisopropyl-2-hydroxy, ametryn and terbutryn), have been selected as test analytes due to their environmental importance and to span a large range of solubility and octanol/water partition coefficient (logP). The sorbent was obtained immobilizing a thin layer of HS via physisorption on a pre-coated silica gel with a cationic polymer (polybrene). While the sorbent could be used as it is, it was demonstrated that additional HS could be immobilized, via weak interactions, to form stable humic aggregates. However, while a higher quantity of HS could be immobilized, no significant differences were observed in the sorption parameters. This sorbent have been tested for solid phase extraction to concentrate triazines from aqueous matrixes. The sorbent demonstrated performances equivalent to commercial alternatives as a concentration factor between 50 and 200, depending on the type of triazines, was obtained. Moreover the low cost and the high flow rate of sample through the column allowed using high quantity of sorbent. The analytical procedure was tested with different matrixes including tap water, river water and estuarine water. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. 1-butanethiol vapor sensing based on gold nanoparticle immobilized on glass slide by digital color analysis

    NASA Astrophysics Data System (ADS)

    Shokoufi, Nader; Adeleh, Sara

    2017-12-01

    We demonstrate that gold nanoparticles (GNPs) immobilized on silanized glass act as an optical sensor that is able to quantify 1-butanethiol vapor. GNPs optical properties in the visible region are dominated by the surface plasmon resonance (SPR). The high affinity between 1-butanethiol and GNPs through Au-s bond leads to change in plasmon feature of GNPs that immobilized on silanized glass and causes absorption decrease at 542 nm in SPR spectrum of GNPs. It can be used as an optical sensor for quantitative detection. In this research, the glass slide surface activated by aminopropyltriethoxysilane (APTES). Spherical GNPs immobilized on silanized glass by silanization agent. The sensor is based on the spectrophotometry and digital color analysis (DCA) through RGB. We monitored R value and linear range 50-700 µM (R 2  =  0.97) with 2.05% relative standard deviation and 26.5 µM value was achieved, for the limit of detection. This method represents advantages of metal gold nanoparticles and solid substrate stability in one package, being inexpensive and low time consuming is another advantage of our method that can be conducted in petrochemical, pharmaceutical industries, and for detection of rotten food in food industries.

  20. Kinetics and bioreactor studies of immobilized invertase on polyurethane rigid adhesive foam.

    PubMed

    Cadena, Pabyton G; Wiggers, Frank N; Silva, Roberto A; Lima Filho, José L; Pimentel, Maria C B

    2011-01-01

    A new support, polyurethane rigid adhesive foam (PRAF), which can be used to cover internal surface of metallic tubes, was used to immobilize invertase for application in an enzymatic bioreactor. The kinetic parameters were: Km--46.5±1.9 mM (PRAF-invertase) and 61.2±0.1 mM (free enzyme) and Vmax 42.0±4.3 U/mg protein/min (PRAF-invertase) and 445.3±24.0 U/mg protein/min (free invertase). The PRAF-invertase derivative maintained 50.1% of initial activity (69.17 U/g support) for 8 months (4°C) and was not observed microbial contamination. The bioreactor showed the best production of inverted sugar syrup using up-flow rate (0.48 L/h) with average conversion of 10.64±1.5% h(-1) at feeding rate (D) of 104 h(-1). The operational inactivation rate constant (kopi) and half-life were 1.92×10(-4) min(-1) and 60 h (continue use). The PRAF spray support looks promising as a new alternative to produce immobilized derivatives on reactor surfaces. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Creating Hierarchical Pores by Controlled Linker Thermolysis in Multivariate Metal-Organic Frameworks.

    PubMed

    Feng, Liang; Yuan, Shuai; Zhang, Liang-Liang; Tan, Kui; Li, Jia-Luo; Kirchon, Angelo; Liu, Ling-Mei; Zhang, Peng; Han, Yu; Chabal, Yves J; Zhou, Hong-Cai

    2018-02-14

    Sufficient pore size, appropriate stability, and hierarchical porosity are three prerequisites for open frameworks designed for drug delivery, enzyme immobilization, and catalysis involving large molecules. Herein, we report a powerful and general strategy, linker thermolysis, to construct ultrastable hierarchically porous metal-organic frameworks (HP-MOFs) with tunable pore size distribution. Linker instability, usually an undesirable trait of MOFs, was exploited to create mesopores by generating crystal defects throughout a microporous MOF crystal via thermolysis. The crystallinity and stability of HP-MOFs remain after thermolabile linkers are selectively removed from multivariate metal-organic frameworks (MTV-MOFs) through a decarboxylation process. A domain-based linker spatial distribution was found to be critical for creating hierarchical pores inside MTV-MOFs. Furthermore, linker thermolysis promotes the formation of ultrasmall metal oxide nanoparticles immobilized in an open framework that exhibits high catalytic activity for Lewis acid-catalyzed reactions. Most importantly, this work provides fresh insights into the connection between linker apportionment and vacancy distribution, which may shed light on probing the disordered linker apportionment in multivariate systems, a long-standing challenge in the study of MTV-MOFs.

  2. Immobilization: A Revolution in Traditional Brewing

    NASA Astrophysics Data System (ADS)

    Virkajärvi, Ilkka; Linko, Matti

    In nature many micro-organisms tend to bind to solid surfaces. This tendency has long been utilized in a number of processes, for example in producing vinegar and acetic acid in bioreactors filled with wood shavings. Acetobacteria are attached to the surface of these shavings. In modern technical language: they are immobilized. Also yeast cells can be immobilized. In the brewing industry this has been the basis for maintaining efficient, continuous fermentation in bioreactors with very high yeast concentrations. The most dramatic change in brewing over recent years has been the replacement of traditional lagering of several weeks by a continuous process in which the residence time is only about 2h. Continuous primary fermentation is used on a commercial scale in New Zealand. In this process, instead of a carrier, yeast is retained in reactors by returning it partly after separation. In many pilot scale experiments the primary fermentation is shortened from about 1week to 1-2days using immobilized yeast reactors. When using certain genetically modified yeast strains no secondary fermentation is needed, and the total fermentation time in immobilized yeast reactors can therefore be shortened to only 2days.

  3. Short-Term Upper Limb Immobilization Affects Action-Word Understanding

    ERIC Educational Resources Information Center

    Bidet-Ildei, Christel; Meugnot, Aurore; Beauprez, Sophie-Anne; Gimenes, Manuel; Toussaint, Lucette

    2017-01-01

    The present study aimed to investigate whether well-established associations between action and language can be altered by short-term upper limb immobilization. The dominant arm of right-handed participants was immobilized for 24 hours with a rigid splint fixed on the hand and an immobilization vest restraining the shoulder, arm, and forearm. The…

  4. Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402.

    PubMed

    Nopcharoenkul, Wannarak; Netsakulnee, Parichat; Pinyakong, Onruthai

    2013-06-01

    Pseudoxanthomonas sp. RN402 was capable of degrading diesel, crude oil, n-tetradecane and n-hexadecane. The RN402 cells were immobilized on the surface of high-density polyethylene plastic pellets at a maximum cell density of 10(8) most probable number (MPN) g(-1) of plastic pellets. The immobilized cells not only showed a higher efficacy of diesel oil removal than free cells but could also degrade higher concentrations of diesel oil. The rate of diesel oil removal by immobilized RN402 cells in liquid culture was 1,050 mg l(-1) day(-1). Moreover, the immobilized cells could maintain high efficacy and viability throughout 70 cycles of bioremedial treatment of diesel-contaminated water. The stability of diesel oil degradation in the immobilized cells resulted from the ability of living RN402 cells to attach to material surfaces by biofilm formation, as was shown by CLSM imaging. These characteristics of the immobilized RN402 cells, including high degradative efficacy, stability and flotation, make them suitable for the purpose of continuous wastewater bioremediation.

  5. Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart.

    PubMed

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2016-02-02

    A successful prescription is presented for acetylcholinesterase physically adsorbed on to a mesoporous silicon surface, with a promising hydrolytic response towards acetylthiocholine iodide. The catalytic behaviour of the immobilized enzyme was assessed by spectrophotometric bioassay using neostigmine methyl sulfate as a standard acetycholinesterase inhibitor. The surface modification was studied through field emission SEM, Fourier transform IR spectroscopy, energy-dispersive X-ray spectroscopy, cathode luminescence and X-ray photoelectron spectroscopy analysis, photoluminescence measurement and spectrophotometric bioassay. The porous silicon-immobilized enzyme not only yielded greater enzyme stability, but also significantly improved the native photoluminescence at room temperature of the bare porous silicon architecture. The results indicated the promising catalytic behaviour of immobilized enzyme compared with that of its free counterpart, with a greater stability, and that it aided reusability and easy separation from the reaction mixture. The porous silicon-immobilized enzyme was found to retain 50% of its activity, promising thermal stability up to 90°C, reusability for up to three cycles, pH stability over a broad pH of 4-9 and a shelf-life of 44 days, with an optimal hydrolytic response towards acetylthiocholine iodide at variable drug concentrations. On the basis of these findings, it was believed that the porous silicon-immobilized enzyme could be exploited as a reusable biocatalyst and for screening of acetylcholinesterase inhibitors from crude plant extracts and synthesized organic compounds. Moreover, the immobilized enzyme could offer a great deal as a viable biocatalyst in bioprocessing for the chemical and pharmaceutical industries, and bioremediation to enhance productivity and robustness. © 2016 Authors.

  6. Acetylcholinesterase immobilization and characterization, and comparison of the activity of the porous silicon-immobilized enzyme with its free counterpart

    PubMed Central

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2016-01-01

    A successful prescription is presented for acetylcholinesterase physically adsorbed on to a mesoporous silicon surface, with a promising hydrolytic response towards acetylthiocholine iodide. The catalytic behaviour of the immobilized enzyme was assessed by spectrophotometric bioassay using neostigmine methyl sulfate as a standard acetycholinesterase inhibitor. The surface modification was studied through field emission SEM, Fourier transform IR spectroscopy, energy-dispersive X-ray spectroscopy, cathode luminescence and X-ray photoelectron spectroscopy analysis, photoluminescence measurement and spectrophotometric bioassay. The porous silicon-immobilized enzyme not only yielded greater enzyme stability, but also significantly improved the native photoluminescence at room temperature of the bare porous silicon architecture. The results indicated the promising catalytic behaviour of immobilized enzyme compared with that of its free counterpart, with a greater stability, and that it aided reusability and easy separation from the reaction mixture. The porous silicon-immobilized enzyme was found to retain 50% of its activity, promising thermal stability up to 90°C, reusability for up to three cycles, pH stability over a broad pH of 4–9 and a shelf-life of 44 days, with an optimal hydrolytic response towards acetylthiocholine iodide at variable drug concentrations. On the basis of these findings, it was believed that the porous silicon-immobilized enzyme could be exploited as a reusable biocatalyst and for screening of acetylcholinesterase inhibitors from crude plant extracts and synthesized organic compounds. Moreover, the immobilized enzyme could offer a great deal as a viable biocatalyst in bioprocessing for the chemical and pharmaceutical industries, and bioremediation to enhance productivity and robustness. PMID:26839417

  7. Visible and UV-curable chitosan derivatives for immobilization of biomolecules.

    PubMed

    Kim, Eun-Hye; Han, Ga-Dug; Kim, Jae-Won; Noh, Seung-Hyun; Lee, Jae-Gwan; Ito, Yoshihiro; Son, Tae-Il

    2017-11-01

    Chitosan, which has many biocompatible properties, is used widely in medical field like wound healing, drug delivery and so on. Chitosan could be used as a biomaterial to immobilize protein-drug. There are many methods to immobilize protein-drug, but they have some drawbacks such as low efficiency and denaturation of protein. Therefore, photo-immobilization method is suggested to immobilize protein-drug. Photo-immobilization method is simple-reaction and also needs no additional crosslinking reagent. There has been some effort to modify chitosan to have an ability of photo-immobilization. Generally, visible and UV light reactive chitosan derivatives were prepared. Various types of photo-curable chitosan derivatives showed possibility for application to medical field. For example, they showed ability for protein-immobilization and some of them showed wound-healing effect, anti-adhesive effect, or property to interact directly with titanium surface. In this study, we introduce many types of photo-curable chitosan derivative and their possibility of medical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Lipase immobilization on epoxy-activated poly(vinyl acetate-acrylamide) microspheres.

    PubMed

    Zhang, Dong-Hao; Peng, Li-Juan; Wang, Yun; Li, Ya-Qiong

    2015-05-01

    Poly(vinyl acetate-acrylamide) microspheres with an average diameter of 2-4μm were successfully prepared and characterized via SEM and FTIR. Then the microspheres were modified with epoxy groups through reacting with epichlorohydrin and used as carriers to covalently immobilize Candida rugosa lipase. The results revealed that agitation played an important role on epoxy activation and the immobilization ratio increased with the increase of the epoxy density. On the other hand, the specific activity of the immobilized lipase as well as the activity recovery declined gradually with the increase in the immobilization ratio from 72% to 93%, which were attributed to the steric hindrance effects caused by enzyme overloading. When epoxy density was 76μmol/g microsphere, the activity recovery reached the maximum at 47.5%, and the activity of the immobilized lipase was 261.3U/g microsphere. Moreover, the thermal stability of the immobilized lipase was much better than that of the free one, which indicated potential applications of the immobilized lipase. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-02-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core-shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase.

  10. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase.

    PubMed

    Flores-Maltos, Abril; Rodríguez-Durán, Luis V; Renovato, Jacqueline; Contreras, Juan C; Rodríguez, Raúl; Aguilar, Cristóbal N

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. K(M) and V(max) values for free enzyme were very similar for both substrates. But, after immobilization, K(M) and V(max) values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater.

  11. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase

    PubMed Central

    Flores-Maltos, Abril; Rodríguez-Durán, Luis V.; Renovato, Jacqueline; Contreras, Juan C.; Rodríguez, Raúl; Aguilar, Cristóbal N.

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methyl gallate as substrates. K M and V max values for free enzyme were very similar for both substrates. But, after immobilization, K M and V max values increased drastically using tannic acid as substrate. These results indicated that immobilized tannase is a better biocatalyst than free enzyme for applications on liquid systems with high tannin content, such as bioremediation of tannery or olive-mill wastewater. PMID:21918717

  12. Immobilization of pectin depolymerising polygalacturonase using different polymers.

    PubMed

    Ur Rehman, Haneef; Aman, Afsheen; Nawaz, Muhammad Asif; Karim, Asad; Ghani, Maria; Baloch, Abdul Hameed; Ul Qader, Shah Ali

    2016-01-01

    Polygalacturonase catalyses the hydrolysis of pectin substances and widely has been used in food and textile industries. In current study, different polymers such as calcium alginate beads, polyacrylamide gel and agar-agar matrix were screened for the immobilization of polygalacturonase through entrapment technique. Polyacrylamide gel was found to be most promising one and gave maximum (89%) immobilization yield as compared to agar-agar (80%) and calcium alginate beads (46%). The polymers increased the reaction time of polygalacturonase and polymers entrapped polygalacturonases showed maximum pectinolytic activity after 10 min of reaction as compared to free polygalacturonase which performed maximum activity after 5.0 min of reaction time. The temperature of polygalacturonase for maximum enzymatic activity was increased from 45°C to 50°C and 55°C when it was immobilized within agar-agar and calcium alginate beads, respectively. The optimum pH (pH 10) of polygalacturonase was remained same when it was immobilized within polyacrylamide gel and calcium alginate beads, but changed from pH 10 to pH 9.0 after entrapment within agar-agar. Thermal stability of polygalacturonase was improved after immobilization and immobilized polygalacturonases showed higher tolerance against different temperatures as compared to free enzyme. Polymers entrapped polygalacturonases showed good reusability and retained more than 80% of their initial activity during 2nd cycles. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach.

    PubMed

    Lu, Bing-Qing; Li, Mi; Zhang, Xiao-Wen; Huang, Chun-Mei; Wu, Xiao-Yan; Fang, Qi

    2018-02-05

    Immobilization of uranium into magnetite (Fe 3 O 4 ), which was generated from metallic iron by electrochemical method, was proposed to rapidly remove uranium from aqueous solution. The effects of electrochemical parameters such as electrode materials, voltage, electrode gap, reaction time and pH value on the crystallization of Fe 3 O 4 and uranium removal efficiencies were investigated. More than 90% uranium in the solution was precipitated with Fe 3 O 4 under laboratory conditions when uranium concentration range from 0.5mg/L to 10mg/L. The Fe 3 O 4 crystallization mechanism and immobilization of uranium was proved by XPS, XRD, TEM, FTIR and VSM methods. The results indicated that the cationic (including Fe 2+ , Fe 3+ and U(VI)) migrate to cathode side under the electric field and the uranium was incorporated or adsorbed by Fe 3 O 4 which was generated at cathode while the pH ranges between 2-7. The uranium-containing precipitate of Fe 3 O 4 can exist stably at the acid concentration below 60g/L. Furthermore, the precipitate may be used as valuable resources for uranium or iron recycling, which resulted in no secondary pollution in the removal of uranium from aqueous solution. Copyright © 2017. Published by Elsevier B.V.

  14. Immobilization of xanthine oxidase on a polyaniline silicone support.

    PubMed

    Nadruz, W; Marques, E T; Azevedo, W M; Lima-Filho, J L; Carvalho, L B

    1996-03-01

    A polyaniline silicone support to immobilize xanthine oxidase is proposed as a reactor coil to monitor the action of xanthine oxidase on hypoxanthine, xanthine and 6-mercaptopurine. A purified xanthine oxidase immobilized on this support lost 80% of the initial activity after 12 min of use. Co-immobilization of superoxide dismutase and catalase increased the stability of immobilized xanthine oxidase so that the derivative maintained 79% of its initial activity after 4.6 h of continuous use in which 1.5 mumol purine bases were converted by the immobilized enzyme system. There is no evidence of either polyaniline or protein leaching from the coil during 3 h of continuous use. When solutions (10 ml) of hypoxanthine, xanthine and 6-mercaptopurine were circulated individually through the xanthine oxidase-superoxide dismutase-catalase-polyaniline coil (1 mm internal diameter and 3 m in length, 3 ml internal volume) activities of 8.12, 11.17 and 1.09 nmol min-1 coil-1, respectively, were obtained. The advantages of the reactor configuration and the redox properties of the polymer, particularly with respect to immobilized oxidoreductases, make this methodology attractive for similar enzyme systems. This immobilized enzyme system using polyaniline-silicone as support converted 6-mercaptopurine to 6-thiouric acid with equal efficiency as resins based on polyacrylamide and polyamide 11.

  15. Platform for immobilization and observation of subcellular processes

    DOEpatents

    McKnight, Timothy E.; Kalluri, Udaya C.; Melechko, Anatoli V.

    2014-08-26

    A method of immobilizing matter for imaging that includes providing an array of nanofibers and directing matter to the array of the nanofibers. The matter is immobilized when contacting at least three nanofibers of the array of nanofibers simultaneously. Adjacent nanofibers in the array of nanofibers may be separated by a pitch as great as 100 microns. The immobilized matter on the array of nanofibers may then be imaged. In some examples, the matter may be cell matter, such as protoplasts.

  16. A Method for Immobilizing the Forelimbs of Rabbits.

    PubMed

    Thunder, Richard M.; Chang, James; Broome, Rosemary L.; Most, Daniel

    1998-09-01

    Immobilizing the forelimbs of rabbits after surgical procedures is necessary to allow healing, yet it often can be difficult, because rabbits are often able to pull the repaired limb from its cast soon after surgery and well before adequate tissue repair has taken place. We describe here a method of immobilization that uses 3 layers of cast material combined with flexion of the radiocarpal and radiohumeral joints. This method resulted in successful immobilization in 97% of the rabbits on which it was used.

  17. Collagen-Immobilized Lipases Show Good Activity and Reusability for Butyl Butyrate Synthesis.

    PubMed

    Dewei, Song; Min, Chen; Haiming, Cheng

    2016-11-01

    Candida rugosa lipases were immobilized onto collagen fibers through glutaraldehyde cross-linking method. The immobilization process has been optimized. Under the optimal immobilization conditions, the activity of the collagen-immobilized lipase reached 340 U/g. The activity was recovered of 28.3 % by immobilization. The operational stability of the obtained collagen-immobilized lipase for hydrolysis of olive oil emulsion was determined. The collagen-immobilized lipase showed good tolerance to temperature and pH variations in comparison to free lipase. The collagen-immobilized lipase was also applied as biocatalyst for synthesis of butyl butyrate from butyric acid and 1-butanol in n-hexane. The conversion yield was 94 % at the optimal conditions. Of its initial activity, 64 % was retained after 5 cycles for synthesizing butyl butyrate in n-hexane.

  18. Lindane removal by pure and mixed cultures of immobilized actinobacteria.

    PubMed

    Saez, Juliana M; Benimeli, Claudia S; Amoroso, María J

    2012-11-01

    Lindane (γ-HCH) is an organochlorine insecticide that has been widely used in developing countries. It is known to persist in the environment and can cause serious health problems. One of the strategies adopted to remove lindane from the environment is bioremediation using microorganisms. Immobilized cells present advantages over free suspended cells, like their high degradation efficiency and protection against toxins. The aims of this work were: (1) To evaluate the ability of Streptomyces strains immobilized in four different matrices to remove lindane, (2) To select the support with optimum lindane removal by pure cultures, (3) To assay the selected support with consortia and (4) To evaluate the reusability of the immobilized cells. Four Streptomyces sp. strains had previously shown their ability to grow in the presence of lindane. Lindane removal by microorganisms immobilized was significantly higher than in free cells. Specifically immobilized cells in cloth sachets showed an improvement of around 25% in lindane removal compared to the abiotic control. Three strains showed significantly higher microbial growth when they were entrapped in silicone tubes. Strains immobilized in PVA-alginate demonstrated lowest growth. Mixed cultures immobilized inside cloth sachets showed no significant enhancement compared to pure cultures, reaching a maximum removal of 81% after 96 h for consortium I, consisting of the four immobilized strains together. Nevertheless, the cells could be reused for two additional cycles of 96 h each, obtaining a maximum removal efficiency of 71.5% when each of the four strains was immobilized in a separate bag (consortium III). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Haloalkane hydrolysis with an immobilized haloalkane dehalogenase.

    PubMed

    Dravis, B C; Swanson, P E; Russell, A J

    2001-11-20

    Haloalkane dehalogenase from Rhodococcus rhodochrous was covalently immobilized onto a polyethyleneimine impregnated gamma-alumina support. The dehalogenating enzyme was found to retain greater than 40% of its original activity after immobilization, displaying an optimal loading (max. activity/supported protein) of 70 to 75 mg/g with an apparent maximum (max. protein/support) of 156 mg/g. The substrate, 1,2,3-trichloropropane, was found to favorably partition (adsorb) onto the inorganic alumina carrier (10 to 20 mg/g), thereby increasing the local reactant concentration with respect to the catalyst's environment, whereas the product, 2,3-dichloropropan-1-ol, demonstrated no affinity. Additionally, the inorganic alumina support exhibited no adverse effects because of solvent/component incompatibilities or deterioration due to pH variance (pH 7.0 to 10.5). As a result of the large surface area to volume ratio of the support matrix and the accessibility of the bound protein, the immobilized biocatalyst was not subject to internal mass transfer limitations. External diffusional restrictions could be eliminated with simple agitation (mixing speed: 50 rpm; flux: 4.22 cm/min). The pH-dependence of the immobilized dehalogenase was essentially the same as that for the native enzyme. Finally, both the thermostability and resistance toward inactivation by organic solvent were improved by more than an order of magnitude after immobilization. Copyright 2001 John Wiley & Sons, Inc.

  20. Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature.

    PubMed

    Kosmulski, Marek

    2009-11-30

    The values of PZC and IEP of metal oxides reported in the literature are affected by the choice of the specimens to be studied. The specimens, which have PZC and IEP similar to the "recommended" value, are preferred by the scientists. The biased choice leads to accumulation of results for a few specimens, and the other specimens are seldom studied or they are subjected to washing procedures aimed at shift of the original IEP toward the "recommended" value. Taking the average or median of all published PZC and IEP for certain oxide as the "recommended" value leads to substantiation of previously published results due to overrepresentation of certain specimens in the sample.

  1. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    NASA Astrophysics Data System (ADS)

    Damayanti, Astrilia; Sarto, Syamsiah, Siti; Sediawan, Wahyudi B.

    2015-12-01

    Enriched-immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixture of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid.

  2. Biohydrogen production from rotten orange with immobilized mixed culture: Effect of immobilization media for various composition of substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damayanti, Astrilia, E-mail: liasholehasd@gmail.com; Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Jl. Grafika No. 2, Kampus UGM, Yogyakarta 55281; Sarto,

    Enriched–immobilized mixed culture was utilized to produce biohydrogen in mesophilic condition under anaerobic condition using rotten orange as substrate. The process was conducted in batch reactors for 100 hours. Microbial cultures from three different sources were subject to a series of enrichment and immobilized in two different types of media, i.e. calcium alginate (CA, 2%) and mixture of alginate and activated carbon (CAC, 1:1). The performance of immobilized culture in each media was tested for biohydrogen production using four different substrate compositions, namely orange meat (OM), orange meat added with peel (OMP), orange meat added with limonene (OML), and mixturemore » of orange meat and peel added with limonene (OMPL). The results show that, with immobilized culture in CA, the variation of substrate composition gave significant effect on the production of biohydrogen. The highest production of biohydrogen was detected for substrate containing only orange meet, i.e. 2.5%, which was about 3-5 times higher than biohydrogen production from other compositions of substrate. The use of immobilized culture in CAC in general has increased the hydrogen production by 2-7 times depending on the composition of substrate, i.e. 5.4%, 4.8%, 5.1%, and 4.4% for OM, OMP, OML, and OMPL, respectively. The addition of activated carbon has eliminated the effect of inhibitory compounds in the substrate. The major soluble metabolites were acetic acid, propionic acid, and butyric acid.« less

  3. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment.

    PubMed

    Bian, Rongjun; Joseph, Stephen; Cui, Liqiang; Pan, Genxing; Li, Lianqing; Liu, Xiaoyu; Zhang, Afeng; Rutlidge, Helen; Wong, Singwei; Chia, Chee; Marjo, Chris; Gong, Bin; Munroe, Paul; Donne, Scott

    2014-05-15

    Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010-2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar. Biochar soil amendment (BSA) consistently and significantly increased soil pH, total organic carbon and decreased soil extractable Cd and Pb over the 3 year period. While rice plant tissues' Cd content was significantly reduced, depending on biochar application rate, reduction in plant Pb concentration was found only in root tissue. Analysis of the fresh and contaminated biochar particles indicated that Cd and Pb had probably been bonded with the mineral phases of Al, Fe and P on and around and inside the contaminated biochar particle. Immobilization of the Pb and Cd also occurred to cation exchange on the porous carbon structure. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Spatial variation of acid-volatile sulfide and simultaneously extracted metals in Egyptian Mediterranean Sea lagoon sediments.

    PubMed

    Younis, Alaa M; El-Zokm, Gehan M; Okbah, Mohamed A

    2014-06-01

    In risk assessment of aquatic sediments, the immobilizing effect of acid-volatile sulfide (AVS) on trace metals is a principal control on availability and associated toxicity of metals to aquatic biota, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides. Spatial variation pattern of AVS, simultaneously extracted metals (SEM), and sediment characteristics were studied for the first time in surface sediment samples (0-20 cm) from 43 locations in Egyptian northern delta lagoons (Manzalah, Burullus, and Maryut) as predictors of the bioavailability of some divalent metals (Cu, Zn, Cd, Pb, and Ni) in sediments as well as indicators of metal toxicity in anaerobic sediments. The results indicated that the ∑SEM (Cu + Zn + Cd + Pb + Ni) values in sediments of lagoon Burullus had higher concentrations than those of Maryut and Manzalah. In contrast, AVS concentrations were considerably higher in lagoons Manzalah and Maryut and seemed to be consistent with the increase in organic matter than lagoon Burullus. Generally, the average concentrations of the SEM in all lagoons were in the order of Zn > Cu > Ni > Pb > Cd. The ratios of ∑SEM/AVS were less than 1 at all the sampling stations except at one station in lagoon Maryut as well as four stations located in lagoon Burullus (∑SEM/AVS > 1), which suggests that the metals have toxicity potential in these sediments. Therefore, SEM concentrations probably are better indicators of the metal bioavailability in sediments than the conventional total metal concentrations.

  5. Synthesis and properties of immobilized pectinase onto the macroporous polyacrylamide microspheres.

    PubMed

    Lei, Zhongli; Jiang, Qin

    2011-03-23

    Pectinase was covalently immobilized onto the macroporous polyacrylamide (PAM) microspheres synthesized via an inverse suspension polymerization approach, resulting in 81.7% immobilization yield. The stability of the macroporous PAM support, which has a large surface area, is not impeded by the adsorbed proteins despite the fact that up to 296.3 mg of enzyme is immobilized per gram of the carrier particles. The immobilized enzyme retained more than 75% of its initial activity over 30 days, and the optimum temperature/pH also increased to the range of 50-60 °C/3.0-5.0. The immobilized enzyme also exhibited great operational stability, and more than 75% residual activity was observed after 10 batch reactions. The kinetics of a model reaction catalyzed by the immobilized pectinase was finally investigated. Moreover, the immobilized pectinase could be recovered by centrifuging and showed durable activity at the process of recycle.

  6. Noninvasive noble metal nanoparticle arrays for surface-enhanced Raman spectroscopy of proteins

    NASA Astrophysics Data System (ADS)

    Inya-Agha, Obianuju; Forster, Robert J.; Keyes, Tia E.

    2007-02-01

    Noble metal nanoparticles arrays are well established substrates for surface enhanced Raman spectroscopy (SERS). Their ability to enhance optical fields is based on the interaction of their surface valence electrons with incident electromagnetic radiation. In the array configuration, noble metal nanoparticles have been used to produce SER spectral enhancements of up to 10 8 orders of magnitude, making them useful for the trace analysis of physiologically relevant analytes such as proteins and peptides. Electrostatic interactions between proteins and metal surfaces result in the preferential adsorption of positively charged protein domains onto metal surfaces. This preferential interaction has the effect of disrupting the native conformation of the protein fold, with a concomitant loss of protein function. A major historic advantage of Raman microspectroscopy has been is its non-invasive nature; protein denaturation on the metal surfaces required for SER spectroscopy renders it a much more invasive technique. Further, part of the analytical power of Raman spectroscopy lies in its use as a secondary conformation probe. The protein structural loss which occurs on the metal surface results in secondary conformation readings which are not true to the actual native state of the analyte. This work presents a method for chemical fabrication of noble metal SERS arrays with surface immobilized layers which can protect protein native conformation without excessively mitigating the electromagnetic enhancements of spectra. Peptide analytes are used as model systems for proteins. Raman spectra of alpha lactalbumin on surfaces and when immobilized on these novel arrays are compared. We discuss the ability of the surface layer to protect protein structure whilst improving signal intensity.

  7. Biomolecules for Removal of Heavy Metal.

    PubMed

    Singh, Namita Ashish

    2017-01-01

    Patents reveal that heavy metals are natural constituents of the earth's crust, but some heavy metals like cadmium, lead, mercury, arsenic etc. are injurious to living organisms at higher concentration. Nowadays, anthropogenic activities have altered geochemical cycles and biochemical balance of heavy metals. Biomolecules are used nowadays for removal of heavy metals compared to other synthetic biosorbents due to their environmental friendly nature and cost effectiveness. The goal of this work is to identify the role of biomolecules like polysaccharides, polypeptides, natural compounds containing aromatic acid etc. for heavy metal removal by bio sorption. It has been observed that efficiency of biomolecules can be increased by functionalization e.g. cellulose functionalization with EDTA, chitosan with sulphur groups, alginate with carboxyl/ hydroxyl group etc. It was found that the porous structure of aerogel beads improves both sorption and kinetic properties of the material. Out of polypeptides metallothionein has been widely used for removal of heavy metal up to 88% from seawater after a single centrifugation. These cost effective functionalized biomolecules are significantly used for remediation of heavy metals by immobilizing these biomolecules onto materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. In situ remediation process using divalent metal cations

    DOEpatents

    Brady, Patrick V.; Khandaker, Nadim R.; Krumhansl, James L.; Teter, David M.

    2004-12-14

    An in situ process for treating ambient solid materials (e.g., soils, aquifer solids, sludges) by adding one or more divalent metal cations to the ambient solid material. The added divalent metal cations, such as Cu.sup.2+ or Zn.sup.2+, combine with metal oxide/hydroxides (e.g., ferric oxide/hydroxide or aluminum oxide/hydroxide) already present in the ambient solid material to form an effective sorbent material having a large number of positively-charged surface complexes that binds and immobilizes anionic contaminant species (e.g., arsenic or chromate). Divalent metal cations can be added, for example, by injecting an aqueous solution of CuSO.sub.4 into an aquifer contaminated with arsenic or chromate. Also, sludges can be stabilized against leaching of anionic contaminants through the addition of divalent metal cations. Also, an inexpensive sorbent material can be easily formed by mixing divalent metal cations with soil that has been removed from the ground.

  9. In-situ evidence for uranium immobilization and remobilization

    USGS Publications Warehouse

    Senko, John M.; Istok, Jonathan D.; Suflita, Joseph M.; Krumholz, Lee R.

    2002-01-01

    The in-situ microbial reduction and immobilization of uranium was assessed as a means of preventing the migration of this element in the terrestrial subsurface. Uranium immobilization (putatively identified as reduction) and microbial respiratory activities were evaluated in the presence of exogenous electron donors and acceptors with field push−pull tests using wells installed in an anoxic aquifer contaminated with landfill leachate. Uranium(VI) amended at 1.5 μM was reduced to less than 1 nM in groundwater in less than 8 d during all field experiments. Amendments of 0.5 mM sulfate or 5 mM nitrate slowed U(VI) immobilization and allowed for the recovery of 10% and 54% of the injected element, respectively, as compared to 4% in the unamended treatment. Laboratory incubations confirmed the field tests and showed that the majority of the U(VI) immobilized was due to microbial reduction. In these tests, nitrate treatment (7.5 mM) inhibited U(VI) reduction, and nitrite was transiently produced. Further push−pull tests were performed in which either 1 or 5 mM nitrate was added with 1.0 μM U(VI) to sediments that already contained immobilized uranium. After an initial loss of the amendments, the concentration of soluble U(VI) increased and eventually exceeded the injected concentration, indicating that previously immobilized uranium was remobilized as nitrate was reduced. Laboratory experiments using heat-inactivated sediment slurries suggested that the intermediates of dissimilatory nitrate reduction (denitrification or dissimilatory nitrate reduction to ammonia), nitrite, nitrous oxide, and nitric oxide were all capable of oxidizing and mobilizing U(IV). These findings indicate that in-situ subsurface U(VI) immobilization can be expected to take place under anaerobic conditions, but the permanence of the approach can be impaired by disimilatory nitrate reduction intermediates that can mobilize previously reduced uranium.

  10. Immobilization of Cd in landfill-leachate-contaminated soil with cow manure compost as soil conditioners: A laboratory study.

    PubMed

    Liao, Zhuwei; Wang, Jia; Wan, Rui; Xi, Shuang; Chen, Zhuqi; Chen, Zhulei; Yu, Yingjian; Long, Sijie; Wang, Huabin

    2016-12-01

    Introducing cow manure compost as an amendment in landfill-leachate-contaminated soils is proved to be an effective technique for the immobilization of Cd in this study. Landfill-leachate-contaminated soil was collected from an unlined landfill in China and amended with a different blending quantity of cow manure compost (0, 12, 24, 36, and 48 g per 200 g soil), which was made by mixing cow manure and chaff at a ratio of 1/1 and maturing for 6 months. pH values of five different blending quantity mixtures increased by 0.2-0.4, and the organic matter levels increased by 2.5-7%, during a remediation period of 5 weeks. Four fractions of Cd named exchangeable Cd, reducible Cd, oxidizable Cd, and residual Cd in soil were respectively analyzed by a sequential extraction procedure. Introducing the cow manure compost application resulted in more than 40% lower exchangeable Cd but a higher concentration of oxidizable Cd in soils, and mass balance results showed nearly no Cd absorption by applied material, indicating that transformation of exchangeable Cd into oxidization forms was the main mechanism of Cd immobilization when cow manure compost was used as an amendment. The Pearson correlation showed that increasing of pH values significantly improved the efficiency of Cd immobilization, with a correlation coefficiency of 0.940 (p < 0.05). This is the first attempt at heavy metal immobilization in landfill-leachate-contaminated soil by cow manure compost, and findings of this work can be integrated to guide the application. Addition of cow manure compost (CMC) was effective in reducing exchangeable Cd in landfill-leachate-contaminated soils (LLCS). The immobilization effect of Cd was mainly assigned to the redistribution of labile soil Cd. Organic matter (OM) and pH value increased with CMC application. The pH values were more sensitive to Cd immobilization efficiency. It was proved that CMC can be safely and effectively used for the restoration of LLCS.

  11. Recovery of uranium from seawater by immobilized tannin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, T.; Nakajima, A.

    1987-06-01

    Tannin compounds having multiple adjacent hydroxy groups have an extremely high affinity for uranium. To prevent the leaching of tannins into water and to improve the adsorbing characteristics of these compounds, the authors tried to immobilize tannins. The immobilized tannin has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. The immobilized tannin can recover uranium from natural seawater with high efficiency. About 2530 ..mu..g uranium is adsorbed per gram of this adsorbent within 22 h. Depending on the concentration in seawater, an enrichment ofmore » up to 766,000-fold within the adsorbent is possible. Almost all uranium adsorbed is easily desorbed with a very dilute acid. Thus, the immobilized tannin can be used repeatedly in the adsorption-desorption process.« less

  12. Effects of biochar on availability and plant uptake of heavy metals - A meta-analysis.

    PubMed

    Chen, De; Liu, Xiaoyu; Bian, Rongjun; Cheng, Kun; Zhang, Xuhui; Zheng, Jufeng; Joseph, Stephen; Crowley, David; Pan, Genxing; Li, Lianqing

    2018-05-24

    Biochar can be an effective amendment for immobilizing heavy metals in contaminated soils but has variable effects depending on its chemical and physical properties and those of the treated soil. To investigate the range of biochar's effects on heavy metal accumulation in plants in responses to the variation of soil, biochar and plant, we carried out a meta-analysis of the literature that was published before March 2016. A total of 1298 independent observations were collected from 74 published papers. Results showed that across all studies, biochar addition to soils resulted in average decreases of 38, 39, 25 and 17%, respectively, in the accumulation of Cd, Pb, Cu and Zn in plant tissues. The effect of biochar on heavy metal concentrations in plants varied depending on soil properties, biochar type, plant species, and metal contaminants. The largest decreases in plant heavy metal concentrations occurred in coarse-textured soils amended with biochar. Biochar had a relatively small effect on plant tissue Pb concentrations, but a large effect on plant Cu concentrations when applied to alkaline soils. Plant uptake of Pb, Cu and Zn was less in soils with higher organic carbon contents. Manure-derived biochar was the most effective for reducing Cd and Pb concentrations in plants as compared to biochars derived from other feedstock. Biochar having a high pH and used at high application rates resulted in greater decreases in plant heavy metal uptake. The meta-analysis provides useful guidelines on the range of effects that can be anticipated for different biochar materials in different plant-soil systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Immobilization of l-Asparaginase on Carrier Materials: A Comprehensive Review.

    PubMed

    Ulu, Ahmet; Ates, Burhan

    2017-06-21

    There are two major applications of l-asparaginase (L-ASNase): leukemia therapy and the food industry. Especially, its chemotherapeutic effect has attracted interest from the scientific community and individual scientists. Therefore, to protect the intrinsic activity and half-time of L-ASNase, several carriers and immobilization techniques for immobilization of L-ASNase have been described in articles. Unfortunately, a comprehensive review about immobilization of L-ASNase has not been written until now. In this review, we have thoroughly discussed the carriers for L-ASNase by illustrating immobilization findings including both past and present applications. In addition, we have revealed advantages and disadvantages of immobilized enzyme and related it to free form. We believe that this review will not only provide background information, but also guide future developments.

  14. Preliminary studies on immobilization of lipase using chicken eggshell

    NASA Astrophysics Data System (ADS)

    Salleh, S.; Serri, N. A.; Hena, S.; Tajarudin, H. A.

    2016-06-01

    A few advantages of enzyme immobilization are reusability of expensive enzyme, improvement of stability and activity compared to crude enzyme. Various organic components can be used as carrier for enzyme immobilization such as chicken eggshell. It can be used as a carrier for immobilization as its mineral component mostly contains of calcium carbonate. In the present study, Tributyrin method was used to test enzyme activity of Rhizomucour Miehei, Candida Antarctica and Candida Rugosa. Rhizomucour Miehei shows the highest enzyme activity (360.8 mol/min/mL lipase) and was used in further experiment. Experiment was continued to study incubation time for lipase immobilization on eggshell (1-4 hours) and reaction time of esterification of sugar ester (0-72 hours). Two hours incubation time for lipase immobilization was observed and gives the highest yield of sugar ester (78.13%). Fructose and stearic acid as substrate was used for the production of sugar ester. The highest percentage of sugar ester production was shown at 36 hours of reaction time.

  15. Immobilization of pectinase from Leucoagaricus gongylophorus on magnetic particles.

    PubMed

    Adalberto, Paulo Roberto; José dos Santos, Francisco; Golfeto, Camilla Calemi; Costa Iemma, Mônica Rosas; Ferreira de Souza, Dulce Helena; Cass, Quezia Bezerra

    2012-10-21

    Polygalacturonases (EC 3.2.1.15) hydrolyze the α-1,4-glycosidic linkages in polygalacturonic acid chains. The interest on specific inhibitors of pectinase and the versatility of magnetic support for enzyme immobilization endorsed the preparation of an immobilized enzyme reactor (IMER). This work presents the synthesis of CoFe(2)O(4) amino-derivatives, which was employed as the support for the immobilization of pectinases from Leucoagaricus gongylophorus. Amino-functionalized CoFe(2)O(4) was obtained from glyceryl-derivatized CoFe(2)O(4) and was characterized by infrared spectroscopy and electronic microscopy. The immobilized enzyme maintained the same thermal, chemical and kinetic behaviour of the free enzyme (T(opt) 60 °C; pH(opt) 5.0; K(app)(M) = 0.5 mg min(-1); V(app)(M) ≈ 5.0 μmol min(-1) mL(-1)). The straightforward synthesis of CoFe(2)O(4) derivatives and the efficiency of immobilization offer wide perspectives for the use of the developed new IMER.

  16. An orientation analysis method for protein immobilized on quantum dot particles

    NASA Astrophysics Data System (ADS)

    Aoyagi, Satoka; Inoue, Masae

    2009-11-01

    The evaluation of orientation of biomolecules immobilized on nanodevices is crucial for the development of high performance devices. Such analysis requires ultra high sensitivity so as to be able to detect less than one molecular layer on a device. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) has sufficient sensitivity to evaluate the uppermost surface structure of a single molecular layer. The objective of this study is to develop an orientation analysis method for proteins immobilized on nanomaterials such as quantum dot particles, and to evaluate the orientation of streptavidin immobilized on quantum dot particles by means of TOF-SIMS. In order to detect fragment ions specific to the protein surface, a monoatomic primary ion source (Ga +) and a cluster ion source (Au 3+) were employed. Streptavidin-immobilized quantum dot particles were immobilized on aminosilanized ITO glass plates at amino groups by covalent bonding. The reference samples streptavidin directly immobilized on ITO plates were also prepared. All samples were dried with a freeze dryer before TOF-SIMS measurement. The positive secondary ion spectra of each sample were obtained using TOF-SIMS with Ga + and Au 3+, respectively, and then they were compared so as to characterize each sample and detect the surface structure of the streptavidin immobilized with the biotin-immobilized quantum dots. The chemical structures of the upper surface of the streptavidin molecules immobilized on the quantum dot particles were evaluated with TOF-SIMS spectra analysis. The indicated surface side of the streptavidin molecules immobilized on the quantum dots includes the biotin binding site.

  17. Grenade Range Management Using Lime for Metals Immobilization and Explosives Transformation Treatability Study

    DTIC Science & Technology

    2007-06-01

    of metals and explo- sives from HGR soil are transport in surface water and subsurface trans- port in leachate or pore water. Simple, innovative, and...and II.................................................................................... 41 RDX in leachate and runoff...44 Significant metals in leachate and runoff from Lysimeter Study I

  18. Site-Selective Orientated Immobilization of Antibodies and Conjugates for Immunodiagnostics Development

    PubMed Central

    Rusling, James

    2016-01-01

    Immobilized antibody systems are the key to develop efficient diagnostics and separations tools. In the last decade, developments in the field of biomolecular engineering and crosslinker chemistry have greatly influenced the development of this field. With all these new approaches at our disposal, several new immobilization methods have been created to address the main challenges associated with immobilized antibodies. Few of these challenges that we have discussed in this review are mainly associated to the site-specific immobilization, appropriate orientation, and activity retention. We have discussed the effect of antibody immobilization approaches on the parameters on the performance of an immunoassay. PMID:27876681

  19. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate

    NASA Astrophysics Data System (ADS)

    Siegel, Jakub; Lyutakov, Oleksiy; Polívková, Markéta; Staszek, Marek; Hubáček, Tomáš; Švorčík, Václav

    2017-10-01

    Immobilization of nanoobjects on the surface of underlying material belongs to current issues of material science. Such altered materials exhibits completely exceptional properties exploitable in a broad spectrum of industrially important applications ranging from catalysts up to health-care industry. Here we present unique approach for immobilization of electrochemically synthesized silver nanoparticles on polyethyleneterephthalate (PET) foil whose essence lies in physical incorporation of particles into thin polymer surface layer induced by polarized excimer laser light. Changes in chemical composition and surface structure of polymer after particle immobilization were recorded by wide range of analytical techniques such as ARXPS, EDX, RBS, AAS, Raman, ICP-MS, DLS, UV-vis, SEM, TEM, and AFM. Thorough analysis of both nanoparticles entering the immobilization step as well as modified PET surface allowed revealing the mechanism of immobilization process itself. Silver nanoparticles were physically embedded into a thin surface layer of polymer reaching several nanometers beneath the surface rather than chemically bonded to PET macromolecules. Laser-implanted nanoparticles open up new possibilities especially in the development of the next generation cell-conform antimicrobial coatings of polymeric materials, namely due to the considerable immobilization strength which is strong enough to prevent particle release into the surrounding environment.

  20. [Growth inhibition effect of immobilized pectinase on Microcystis aeruginosa].

    PubMed

    Shen, Qing-Qing; Peng, Qian; Lai, Yong-Hong; Ji, Kai-Yan; Han, Xiu-Lin

    2012-12-01

    To confirm the growth inhibition effect of immobilized pectinase on algae, co-cultivation method was used to investigate the effect of immobilized pectinase on the growth of Microcystis aeruginosa. After co-cultivation, the damage status of the algae was observed through electron microscope, and the effect of immobilized pectase on the physiological and biochemical characteristics of the algae was also measured. The results showed that the algae and immobilized pectase co-cultivated solution etiolated distinctly on the third day and there was a significantly positive correlation between the extent of etiolation and the dosage as well as the treating time of the immobilized pectinase. Under electron microscope, plasmolysis was found in the slightly damaged cells, and the cell surface of these cells was rough, uneven and irregular; the severely damaged cells were collapsed or disintegrated completely. The algal yield and the chlorophyll a content decreased significantly with the increase of the treating time. The measurement of the malondiadehyde (MDA) value showed that the antioxidation system of the treated algal cells was destroyed, and their membrane lipid was severely peroxidated. The study indicated that the immobilized pectinase could efficiently inhibit the growth of M. aeruginosa, and the inhibitory rate reached up to 96%.

  1. Immobilization Technologies in Probiotic Food Production

    PubMed Central

    Mitropoulou, Gregoria; Nedovic, Viktor; Goyal, Arun; Kourkoutas, Yiannis

    2013-01-01

    Various supports and immobilization/encapsulation techniques have been proposed and tested for application in functional food production. In the present review, the use of probiotic microorganisms for the production of novel foods is discussed, while the benefits and criteria of using probiotic cultures are analyzed. Subsequently, immobilization/encapsulation applications in the food industry aiming at the prolongation of cell viability are described together with an evaluation of their potential future impact, which is also highlighted and assessed. PMID:24288597

  2. Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead.

    PubMed

    Kim, Hojeong; Hong, Hye-Jin; Jung, Juri; Kim, Seong-Hye; Yang, Ji-Won

    2010-04-15

    Nowadays, many researchers have studied the environmental application of the nanoscale zero-valent iron (nZVI) and several field applications for the groundwater remediation have been reported. Still, there are many concerns on the fate and transport of the nZVI and the corresponding risks. To avoid such concerns, it was investigated to immobilize nZVI in a support and then it was applied to degrade trichloroethylene (TCE). The nZVI and palladium-doped nZVI (Fe(0)- and Fe/Pd-alginate) were immobilized in the alginate bead where ferric and barium ions are used as the cross-linking cations of the bead. According to TEM (transmission electron microscopy), the size of the immobilized ZVI was as small as a few nanometers. From the surface analysis of the Fe/Pd-alginate, it is found that the immobilized nZVI has the core-shell structure. The core is composed of single crystal Fe(0), while most of irons on the surface are oxidized to Fe(3+). When 50 g/L of Fe/Pd-alginate (3.7 g Fe/L) was introduced to the aqueous solution, >99.8% of TCE was removed and the release of metal from the support was <3% of the loaded iron. The removal of TCE by Fe/Pd-alginate followed pseudo-first-order kinetics. The observed pseudo-first-order reaction constant (k(obs)) of Fe/Pd-alginate was 6.11 h(-1) and the mass normalized rate constant (k(m)) was 1.6 L h(-1) g(-1). The k(m) is the same order of magnitude with that of iron nanoparticles. In conclusion, it is considered that Fe/Pd-alginate can be used efficiently in the treatment of chlorinated solvent. 2009 Elsevier B.V. All rights reserved.

  3. Synthesis and Characterization of Magnetic Carriers Based on Immobilized Enzyme

    NASA Astrophysics Data System (ADS)

    Li, F. H.; Tang, N.; Wang, Y. Q.; Zhang, L.; Du, W.; Xiang, J.; Cheng, P. G.

    2018-05-01

    Several new types of carriers and technologies have been implemented to improve traditional enzyme immobilization in industrial biotechnology. The magnetic immobilized enzyme is a kind of new method of enzyme immobilization developed in recent years. An external magnetic field can be used to control the motion mode and direction of immobilized enzyme, and to improve the catalytic efficiency of immobilized enzyme. In this paper, Fe3O4-CaCO3-PDA complex and CaCO3/Fe3O4 composite modified by PEI were prepared. The results show that the morphology of Fe3O4-CaCO3-PDA complex formation is irregular, while the morphology of CaCO3/Fe3O4 composite modified by PEI is regular and has a porous structure.

  4. Preparation, characterization, and luminescence of (SBA-15) immobilized pepsin

    NASA Astrophysics Data System (ADS)

    Zhai, Qing-Zhou; Sun, Si-Jia

    2014-12-01

    SBA-15 mesoporous silica was synthesized by hydrothermal method and its surface was methylated by treatment with methyltrimethoxysilane. Pepsin was immobilized on the obtained materials giving host-guest composite materials (SBA-15)-pepsin and (methylated SBA-15)-pepsin. The optimum conditions for preparation of these materials were established. Methylated SBA-15 (M-SBA-15) has improved immobilization efficiency of enzyme compared to initial SBA-15 silica. It was shown that with the gradual increase of NaCl solution ionic strength the immobilized amount of enzyme was reduced. Powder X-ray diffraction and Fourier transform infrared spectroscopy showed that the host frameworks in the prepared host-guest composite materials are intact and the ordered structure was retained. Scanning electron microscopic studies revealed fibrous morphologic characteristics of the SBA-15 and the immobilized pepsin composite materials. The average particle diameter of (SBA-15)-pepsin composite was 338 ± 10 and 343 ± 10 nm for (M-SBA-15)-pepsin. The low temperature N2 adsorption-desorption study at 77 K showed that the pore sizes and specific surface areas of the host-guest composite materials were smaller than those before the introduction of the enzyme, suggesting that the immobilized enzyme occupied a definite position in the host material pore channels. The UV-vis solid diffuse reflectance and luminescence studies showed that the enzyme was successfully immobilized on to the host material and that after the immobilization of enzyme on SBA-15 the conformation of pepsin macromolecule has not been changed.

  5. Immobilization of swift foxes with ketamine hydrochloride-xylazine hydrochloride

    USGS Publications Warehouse

    Telesco, R.L.; Sovada, Marsha A.

    2002-01-01

    There is an increasing need to develop field immobilization techniques that allow researchers to handle safely swift foxes (Vulpes velox) with minimal risk of stress or injury. We immobilized captive swift foxes to determine the safety and effectiveness of ketamine hydrochloride and xylazine hydrochloride at different dosages. We attempted to determine appropriate dosages to immobilize swift foxes for an adequate field-handling period based on three anesthesia intervals (induction period, immobilization period, and recovery period) and physiologic responses (rectal temperature, respiration rate, and heart rate). Between October 1998–July 1999, we conducted four trials, evaluating three different dosage ratios of ketamine and xylazine (2.27:1.2, 5.68:1.2, and 11.4:1.2 mg/kg ketamine:mg/kg xylazine, respectively), followed by a fourth trial with a higher dosage at the median ratio (11.4 mg/kg ketamine:2.4 mg/kg xylazine). We found little difference in induction and recovery periods among trials 1–3, but immobilization time increased with increasing dosage (P<0.08). Both the immobilization period and recovery period increased in trial 4 compared with trials 1–3 (P≤0.03). There was a high variation in responses of individual foxes across trials, making it difficult to identify an appropriate dosage for field handling. Heart rate and respiration rates were depressed but all physiologic measures remained within normal parameters established for domestic canids. We recommend a dosage ratio of 10 mg/kg ketamine to 1 mg/kg xylazine to immobilize swift foxes for field handling.

  6. Thermal treatment of toxic metals of industrial hazardous wastes with fly ash and clay.

    PubMed

    Singh, I B; Chaturvedi, K; Morchhale, R K; Yegneswaran, A H

    2007-03-06

    Waste generated from galvanizing and metal finishing processes is considered to be a hazardous due to the presence of toxic metals like Pb, Cu, Cr, Zn, etc. Thermal treatment of such types of wastes in the presence of clay and fly ash can immobilizes their toxic metals to a maximum level. After treatment solidified mass can be utilized in construction or disposed off through land fillings without susceptibility of re-mobilization of toxic metals. In the present investigation locally available clay and fly ash of particular thermal power plant were used as additives for thermal treatment of both of the wastes in their different proportions at 850, 900 and 950 degrees C. Observed results indicated that heating temperature to be a key factor in the immobilization of toxic metals of the waste. It was noticed that the leachability of metals of the waste reduces to a negligible level after heating at 950 degrees C. Thermally treated solidified specimen of 10% waste and remaining clay have shown comparatively a higher compressive strength than clay fired bricks used in building construction. Though, thermally heated specimens made of galvanizing waste have shown much better strength than specimen made of metal finishing waste. The lechability of toxic metals like Cr, Cu, Pb and Zn became far below from their regulatory threshold after heating at 950 degrees C. Addition of fly ash did not show any improvement either in engineering property or in leachability of metals from the solidified mass. X-ray diffraction (XRD) analysis of the solidified product confirmed the presence of mixed phases of oxides of metals.

  7. [Characteristics of heavy metals enrichment in algae ano its application prospects].

    PubMed

    Lu, Kaixing; Tang, Jian-jun; Jiang, De'an

    2006-01-01

    Using algae to bio-remedy heavy metals-contaminated waters has become an available and practical approach for environmental restoration. Because of its special cell wall structure, high capacity of heavy metal-enrichment, and easy to desorption, algae has been considered as an ideal biological adsorbent. This paper briefly introduced the structural and metabolic characteristics adapted for heavy metals enrichment of algae, including functional groups on cell wall, extracellular products, and intracellular heavy metals-chelating proteins, discussed the enrichment capability of living, dead and immobilized algae as well as the simple and convenient ways for desorption, and analyzed the advantages and disadvantages of using algae for bioremediation of polluted water, and its application prospects.

  8. Nuclear fuel cycle waste stream immobilization with cermets for improved thermal properties and waste consolidation

    NASA Astrophysics Data System (ADS)

    Ortega, Luis H.; Kaminski, Michael D.; Zeng, Zuotao; Cunnane, James

    2013-07-01

    In the pursuit of methods to improve nuclear waste form thermal properties and combine potential nuclear fuel cycle wastes, a bronze alloy was combined with an alkali, alkaline earth metal bearing ceramic to form a cermet. The alloy was prepared from copper and tin (10 mass%) powders. Pre-sintered ceramic consisting of cesium, strontium, barium and rubidium alumino-silicates was mixed with unalloyed bronze precursor powders and cold pressed to 300 × 103 kPa, then sintered at 600 °C and 800 °C under hydrogen. Cermets were also prepared that incorporated molybdenum, which has a limited solubility in glass, under similar conditions. The cermet thermal conductivities were seven times that of the ceramic alone. These improved thermal properties can reduce thermal gradients within the waste forms thus lowering internal temperature gradients and thermal stresses, allowing for larger waste forms and higher waste loadings. These benefits can reduce the total number of waste packages necessary to immobilize a given amount of high level waste and immobilize troublesome elements.

  9. Enzyme Immobilization: Nanobiotechnology: Putting Molecular Machines to Work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-04-01

    Describes, in general terms, the concepts of high-throughput protein expression coupled with immobilizations in functionalized nanoporous materials to carry out multiple kinds of diverse reactions. The animations also illustrate that immobilized enzymes potentially can refold inactive proteins. Transcripts of videos available upon request

  10. POLYTHIOL-FUNCTIONALIZED ALUMINA MEMBRANES FOR MERCURY CAPTURE

    EPA Science Inventory

    Various materials (particles, resins etc.) for Hg2+ sorption from aqueous streams have been reported in literature. Conventional sorbents are relatively inefficient because only a fraction of the immobilized ligands are accessible for metal complexation. Thus, our appr...

  11. Bacterial Immobilization for Imaging by Atomic Force Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, David P; Sullivan, Claretta; Mortensen, Ninell P

    2011-01-01

    AFM is a high-resolution (nm scale) imaging tool that mechanically probes a surface. It has the ability to image cells and biomolecules, in a liquid environment, without the need to chemically treat the sample. In order to accomplish this goal, the sample must sufficiently adhere to the mounting surface to prevent removal by forces exerted by the scanning AFM cantilever tip. In many instances, successful imaging depends on immobilization of the sample to the mounting surface. Optimally, immobilization should be minimally invasive to the sample such that metabolic processes and functional attributes are not compromised. By coating freshly cleaved micamore » surfaces with porcine (pig) gelatin, negatively charged bacteria can be immobilized on the surface and imaged in liquid by AFM. Immobilization of bacterial cells on gelatin-coated mica is most likely due to electrostatic interaction between the negatively charged bacteria and the positively charged gelatin. Several factors can interfere with bacterial immobilization, including chemical constituents of the liquid in which the bacteria are suspended, the incubation time of the bacteria on the gelatin coated mica, surface characteristics of the bacterial strain and the medium in which the bacteria are imaged. Overall, the use of gelatin-coated mica is found to be generally applicable for imaging microbial cells.« less

  12. Fixed-bed biosorption of cadmium using immobilized Scenedesmus obliquus CNW-N cells on loofa (Luffa cylindrica) sponge.

    PubMed

    Chen, Bor-Yann; Chen, Chun-Yen; Guo, Wan-Qian; Chang, Hao-Wei; Chen, Wen-Ming; Lee, Duu-Jong; Huang, Chieh-Chen; Ren, Nan-Qi; Chang, Jo-Shu

    2014-05-01

    A continuous fixed-bed biosorption process was established for cadmium (Cd) removal by Scenedesmus obliquus CNW-N (isolated from southern Taiwan) cells immobilized onto loofa sponge. This immobilized-cell biosorption process allows better recovery and reusability of the microalgal biomass. The growth of microalgae on the matrix support with appropriate nutrient supplementation could enhance the overall metal removal activity. Major operating parameters (e.g., feeding flow rate, cycle number of medium replacement, and particle diameter of the sponge) were studied for treatability evaluation. The most promising cell growth on the sponge support was obtained at a flow rate of 0.284 bed volume (BV)/min, sponge particle diameter of 1 cm, and with one cycle of medium replacement. The performance of fixed-bed biosorption (adsorption capacity of 38.4 mg, breakthrough time at 15.5 h) was achieved at a flow rate of 5 ml/min with an influent concentration of 7.5 mg Cd/l. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. [Immobilization remediation of Cd and Pb contaminated soil: remediation potential and soil environmental quality].

    PubMed

    Sun, Yue-Bing; Wang, Peng-Chao; Xu, Ying-Ming; Sun, Yang; Qin, Xu; Zhao, Li-Jie; Wang, Lin; Liang, Xue-Feng

    2014-12-01

    A pot experiment was conducted to investigate the immobilization remediation effects of sepiolite on soils artificially combined contamination by Cd and Pb using a set of various pH and speciation of Cd and Pb in soil, heavy metal concentration in Oryza sativa L., and soil enzyme activity and microbial quantity. Results showed that the addition of sepiolite increased the soil pH, and the exchangeable fraction of heavy metals was converted into Fe-Mn oxide, organic and residual forms, the concentration of exchangeable form of Cd and Pb reduced by 1.4% - 72.9% and 11.8% - 51.4%, respectively, when compared with the control. The contents of heavy metals decreased with increasing sepiolite, with the maximal Cd reduction of 39.8%, 36.4%, 55.2% and 32.4%, respectively, and 22.1%, 54.6%, 43.5% and 17.8% for Pb, respectively, in the stems, leaves, brown rice and husk in contrast to CK. The addition of sepiolite could improve the soil environmental quality, the catalase and urease activities and the amount of bacteria and actinomycete were increased to some extents. Although the fungi number and invertase activity were inhibited compared with the control group, it was not significantly different (P > 0.05). The significant correlation between pH, available heavy metal content, urease and invertase activities and heavy metal concentration in the plants indicated that these parameters could be used to evaluate the effectiveness of stabilization remediation of heavy metal contaminated soil.

  14. Investigation of binding characteristics of immobilized toll-like receptor 3 with poly(I:C) for potential biosensor application.

    PubMed

    Topping, Kristin D; Kelly, David G

    2018-05-26

    Toll-like receptor 3 (TLR3), a pathogen recognition receptor of the innate immune response, recognizes and is activated by double-stranded RNA (dsRNA), which is indicative of viral exposure. A sensor design exercise was conducted, using surface plasmon resonance detection, through the examination of several immobilization approaches for TLR3 as a biorecognition element (BRE) onto a modified gold surface. To examine the TLR3-dsRNA interaction a synthetic analogue mimic, poly (I:C), was used. The interaction binding characteristics were determined and compared to literature data to establish the optimal immobilization method for the TLR3 BRE. A preliminary evaluation of the efficacy of the selected TLR3 surface as a broad-spectrum viral biosensor was also performed. Amine-coupling was found to be the most reliable method for manufacturing repeatable and consistent TLR3 BRE sensor surfaces, although this immobilization schema is not tailored to place the receptor in a spatially-specific orientation. The equilibrium dissociation constant (K D ) measured for this immobilized TLR3-poly (I:C) interaction was 117 ± 3.30 pM. This evaluation included a cross-reactivity study using a selection of purified E. coli and synthetic double- and single-stranded nucleic acids. The results of this design exercise and ligand binding study will inform future work towards the development of a broad-spectrum viral sensor device. Copyright © 2018. Published by Elsevier Inc.

  15. Enzyme-MOF (metal-organic framework) composites.

    PubMed

    Lian, Xizhen; Fang, Yu; Joseph, Elizabeth; Wang, Qi; Li, Jialuo; Banerjee, Sayan; Lollar, Christina; Wang, Xuan; Zhou, Hong-Cai

    2017-06-06

    The ex vivo application of enzymes in various processes, especially via enzyme immobilization techniques, has been extensively studied in recent years in order to enhance the recyclability of enzymes, to minimize enzyme contamination in the product, and to explore novel horizons for enzymes in biomedical applications. Possessing remarkable amenability in structural design of the frameworks as well as almost unparalelled surface tunability, Metal-Organic Frameworks (MOFs) have been gaining popularity as candidates for enzyme immobilization platforms. Many MOF-enzyme composites have achieved unprecedented results, far outperforming free enzymes in many aspects. This review summarizes recent developments of MOF-enzyme composites with special emphasis on preparative techniques and the synergistic effects of enzymes and MOFs. The applications of MOF-enzyme composites, primarily in transferation, catalysis and sensing, are presented as well. The enhancement of enzymatic activity of the composites over free enzymes in biologically incompatible conditions is emphasized in many cases.

  16. Kinetic modeling of copper biosorption by immobilized biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veglio, F.; Beolchini, F.; Toro, L.

    1998-03-01

    Biosorption of heavy metals is one of the most promising technologies involved in the removal of toxic metals from industrial waste streams and natural waters. The kinetic modeling of copper biosorption by Arthrobacter sp. immobilized in a hydroxyethyl methacrylate-based matrix is reported in this work. The resin-biomass complex (RBC) has been used for copper biosorption in different conditions according to a factorial experiment. Factors investigated were cross-linker (trimethylolpropane trimethacrylate) concentration, biomass concentration in the solid, and particles` granulometry. A maximum copper specific uptake of abut 7 mg of Cu/g of biomass (dry weight) has been observed, in the case ofmore » a RBC with the following characteristics: 2% (w/w) cross-linker concentration, 8% (w/w) biomass concentration, and 425--750 {micro}m granulometry. The shrinking core model has been used for the fitting of experimental data. A good fit has been found in the case of controlling intraparticle diffusion in all experimental trials. The copper diffusion coefficient in RBC has been estimated from the slope of the regression lines. Values obtained for the diffusion coefficients do not differ from one another with respect to the estimated standard error. An average apparent copper diffusion coefficient of about 3 {times} 10{sup {minus}6} cm{sup 2}/s has been found.« less

  17. 4-Chlorophenol biodegradation facilitator composed of recombinant multi-biocatalysts immobilized onto montmorillonite.

    PubMed

    Kwean, Oh Sung; Cho, Su Yeon; Yang, Jun Won; Cho, Wooyoun; Park, Sungyoon; Lim, Yejee; Shin, Min Chul; Kim, Han-Suk; Park, Joonhong; Kim, Han S

    2018-07-01

    A biodegradation facilitator which catalyzes the initial steps of 4-chlorophenol (4-CP) oxidation was prepared by immobilizing multiple enzymes (monooxygenase, CphC-I and dioxygenase, CphA-I) onto a natural inorganic support. The enzymes were obtained via overexpression and purification after cloning the corresponding genes (cphC-I and cphA-I) from Arthrobacter chlorophenolicus A6. Then, the recombinant CphC-I was immobilized onto fulvic acid-activated montmorillonite. The immobilization yield was 60%, and the high enzyme activity (82.6%) was retained after immobilization. Kinetic analysis indicated that the Michaelis-Menten model parameters for the immobilized CphC-I were similar to those for the free enzyme. The enzyme stability was markedly enhanced after immobilization. The immobilized enzyme exhibited a high level of activity even after repetitive use (84.7%) and powdering (65.8%). 4-CP was sequentially oxidized by a multiple enzyme complex, comprising the immobilized CphC-I and CphA-I, via the hydroquinone pathway: oxidative transformation of 4-CP to hydroxyquinol followed by ring fission of hydroxyquinol. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A multilayered polyurethane foam technique for skin graft immobilization.

    PubMed

    Nakamura, Motoki; Ito, Erika; Kato, Hiroshi; Watanabe, Shoichi; Morita, Akimichi

    2012-02-01

    Several techniques are applicable for skin graft immobilization. Although the sponge dressing is a popular technique, pressure failure near the center of the graft is a weakness of the technique that can result in engraftment failure. To evaluate the efficacy of a new skin graft immobilization technique using multilayered polyurethane foam in vivo and in vitro. Twenty-six patients underwent a full-thickness skin graft. Multiple layers of a hydrocellular polyurethane foam dressing were used for skin graft immobilization. In addition, we created an in vitro skin graft model that allowed us to estimate immobilization pressure at the center and edges of skin grafts of various sizes. Overall mean graft survival was 88.9%. In the head and neck region (19 patients), mean graft survival was 93.6%. Based on the in vitro outcomes, this technique supplies effective pressure (<30 mmHg) to the center region of the skin graft. This multilayered polyurethane foam dressing is simple, safe, and effective for skin graft immobilization. © 2011 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  19. Investigating the dynamics of surface-immobilized DNA nanomachines

    NASA Astrophysics Data System (ADS)

    Dunn, Katherine E.; Trefzer, Martin A.; Johnson, Steven; Tyrrell, Andy M.

    2016-07-01

    Surface-immobilization of molecules can have a profound influence on their structure, function and dynamics. Toehold-mediated strand displacement is often used in solution to drive synthetic nanomachines made from DNA, but the effects of surface-immobilization on the mechanism and kinetics of this reaction have not yet been fully elucidated. Here we show that the kinetics of strand displacement in surface-immobilized nanomachines are significantly different to those of the solution phase reaction, and we attribute this to the effects of intermolecular interactions within the DNA layer. We demonstrate that the dynamics of strand displacement can be manipulated by changing strand length, concentration and G/C content. By inserting mismatched bases it is also possible to tune the rates of the constituent displacement processes (toehold-binding and branch migration) independently, and information can be encoded in the time-dependence of the overall reaction. Our findings will facilitate the rational design of surface-immobilized dynamic DNA nanomachines, including computing devices and track-based motors.

  20. Investigating the dynamics of surface-immobilized DNA nanomachines

    PubMed Central

    Dunn, Katherine E.; Trefzer, Martin A.; Johnson, Steven; Tyrrell, Andy M.

    2016-01-01

    Surface-immobilization of molecules can have a profound influence on their structure, function and dynamics. Toehold-mediated strand displacement is often used in solution to drive synthetic nanomachines made from DNA, but the effects of surface-immobilization on the mechanism and kinetics of this reaction have not yet been fully elucidated. Here we show that the kinetics of strand displacement in surface-immobilized nanomachines are significantly different to those of the solution phase reaction, and we attribute this to the effects of intermolecular interactions within the DNA layer. We demonstrate that the dynamics of strand displacement can be manipulated by changing strand length, concentration and G/C content. By inserting mismatched bases it is also possible to tune the rates of the constituent displacement processes (toehold-binding and branch migration) independently, and information can be encoded in the time-dependence of the overall reaction. Our findings will facilitate the rational design of surface-immobilized dynamic DNA nanomachines, including computing devices and track-based motors. PMID:27387252

  1. Enhanced stability of catalase covalently immobilized on functionalized titania submicrospheres.

    PubMed

    Wu, Hong; Liang, Yanpeng; Shi, Jiafu; Wang, Xiaoli; Yang, Dong; Jiang, Zhongyi

    2013-04-01

    In this study, a novel approach combing the chelation and covalent binding was explored for facile and efficient enzyme immobilization. The unique capability of titania to chelate with catecholic derivatives at ambient conditions was utilized for titania surface functionalization. The functionalized titania was then used for enzyme immobilization. Titania submicrospheres (500-600 nm) were synthesized by a modified sol-gel method and functionalized with carboxylic acid groups through a facile chelation method by using 3-(3,4-dihydroxyphenyl) propionic acid as the chelating agent. Then, catalase (CAT) was covalently immobilized on these functionalized titania submicrospheres through 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) coupling reaction. The immobilized CAT retained 65% of its free form activity with a loading capacity of 100-150 mg/g titania. The pH stability, thermostability, recycling stability and storage stability of the immobilized CAT were evaluated. A remarkable enhancement in enzyme stability was achieved. The immobilized CAT retained 90% and 76% of its initial activity after 10 and 16 successive cycles of decomposition of hydrogen peroxide, respectively. Both the Km and the Vmax values of the immobilized CAT (27.4 mM, 13.36 mM/min) were close to those of the free CAT (25.7 mM, 13.46 mM/min). Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Bioluminescent Reaction by Immobilized Luciferase

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryuta; Takahama, Eriko; Iinuma, Masataka; Ikeda, Takeshi; Kadoya, Yutaka; Kuroda, Akio

    We have investigated an effect of immobilization of luciferase molecules at the optical fiber end on a bioluminescent reaction. The time dependence of measured count rates of emitted photons has been analyzed by fitting with numerical solution of differential equations including the effect of the product-inhibitor and the deactivation of the luciferase. Through the analysis, we have successfully extracted kinetic constants such as, reaction rate, number of active luciferase molecules, etc. Ratio of active molecules to total luciferase molecules in immobilization was one order of magnitude lower than that in solution. The reaction rate of the bioluminescent process was also different from the one of free luciferase in solution.

  3. Characteristics of immobilized aminoacylase from Aspergillus oryzae on macroporous copolymers.

    PubMed

    He, B L; Jiang, P; Qiu, Y B

    1990-01-01

    Aminoacylase from Aspergillus oryzae was adsorbed on functionallized macroporous copolymers where the enzyme showed excellent catalyzing activity and operation stability. Various factors which effect the activity of the immobilized aminoacylase such as temperature, pH and ionic strength were investigated. The continuous operation of the enzyme immobilized on macroporous copolymers was compared with that of the enzyme immobilized on DEAE-Sephadex.

  4. Grenade Range Management Using Lime for Dual Role of Metals Immobilization and Explosives Transformation Treatability

    DTIC Science & Technology

    2006-11-01

    2001) and the FRTR (2006) are enhanced bioremediation and phytoremediation . The length of time and the effects of climate on cleanup are...cementitious reaction that stabilizes the metals in the soil. They found that lead, arsenic, mercury, and iron concentrations were very low in the leachate ...matter dissolves, leaving the metal in solution as a metal-organic complex. Although the leachate did not contain metals in concentrations high enough

  5. The effects of below-elbow immobilization on driving performance.

    PubMed

    Jones, Evan M; Barrow, Aaron E; Skordas, Nic J; Green, David P; Cho, Mickey S

    2017-02-01

    There is limited research to guide physicians and patients in deciding whether it is safe to drive while wearing various forms of upper extremity immobilization. The purpose of this study is to evaluate the effect of below-elbow removable splints and fiberglass casts on automobile driving performance. 20 healthy subjects completed 10 runs through a closed, cone-marked driving course while wearing a randomized sequence of four different types of immobilization on each extremity (short arm thumb spica fiberglass cast, short arm fiberglass cast, short arm thumb spica splint, and short arm wrist splint). The first and last driving runs were without immobilization and served as controls. Performance was measured based on evaluation by a certified driving instructor (pass/fail scoring), cones hit, run time, and subject-perceived driving difficulty (1-10 analogue scoring). The greatest number of instructor-scored failures occurred while immobilized in right arm spica casts (n=6; p=0.02) and left arm spica casts (n=5; p=0.049). The right arm spica cast had the highest subject-perceived difficulty (5.2±1.9; p<0.001). All forms of immobilization had significantly increased perceived difficulty compared to control, except for the left short arm splint (2.5±1.6; p>0.05). There was no significant difference in number of cones hit or driving time between control runs and runs with any type of immobilization. Drivers should use caution when wearing any of the forms of upper extremity immobilization tested in this study. All forms of immobilization, with exception of the left short arm splint significantly increased perceived driving difficulty. However, only the fiberglass spica casts (both left and right arm), significantly increased drive run failures due to loss of vehicle control. We recommend against driving when wearing a below-elbow fiberglass spica cast on either extremity. Copyright © 2016. Published by Elsevier Ltd.

  6. Characterization of metal binding sites onto biochar using rare earth elements as a fingerprint.

    PubMed

    Pourret, Olivier; Houben, David

    2018-02-01

    The ability of biochar to immobilize metals relies on the amount of functional groups at its surface but the contribution of each functional groups (e.g. carboxylic, phenolic) to metal bonding is poorly known. Using a new approach based on previous works on rare earth element (REE) interactions with humic substances, we aim at elucidating the relative contribution of these binding sites to metal sorption under various conditions (i.e. pH and ionic strengths, IS). Using batch experiments, REE sorption onto biochar was analyzed from pH 3 to 9 and IS 10 -1 mol/L to 10 -3 mol/L. Rare earth element patterns show a Middle REE (MREE) downward concavity at acidic pH and low ionic strength. These patterns are in good agreement with existing datasets quantifying REE binding with humic substances. Indeed, the MREE downward concavity displayed by REE-biochar complexation pattern compares well with REE patterns with various organic compounds. This similarity in the REE complexation pattern shapes suggests that carboxylic groups are the main binding sites of REE in biochar. Overall, our results indicate that the strength of the metal bonding with biochar increases when pH and IS increase, suggesting that biochar is more efficient for long-term metal immobilization at near neutral pH and high ionic strength.

  7. Characterization of cellulose acetate micropore membrane immobilized acylase I.

    PubMed

    Guo, Yong-Sheng; Wang, Jie; Song, Xi-Jin

    2004-12-01

    This paper describes an innovative method for the immobilization of acylase I, which was entrapped into the CA-CTA micropore membrane. The most suitable casting solutions proportion for immobilizing the enzyme was obtained through orthogonal experiment. Properties of the enzyme membrane were investigated and compared with those of free enzyme and blank membrane. The thermal stability and pH stability of the enzyme inside the membrane were changed by immobilization. The optimum pH was found to be 6.0, which changes 1.0 unit compared with that of free acylase I. The optimum temperature was found to be about 90 degrees C, which is higher than that of free acylase I (60 degrees C). Experimental results showed that immobilization had effects on the kinetic parameters of acylase I.

  8. Design and Properties of an Immobilization Enzyme System for Inulin Conversion.

    PubMed

    Hang, Hua; Wang, Changbao; Cheng, Yiqun; Li, Ning; Song, Liuli

    2018-02-01

    A commercial inulinase could convert inulin into fructose, which was optimized to be entrapped in the calcium alginate-gelatin beads with the immobilization yield of 86% for free inulinase activities. The optimum pH values and temperatures were 4.5 and 40 °C for the free enzyme and 5.0-5.5 and 45-50 °C for the immobilized enzyme. The kinetic parameters of V max and K m were 5.24 μmol/min and 57.6 mg/mL for the free inulinase and 4.32 μmol/min and 65.8 mg/mL for the immobilized inulinase, respectively. The immobilized enzyme retained 80% of its initial activities at 45 °C for 4 days, which could exhibit better thermal stability. The reuse of immobilized inulinase throughout the continuous batch operations was explored, which had better reusability of the immobilized biocatalyst. At the same time, the stability of immobilized enzyme in the continuous packed-bed bioreactor was estimated, which showed the better results and had its potential scale-up fructose production for inulin conversion.

  9. Literature Survey on Weld-Metal Cracking

    DTIC Science & Technology

    1952-08-01

    quench cracking in cast steel. A statistical investigation was made into the causes of quench cracking in low-alloy-steel gun tubes (FlZ). A definite...decreased with increased pouring temperature, finishing temperature, and forging reduction. Spretnak and Wells(F2O) also made a statistical analysis of...per cent to avoid hot cracks and fissures. Lee(I20) made a statistical study of the bead-cracking susceptibility of weld metal deposited with Type 307

  10. Prehospital spine immobilization/spinal motion restriction in penetrating trauma: A practice management guideline from the Eastern Association for the Surgery of Trauma (EAST).

    PubMed

    Velopulos, Catherine G; Shihab, Hasan M; Lottenberg, Lawrence; Feinman, Marcie; Raja, Ali; Salomone, Jeffrey; Haut, Elliott R

    2018-05-01

    Spine immobilization in trauma has remained an integral part of most emergency medical services protocols despite a lack of evidence for efficacy and concern for associated complications, especially in penetrating trauma patients. We reviewed the published evidence on the topic of prehospital spine immobilization or spinal motion restriction in adult patients with penetrating trauma to structure a practice management guideline. We conducted a Cochrane style systematic review and meta-analysis and applied Grading of Recommendations, Assessment, Development, and Evaluation methodology to construct recommendations. Qualitative and quantitative analyses were used to evaluate the literature on the critical outcomes of mortality, neurologic deficit, and potentially reversible neurologic deficit. A total of 24 studies met inclusion criteria, with qualitative review conducted for all studies. We used five studies for the quantitative review (meta-analysis). No study showed benefit to spine immobilization with regard to mortality and neurologic injury, even for patients with direct neck injury. Increased mortality was associated with spine immobilization, with risk ratio [RR], 2.4 (confidence interval [CI], 1.07-5.41). The rate of neurologic injury or potentially reversible injury was very low, ranging from 0.002 to 0.076 and 0.00034 to 0.055, with no statistically significant difference for neurologic deficit or potentially reversible deficit, RR, 4.16 (CI, 0.56-30.89), and RR, 1.19 (CI, 0.83-1.70), although the point estimates favored no immobilization. Spine immobilization in penetrating trauma is associated with increased mortality and has not been shown to have a beneficial effect on mitigating neurologic deficits, even potentially reversible neurologic deficits. We recommend that spine immobilization not be used routinely for adult patients with penetrating trauma. Systematic review with meta-analysis study, level III.

  11. Preparation and activity of bubbling-immobilized cellobiase within chitosan-alginate composite.

    PubMed

    Wang, Fang; Su, Rong-Xin; Qi, Wei; Zhang, Ming-Jia; He, Zhi-Min

    2010-01-01

    Cellobiase can hydrolyze cellobiose into glucose; it plays a key role in the process of cellulose hydrolysis by reducing the product inhibition. To reuse the enzyme and improve the economic value of cellulosic ethanol, cellobiase was immobilized using sodium alginate and chitosan as carriers by the bubbling method. The immobilization conditions were optimized as follows: enzyme loading of 100 U cellobiase/g carrier, 30 min immobilization, 3.5 wt% sodium alginate, 0.25 wt% chitosan, and 2 wt% calcium chloride. Compared to free enzyme, the immobilized cellobiase had a decreased apparent K(m) and the maximum activity at a lower pH, indicating its higher acidic and thermal stability. The immobilized cellobiase was further tested in the hydrolysis of cellobiose and various cellulosic substrates (microcrystalline cellulose, filter paper, and ammonia-pretreated corn cobs). Together with cellulases, the immobilized cellobiase converted the cellulosic substrates into glucose with the rate and extent similar to the free enzyme.

  12. Optimization of covalent immobilization of pectinase on sodium alginate support.

    PubMed

    Li, Tuoping; Wang, Na; Li, Suhong; Zhao, Qiancheng; Guo, Mei; Zhang, Cheyun

    2007-09-01

    Pectinase was immobilized on a sodium alginate support using glutaraldehyde and retained 66% activity. The optimal pH for activity shifted from 3.0 to 3.5 after immobilization; however, the optimum temperature remained unchanged at 40 degrees C. The immobilized enzyme also had a higher thermal stability and reusability than the free enzyme, and retained 80% of initial activity after 11 batch reactions.

  13. Degradation of Carbazole by Microbial Cells Immobilized in Magnetic Gellan Gum Gel Beads▿

    PubMed Central

    Wang, Xia; Gai, Zhonghui; Yu, Bo; Feng, Jinhui; Xu, Changyong; Yuan, Yong; Lin, Zhixin; Xu, Ping

    2007-01-01

    Polycyclic aromatic heterocycles, such as carbazole, are environmental contaminants suspected of posing human health risks. In this study, we investigated the degradation of carbazole by immobilized Sphingomonas sp. strain XLDN2-5 cells. Four kinds of polymers were evaluated as immobilization supports for Sphingomonas sp. strain XLDN2-5. After comparison with agar, alginate, and κ-carrageenan, gellan gum was selected as the optimal immobilization support. Furthermore, Fe3O4 nanoparticles were prepared by a coprecipitation method, and the average particle size was about 20 nm with 49.65-electromagnetic-unit (emu) g−1 saturation magnetization. When the mixture of gellan gel and the Fe3O4 nanoparticles served as an immobilization support, the magnetically immobilized cells were prepared by an ionotropic method. The biodegradation experiments were carried out by employing free cells, nonmagnetically immobilized cells, and magnetically immobilized cells in aqueous phase. The results showed that the magnetically immobilized cells presented higher carbazole biodegradation activity than nonmagnetically immobilized cells and free cells. The highest biodegradation activity was obtained when the concentration of Fe3O4 nanoparticles was 9 mg ml−1 and the saturation magnetization of magnetically immobilized cells was 11.08 emu g−1. Additionally, the recycling experiments demonstrated that the degradation activity of magnetically immobilized cells increased gradually during the eight recycles. These results support developing efficient biocatalysts using magnetically immobilized cells and provide a promising technique for improving biocatalysts used in the biodegradation of not only carbazole, but also other hazardous organic compounds. PMID:17827304

  14. Immobilization of Pseudomonas sp. DG17 onto sodium alginate–attapulgite–calcium carbonate

    PubMed Central

    Wang, Hong Qi; Hua, Fei; Zhao, Yi Cun; Li, Yi; Wang, Xuan

    2014-01-01

    A strain of Pseudomonas sp. DG17, capable of degrading crude oil, was immobilized in sodium alginate–attapulgite–calcium carbonate for biodegradation of crude oil contaminated soil. In this work, proportion of independent variables, the laboratory immobilization parameters, the micromorphology and internal structure of the immobilized granule, as well as the crude oil biodegradation by sodium alginate–attapulgite–calcium carbonate immobilized cells and sodium alginate–attapulgite immobilized cells were studied to build the optimal immobilization carrier and granule-forming method. The results showed that the optimal concentrations of sodium alginate–attapulgite–calcium carbonate and calcium chloride were 2.5%–3.5%, 0.5%–1%, 3%–7% and 2%–4%, respectively. Meanwhile, the optimal bath temperature, embedding cell amount, reaction time and multiplication time were 50–60 °C, 2%, 18 h and 48 h, respectively. Moreover, biodegradation was enhanced by immobilized cells with a total petroleum hydrocarbon removal ranging from 33.56% ± 3.84% to 56.82% ± 3.26% after 20 days. The SEM results indicated that adding calcium carbonate was helpful to form internal honeycomb-like pores in the immobilized granules. PMID:26019567

  15. Methods for immobilizing nucleic acids on a gel substrate

    DOEpatents

    Mirzabekov, Andrei Darievich; Proudnikov, Dimitri Y.; Timofeev, Edward N.; Kochetkova, Svetlana V.; Florentiev, Vladimir L.; Shick, Valentine V.

    1999-01-01

    A method for labeling oligonucleotide molecules, and for immobilizing oligonucleotide and DNA molecules is provided comprising modifying the molecules to create a chemically active group, and contacting activated fluorescent dyes to the region. A method for preparing an immobilization substrate is also provided comprising modifying a gel to contain desired functional groups which covalently interact with certain moieties of the oligonucleotide molecules. A method for immobilizing biomolecules and other molecules within a gel by copolymerization of allyl-substituted oligonucleotides, DNA and proteins with acrylamide is also provided.

  16. Light transfer in agar immobilized microalgae cell cultures

    NASA Astrophysics Data System (ADS)

    Kandilian, Razmig; Jesus, Bruno; Legrand, Jack; Pilon, Laurent; Pruvost, Jérémy

    2017-09-01

    This paper experimentally and theoretically investigates light transfer in agar-immobilized cell cultures. Certain biotechnological applications such as production of metabolites secreted by photosynthetic microorganisms require cells to be immobilized in biopolymers to minimize contamination and to facilitate metabolite recovery. In such applications, light absorption by cells is one of the most important parameters affecting cell growth or metabolite productivity. Modeling light transfer therein can aid design and optimize immobilized-cell reactors. In this study, Parachlorella kessleri cells with areal biomass concentrations ranging from 0.36 to 16.9 g/m2 were immobilized in 2.6 mm thick agar gels. The average absorption and scattering cross-sections as well as the scattering phase function of P. kessleri cells were measured. Then, the absorption and transport scattering coefficients of the agar gel were determined using an inverse method based on the modified two-flux approximation. The forward model was used to predict the normal-hemispherical transmittance and reflectance of the immobilized-cell films accounting for absorption and scattering by both microalgae and the agar gel. Good agreement was found between the measured and predicted normal-hemispherical transmittance and reflectance provided absorption and scattering by agar were taken into account. Moreover, good agreement was found between experimentally measured and predicted mean rate of photon absorption. Finally, optimal areal biomass concentration was determined to achieve complete absorption of the incident radiation.

  17. Determination of conformation and orientation of immobilized peptides and proteins at buried interfaces

    NASA Astrophysics Data System (ADS)

    Shen, Lei; Ulrich, Nathan W.; Mello, Charlene M.; Chen, Zhan

    2015-01-01

    Surface immobilized peptides/proteins have important applications such as antimicrobial coating and biosensing. We report a study of such peptides/proteins using sum frequency generation vibrational spectroscopy and ATR-FTIR. Immobilization on surfaces via physical adsorption and chemical coupling revealed that structures of chemically immobilized peptides are determined by immobilization sites, chemical environments, and substrate surfaces. In addition, controlling enzyme orientation by engineering the surface immobilization site demonstrated that structures can be well-correlated to measured chemical activity. This research facilitates the development of immobilized peptides/proteins with improved activities by optimizing their surface orientation and structure.

  18. Electroconvulsive therapy in patients with skull defects or metallic implants: a review of the literature and case report.

    PubMed

    Amanullah, Shabbir; Delva, Nicholas; McRae, Harold; Campbell, Laura A; Cole, Julie

    2012-01-01

    Head injury is often associated with psychiatric morbidity. While it is well understood that the loss of critical areas of the brain may play a role in cognitive dysfunction and change in personality, head injury can also have profound effects on mood and cognition. The role of medications in the treatment of mood disorders associated with brain injury is well documented, and there is also evidence favoring the use of electroconvulsive therapy (ECT) in this context. However, data are limited on the use of ECT in patients with skull defects or metallic head implants. First, a review of the literature on use of ECT in patients with metallic head implants is provided. Electronic databases and online sites, including PubMed, Cochrane Library of Systematic Reviews, and UpToDate, were used to search for relevant articles and case reports on the use of ECT in patients with and without metallic implants in the head (1964 to 2009). The search terms electroconvulsive, electroconvulsive therapy, ECT, electroshock therapy, EST, head injury, brain injury, metallic plates, metallic implants, skull prosthesis, and depression were used interchangeably. The search produced 7 articles discussing exclusively the use of ECT in patients with a metallic skull plate. Second, the case of the successful and safe use of ECT in an individual with a previous history of brain trauma and metallic plate implantation is described. Most cases of head injury are managed by neurologists and rehabilitation consultants; the more severe cases of depression and other mood disorders tend to be referred for specialist psychiatric care. With greater degrees of deficit following head injury, management becomes more complicated. Our patient showed positive results with ECT, including improvement in depressive features and resolution of suicidal ideas/plans. ECT is an effective and safe alternative in patients with a history of brain trauma and metallic plate implantation who subsequently develop treatment

  19. Repeated immobilization stress increases uncoupling protein 1 expression and activity in Wistar rats.

    PubMed

    Gao, Bihu; Kikuchi-Utsumi, Kazue; Ohinata, Hiroshi; Hashimoto, Masaaki; Kuroshima, Akihiro

    2003-06-01

    Repeat immobilization-stressed rats are leaner and have improved cold tolerance due to enhancement of brown adipose tissue (BAT) thermogenesis. This process likely involves stress-induced sympathetic nervous system activation and adrenocortical hormone release, which dynamically enhances and suppresses uncoupling protein 1 (UCP1) function, respectively. To investigate whether repeated immobilization influences UCP1 thermogenic properties, we assessed UCP1 mRNA, protein expression, and activity (GDP binding) in BAT from immobilization-naive or repeatedly immobilized rats (3 h daily for 4 weeks) and sham operated or adrenalectomized (ADX) rats. UCP1 properties were assessed before (basal) and after exposure to 3 h of acute immobilization. Basal levels of GDP binding and UCP1 expression was significantly increased (140 and 140%) in the repeated immobilized group. Acute immobilization increased GDP binding in both naive (180%) and repeated immobilized groups (220%) without changing UCP1 expression. In ADX rats, basal GDP binding and UCP1 gene expression significantly increased (140 and 110%), and acute immobilization induced further increase. These data demonstrate that repeated immobilization resulted in enhanced UCP1 function, suggesting that enhanced BAT thermogenesis contributes to lower body weight gain through excess energy loss and an improved ability to maintain body temperature during cold exposure.

  20. Enhanced degradation of pendimethalin by immobilized cells of Bacillus lehensis XJU.

    PubMed

    More, Veena S; Tallur, Preeti N; Niyonzima, Francois N; More, Sunil S

    2015-12-01

    A bacterium capable of degrading pendimethalin was isolated from the contaminated soil samples and identified as Bacillus lehensis XJU based on 16S rRNA gene sequence analysis. 6-Aminopendimethalin and 3,4-dimethyl 2,6-dinitroaniline were identified as the metabolites of pendimethalin degradation by the bacterium. The biodegradation of pendimethalin by freely suspended and the immobilized cells of B. lehensis on various matrices namely agar, alginate, polyacrylamide, and polyurethane foam was also investigated. The batch degradation rate was nearly the same for both free and immobilized cells in agar and alginate, whereas polyacrylamide- and PUF-immobilized cells degraded 93 and 100 of 0.1 % pendimethalin after 96 and 72 h, respectively. At higher concentration, the degradation rate of freely suspended cells decreased; whereas the same immobilized cells on polyurethane foam completely degraded 0.2 % pendimethalin within 96 h. The repeated batch degradation with the polyurethane foam-immobilized cells was reused for 35 cycles without losing the 0.1 % pendimethalin degrading ability. In contrast, agar-, alginate- and polyacrylamide-immobilized cells could be reused for 15, 18, and 25 cycles, respectively. When the pendimethalin concentration was increased to 0.2 %, the immobilized cells could be reused but the pendimethalin degradation rate was decreased. Polyurethane foam-immobilized cells exhibited better tolerance to pH and temperature alterations than freely suspended cells and could be stored for more than 3 months without losing pendimethalin degrading ability. The immobilization of cells capable of degrading pendimethalin may serve as an ideal technique for the complete degradation of the herbicide in the environment.

  1. Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Uzun, K.; Çevik, E.; Şenel, M.; Sözeri, H.; Baykal, A.; Abasıyanık, M. F.; Toprak, M. S.

    2010-10-01

    In this study, polyamidoamine (PAMAM) dendrimer was synthesized on the surface of superparamagnetite nanoparticles to enhance invertase immobilization. The amount of immobilized enzyme on the surface-hyperbranched magnetite nanoparticle was up to 2.5 times (i.e., 250%) as much as that of magnetite nanoparticle modified with only amino silane. Maximum reaction rate ( V max) and Michaelis-Menten constant ( K m) were determined for the free and immobilized enzymes. Various characteristics of immobilized invertase such as; the temperature activity, thermal stability, operational stability, and storage stability were evaluated and results revealed that stability of the enzyme is improved upon immobilization.

  2. Immobilization of Pichia pastoris cells containing alcohol oxidase activity

    PubMed Central

    Maleknia, S; Ahmadi, H; Norouzian, D

    2011-01-01

    Background and Objectives The attempts were made to describe the development of a whole cell immobilization of P. pastoris by entrapping the cells in polyacrylamide gel beads. The alcohol oxidase activity of the whole cell Pichia pastoris was evaluated in comparison with yeast biomass production. Materials and Methods Methylotrophic yeast P. pastoris was obtained from Collection of Standard Microorganisms, Department of Bacterial Vaccines, Pasteur Institute of Iran (CSMPI). Stock culture was maintained on YPD agar plates. Alcohol oxidase was strongly induced by addition of 0.5% methanol as the carbon source. The cells were harvested by centrifugation then permeabilized. Finally the cells were immobilized in polyacrylamide gel beads. The activity of alcohol oxidase was determined by method of Tane et al. Results At the end of the logarithmic phase of cell culture, the alcohol oxidase activity of the whole cell P. Pastoris reached the highest level. In comparison, the alcohol oxidase activity was measured in an immobilized P. pastoris when entrapped in polyacrylamide gel beads. The alcohol oxidase activity of cells was induced by addition of 0.5% methanol as the carbon source. The cells were permeabilized by cetyltrimethylammonium bromide (CTAB) and immobilized. CTAB was also found to increase the gel permeability. Alcohol oxidase activity of immobilized cells was then quantitated by ABTS/POD spectrophotometric method at OD 420. There was a 14% increase in alcohol oxidase activity in immobilized cells as compared with free cells. By addition of 2-butanol as a substrate, the relative activity of alcohol oxidase was significantly higher as compared with other substrates added to the reaction media. Conclusion Immobilization of cells could eliminate lengthy and expensive procedures of enzyme separation and purification, protect and stabilize enzyme activity, and perform easy separation of the enzyme from the reaction media. PMID:22530090

  3. Enhanced activity and stability of L-arabinose isomerase by immobilization on aminopropyl glass.

    PubMed

    Zhang, Ye-Wang; Jeya, Marimuthu; Lee, Jung-Kul

    2011-03-01

    Immobilization of Bacillus licheniformis L: -arabinose isomerase (BLAI) on aminopropyl glass modified with glutaraldehyde (4 mg protein g support⁻¹) was found to enhance the enzyme activity. The immobilization yield of BLAI was proportional to the quantity of amino groups on the surface of support. Reducing particle size increased the adsorption capacity (q(m)) and affinity (k(a)). The pH and temperature for immobilization were optimized to be pH 7.1 and 33 °C using response surface methodology (RSM). The immobilized enzyme was characterized and compared to the free enzyme. There is no change in optimal pH and temperature before and after immobilization. However, the immobilized BLAI enzyme achieved 145% of the activity of the free enzyme. Correspondingly, the catalytic efficiency (k(cat)/K(m)) was improved 1.47-fold after immobilization compared to the free enzyme. The thermal stability was improved 138-fold (t₁/₂) increased from 2 to 275 h) at 50 °C following immobilization.

  4. Characteristics of pectinase treated with ultrasound both during and after the immobilization process.

    PubMed

    Ma, Xiaobin; Wang, Danli; Yin, Michelle; Lucente, Juliet; Wang, Wenjun; Ding, Tian; Ye, Xingqian; Liu, Donghong

    2017-05-01

    In this study, ultrasound was applied both during and after the immobilization process and characteristics of different immobilized pectinase samples were studied. When introduced during the immobilization process, ultrasound at an intensity of 9WmL -1 for 20min increased the immobilization yield 92.28% more than the control. When introduced to the already immobilized pectinase, ultrasound at an intensity of 4.5WmL -1 for 10min increased the pectinase activity by 30.05%. Results of scanning electron microscope demonstrated that ultrasound increased surface area and loosened structures of immobilized enzymes. Higher V max and lower K m were obtained after ultrasound treatment, indicating the increased catalytic efficiency and enhanced affinity of immobilized pectinase. Furthermore, the optimum temperature and pH for free and immobilized pectinase remained unchanged at 50°C and pH 4. Thermostability, reaction stability and reusability of two ultrasound-treated pectinase enzymes slightly decreased due to structural matrix changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. On-line database of voltammetric data of immobilized particles for identifying pigments and minerals in archaeometry, conservation and restoration (ELCHER database).

    PubMed

    Doménech-Carbó, Antonio; Doménech-Carbó, María Teresa; Valle-Algarra, Francisco Manuel; Gimeno-Adelantado, José Vicente; Osete-Cortina, Laura; Bosch-Reig, Francisco

    2016-07-13

    A web-based database of voltammograms is presented for characterizing artists' pigments and corrosion products of ceramic, stone and metal objects by means of the voltammetry of immobilized particles methodology. Description of the website and the database is provided. Voltammograms are, in most cases, accompanied by scanning electron microphotographs, X-ray spectra, infrared spectra acquired in attenuated total reflectance Fourier transform infrared spectroscopy mode (ATR-FTIR) and diffuse reflectance spectra in the UV-Vis-region. For illustrating the usefulness of the database two case studies involving identification of pigments and a case study describing deterioration of an archaeological metallic object are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effect of heavy metals on soil fungi

    NASA Astrophysics Data System (ADS)

    Sosak-Świderska, Bożena

    2010-05-01

    Fungi constitute a high proportion of the microbial biomass in soil.Being widespread in soil their large surface-to-volume ratio and high metabolic activity, fungi can contribute significantly to heavy metal dynamics in soil. At neutral pH heavy metals in soils tend to be immobilized to precipitation and/or absorption to cation exchange sites of clay minerals. In the acidic soils, metals are more mobile and enter food webs easier. Microbial production of acids and chelating agents can mobilize to toxic metals. Mobilization is often by uptake and intracellular accumulation of the heavy metlas, and in this way, the bioavailability of metals towards other organisms can be more reduced. Fungi were isolated from soils from Upper Silesia in Poland and belonged to widespread genera: Aspergillus, Cladosporium, Penicillium and Trichoderma. Fungi from different taxonomic groups differ greatly in their tolerance to heavy metals. This could be related to their wall structure and chemistry as well as biochemical and physiological characteristics of fungi. Localization of metals in fungal cells was studied using electron microscopy analysis. Metal biosorption in the cell wall can be complex as melanin granules. Fungal vacuoles have an important role in the regulation of the cytosolic concentration of metal ions, and may contribute to heavy metal tolerance.In polluted soils with heavy metals, fungal species composition can be changed and their physiological activity can be changed, too.

  7. Effects of acoustic wave resonance oscillation on immobilized enzyme

    NASA Astrophysics Data System (ADS)

    Nishiyama, Hiroshi; Watanabe, Tomoya; Inoue, Yasunobu

    2014-03-01

    In aiming at developing a new method to artificially activate enzyme catalysts immobilized on surface, the effects of resonance oscillation of bulk acoustic waves were studied. Glucose oxidase (GOD) was immobilized by a covalent coupling method on a ferroelectric lead zirconate titanate (PZT) device that was able to generate thickness-extensional resonance oscillation (TERO). Glucose oxidation by the GOD enzyme was studied in a microreactor. The generation of TERO immediately increased the catalytic activity of immobilized GOD by a factor of 2-3. With turn-off of TERO, no significant activity decrease occurred, and 80-90% of the enhanced activity was maintained while the reaction proceeded. The almost complete reversion of the activity to the original low level before TERO generation was observed when the immobilized GOD was exposed to a glucose substrate-free solution. These results indicated that the presence of glucose substrate was essential for TERO-induced GOD activation and preservation of the increased activity level. The influences of reaction temperature, glucose concentration, pH, and rf electric power on the TERO activation showed that TERO strengthened the interactions of the immobilized enzyme with glucose substrate and hence promoted the formation of an activation complex.

  8. Effects of immobilization by electricity and MS-222 on brown trout broodstock and their progeny

    USGS Publications Warehouse

    Redman, S.D.; Meinertz, J.R.; Gaikowski, M.P.

    1998-01-01

    To determine the effects of electrically and chemically induced immobilization on postspawn broodstock and their progeny, age-2 and age-3 female broodstock and age-2 male broodstock of brown trout Salmo trutta were immobilized with electricity or tricaine methanesulfonate (MS-222), stripped of their eggs or milt, and weighed. Eggs taken from electrically immobilized females were fertilized with milt taken from age-2 males that were immobilized with electricity, and eggs taken from females immobilized with MS-222 were fertilized with milt taken from age-2 males that were immobilized with MS-222. After spawning, the mortality and weight of broodstock were compared twice over a 6-month period. Egg viability and growth of offspring fry from each treatment group were also compared. Electricity induced complete and consistent immobilization in brown trout broodstock. Electrically immobilized fish were more easily handled than fish immobilized with MS-222; however, electrically immobilized fish survival (70%) was significantly less than fish immobilized with MS-222 (83%). Broodstock growth differences were only noted at 6 months postexposure, when the mean weight of electrically immobilized fish was slightly less than the weight of fish immobilized with MS-222. Broodstock immobilization by electricity did not reduce egg viability or fry growth.

  9. Metal binding proteins, recombinant host cells and methods

    DOEpatents

    Summers, Anne O.; Caguiat, Jonathan J.

    2004-06-15

    The present disclosure provides artificial heavy metal binding proteins termed chelons by the inventors. These chelons bind cadmium and/or mercuric ions with relatively high affinity. Also disclosed are coding sequences, recombinant DNA molecules and recombinant host cells comprising those recombinant DNA molecules for expression of the chelon proteins. In the recombinant host cells or transgenic plants, the chelons can be used to bind heavy metals taken up from contaminated soil, groundwater or irrigation water and to concentrate and sequester those ions. Recombinant enteric bacteria can be used within the gastrointestinal tracts of animals or humans exposed to toxic metal ions such as mercury and/or cadmium, where the chelon recombinantly expressed in chosen in accordance with the ion to be rededicated. Alternatively, the chelons can be immobilized to solid supports to bind and concentrate heavy metals from a contaminated aqueous medium including biological fluids.

  10. Hydrogen interactions with metals

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Harkins, C. G.

    1975-01-01

    Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.

  11. Evaluation of agrowastes as immobilizers for probiotics in soy milk.

    PubMed

    Teh, Sue-Siang; Ahmad, Rosma; Wan-Abdullah, Wan-Nadiah; Liong, Min-Tze

    2009-11-11

    The objective of this study was to evaluate agricultural wastes as immobilizers for probiotics in liquid foods, such as soy milk. Probiotic strains were initially evaluated for acid and bile tolerance and the ability to produce alpha-galactosidase. Rinds of durian, mangosteen, and jackfruit were dried, ground, and sterilized prior to immobilization of selected strains ( Lactobacillus acidophilus FTDC 1331, L. acidophilus FTDC 2631, L. acidophilus FTDC 2333, L. acidophilus FTDC 1733, and Lactobacillus bulgaricus FTCC 0411). Immobilized cells were inoculated into soy milk, and growth properties were evaluated over 168 h at 37 degrees C. Soy milk containing free cells without agrowastes was used as the control. Immobilized probiotics showed increased growth, greater reduction of stachyose, sucrose, and glucose, higher production of lactic and acetic acids, and lower pH in soy milk compared to the control. The results illustrated that agrowastes could be used for the immobilization of probiotics with enhanced growth, utilization of substrates, and production of organic acids.

  12. Glucose uptake and glycogen synthesis in muscles from immobilized limbs

    NASA Technical Reports Server (NTRS)

    Nicholson, W. F.; Watson, P. A.; Booth, F. W.

    1984-01-01

    Defects in glucose metabolism in muscles of immobilized limbs of mice were related to alterations in insulin binding, insulin responsiveness, glucose supply, and insulin activation of glycogen synthase. These were tested by in vitro methodology. A significant lessening in the insulin-induced maximal response of 2-deoxyglucose uptake into the mouse soleus muscle occurred between the 3rd and 8th h of limb immobilization, suggesting a decreased insulin responsiveness. Lack of change in the specific binding of insulin to muscles of 24-h immobilized limbs indicates that a change in insulin receptor number did not play a role in the failure of insulin to stimulate glucose metabolism. Its inability to stimulate glycogen synthesis in muscle from immobilized limbs is due, in part, to a lack of glucose supply to glycogen synthesis and also to the ineffectiveness of insulin to increase the percentage of glycogen synthase in its active form in muscles from 24-h immobilized limbs.

  13. Immobilization of iodine in concrete

    DOEpatents

    Clark, Walter E.; Thompson, Clarence T.

    1977-04-12

    A method for immobilizing fission product radioactive iodine recovered from irradiated nuclear fuel comprises combining material comprising water, Portland cement and about 3-20 wt. % iodine as Ba(IO.sub.3).sub.2 to provide a fluid mixture and allowing the fluid mixture to harden, said Ba(IO.sub.3).sub.2 comprising said radioactive iodine. An article for solid waste disposal comprises concrete prepared by this method. BACKGROUND OF THE INVENTION This invention was made in the course of, or under a contract with the Energy Research and Development Administration. It relates in general to reactor waste solidification and more specifically to the immobilization of fission product radioactive iodine recovered from irradiated nuclear fuel for underground storage.

  14. Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis

    PubMed Central

    2012-01-01

    In this work, a simple method for alcohol synthesis with high enantiomeric purity was proposed. For this, colloidal gold and silver surface modifications with 3-mercaptopropanoic acid and cysteamine were used to generate carboxyl and amine functionalized gold and silver nanoparticles of 15 and 45 nm, respectively. Alcohol dehydrogenase from Thermoanaerobium brockii (TbADH) and its cofactor (NADPH) were physical and covalent (through direct adsorption and using cross-linker) immobilized on nanoparticles' surface. In contrast to the physical and covalent immobilizations that led to a loss of 90% of the initial enzyme activity and 98% immobilization, the use of a cross-linker in immobilization process promoted a loss to 30% of the initial enzyme activity and >92% immobilization. The yield of NADPH immobilization was about 80%. The best results in terms of activity were obtained with Ag-citr nanoparticle functionalized with carboxyl groups (Ag-COOH), Au-COOH(CTAB), and Au-citr functionalized with amine groups and stabilized with CTAB (Au-NH2(CTAB)) nanoparticles treated with 0.7% and 1.0% glutaraldehyde. Enzyme conformation upon immobilization was studied using fluorescence and circular dichroism spectroscopies. Shift in ellipticity at 222 nm with about 4 to 7 nm and significant decreasing in fluorescence emission for all bioconjugates were observed by binding of TbADH to silver/gold nanoparticles. Emission redshifting of 5 nm only for Ag-COOH-TbADH bioconjugate demonstrated change in the microenvironment of TbADH. Enzyme immobilization on glutaraldehyde-treated Au-NH2(CTAB) nanoparticles promotes an additional stabilization preserving about 50% of enzyme activity after 15 days storage. Nanoparticles attached-TbADH-NADPH systems were used for enantioselective (ee > 99%) synthesis of (S)-7-hydroxy-2-tetralol. PMID:22655978

  15. Gold and silver nanoparticles for biomolecule immobilization and enzymatic catalysis.

    PubMed

    Petkova, Galina A; Záruba, Capital Ka Cyrillicamil; Zvátora, Pavel; Král, Vladimír

    2012-06-01

    In this work, a simple method for alcohol synthesis with high enantiomeric purity was proposed. For this, colloidal gold and silver surface modifications with 3-mercaptopropanoic acid and cysteamine were used to generate carboxyl and amine functionalized gold and silver nanoparticles of 15 and 45 nm, respectively. Alcohol dehydrogenase from Thermoanaerobium brockii (TbADH) and its cofactor (NADPH) were physical and covalent (through direct adsorption and using cross-linker) immobilized on nanoparticles' surface. In contrast to the physical and covalent immobilizations that led to a loss of 90% of the initial enzyme activity and 98% immobilization, the use of a cross-linker in immobilization process promoted a loss to 30% of the initial enzyme activity and >92% immobilization. The yield of NADPH immobilization was about 80%. The best results in terms of activity were obtained with Ag-citr nanoparticle functionalized with carboxyl groups (Ag-COOH), Au-COOH(CTAB), and Au-citr functionalized with amine groups and stabilized with CTAB (Au-NH2(CTAB)) nanoparticles treated with 0.7% and 1.0% glutaraldehyde. Enzyme conformation upon immobilization was studied using fluorescence and circular dichroism spectroscopies. Shift in ellipticity at 222 nm with about 4 to 7 nm and significant decreasing in fluorescence emission for all bioconjugates were observed by binding of TbADH to silver/gold nanoparticles. Emission redshifting of 5 nm only for Ag-COOH-TbADH bioconjugate demonstrated change in the microenvironment of TbADH. Enzyme immobilization on glutaraldehyde-treated Au-NH2(CTAB) nanoparticles promotes an additional stabilization preserving about 50% of enzyme activity after 15 days storage. Nanoparticles attached-TbADH-NADPH systems were used for enantioselective (ee > 99%) synthesis of (S)-7-hydroxy-2-tetralol.

  16. Immobilization of an enzyme from a Fusarium fungus WZ-I for chlorpyrifos degradation.

    PubMed

    Xie, Hui; Zhu, Lusheng; Ma, Tingting; Wang, Jun; Wang, Jinhua; Su, Jun; Shao, Bo

    2010-01-01

    The free enzyme extracted from WZ-I, which was identified as Fusarium LK. ex Fx, could effectively degrade chlorpyrifos, an organophosphate insecticide. The methods of immobilizing this free enzyme and determined its degradation-related characteristics were investigated. The properties of the immobilized enzyme were compared with those of the free enzyme. The optimal immobilization of the enzyme was achieved in a solution of 30 g/L sodium alginate at 4 degrees C for 4-12 hr. The immobilized enzyme showed the maximal activity at pH 8.0, 45 degrees C. The maximum initial rate and the substrate concentration of the immobilized enzyme were less than that of the free enzyme. The immobilized enzyme, therefore, had a higher capacity to withstand a broader range of temperatures and pH conditions than the free enzyme. With varying pH and temperatures, the immobilized enzyme was more active than the free enzyme in the degradation reaction. In addition, the immobilized enzyme exhibited only a slight loss in its initial activity, even after three repeated uses. The results showed that the immobilized enzyme was more resistant to different environmental conditions, suggesting that it was viable for future practical use.

  17. In-situ generation of oxygen-releasing metal peroxides

    DOEpatents

    Looney, Brian B.; Denham, Miles E.

    2007-01-09

    A method for remediation of contaminants in soil and groundwater is disclosed. The method generates oxygen releasing solids in groundwater or soil by injecting an aqueous energetic oxidant solution containing free radicals, oxidative conditions can be created within or ahead of a contaminant plume. Some contaminants may be remediated directly by reaction with the free radicals. Additionally and more importantly, the free radicals create an oxidative condition whereby native or injected materials, especially metals, are converted to peroxides. These peroxides provide a long-term oxygen reservoir, releasing oxygen relatively slowly over time. The oxygen can enhance microbial metabolism to remediate contaminants, can react with contaminant metals either to form immobile precipitants or to mobilize other metals to permit remediation through leaching techniques. Various injection strategies for injecting the energetic oxidant solution are also disclosed.

  18. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils.

    PubMed

    Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping

    2017-06-23

    The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities ( q m ) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g -1 , respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g -1 , respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation.

  19. Immobilization of fungal beta-glucosidase on silica gel and kaolin carriers.

    PubMed

    Karagulyan, Hakob K; Gasparyan, Vardan K; Decker, Stephen R

    2008-03-01

    Beta-glucosidase is a key enzyme in the hydrolysis of cellulose for producing feedstock glucose for various industrial processes. Reuse of enzyme through immobilization can significantly improve the economic characteristics of the process. Immobilization of the fungal beta-glucosidase by covalent binding and physical adsorption on silica gel and kaolin was conducted for consequent application of these procedures in large-scale industrial processes. Different immobilization parameters (incubation time, ionic strength, pH, enzyme/support ratio, glutaric aldehyde concentration, etc.) were evaluated for their effect on the thermal stability of the immobilized enzyme. It was shown that the immobilized enzyme activity is stable at 50 degrees C over 8 days. It has also been shown that in the case of immobilization on kaolin, approximately 95% of the initial enzyme was immobilized onto support, and loss of activity was not observed. However, covalent binding of the enzyme to silica gel brings significant loss of enzyme activity, and only 35% of activity was preserved. In the case of physical adsorption on kaolin, gradual desorption of enzyme takes place. To prevent this process, we have carried out chemical modification of the protein. As a result, after repeated washings, enzyme desorption from kaolin has been reduced from 75 to 20-25% loss.

  20. Immobilization of Fungal β-Glucosidase on Silica Gel and Kaolin Carriers

    NASA Astrophysics Data System (ADS)

    Karagulyan, Hakob K.; Gasparyan, Vardan K.; Decker, Stephen R.

    β-Glucosidase is a key enzyme in the hydrolysis of cellulose for producing feedstock glucose for various industrial processes. Reuse of enzyme through immobilization can significantly improve the economic characteristics of the process. Immobilization of the fungal β-glucosidase by covalent binding and physical adsorption on silica gel and kaolin was conducted for consequent application of these procedures in large-scale industrial processes. Different immobilization parameters (incubation time, ionic strength, pH, enzyme/support ratio, glutaric aldehyde concentration, etc.) were evaluated for their effect on the thermal stability of the immobilized enzyme. It was shown that the immobilized enzyme activity is stable at 50 °C over 8 days. It has also been shown that in the case of immobilization on kaolin, approximately 95% of the initial enzyme was immobilized onto support, and loss of activity was not observed. However, covalent binding of the enzyme to silica gel brings significant loss of enzyme activity, and only 35% of activity was preserved. In the case of physical adsorption on kaolin, gradual desorption of enzyme takes place. To prevent this process, we have carried out chemical modification of the protein. As a result, after repeated washings, enzyme desorption from kaolin has been reduced from 75 to 20-25% loss.

  1. Rectified tunneling current response of bio-functionalized metal-bridge-metal junctions.

    PubMed

    Liu, Yaqing; Offenhäusser, Andreas; Mayer, Dirk

    2010-01-15

    Biomolecular bridged nanostructures allow direct electrical addressing of electroactive biomolecules, which is of interest for the development of bioelectronic and biosensing hybrid junctions. In the present paper, the electroactive biomolecule microperoxidase-11 (MP-11) was integrated into metal-bridge-metal (MBM) junctions assembled from a scanning tunneling microscope (STM) setup. Before immobilization of MP-11, the Au working electrode was first modified by a self-assembled monolayer of 1-undecanethiol (UDT). A symmetric and potential independent response of current-bias voltage (I(t)/V(b)) was observed for the Au (substrate)/UDT/Au (tip) junction. However, the I(t)/V(b) characteristics became potential dependent and asymmetrical after binding of MP-11 between the electrodes of the junction. The rectification ratio of the asymmetric current response varies with gate electrode modulation. A resonant tunneling process between metal electrode and MP-11 enhances the tunneling current and is responsible for the observed rectification. Our investigations demonstrated that functional building blocks of proteins can be reassembled into new conceptual devices with operation modes deviating from their native function, which could prove highly useful in the design of future biosensors and bioelectronic devices. Copyright 2009 Elsevier B.V. All rights reserved.

  2. Optimization of pectinase immobilization on grafted alginate-agar gel beads by 24 full factorial CCD and thermodynamic profiling for evaluating of operational covalent immobilization.

    PubMed

    Abdel Wahab, Walaa A; Karam, Eman A; Hassan, Mohamed E; Kansoh, Amany L; Esawy, Mona A; Awad, Ghada E A

    2018-07-01

    Pectinase produced by a honey derived from the fungus Aspergillus awamori KX943614 was covalently immobilized onto gel beads made of alginate and agar. Polyethyleneimine, glutaraldehyde, loading time and enzyme's units were optimized by 2 4 full factorial central composite design (CCD). The immobilization process increased the optimal working pH for the free pectinase from 5 to a broader range of pH4.5-5.5 and the optimum operational temperature from 55°C to a higher temperature, of 60°C, which is favored to reduce the enzyme's microbial contamination. The thermodynamics studies showed a thermal stability enhancement against high temperature for the immobilized formula. Moreover, an increase in half-lives and D-values was achieved. The thermodynamic studies proved that immobilization of pectinase made a remarkable increase in enthalpy and free energy because of enzyme stability enhancement. The reusability test revealed that 60% of pectinase's original activity was retained after 8 successive cycles. This gel formula may be convenient for immobilization of other industrial enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. [Interaction of immobilization stress and food-getting learning].

    PubMed

    Levshina, I P; Stashkevich, I S; Shuĭkin, N N

    2009-01-01

    The behavioral effects of emotional negative stress (immobilization) were studied in Wistar rats intact and those that had previous positive emotion experience. The food-getting learning has been chosen as positive emotion experience. Animals were trained in food pellet-reaching task by their preferred paw. It was shown that immobilization of intact rats leads to suppression of motor activity and increasing the duration of grooming. These effects indicate enhancement of passive-avoidance reactions. It was also shown that motor learning in group of rats with food reinforcement before immobilisation significantly reduces appearance of passive-avoidance reactions. It was found that immobilization stress does not inverse the initial direction of limb preference in majority of rats.

  4. Adenoviral vector tethering to metal surfaces via hydrolysable cross-linkers for the modulation of vector release and transduction

    PubMed Central

    Fishbein, Ilia; Forbes, Scott P.; Chorny, Michael; Connolly, Jeanne M.; Adamo, Richard F.; Corrales, Ricardo; Alferiev, Ivan S.; Levy, Robert J.

    2013-01-01

    The use of arterial stents and other medical implants as a delivery platform for surface immobilized gene vectors allows for safe and efficient localized expression of therapeutic transgenes. In this study we investigate the use of hydrolysable cross-linkers with distinct kinetics of hydrolysis for delivery of gene vectors from polyallylamine bisphosphonate-modified metal surfaces. Three cross-linkers with the estimated t1/2 of ester bonds hydrolysis of 5, 12 and 50 days demonstrated a cumulative 20%, 39% and 45% vector release, respectively, after 30 days exposure to physiological buffer at 37°C. Transgene expression in endothelial and smooth muscles cells transduced with substrate immobilized adenovirus resulted in significantly different expression profiles for each individual cross-linker. Furthermore, immobilization of adenoviral vectors effectively extended their transduction effectiveness beyond the initial phase of release. Transgene expression driven by adenovirus-tethered stents in rat carotid arteries demonstrated that a faster rate of cross-linker hydrolysis resulted in higher expression levels at day 1, which declined by day 8 after stent implantation, while inversely, slower hydrolysis was associated with increased arterial expression at day 8 in comparison with day 1. In conclusion, adjustable release of transduction-competent adenoviral vectors from metallic surfaces can be achieved, both in vitro and in vivo, through surface immobilization of adenoviral vectors using hydrolysable cross-linkers with structure-specific release kinetics. PMID:23777912

  5. Nervous system excitability and joint stiffness following short-term dynamic ankle immobilization.

    PubMed

    Stirling, Alyssa M; McBride, Jeffrey M; Merritt, Edward K; Needle, Alan R

    2018-01-01

    Joint immobilization has been demonstrated to modify neural excitability in subsets of healthy populations, leading to disinhibition of cortical and reflexive pathways. However, these findings may have limited clinical application as most models have investigated casting and rigid immobilization, while many musculoskeletal injuries often utilize dynamic immobilization devices such as boot immobilizers and pneumatic splints that allow for modified ambulation. We therefore aimed to determine the short-term effects of ambulation in ankle immobilization devices on nervous system excitability and stiffness in able-bodied individuals. A repeated-measures design was implemented where 12 healthy individuals were tested for cortical excitability to the ankle musculature using transcranial magnetic stimulation, reflexive excitability using the Hoffmann reflex, and ankle joint stiffness using arthrometry before and after 30min of ambulation with a boot immobilizer, pneumatic leg splint, or barefoot. Motor evoked potential (MEP), cortical silent period (CSP), H max to M max ratio, and ankle joint displacement were extracted as dependent variables. Results indicated that despite the novel motor demands of walking in immobilization devices, no significant changes in cortical excitability (F≥0.335, P≥0.169), reflexive excitability (F≥0.027, P≥0.083), or joint stiffness (F≥0.558, P≥0.169) occurred. These findings indicate that short-term ambulation in dynamic immobilization devices does not modify neural excitability despite forced constraints on the sensorimotor system. We may therefore conclude that modifications to neural excitability in previous immobilization models are mediated by long-term nervous system plasticity rather than acute mechanisms, and there appear to be no robust changes in corticomotor or spinal excitability acutely posed by ambulation with immobilization devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Yeast Immobilization Systems for Alcoholic Wine Fermentations: Actual Trends and Future Perspectives

    PubMed Central

    Moreno-García, Jaime; García-Martínez, Teresa; Mauricio, Juan C.; Moreno, Juan

    2018-01-01

    Yeast immobilization is defined as the physical confinement of intact cells to a region of space with conservation of biological activity. The use of these methodologies for alcoholic fermentation (AF) offers many advantages over the use of the conventional free yeast cell method and different immobilization systems have been proposed so far for different applications, like winemaking. The most studied methods for yeast immobilization include the use of natural supports (e.g., fruit pieces), organic supports (e.g., alginate), inorganic (e.g., porous ceramics), membrane systems, and multi-functional agents. Some advantages of the yeast-immobilization systems include: high cell densities, product yield improvement, lowered risk of microbial contamination, better control and reproducibility of the processes, as well as reuse of the immobilization system for batch fermentations and continuous fermentation technologies. However, these methods have some consequences on the behavior of the yeasts, affecting the final products of the fermentative metabolism. This review compiles current information about cell immobilizer requirements for winemaking purposes, the immobilization methods applied to the production of fermented beverages to date, and yeast physiological consequences of immobilization strategies. Finally, a recent inter-species immobilization methodology has been revised, where yeast cells are attached to the hyphae of a Generally Recognized As Safe fungus and remain adhered following loss of viability of the fungus. The bio-capsules formed with this method open new and promising strategies for alcoholic beverage production (wine and low ethanol content beverages). PMID:29497415

  7. Immobilization of Candida antarctica lipase B by adsorption to green coconut fiber.

    PubMed

    Brígida, Ana I S; Pinheiro, Alvaro D T; Ferreira, Andrea L O; Gonçalves, Luciana R B

    2008-03-01

    An agroindustrial residue, green coconut fiber, was evaluated as support for immobilization of Candida antarctica type B (CALB) lipase by physical adsorption. The influence of several parameters, such as contact time, amount of enzyme offered to immobilization, and pH of lipase solution was analyzed to select a suitable immobilization protocol. Kinetic constants of soluble and immobilized lipases were assayed. Thermal and operational stability of the immobilized enzyme, obtained after 2 h of contact between coconut fiber and enzyme solution, containing 40 U/ml in 25 mM sodium phosphate buffer pH 7, were determined. CALB immobilization by adsorption on coconut fiber promoted an increase in thermal stability at 50 and 60 degrees C, as half-lives (t (1/2)) of the immobilized enzyme were, respectively, 2- and 92-fold higher than the ones for soluble enzyme. Furthermore, operational stabilities of methyl butyrate hydrolysis and butyl butyrate synthesis were evaluated. After the third cycle of methyl butyrate hydrolysis, it retained less than 50% of the initial activity, while Novozyme 435 retained more than 70% after the tenth cycle. However, in the synthesis of butyl butyrate, CALB immobilized on coconut fiber showed a good operational stability when compared to Novozyme 435, retaining 80% of its initial activity after the sixth cycle of reaction.

  8. Immobilization of Candida antarctica Lipase B by Adsorption to Green Coconut Fiber

    NASA Astrophysics Data System (ADS)

    Brígida, Ana I. S.; Pinheiro, Álvaro D. T.; Ferreira, Andrea L. O.; Gonçalves, Luciana R. B.

    An agroindustrial residue, green coconut fiber, was evaluated as support for immobilization of Candida antarctica type B (CALB) lipase by physical adsorption. The influence of several parameters, such as contact time, amount of enzyme offered to immobilization, and pH of lipase solution was analyzed to select a suitable immobilization protocol. Kinetic constants of soluble and immobilized lipases were assayed. Thermal and operational stability of the immobilized enzyme, obtained after 2 h of contact between coconut fiber and enzyme solution, containing 40 U/ml in 25 mM sodium phosphate buffer pH 7, were determined. CALB immobilization by adsorption on coconut fiber promoted an increase in thermal stability at 50 and 60 °C, as half-lives (t 1/2) of the immobilized enzyme were, respectively, 2- and 92-fold higher than the ones for soluble enzyme. Furthermore, operational stabilities of methyl butyrate hydrolysis and butyl butyrate synthesis were evaluated. After the third cycle of methyl butyrate hydrolysis, it retained less than 50% of the initial activity, while Novozyme 435 retained more than 70% after the tenth cycle. However, in the synthesis of butyl butyrate, CALB immobilized on coconut fiber showed a good operational stability when compared to Novozyme 435, retaining 80% of its initial activity after the sixth cycle of reaction.

  9. Immobilization of Chloroperoxidase on Aminopropyl-Glass

    PubMed Central

    Kadima, Tenshuk A.; Pickard, Michael A.

    1990-01-01

    Chloroperoxidase (CPO) purified from Caldariomyces fumago CMI 89362 was covalently bound to aminopropyl-glass by using a modification of an established method. Acid-washed glass was derivatized by using aminopropyltriethoxysilane, and the enzyme was ionically bound at low ionic strength. Further treatment with glutaraldehyde covalently linked the enzyme to the glass beads in an active form. No elution of bound activity from glass beads could be detected with a variety of washings. The loading of enzyme protein to the glass beads was highest, 100 mg of CPO per g of glass, at high reaction ratios of CPO to glass, but the specific activity of the immobilized enzyme was highest, 36% of theoretical, at low enzyme-to-carrier ratios. No differences in the properties of the soluble and immobilized enzymes could be detected by a number of criteria: their pH-activity and pH-stability profiles were similar, as were their thermal stabilities. After five uses, the immobilized enzyme retained full activity between pH 6.0 and 6.7. PMID:16348352

  10. Enhanced biosensor performance using an avidin-biotin bridge for antibody immobilization

    NASA Astrophysics Data System (ADS)

    Narang, Upvan; Anderson, George P.; King, Keeley D.; Liss, Heidi S.; Ligler, Frances S.

    1997-05-01

    Maintaining antibody function after immobilization is critical to the performance of a biosensor. The conventional methods to immobilize antibodies onto surfaces are via covalent attachment using a crosslinker or by adsorption. Often, these methods of immobilization result in partial denaturation of the antibody and conformational changes leading to a reduced activity of the antibody. In this paper, we report on the immobilization of antibodies onto the surface of an optical fiber through an avidin-biotin bridge for the detection of ricin, ovalbumin, and Bacillus globigii (Bg). The assays are performed in a sandwich format. First, a capture antibody is immobilized, followed by the addition of the analyte. Finally, a fluorophore- labeled antibody is added for the specific detection of the analyte. The evanescent wave-induced fluorescence is coupled back through the same fiber to be detected using a photodiode. In all cases, we observe an improved performance of the biosensor, i.e., lower limit of detection and wide linear dynamic range, for the assays in which the antibody is immobilized via avidin-biotin bridges compared to covalent attachment method.

  11. Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker.

    PubMed

    Sojitra, Uttam V; Nadar, Shamraja S; Rathod, Virendra K

    2017-02-10

    Pectinase was immobilized onto chitosan magnetic nanoparticles (CMNPs) by dextran polyaldehyde as a macromolecular cross-linking agent. The parameters like cross-linking concentration, time and CMNPs to enzyme ratio were optimized. Further, prepared magnetic pectinase nanobiocatalyst was characterized by FT-IR and XRD. The thermal kinetic studies for immobilized pectinase showed two folds improved thermal stability in the range of 55-75°C as compared to free form. The V max and K m values of immobilized pectinase were found to be nearly equal to native form which indicated that conformational flexibility of pectinase was retained even after immobilization. The residual activity of immobilized pectinase was 85% after seven successive cycles of reuse, while it retained upto 89% residual activity on storage of fifteen days which exhibited excellent stability and durability. The conformational changes in pectinase after immobilization were evaluated by FT-IR spectroscopy data analysis tools. Finally, magnetic pectinase nanobiocatalyst was employed for apple juice clarification which showed turbidity reduction upto 74% after 150min treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. pH-dependent immobilization of urease on glutathione-capped gold nanoparticles.

    PubMed

    Garg, Seema; De, Arnab; Mozumdar, Subho

    2015-05-01

    Urease is a nickel-dependent metalloenzyme that catalyzes the hydrolysis of urea to form ammonia and carbon dioxide. Although the enzyme serves a significant role in several detoxification and analytical processes, its usability is restricted due to high cost, availability in small amounts, instability, and a limited possibility of economic recovery from a reaction mixture. Hence, there is a need to develop an efficient, simple, and reliable immobilization strategy for the enzyme. In this study, the carboxyl terminated surface of glutathione-capped gold nanoparticles have been utilized as a solid support for the covalent attachment of urease. The immobilization has been carried out at different pH conditions so as to elucidate its effect on the immobilization efficiency and enzyme bioactivity. The binding of the enzyme has been quantitatively and qualitatively analyzed through techniques like ultraviolet-visible spectroscopy, intrinsic steady state fluorescence, and circular dichorism. The bioactivity of the immobilized enzyme was investigated with respect to the native enzyme under different thermal conditions. Recyclability and shelf life studies of the immobilized enzyme have also been carried out. Results reveal that the immobilization is most effective at pH of 7.4 followed by that in an acidic medium and is least in alkaline environment. The immobilized enzyme also exhibits enhance activity in comparison to the native form at physiological temperature. The immobilized urease (on gold glutathione nanoconjugates surface) can be effectively employed for biosensor fabrication, immunoassays and as an in vivo diagnostic tool in the future. © 2014 Wiley Periodicals, Inc.

  13. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils

    PubMed Central

    Zhou, Dan; Liu, Dan; Gao, Fengxiang; Li, Mengke; Luo, Xianping

    2017-01-01

    The object of this study was to evaluate the effect of sewage sludge biochar on adsorption and mobility of Cr, Mn, Cu, and Zn. Biochar (BC400) was produced via pyrolysis of municipal sewage sludge at 400 °C. Maximum adsorption capacities (qm) for Zn, Cr, Mn, and Cu were 5.905, 5.724, 5.681, and 5.342 mg·g−1, respectively, in the mono-metal solution and 2.475, 8.204, 1.01, and 5.415 mg·g−1, respectively, in the multi-metal solution. The adsorption capacities for Mn, Cu, and Zn decreased in the multi-metal solution due to competitive adsorption, whereas the capacity for Cr increased. Surface precipitation is an important mechanism in the sorption of these metals on BC400. The 360-day incubation experiment showed that BC400 application reduced metal mobility in contaminated soils, which was attributed to the substantial decreases in the acid-soluble fractions of Cr, Mn, Cu, and Zn (72.20%, 70.38%, 50.43%, and 29.78%, respectively). Furthermore, the leaching experiment using simulated acid rain indicated that the addition of BC400 enhanced the acid buffer capacity of contaminated soil, and the concentration of Cr, Mn, Cu, and Zn in the leachate was lower than in untreated soil. Overall, this study indicates that sewage sludge biochar application reduces the mobility of heavy metal in co-contaminated soil, and this adsorption experiment is suitable for the evaluation of biochar properties for remediation. PMID:28644399

  14. CADDIS Volume 2. Sources, Stressors and Responses: Metals

    EPA Pesticide Factsheets

    Introduction to the metals module, when to list metals as a candidate cause, ways to measure metals, simple and detailed conceptual diagrams for metals, metals module references and literature reviews.

  15. Transport of fine sediment over a coarse, immobile riverbed

    USGS Publications Warehouse

    Grams, Paul E.; Wilcock, Peter R.

    2014-01-01

    Sediment transport in cobble-boulder rivers consists mostly of fine sediment moving over a coarse, immobile bed. Transport rate depends on several interrelated factors: boundary shear stress, the grain size and volume of fine sediment, and the configuration of fine sediment into interstitial deposits and bed forms. Existing models do not incorporate all of these factors. Approaches that partition stress face a daunting challenge because most of the boundary shear is exerted on immobile grains. We present an alternative approach that divides the bed into sand patches and interstitial deposits and is well constrained by two clear end-member cases: full sand cover and absence of sand. Entrainment from sand patches is a function of their aerial coverage. Entrainment from interstices among immobile grains is a function of sand elevation relative to the size of the immobile grains. The bed-sand coverage function is used to predict the ratio of the rate of entrainment from a partially covered bed to the rate of entrainment from a completely sand-covered bed, which is determined using a standard sand transport model. We implement the bed-sand coverage function in a morphodynamic routing model and test it against observations of sand bed elevation and suspended sand concentration for conditions of nonuniform fine sediment transport in a large flume with steady uniform flow over immobile hemispheres. The results suggest that this approach may provide a simple and robust method for predicting the transport and migration of fine sediment through rivers with coarse, immobile beds.

  16. Immobilization and bonding scheme of radioactive iodine-129 in silver tellurite glass

    NASA Astrophysics Data System (ADS)

    Lee, Cheong Won; Pyo, Jae-Young; Park, Hwan-Seo; Yang, Jae Hwan; Heo, Jong

    2017-08-01

    Silver tellurite glasses with melting temperatures < 700 °C were prepared to immobilize the 129I that normally volatilizes during high-temperature melting. Glasses have densities of 6.31 ± 0.1 g/cm3 and glass transition temperatures of 165 ± 3 °C that provide thermal stability at the disposal site. Iodine waste loading in glasses was as high as 12.64 wt% of all metallic elements and 11.21 wt% including oxygen. Normalized elemental releases obtained from the product consistency test were well below US regulation of 2 g/m2. Iodines are surrounded by four Ag+ ions forming [Ag4I]3+ units that are further connected to tellurite network through bonds with non-bridging oxygens.

  17. Bioinspired hierarchical nanotubular titania immobilized with platinum nanoparticles for photocatalytic hydrogen production.

    PubMed

    Liu, Xiaoyan; Li, Jiao; Zhang, Yiming; Huang, Jianguo

    2015-05-11

    A bioinspired nanocomposite composed of platinum nanoparticles and nanotubular titania was fabricated in which the titania matter was templated by natural cellulose substance. The composite possesses three- dimensional hierarchical structures, and ultrafine metallic platinum particles with sizes of ca. 2 nm were immobilized uniformly on the surfaces of the titania nanotubes. Such a nanocomposite with 1.06 wt % of platinum content shows the optimal photocatalytic hydrogen production activity from water splitting of 16.44 mmol h(-1)  g(-1) , and excessive loading of platinum results in poorer photocatalytic performance. The structural integrity of the nanocomposite upon cyclic water-splitting processes results in its sufficient photocatalytic stability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Remediation of Heavy Metal(loid)s Contaminated Soils – To Mobilize or To Immobilize?

    EPA Science Inventory

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy ...

  19. Comparative evaluation of short-term leach tests for heavy metal release from mineral processing waste

    USGS Publications Warehouse

    Al-Abed, S. R.; Hageman, P.L.; Jegadeesan, G.; Madhavan, N.; Allen, D.

    2006-01-01

    Evaluation of metal leaching using a single leach test such as the Toxicity Characteristic Leaching Procedure (TCLP) is often questionable. The pH, redox potential (Eh), particle size and contact time are critical variables in controlling metal stability, not accounted for in the TCLP. This paper compares the leaching behavior of metals in mineral processing waste via short-term extraction tests such as TCLP, Field Leach Test (FLT) used by USGS and deionized water extraction tests. Variation in the extracted amounts was attributed to the use of different particle sizes, extraction fluid and contact time. In the controlled pH experiments, maximum metal extraction was obtained at acidic pH for cationic heavy metals such as Cu, Pb and Zn, while desorption of Se from the waste resulted in high extract concentrations in the alkaline region. Precipitation of iron, caused by a pH increase, probably resulted in co-precipitation and immobilization of Cu, Pb and Zn in the alkaline pH region. A sequential extraction procedure was performed on the original waste and the solid residue from the Eh-pH experiments to determine the chemical speciation and distribution of the heavy metals. In the as-received waste, Cu existed predominantly in water soluble or sulfidic phases, with no binding to carbonates or iron oxides. Similar characteristics were observed for Pb and Zn, while Se existed mostly associated with iron oxides or sulfides. Adsorption/co-precipitation of Cu, Se and Pb on precipitated iron hydroxides was observed in the experimental solid residues, resulting in metal immobilization above pH 7.

  20. Photochemically Initiated Single Polymer Immobilization

    PubMed Central

    2015-01-01

    This Concept article surveys methods for attaching single polymer molecules on solid substrates. A general approach to single polymer immobilization based on the photochemistry of perfluorophenylazides is elaborated. PMID:17444538

  1. Preparation and characterization of tannase immobilized onto carboxyl-functionalized superparamagnetic ferroferric oxide nanoparticles.

    PubMed

    Wu, Changzheng; Xu, Caiyun; Ni, Hui; Yang, Qiuming; Cai, Huinong; Xiao, Anfeng

    2016-04-01

    Tannase from Aspergillus tubingensis was immobilized onto carboxyl-functionalized Fe3O4 nanoparticles (CMNPs), and conditions affecting tannase immobilization were investigated. Successful binding between CMNPs and tannase was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. Vibrating sample magnetometry and X-ray diffraction showed that the CMNPs and immobilized tannase exhibit distinct magnetic responses and superparamagnetic properties. Free and immobilized tannase exhibited identical optimal temperatures of 50°C and differing pH optima at 6 and 7, respectively. The thermal, pH, and storage stabilities of the immobilized tannase were superior to those of free tannase. After six cycles of catalytic hydrolysis of propyl gallate, the immobilized tannase maintained over 60% of its initial activity. The Michaelis constant (Km) of the immobilized enzyme indicated its higher affinity for substrate binding than the free enzyme. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.

    PubMed

    Wang, Chanchan; Sauvageau, Dominic; Elias, Anastasia

    2016-01-20

    A rapid, efficient technique for the attachment of bacteriophages (phages) onto polyhydroxyalkanoate (PHA) surfaces has been developed and compared to three reported methods for phage immobilization. Polymer surfaces were modified to facilitate phage attachment using (1) plasma treatment alone, (2) plasma treatment followed by activation by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), (3) plasma-initiated acrylic acid grafting, or (4) plasma-initiated acrylic acid grafting with activation by EDC and sulfo-NHS. The impact of each method on the surface chemistry of PHA was investigated using contact angle analysis and X-ray photoelectron spectroscopy. Each of the four treatments was shown to result in both increased hydrophilicity and in the modification of the surface functional groups. Modified surfaces were immersed in suspensions of phage T4 for immobilization. The highest level of phage binding was observed for the surfaces modified by plasma treatment alone. The change in chemical bond states observed for surfaces that underwent plasma treatment is suspected to be the cause of the increased binding of active phages. Plasma-treated surfaces were further analyzed through phage-staining and fluorescence microscopy to assess the surface density of immobilized phages and their capacity to capture hosts. The infective capability of attached phages was confirmed by exposing the phage-immobilized surfaces to the host bacteria Escherichia coli in both plaque and infection dynamic assays. Plasma-treated surfaces with immobilized phages displayed higher infectivity than surfaces treated with other methods; in fact, the equivalent initial multiplicity of infection was 2 orders of magnitude greater than with other methods. Control samples - prepared by immersing polymer surfaces in phage suspensions (without prior plasma treatment) - did not show any bacterial growth inhibition, suggesting they did not bind

  3. Covalent immobilization of β-glucosidase on magnetic particles for lignocellulose hydrolysis.

    PubMed

    Alftrén, Johan; Hobley, Timothy John

    2013-04-01

    β-Glucosidase hydrolyzes cellobiose to glucose and is an important enzyme in the consortium used for hydrolysis of cellulosic and lignocellulosic feedstocks. In the present work, β-glucosidase was covalently immobilized on non-porous magnetic particles to enable re-use of the enzyme. It was found that particles activated with cyanuric chloride and polyglutaraldehyde gave the highest bead-related immobilized enzyme activity when tested with p-nitrophenyl-β-D-glucopyranoside (104.7 and 82.2 U/g particles, respectively). Furthermore, the purified β-glucosidase preparation from Megazyme gave higher bead-related enzyme activities compared to Novozym 188 (79.0 and 9.8 U/g particles, respectively). A significant improvement in thermal stability was observed for immobilized enzyme compared to free enzyme; after 5 h (at 65 °C), 36 % of activity remained for the former, while there was no activity in the latter. The performance and recyclability of immobilized β-glucosidase on more complex substrate (pretreated spruce) was also studied. It was shown that adding immobilized β-glucosidase (16 U/g dry matter) to free cellulases (8 FPU/g dry matter) increased the hydrolysis yield of pretreated spruce from ca. 44 % to ca. 65 %. In addition, it was possible to re-use the immobilized β-glucosidase in the spruce and retain activity for at least four cycles. The immobilized enzyme thus shows promise for lignocellulose hydrolysis.

  4. Chitin-Lignin Material as a Novel Matrix for Enzyme Immobilization

    PubMed Central

    Zdarta, Jakub; Klapiszewski, Łukasz; Wysokowski, Marcin; Norman, Małgorzata; Kołodziejczak-Radzimska, Agnieszka; Moszyński, Dariusz; Ehrlich, Hermann; Maciejewski, Hieronim; Stelling, Allison L.; Jesionowski, Teofil

    2015-01-01

    Innovative materials were made via the combination of chitin and lignin, and the immobilization of lipase from Aspergillus niger. Analysis by techniques including FTIR, XPS and 13C CP MAS NMR confirmed the effective immobilization of the enzyme on the surface of the composite support. The electrokinetic properties of the resulting systems were also determined. Results obtained from elemental analysis and by the Bradford method enabled the determination of optimum parameters for the immobilization process. Based on the hydrolysis reaction of para-nitrophenyl palmitate, a determination was made of the catalytic activity, thermal and pH stability, and reusability. The systems with immobilized enzymes were found to have a hydrolytic activity of 5.72 mU, and increased thermal and pH stability compared with the native lipase. The products were also shown to retain approximately 80% of their initial catalytic activity, even after 20 reaction cycles. The immobilization process, using a cheap, non-toxic matrix of natural origin, leads to systems with potential applications in wastewater remediation processes and in biosensors. PMID:25903282

  5. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria.

    PubMed

    Li, Ya; Pang, Hai-Dong; He, Lin-Yan; Wang, Qi; Sheng, Xia-Fang

    2017-04-01

    Two metal-resistant Bacillus megaterium H3 and Neorhizobium huautlense T1-17 were investigated for their immobilization of Cd in solution and tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the Cd-contaminated soil. Strains H3 and T1-17 decreased 79-96% of water-soluble Cd in solution and increased grain biomass in the high Cd-contaminated soil. Inoculation with H3 and T1-17 significantly decreased the root (ranging from 25% to 58%), above-ground tissue (ranging from 13% to 34%), and polished rice (ranging from 45% to 72%) Cd contents as well as Cd bioconcentration factor of the rice compared to the controls. Furthermore, H3 and T1-17 significantly reduced the exchangeable Cd content of the rhizosphere soils compared with the controls. Notably, strain T1-17 had significantly higher ability to reduce Cd bioconcentration factor and polished rice Cd uptake than strain H3. The results demonstrated that H3 and T1-17 decreased the tissue (especially polished rice) Cd uptake by decreasing Cd availability in soil and Cd bioconcentration factor and the effect on the reduced polished rice Cd uptake was dependent on the strains. The results may provide an effective synergistic bioremediation of Cd-contaminated soils in the bacteria and rice plants and bacterial-assisted safe production of rice in Cd-contaminated soils. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. [Immobilization of pectawamorine G10x on silichromes].

    PubMed

    Bogatskiĭ, A V; Davidenko, T I; Gren', T A

    1980-01-01

    Immobilization of pectawamorine G10x on silochromes, using cyanuric chloride, 2,4-toluylene diisocyanate, glutaric dialdehyde, thionyl chloride, phosphorus tribromide, titanium tetrachloride, zirconium oxychloride and hafnium oxychloride was studied. The use of glutaric dialdehyde assured the strongest binding and the preatest stability of activity. Properties of the native pectawamorine G10x and immobilized preparations were studied on a comparative basis. Pectawamorine G10x immobilized by means of hafnium oxychloride showed increased stability when stored at 5 degrees C and used repeatedly. In every case, except for cyanuric chloride and glutaric dialdehyde, maximum activity was at a temperature 10 degrees C higher than for the native enzyme, and optimum pH varied for the preparations with different binding reagents.

  7. Immobilization of folic acid on Eu3+-doped nanoporous silica spheres.

    PubMed

    Tagaya, Motohiro; Ikoma, Toshiyuki; Yoshioka, Tomohiko; Xu, Zhefeng; Tanaka, Junzo

    2011-08-07

    Folic acid (FA) was immobilized on Eu(3+)-doped nanoporous silica spheres (Eu:NPSs) through mediation of the 3-aminopropyltriethoxysilane adlayer. The ordered nanopores of Eu:NPS were preserved by the immobilization. The FA-immobilized Eu:NPSs showed the characteristic photoluminescence peak due to interactions between the FA molecules and Eu(3+) ions, and highly dispersed stability in phosphate buffered saline.

  8. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1

    PubMed Central

    Tallur, Preeti N.; Mulla, Sikandar I.; Megadi, Veena B.; Talwar, Manjunatha P.; Ninnekar, Harichandra Z.

    2015-01-01

    Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water. PMID:26413046

  9. Biodegradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1.

    PubMed

    Tallur, Preeti N; Mulla, Sikandar I; Megadi, Veena B; Talwar, Manjunatha P; Ninnekar, Harichandra Z

    2015-01-01

    Pyrethroid pesticide cypermethrin is a environmental pollutant because of its widespread use, toxicity and persistence. Biodegradation of such chemicals by microorganisms may provide an cost-effective method for their detoxification. We have investigated the degradation of cypermethrin by immobilized cells of Micrococcus sp. strain CPN 1 in various matrices such as, polyurethane foam (PUF), polyacrylamide, sodium alginate and agar. The optimum temperature and pH for the degradation of cypermethrin by immobilized cells of Micrococcus sp. were found to be 30 °C and 7.0, respectively. The rate of degradation of 10 and 20 mM of cypermethrin by freely suspended cells were compared with that of immobilized cells in batches and semi-continuous with shaken cultures. PUF-immobilized cells showed higher degradation of cypermethrin (10 mM and 20 mM) than freely suspended cells and cells immobilized in other matrices. The PUF-immobilized cells of Micrococcus sp. strain CPN 1 were retain their degradation capacity. Thus, they can be reused for more than 32 cycles, without losing their degradation capacity. Hence, the PUF-immobilized cells of Micrococcus sp. could potentially be used in the bioremediation of cypermethrin contaminated water.

  10. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.

    PubMed

    Johnson, Patrick A; Park, Hee Joon; Driscoll, Ashley J

    2011-01-01

    Immobilized enzymes are drawing significant attention for potential commercial applications as biocatalysts by reducing operational expenses and by increasing process utilization of the enzymes. Typically, immobilized enzymes have greater thermal and operational stability at various pH values, ionic strengths and are more resistant to denaturation that the soluble native form of the enzyme. Also, immobilized enzymes can be recycled by utilizing the physical or chemical properties of the supporting material. Magnetic nanoparticles provide advantages as the supporting material for immobilized enzymes over competing materials such as: higher surface area that allows for greater enzyme loading, lower mass transfer resistance, less fouling effect, and selective, nonchemical separation from the reaction mixture by an applied a magnetic field. Various surface modifications of magnetic nanoparticles, such as silanization, carbodiimide activation, and PEG or PVA spacing, aid in the binding of single or multienzyme systems to the particles, while cross-linking using glutaraldehyde can also stabilize the attached enzymes.

  11. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    PubMed

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  12. Immobilization of laccase of Pycnoporus sanguineus CS43.

    PubMed

    Gonzalez-Coronel, Luis A; Cobas, Marta; Rostro-Alanis, Magdalena de J; Parra-Saldívar, Roberto; Hernandez-Luna, Carlos; Pazos, Marta; Sanromán, M Ángeles

    2017-10-25

    Laccase from Pycnoporus sanguineus CS43 was successfully immobilized onto Immobead-150 and Eupergit-C by covalent binding and by entrapment in LentiKats. The highest immobilization was onto Immobead-150 (97.1±1.2%) compared to the other supports, LentiKats (89±1.1%) and Eupergit-C (83.2±1.4%). All three immobilized enzyme systems showed increased thermostability and better mechanical properties than free laccase. Moreover, after 5 cycles of reuse of these systems, 90% of initial laccase activity was retained. Immobead-150 and LentiKats systems exhibited the highest efficiencies in removal of m-cresol under the combined actions of biodegradation and adsorption, while laccase entrapped in LentiKats showed a high ability for degradation of m-cresol within 24h. In addition, the typical Michaelis-Menten enzymatic model effectively described the kinetic profile of m-cresol degradation by the enzyme entrapped in LentiKats. Based on the results obtained in the present study, it can be established that the immobilized biocatalysts developed here possess significant potential for wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. In-situ Generated Tribomaterial in Metal/Metal Contacts: current understanding and future implications for implants

    PubMed Central

    Espallargas, N.; Fischer, A.; Muñoz, A. Igual; Mischler, S.; Wimmer, M.A.

    2017-01-01

    Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants. PMID:28808674

  14. In-situ Generated Tribomaterial in Metal/Metal Contacts: current understanding and future implications for implants.

    PubMed

    Espallargas, N; Fischer, A; Muñoz, A Igual; Mischler, S; Wimmer, M A

    2017-06-01

    Artificial hip joints operate in aqueous biofluids that are highly reactive towards metallic surfaces. The reactivity at the metal interface is enhanced by mechanical interaction due to friction, which can change the near-surface structure of the metal and surface chemistry. There are now several reports in the literature about the in-situ generation of reaction films and tribo-metallurgical transformations on metal-on-metal hip joints. This paper summarizes current knowledge and provides a mechanistic interpretation of the surface chemical and metallurgical phenomena. Basic concepts of corrosion and wear are illustrated and used to interpret available literature on in-vitro and in-vivo studies of metal-on-metal hip joints. Based on this review, three forms of tribomaterial, characterized by different combinations of oxide films and organic layers, can be determined. It is shown that the generation of these tribofilms can be related to specific electrochemical and mechanical phenomena in the metal interface. It is suggested that the generation of this surface reaction layer constitutes a way to minimize (mechanical) wear of MoM hip implants.

  15. Oriented antibody immobilization on self-assembled monolayers applied as impedance biosensors

    NASA Astrophysics Data System (ADS)

    Tsugimura, Kaiki; Ohnuki, Hitoshi; Wu, Haiyun; Endo, Hideaki; Tsuya, Daiju; Izumi, Mitsuru

    2017-11-01

    Oriented immobilization of antibodies on a sensor chip is crucial for enhancing both the sensitivity and antigen-binding capacity of immunosensors. Here, we report a comparative study of the effect of oriented and random antibody immobilization on the binding efficiency by electrochemical impedance spectroscopy (EIS). Oriented immobilization of anti-myoglobin immunoglobulin G (anti-Myo IgG) was achieved by bonding to an Fc receptor of protein G (PrG) on a self-assembled monolayer (SAM), which results in the myoglobin (Myo) binding sites being exposed outside the sensing surface. Random immobilization of anti-Myo IgG was achieved by direct covalent attachment to the SAM surface. Both immobilizations were applied to interdigitated electrodes to enhance the electrochemical signal, and the Myo biosensor performance was then evaluated by a series of EIS measurements. We found that (i) the rate of the normalized charge transfer resistance for the oriented sample was 3 times higher than that for the random sample and (ii) the detection limit was 0.001 ng/mL, which is the lowest recorded detection limit among Myo immunosensors based on EIS. These findings indicate that oriented antibody immobilization is crucial for preparing highly sensitive EIS-based biosensors.

  16. Immobilized biocatalytic process development and potential application in membrane separation: a review.

    PubMed

    Chakraborty, Sudip; Rusli, Handajaya; Nath, Arijit; Sikder, Jaya; Bhattacharjee, Chiranjib; Curcio, Stefano; Drioli, Enrico

    2016-01-01

    Biocatalytic membrane reactors have been widely used in different industries including food, fine chemicals, biological, biomedical, pharmaceuticals, environmental treatment and so on. This article gives an overview of the different immobilized enzymatic processes and their advantages over the conventional chemical catalysts. The application of a membrane bioreactor (MBR) reduces the energy consumption, and system size, in line with process intensification. The performances of MBR are considerably influenced by substrate concentration, immobilized matrix material, types of immobilization and the type of reactor. Advantages of a membrane associated bioreactor over a free-enzyme biochemical reaction, and a packed bed reactor are, large surface area of immobilization matrix, reuse of enzymes, better product recovery along with heterogeneous reactions, and continuous operation of the reactor. The present research work highlights immobilization techniques, reactor setup, enzyme stability under immobilized conditions, the hydrodynamics of MBR, and its application, particularly, in the field of sugar, starch, drinks, milk, pharmaceutical industries and energy generation.

  17. Metallomics of two microorganisms relevant to heavy metal bioremediation reveal fundamental differences in metal assimilation and utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lancaster, Andrew; Menon, Angeli; Scott, Israel

    2014-03-26

    Although as many as half of all proteins are thought to require a metal cofactor, the metalloproteomes of microorganisms remain relatively unexplored. Microorganisms from different environments are likely to vary greatly in the metals that they assimilate, not just among the metals with well-characterized roles but also those lacking any known function. Herein we investigated the metal utilization of two microorganisms that were isolated from very similar environments and are of interest because of potential roles in the immobilization of heavy metals, such as uranium and chromium. The metals assimilated and their concentrations in the cytoplasm of Desulfovibrio vulgaris strainmore » Hildenborough (DvH) and Enterobacter cloacae strain Hanford (EcH) varied dramatically, with a larger number of metals present in Enterobacter. For example, a total of 9 and 19 metals were assimilated into their cytoplasmic fractions, respectively, and DvH did not assimilate significant amounts of zinc or copper whereas EcH assimilated both. However, bioinformatic analysis of their genome sequences revealed a comparable number of predicted metalloproteins, 813 in DvH and 953 in EcH. These allowed some rationalization of the types of metal assimilated in some cases (Fe, Cu, Mo, W, V) but not in others (Zn, Nd, Ce, Pr, Dy, Hf and Th). It was also shown that U binds an unknown soluble protein in EcH but this incorporation was the result of extracellular U binding to cytoplasmic components after cell lysis.« less

  18. Potential Applications of Immobilized β-Galactosidase in Food Processing Industries

    PubMed Central

    Panesar, Parmjit S.; Kumari, Shweta; Panesar, Reeba

    2010-01-01

    The enzyme β-galactosidase can be obtained from a wide variety of sources such as microorganisms, plants, and animals. The use of β-galactosidase for the hydrolysis of lactose in milk and whey is one of the promising enzymatic applications in food and dairy processing industries. The enzyme can be used in either soluble or immobilized forms but the soluble enzyme can be used only for batch processes and the immobilized form has the advantage of being used in batch wise as well as in continuous operation. Immobilization has been found to be convenient method to make enzyme thermostable and to prevent the loss of enzyme activity. This review has been focused on the different types of techniques used for the immobilization of β-galactosidase and its potential applications in food industry. PMID:21234407

  19. Effects of immobilization on articular cartilage: Autohistoradiographic findings with S35

    NASA Technical Reports Server (NTRS)

    Digiovanni, C.; Desantis, E.

    1980-01-01

    The effect of immobilization on the articular cartilage of rabbits was studied by light microscope. The knee joint of each rabbit was immobilized in a plaster in a position midway between flexion and extension for a 10 to 120 days period. Degenerative changes in the articular cartilage of increasing severity were observed. The fixation of the labeled SO4 by cartilage cells was decreased in advanced immobilization.

  20. Engineering cholesterol-based fibers for antibody immobilization and cell capture

    NASA Astrophysics Data System (ADS)

    Cohn, Celine

    In 2015, the United States is expected to have nearly 600,000 deaths attributed to cancer. Of these 600,000 deaths, 90% will be a direct result of cancer metastasis, the spread of cancer throughout the body. During cancer metastasis, circulating tumor cells (CTCs) are shed from primary tumors and migrate through bodily fluids, establishing secondary cancer sites. As cancer metastasis is incredibly lethal, there is a growing emphasis on developing "liquid biopsies" that can screen peripheral blood, search for and identify CTCs. One popular method for capturing CTCs is the use of a detection platform with antibodies specifically suited to recognize and capture cancer cells. These antibodies are immobilized onto the platform and can then bind and capture cells of interest. However, current means to immobilize antibodies often leave them with drastically reduced function. The antibodies are left poorly suited for cell capture, resulting in low cell capture efficiencies. This body of work investigates the use of lipid-based fibers to immobilize proteins in a way that retains protein function, ultimately leading to increased cell capture efficiencies. The resulting increased efficiencies are thought to arise from the retained three-dimensional structure of the protein as well as having a complete coating of the material surface with antibodies that are capable of interacting with their antigens. It is possible to electrospin cholesterol-based fibers that are similar in design to the natural cell membrane, providing proteins a more natural setting during immobilization. Such fibers have been produced from cholesterol-based cholesteryl succinyl silane (CSS). These fibers have previously illustrated a keen aptitude for retaining protein function and increasing cell capture. Herein the work focuses on three key concepts. First, a model is developed to understand the immobilization mechanism used by electrospun CSS fibers. The antibody immobilization and cell capturing

  1. Enzyme immobilization and biocatalysis of polysiloxanes

    NASA Astrophysics Data System (ADS)

    Poojari, Yadagiri

    Lipases have been proven to be versatile and efficient biocatalysts which can be used in a broad variety of esterification, transesterification, and ester hydrolysis reactions. Due to the high chemo-, regio-, and stereo-selectivity and the mild conditions of lipase-catalyzed reactions, the vast potential of these biocatalysts for use in industrial applications has been increasingly recognized. Polysiloxanes (silicones) are well known for their unique physico-chemical properties and can be prepared in the form of fluids, elastomers, gels and resins for a wide variety of applications. However, the enzymatic synthesis of silicone polyesters and copolymers is largely unexplored. In the present investigations, an immobilized Candida antarctica lipase B (CALB) on macroporous acrylic resin beads (Novozym-435 RTM) has been successfully employed as a catalyst to synthesize silicone polyesters and copolymers under mild reaction conditions. The silicone aliphatic polyesters and the poly(dimethylsiloxane)--poly(ethylene glycol) (PDMS-PEG) copolymers were synthesized in the bulk (without using a solvent), while the silicone aromatic polyesters, the silicone aromatic polyamides and the poly(epsilon-caprolactone)--poly(dimethylsiloxane)--poly(epsilon-caprolactone) (PCL-PDMS-PCL) triblock copolymers were synthesized in toluene. The synthesized silicone polyesters and copolymers were characterized by Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and Wide Angle X-ray Diffraction (WAXD). This dissertation also describes a methodology for physical immobilization of the enzyme pepsin from Porcine stomach mucosa in silicone elastomers utilizing condensation-cure room temperature vulcanization (RTV) of silanol-terminated poly(dimethylsiloxane) (PDMS). The activity and the stability of free pepsin and pepsin immobilized in silicone elastomers were studied with respect to p

  2. Biogeochemical Modeling of Ureolytically-Driven Calcium Carbonate Precipitation for Contaminant Immobilization

    NASA Astrophysics Data System (ADS)

    Smith, R. W.; Fujita, Y.; Taylor, J. L.

    2008-12-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory [INL]). Manipulation of in situ biogeochemical conditions to induce immobilization of these contaminants is a promising remediation approach that could yield significant risk and cost benefits to DOE. However, the effective design and interpretation of such field remediation activities requires the availability of numerical tools to model the biogeochemical processes underlying the remediation strategy. We are evaluating the use of microbial urea hydrolysis coupled to calcite precipitation as a means for the cost effective in situ stabilization of trace inorganic contaminants in groundwater and vadose zone systems. The approach relies upon the activity of indigenous ureolytic bacteria to hydrolyze introduced urea and causing an increase in pH and alkalinity, thereby accelerating calcium carbonate precipitation. The precipitation reaction results in the co- precipitation of trace metals and is sustained by the release of cations (both calcium and trace metals) from the aquifer matrix via exchange reactions involving the ammonium ions produced by urea hydrolysis. We have developed and parameterized a mixed kinetic-equilibrium reaction model using the Geochemist's Workbench computer code. Simulation results based on laboratory- and field-scale studies demonstrate the importance of transient events in systems with geochemical fluxes as well as of the coupling of biogeochemical processes.

  3. Effect of limb immobilization on skeletal muscle

    NASA Technical Reports Server (NTRS)

    Booth, F. W.

    1982-01-01

    Current knowledge and questions remaining concerning the effects of limb immobilization on skeletal muscle is reviewed. The most dramatic of these effects is muscle atrophy, which has been noted in cases of muscles fixed at or below their resting length. Immobilization is also accompanied by a substantial decrease in motoneuronal discharges, which results in the conversion of slow-twitch muscle to muscle with fast-twitch characteristics. Sarcolemma effects include no change or a decrease in resting membrane potential, the appearance of extrajunctional acetylcholine receptors, and no change in acetylcholinesterase activity. Evidence of changes in motoneuron after hyperpolarization characteristics suggests that the muscle inactivity is responsible for neuronal changes, rather than vice versa. The rate of protein loss from atrophying muscles is determined solely by the first-order rate constant for degradation. Various other biochemical and functional changes have been noted, including decreased insulin responsiveness and protein synthesis. The model of limb immobilization may also be useful for related studies of muscle adaptation.

  4. Pineapple stem bromelain immobilized on different supports: catalytic properties in model wine.

    PubMed

    Ilaria, Benucci; Marco, Esti; Katia, Liburdi; Maria Vittoria, Garzillo Anna

    2012-01-01

    Bromelain from pineapple stem has been covalently immobilized on different supports to select the more efficient biocatalyst that should be applied toward unstable proteins in real white wine. In this preliminary study, catalytic properties of different immobilized bromelain forms were compared under wine-like conditions, against a synthetic substrate (Bz-Phe-Val-Arg-pNA).Covalent immobilization affected protease kinetic properties, even if all immobilized forms presented both a better substrate affinity and higher half-life (with the exception of a few procedures) with respect to the free enzyme. Stem bromelain was successfully immobilized on chitosan beads without glutaraldehyde thus yielding a food-safe and promising biocatalyst for unstable real wine future application. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  5. Thrombin immobilization to methacrylic acid grafted poly(3-hydroxybutyrate) and its in vitro application.

    PubMed

    Akkaya, Alper; Pazarlioglu, Nurdan

    2013-01-01

    Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.

  6. Strength of interactions between immobilized dye molecules and sol-gel matrices.

    PubMed

    Ismail, Fanya; Schoenleber, Monika; Mansour, Rolan; Bastani, Behnam; Fielden, Peter; Goddard, Nicholas J

    2011-02-21

    In this paper we present a new theory to re-examine the immobilization technique of dye doped sol-gel films, define the strength and types of possible bonds between the immobilized molecule and sol-gel glass, and show that the immobilized molecule is not free inside the pores as was previously thought. Immobilizing three different pH sensitive dyes with different size and functional groups inside the same sol-gel films revealed important information about the nature of the interaction between the doped molecule and the sol-gel matrix. The samples were characterized by means of ultraviolet-visible spectrophotometer (UV-VIS), thermal gravimetric analysis (TGA), mercury porosimetry (MP), nuclear magnetic resonance spectroscopy ((29)Si NMR) and field-emission environmental scanning electron microscopy (ESEM-FEG). It was found that the doped molecule itself has a great effect on the strength and types of the bonds. A number of factors were identified, such as number and types of the functional groups, overall charge, size, pK(a) and number of the silanol groups which surround the immobilized molecule. These results were confirmed by the successful immobilization of bromocresol green (BCG) after a completely polymerized sol-gel was made. The sol-gel consisted of 50% tetraethoxysilane (TEOS) and 50% methyltriethoxysilane (MTEOS) (w/w). Moreover, the effect of the immobilized molecule on the structure of the sol-gel was studied by means of a leaky waveguide (LW) mode for doped films made before and after polymerization of the sol-gel.

  7. Treating Wastewater With Immobilized Enzymes

    NASA Technical Reports Server (NTRS)

    Jolly, Clifford D.

    1991-01-01

    Experiments show enzymes are immobilized on supporting materials to make biocatalyst beds for treatment of wastewater. With suitable combination of enzymes, concentrations of various inorganic and organic contaminants, including ammonia and urea, reduced significantly.

  8. Method of immobilizing carbon dioxide from gas streams

    DOEpatents

    Holladay, David W.; Haag, Gary L.

    1979-01-01

    This invention is a method for rapidly and continuously immobilizing carbon dioxide contained in various industrial off-gas streams, the carbon dioxide being immobilized as dry, stable, and substantially water-insoluble particulates. Briefly, the method comprises passing the gas stream through a fixed or fluidized bed of hydrated barium hydroxide to remove and immobilize the carbon dioxide by converting the bed to barium carbonate. The method has several important advantages: it can be conducted effectively at ambient temperature; it provides a very rapid reaction rate over a wide range of carbon dioxide concentrations; it provides high decontamination factors; and it has a high capacity for carbon dioxide. The invention is especially well suited for the removal of radioactive carbon dioxide from off-gases generated by nuclear-fuel reprocessing facilities and nuclear power plants.

  9. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.

    PubMed

    Başak, Esra; Aydemir, Tülin; Dinçer, Ayşe; Becerik, Seda Çınar

    2013-12-01

    Catalase was immobilized on chitosan and modified chitosan. Studies were carried out on free-immobilized catalase concerning the determination of optimum temperature, pH, thermal, storage stability, reusability, and kinetic parameters. Optimum temperature and pH for free catalase and catalase immobilized were found as 35°C and 7.0, respectively. After 100 times of repeated tests, the immobilized catalases on chitosan-clay and magnetic chitosan maintain over 50% and 60% of the original activity, respectively. The ease of catalase immobilization on low-cost matrices and good stability upon immobilization in the present study make it a suitable product for further use in the food industry.

  10. Phospholipid-sepiolite biomimetic interfaces for the immobilization of enzymes.

    PubMed

    Wicklein, Bernd; Darder, Margarita; Aranda, Pilar; Ruiz-Hitzky, Eduardo

    2011-11-01

    Biomimetic interfaces based on phosphatidylcholine (PC) assembled to the natural silicate sepiolite were prepared for the stable immobilization of the urease and cholesterol oxidase enzymes. This is an important issue in practical advanced applications such as biocatalysis or biosensing. The supported lipid bilayer (BL-PC), prepared from PC adsorption, was used for immobilization of enzymes and the resulting biomimetic systems were compared to several other supported layers including a lipid monolayer (ML-PC), a mixed phosphatidylcholine/octyl-galactoside layer (PC-OGal), a cetyltrimethylammonium monolayer (CTA), and also to the bare sepiolite surface. Interfacial characteristics of these layers were investigated with a focus on layer packing density, hydrophilicity/hydrophobicity, and surface charge, which are being considered as key points for enzyme immobilization and stabilization of their biological activity. Cytoplasmic urease and membrane-bound cholesterol oxidase, which served as model enzymes, were immobilized on the different PC-based hybrid materials to probe their biomimetic character. Enzymatic activity was assessed by cyclic voltammetry and UV-vis spectrophotometry. The resulting enzyme/bio-organoclay hybrids were applied as active phase of a voltammetric urea biosensor and cholesterol bioreactor, respectively. Urease supported on sepiolite/BL-PC proved to maintain its enzymatic activity over several months while immobilized cholesterol oxidase demonstrated high reusability as biocatalyst. The results emphasize the good preservation of bioactivity due to the accommodation of the enzymatic system within the biomimetic lipid interface on sepiolite.

  11. Enhancement of catalytic, reusability, and long-term stability features of Trametes versicolor IBL-04 laccase immobilized on different polymers.

    PubMed

    Asgher, Muhammad; Noreen, Sadia; Bilal, Muhammad

    2017-02-01

    In the current study, different bio-polymers such as agar-agar, polyacrylamide and gelatin were utilized as bolster materials for the immobilization of a fungal laccase through entrapment approach. Among the polymers, agar-agar matrix most firmly encapsulated the enzyme yielding significant laccase immobilization (79.65±2.55%). Immobilization prolonged the reaction time of laccase and agar-agar, polyacrylamide and gelatin entrapped laccases displayed maximum catalytic activities after 10.0, 15.0 and 10.0min of reaction, respectively, as compared to free counterpart (5.0min). It also increased the optimal temperature by 5.0-10°C and provided an alkaline shift of the pH optima to agar-agar and gelatin entrapped laccase, while, in case of polyacrylamide, optimum pH was displaced to acidic region. Kinetic data revealed that K m(app) values were slightly increased while V max values were decreased as compared to free counterpart. Polymers encapsulation led to significant improvement in activity against thermal denaturation. After 180min at 60°C, the enzymes preserved 28.1±0.9, 48.6±1.3 and 32.5±1.8% residual activities, respectively, whereas, the free enzyme was completely inactive. Immobilization enabled the enzymes to resist a number of different effectors including metal ions, inhibitors/denaturants and chelating agents. Moreover, the resulted modified laccases displayed good recycling capability for substrate-oxidation reactions in several successive batches. In summary, the tremendously improved attributes of polymers-encapsulated enzymes display a high potential for various applications in different industrial sectors. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Fast and economic immobilization methods described for non-commercial Pseudomonas lipases

    PubMed Central

    2014-01-01

    Background There is an increasing interest to seek new enzyme preparations for the development of new products derived from bioprocesses to obtain alternative bio-based materials. In this context, four non-commercial lipases from Pseudomonas species were prepared, immobilized on different low-cost supports, and examined for potential biotechnological applications. Results To reduce costs of eventual scaling-up, the new lipases were obtained directly from crude cell extracts or from growth culture supernatants, and immobilized by simple adsorption on Accurel EP100, Accurel MP1000 and Celite®545. The enzymes evaluated were LipA and LipC from Pseudomonas sp. 42A2, a thermostable mutant of LipC, and LipI.3 from Pseudomonas CR611, which were produced in either homologous or heterologous hosts. Best immobilization results were obtained on Accurel EP100 for LipA and on Accurel MP1000 for LipC and its thermostable variant. Lip I.3, requiring a refolding step, was poorly immobilized on all supports tested (best results for Accurel MP1000). To test the behavior of immobilized lipases, they were assayed in triolein transesterification, where the best results were observed for lipases immobilized on Accurel MP1000. Conclusions The suggested protocol does not require protein purification and uses crude enzymes immobilized by a fast adsorption technique on low-cost supports, which makes the method suitable for an eventual scaling up aimed at biotechnological applications. Therefore, a fast, simple and economic method for lipase preparation and immobilization has been set up. The low price of the supports tested and the simplicity of the procedure, skipping the tedious and expensive purification steps, will contribute to cost reduction in biotechnological lipase-catalyzed processes. PMID:24755191

  13. Immobilization of naringinase in PVA-alginate matrix using an innovative technique.

    PubMed

    Nunes, Mário A P; Vila-Real, Hélder; Fernandes, Pedro C B; Ribeiro, Maria H L

    2010-04-01

    A synthetic polymer, polyvinyl alcohol (PVA), a cheap and nontoxic synthetic polymer to organism, has been ascribed for biocatalyst immobilization. In this work PVA-alginate beads were developed with thermal, mechanical, and chemical stability to high temperatures (<80 degrees C). The combination of alginate and bead treatment with sodium sulfate not only prevented agglomeration but produced beads of high gel strength and conferred enzyme protection from inactivation by boric acid. Naringinase from Penicillium decumbens was immobilized in PVA (10%)-alginate beads with three different sizes (1-3 mm), at three different alginate concentrations (0.2-1.0%), and these features were investigated in terms of swelling ratio within the beads, enzyme activity, and immobilization yield during hydrolysis of naringin. The pH and temperature optimum were 4.0 and 70 degrees C for the PVA-alginate-immobilized naringinase. The highest naringinase activity yield in PVA (10%)-alginate (1%) beads of 2 mm was 80%, at pH 4.0 and 70 degrees C. The Michaelis constant (K(Mapp)) and the maximum reaction velocity (V(maxapp)) were evaluated for both free (K(Mapp) = 0.233 mM; V(maxapp) = 0.13 mM min(-1)) and immobilized naringinase (K(Mapp) = 0.349 mM; V(maxapp) = 0.08 mM min(-1)). The residual activity of the immobilized enzyme was followed in eight consecutive batch runs with a retention activity of 70%. After 6 weeks, upon storage in acetate buffer pH 4 at 4 degrees C, the immobilized biocatalyst retained 90% of the initial activity. These promising results are illustrative of the potential of this immobilization strategy for the system evaluated and suggest that its application may be effectively performed for the entrapment of other biocatalysts.

  14. DNA-directed trypsin immobilization on a polyamidoamine dendrimer-modified capillary to form a renewable immobilized enzyme microreactor.

    PubMed

    Wu, Nan; Wang, Siming; Yang, Ye; Song, Jiayi; Su, Ping; Yang, Yi

    2018-07-01

    A novel type of trypsin capillary microreactor was developed based on a DNA-directed immobilization (DDI) technique applied to a fused-silica capillary modified with polyamidoamine (PAMAM) dendrimers. Trypsin binding to the inner wall of the capillary was confirmed by confocal laser scanning microscopy. The properties of the trypsin-DNA conjugated, PAMAM-modified capillary microreactor were investigated by monitoring hydrolysis of Nα-benzoyl- L -arginine ethyl ester. Through the hybridization and dehybridization of the DNA, the inner wall of the capillary functionalized with trypsin can be regenerated, thus indicating the renewability of this enzyme microreactor. In addition, these results demonstrated that introduction of PAMAM enabled higher amounts of trypsin to be immobilized, markedly improving the enzymolysis efficiency, compared with traditional modified capillaries. The digestion performance of the trypsin capillary microreactor was further evaluated by digesting cytochrome C, and a peptide numbers of 8, and a sequence coverage of 59% were obtained. This renewable and efficient immobilized trypsin capillary microreactor combines advantages of both DDI technology and PAMAM, and is potentially adaptable to high-throughput enzyme assays in biochemical and clinical research. Copyright © 2018. Published by Elsevier B.V.

  15. Hybrid nanocatalysts containing enzymes and metallic nanoparticles for ethanol/O2 biofuel cell

    NASA Astrophysics Data System (ADS)

    Aquino Neto, S.; Almeida, T. S.; Palma, L. M.; Minteer, S. D.; de Andrade, A. R.

    2014-08-01

    We report the preparation of hybrid nanostructured bioanodes containing the enzyme alcohol dehydrogenase (ADH) with either Au, Pt, or Pt0.75Sn0.25 nanoparticles for use in ethanol/O2 hybrid biofuel cells. We describe two different methodologies for the preparation of the bioanodes: in a first case, multi walled carbon nanotubes (MWCNTs) were employed as a support for the metallic nanoparticles and TBAB-modified Nafion® aided enzyme immobilization. In the second case, we immobilized the enzymes using dendrimers-encapsulated nanoparticles as the agent for enzyme anchoring. The biofuel cell tests showed that the addition of metallic nanoparticles to the bioanode structure enhanced the overall biofuel cell performance. The bioelectrode containing Au nanoparticles displaying the best performance, with an open circuit potential of 0.61 ± 0.05 V and a maximum power density of 155 ± 11 μW cm-2. NADH cyclic voltammetric experiments indicated that Au nanoparticles behaved as a catalyst toward NADH oxidation. Comparing the two protocols we used to synthetized nanoparticles, the sample containing the Au nanoparticles supported on MWCNTs furnished fourfold higher values. Therefore, from the satisfactory results obtained, it can be inferred that the combination of small amounts of metallic nanoparticles with enzymes improve bioanode performance.

  16. New potential biocatalysts by laccase immobilization in PVA Cryogel type carrier.

    PubMed

    Stanescu, Michaela Dina; Fogorasi, Magdalena; Shaskolskiy, Boris L; Gavrilas, Simona; Lozinsky, Vladimir I

    2010-04-01

    Laccases are enzymes belonging to the Oxidoreductases class. These enzymes may be good biocatalysts for different processes, at laboratory and industrial levels. A successful use at industrial scale demands a higher stability of the enzyme. As an easy way to obtain longer life biocatalysts, the immobilization process is recommended. Thus, the paper presents different ways of obtaining new biocatalysts by a laccase covalent immobilization on a macroporous carrier based on poly(vinyl alcohol) cryogel. Different procedures of covalent immobilization are described, the newly obtained biocatalysts being characterized. According to the experimental data, the stability of the immobilized enzyme increased and the pH profile changed, compared with those of the free enzyme.

  17. Immobilization of endo-polygalacturonase from Aspergillus niger on various types of macromolecular supports.

    PubMed

    Pifferi, P G; Tramontini, M; Malacarne, A

    1989-04-20

    Endo-polygalacturonase (endo-PG) was immobilized on a wide range of natural and synthetic macromolecular supports and their modified derivatives representing many chemical classes, including esters, amides, phenols, alkyl- and arylamines, and carboxyl derivatives. The immobilization entailed methods of adsorption alone as well as covalent bond formation using glutaraldehyde or carbodiimide or via the diazo-coupling reaction. The most promising system proved to be immobilization on trimalehylchitosan (TMC) via adsorption followed by treatment with glutaraldehyde (GA). The binding capacity of the support is on the order of 13,000 IU/g, half of which is active. Various properties of immobilized endo-PG were evaluated. The optimum pH of the enzyme shifted to the alkaline side. The relative catalytic activity was considerably high even at room temperature and remained so above 70 degrees C. The thermal stability at pH 3-4 was notably improved by immobilization, the half-time doubling. Finally, the apparent K(m) was greater for immobilized endo-PG than for native enzyme, while the V(max) was smaller for the immobilized enzyme.

  18. Preparation and properties of an immobilized pectinlyase for the treatment of fruit juices.

    PubMed

    Busto, M D; García-Tramontín, K E; Ortega, N; Perez-Mateos, M

    2006-09-01

    Pectinlyase, present in different commercial pectinases used in juice technology, was immobilized on alginate beads. The optimal conditions were: 0.17 g alginate ml(-1), 1.2% (w/v or v/v) enzyme concentration and acetic-HCl/glycine-HCl buffer at pH 3.6 or tris-HCl/imidazole buffer at pH 6.4. Maximum percentage of immobilization (10.6%) was obtained with Rapidase C80. Kinetic parameters of free and immobilized pectinlyase were also determined. The pH and temperature at which activity of soluble and immobilized enzyme was maximum were 7.2 and 55 degrees C. Thermal stability was not significantly altered by immobilization, especially at 40 degrees C, showing two periods of different stability. Free and immobilized preparation reduced the viscosity of highly esterified pectin from 1.09 to 0.70 and 0.72 mm(2) s(-1), respectively, after 30 min at 40 degrees C. Furthermore, the immobilized enzyme could be re-used through 4 cycles and the efficiency loss in viscosity reduction was found to be only 9.2%.

  19. Optimization of Penicillium aurantiogriseum protease immobilization on magnetic nanoparticles for antioxidant peptides' obtainment.

    PubMed

    Duarte Neto, José Manoel Wanderley; Maciel, Jackeline da Costa; Campos, Júlia Furtado; Carvalho Junior, Luiz Bezerra de; Marques, Daniela Araújo Viana; Lima, Carolina de Albuquerque; Porto, Ana Lúcia Figueiredo

    2017-08-09

    This work reports an optimization of protease from Penicillium aurantiogriseum immobilization on polyaniline-coated magnetic nanoparticles for antioxidant peptides' obtainment derived from bovine casein. Immobilization process was optimized using a full two-level factorial design (2 4 ) followed by a response surface methodology. Using the derivative, casein was hydrolyzed uncovering its peptides that were sequenced and had antioxidant properties tested through (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) (ABTS) radical scavenging and hydrogen peroxide scavenging assays. Optimal conditions for immobilization were 2 hr of immobilization, offered protein amount of 200 µg/mL, immobilization pH of 6.3 and 7.3 hr of activation. Derivative keeps over 74% of its original activity after reused five times. Free and immobilized enzyme casein hydrolysates presented similar peptide mass fingerprints, and prevalent peptides could be sequenced. Hydrolysates presented more than 2.5× higher ROS scavenging activity than nonhydrolyzed casein, which validates the immobilized protease capacity to develop casein-derived natural ingredients with potential for functional foods.

  20. A new thermally immobilized fluorinated stationary phase for RP-HPLC.

    PubMed

    Maldaner, Liane; Jardim, Isabel C S F

    2010-02-01

    A new fluorinated stationary phase was prepared through thermal immobilization of poly(methyl-3,3,3-trifluoropropylsiloxane) onto 5 microm Kromasil silica particles. The best conditions of immobilization time and temperature were determined through a central composite design and response surface methodologies. Physical-chemical characterization using solid-state (29)Si NMR measurements, infrared spectroscopy and elemental analysis showed that the immobilization process was effective to promote a coating of the support that corresponds to a monolayer of polymer. The stationary phase presents selectivity for positional isomers and good peak shape for basic compounds.

  1. Multiple metal resistance in the cyanobacterium Nostoc muscorum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, S.K.; Singh, S.P.

    1995-04-01

    Metal tolerant strains of microbes are likely to originate in habitats having elevated metal levels. This aspect has been reviewed quite extensively by Silvers and Misra and the suggested mechanism of metal tolerance are: (a) cellular exclusion of metals; (b) extrusion of metals; and (c) intracellular immobilization. Similar studies on cyanobacterial strains appear to have been initiated by Shehata and Whitton who isolated a Zn-tolerant strain of Anacystis nidulans displaying a Zn uptake comparable to the Zn-sensitive wild type. The metal tolerance in the above strain was attributed to the intracellular detoxification mechanisms as suggested for Plectonema boryanum and Nostocmore » calcicola. The Cd-resistant strain of A. nidulans showed a protection of Cd-induced growth inhibition due to reduce uptake of metal. Recently we reported an energy- and dilution-dependent efflux of copper as the mechanism of Cu tolerance in a copper-resistant strain of Nostoc calcicola. The above studies were concerned mainly with single-metal resistance in cyanobacteria. Since natural habitats are generally characterized by the coexistence of a large number of toxic and nontoxic cations, it is necessary to study multiple-metal response on the physiology and biochemistry of microorganisms. In the presence study, therefore, we describe a multiple metal resistant strain of the cyanobacterium Nostoc muscorum. 15 refs., 1 fig., 1 tab.« less

  2. Mesoporous silica nanoparticles supported copper(II) and nickel(II) Schiff base complexes: Synthesis, characterization, antibacterial activity and enzyme immobilization

    NASA Astrophysics Data System (ADS)

    Tahmasbi, Leila; Sedaghat, Tahereh; Motamedi, Hossein; Kooti, Mohammad

    2018-02-01

    Mesoporous silica nanoparticles (MSNs) were prepared by sol-gel method and functionalized with 3-aminopropyltriethoxysilane. Schiff base grafted mesoporous silica nanoparticle was synthesized by the condensation of 2-hydroxy-3-methoxybenzaldehyde and amine-functionalized MSNs. The latter material was then treated with Cu(II) and Ni(II) salts separately to obtain copper and nickel complexes anchored mesoporous composites. The newly prepared hybrid organic-inorganic nanocomposites have been characterized by several techniques such as FT-IR, LA-XRD, FE-SEM, TEM, EDS, BET and TGA. The results showed all samples have MCM-41 type ordered mesoporous structure and functionalization occurs mainly inside the mesopore channel. The presence of all elements in synthesized nanocomposites and the coordination of Schiff base via imine nitrogen and phenolate oxygen were confirmed. MSNs and all functionalized MSNs have uniform spherical nanoparticles with a mean diameter less than 100 nm. The as-synthesized mesoporous nanocomposites were investigated for antibacterial activity against Gram-positive (B. subtilis and S. aureus) and Gram-negative (E. coli and P. aeruginosa) bacteria, as carrier for gentamicin and also for immobilization of DNase, coagulase and amylase enzymes. MSN-SB-Ni indicated bacteriocidal effect against S.aureus and all compounds were found to be good carrier for gentamicin. Results of enzyme immobilization for DNase and coagulase and α-amylase revealed that supported metal complexes efficiently immobilized enzymes.

  3. Thin metal bilayer for surface plasmon resonance sensors in a multimode plastic optical fiber: the case of palladium and gold metal films

    NASA Astrophysics Data System (ADS)

    Cennamo, Nunzio; Zuppella, Paola; Bacco, Davide; Corso, Alain J.; Pelizzo, Maria G.; Pesavento, Maria; Zeni, Luigi

    2016-05-01

    A novel sensing platform based on thin metal bilayer for surface plasmon resonance (SPR) in a D-shaped plastic optical fiber (POF) has been designed, implemented and tested. The experimental results are congruent with the numerical studies. This platform has been properly optimized to work in the 1.38 -1.42 refractive index range and it exhibits excellent sensitivity. This refractive index range is very interesting for bio-chemical applications, where the polymer layer are used as receptors (e.g. molecularly imprinted polymer) or to immobilize the bio-receptor on the metal surface. The proposed metallic bilayer is based on palladium and gold films and replaces the traditional gold by exhibiting higher performances. Furthermore, the deposition of the thin bilayer is a single process and no further manufacturing step is required. In fact, in this case the photoresist buffer layer between the POF core and the metal layer, usually required to increase the refractive index range, is no longer necessary.

  4. Direct immobilization of tyrosinase enzyme from natural mushrooms (Agaricus bisporus) on D-sorbitol cinnamic ester.

    PubMed

    Marín-Zamora, María Elisa; Rojas-Melgarejo, Francisco; García-Cánovas, Francisco; García-Ruiz, Pedro Antonio

    2006-11-10

    Mushroom tyrosinase was immobilized from an extract onto the totally cinnamoylated derivative of D-sorbitol by direct adsorption as a result of the intense hydrophobic interactions that took place. The immobilization pH value and mass of lyophilized mushrooms were important parameters that affected the immobilization efficiency, while the immobilization time and immobilization support concentration were not important in this respect. The extracted/immobilized enzyme could best be measured above pH 3.5 and the optimum measuring temperature was 55 degrees C. The apparent Michaelis constant using 4-tert-butylcatechol as substrate was 0.38+/-0.02 mM, which was lower than for the soluble enzyme from Sigma (1.41+/-0.20 mM). Immobilization stabilized the extracted enzyme against thermal inactivation and made it less susceptible to activity loss during storage. The operational stability was higher than in the case of the tyrosinase supplied by Sigma and immobilized on the same support. The results show that the use of p-nitrophenol as enzyme-inhibiting substrate during enzyme extraction and immobilization made the use of ascorbic acid unnecessary and is a suitable method for extracting and immobilizing the tyrosinase enzyme, providing good enzymatic activity and stability.

  5. Recovery of skeletal muscle after 3 mo of hindlimb immobilization in rats

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Seider, M. J.

    1979-01-01

    During immobilization, skeletal muscle undergoes decreases in size and strength with concomitant atrophic and degenerative changes in slow-twitch muscle fibers. Currently there are no objective data in slow-twitch muscle demonstrating recovery of biochemical or physiological indices following termination of immobilization. The purpose of this study was to determine whether the soleus, a slow-twitch muscle, could recover normal biochemical or physiological levels following termination of immobilization. Adenosine triphosphate, glycogen, and protein concentration (mg/g wet wt) all significantly decreased following 90 days of hindlimb immobilization, but these three values returned to control levels by the 60th recovery day. Similarly, soleus muscle wet weight and protein content (mg protein/muscle) returned to control levels by the 14th recovery day. In contrast, maximal isometric tension did not return to normal until the 120th day. These results indicate that following muscular atrophy, which was achieved through 90 days of hindlimb immobilization, several biochemical and physiological values in skeletal muscle are recovered at various times after the end of immobilization.

  6. Immobilization Increases the Stability and Reusability of Pigeon Pea NADP+ Linked Glucose-6-Phosphate Dehydrogenase.

    PubMed

    Singh, Siddhartha; Singh, Amit Kumar; Singh, M Chandrakumar; Pandey, Pramod Kumar

    2017-02-01

    Immobilization of enzymes is valuably important as it improves the stability and hence increases the reusability of enzymes. The present investigation is an attempt for immobilization of purified glucose-6-phosphate dehydrogenase from pigeon pea on different matrix. Maximum immobilization was achieved when alginate was used as immobilization matrix. As compared to soluble enzyme the alginate immobilized enzyme exhibited enhanced optimum pH and temperature. The alginate immobilized enzyme displayed more than 80% activity up to 7 continuous reactions and more than 50% activity up to 11 continuous reactions.

  7. Impact of Saw Dust Application on the Distribution of Potentially Toxic Metals in Contaminated Soil.

    PubMed

    Awokunmi, Emmmanuel E

    2017-12-01

    The need to develop an approach for the reclamation of contaminated site using locally available agricultural waste has been considered. The present study investigated the application of sawdust as an effective amendment in the immobilization of potentially toxic metals (PTMs) by conducting a greenhouse experiment on soil collected from an automobile dumpsite. The amended and non-amended soil samples were analyzed for their physicochemical parameters and sequential extraction of PTMs. The results revealed that application of amendment had positive impact on the physicochemical parameters as organic matter content and cation exchange capacity increased from 12.1% to 12.8% and 16.4 to 16.8 meq/100 g respectively. However, the mobility and bioavalability of these metals was reduced as they were found to be distributed mostly in the non-exchangeable phase of soil. Therefore, application of sawdust successfully immobilized PTMs and could be applied for future studies in agricultural soil reclamation.

  8. Surface immobilized azomethine for multiple component exchange.

    PubMed

    Lerond, Michael; Bélanger, Daniel; Skene, W G

    2017-09-27

    Diazonium chemistry concomitant with in situ electrochemical reduction was used to graft an aryl aldehyde to indium-tin oxide (ITO) coated glass substrates. This served as an anchor for preparing electroactive azomethines that were covalently bonded to the transparent electrode. The immobilized azomethines could undergo multiple step-wise component exchanges with different arylamines. The write-erase-write sequences were electrochemically confirmed. The azomethines could also be reversibly hydrolyzed. This was exploited for multiple azomethine-hydrolysis cycles resulting in discrete electroactive immobilized azomethines. The erase-rewrite sequences were also electrochemically confirmed.

  9. Polyketone polymer: a new support for direct enzyme immobilization.

    PubMed

    Agostinelli, E; Belli, F; Tempera, G; Mura, A; Floris, G; Toniolo, L; Vavasori, A; Fabris, S; Momo, F; Stevanato, R

    2007-01-20

    Polyketone polymer -[-CO-CH(2)-CH(2)-](n)-, obtained by copolymerization of ethene and carbon monoxide, is utilized for immobilization of three different enzymes, one peroxidase from horseradish (HRP) and two amine oxidases, from bovine serum (BSAO) and lentil seedlings (LSAO). The easy immobilization procedure is carried out in diluted buffer, at pH 7.0 and 3 degrees C, gently mixing the proteins with the polymer. No bifunctional reagents and spacer arms are required for the immobilization, which occurs exclusively via a large number of hydrogen bonds between the carbonyl groups of the polymer and the -NH groups of the polypeptidic chain. Experiments demonstrate a high linking capacity of polymer for BSAO and an extraordinary strong linkage for LSAO. Moreover, activity measurements demonstrate that immobilized LSAO totally retains the catalytic characteristics of the free enzyme, where only a limited increase of K(M) value is observed. Finally, the HRP-activated polymer is successfully used as active packed bed of an enzymatic reactor for continuous flow conversion and flow injection analysis of hydrogen peroxide containing solutions.

  10. Dielectrophoretic immobilization of proteins: Quantification by atomic force microscopy.

    PubMed

    Laux, Eva-Maria; Knigge, Xenia; Bier, Frank F; Wenger, Christian; Hölzel, Ralph

    2015-09-01

    The combination of alternating electric fields with nanometer-sized electrodes allows the permanent immobilization of proteins by dielectrophoretic force. Here, atomic force microscopy is introduced as a quantification method, and results are compared with fluorescence microscopy. Experimental parameters, for example the applied voltage and duration of field application, are varied systematically, and the influence on the amount of immobilized proteins is investigated. A linear correlation to the duration of field application was found by atomic force microscopy, and both microscopical methods yield a square dependence of the amount of immobilized proteins on the applied voltage. While fluorescence microscopy allows real-time imaging, atomic force microscopy reveals immobilized proteins obscured in fluorescence images due to low S/N. Furthermore, the higher spatial resolution of the atomic force microscope enables the visualization of the protein distribution on single nanoelectrodes. The electric field distribution is calculated and compared to experimental results with very good agreement to atomic force microscopy measurements. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Poly(acrylonitrile)chitosan composite membranes for urease immobilization.

    PubMed

    Gabrovska, Katya; Georgieva, Aneliya; Godjevargova, Tzonka; Stoilova, Olya; Manolova, Nevena

    2007-05-10

    (Poly)acrylonitrile/chitosan (PANCHI) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of PAN and PANCHI membranes were determined by TEM and SEM analyses. It was found that the average size of the pore under a selective layer base PAN membrane is 7 microm, while the membrane coated with 0.25% chitosan shows a reduced pore size--small or equal to 5 microm and with 0.35% chitosan--about 4 microm. The amounts of the functional groups, the degree of hydrophilicity and transport characteristics of PAN/Chitosan composite membranes were determined. Urease was covalently immobilized onto all kinds of PAN/chitosan composite membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (94%) was measured for urease bound to PANCHI2 membranes (0.25% chitosan). The basic characteristics (pH(opt), pH(stability), T(opt), T(stability), heat inactivation and storage stability) of immobilized urease were determined. The obtained results show that the poly(acrylonitrile)chitosan composite membranes are suitable for enzyme immobilization.

  12. Synthesis and immobilization of silver nanoparticles on aluminosilicate nanotubes and their antibacterial properties

    NASA Astrophysics Data System (ADS)

    Ipek Yucelen, G.; Connell, Rachel E.; Terbush, Jessica R.; Westenberg, David J.; Dogan, Fatih

    2016-04-01

    A novel colloidal method is presented to synthesize silver nanoparticles on aluminosilicate nanotubes. The technique involves decomposition of AgNO3 solution to Ag nanoparticles in the presence of aluminosilicate nanotubes at room temperature without utilizing of reducing agents or any organic additives. Aluminosilicate nanotubes are shown to be capable of providing a unique chemical environment, not only for in situ conversion of Ag+ into Ag0, but also for stabilization and immobilization of Ag nanoparticles. The synthesis strategy described here could be implemented to obtain self-assembled nanoparticles on other single-walled metal oxide nanotubes for unique applications. Finally, we demonstrated that nanotube/nanoparticle hybrid show strong antibacterial activity toward Gram-positive Staphylococcus epidermidis and Gram-negative Escherichia coli.

  13. Effect of kinesthetic illusion induced by visual stimulation on muscular output function after short-term immobilization.

    PubMed

    Inada, Toru; Kaneko, Fuminari; Hayami, Tatsuya

    2016-04-01

    Kinesthetic illusions by visual stimulation (KiNVIS) enhances corticomotor excitability and activates motor association areas. The purpose of this study was to investigate the effect of KiNVIS induction on muscular output function after short-term immobilization. Thirty subjects were assigned to 3 groups: an immobilization group, with the left hand immobilized for 12h (immobilization period); an illusion group, with the left hand immobilized and additionally subjected to KiNVIS of the immobilized part during the immobilization period; and a control group with no manipulation. The maximum voluntary contraction (MVC), fluctuation of force (force fluctuation) during a force modulation task, and twitch force were measured both before (pre-test) and after (post-test) the immobilization period. Data were analyzed by performing two-way (TIME×GROUP) repeated measures ANOVA. The MVC decreased in the immobilization group only (pre-test; 37.8±6.1N, post-test; 32.8±6.9N, p<0.0005) after the immobilization period. The force fluctuation increased only in the immobilization group (pre-test; 2.19±0.54%, post-test; 2.78±0.87%, p=0.007) after the immobilization period. These results demonstrate that induction of KiNVIS prevents negative effect on MVC and force fluctuation after 12h of immobilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Plasma lactate concentrations in free-ranging moose (Alces alces) immobilized with etorphine.

    PubMed

    Haga, Henning A; Wenger, Sandra; Hvarnes, Silje; Os, Oystein; Rolandsen, Christer M; Solberg, Erling J

    2009-11-01

    To investigate plasma lactate concentrations of etorphine-immobilized moose in relation to environmental, temporal and physiological parameters. Prospective clinical study. Fourteen female and five male moose (Alces alces), estimated age range 1-7 years. The moose were darted from a helicopter with 7.5 mg etorphine per animal using projectile syringes and a dart gun. Once immobilized, the moose were approached, a venous blood sample was obtained and vital signs including pulse oximetry were recorded. Diprenorphine was administered to reverse the effects of etorphine. Timing of events, ambient temperature and snow depth were recorded. Blood samples were cooled and centrifuged before plasma was harvested and frozen. The plasma was thawed later and lactate analysed. Data were analysed using descriptive statistics and regression analysis. All animals recovered uneventfully and were alive 12 weeks after immobilization. Mean +/- SD plasma lactate was found to be 9.2 +/- 2.1 mmol L(-1). Plasma lactate concentrations were related positively to snow depth and negatively to time from induction of immobilization to blood sampling. The model that best described the variability in plasma lactate concentrations used induction time (time from firing the dart to the moose being immobilized). The second best model included induction time and snow depth. Plasma lactate concentrations in these etorphine-immobilized moose were in the range reported for other immobilized wild ruminants. Decreasing induction time, which may be related to a more profound etorphine effect, and increasing snow depth possibly may increase plasma lactate concentrations in etorphine-immobilized moose.

  15. Immobilized enzymes in blood plasma exchangers via radiation grafting

    NASA Astrophysics Data System (ADS)

    Gombotz, Wayne; Hoffman, Allan; Schmer, Gottfried; Uenoyama, Satoshi

    The enzyme asparaginase was immobilized onto a porous hollow polypropylene (PP) fiber blood plasma exchange device for the treatment of acute lymphocytic leukemia. The devices were first radiation grafted with polymethacrylic acid (poly(MAAc)). This introduces carboxyl groups onto the surface of the fibers. Several variables were studied in the grafting reaction including the effects of solvent type and monomer concentration. The carboxyl groups were activated with N-hydroxy succinimide (NHS) using carbodiimide chemistry. Asparaginase was then covalently immobilized on the activated surfaces. Quantitative relationships were found relating the percent graft to the amount of immobilized enzyme which was active. The enzyme reactor was tested both in vitro and in vivo using a sheep as an animal model.

  16. Mesoporous silicas synthesis and application for lignin peroxidase immobilization by covalent binding method.

    PubMed

    Hu, Zunfang; Xu, Longqian; Wen, Xianghua

    2013-01-01

    Immobilization of enzymes on mesoporous silicas (MS) allows for good reusability. MS with two-dimensional hexagonal pores in diameter up to 14.13 nm were synthesized using Pluronic P123 as template and 1,3,5-triisopropylbenzene as a swelling agent in acetate buffer. The surface of MS was modified by the silanization reagents 3-aminopropyltriethoxysilane. Lignin peroxidase (LiP) was successfully immobilized on the modified MS through covalent binding method by four agents: glutaraldehyde, 1,4-phenylene diisothiocyanate, cyanotic chloride and water-soluble carbodiimide. Results showed that cyanotic chloride provided the best performance for LIP immobilization. The loaded protein concentration was 12.15 mg/g and the immobilized LiP activity was 812.9 U/L. Immobilized LiP had better pH stability. Acid Orange II was used to examine the reusability of immobilized LiP, showing more than 50% of the dye was decolorized at the fifth cycle.

  17. Stabilization of α-amylase by using anionic surfactant during the immobilization process

    NASA Astrophysics Data System (ADS)

    El-Batal, A. I.; Atia, K. S.; Eid, M.

    2005-10-01

    This work describes the entrapment of α-amylase into butylacrylate-acrylic acid copolymer (BuA/AAc) using γ irradiation. The effect of an anionic surfactant (AOT), the reuse efficiency, and kinetic behavior of immobilized α-amylase were studied. Covering of α-amylase with bis-(2-ethylhexyl)sulfosuccinate sodium salt (AOT) made the enzyme more stable than the uncovered form. The hydrolytic activity of the pre-coated immobilized α-amylase was increased below the critical micelle concentration (cmc) (10 mmol/L). The results showed an increase in the relative activity with increase in the degree of hydration. The pre-coated immobilized α-amylase showed a higher k/K and lower activation energy compared to the free and uncoated-immobilized preparation, respectively. The results suggest that the immobilization of α-amylase is a potentially useful approach for commercial starch hydrolysis in two-phase systems.

  18. Immobilization of alpha-amylase from Bacillus circulans GRS 313 on coconut fiber.

    PubMed

    Dey, Gargi; Nagpal, Varima; Banerjee, Rintu

    2002-01-01

    A simple and inexpensive method for immobilizing alpha-amylase from Bacillus circulans GRS 313 on coconut fiber was developed. The immobilization conditions for highest efficiency were optimized with respect to immobilization pH of 5.5, 30 degrees C, contact time of 4 h, and enzyme to support a ratio of 1:1 containing 0.12 mg/mL of protein. The catalytic properties of the immobilized enzyme were compared with that of the free enzyme. The activity of amylase adsorbed on coconut fiber was 38.7 U/g of fiber at its optimum pH of 5.7 and 48 degrees C, compared with the maximum activity of 40.2 U/mL of free enzyme at the optimum pH of 4.9 and 48 degrees C. The reutilization capacity of the immobilized enzyme was up to three cycles.

  19. The Outlook for Some Fission Products Utilization with the Aim to Immobilize Long-Lived Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pokhitonov, Y.A.

    2008-07-01

    The prospects for development of nuclear power are intimately associated with solving the problem of safe management and removal from the biosphere of generated radioactive wastes. The most suitable material for fission products and actinides immobilization is the crystalline ceramics. By now numerous literature data are available concerning the synthesis of a large range of various materials with zirconium-based products. It worth mentioning that zirconium is only one of fission products accumulated in the fuel in large amounts. The development of new materials intended for HLW immobilization will allow increasing of radionuclides concentration in solidified product so providing costs reductionmore » at the stage of subsequent storage. At the same time the idea to use for synthesis of compounds, suitable as materials for long-term storage or final disposal of rad-wastes some fission products occurring in spent fuel in considerable amount and capable to form insoluble substances seems to be rather attractive. In authors opinion in the nearest future one can expect the occurrence of publications proposing the techniques allowing the use of 'reactor's zirconium, molybdenum or, perhaps, technetium as well, with the aim of preparing materials suitable for long-lived radionuclides storage or final disposal. The other element, which is generated in the reactor and worth mentioning, is palladium. The prospects for using palladium are defined not only by its higher generation in the reactor, but by a number of its chemical properties as well. It is evident that the use of natural palladium with the purpose of radionuclides immobilization is impossible due to its high cost and deficiency). In author's opinion such materials could be used as targets for long-lived radionuclides transmutation as well. The object of present work was the study on methods that could allow to use 'reactor' palladium with the aim of long-lived radionuclides such as I-129 and TUE immobilization

  20. Study on immobilization of marine oil-degrading bacteria by carrier of algae materials.

    PubMed

    Zhang, Yiran; Gao, Wei; Lin, Faxiang; Han, Bin; He, Changfei; Li, Qian; Gao, Xiangxing; Cui, Zhisong; Sun, Chengjun; Zheng, Li

    2018-05-18

    This study investigated the immobilizations with of bacteria two kinds of algal materials, Enteromorpha residue and kelp residue. The lipophilicity of them were compared by diesel absorption rates. The immobilization efficiency of Bacillus sp. E3 was measured to evaluate whether these carriers would satisfy the requirement for biodegradation of oil spills. The bacteria were immobilized through adsorption with the sterilized and non-sterilized carriers to compare the differences between the two treatments. Oil degradation rates were determined using gravimetric and GC-MS methods. Results showed the absorption rates of Enteromorpha residue and kelp residue for diesel were 411 and 273% respectively and remained approximately 105 and 120% after 2 h of erosion in simulated seawater system. After immobilized of Bacillus sp. E3, the oil degradation rates of them were higher than 65% after 21 days biodegradations. GC-MS analysis showed that two immobilizations degraded higher than 70% of the total alkane and the total PAHs, whereas the free bacteria degraded 63% of the total alkane and 66% the total PAHs. And the bacteria immobilized with the carriers degraded more HMW-alkanes and HMW-PAHs than the free bacteria. The bacteria immobilized by non-sterilized kelp residue showed a considerably higher degradation rate than that using sterilized kelp residue. A considerably higher cells absorption rate of immobilization was obtained when using kelp residue, and the preparation of immobilization was low cost and highly efficient. The experiments show the two algae materials, especially the kelp residue, present potential application in bioremediation of marine oil spills.