Science.gov

Sample records for metal ion solvation

  1. Reactions of Solvated Ions Final Report

    DOE R&D Accomplishments Database

    Taube, H.

    1962-09-24

    Brief summaries are presented on isotopic dilution studies on salts dissolved in CH{sub 3}OH, studies on metal and metal salts in solvents of the amine type, and studies on phosphato complexes of the pentammine Co(III) series. A list of papers published on reactions of solvated ions is included. (N.W.R.)

  2. Anomalous small angle x-ray scattering studies of heavy metal ion solvation behavior in clay minerals

    SciTech Connect

    Carrado, K.A.; Thiyagarajan, P.; Winans, R.E.; Song, Kang

    1997-09-01

    The authors have exploited anomalous small angle x-ray scattering (ASAXS) to monitor the solvation behavior of Cu(II), Er(III) and Yb(III) ions within the interlayers of the natural aluminosilicate clay mineral montmorillonite. The ASAXS technique can reveal the distribution of specific metallic species within a heterogeneous and disordered matrix. The variations of signal intensity as a function of absorption energy were monitored for all of the metal-clays as a function of hydration. Two different hydration levels were probed: as prepared at ambient conditions, or so-called {open_quotes}dry{close_quotes} powders, and {open_quotes}wet{close_quotes} pastes. ASAXS intensities should increase with absorption energy if the metal ion is associated with the interlayer solvent (water in this case), and decrease if the metal ion is associated with the solid matrix. The results show that: (1) Cu(II) is solvated within the interlayers of the wet sample, as expected, and (2) Er(III) and Yb(III) decrease in ASAXS intensity with increased hydration. This latter result was not expected and there is speculation that these ions have associated as hydrolyzed products with the clay surface. The basic principles underlying SAXS and ASAXS will also be presented in this paper.

  3. Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation

    NASA Astrophysics Data System (ADS)

    Duncan, Michael

    2006-03-01

    Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.

  4. Gas phase charged aggregates of bis(2-ethylhexyl)sulfosuccinate (AOT) and divalent metal ions: first evidence of AOT solvated aggregates.

    PubMed

    Giorgi, Gianluca; Pini, Ivana; Ceraulo, Leopoldo; Liveri, Vincenzo Turco

    2011-09-01

    Assembling and chelating properties of sodium bis(2-ethylhexyl)sulfosuccinate (AOTNa) towards divalent metal ions have been investigated in the gas phase by electrospray ionization mass spectrometry. A variety of positively charged monometallated and mixed metal aggregates are formed. Interestingly, several ions contain solvent (MeOH, H(2)O) molecules and constitute the most abundant AOT cationic aggregates not containing sodium. These species are the first example of solvated AOT-metal ion aggregates in the gas phase. By increasing the surfactant aggregation number, the abundance of solvated species becomes lower than that of unsolvated ones. Decompositions of ionic species have been studied by tandem mass spectrometry, and their stability has been determined through energy resolved mass spectrometry. In contrast with positively charged AOT-alkaline metal ion aggregates, whose decompositions are dominated by the loss of individual surfactant molecules, AOTNa-divalent ion aggregates mainly dissociate through the cleavage of the AOT H(2)C-O bond followed by further intramolecular fragmentations. This finding, that is consistent with an enhanced chelation of divalent ions with AOT(-) head groups, has been taken as an indication that such aggregates are characterized by a reverse micelle-like organization with a ionic core formed by the metal cations interacting with the negatively charged surfactant polar heads, whereas the surfactant alkyl chains point outside. PMID:21915957

  5. Studies of ion solvation using pulse radiolysis

    SciTech Connect

    Jonah, C.D.; Lin, Yi.

    1991-01-01

    In this paper we describe our measurements of ion solvation in a series of alcohols. Benzophenone is dissolved in an alcohol at a sufficiently high concentration so that the electrons formed by radiation will react with the benzophenone molecule to form the anion. The spectrum of the anion is then observed as a function of time. As the benzophenone anion solvates, the spectrum shifts to the blue. The results of our measurements clearly show that both the size of the solvent molecules and their shapes are important in the solvation process. Different spectral relaxation processes are observed for ions than are observed for electron solvation, the simple'' ion system that has been most heavily studied. In addition, these results suggest that the rate of solvation may be different for ions in solution than for dipoles in solution. 26 refs., 3 figs.

  6. Solvated Electrons on Metal Oxide Surfaces

    SciTech Connect

    Zhao, Jin; Li, Bin; Onda, Ken; Feng, Min; Petek, Hrvoje

    2006-09-13

    An electron added to a solvent polarizes its surrounding medium to minimize the free energy. Such an electron with its polarization cloud, which we refer to as the solvated electron, is one of the most fundamental chemical reagents of significant experimental and theoretical interest. The structure and dynamics of solvated electrons in protic solvents have been explored ever since the discovery of intense blue coloration in solutions of alkali metals in ammonia.1-3 Because solvated electrons are the most fundamental chemical reagents as well as carriers of negative charge, substantial experimental and theoretical efforts have focused on elucidating their equilibrium structure and solvation dynamics in a variety of neat liquids.4,5 One of the most important but least explored environments for solvated electrons, namely, the two-dimensional liquid/solid and liquid/vacuum interfaces, is the subject of this review.

  7. Solvation of fullerene and fulleride ion in liquid ammonia: structure and dynamics of the solvation shells.

    PubMed

    Rana, Malay Kumar; Chandra, Amalendu

    2012-10-01

    Molecular dynamics simulations have been performed to investigate the solvation characteristics of neutral fullerene (C(60)) and charged fulleride anion (C(60)(5-)) in liquid ammonia. Potassium ions are present as counterions in the system containing fulleride ion. In addition to solvation characteristics, dynamical properties of solvation shells are also found out for both the neutral and anionic solutes. Our results reveal the presence of a rather large solvation shell of ammonia molecules around the C(60)(5-) ion. It is found that the ammonia molecules are more closely packed in the first solvation shell of C(60)(5-) than that of C(60). The distributions of ammonia molecules in the solvation shells of C(60) and C(60)(5-) solutes together with hydrogen bonding characteristics of the solvent in different solvation shells are investigated. It is found that the solvation of the small counterions (K(+)) in liquid ammonia is affected very little by the presence of the large C(60)(5-) anion. Regarding the dynamics of ammonia in solvation shells, it is found that the residence, translational and rotational dynamics of ammonia molecules differ significantly between the solvation shells of the neutral and charged fullerene solutes, especially in the first solvation shells. The average lifetimes of ammonia-ammonia hydrogen bonds are calculated from both continuous and intermittent hydrogen bond correlation functions. The calculations of binding energies reveal that the hydrogen bonds are weaker, hence short lived in the solvation shell of C(60)(5-) compared to those in the solvation shell of neutral C(60) and also in bulk liquid ammonia. PMID:23039601

  8. Solvation of fullerene and fulleride ion in liquid ammonia: Structure and dynamics of the solvation shells

    NASA Astrophysics Data System (ADS)

    Rana, Malay Kumar; Chandra, Amalendu

    2012-10-01

    Molecular dynamics simulations have been performed to investigate the solvation characteristics of neutral fullerene (C_{60}) and charged fulleride anion (C_{60}^{5-}) in liquid ammonia. Potassium ions are present as counterions in the system containing fulleride ion. In addition to solvation characteristics, dynamical properties of solvation shells are also found out for both the neutral and anionic solutes. Our results reveal the presence of a rather large solvation shell of ammonia molecules around the C_{60}^{5-} ion. It is found that the ammonia molecules are more closely packed in the first solvation shell of C_{60}^{5-} than that of C_{60}. The distributions of ammonia molecules in the solvation shells of C_{60} and C_{60}^{5-} solutes together with hydrogen bonding characteristics of the solvent in different solvation shells are investigated. It is found that the solvation of the small counterions (K+) in liquid ammonia is affected very little by the presence of the large C_{60}^{5-} anion. Regarding the dynamics of ammonia in solvation shells, it is found that the residence, translational and rotational dynamics of ammonia molecules differ significantly between the solvation shells of the neutral and charged fullerene solutes, especially in the first solvation shells. The average lifetimes of ammonia-ammonia hydrogen bonds are calculated from both continuous and intermittent hydrogen bond correlation functions. The calculations of binding energies reveal that the hydrogen bonds are weaker, hence short lived in the solvation shell of C_{60}^{5-} compared to those in the solvation shell of neutral C60 and also in bulk liquid ammonia.

  9. Interaction of metal cations with functionalised hydrocarbons in the gas phase: further experimental evidence for solvation of metal ions by the hydrocarbon chain.

    PubMed

    van Huizen, Nick A; Luider, Theo M; Jobst, Karl J; Terlouw, Johan K; Holmes, John L; Burgers, Peter C

    2016-01-01

    Relative affinity measurements of monovalent metal ions (= Li(+), Cu(+) and Ag(+)) towards aliphatic amines, alcohols and methyl alkanoates (P) have been performed using the kinetic method on the dissociation of metal bound dimer ions of the type P(1)-M(+)-P(2). It was found that the cations' affinity towards long chain (≥C(4) chain length) n- and s-alkylamines, n-alkanols and methyl n- alkanoates was unexpectedly enhanced. This is attributed to a bidentate interaction of the metal ion with the amine, alcohol or ester functional group and the aliphatic chain, paralleling earlier observations on metal bound nitriles. Methyl substitution at the functional group (s-alkylamines compared with n-alkylamines) serves to strengthen only the N•••M(+) bond, and this can be rationalized by the larger proton affinities of s-alkylamines compared to n-alkylamines. This substitution, however, has no effect on the metal ion-hydrocarbon bond. In contrast, methyl substitution remote from the functional group, as in iso-pentylamine, does lead to strengthening of the metal ion-hydrocarbon bond. The cuprous ion affinity of hexadecylamine, C(16)H(33)NH(2) was found to be as large as that for ethylenediamine (352 kJ mol(-1)), known to be a strong copper binding agent. It is argued that such a metal ion-hydrocarbon interaction does not occur in the metal bound dimers. PMID:27419899

  10. Solvation and Ion Pair Association in Aqueous Metal Sulfates: Interpretation of NDIS raw data by isobaric-isothermal molecular dynamics simulation.

    SciTech Connect

    Chialvo, Ariel A; Simonson, J Michael {Mike}

    2010-01-01

    We analyzed the solvation behavior of aqueous lithium, nickel, and ytterbium sulfates at ambient conditions in terms of the relevant radial distributions functions and the corresponding first-order difference of the sulfur-site neutronweighted distribution functions generated by isothermal-isobaric molecular dynamics simulation. We determined of the partial contributions to the neutronweighted distribution functions, to identify the main peaks, and the effect of the contact ion-pair configuration on the resulting H ! S coordination number. Finally, we assessed the extent of the ion-pair formation according to Poirier- DeLap formalism and highlighted the significant increase of the ion-pair association exhibited by these salts with cation charge.

  11. Simulated solvation of organic ions: protonated methylamines in water nanodroplets. Convergence toward bulk properties and the absolute proton solvation enthalpy.

    PubMed

    Houriez, Céline; Meot-Ner Mautner, Michael; Masella, Michel

    2014-06-12

    We applied an alternative, purely theoretical route to estimate thermodynamical properties of organic ions in bulk solution. The method performs a large ensemble of simulations of ions solvated in water nanodroplets of different sizes, using a polarizable molecular dynamics approach. We consider protonated ammonia and methylamines, and K(+) for comparison, solvated in droplets of 50-1000 water molecules. The parameters of the model are assigned from high level quantum computations of small clusters. All the bulk phase results extrapolated from droplet simulations match, and confirm independently, the relative and absolute experiment-based ion solvation energies. Without using experiment-based parameters or assumptions, the results confirm independently the solvation enthalpy of the proton, as -270.3 ± 1.1 kcal mol(-1). The calculated relative solvation enthalpies of these ions are constant from small water clusters, where only the ionic headgroups are solvated, up to bulk solution. This agrees with experimental thermochemistry, that the relative solvation energies of alkylammonium ions by only four H2O molecules reproduce the relative bulk solvation energies, although the small clusters lack major bulk solvation factors. The droplet results also show a slow convergence of ion solvation properties toward their bulk limit, and predict that the stepwise solvation enthalpies of ion/water droplets are very close to those of pure neutral water droplets already after 50 water molecules. Both the ionic and neutral clusters approach the bulk condensation energy very gradually up to 10,000 water molecules, consistent with the macroscopic liquid drop model for pure water droplets. Compared to standard computational methods based on infinite periodic systems, our protocol represents a new purely theoretical approach to investigate the solvation properties of ions. It is applicable to the solvation of organic ions, which are pivotal in environmental, industrial, and

  12. Surface solvation for an ion in a water cluster.

    PubMed

    Herce, David H; Perera, Lalith; Darden, Thomas A; Sagui, Celeste

    2005-01-01

    We have used molecular dynamics simulations to study the structural, dynamical, and thermodynamical properties of ions in water clusters. Careful evaluations of the free energy, internal energy, and entropy are used to address controversial or unresolved issues, related to the underlying physical cause of surface solvation, and the basic assumptions that go with it. Our main conclusions are the following. (i) The main cause of surface solvation of a single ion in a water cluster is both water and ion polarization, coupled to the charge and size of the ion. Interestingly, the total energy of the ion increases near the cluster surface, while the total energy of water decreases. Also, our analysis clearly shows that the cause of surface solvation is not the size of the total water dipole (unless this is too small). (ii) The entropic contribution is the same order of magnitude as the energetic contribution, and therefore cannot be neglected for quantitative results. (iii) A pure energetic analysis can give a qualitative description of the ion position at room temperature. (iv) We have observed surface solvation of a large positive iodinelike ion in a polarizable water cluster, but not in a nonpolarizable water cluster. PMID:15638604

  13. Extrapolating Single Organic Ion Solvation Thermochemistry from Simulated Water Nanodroplets.

    PubMed

    Coles, Jonathan P; Houriez, Céline; Meot-Ner Mautner, Michael; Masella, Michel

    2016-09-01

    We compute the ion/water interaction energies of methylated ammonium cations and alkylated carboxylate anions solvated in large nanodroplets of 10 000 water molecules using 10 ns molecular dynamics simulations and an all-atom polarizable force-field approach. Together with our earlier results concerning the solvation of these organic ions in nanodroplets whose molecular sizes range from 50 to 1000, these new data allow us to discuss the reliability of extrapolating absolute single-ion bulk solvation energies from small ion/water droplets using common power-law functions of cluster size. We show that reliable estimates of these energies can be extrapolated from a small data set comprising the results of three droplets whose sizes are between 100 and 1000 using a basic power-law function of droplet size. This agrees with an earlier conclusion drawn from a model built within the mean spherical framework and paves the road toward a theoretical protocol to systematically compute the solvation energies of complex organic ions. PMID:27420562

  14. SISGR: Linking Ion Solvation and Lithium Battery Electrolyte Properties

    SciTech Connect

    Trulove, Paul C.; Foley, Matthew P.

    2012-09-30

    The solvation and phase behavior of the model battery electrolyte salt lithium trifluoromethanesulfonate (LiCF3SO3) in commonly used organic solvents; ethylene carbonate (EC), gamma-butyrolactone (GBL), and propylene carbonate (PC) was explored. Data from differential scanning calorimetry (DSC), Raman spectroscopy, and X-ray diffraction were correlated to provide insight into the solvation states present within a sample mixture. Data from DSC analyses allowed the construction of phase diagrams for each solvent system. Raman spectroscopy enabled the determination of specific solvation states present within a solvent-salt mixture, and X-ray diffraction data provided exact information concerning the structure of a solvates that could be isolated Thermal analysis of the various solvent-salt mixtures revealed the phase behavior of the model electrolytes was strongly dependent on solvent symmetry. The point groups of the solvents were (in order from high to low symmetry): C2V for EC, CS for GBL, and C1 for PC(R). The low symmetry solvents exhibited a crystallinity gap that increased as solvent symmetry decreased; no gap was observed for EC-LiTf, while a crystallinity gap was observed spanning 0.15 to 0.3 mole fraction for GBL-LiTf, and 0.1 to 0.33 mole fraction for PC(R)-LiTf mixtures. Raman analysis demonstrated the dominance of aggregated species in almost all solvent compositions. The AGG and CIP solvates represent the majority of the species in solutions for the more concentrated mixtures, and only in very dilute compositions does the SSIP solvate exist in significant amounts. Thus, the poor charge transport characteristics of CIP and AGG account for the low conductivity and transport properties of LiTf and explain why is a poor choice as a source of Li+ ions in a Li-ion battery.

  15. Difference of solvation site between halide ions and electrons in an alkylammonium ionic liquid

    NASA Astrophysics Data System (ADS)

    Katoh, Ryuzi

    2009-11-01

    The difference of solvation site between halide ions and electrons in an alkylammonium ionic liquid is discussed on the basis of spectroscopic data. The data indicate that the halide ions replaced the anions of the ionic liquid and were fully solvated by the ammonium cations. In contrast, the solvated electrons were less solvated, suggesting that they were located near the region of the alkyl chain of the cations.

  16. Ion solvation in aqueous and non-aqueous solvents

    NASA Astrophysics Data System (ADS)

    Arslanargin, Ayse

    The thermodynamics of ion solvation is studied in both water and some organic solvents using computational and theoretical techniques. Free energy partitioning analysis is employed to explore the driving forces for ions interacting with the water liquid/vapor interface using optimized point charge models for the Na+ and I- ions and the extended simple point charge water model. The absolute hydration free energy is partitioned into cavity formation, attractive van der Waals, local electrostatic, and far-field electrostatic contributions. The bulk hydration free energy of the ions is computed first, followed by the free energy to insert the ions at the center of a water slab. Shifts of the ion free energies occur in the slab geometry are consistent with the extended simple point charge water model surface potential of the water liquid/vapor interface. Then the free energy profiles are examined for ion passage from the slab center to the dividing surface. The profiles show that, for the large chaotropic I- ion, the relatively flat total free energy profile results from the near cancellation of several large contributions. On the other hand, the small Na+ ion is repelled from the liquid/vapor interface mainly by the far field electrostatic term. The far-field electrostatic part of the free energy, largely due to the water liquid/vapor interface potential, has an important effect on ion distributions near the surface in the classical model. However, that the individual forms of the local and far-field electrostatic contributions are expected to be model dependent when comparing classical and quantum results. Non-aqueous solvents such as ethylene carbonate, and propylene carbonate are widely used as liquid electrolytes in electrochemical energy storage systems. The electrolyte structure affects the efficiency of the ion transport, and understanding the solvent structure is essential for battery performance enhancements. Free energy and enthalpy of solvation calculations

  17. Solvation!

    SciTech Connect

    Ivana Adamovic

    2004-12-19

    This dissertation consists of two closely related parts: theory development and coding of correlation effects in a model potential for solvation, and study of solvent effects on chemical reactions and processes. The effective fragment potential (EFP) method has been re-parameterized, using density functional theory (DFT), more specifically, the B3LYP functional. The DFT based EFP method includes short-range correlation effects; hence it is a first step in incorporating the treatment of correlation in the EFP solvation model. In addition, the gradient of the charge penetration term in the EFP model was derived and coded. The new method has been implemented in the electronic structure code GAMESS and is in use. Formulas for the dynamic dipole polarizability, C{sub 6} dispersion coefficient and dispersion energy were derived and coded as a part of a treatment of the dispersion interactions in the general solvation model, EFP2. Preliminary results are in good agreement with experimental and other theoretical data. The DFT based EFP (EFP1/DFT) method was used in the study of microsolvation effects on the S{sub N}2 substitution reaction, between chloride and methyl bromide. Changes in the central barrier, for several lowest lying isomers of the systems with one, two, three and four waters, were studied using second order perturbation theory (MP2), DFT and mixed quantum mechanics (QM)/(EFP1/DFT) methods. EFP1/DFT is found to reproduce QM results with high accuracy, at just a fraction of the cost. Molecular structures and potential energy surfaces for IHI{sup -} {center_dot} Ar{sub n} (n=1-7) were studied using the MP2 method. Experimentally observed trends in the structural arrangement of the Ar atoms were explained through the analysis of the geometrical parameters and three-dimensional MP2 molecular electrostatic potentials.

  18. Lithium ion solvation by ethylene carbonates in lithium-ion battery electrolytes, revisited by density functional theory with the hybrid solvation model and free energy correction in solution.

    PubMed

    Cui, Wei; Lansac, Yves; Lee, Hochun; Hong, Seung-Tae; Jang, Yun Hee

    2016-09-14

    Complex formation between lithium (Li(+)) ions and electrolyte molecules would affect the ionic conductivity through the electrolyte in lithium-ion batteries (LIBs). We hence revisit the solvation number of Li(+) in the most commonly used ethylene carbonate (EC) electrolyte. The solvation number n of Li(+)(EC)n in the first solvation shell of Li(+) is estimated on the basis of the free energy calculated by the density functional theory combined with a hybrid solvation model where the explicit solvation shell of Li(+) is immersed in a free volume of an implicit bulk solvent. This new hybrid solvation (implicit and explicit) model predicts the most probable solvation number (n = 4) and solvation free energy (-91.3 kcal mol(-1)) of Li(+) in a good agreement with those predicted by calculations employing simpler solvation models (either implicit or explicit). The desolvation (n = 2) of Li(0)(EC)n upon reduction near anodes is also well described with this new hybrid model. PMID:27506245

  19. Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.

    PubMed

    Carvalho, Nathalia F; Pliego, Josefredo R

    2015-10-28

    Absolute single-ion solvation free energy is a very useful property for understanding solution phase chemistry. The real solvation free energy of an ion depends on its interaction with the solvent molecules and on the net potential inside the solute cavity. The tetraphenyl arsonium-tetraphenyl borate (TATB) assumption as well as the cluster-continuum quasichemical theory (CC-QCT) approach for Li(+) solvation allows access to a solvation scale excluding the net potential. We have determined this free energy scale investigating the solvation of the lithium ion in water (H2O), acetonitrile (CH3CN) and dimethyl sulfoxide (DMSO) solvents via the CC-QCT approach. Our calculations at the MP2 and MP4 levels with basis sets up to the QZVPP+diff quality, and including solvation of the clusters and solvent molecules by the dielectric continuum SMD method, predict the solvation free energy of Li(+) as -116.1, -120.6 and -123.6 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively (1 mol L(-1) standard state). These values are compatible with the solvation free energy of the proton of -253.4, -253.2 and -261.1 kcal mol(-1) in H2O, CH3CN and DMSO solvents, respectively. Deviations from the experimental TATB scale are only 1.3 kcal mol(-1) in H2O and 1.8 kcal mol(-1) in DMSO solvents. However, in the case of CH3CN, the deviation reaches a value of 9.2 kcal mol(-1). The present study suggests that the experimental TATB scale is inconsistent for CH3CN. A total of 125 values of the solvation free energy of ions in these three solvents were obtained. These new data should be useful for the development of theoretical solvation models. PMID:26395146

  20. The solvation of ions in acetonitrile and acetone. II. Monte Carlo simulations using polarizable solvent models

    NASA Astrophysics Data System (ADS)

    Fischer, R.; Richardi, J.; Fries, P. H.; Krienke, H.

    2002-11-01

    Structural properties and energies of solvation are simulated for alkali and halide ions. The solvation structure is discussed in terms of various site-site distribution functions, of solvation numbers, and of orientational correlation functions of the solvent molecules around the ions. The solvent polarizability has notable effects which cannot be intuitively predicted. In particular, it is necessary to reproduce the experimental solvation numbers of small ions. The changes of solvation properties are investigated along the alkali and halide series. By comparing the solvation of ions in acetone to that in acetonitrile, it is shown that the spatial correlations among the solvent molecules around an ion result in a strong screening of the ion-solvent direct intermolecular potential and are essential to understand the changes in the solvation structures and energies between different solvents. The solvation properties derived from the simulations are compared to earlier predictions of the hypernetted chain (HNC) approximation of the molecular Ornstein-Zernike (MOZ) theory [J. Richardi, P. H. Fries, and H. Krienke, J. Chem. Phys. 108, 4079 (1998)]. The MOZ(HNC) formalism gives an overall qualitatively correct picture of the solvation and its various unexpected findings are corroborated. For the larger ions, its predictions become quantitative. The MOZ approach allows to calculate solvent-solvent and ion-solvent potentials of mean force, which shed light on the 3D labile molecular and ionic architectures in the solution. These potentials of mean force convey a unique information which is necessary to fully interpret the angle-averaged structural functions computed from the simulations. Finally, simulations of solutions at finite concentrations show that the solvent-solvent and ion-solvent spatial correlations at infinite dilution are marginally altered by the introduction of fair amounts of ions.

  1. Molecular Dynamics Simulation of Ion Solvation in Polymer Melts: Effects of Dielectric Inhomogeneity and Chain Connectivity on Solvation Energy of Ions

    NASA Astrophysics Data System (ADS)

    Liu, Lijun; Nakamura, Issei

    We study the ion solvation in block copolymer melts and polymer blends using molecular dynamics simulations. In our simulations, polymers are formed through the connection of beads that provide the dielectric response. Thus, we highlight the effect of the dielectric contrast between different species on the solvation energy of ions. We demonstrate the local enrichment of higher-dielectric components near ions, which corresponds well with the result of mean-field theories. Moreover, the chain connectivity significantly affects the reorientation of molecular dipoles in response to the electrostatic field from ions. Thus, we illustrate the marked difference in the solvation energy between the block copolymer and polymer blend. Importantly, the solvation energy substantially depends on the chain length of the polymers, in stark contrast to the Born solvation energy. We also show that our simulation results exhibit striking similarity to the result of the recent self-consistent mean field theories. However, for strongly correlated dipoles and ions, our simulations provide qualitatively opposite behaviors to these results, suggesting further development of the theoretical frameworks. This work was supported by the National Natural Science Foundation of China (21474112 and 21404103). We are grateful to the Computing Center of Jilin Province for essential support.

  2. Ions in a binary asymmetric dipolar mixture: Mole fraction dependent Born energy of solvation and partial solvent polarization structure

    NASA Astrophysics Data System (ADS)

    Kashyap, Hemant K.; Biswas, Ranjit

    2007-11-01

    Mean spherical approximation (MSA) for electrolyte solution has been extended to investigate the role of partial solvent polarization densities around an ion in a completely asymmetric binary dipolar mixture. The differences in solvent diameters, dipole moments, and ionic size are incorporated systematically within the MSA framework in the present theory for the first time. In addition to the contributions due to difference in dipole moments, the solvent-solvent and ion-solvent size ratios are found to significantly affect the nonideality in binary dipolar mixtures. Subsequently, the theory is used to investigate the role of ion-solvent and solvent-solvent size ratios in determining the nonideality in Born free energy of solvation of a unipositive rigid ion in alcohol-water and dimethyl sulfoxide-acetonitrile mixtures, where the solvent components are represented only by their molecular diameters and dipole moments. Nonideality in Born free energy of solvation in such simplified mixtures is found to be stronger for smaller ions. The slope of the nonideality for smaller alkali metal ions in methanol-water mixture is found to be opposite to that for larger ion, such as quaternary tertiary butyl ammonium ion. For ethanol-water mixtures, the slopes are in the same direction for all the ions studied here. These results are in qualitative agreement with experiments, which is surprising as the present MSA approach does not include the hydrogen bonding and hydrophobic interactions present in the real mixtures. The calculated partial polarization densities around a unipositive ion also show the characteristic deviation from ideality and reveal the microscopic origin of the ion and solvent size dependent preferential solvation. Also, the excess free energy of mixing (in the absence of any ion) for these binary mixtures has been calculated and a good agreement between theory and experiment has been found.

  3. Solvation-Driven Charge Transfer and Localization in Metal Complexes

    PubMed Central

    2016-01-01

    Conspectus In any physicochemical process in liquids, the dynamical response of the solvent to the solutes out of equilibrium plays a crucial role in the rates and products: the solvent molecules react to the changes in volume and electron density of the solutes to minimize the free energy of the solution, thus modulating the activation barriers and stabilizing (or destabilizing) intermediate states. In charge transfer (CT) processes in polar solvents, the response of the solvent always assists the formation of charge separation states by stabilizing the energy of the localized charges. A deep understanding of the solvation mechanisms and time scales is therefore essential for a correct description of any photochemical process in dense phase and for designing molecular devices based on photosensitizers with CT excited states. In the last two decades, with the advent of ultrafast time-resolved spectroscopies, microscopic models describing the relevant case of polar solvation (where both the solvent and the solute molecules have a permanent electric dipole and the mutual interaction is mainly dipole–dipole) have dramatically progressed. Regardless of the details of each model, they all assume that the effect of the electrostatic fields of the solvent molecules on the internal electronic dynamics of the solute are perturbative and that the solvent–solute coupling is mainly an electrostatic interaction between the constant permanent dipoles of the solute and the solvent molecules. This well-established picture has proven to quantitatively rationalize spectroscopic effects of environmental and electric dynamics (time-resolved Stokes shifts, inhomogeneous broadening, etc.). However, recent computational and experimental studies, including ours, have shown that further improvement is required. Indeed, in the last years we investigated several molecular complexes exhibiting photoexcited CT states, and we found that the current description of the formation and

  4. Structural and Thermodynamic Properties of the Cm(III) Ion Solvated by Water and Methanol.

    PubMed

    Kelley, Morgan P; Yang, Ping; Clark, Sue B; Clark, Aurora E

    2016-05-16

    The geometric and electronic structures of the 9-coordinate Cm(3+) ion solvated with both water and methanol are systematically investigated in the gas phase at each possible solvent-shell composition and configuration using density functional theory and second-order Møller-Plesset perturbation theory. Ab initio molecular dynamics simulations are employed to assess the effects of second and third solvent shells on the gas-phase structure. The ion-solvent dissociation energy for methanol is greater than that of water, potentially because of increased charge donation to the ion made possible by the electron-rich methyl group. Further, the ion-solvent dissociation energy and the ion-solvent distance are shown to be dependent on the solvent-shell composition. This has implications for solvent exchange, which is generally the rate-limiting step in complexation reactions utilized in the separation of curium from complex metal mixtures that derive from the advanced nuclear fuel cycle. PMID:27120717

  5. Models of Ion Solvation Thermodynamics in Ethylene Carbonate and Propylene Carbonate.

    PubMed

    Arslanargin, Ayse; Powers, August; Beck, Thomas L; Rick, Steven W

    2016-03-01

    Ethylene carbonate (EC) and propylene carbonate (PC) are organic solvents used extensively in energy storage applications such as lithium-ion batteries and supercapacitors. Using statistical mechanical theory and computer simulations, this paper compares and contrasts the thermodynamics of ion solvation in EC and PC with the behavior observed in water. The EC and PC solvents are modeled with the AMBER (GAFF) force field. Ion-solvent interactions are treated with two point-charge models: one using an existing Lennard-Jones ion parameter set optimized for solvation in water, and the other based on high-level quantum calculations on ion-solvent dimers and fitting to a Buckingham-type potential form. The second model produces a coordination number for the Li(+) ion in closer agreement with experiment. Neither model yields consistently accurate solvation thermodynamic quantities (free energies, enthalpies, and entropies), however. The simulations and thermodynamic analysis illustrate key physical aspects of the solvation; the studies also point to necessary modifications of these simple models. In particular, the calculations show that polarization and associated dispersion forces are important and that well-optimized polarizable or quantum models are likely required to accurately reproduce condensed-phase properties of ions in these technologically important solvents. PMID:26292974

  6. Molecular modeling of organic corrosion inhibitors: why bare metal cations are not appropriate models of oxidized metal surfaces and solvated metal cations.

    PubMed

    Kokalj, Anton

    2014-01-01

    The applicability of various models of oxidized metal surfaces - bare metal cations, clusters of various size, and extended (periodic) slabs - that are used in the field of quantum-chemical modeling of corrosion inhibitors is examined and discussed. As representative model systems imidazole inhibitor, MgO surface, and solvated Mg(2+) ion are considered by means of density-functional-theory calculations. Although the results of cluster models are prone to cluster size and shape effects, the clusters of moderate size seem useful at least for qualitative purposes. In contrast, the bare metal cations are useless not only as models of oxidized surfaces but also as models of solvated cations, because they bind molecules several times stronger than the more appropriate models. In particular, bare Mg(2+) binds imidazole by 5.9 eV, while the slab model of MgO(001) by only 0.35 eV. Such binding is even stronger for 3+ cations, e.g., bare Al(3+) binds imidazole by 17.9 eV. The reasons for these fantastically strong binding energies are discussed and it is shown that the strong bonding is predominantly due to electron charge transfer from molecule to metal cation, which stems from differences between molecular and metal ionization potentials. PMID:25125117

  7. Solvation of the Li+-Cl--Li+ triple ion in the gas phase

    NASA Astrophysics Data System (ADS)

    Jarek, Russell L.; Denson, Stephen C.; Shin, Seung Koo

    1998-09-01

    Fourier-transform ion cyclotron resonance (FT-ICR) spectrometry was employed to study solvations of the Li+-Cl--Li+ triple ion with oxygen-donor Lewis bases in the gas phase. The LiClLi+ triple ions were produced in an ICR cell by laser desorption ionization of a lithium chloride/dibenzo-18-crown-6-ether matrix pasted on a Teflon substrate. O-donor Lewis bases include 1,4-dioxane, 1,3-dioxane, tetrahydrofuran (THF), acetone and diethyl ether. All O-donors associate directly with LiClLi+ with the maximum solvation numbers of 3 for 1,4-dioxane, 1,3-dioxane and diethyl ether, and 4 for THF and acetone at room temperature. The rate constants for the stepwise solvations were measured, and the solvent binding energies were determined from van't Hoff plots. The structures and energetics of LiClLi+ and the 1:1 complexes of Li+ and LiClLi+ with the dioxanes, THF, and acetone were calculated at the Hartree-Fock (HF) level with a 6-311G(d,p) basis set, and those of more highly coordinated LiClLi+ complexes were calculated with a 6-31G(d) basis set. Solvation enthalpies and free energies were calculated, and solvent binding energies were compared with experiments. The mechanisms of stepwise solvations of the LiClLi+ triple ion with dioxanes, THF, and acetone are discussed in light of experimental kinetics and binding energies and theoretical structures and solvation energies.

  8. Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics.

    PubMed

    Ong, Mitchell T; Verners, Osvalds; Draeger, Erik W; van Duin, Adri C T; Lordi, Vincenzo; Pask, John E

    2015-01-29

    Lithium-ion battery performance is strongly influenced by the ionic conductivity of the electrolyte, which depends on the speed at which Li ions migrate across the cell and relates to their solvation structure. The choice of solvent can greatly impact both the solvation and diffusivity of Li ions. In this work, we used first-principles molecular dynamics to examine the solvation and diffusion of Li ions in the bulk organic solvents ethylene carbonate (EC), ethyl methyl carbonate (EMC), and a mixture of EC and EMC. We found that Li ions are solvated by either carbonyl or ether oxygen atoms of the solvents and sometimes by the PF6(-) anion. Li(+) prefers a tetrahedrally coordinated first solvation shell regardless of which species are involved, with the specific preferred solvation structure dependent on the organic solvent. In addition, we calculated Li diffusion coefficients in each electrolyte, finding slightly larger diffusivities in the linear carbonate EMC compared to the cyclic carbonate EC. The magnitude of the diffusion coefficient correlates with the strength of Li(+) solvation. Corresponding analysis for the PF6(-) anion shows greater diffusivity associated with a weakly bound, poorly defined first solvation shell. These results can be used to aid in the design of new electrolytes to improve Li-ion battery performance. PMID:25523643

  9. Effects of cation and anion solvation on ion transport in functionalized perfluoropolyethers electrolytes

    NASA Astrophysics Data System (ADS)

    Timachova, Ksenia; Chintapalli, Mahati; Olsen, Kevin; Desimone, Joseph; Balsara, Nitash

    Advances in polymer electrolytes for use in lithium batteries have been limited by the incorporation of selective lithium binding groups that provide necessary solvation for the lithium but ultimately restrict the mobility of the lithium ions relative to anions. Perfluoropolyether electrolytes (PFPE) are a new class of nonflammable liquid polymer electrolytes that have been functionalized with solvating groups for both lithium ions and fluorinated anions. PFPEs with different endgroups mixed with LiN(SO2CF3)2 salt have shown substantial differences in conductivity and allows us to investigate the effects of varying solvating environments on ion transport. To study the independent motion of cations and anions in these systems, the individual diffusion coefficients of the Li + and (SO2CF3)2 - ions were measured using pulsed-field gradient nuclear magnetic resonance (PFG-NMR). Comparing conductivity calculated using these diffusion coefficients with electrochemical measurements yields an estimation for the number of charge carrier in the system. The amount of salt dissociation, not the mobility of the salt, is the primary driver of differences in electrochemical conductivities between PFPEs with different solvating groups.

  10. Role of Local Response in Ion Solvation: Born Theory and Beyond.

    PubMed

    Remsing, Richard C; Weeks, John D

    2016-07-01

    The nature of ion solvation has drawn the interest of scientists for over a century, yet a thorough theoretical understanding is still lacking. In this work, we focus on the microscopic origins underlying ionic charge asymmetric and nonlinear response contributions to ion solvation free energies. We first derive an exact expression for the charging component of the ionic free energy, the free energy change when the Coulomb interactions between a fixed ion and the solvent are gradually "turned on". We then introduce the concept of a Gaussian test charge distribution, a generalization of the classical electrostatic point test charge that can be used to probe dielectric response in atomically detailed models. This enables the study of a thermodynamic cycle that isolates a linear and charge-symmetric contribution to the free energy that is well-described by Born-model-like dielectric continuum theories. We give a simple physical derivation of the classic Born model that locally relates the induced charge density in a linear dielectric model to the applied ionic charge distribution. The nonlinear response and charge asymmetric contributions to the ion solvation free energy are then examined in the remaining steps of the cycle and compared to classic thermodynamic cycles for this process using computer simulations. The insights provided by this work will aid the development of quantitative theories for the solvation of charged solutes. PMID:27183036

  11. Properties of solvate shells and the mobility of ions, according to molecular dynamics data

    NASA Astrophysics Data System (ADS)

    Lankin, A. V.; Norman, G. E.; Orekhov, M. A.

    2016-05-01

    The solvate shells of an ion, its velocity autocorrelation function, and diffusion coefficient D are found, and the interrelations between them are analyzed. A single ion in the system of atoms of a liquid is considered a model system. The interaction between the ion and atoms of the liquid is described by polarization potential U( r); the interaction between atoms of the liquid alone is described by the Lennard-Jones potential. A classical molecular dynamics method is used. Five solvate shells around the ion are found, and the lifetimes of atoms on each shell are calculated. It is found that the velocity autocorrelation function is of a vibrating nature. The spectrum of the autocorrelator and the frequency of cluster vibrations in a linear approximation are compared. Dependences D on parameters of potential U( r) are found. No dependence D on the ion mass is found; this is explained by solvation. The Einstein-Stokes formula and the HSK approximation are used in discussing the results. It is shown that at small radii of the ion, dependence D on parameters U( r) is described by such a model. When the ion radius is increased, the deviation from this dependence and an increase in D are observed. The results are compared to experimental mobilities of O 2 - and Ar 2 + ions in liquid argon.

  12. Structural and thermodynamic properties of the CmIII ion solvated by water and methanol

    DOE PAGESBeta

    Kelley, Morgan P.; Yang, Ping; Clark, Sue B.; Clark, Aurora E.

    2016-04-27

    The geometric and electronic structures of the 9-coordinate Cm3+ ion solvated with both water and methanol are systematically investigated in the gas phase at each possible solvent-shell composition and configuration using density functional theory and second-order Møller–Plesset perturbation theory. Ab initio molecular dynamics simulations are employed to assess the effects of second and third solvent shells on the gas-phase structure. The ion–solvent dissociation energy for methanol is greater than that of water, potentially because of increased charge donation to the ion made possible by the electron-rich methyl group. Further, the ion–solvent dissociation energy and the ion–solvent distance are shown tomore » be dependent on the solvent-shell composition. Furthermore, this has implications for solvent exchange, which is generally the rate-limiting step in complexation reactions utilized in the separation of curium from complex metal mixtures that derive from the advanced nuclear fuel cycle.« less

  13. Ejection of solvated ions from electrosprayed methanol/water nanodroplets studied by molecular dynamics simulations.

    PubMed

    Ahadi, Elias; Konermann, Lars

    2011-06-22

    The ejection of solvated small ions from nanometer-sized droplets plays a central role during electrospray ionization (ESI). Molecular dynamics (MD) simulations can provide insights into the nanodroplet behavior. Earlier MD studies have largely focused on aqueous systems, whereas most practical ESI applications involve the use of organic cosolvents. We conduct simulations on mixed water/methanol droplets that carry excess NH(4)(+) ions. Methanol is found to compromise the H-bonding network, resulting in greatly increased rates of ion ejection and solvent evaporation. Considerable differences in the water and methanol escape rates cause time-dependent changes in droplet composition. Segregation occurs at low methanol concentration, such that layered droplets with a methanol-enriched periphery are formed. This phenomenon will enhance the partitioning of analyte molecules, with possible implications for their ESI efficiencies. Solvated ions are ejected from the tip of surface protrusions. Solvent bridging prior to ion secession is more extensive for methanol/water droplets than for purely aqueous systems. The ejection of solvated NH(4)(+) is visualized as diffusion-mediated escape from a metastable basin. The process involves thermally activated crossing of a ~30 kJ mol(-1) free energy barrier, in close agreement with the predictions of the classical ion evaporation model. PMID:21591733

  14. Solvated ions as defects in liquid water: A first-principles perspective

    NASA Astrophysics Data System (ADS)

    Schwegler, Eric; Pham, Tuan Anh; Govoni, Marco; Galli, Giulia

    Understanding the electronic properties of solvated ions is crucial in order to control and engineer aqueous electrolytes for a wide variety of emerging energy and environmental technologies, including photocatalytic water splitting. In this talk, we present a strategy to evaluate electronic energy levels of simple solvated ions in aqueous solutions, using a combination of first-principles molecular dynamics simulations and many-body perturbation theory within the GW approximation. We considered CO32- , HCO3-,NO3-,NO2-ions and we show that by analogy to defects in semiconductors, these solvated ions may be classified as deep or shallow defects in liquid water. In particular CO32- and NO2-ions behave as shallow defects, while HCO3-and NO3-as deep ones. We also show that the inclusion of many-body corrections constitutes significant improvement over conventional density functional theory calculations, yielding satisfactory agreement with photoemission experiments. Part of this work was supported by the U.S. Department of Energy at the LLNL under Contract DE-AC52-07NA27344. T.A.P acknowledge the support from the Lawrence Fellowship. Part of this work was supported by LDRD at ANL.

  15. The effects of charge transfer on the aqueous solvation of ions

    SciTech Connect

    Soniat, Marielle; Rick, Steven W.

    2012-07-28

    Ab initio-based charge partitioning of ionic systems results in ions with non-integer charges. This charge-transfer (CT) effect alters both short- and long-range interactions. Until recently, the effects of CT have been mostly neglected in molecular dynamics (MD) simulations. The method presented in this paper for including charge transfer between ions and water is consistent with ab initio charge partitioning and does not add significant time to the simulation. The ions of sodium, potassium, and chloride are parameterized to reproduce dimer properties and aqueous structures. The average charges of the ions from MD simulations (0.900, 0.919, and -0.775 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively) are consistent with quantum calculations. The hydration free energies calculated for these ions are in agreement with experimental estimates, which shows that the interactions are described accurately. The ions also have diffusion constants in good agreement with experiment. Inclusion of CT results in interesting properties for the waters in the first solvation shell of the ions. For all ions studied, the first shell waters acquire a partial negative charge, due to the difference between water-water and water-ion charge-transfer amounts. CT also reduces asymmetry in the solvation shell of the chloride anion, which could have important consequences for the behavior of chloride near the air-water interface.

  16. Structural study of the N,N'-dimethylpropyleneurea solvated lanthanoid(III) ions in solution and solid state with an analysis of the ionic radii of lanthanoid(III) ions.

    PubMed

    Lundberg, Daniel; Persson, Ingmar; Eriksson, Lars; D'Angelo, Paola; De Panfilis, Simone

    2010-05-17

    The structures of the N,N'-dimethylpropyleneurea (dmpu) solvated lanthanoid(III) ions have been studied in dmpu solution (La-Nd, Sm-Lu) and in solid iodide salts (La-Nd, Sm, Gd-Lu) by extended X-ray absorption fine structure (EXAFS), and single crystal X-ray diffraction (La, Pr, Nd, Gd, Tb, Er, Yb, and Lu); the EXAFS studies were performed on both K and L(III) absorption edges. Because of the space-demanding properties of dmpu upon coordination, dmpu solvated metal ions often show coordination numbers lower than those found in corresponding hydrates and solvates of oxygen donor solvents without steric requirements beyond the size of the donor atom. All lanthanoid(III) ions are seven-coordinate in solution, except lutetium(III) which is six-coordinated in regular octahedral fashion, whereas in the solid iodide salts the dmpu solvated lanthanoid(III) ions are all six-coordinate in regular octahedral fashion. A comparison of Ln-O bond lengths in a large number of lanthanoid(III) complexes with neutral oxygen donor ligands and different configurations shows that the metal ion-oxygen distance is specific for each coordination number with a narrow bond distance distribution. This also shows that the radius of the coordinated oxygen atom in these compounds can be assumed to be 1.34 A as proposed for coordinated water, while for ethers such as tetrahydrofuran (thf) it is somewhat larger. Using this atomic radius of oxygen in coordinated water molecules, we have calculated the ionic radii of the lanthanoid(III) ions in four- to nine-coordination and evaluated using the bond lengths reported for homo- and heteroleptic complexes in oxygen donor solvates in solution and solid state. This yields new and revised ionic radii which in some instances are significantly different from the ionic radii normally referenced in the literature, including interpolated values for the elusive promethium(III) ion. PMID:20397652

  17. Metal Ion Sources for Ion Beam Implantation

    SciTech Connect

    Zhao, W. J.; Zhao, Z. Q.; Ren, X. T.

    2008-11-03

    In this paper a theme touched upon the progress of metal ion sources devoted to metal ion beam implantation (MIBI) will be reviewed. A special emphasis will be given to some kinds of ion sources such as ECR, MEVVA and Cluster ion sources. A novel dual hollow cathode metal ion source named DUHOCAMIS will be introduced and discussed.

  18. Structure of salts solution in polar dielectric liquids and electrically induced separation of solvated ions

    NASA Astrophysics Data System (ADS)

    Shamanin, Igor V.; Kazaryan, Mishik A.; Sachkov, Victor I.

    2015-12-01

    The aim of study is to demonstrate that separation of solvated ions in solution of mix of salts under the action of external periodic electric field happens because of around ions there are formed clusters consisting of molecules of solvent and the sizes of such clusters have dimensions ~ 0.1 μm. In investigations the sizes of clusters theoretically were defined and experimentally value of frequency of external electric field which action excites the effect of separation of the solvated ions was defined. Experiments were done in the Technical Physics Chair of the National Research Tomsk Polytechnic University. At theoretical determination of the dimensions of clusters Poisson's equation was solved and was considered that polar molecules of solvent are oriented under the action of electric field of an ion. The chemical composition of samples of solutions was determined by means of the spectrophotometry and he X-ray excited fluorescent radiation analysis method. Theoretical estimates and results of experiments confirmed the assumption that clusters which are formed around ions in solutions have the dimensions ~ 0.1 μm. Results of investigation testify that placing of volume distributed electric charge of ion in dielectric liquid is accompanied by formation of the supramolecular particles, which we called "clusters", linear sizes of which is significantly more than first and second radiuses of solvation (~ 1 Angstrom) and reach size ~ 0.1 μm. At such sizes inertial properties of clusters and their natural frequencies give the chance to operate their movement by means of action of external electric field on solution.

  19. Solvation structures of protons and hydroxide ions in water

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Huang, Congcong; Waluyo, Iradwikanari; Nordlund, Dennis; Weng, Tsu-Chien; Sokaras, Dimosthenis; Weiss, Thomas; Bergmann, Uwe; Pettersson, Lars G. M.; Nilsson, Anders

    2013-04-01

    X-ray Raman spectroscopy (XRS) combined with small-angle x-ray scattering (SAXS) were used to study aqueous solutions of HCl and NaOH. Hydrated structures of H+ and OH- are not simple mirror images of each other. While both ions have been shown to strengthen local hydrogen bonds in the hydration shell as indicated by XRS, SAXS suggests that H+ and OH- have qualitatively different long-range effects. The SAXS structure factor of HCl (aq) closely resembles that of pure water, while NaOH (aq) behaves similar to NaF (aq). We propose that protons only locally enhance hydrogen bonds while hydroxide ions induce tetrahedrality in the overall hydrogen bond network of water.

  20. Absolute single-ion solvation free energy scale in methanol determined by the lithium cluster-continuum approach.

    PubMed

    Pliego, Josefredo R; Miguel, Elizabeth L M

    2013-05-01

    Absolute solvation free energy of the lithium cation in methanol was calculated by the cluster-continuum quasichemical theory of solvation. Clusters with up to five methanol molecules were investigated using X3LYP, MP2, and MP4 methods with DZVP, 6-311+G(2df,2p), TZVPP+diff, and QZVPP+diff basis sets and including the cluster solvation through the PCM and SMD continuum models. Our calculations have determined a value of -118.1 kcal mol(-1) for the solvation free energy of the lithium, in close agreement with a value of -116.6 kcal mol(-1) consistent with the TATB assumption. Using data of solvation and transfer free energy of a pair of ions, electrode potentials and pKa, we have obtained the solvation free energy of 25 ions in methanol. Our analysis leads to a value of -253.6 kcal mol(-1) for the solvation free energy of the proton, which can be compared with the value of -263.5 kcal mol(-1) obtained by Kelly et al. using the cluster pair approximation. Considering that this difference is due to the methanol surface potential, we have estimated that it corresponds to -0.429 V. PMID:23570440

  1. Metal Ions in Unusual Valency States.

    ERIC Educational Resources Information Center

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  2. Collective vibrations of water-solvated hydroxide ions investigated with broadband 2DIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Mandal, Aritra; Ramasesha, Krupa; De Marco, Luigi; Tokmakoff, Andrei

    2014-05-01

    The infrared spectra of aqueous solutions of NaOH and other strong bases exhibit a broad continuum absorption for frequencies between 800 and 3500 cm-1, which is attributed to the strong interactions of the OH- ion with its solvating water molecules. To provide molecular insight into the origin of the broad continuum absorption feature, we have performed ultrafast transient absorption and 2DIR experiments on aqueous NaOH by exciting the O-H stretch vibrations and probing the response from 1350 to 3800 cm-1 using a newly developed sub-70 fs broadband mid-infrared source. These experiments, in conjunction with harmonic vibrational analysis of OH-(H2O)n (n = 17) clusters, reveal that O-H stretch vibrations of aqueous hydroxides arise from coupled vibrations of multiple water molecules solvating the ion. We classify the vibrations of the hydroxide complex by symmetry defined by the relative phase of vibrations of the O-H bonds hydrogen bonded to the ion. Although broad and overlapping spectral features are observed for 3- and 4-coordinate ion complexes, we find a resolvable splitting between asymmetric and symmetric stretch vibrations, and assign the 2850 cm-1 peak infrared spectra of aqueous hydroxides to asymmetric stretch vibrations.

  3. Collective Vibrations of Water-Solvated Hydroxide Ions Investigated with Broadband 2DIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mandal, Aritra; Ramasesha, Krupa; De Marco, Luigi; Thämer, Martin; Tokmakoff, Andrei

    2014-06-01

    The infrared spectra of aqueous solutions of NaOH and other strong bases exhibit a broad continuum absorption for frequencies between 800-3500 cm-1, which is attributed to the strong interactions of the hydroxide ion with its solvating water molecules. To provide molecular insight into the origin of the broad continuum absorption feature, we have performed ultrafast pump-probe and 2DIR experiments on aqueous NaOH by exciting the O—H stretch vibrations and probing the response from 1350-3800 cm-1 using a newly developed sub-70 fs broadband mid-infrared source. These experiments, in conjunction with harmonic vibrational analysis of OH-(H2O)n clusters, reveal that O—H stretch vibrations of aqueous hydroxides arise from coupled vibrations of multiple water molecules solvating the ion. We classify the vibrations of the hydroxide complex by symmetry defined by the relative phase of vibrations of the O—H bonds hydrogen bonded to the ion. Although spectral broadening does not allow us to distinguish 3- and 4-coordinate ion complexes, we find a resolvable splitting between asymmetric and symmetric stretch vibrations, and assign the 2850 cm-1 peak infrared spectra of aqueous hydroxides to asymmetric stretch vibrations.

  4. Iron and cobalt Fischer-Tropsch catalysts prepared by the solvated metal-atom technique

    SciTech Connect

    Meier, P.F.; Pennella, F.; Klabunde, K.J.; Imizu, Y.

    1986-10-01

    It is reasonable that at low metal loadings a more active catalyst would result from deposition on a support of a metal in the reduced, metallic state. Deposition of less than 5 wt% cobalt on alumina in the form of cobalt carbonyl produced catalysts of good activity. The Solvated Metal Atom Deposition Technique (SMAD) provides a method of catalyst preparation for which the deposition of metallic catalysts on a support has been demonstrated. This note reports a comparative study of the Fischer-Tropsch synthesis activity of iron and cobalt catalysts prepared by this technique and supported on silica with less than 5 wt% of the metal, and of analogous catalysts prepared by conventional impregnation techniques. 16 references.

  5. Specific ion adsorption at the air/water interface: The role of hydrophobic solvation

    NASA Astrophysics Data System (ADS)

    Horinek, Dominik; Herz, Alexander; Vrbka, Lubos; Sedlmeier, Felix; Mamatkulov, Shavkat I.; Netz, Roland R.

    2009-09-01

    Classical force fields for molecular simulations of aqueous electrolytes are still controversial. We study alkali and halide ions at the air/water interface using novel non-polarizable force fields that were optimized based on bulk thermodynamics. In qualitative agreement with polarizable force-field simulations, ion repulsion from the interface decreases with increasing ion size. Iodide is even enhanced at the interface, which is rationalized by hydrophobic solvation at the interface, but exhibits a smaller surface propensity than in previous polarizable simulations. Surprisingly, lithium is less repelled than other cations because of its tightly bound hydration shell. A generalized Poisson-Boltzmann approach that includes ionic potentials of mean force from simulation almost quantitatively matches experimental interfacial tension increments for 1 molar sodium halides and alkali chlorides. We conclude that properly optimized non-polarizable force fields are transferable to interfacial environments and hold the potential for unravelling ion-specific effects even in biological situations involving peptidic surfaces.

  6. A systematic study of chloride ion solvation in water using van der Waals inclusive hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Santra, Biswajit; DiStasio, Robert A., Jr.; Swartz, Charles W.; Klein, Michael L.; Wu, Xifan

    2015-09-01

    In this work, the solvation and electronic structure of the aqueous chloride ion solution was investigated using density functional theory (DFT) based ab initio molecular dynamics (AIMD). From an analysis of radial distribution functions, coordination numbers, and solvation structures, we found that exact exchange (Exx) and non-local van der Waals (vdW) interactions effectively weaken the interactions between the Cl- ion and the first solvation shell. With a Cl-O coordination number in excellent agreement with experiment, we found that most configurations generated with vdW-inclusive hybrid DFT exhibit sixfold coordinated distorted trigonal prism structures, which is indicative of a significantly disordered first solvation shell. By performing a series of band structure calculations on configurations generated from AIMD simulations with varying DFT potentials, we found that the solvated ion orbital energy levels (unlike the band structure of liquid water) strongly depend on the underlying molecular structures. In addition, these orbital energy levels were also significantly affected by the DFT functional employed for the electronic structure; as the fraction of Exx was increased, the gap between the highest occupied molecular orbital of Cl- and the valence band maximum of liquid water steadily increased towards the experimental value.

  7. Simulated Solvation of Organic Ions II: Study of Linear Alkylated Carboxylate Ions in Water Nanodrops and in Liquid Water. Propensity for Air/Water Interface and Convergence to Bulk Solvation Properties.

    PubMed

    Houriez, Céline; Meot-Ner Mautner, Michael; Masella, Michel

    2015-09-10

    We investigated the solvation of carboxylate ions from formate to hexanoate, in droplets of 50 to 1000 water molecules and neat water, by computations using standard molecular dynamics and sophisticated polarizable models. The carboxylate ions from methanoate to hexanoate show strong propensity for the air/water interface in small droplets. Only the ions larger than propanoate retain propensity for the interface in larger droplets, where their enthalpic stabilization by ion/water dispersion is reduced there by 3 kcal mol(-1) per CH2 group. This is compensated by entropy effects over +3.3 cal mol(-1) K(-1) per CH2 group. On the surface, the anionic headgroups are strongly oriented toward the aqueous core, while the hydrophobic alkyl chains are repelled into air and lose their structure-making effects. These results reproduce the structure-making effects of alkyl groups in solution, and suggest that the hydrocarbon chains of ionic headgroups and alkyl substituents solvate independently. Extrapolation to bulk solution using standard extrapolation schemes yields absolute carboxylate solvation energies. The results for formate and acetate yield a proton solvation enthalpy of about 270 kcal mol(-1), close to the experiment-based value. The largest carboxylate ions yield a value smaller by about 10 kcal mol(-1), which requires studies in much larger droplets. PMID:26287943

  8. Solvation structure around the Li(+) ion in succinonitrile-lithium salt plastic crystalline electrolytes.

    PubMed

    Shen, Yuneng; Deng, Gang-Hua; Ge, Chuanqi; Tian, Yuhuan; Wu, Guorong; Yang, Xueming; Zheng, Junrong; Yuan, Kaijun

    2016-06-01

    Herein, we discuss the study of solvation dynamics of lithium-succinonitrile (SN) plastic crystalline electrolytes by ultrafast vibrational spectroscopy. The infrared absorption spectra indicated that the CN stretch of the Li(+) bound and unbound succinonitrile molecules in a same solution have distinct vibrational frequencies (2276 cm(-1)vs. 2253 cm(-1)). The frequency difference allowed us to measure the rotation decay times of solvent molecules bound and unbound to Li(+) ion. The Li(+) coordination number of the Li(+)-SN complex was found to be 2 in the plastic crystal phase (22 °C) and 2.5-3 in the liquid phase (80 °C), which is independent of the concentration (from 0.05 mol kg(-1) to 2 mol kg(-1)). The solvation structures along with DFT calculations of the Li(+)-SN complex have been discussed. In addition, the dissociation percentage of lithium salt was also determined. In 0.5 mol kg(-1) LiBF4-SN solutions at 80 °C, 60% ± 10% of the salt dissociates into Li(+), which is bound by 2 or 3 solvent molecules. In the 0.5 mol kg(-1) LiClO4-SN solutions at 80 °C, the salt dissociation ratio can be up to 90% ± 10%. PMID:27189266

  9. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters

    SciTech Connect

    Marsh, Brett M.; Voss, Jonathan M.; Garand, Etienne

    2015-11-28

    A new experimental approach is presented in which two separate cryogenic ion traps are used to reproducibly form weakly bound solvent clusters around electrosprayed ions and messenger-tag them for single-photon infrared photodissociation spectroscopy. This approach thus enables the vibrational characterization of ionic clusters comprised of a solvent network around large and non-volatile ions. We demonstrate the capabilities of the instrument by clustering water, methanol, and acetone around a protonated glycylglycine peptide. For water, cluster sizes with greater than twenty solvent molecules around a single ion are readily formed. We further demonstrate that similar water clusters can be formed around ions having a shielded charge center or those that do not readily form hydrogen bonds. Finally, infrared photodissociation spectra of D{sub 2}-tagged GlyGlyH{sup +} ⋅ (H{sub 2}O){sub 1−4} are presented. They display well-resolved spectral features and comparisons with calculations reveal detailed information on the solvation structures of this prototypical peptide.

  10. Solvation Effects on Structure and Charge Distribution in Anionic Clusters

    NASA Astrophysics Data System (ADS)

    Weber, J. Mathias

    2015-03-01

    The interaction of ions with solvent molecules modifies the properties of both solvent and solute. Solvation generally stabilizes compact charge distributions compared to more diffuse ones. In the most extreme cases, solvation will alter the very composition of the ion itself. We use infrared photodissociation spectroscopy of mass-selected ions to probe how solvation affects the structures and charge distributions of metal-CO2 cluster anions. We gratefully acknowledge the National Science Foundation for funding through Grant CHE-0845618 (for graduate student support) and for instrumentation funding through Grant PHY-1125844.

  11. In situ/operando soft x-ray spectroscopy characterization of ion solvation and catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Sheng; Guo, Jinghua

    Many important systems especially in energy-related regime are based on the complexity of material architecture, chemistry and interactions among constituents within. To understand and thus ultimately control the varying applications calls for in-situ/operando characterization tools. We will present the recent development of the in-situ/operando soft X-ray spectroscopic in the studies of catalytic and alkali ion solvation under bias condition, and reveal how to overcome the challenge that soft X-rays cannot easily peek into the high-pressure catalytic cells or liquid electrochemical cells. Also the different feasible detection approaches can provide surface and bulk sensitivity experimentally from those in-situ cells. The unique design of in-situ/operando soft X-ray spectroscopy instrumentation and fabrication principle with examples in Ca, Na, Mg based solutions at ambient pressure/temperature and high temperature (~250°C) gas catalysis will be shown.

  12. Electron Capture Dissociation of Trivalent Metal Ion-Peptide Complexes

    NASA Astrophysics Data System (ADS)

    Flick, Tawnya G.; Donald, William A.; Williams, Evan R.

    2013-02-01

    With electrospray ionization from aqueous solutions, trivalent metal ions readily adduct to small peptides resulting in formation of predominantly (peptide + MT - H)2+, where MT = La, Tm, Lu, Sm, Ho, Yb, Pm, Tb, or Eu, for peptides with molecular weights below ~1000 Da, and predominantly (peptide + MT)3+ for larger peptides. ECD of (peptide + MT - H)2+ results in extensive fragmentation from which nearly complete sequence information can be obtained, even for peptides for which only singly protonated ions are formed in the absence of the metal ions. ECD of these doubly charged complexes containing MT results in significantly higher electron capture efficiency and sequence coverage than peptide-divalent metal ion complexes that have the same net charge. Formation of salt-bridge structures in which the metal ion coordinates to a carboxylate group are favored even for (peptide + MT)3+. ECD of these latter complexes for large peptides results in electron capture by the protonation site located remotely from the metal ion and predominantly c/ z fragments for all metals, except Eu3+, which undergoes a one electron reduction and only loss of small neutral molecules and b/ y fragments are formed. These results indicate that solvation of the metal ion in these complexes is extensive, which results in the electrochemical properties of these metal ions being similar in both the peptide environment and in bulk water.

  13. Mode coupling theory analysis of electrolyte solutions: Time dependent diffusion, intermediate scattering function, and ion solvation dynamics

    NASA Astrophysics Data System (ADS)

    Roy, Susmita; Yashonath, Subramanian; Bagchi, Biman

    2015-03-01

    A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times—the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies.

  14. Photoelectrochemical detection of metal ions.

    PubMed

    Zhao, Wei-Wei; Xu, Jing-Juan; Chen, Hong-Yuan

    2016-07-21

    Depending on the situation, metal ions may either play beneficial roles or be harmful to human health and ecosystems. Sensitive and accurate detection of metal ions is thus a critical issue in the field of analytical sciences and great efforts have been devoted to the development of various metal ion sensors. Photoelectrochemical (PEC) detection is an emerging technique for the bio/chemical detection of metal ions, and features a fast response, low cost and high sensitivity. Using representative examples, this review will first introduce the fundamentals and summarize recent progress in the PEC detection of metal ions. In addition, interesting strategies for the design of particular PEC metal ion sensors are discussed. Challenges and opportunities in this field are also presented. PMID:27297834

  15. Readily Made Solvated Electrons

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Guerra-Millan, Francisco J.; Hugerat, Muhamad; Vazquez-Olavarrieta, Jorge L.; Basheer, Ahmad; Abu-Much, Riam

    2011-01-01

    The existence of solvated electrons has been known for a long time. Key methods for their production (i.e., photoionization of reducing ions, water radiolysis, and the reaction between H[middle dot] and OH[superscript -]) are unsuitable for most school laboratories. We describe a simple experiment to produce liquid ammonia and solvated electrons…

  16. Dissecting ion-specific dielectric spectra of sodium-halide solutions into solvation water and ionic contributions

    SciTech Connect

    Rinne, Klaus F.; Netz, Roland R.; Gekle, Stephan

    2014-12-07

    Using extensive equilibrium molecular dynamics simulations we determine the dielectric spectra of aqueous solutions of NaF, NaCl, NaBr, and NaI. The ion-specific and concentration-dependent shifts of the static dielectric constants and the dielectric relaxation times match experimental results very well, which serves as a validation of the classical and non-polarizable ionic force fields used. The purely ionic contribution to the dielectric response is negligible, but determines the conductivity of the salt solutions. The ion-water cross correlation contribution is negative and reduces the total dielectric response by about 5%-10% for 1 M solutions. The dominating water dielectric response is decomposed into different water solvation shells and ion-pair configurations, by this the spectral blue shift and the dielectric decrement of salt solutions with increasing salt concentration is demonstrated to be primarily caused by first-solvation shell water. With rising salt concentration the simulated spectra show more pronounced deviations from a single-Debye form and can be well described by a Cole-Cole fit, in quantitative agreement with experiments. Our spectral decomposition into ionic and different water solvation shell contributions does not render the individual contributions more Debye-like, this suggests the non-Debye-like character of the dielectric spectra of salt solutions not to be due to the superposition of different elementary relaxation processes with different relaxation times. Rather, the non-Debye-like character is likely to be an inherent spectral signature of solvation water around ions.

  17. Computational Investigation of the First Solvation Shell Structure of Interfacial and Bulk Aqueous Chloride and Iodide Ions

    SciTech Connect

    Wick, Collin D.; Xantheas, Sotiris S.

    2009-04-02

    Molecular dynamics simulations with polarizable interaction potentials were carried out to understand the solvation structure of chloride and iodide anions in bulk and interfacial water, showing qualitative similarities between the first solvation shell structures at the interface and bulk. For the more polarizable iodide, its solvation structure was more anisotropic than chloride, and this trend persisted at both the interface and in the bulk. Furthermore it was found that the first few clusters of water with iodide were quite different than the corresponding ones with chloride, with the former exhibiting more anisotropic configurations than the latter. The anisotropy of the solvation structure correlated with polarizability, but it was also found to inversely correlate with anion size. When polarizability was reduced to near zero, a very small anisotropy in the water solvation structure around the ion still persisted. Polarizable anions were found to have on average an induced dipole in the bulk that was significantly larger than zero. This induced dipole resulted in the water hydrogen atoms having stronger interactions with the anions on one side of them, in which the dipole was pointing at. In contrast, the other side of the anions, in which the induced dipole was pointing away from, had fewer water molecules present and, for the case of iodide, was rather devoid of water molecules all together at both the interface and in the bulk. This region formed a small cavity in the bulk, while at the air-water interface was simply part of the air interface. In the bulk, this small cavity may be viewed as somewhat hydrophobic, and the need for the extinction of this cavity may be one of the major driving forces for polarizable anions to reside at the air-water interface. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  18. Complexation-induced supramolecular assembly drives metal-ion extraction.

    PubMed

    Ellis, Ross J; Meridiano, Yannick; Muller, Julie; Berthon, Laurence; Guilbaud, Philippe; Zorz, Nicole; Antonio, Mark R; Demars, Thomas; Zemb, Thomas

    2014-09-26

    Combining experiment with theory reveals the role of self-assembly and complexation in metal-ion transfer through the water-oil interface. The coordinating metal salt Eu(NO3)3 was extracted from water into oil by a lipophilic neutral amphiphile. Molecular dynamics simulations were coupled to experimental spectroscopic and X-ray scattering techniques to investigate how local coordination interactions between the metal ion and ligands in the organic phase combine with long-range interactions to produce spontaneous changes in the solvent microstructure. Extraction of the Eu(3+)-3(NO3(-)) ion pairs involves incorporation of the "hard" metal complex into the core of "soft" aggregates. This seeds the formation of reverse micelles that draw the water and "free" amphiphile into nanoscale hydrophilic domains. The reverse micelles interact through attractive van der Waals interactions and coalesce into rod-shaped polynuclear Eu(III) -containing aggregates with metal centers bridged by nitrate. These preorganized hydrophilic domains, containing high densities of O-donor ligands and anions, provide improved Eu(III) solvation environments that help drive interfacial transfer, as is reflected by the increasing Eu(III) partitioning ratios (oil/aqueous) despite the organic phase approaching saturation. For the first time, this multiscale approach links metal-ion coordination with nanoscale structure to reveal the free-energy balance that drives the phase transfer of neutral metal salts. PMID:25169678

  19. Absolute solvation free energy of Li{sup +} and Na{sup +} ions in dimethyl sulfoxide solution: A theoretical ab initio and cluster-continuum model study

    SciTech Connect

    Westphal, Eduard; Pliego, Josefredo R. Jr.

    2005-08-15

    The solvation of the lithium and sodium ions in dimethyl sulfoxide solution was theoretically investigated using ab initio calculations coupled with the hybrid cluster-continuum model, a quasichemical theory of solvation. We have investigated clusters of ions with up to five dimethyl sulfoxide (DMSO) molecules, and the bulk solvent was described by a dielectric continuum model. Our results show that the lithium and sodium ions have four and five DMSO molecules into the first coordination shell, and the calculated solvation free energies are -135.5 and -108.6 kcal mol{sup -1}, respectively. These data suggest a solvation free energy value of -273.2 kcal mol{sup -1} for the proton in dimethyl sulfoxide solution, a value that is more negative than the present uncertain experimental value. This and previous studies on the solvation of ions in water solution indicate that the tetraphenylarsonium tetraphenylborate assumption is flawed and the absolute value of the free energy of transfer of ions from water to DMSO solution is higher than the present experimental values.

  20. Immobilized metal ion affinity chromatography.

    PubMed

    Yip, T T; Hutchens, T W

    1992-01-01

    Immobilized metal ion affinity chromatography (IMAC) (1,2) is also referred to as metal chelate chromatography, metal ion interaction chromatography, and ligand-exchange chromatography. We view this affinity separation technique as an intermediate between highly specific, high-affinity bioaffinity separation methods, and wider spectrum, low-specificity adsorption methods, such as ion exchange. The IMAC stationary phases are designed to chelate certain metal ions that have selectivity for specific groups (e.g., His residues) in peptides (e.g., 3-7) and on protein surfaces (8-13). The number of stationary phases that can be synthesized for efficient chelation of metal ions is unlimited, but the critical consideration is that there must be enough exposure of the metal ion to interact with the proteins, preferably in a biospecific manner. Several examples are presented in Fig. 1. The challenge to produce new immobilized chelating groups, including protein surface metal-binding domains (14,15) is being explored continuously. Table 1 presents a list of published procedures for the synthesis and use of stationary phases with immobilized chelating groups. This is by no means exhaustive, and is intended only to give an idea of the scope and versatility of IMAC. Fig. 1 Schematic illustration of several types of immobilized metal-chelating groups, including, iminodiacetate (IDA), tris(carboxymethyl) ethylenediamine (TED), and the metal-binding peptides (GHHPH)(n)G (where n = 1,2,3, and 5) (14,15). Table 1 Immobilized Chelating Groups and Metal Ions Used for Immobilized Metal Ion Affinity Chromatography Chelating group Suitable metal ions Reference Commercial source Immodiacetate Transitional1,2 Pharmacia LKB Pierce Sigma Boehringer Mannheim TosoHaas 2-Hydroxy-3[N-(2- pyrtdylmethyl) glycme]propyl Transitional3 Not available ?-Alky1 mtrilo triacetic acid Transitional4 Not available Carboxymethylated asparhc acid Ca(II)13 Not available Tris (carboxy- methyl) ethylene Diamme

  1. Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980

    DOE R&D Accomplishments Database

    Cram, D. J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  2. Surface reactions, solvation and adsorption phenomena of electrolytic adlayers on metal surfaces

    NASA Astrophysics Data System (ADS)

    Lim, Seng Woon

    Fundamental understandings of electrolytic adlayers are important to areas like: batteries, ultra-capacitors, fuel cells, corrosion and atmospheric chemistry. In this dissertation, interactions of electrolytic adlayers are systematically examined using ultra-high vacuum surface analytical techniques. In particular, interactions of water with constituents of electrolytic adlayers are closely followed. On clean Ag(110), water desorbs at 165 K and adsorbs as crystalline ice at 145 K. During continuous adsorption, water initially adsorbs with its molecular plane parallel to the surface, and then gradually tilts towards the surface normal as more water adsorbs. A layer-by-layer adsorption model is proposed for crystalline ice growth on Ag(110). When water is separately coadsorbed with hydroxyl and carbonate, water is stabilized to temperatures as high as 220 and 300 K, respectively. Both anions exhibit great surface solvation. An extended bilayer model is proposed for OH interactions with water, and isotopic exchange experiments have illustrated that (1) the extent of proton mobility in the adlayers, and (2) the migration of hydroxide ion into the water-ice multilayer. On Pt(111), mutual displacement of water and methanol occurs in electrolytic adlayers. Adsorbed methanol monolayer is destabilized when it is co-adsorbed with hydrogen. However, methanol monolayer can be restabilized when water is introduced to the adlayer system. With addition of excess water, destabilization induced by hydrogen can be completely removed and methanol behaves as if it interacts only with water. Interactions of Ru-modified Pt(111) with electrolytic adlayer has been studied. Ru adlayers were deposited with a low power electron beam heated evaporation source, and Ru can be probed with molecular nitrogen. Optimum activity of Ru/Pt(111) surfaces occurs when they are thermally activated to 573 K. Water can be stabilized to temperatures as high as 250 K on these surfaces, and partial

  3. Electronic Structure Insights into the Solvation of Magnesium Ions with Cyclic and Acyclic Carbonates.

    PubMed

    Shakourian-Fard, Mehdi; Kamath, Ganesh; Sankaranarayanan, Subramanian K R S

    2015-12-01

    A computational framework to rank the solvation behavior of Mg(2+) in carbonates by using molecular dynamics simulations and density functional theory is reported. Based on the binding energies and enthalpies of solvation calculated at the M06-2X/6-311++G(d,p) level of theory and the free energies of solvation from ABF-MD simulations, we find that ethylene carbonate (EC) and the ethylene carbonate:propylene carbonate (EC:PC) binary mixture are the best carbonate solvents for interacting with Mg(2+) . Natural bond orbital and quantum theory of atoms in molecules analyses support the thermochemistry calculations with the highest values of charge transfer, perturbative stabilization energies, electron densities, and Wiberg bond indices being observed in the Mg(2+) (EC) and Mg(2+) (EC:PC) complexes. The plots of the noncovalent interactions indicate that those responsible for the formation of Mg(2+) carbonate complexes are strong-to-weak attractive interactions, depending on the regions that are interacting. Finally, density of state calculations indicate that the interactions between Mg(2+) and the carbonate solvents affects the HOMO and LUMO states of all carbonate solvents and moves them to more negative energy values. PMID:26395020

  4. Hofmeister Ion-Induced Changes in Water Structure Correlate with Changes in Solvation of an Aggregated Protein Complex.

    PubMed

    Light, Taylor P; Corbett, Karen M; Metrick, Michael A; MacDonald, Gina

    2016-02-01

    RecA is a naturally aggregating Escherichia coli protein that catalyzes the strand exchange reaction utilized in DNA repair. Previous studies have shown that the presence of salts influence RecA activity, aggregation, and stability and that salts stabilize RecA in an inverse-anionic Hofmeister series. Here we utilized attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and circular dichroism (CD) to investigate how various Hofmeister salts alter the water structure and RecA solvation and aggregation. Spectroscopic studies performed in water and deuterium oxide suggest that salts alter water O-(1)H and O-(2)H stretch and bend vibrations as well as protein amide I (or I') and amide II (or II') vibrations. Anions have a much larger influence on water vibrations than cations. Water studies also show increased water-water and/or water-ion interactions in the presence of strongly hydrated SO4(2-) salts and evidence for decreased interactions with weakly hydrated Cl(-) and ClO4(-) salts. Salt-water difference infrared spectra show that kosmotropic salts are more hydrated than chaotropic salts. Interestingly, this is the opposite trend to the changes in protein solvation. Infrared spectra of RecA show that vibrations associated with protein desolvation were observed in the presence of SO4(2-) salts. Conversely, vibrations associated with protein solvation were observed in the presence of Cl(-) and ClO4(-) salts. Difference infrared studies on the dehydration of model proteins aided in identifying changes in RecA-solvent interactions. This study provides evidence that salt-induced changes in water vibrations correlate to changes in protein solvent interactions and thermal stability. PMID:26760222

  5. Ion beam modification of metals

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1990-04-01

    Energetic ions beams may be used in various ways to modify and so improve the tribological properties of metals. These methods include: — ion implantation of selected additive species; — ion beam mixing of thin deposited coatings; — ion-beam-assisted deposition of thicker overlay coatings. The first of these techniques has been widely used to modify the electronic properties of semiconductors, but has since been extended for the treatment of all classes of material. Tool steels can be strengthened by the ion implantation of nitrogen or titanium, to produce fine dispersions of hard second-phase precipitates. Solid solution strengthening, by combinations of substitutional and interstitial species, such as yttrium and nitrogen, has also been successful. Both ion beam mixing (IBM) and ion-beam-assisted deposition (IBAD) use a combination of coating and ion bombardment. In the first case, the objective is to intermix the coating and substrate by the aid of radiation-enhanced diffusion. In the latter case, the coating is densified and modified during deposition and the process can be continued in order to build up overlay coatings several μm in thickness. The surface can then be tailored, for instance to provide a hard and adherent ceramic such as silicon nitride, boron nitride or titanium nitride. It is an advantage that all the above processes can be applied at relatively low temperatures, below about 200° C, thereby avoiding distortion of precision components. Ion implantation is also being successfully applied for the reduction of corrosion, especially at high temperatures or in the atmosphere and to explore the mechanisms of oxidation. Ion-assisted coatings, being compact and adherent, provide a more substantial protection against corrosion: silicon nitride and boron nitride are potentially useful in this respect. Examples will be given of the successful application of these methods for the surface modification of metals and alloys, and developments in the

  6. Metal ion-containing epoxies

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K.

    1982-01-01

    A variety of metallic and organometallic complexes to be used as potential additives for an epoxy used by the aerospace industry as a composite matrix resin were investigated. A total of 9 complexes were screened for compatibility and for their ability to accelerate or inhibit the cure of a highly crosslinkable epoxy resin. Methods for combining the metallic complexes with the resin were investigated, gel times recorded, and cure exotherms studied by differential scanning calorimetry. Glass transition temperatures of cured metal ion containing epoxy castings were determined by thermomechanical analysis. Thermal stabilities of the castings were determined by thermogravimetric analysis. Mechanical strength and stiffness of these doped epoxies were also measured.

  7. Final Progress Report for Linking Ion Solvation and Lithium Battery Electrolyte Properties

    SciTech Connect

    Henderson, Wesley

    2014-08-29

    The research objective of this proposal was to provide a detailed analysis of how solvent and anion structure govern the solvation state of Li+ cations in solvent-LiX mixtures and how this, in turn, dictates the electrolyte physicochemical and electrochemical properties which govern (in part) battery performance. Lithium battery electrolytes remain a poorly understood and hardly studied topic relative to the research devoted to battery electrodes. This is due to the fact that it is the electrodes which determine the energy (capacity) of the battery. The electrolyte, however, plays a crucial role in the practical energy density, power, low and/or high temperature performance, lifetime, safety, etc. which is achievable. The development within this project of a "looking glass" into the molecular interactions (i.e., solution structure) in bulk electrolytes through a synergistic experimental approach involving three research thrusts complements work by other researchers to optimize multi-solvent electrolytes and efforts to understand/control the electrode-electrolyte interfaces, thereby enabling the rational design of electrolytes for a wide variety of battery chemistries and applications (electrolytes-on-demand). The three research thrusts pursued include: (1) conduction of an in-depth analysis of the thermal phase behavior of diverse solvent-LiX mixtures, (2) exploration of the ionic association/solvate formation behavior of select LiX salts with a wide variety of solvents, and (3) linking structure to properties-determination of electrolyte physicochemical and electrochemical properties for comparison with the ionic association and phase behavior.

  8. Structure and dynamics of the hydrated magnesium ion and of the solvated magnesium carbonates: insights from first principles simulations.

    PubMed

    Di Tommaso, Devis; de Leeuw, Nora H

    2010-01-28

    We report first principles molecular dynamics simulations based on the density functional theory and the Car-Parrinello method to study the structures and dynamics of the hydrated Mg(2+) ion and of the solvated MgHCO(3)(+) and MgCO(3) complexes in aqueous solution. According to these simulations, the first hydration shell of the hydrated magnesium ion consists of six water molecules, whereas in the solvated magnesium bicarbonate and magnesium carbonate complexes the Mg(2+) is mostly five-coordinated, which indicates that when coordinated to magnesium the HCO(3)(-) and CO(3)(2-) anions reduce its the coordination sphere. Our simulations show that the structures of the most stable monomers of magnesium bi-carbonate and magnesium carbonate in solution are Mg[eta(1)-HCO(3)](H(2)O)(4)(+) and Mg[eta(1)-CO(3)](H(2)O)(4), i.e. the preferred hydration number is four, while the (bi-)carbonate is coordinated to the magnesium in a monodentate mode. The analysis of the exchange processes of the water molecules in the first and second hydration shell of Mg(2+) shows that the HCO(3)(-) or CO(3)(2-) ligands affect the dynamics of the magnesium coordination spheres by making its hydration shell more "labile". Furthermore, molecular dynamics simulations of the non-associated Mg(2+)/Cl(-) pair in water suggest that, despite negligible differences in the coordination spheres of Mg(2+), the chloride anion has a significant influence on the water exchange rates in the second hydration shell of Mg(2+). PMID:20066374

  9. Olanzapine solvates.

    PubMed

    Cavallari, Cristina; Santos, Beatriz Pérez-Artacho; Fini, Adamo

    2013-11-01

    Olanzapine was crystallized from 12 organic solvents alone or in mixture, by cooling in the freezer, by slow evaporation of the solvent, or by suspending olanzapine powder for some time in the solvent. All the samples thus obtained were examined by thermal analysis (differential scanning calorimetry-DSC and thermogravimetry-TG) to certify the formation of a solvate, the presence of polymorph (form 1 or 2) in the desolvated olanzapine, comparing the different profile of the thermograms, and to calculate the stoichiometry of the possible solvate. According to the DSC thermogram, the solvents can be divided into four classes: those that do not form solvates and leave olanzapine form 1 (ethyl acetate, toluene, diethyl ether, and acetone); those that form solvate and leave form 1 of olanzapine after desolvation (methanol, 1- and 2-propanol); those that after desolvation of the solvate show a polymorph transition in the thermogram indicating the presence of form 2 of olanzapine (ethanol); other solvents (tetrahydrofuran, chloroform, acetonitrile) give solvate thermograms, where this last thermal trace is only poorly evident. With few exceptions, each solvent forms solvate both when pure and in mixture (10%, v/v, in ethyl acetate). Methanol monosolvate displays complex thermogram and thermogravimetric desolvation profiles, depending on the crystallization experimental conditions, used to prepare the solvates. Dichloromethane solvate was found by X-ray diffraction analysis to be amorphous and, on heating during DSC analysis, allowed the crystallization of both form 1 and 2, with different weight ratio, according to the experimental conditions of the solvate preparation. PMID:23963777

  10. Solvation dynamics of a radical ion pair in micro-heterogeneous binary solvents: a semi-quantitative study utilizing MARY line-broadening experiments.

    PubMed

    Pal, Kunal; Grampp, Günter; Kattnig, Daniel R

    2013-10-01

    This work aims at elucidating the mechanism of solvation of a radical ion pair (RIP) in a micro-heterogeneous binary solvent mixture using magnetically affected reaction yield (MARY) spectroscopy. For the exciplex-forming 9,10-dimethylanthracene/N,N-dimethylaniline system a comparative, composition-dependent MARY line-broadening study is undertaken in a heterogeneous (toluene/dimethylsulfoxide) and a quasi-homogenous (propyl acetate/butyronitrile) solvent mixture. The half-saturation field extrapolated to zero-quencher concentration, B(1/2), and the self-exchange rate constants are analyzed in the light of solvent dynamical properties of the mixtures and a dielectric continuum solvation model. The dependence of B(1/2) on the solvent composition is explained by cluster formation giving rise to shortened RIP lifetimes. The results are in qualitative agreement with the continuum solvation model suggesting that it could serve as a theoretical basis for quantitative modeling. PMID:23939826

  11. Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations.

    PubMed

    Qiao, Yu; Tu, Bin; Lu, Benzhuo

    2014-05-01

    Ionic finite size can impose considerable effects to both the equilibrium and non-equilibrium properties of a solvated molecular system, such as the solvation energy, ionic concentration, and transport in a channel. As discussed in our former work [B. Lu and Y. C. Zhou, Biophys. J. 100, 2475 (2011)], a class of size-modified Poisson-Boltzmann (PB)/Poisson-Nernst-Planck (PNP) models can be uniformly studied through the general nonuniform size-modified PNP (SMPNP) equations deduced from the extended free energy functional of Borukhov et al. [I. Borukhov, D. Andelman, and H. Orland, Phys. Rev. Lett. 79, 435 (1997)] This work focuses on the nonuniform size effects to molecular solvation energy and to ion current across a channel for real biomolecular systems. The main contributions are: (1) we prove that for solvation energy calculation with nonuniform size effects (through equilibrium SMPNP simulation), there exists a simplified approximation formulation which is the same as the widely used one in PB community. This approximate form avoids integration over the whole domain and makes energy calculations convenient. (2) Numerical calculations show that ionic size effects tend to negate the solvation effects, which indicates that a higher molecular solvation energy (lower absolute value) is to be predicted when ionic size effects are considered. For both calculations on a protein and a DNA fragment systems in a 0.5M 1:1 ionic solution, a difference about 10 kcal/mol in solvation energies is found between the PB and the SMPNP predictions. Moreover, it is observed that the solvation energy decreases as ionic strength increases, which behavior is similar as those predicted by the traditional PB equation (without size effect) and by the uniform size-modified Poisson-Boltzmann equation. (3) Nonequilibrium SMPNP simulations of ion permeation through a gramicidin A channel show that the ionic size effects lead to reduced ion current inside the channel compared with the results

  12. Ionic size effects to molecular solvation energy and to ion current across a channel resulted from the nonuniform size-modified PNP equations

    NASA Astrophysics Data System (ADS)

    Qiao, Yu; Tu, Bin; Lu, Benzhuo

    2014-05-01

    Ionic finite size can impose considerable effects to both the equilibrium and non-equilibrium properties of a solvated molecular system, such as the solvation energy, ionic concentration, and transport in a channel. As discussed in our former work [B. Lu and Y. C. Zhou, Biophys. J. 100, 2475 (2011)], a class of size-modified Poisson-Boltzmann (PB)/Poisson-Nernst-Planck (PNP) models can be uniformly studied through the general nonuniform size-modified PNP (SMPNP) equations deduced from the extended free energy functional of Borukhov et al. [I. Borukhov, D. Andelman, and H. Orland, Phys. Rev. Lett. 79, 435 (1997)] This work focuses on the nonuniform size effects to molecular solvation energy and to ion current across a channel for real biomolecular systems. The main contributions are: (1) we prove that for solvation energy calculation with nonuniform size effects (through equilibrium SMPNP simulation), there exists a simplified approximation formulation which is the same as the widely used one in PB community. This approximate form avoids integration over the whole domain and makes energy calculations convenient. (2) Numerical calculations show that ionic size effects tend to negate the solvation effects, which indicates that a higher molecular solvation energy (lower absolute value) is to be predicted when ionic size effects are considered. For both calculations on a protein and a DNA fragment systems in a 0.5M 1:1 ionic solution, a difference about 10 kcal/mol in solvation energies is found between the PB and the SMPNP predictions. Moreover, it is observed that the solvation energy decreases as ionic strength increases, which behavior is similar as those predicted by the traditional PB equation (without size effect) and by the uniform size-modified Poisson-Boltzmann equation. (3) Nonequilibrium SMPNP simulations of ion permeation through a gramicidin A channel show that the ionic size effects lead to reduced ion current inside the channel compared with the results

  13. Mechanistic Enzyme Models: Pyridoxal and Metal Ions.

    ERIC Educational Resources Information Center

    Hamilton, S. E.; And Others

    1984-01-01

    Background information, procedures, and results are presented for experiments on the pyridoxal/metal ion model system. These experiments illustrate catalysis through Schiff's base formation between aldehydes/ketones and primary amines, catalysis by metal ions, and the predictable manner in which metal ions inhibit or catalyze reactions. (JN)

  14. Reversible photodeposition and dissolution of metal ions

    DOEpatents

    Foster, Nancy S.; Koval, Carl A.; Noble, Richard D.

    1994-01-01

    A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

  15. The solvation structure of Mg ions in dichloro complex solutions from first-principles molecular dynamics and simulated X-ray absorption spectra.

    PubMed

    Wan, Liwen F; Prendergast, David

    2014-10-15

    The knowledge of Mg solvation structure in the electrolyte is requisite to understand the transport behavior of Mg ions and their dissolution/deposition mechanism at electrolyte/electrode interfaces. In the first established rechargeable Mg-ion battery system [D. Aurbach et al. Nature 2000, 407, 724], the electrolyte is of the dichloro complex (DCC) solution family, Mg(AlCl2BuEt)2/THF, resulting from the reaction of Bu2Mg and EtAlCl2 with a molar ratio of 1:2. There is disagreement in the literature regarding the exact solvation structure of Mg ions in such solutions, i.e., whether Mg(2+) is tetra- or hexacoordinated by a combination of Cl(-) and THF. In this work, theoretical insight into the solvation complexes present is provided based on first-principles molecular dynamics simulations (FPMD). Both Mg monomer and dimer structures are considered in both neutral and positively charged states. We found that, at room temperature, the Mg(2+) ion tends to be tetracoordinated in the THF solution phase instead of hexacoordinated, which is the predominant solid-phase coordination. Simulating the X-ray absorption spectra (XAS) at the Mg K-edge by sampling our FPMD trajectories, our predicted solvation structure can be readily compared with experimental measurements. It is found that when changing from tetra- to hexacoordination, the onset of X-ray absorption should exhibit at least a 1 eV blue shift. We propose that this energy shift can be used to monitor changes in the Mg solvation sphere as it migrates through the electrolyte to electrolyte/electrode interfaces and to elucidate the mechanism of Mg dissolution/deposition. PMID:25243732

  16. Colloidal europium nanoparticles via a solvated metal atom dispersion approach and their surface enhanced Raman scattering studies.

    PubMed

    Urumese, Ancila; Jenjeti, Ramesh Naidu; Sampath, S; Jagirdar, Balaji R

    2016-08-15

    Chemistry of lanthanide metals in their zerovalent state at the nanoscale remains unexplored due to the high chemical reactivity and difficulty in synthesizing nanoparticles by conventional reduction methods. In the present study, europium(0) nanoparticles, the most reactive of all the rare earth metals have been synthesized by solvated metal atom dispersion (SMAD) method using hexadecyl amine as the capping agent. The as-prepared europium nanoparticles show surface Plasmon resonance (SPR) band in the visible region of the electromagnetic spectrum. This lead to the investigation of its surface enhanced Raman scattering (SERS) using visible light excitation source. The SERS activity of europium nanoparticles has been followed using 4-aminothiophenol and biologically important molecules such as hemoglobin and Cyt-c as the analytes. This is the first example of lanthanide metal nanoparticles as SERS substrate which can possibly be extended to other rare-earth metals. Since hemoglobin absorbs in the visible region, the use of visible light excitation source leads to surface enhanced resonance Raman spectroscopy (SERRS). The interaction of biomolecules with Eu(0) has been followed using FT-IR and UV-visible spectroscopy techniques. The results indicate that there is no major irreversible change in the structure of biomolecules upon interaction with europium nanoparticles. PMID:27214148

  17. Metal ion influence on eumelanin fluorescence and structure

    NASA Astrophysics Data System (ADS)

    Sutter, Jens-Uwe; Birch, David J. S.

    2014-06-01

    Melanin has long been thought to have an unworkably weak and complex fluorescence, but here we study its intrinsic fluorescence in order to demonstrate how metal ions can be used to control the rate of formation, constituents and structure of eumelanin formed from the well-known laboratory auto-oxidation of 3,4-dihydroxy-L-phenylalanine (L-DOPA). The effect on eumelanin absorption and fluorescence of a range of solvated metal ions is reported including Cu, Zn, Ni, Na and K. Monovalent cations and Zn have little effect, but the effect of transition metal cations can be considerable. For example, at pH 10, copper ions are shown to accelerate the onset of eumelanin formation, but not the rate of formation once it commences, and simplify the usual complex structure and intrinsic fluorescence of eumelanin in a way that is consistent with an increased abundance of 5,5-dihydroxyindole-2-carboxylic acid (DHICA). The presence of a dominant 6 ns fluorescence decay time at 480 nm, when excited at 450 nm describes a distinct photophysical species, which we tentatively assign to small oligomers. Copper is well-known to normally quench fluorescence, but increasing amounts of copper surprisingly leads to an increase in the fluorescence decay time of eumelanin, while reducing the fluorescence intensity, suggesting copper modification of the excited state. Such results have bearing on diverse areas. The most accepted morphology for melanin is that of a graphite-like sheet structure, and one which readily binds metal ions, an interaction that is thought to have an important, though as yet unclear bearing on several areas of medicine including neurology. There is also increasing interest in bio-mimicry by preparing and labelling sheet structures with metal ions for new electronic and photonic materials.

  18. Metallic ions in the equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Goldberg, R. A.

    1972-01-01

    Four positive ion composition measurements of the equatorial E region made at Thumba, India, are presented. During the day, the major ions between 90 and 125 km are NO(+) and O2(+). A metallic ion layer centered at 92 km is observed, and found to contain Mg(+), Fe(+), Ca(+), K(+), Al(+), and Na(+) ions. The layer is explained in terms of a similarly shaped latitude distribution of neutral atoms which are photoionized and charge-exchanged with NO(+) and O2(+). Three body reactions form molecular metallic ions which are rapidly lost by dissociative ion-electron recombination. Nighttime observations show downward drifting of the metallic ion layer caused by equatorial dynamo effects. These ions react and form neutral metals which exchange charges with NO(+) and O2(+) to produce an observed depletion of those ions within the metallic ion region.

  19. Origin of Asymmetric Solvation Effects for Ions in Water and Organic Solvents Investigated Using Molecular Dynamics Simulations: The Swain Acity-Basity Scale Revisited.

    PubMed

    Reif, Maria M; Hünenberger, Philippe H

    2016-08-25

    The asymmetric solvation of ions can be defined as the tendency of a solvent to preferentially solvate anions over cations or cations over anions, at identical ionic charge magnitudes and effective sizes. Taking water as a reference, these effects are quantified experimentally for many solvents by the relative acity (A) and basity (B) parameters of the Swain scale. The goal of the present study is to investigate the asymmetric solvation of ions using molecular dynamics simulations, and to connect the results to this empirical scale. To this purpose, the charging free energies of alkali and halide ions, and of their hypothetical oppositely charged counterparts, are calculated in a variety of solvents. In a first set of calculations, artificial solvent models are considered that present either a charge or a shape asymmetry at the molecular level. The solvation asymmetry, probed by the difference in charging free energy between the two oppositely charged ions, is found to encompass a term quadratic in the ion charge, related to the different solvation structures around the anion and cation, and a term linear in the ion charge, related to the solvation structure around the uncharged ion-sized cavity. For these simple solvent models, the two terms are systematically counteracting each other, and it is argued that only the quadratic term should be retained when comparing the results of simulations involving physical solvents to experimental data. In a second set of calculations, 16 physical solvents are considered. The theoretical estimates for the acity A are found to correlate very well with the Swain parameters, whereas the correlation for B is very poor. Based on this observation, the Swain scale is reformulated into a new scale involving an asymmetry parameter Σ, positive for acitic solvents and negative for basitic ones, and a polarity parameter Π. This revised scale has the same predictive power as the original scale, but it characterizes asymmetry in an

  20. Multiheteromacrocycles that Complex Metal Ions. Ninth Progress Report (includes results of last three years), 1 May 1980 -- 30 April 1983

    DOE R&D Accomplishments Database

    Cram, D. J.

    1982-09-15

    The overall objective of this research is to design, synthesize, and evaluate cyclic and polycyclic host organic compounds for the abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The hope is to synthesize new classes of compounds useful in the separation of metal ions, their complexes, and their clusters.

  1. Divalent Metal-Ion Complexes with Dipeptide Ligands Having Phe and His Side-Chain Anchors: Effects of Sequence, Metal Ion, and Anchor.

    PubMed

    Dunbar, Robert C; Berden, Giel; Martens, Jonathan K; Oomens, Jos

    2015-09-24

    Conformational preferences have been surveyed for divalent metal cation complexes with the dipeptide ligands AlaPhe, PheAla, GlyHis, and HisGly. Density functional theory results for a full set of complexes are presented, and previous experimental infrared spectra, supplemented by a number of newly recorded spectra obtained with infrared multiple photon dissociation spectroscopy, provide experimental verification of the preferred conformations in most cases. The overall structural features of these complexes are shown, and attention is given to comparisons involving peptide sequence, nature of the metal ion, and nature of the side-chain anchor. A regular progression is observed as a function of binding strength, whereby the weakly binding metal ions (Ba(2+) to Ca(2+)) transition from carboxylate zwitterion (ZW) binding to charge-solvated (CS) binding, while the stronger binding metal ions (Ca(2+) to Mg(2+) to Ni(2+)) transition from CS binding to metal-ion-backbone binding (Iminol) by direct metal-nitrogen bonds to the deprotonated amide nitrogens. Two new sequence-dependent reversals are found between ZW and CS binding modes, such that Ba(2+) and Ca(2+) prefer ZW binding in the GlyHis case but prefer CS binding in the HisGly case. The overall binding strength for a given metal ion is not strongly dependent on the sequence, but the histidine peptides are significantly more strongly bound (by 50-100 kJ mol(-1)) than the phenylalanine peptides. PMID:26325483

  2. Electrochemical properties and lithium ion solvation behavior of sulfone-ester mixed electrolytes for high-voltage rechargeable lithium cells

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuu; Kinoshita, Shin-ichi; Wada, Satoshi; Hoshino, Keiji; Morimoto, Hideyuki; Tobishima, Shin-ichi

    2008-05-01

    Sulfone-ester mixed solvent electrolytes were examined for 5 V-class high-voltage rechargeable lithium cells. As the base-electrolyte, sulfolane (SL)-ethyl acetate (EA) (1:1 mixing volume ratio) containing 1 M LiBF4 solute was investigated. Electrolyte conductivity, electrochemical stability, Li+ ion solvation behavior and cycleability of lithium electrode were evaluated. 13C NMR measurement results suggest that Li+ ions are solvated with both SL and EA. Charge-discharge cycling efficiency of lithium anode in SL-EA electrolytes was poor, being due to its poor tolerance for reduction. To improve lithium charge-discharge cycling efficiency in SL-EA electrolytes, following three trials were carried out: (i) improvement of the cathodic stability of electrolyte solutions by change in polarization through modification of solvent structure; isopropyl methyl sulfone and methyl isobutyrate were investigated as alternative SL and EA, respectively, (ii) suppression of the reaction between lithium and electrolyte solutions by addition of low reactivity surfactants of cycloalkanes (decalin and adamantane) or triethylene glycol derivatives (triglyme, 1,8-bis(tert-butyldimethylsilyloxy)-3,6-dioxaoctane and triethylene glycol di(methanesulfonate)) into SL-EA electrolytes, and (iii) change in surface film by addition of surface film formation agent of vinylene carbonate (VC) into SL-EA electrolytes. These trials made lithium cycling behavior better. Lithium cycling efficiency tended to increase with a decrease in overpotential. VC addition was most effective for improvement of lithium cycling efficiency among these additives. Stable surface film is formed on lithium anode by adding VC and the resistance between anode/electrolyte interfaces showed a constant value with an increase in cycle number. When the electrolyte solutions without VC, the interfacial resistance increased with an increase in cycle number. VC addition to SL-EA was effective not only for Li/LiCoO2 cell with charge

  3. Protein-Transition Metal Ion Networks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proteins obtained from agricultural sources were blended with divalent metal ions. Feather keratin, egg albumin, and wheat gluten showed increases of 2-3 times in modulus with addition of divalent transition metal ions Cu2+ and Zn2+. Increasing concentrations of ions resulted in increased stiffnes...

  4. Metal ions, Alzheimer's disease and chelation therapy.

    PubMed

    Budimir, Ana

    2011-03-01

    In the last few years, various studies have been providing evidence that metal ions are critically involved in the pathogenesis of major neurological diseases (Alzheimer, Parkinson). Metal ion chelators have been suggested as potential therapies for diseases involving metal ion imbalance. Neurodegeneration is an excellent target for exploiting the metal chelator approach to therapeutics. In contrast to the direct chelation approach in metal ion overload disorders, in neurodegeneration the goal seems to be a better and subtle modulation of metal ion homeostasis, aimed at restoring ionic balance. Thus, moderate chelators able to coordinate deleterious metals without disturbing metal homeostasis are needed. To date, several chelating agents have been investigated for their potential to treat neurodegeneration, and a series of 8-hydroxyquinoline analogues showed the greatest potential for the treatment of neurodegenerative diseases. PMID:21406339

  5. Multiheteromacrocycles that complex metal ions. Sixth progress report, 1 May 1979-30 April 1980. [Hemispherands; spherands

    SciTech Connect

    Cram, D.J.

    1980-01-15

    Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate /sup 6/Li and /sup 7/Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)

  6. Anion Solvation in Carbonate Electrolytes

    SciTech Connect

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  7. A coordination chemistry study of hydrated and solvated cationic vanadium ions in oxidation states +III, +IV, and +V in solution and solid state.

    PubMed

    Krakowiak, Joanna; Lundberg, Daniel; Persson, Ingmar

    2012-09-17

    The coordination chemistry of hydrated and solvated vanadium(III), oxovanadium(IV), and dioxovanadium(V) ions in the oxygen-donor solvents water, dimethyl sulfoxide (DMSO), and N,N'-dimethylpropyleneurea (DMPU) has been studied in solution by extended X-ray absorption fine structure (EXAFS) and large-angle X-ray scattering (LAXS) and in the solid state by single-crystal X-ray diffraction and EXAFS. The hydrated vanadium(III) ion has a regular octahedral configuration with a mean V-O bond distance of 1.99 Å. In the hydrated and DMSO-solvated oxovanadium(IV) ions, vanadium binds strongly to an oxo group at ca. 1.6 Å. The solvent molecule trans to the oxo group is very weakly bound, at ca. 2.2 Å, while the remaining four solvent molecules, with a mean V-O bond distance of 2.0 Å, form a plane slightly below the vanadium atom; the mean O═V-O(perp) bond angle is ca. 98°. In the DMPU-solvated oxovanadium(IV) ion, the space-demanding properties of the DMPU molecule leave no solvent molecule in the trans position to the oxo group, which reduces the coordination number to 5. The O═V-O bond angle is consequently much larger, 107°, and the mean V═O and V-O bond distances decrease to 1.58 and 1.97 Å, respectively. The hydrated and DMSO-solvated dioxovanadium(V) ions display a very distorted octahedral configuration with the oxo groups in the cis position with a mean V═O bond distance of 1.6 Å and a O═V═O bond angle of ca. 105°. The solvent molecules trans to the oxo groups are weakly bound, at ca. 2.2 Å, while the remaining two have bond distances of 2.02 Å. The experimental studies of the coordination chemistry of hydrated and solvated vanadium(III,IV,V) ions are complemented by summarizing previously reported crystal structures to yield a comprehensive description of the coordination chemistry of vanadium with oxygen-donor ligands. PMID:22950803

  8. Liquid metal ion source and alloy

    DOEpatents

    Clark, Jr., William M.; Utlaut, Mark W.; Behrens, Robert G.; Szklarz, Eugene G.; Storms, Edmund K.; Santandrea, Robert P.; Swanson, Lynwood W.

    1988-10-04

    A liquid metal ion source and alloy, wherein the species to be emitted from the ion source is contained in a congruently vaporizing alloy. In one embodiment, the liquid metal ion source acts as a source of arsenic, and in a source alloy the arsenic is combined with palladium, preferably in a liquid alloy having a range of compositions from about 24 to about 33 atomic percent arsenic. Such an alloy may be readily prepared by a combustion synthesis technique. Liquid metal ion sources thus prepared produce arsenic ions for implantation, have long lifetimes, and are highly stable in operation.

  9. Studies of Pt-Sn/Al sub 2 O sub 3 catalysts prepared by Pt and Sn coevaporation (Solvated Metal Atom Dispersion)

    SciTech Connect

    Li, Yongxi; Klabunde, K.J. )

    1990-11-01

    Metal atoms of Pt and Sn have been solvated at low temperatures, and these solvated metal atoms have been used for depositing Pt-Sn bimetallic particles on Al{sub 2}O{sub 3} (full SMAD methods). Spectroscopic investigations with XPS, XRD, EXAFS, and Moessbauer have confirmed the presence of very small and/or amorphous Pt-Sn particles. Catalytic performance tests show that these particles are active for dehydrocyclization reactions, but depress unwanted hydrogenolysis reactions. These results, compared with results for conventionally prepared and half-SMAD methods (Sn{sup 0} on performed Pt particles), show that Sn{sup 0} within and on Pt particles has a significant effect on catalyst performance, and suggest that such performance can be predictably modified by using the correct preparation procedure (SMAD or conventional). The effect of tin is also perhaps now better understood due to these results.

  10. Using differential mobility spectrometry to measure ion solvation: an examination of the roles of solvents and ionic structures in separating quinoline-based drugs.

    PubMed

    Liu, Chang; Le Blanc, J C Yves; Shields, Jefry; Janiszewski, John S; Ieritano, Christian; Ye, Gene F; Hawes, Gillian F; Hopkins, W Scott; Campbell, J Larry

    2015-10-21

    Understanding the mechanisms and energetics of ion solvation is critical in many scientific areas. Here, we present a methodlogy for studying ion solvation using differential mobility spectrometry (DMS) coupled to mass spectrometry. While in the DMS cell, ions experience electric fields established by a high frequency asymmetric waveform in the presence of a desired pressure of water vapor. By observing how a specific ion's behavior changes between the high- and low-field parts of the waveform, we gain knowledge about the aqueous microsolvation of that ion. In this study, we applied DMS to investigate the aqueous microsolvation of protonated quinoline-based drug candidates. Owing to their low binding energies with water, the clustering propensity of 8-substituted quinolinium ions was less than that of the 6- or 7-substituted analogues. We attribute these differences to the steric hinderance presented by subtituents in the 8-position. In addition, these experimental DMS results were complemented by extensive computational studies that determined cluster structures and relative thermodynamic stabilities. PMID:26165786

  11. A first principles molecular dynamics study of the solvation structure and migration kinetics of an excess proton and a hydroxide ion in binary water-ammonia mixtures

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Chandra, Amalendu

    2012-03-01

    We have investigated the solvation structure and migration kinetics of an excess proton and a hydroxide ion in water-ammonia mixed liquids of varying composition by means of ab initio molecular dynamics simulations. The excess proton is always found to be attached to an ammonia molecule to form the ammonium ion. Migration of the excess proton is found to occur very occasionally from one ammonia to the other but no proton transfer to a water molecule is observed during the entire simulations. Also, when the ammonium ion is solvated in water only, its hydrogen bond dynamics and rotation are found to occur at a faster rate than those in water-ammonia mixtures. For water-ammonia mixtures containing a proton less, the defect is found to stay like the hydroxide ion. For these systems, occasional proton transfer is found to occur only through the hydrogen bonded chains of water molecules in these water-ammonia mixtures. No proton transfer is found to take place from an ammonia molecule. The presence of ammonia molecules makes the realization of proper presolvated state of the hydroxide ion to accept a proton a more difficult process and, as a result, the rate of proton transfer and migration kinetics of the hydroxide ion in water-ammonia mixtures are found to be slower than that in liquid water and these rates are found to slow down further with increase of ammonia concentration.

  12. Versatile high current metal ion implantation facility

    SciTech Connect

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1991-06-01

    A metal ion implantation facility has been developed with which high current beams of practically all the solid metals of the periodic table can be produced. A multi-cathode, broad beam, metal vapor vacuum arc ion source is used to produce repetitively pulsed metal ion beams at an extraction voltage of up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion-charge state multiplicity, and with a beam current of up to several amperes peak pulsed and several tens of mA time averaged delivered onto a downstream target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we summarize some of the features of the ion source and the implantation facility that has been built up around it. 28 refs., 5 figs.

  13. COMPUTATIONAL DESIGN OF METAL ION SEQUESTERING AGENTS

    EPA Science Inventory

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides...

  14. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  15. Separation of metal ions from aqueous solutions

    DOEpatents

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  16. The XAS Model of the Copper(II)-Imidazole Complex Ion in Liquid Aqueous Solution: A Strongly Solvated Square Pyramid

    PubMed Central

    Frank, Patrick; Benfatto, Maurizio; Hedman, Britt; Hodgson, Keith O.

    2012-01-01

    Copper K-edge EXAFS and MXAN analyses were combined to evaluate the structure of the copper(II)-imidazole complex ion in liquid aqueous solution. Both methods converged to the same square pyramidal inner coordination sphere [Cu(Im)4Lax]2+, (Lax indeterminate) with four equatorial nitrogens at: EXAFS, 2.02±0.01 Å, and; MXAN, 1.99±0.03 Å. A short axial N/O scatterer, (Lax), was found at 2.12±0.02 (EXAFS) or 2.14±0.06 Å (MXAN). A second but very weak axial Cu-N/O interaction was found at 2.9±0.1 Å (EXAFS) or 3.0±0.1 Å (MXAN). In the MXAN fits, only a square pyramidal structural model successfully reproduced the doubled maximum of the rising K-edge XAS, specifically excluding an octahedral model. Both EXAFS and MXAN also found eight outlying oxygen scatterers at 4.2±0.3 Å that contributed significant intensity over the entire XAS energy range. Two prominent rising K-edge shoulders at 8987.1 eV and 8990.5 eV were found to reflect multiple scattering from the 3.0 Å axial scatterer and the imidazole rings, respectively. In the MXAN fits, the imidazole rings took in-plane rotationally staggered positions about copper. The combined (EXAFS and MXAN) model for the unconstrained cupric-imidazole complex ion in liquid aqueous solution is an axially elongated square pyramidal core, with a weak non-bonded interaction at the second axial coordination position and a solvation shell of eight nearest neighbor water molecules. This core square pyramidal motif has persisted through [Cu(H2O)5]2+, [Cu(NH3)4(NH3,H2O)]2+,1,2 and now [Cu(Im)4Lax)]2+, and appears to be the geometry preferred by unconstrained aqueous-phase Cu(II) complex ions. PMID:22316238

  17. Metallic ion production with the dione EBIS

    NASA Astrophysics Data System (ADS)

    Visentin, B.; Courtois, A.; Gobin, R.; Harrault, F.; Leroy, P. A.

    1997-01-01

    We report the first quantitative results obtained with metallic elements injected from an Hollow Cathode ion source into the Dioné EBIS. These results are concerned with the charge state distribution of gold ions, with a maximum for Au47+ of (1,3 × 107 ions), and the highest charge state detectable on a wire profiler of Au63+. The Au50+ ions have been captured in Mimas storage synchrotron, and an Fe20+ ion beam has been accelerated in the Saturne synchrotron. The Hollow Cathode ion source lifetime has been tested on a long term basis (Au1+ injected into Dioné during six weeks, 24 hours per day). This source, able to produce metallic ions with any buffer gas (Ne, Ar, Kr, Xe, or N) and is also used to inject gaseous ions into Dioné.

  18. Clustering of metal atoms in organic media. II. Effect of support on nickel catalysts prepared by solvated metal atom dispersion (SMAD)

    SciTech Connect

    Matsuo, K.; Klabunde, K.J.

    1982-02-26

    Highly dispersed Ni/support catalysts were prepared from toluene-solvated nickel atoms (solvated metal atom dispersed or SMAD). Catalysts were prepared on MgO, Al/sub 2/O/sub 3/, SiO/sub 2/, and carbon, and their activities were tested for hydrogenolysis of methylcyclopentane, hydrogenation of toluene, dehydrogenation of isopropyl alcohol, and methanation of carbon monoxide. Conventional catalysts were also studied and compared with the SMAD systems. The effect of the support on SMAD catalyst activities was minimal for hydrogenolysis of methylcyclopentane, hydrogenation of toluene, and dehydration of isopropyl alcohol. However, conventional catalysts showed a significant effect of support when these reactions were studied. This difference between SMAD and conventional catalysts is attributed to the presence of an insulating layer of carbonaceous species between Ni and the support in the SMAD systems. Conversely, catalyst activity for methanation of carbon monoxide was significantly affected by support, especially MgO. This phenomenon reflects a synergistic effect of MgO when Ni is present, where CO can be adsorbed readily on MgO which apparently aids in the initial CO reduction step. The SMAD method in combination with high surface area supports yields highly dispersed catalysts with very small particle sizes. Carbon, a support with a particularly high surface area, allows formation of the smallest particle sizes, and this phenomenon is believed to indicate a direct dependency ofmetal particle size on the surface area of the support. The implications of this finding on the mechanism of particle formation are discussed, as well as the observation of optimum nickel particle size effects for the reactions studied. 5 figures, 4 tables.

  19. Interfacial solvation thermodynamics.

    PubMed

    Ben-Amotz, Dor

    2016-10-19

    Previous studies have reached conflicting conclusions regarding the interplay of cavity formation, polarizability, desolvation, and surface capillary waves in driving the interfacial adsorptions of ions and molecules at air-water interfaces. Here we revisit these questions by combining exact potential distribution results with linear response theory and other physically motivated approximations. The results highlight both exact and approximate compensation relations pertaining to direct (solute-solvent) and indirect (solvent-solvent) contributions to adsorption thermodynamics, of relevance to solvation at air-water interfaces, as well as a broader class of processes linked to the mean force potential between ions, molecules, nanoparticles, proteins, and biological assemblies. PMID:27545849

  20. Coarse-grained ions without charges: Reproducing the solvation structure of NaCl in water using short-ranged potentials

    NASA Astrophysics Data System (ADS)

    DeMille, Robert C.; Molinero, Valeria

    2009-07-01

    A coarse-grained model of NaCl in water is presented where the ions are modeled without charge to avoid computationally challenging electrostatics. A monatomic model of water [V. Molinero and E. B. Moore, J. Phys. Chem. B 113, 4008 (2009)] is used as the basis for this coarse-grain approach. The ability of Na+ to disrupt the native tetrahedral arrangement of water molecules, and of Cl- to integrate within this organization, is preserved in this mW-ion model through parametrization focused on water's solvation of these ions. This model successfully reproduces the structural effect of ions on water, referenced to observations from experiments and atomistic molecular dynamics simulations, while using extremely short-ranged potentials. Without Coulomb interactions the model replicates details of the ion-water structure such as distinguishing contact and solvent-separated ion pairs and the free energy barriers between them. The approach of mimicking ionic effects with short-ranged interactions results in performance gains of two orders of magnitude compared to Ewald methods. Explored over a broad range of salt concentration, the model reproduces the solvation structure and trends of diffusion relative to atomistic simulations and experimental results. The functional form of the mW-ion model can be parametrized to represent other electrolytes. With increased computational efficiency and reliable structural fidelity, this model promises to be an asset for accessing significantly longer simulation time scales with an explicit solvent in a coarse-grained system involving, for example, polyelectrolytes such as proteins, nucleic acids, and fuel-cell membranes.

  1. Uptake of metal ions on humic acids

    SciTech Connect

    Pehlivan, E.; Arslan, G.

    2006-09-15

    The kinetics, the sorption capacities, pH and temperature dependence of sorption of humic acids (HAs) of Turkish brown coals with respect to Zn(II), Cu(II), Ni(II), Co(II) and Pb(II) ions were investigated, and the roles of the carboxylic and phenolic groups in the adsorption of metals ion on HAs were searched in this work. These metal ions are able to form complex compounds with carboxylic and phenolic groups of HAs. Adsorption equilibrium was achieved in between 50 and 60 min for all studied cations. HAs extracted from different brown coals have been characterized by chemical and physical methods. The chemical properties of HAs showed differences depending on the source from which they were obtained. The sorption of metals on the surface of HAs depends strongly on the pH, and sorption decreases with decreasing pH. Maximum removal of metal ions was demonstrated at pH values of 4.1-5.0. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The {Delta}G{sup 0} became negative as the temperature increased, and so the equilibrium constant decreased slightly. The investigation proved that the HAs are suitable materials for the studied heavy metal ion removal from aqueous solution and could be considered as potential material for purification of effluent polluted with toxic metal ions.

  2. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  3. Metal-ion recycle technology for metal electroplating waste waters

    SciTech Connect

    Sauer, N.N.; Smith, B.F.

    1993-06-01

    As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

  4. Upgraded vacuum arc ion source for metal ion implantation

    SciTech Connect

    Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Yushkov, G. Yu.; Brown, I. G.

    2012-02-15

    Vacuum arc ion sources have been made and used by a large number of research groups around the world over the past twenty years. The first generation of vacuum arc ion sources (dubbed ''Mevva,'' for metal vapor vacuum arc) was developed at Lawrence Berkeley National Laboratory in the 1980s. This paper considers the design, performance parameters, and some applications of a new modified version of this kind of source which we have called Mevva-V.Ru. The source produces broad beams of metal ions at an extraction voltage of up to 60 kV and a time-averaged ion beam current in the milliampere range. Here, we describe the Mevva-V.Ru vacuum arc ion source that we have developed at Tomsk and summarize its beam characteristics along with some of the applications to which we have put it. We also describe the source performance using compound cathodes.

  5. Raman and FTIR spectroscopic studies of 1-ethyl-3-methylimidazolium trifluoromethylsulfonate, its mixtures with water and the solvation of zinc ions.

    PubMed

    Liu, Zhen; El Abedin, Sherif Zein; Endres, Frank

    2015-04-01

    In this paper we report on the interactions of the ionic liquid 1-ethyl-3-methylimidazolium trifluoromethylsulfonate ([EMIm]TfO) with water and the solvation of zinc ions in neat [EMIm]TfO and [EMIm]TfO-water mixtures investigated by FTIR and Raman spectroscopy. The structures and physicochemical properties of the [EMIm]TfO-water mixtures are strongly dependent on the interaction between cations, anions, and water. The structure was changed from ionic-liquid-like to water-like solutions upon addition of water. In addition, zinc salts can precipitate in 0.2 M Zn(TfO)2/[EMIm]TfO upon addition of 10 % (v/v) water, presumably as a result of polarity change of the solution. The average coordination number of TfO(-) per zinc ion calculated from Raman spectra is 3.8 in neat [EMIm]TfO, indicating that [Zn(TfO)4](2-), and [Zn(TfO)3](-) complexes are present in the solution. However, in the presence of water, water interacts preferentially with the zinc ions, leading to aqueous zinc species. The solvation of zinc ions in 1-butyl-1-methylpyrrolidinium trifluoromethylsulfonate ([Py(1,4)]TfO) was also investigated. In [Py(1,4)]TfO, there are, on average, 4.5 TfO(-) anions coordinating each zinc ion, corresponding to the weak interaction between [Py(1,4)](+) cations and TfO(-) anions. The species present in [Py(1,4)]TfO are likely a mixture of [Zn(TfO)4](2-) and [Zn(TfO)5](3-). PMID:25630920

  6. Quantifying solvated electrons' delocalization.

    PubMed

    Janesko, Benjamin G; Scalmani, Giovanni; Frisch, Michael J

    2015-07-28

    Delocalized, solvated electrons are a topic of much recent interest. We apply the electron delocalization range EDR(r;u) (J. Chem. Phys., 2014, 141, 144104) to quantify the extent to which a solvated electron at point r in a calculated wavefunction delocalizes over distance u. Calculations on electrons in one-dimensional model cavities illustrate fundamental properties of the EDR. Mean-field calculations on hydrated electrons (H2O)n(-) show that the density-matrix-based EDR reproduces existing molecular-orbital-based measures of delocalization. Correlated calculations on hydrated electrons and electrons in lithium-ammonia clusters illustrates how electron correlation tends to move surface- and cavity-bound electrons onto the cluster or cavity surface. Applications to multiple solvated electrons in lithium-ammonia clusters provide a novel perspective on the interplay of delocalization and strong correlation central to lithium-ammonia solutions' concentration-dependent insulator-to-metal transition. The results motivate continued application of the EDR to simulations of delocalized electrons. PMID:25994586

  7. Bioavailability of Metal Ions and Evolutionary Adaptation

    PubMed Central

    Hong Enriquez, Rolando P.; Do, Trang N.

    2012-01-01

    The evolution of life on earth has been a long process that began nearly 3.5 × 109 years ago. In their initial moments, evolution was mainly influenced by anaerobic environments; with the rise of O2 and the corresponding change in bioavailability of metal ions, new mechanisms of survival were created. Here we review the relationships between ancient atmospheric conditions, metal ion bioavailability and adaptation of metals homeostasis during early evolution. A general picture linking geochemistry, biochemistry and homeostasis is supported by the reviewed literature and is further illustrated in this report using simple database searches. PMID:25371266

  8. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Hay, Benjamin P.; Rapko, Brian M.

    2006-06-01

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.

  9. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort.

  10. Anion solvation in alcohols

    SciTech Connect

    Jonah, C.D.; Xujia, Zhang; Lin, Yi

    1996-03-01

    Anion solvation is measured in alcohols using pump-probe pulse radiolysis and the activation energy of solvation is determined. Solvation of an anion appears to be different than excited state solvation. The continuum dielectric model does not appear to explain the results.

  11. Temperature-programed time-of-flight secondary ion mass spectrometry study of 1-butyl-3-methylimidazolium trifluoromethanesulfonate during glass-liquid transition, crystallization, melting, and solvation

    SciTech Connect

    Souda, Ryutaro; Guenster, Jens

    2008-09-07

    For this study, time-of-flight secondary ion mass spectrometry was used to analyze the molecular orientation of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim][OTf]) and its interaction with the adsorbed Na and LiI species at temperatures of 150-300 K. A glassy [bmim][OTf] film crystallizes at around 230 K, as observed from the increase in the [bmim]{sup +} yield. LiI and Na adsorbed on the glassy film are solvated, whereas they tend to form islands on a crystalline film. The crystalline surface inertness is ascribable to the termination with the CF{sub 3} and C{sub 4}H{sub 9} groups, whereas the exposure of polar SO{sub 3} and imidazole groups at the glassy film results in the solvation. Surface layering occurs during solvation of LiI on the glassy film in such a way that the [bmim]{sup +} ([OTf]{sup -}) moiety is exposed to the vacuum (oriented to the bulk). The LiI adsorbed on the glassy film is incorporated into the bulk at temperatures higher than 200 K because of the glass-liquid transition. No further uptake of LiI is observed during crystallization, providing a contrast to the results of normal molecular solids such as water and ethanol. The surface layers of the crystal melt at temperatures below the bulk melting point, as confirmed from the dissolution of adsorbed LiI, but the melting layer retains a short-range order similar to the crystal. The [bmim][OTf] can be regarded as a strongly correlated liquid with the combined liquid property and crystal-type local structure. The origin of this behavior is discussed.

  12. Preferential Solvation of Lithium Cations and Impacts on Oxygen Reduction in Lithium-Air Batteries.

    PubMed

    Zheng, Dong; Qu, Deyu; Yang, Xiao-Qing; Lee, Hung-Sui; Qu, Deyang

    2015-09-16

    The solvation of Li+ with 11 nonaqueous solvents commonly used as electrolytes for lithium batteries was studied. The solvation preferences of different solvents were compared by means of electrospray mass spectrometry and collision-induced dissociation. The relative strength of the solvent for the solvation of Li+ was determined. The Lewis acidity of the solvated Li+ cations was determined by the preferential solvation of the solvent in the solvation shell. The kinetics of the catalytic disproportionation of the O2•- depends on the relative Lewis acidity of the solvated Li+ ion. The impact of the solvated Li+ cation on the O2 redox reaction was also investigated. PMID:26301499

  13. Femtosecond soft x-ray spectroscopy of solvated transition metal complexes: Deciphering the interplay of electronic and structural dynamics

    SciTech Connect

    Huse, Nils; Cho, Hana; Hong, Kiryong; Jamula, Lindsey; de Groot, Frank M. F.; Kim, Tae Kyu; McCusker, James K.; Schoenlein, Robert W.

    2011-03-09

    We present the first implementation of femtosecond soft X-ray spectroscopy as an ultrafast direct probe of the excited-state valence orbitals in solution-phase molecules. This method is applied to photoinduced spin crossover of [Fe(tren(py)3)]2+, where the ultrafast spinstate conversion of the metal ion, initiated by metal-to-ligand charge-transfer excitation, is directly measured using the intrinsic spin-state selectivity of the soft X-ray L-edge transitions. Our results provide important experimental data concerning the mechanism of ultrafast spin-state conversion and subsequent electronic and structural dynamics, highlighting the potential of this technique to study ultrafast phenomena in the solution phase.

  14. Computational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Hay, Benjamin P.; Rapko, Brian M.

    2005-06-15

    Organic ligands that exhibit a high degree of metal ion recognition are essential precursors for developing separation processes and sensors for metal ions. Since the beginning of the nuclear era, much research has focused on discovering ligands that target specific radionuclides. Members of the Group 1A and 2A cations (e.g., Cs, Sr, Ra) and the f-block metals (actinides and lanthanides) are of primary concern to DOE. Although there has been some success in identifying ligand architectures that exhibit a degree of metal ion recognition, the ability to control binding affinity and selectivity remains a significant challenge. The traditional approach for discovering such ligands has involved lengthy programs of organic synthesis and testing that, in the absence of reliable methods for screening compounds before synthesis, have resulted in much wasted research effort. This project seeks to enhance and strengthen the traditional approach through computer-aided design of new and improved host molecules. Accurate electronic structure calculations are coupled with experimental data to provide fundamental information about ligand structure and the nature of metal-donor group interactions (design criteria). This fundamental information then is used in a molecular mechanics model (MM) that helps us rapidly screen proposed ligand architectures and select the best members from a set of potential candidates. By using combinatorial methods, molecule building software has been developed that generates large numbers of candidate architectures for a given set of donor groups. The specific goals of this project are: • further understand the structural and energetic aspects of individual donor group- metal ion interactions and incorporate this information within the MM framework • further develop and evaluate approaches for correlating ligand structure with reactivity toward metal ions, in other words, screening capability • use molecule structure building software to generate

  15. Molecular dynamics simulations of ion solvation by flexible-boundary QM/MM: on-the-fly partial charge transfer between QM and MM subsystems.

    PubMed

    Pezeshki, Soroosh; Lin, Hai

    2014-09-15

    The flexible-boundary (FB) quantum mechanical/molecular mechanical (QM/MM) scheme accounts for partial charge transfer between the QM and MM subsystems. Previous calculations have demonstrated excellent performance of FB-QM/MM in geometry optimizations. This article reports an implementation to extend FB-QM/MM to molecular dynamics simulations. To prevent atoms from getting unreasonably close, which can lead to polarization catastrophe, empirical correcting functions are introduced to provide additive penalty energies for the involved atom pairs and to improve the descriptions of the repulsive exchange forces in FB-QM/MM calculations. Test calculations are carried out for chloride, lithium, sodium, and ammonium ions solvated in water. Comparisons with conventional QM/MM calculations suggest that the FB treatment provides reasonably good results for the charge distributions of the atoms in the QM subsystems and for the solvation shell structural properties, albeit smaller QM subsystems have been used in the FB-QM/MM dynamics simulations. PMID:25056247

  16. A first principles molecular dynamics study of lithium atom solvation in binary liquid mixture of water and ammonia: Structural, electronic, and dynamical properties

    NASA Astrophysics Data System (ADS)

    Pratihar, Subha; Chandra, Amalendu

    2011-01-01

    The preferential solvation of solutes in mixed solvent systems is an interesting phenomenon that plays important roles in solubility and kinetics. In the present study, solvation of a lithium atom in aqueous ammonia solution has been investigated from first principles molecular dynamics simulations. Solvation of alkali metal atoms, like lithium, in aqueous and ammonia media is particularly interesting because the alkali metal atoms release their valence electrons in these media so as to produce solvated electrons and metal counterions. In the present work, first principles simulations are performed employing the Car-Parrinello molecular dynamics method. Spontaneous ionization of the Li atom is found to occur in the mixed solvent system. From the radial distribution functions, it is found that the Li ^+ ion is preferentially solvated by water and the coordination number is mostly four in its first solvation shell and exchange of water molecules between the first and second solvation shells is essentially negligible in the time scale of our simulations. The Li ^+ ion and the unbound electron are well separated and screened by the polar solvent molecules. Also the unbound electron is primarily captured by the hydrogens of water molecules. The diffusion rates of Li ^+ ion and water molecules in its first solvation shell are found to be rather slow. In the bulk phase, the diffusion of water is found to be slower than that of ammonia molecules because of strong ammonia-water hydrogen bonds that participate in solvating ammonia molecules in the mixture. The ratio of first and second rank orientational correlation functions deviate from 3, which suggests a deviation from the ideal Debye-type orientational diffusion. It is found that the hydrogen bond lifetimes of ammonia-ammonia pairs is very short. However, ammonia-water H-bonds are found to be quite strong when ammonia acts as an acceptor and these hydrogen bonds are found to live longer than even water-water hydrogen

  17. Li(+) solvation in glyme-Li salt solvate ionic liquids.

    PubMed

    Ueno, Kazuhide; Tatara, Ryoichi; Tsuzuki, Seiji; Saito, Soshi; Doi, Hiroyuki; Yoshida, Kazuki; Mandai, Toshihiko; Matsugami, Masaru; Umebayashi, Yasuhiro; Dokko, Kaoru; Watanabe, Masayoshi

    2015-03-28

    Certain molten complexes of Li salts and solvents can be regarded as ionic liquids. In this study, the local structure of Li(+) ions in equimolar mixtures ([Li(glyme)]X) of glymes (G3: triglyme and G4: tetraglyme) and Li salts (LiX: lithium bis(trifluoromethanesulfonyl)amide (Li[TFSA]), lithium bis(pentafluoroethanesulfonyl)amide (Li[BETI]), lithium trifluoromethanesulfonate (Li[OTf]), LiBF4, LiClO4, LiNO3, and lithium trifluoroacetate (Li[TFA])) was investigated to discriminate between solvate ionic liquids and concentrated solutions. Raman spectra and ab initio molecular orbital calculations have shown that the glyme molecules adopt a crown-ether like conformation to form a monomeric [Li(glyme)](+) in the molten state. Further, Raman spectroscopic analysis allowed us to estimate the fraction of the free glyme in [Li(glyme)]X. The amount of free glyme was estimated to be a few percent in [Li(glyme)]X with perfluorosulfonylamide type anions, and thereby could be regarded as solvate ionic liquids. Other equimolar mixtures of [Li(glyme)]X were found to contain a considerable amount of free glyme, and they were categorized as traditional concentrated solutions. The activity of Li(+) in the glyme-Li salt mixtures was also evaluated by measuring the electrode potential of Li/Li(+) as a function of concentration, by using concentration cells against a reference electrode. At a higher concentration of Li salt, the amount of free glyme diminishes and affects the electrode reaction, leading to a drastic increase in the electrode potential. Unlike conventional electrolytes (dilute and concentrated solutions), the significantly high electrode potential found in the solvate ILs indicates that the solvation of Li(+) by the glyme forms stable and discrete solvate ions ([Li(glyme)](+)) in the molten state. This anomalous Li(+) solvation may have a great impact on the electrode reactions in Li batteries. PMID:25733406

  18. Prediction of the pKa's of aqueous metal ion +2 complexes.

    PubMed

    Jackson, Virgil E; Felmy, Andrew R; Dixon, David A

    2015-03-26

    Aqueous metal ions play an important role in many areas of chemistry. The acidities of [Be(H2O)4](2+), [M(H2O)6](2+), M = Mg(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+), and [M(H2O)n](2+), M = Ca(2+) and Sr(2+), n = 7 and 8, complexes have been predicted using density functional theory, second-order Møller-Plesset perturbation theory (MP2), and coupled cluster CCSD(T) theory in the gas phase. pKa's in aqueous solution were predicted by using self-consistent reaction field (SCRF) calculations with different solvation models. The most common binding motif of the majority of the metal +2 complexes is coordination number (CN) 6, with each hexaaquo cluster having reasonably high symmetry for the best arrangement of the water molecules in the first solvation shell. Be(2+) is tetracoordinated, but a second solvation shell of 8 waters is needed to predict the pKa. The Ca(2+) and Sr(2+) aquo clusters have a coordination number of 7 or 8 as found in terms of the energy of the reaction M(H2O)7(2+) + H2O → M(H2O)8(2+) and the pKa values. The calculated geometries are in reasonable agreement with experiment. The SCRF calculations with the conductor-like screening model (COSMO), and the conductor polarized continuum model (CPCM) using COSMO-RS radii, consistently agree best with experiment at the MP2/aug-cc-pVDZ and CCSD(T)/aug-cc-pVDZ levels of theory. The CCSD(T) level provides the most accurate pKa's, and the MP2 level also provides reliable predictions. Our predictions were used to elucidate the properties of metal +2 ion complexes. The pKa predictions provide confirmation of the size of the first solvation shell sizes. The calculations show that it is still difficult to predict pKa's using this cluster/implicit solvent approach to better than 1 pKa unit. PMID:25721568

  19. Observation of triply charged metal ion clusters by electrospray and laser spray

    PubMed

    Kojima; Kudaka; Sato; Asakawa; Akiyama; Kawashima; Hiraoka

    1999-01-01

    Studies of the gas phase ion chemistry of triply charged metal ions, M(3+) = Sc(3+), Y(3+), La(3+), Ce(3+), and Yb(3+), were made by electrospray and laser spray. Triply charged ion ligand complexes, M(3+)(ligand)(n) were produced in the gas phase by electrospray and laser spray for the following ligands; glucose; sucrose; raffinose; cyclodextrin; ginsenoside Rb(1); dimethyl sulfoxide (DMSO) and hexamethylphosphoramide (HMPA). The ion evaporation mechanism must be invoked to explain the transfer of more surface active ions (e.g., NH(4)(+)(H(2)O)(n)) in solution to the gas phase, while the transfer of low surface active ions (e.g., La(3+)(sucrose)(n)) may be explained by the charged residue model. In general, the laser spray gives stronger ion signals than electrospray for aqueous and water/methanol solutions. The laser spray is found to be more suitable for the observation of ions with larger solvation energies (e.g., Sc(3+)(DMSO)(n)). These results may be due to the enrichment of the sample concentration by the selective vaporization of the volatile solvent on the tip of the stainless steel capillary and also to the finer droplet formation caused by the laser irradiation. Copyright 1999 John Wiley & Sons, Ltd. PMID:10523765

  20. Effect of metal ions on positron annihilation characteristics in metal ion containing epoxies

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; St. Clair, A. K.; Stoakley, D. M.; Holt, W. H.; Mock, W., Jr.

    1984-01-01

    In the course of developing improved moisture-resistant epoxy resins, two different types of epoxy resins containing variable mole ratios of chromium ions per polymer repeat unit were developed. Positron annihilation characteristics have been investigated in these resins as a function of their metal ion content. In both cases, the presence of metal ions reduces the lifetime as well as the intensity of the long life component. The long life component intensity reduction is considerably more pronounced than the lifetime reduction. These results have been discussed in terms of increased unpaired electron density at Ps formation sites due to the presence of chromium ions in the matrix.

  1. Parameterization of Highly Charged Metal Ions Using the 12-6-4 LJ-Type Nonbonded Model in Explicit Water

    PubMed Central

    2015-01-01

    Highly charged metal ions act as catalytic centers and structural elements in a broad range of chemical complexes. The nonbonded model for metal ions is extensively used in molecular simulations due to its simple form, computational speed, and transferability. We have proposed and parametrized a 12-6-4 LJ (Lennard-Jones)-type nonbonded model for divalent metal ions in previous work, which showed a marked improvement over the 12-6 LJ nonbonded model. In the present study, by treating the experimental hydration free energies and ion–oxygen distances of the first solvation shell as targets for our parametrization, we evaluated 12-6 LJ parameters for 18 M(III) and 6 M(IV) metal ions for three widely used water models (TIP3P, SPC/E, and TIP4PEW). As expected, the interaction energy underestimation of the 12-6 LJ nonbonded model increases dramatically for the highly charged metal ions. We then parametrized the 12-6-4 LJ-type nonbonded model for these metal ions with the three water models. The final parameters reproduced the target values with good accuracy, which is consistent with our previous experience using this potential. Finally, tests were performed on a protein system, and the obtained results validate the transferability of these nonbonded model parameters. PMID:25145273

  2. IMMUNOASSAYS FOR METAL IONS. (R824029)

    EPA Science Inventory

    Abstract

    Antibodies that recognize chelated forms of metal ions have been used to construct immunoassays for Cd(II), Hg(II), Pb(II), and Ni(II). In this paper, the format of these immunoassays is described and the binding properties of three monoclonal antibodies direc...

  3. Solvation structure around ruthenium(II) tris(bipyridine) in lithium halide solutions

    PubMed Central

    Josefsson, Ida; Eriksson, Susanna K.; Rensmo, Håkan; Odelius, Michael

    2016-01-01

    The solvation of the ruthenium(II) tris(bipyridine) ion ([Ru(bpy)3]2+) is investigated with molecular dynamics simulations of lithium halide solutions in polar solvents. The anion distribution around the [Ru(bpy)3]2+ complex exhibits a strong solvent dependence. In aqueous solution, the iodide ion forms a solvent shared complex with [Ru(bpy)3]2+, but not in the other solvents. Between Cl– and [Ru(bpy)3]2+, the strong hydration of the chloride ion results in a solvent separated complex where more than one solvent molecule separates the anion from the metal center. Hence, tailored solvation properties in electrolytes is a route to influence ion-ion interactions and related electron transfer processes. PMID:26798838

  4. Material Removes Heavy Metal Ions From Water

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H., Jr.; Street, Kenneth W.; Hill, Carol; Savino, Joseph M.

    1995-01-01

    New high capacity ion-exchange polymer material removes toxic metal cations from contaminated water. Offers several advantages. High sensitivities for such heavy metals as lead, cadmium, and copper and capable of reducing concentrations in aqueous solutions to parts-per-billion range. Removes cations even when calcium present. Material made into variety of forms, such as thin films, coatings, pellets, and fibers. As result, adapted to many applications to purify contaminated water, usually hard wherever found, whether in wastewater-treatment systems, lakes, ponds, industrial plants, or homes. Another important feature that adsorbed metals easily reclaimed by either destructive or nondestructive process. Other tests show ion-exchange polymer made inexpensively; easy to use; strong, flexible, not easily torn; and chemically stable in storage, in aqueous solutions, and in acidic or basic solution.

  5. Production of solvated electrons

    NASA Technical Reports Server (NTRS)

    Thomas, J. K.

    1969-01-01

    Current research, both theoretical and experimental, relating to the production and kinetics of interactions of solvated electrons is reviewed. Particular attention is focused on solvated electrons generated by ionizing radiation in water, alcohols, and organic systems.

  6. Ion Mobility Spectrometry of Heavy Metals.

    PubMed

    Ilbeigi, Vahideh; Valadbeigi, Younes; Tabrizchi, Mahmoud

    2016-07-19

    A simple, fast, and inexpensive method was developed for detecting heavy metals via the ion mobility spectrometry (IMS) in the negative mode. In this method, Cl(-) ion produced by the thermal ionization of NaCl is employed as the dopant or the ionizing reagent to ionize heavy metals. In practice, a solution of mixed heavy metals and NaCl salts was directly deposited on a Nichrome filament and electrically heated to vaporize the salts. This produced the IMS spectra of several heavy-metal salts, including CdCl2, ZnSO4, NiCl2, HgSO4, HgCl2, PbI2, and Pb(Ac)2. For each heavy metal (M), one or two major peaks were observed, which were attributed to M·Cl(-) or [M·NaCl]Cl(-)complexes. The method proved to be useful for the analysis of mixed heavy metals. The absolute detection limits measured for ZnSO4 and HgSO4 were 0.1 and 0.05 μg, respectively. PMID:27321408

  7. The role of metal ion-ligand interactions during divalent metal ion adsorption.

    PubMed

    Eldridge, Daniel S; Crawford, Russell J; Harding, Ian H

    2015-09-15

    A suite of seven different divalent metal ions (Ca(II), Cd(II), Cu(II), Mg(II), Ni(II), Pb(II), Zn(II)) was adsorbed from solution onto two Fe2O3 samples, quartz SiO2 and three different amphoteric polystyrene latices (containing amine and carboxyl functional groups). For the metal oxides, a high correlation was observed between the pH at which 50% of the metal was removed from solution (pH50) and the first hydrolysis constant for the metal ion (pK1). For the polystyrene latices, a much higher correlation was observed between the pH50 and pKc (equilibrium constant describing metal-carboxyl affinity) as opposed to pK1. These observations provide evidence of a strong relationship that exists between a metal's affinity for a particular ligand in solution and for that metal ion's affinity for the same ligand present as part of an adsorbing surface. The isoelectric point of the amphoteric latex surface can be increased by decreasing the carboxyl content of the latex surface. For all 7 metal ions, this resulted in a substantial decrease, for any given pH, in adsorption. We suggest that this may be partly due to the decreased carboxyl content, but is dominantly attributable to the presence of less favorable electrostatic conditions. This, in turn, demonstrates that electrostatics play a controlling role in metal ion adsorption onto amphoteric latex surfaces and, in addition to the nature of the metal ion, also controls the pH at which adsorption takes place. PMID:26001134

  8. Ion irradiation effects on metallic nanocrystals

    NASA Astrophysics Data System (ADS)

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C. S.; Foran, G. J.; Cookson, D. J.; Byrne, A. P.; Ridgway, M. C.

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO2. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO2 interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  9. Ohmic model for electrodeposition of metallic ions

    NASA Astrophysics Data System (ADS)

    Gliozzi, A. S.; Alexe-Ionescu, A. L.; Barbero, G.

    2015-10-01

    An ohmic model to describe the electrodeposition of metallic ions on the electrodes is proposed. We assume that the ionic distribution is homogeneous across the electrolytic cell, and that the ionic current is due to the bulk electric field. The nucleation in the electrodeposition is supposed to be well described by a kinetic equation at the electrode, taking into account the neutralization of metallic ions on the electrodes. Two cases are considered. In the first case the characteristic time describing the neutralization of the ions is supposed to be negligible with respect to the flight time of the ions across the cell. In this framework the bulk electric field coincides with the external electric field, and our analysis gives analytical formulae for the surface density of deposited ions and for the electric current in the external circuit. The case where the two characteristic times are comparable, and the effective electric field in the bulk depends on the surface deposition, is considered too. In this case the ordinary differential equations describing the ionic distribution and the adsorption phenomenon have to be solved numerically. The agreement between the presented model and the experimental results published by several groups is reasonably good.

  10. Ion irradiation effects on metallic nanocrystals

    SciTech Connect

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C.S.; Foran, G.J.; Cookson, D.J.; Byrne, A.P.; Ridgway, M.C.

    2008-04-02

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO{sub 2}. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO{sub 2} interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  11. Complexing of metal ions by humic substances

    SciTech Connect

    Bryan, N.D.; Zhang, Y.; Jones, M.N.

    1995-12-31

    The interaction of metal ions with humic substances is being studied using two different techniques. UV-scanning ultracentrifugation is being used to determine molecular weights and to investigate changes in aggregation brought about by metal ion complexation. The relationship between cation charge and conformation of the humic ligands is also being investigated. The complexation of actinide elements (U, Np, Pu, Am) by humic substances from soils contaminated by both natural processes and by low-level effluent releases is also being studied. Gel permeation chromatography has been used to show both that different fractions of humic substances vary greatly in their effectiveness as ligands and that different actinide elements associate with different fractions. These studies have also shown that uranium desorption is kinetically controlled by humic substances.

  12. Interplay of metal ions and urease.

    PubMed

    Carter, Eric L; Flugga, Nicholas; Boer, Jodi L; Mulrooney, Scott B; Hausinger, Robert P

    2009-01-01

    Urease, the first enzyme to be crystallized, contains a dinuclear nickel metallocenter that catalyzes the decomposition of urea to produce ammonia, a reaction of great agricultural and medical importance. Several mechanisms of urease catalysis have been proposed on the basis of enzyme crystal structures, model complexes, and computational efforts, but the precise steps in catalysis and the requirement of nickel versus other metals remain unclear. Purified bacterial urease is partially activated via incubation with carbon dioxide plus nickel ions; however, in vitro activation also has been achieved with manganese and cobalt. In vivo activation of most ureases requires accessory proteins that function as nickel metallochaperones and GTP-dependent molecular chaperones or play other roles in the maturation process. In addition, some microorganisms control their levels of urease by metal ion-dependent regulatory mechanisms. PMID:20046957

  13. Potentiometric titration of metal ions in ethanol.

    PubMed

    Gibson, Graham T T; Mohamed, Mark F; Neverov, Alexei A; Brown, R S

    2006-09-18

    The potentiometric titrations of Zn2+, Cu2+ and 12 Ln3+ metal ions were obtained in ethanol to determine the titration constants (defined as the at which the [-OEt]/[Mx+]t ratios are 0.5, 1.5, and 2.5) and in two cases (La3+ and Zn2+) a complete speciation diagram. Several simple monobasic acids and aminium ions were also titrated to test the validity of experimental titration measurements and to establish new constants in this medium that will be useful for the preparation of buffers and standard solutions. The dependence of the titration constants on the concentration and type of metal ion and specific counterion effects is discussed. In selected cases, the titration profiles were analyzed using a commercially available fitting program to obtain information about the species present in solution, including La3+ for which a dimer model is proposed. The fitting provides the microscopic values for deprotonation of one to four metal-bound ethanol molecules. Kinetics for the La3+-catalyzed ethanolysis of paraoxon as a function of are presented and analyzed in terms of La3+ speciation as determined by the analysis of potentiometric titration curves. The stability constants for the formation of Zn2+ and Cu2+ complexes with 1,5,9-triazacyclododecane as determined by potentiometric titration are presented. PMID:16961382

  14. Metal hydrides for lithium-ion batteries.

    PubMed

    Oumellal, Y; Rougier, A; Nazri, G A; Tarascon, J-M; Aymard, L

    2008-11-01

    Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH(2) with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH(2) electrode shows a large, reversible capacity of 1,480 mAh g(-1) at an average voltage of 0.5 V versus Li(+)/Li(o) which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH(2). Furthermore, the reaction is not specific to MgH(2), as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH(2), which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries. PMID:18849978

  15. Solvation in supercritical water

    SciTech Connect

    Cochran, H.D. ); Cummings, P.T.; Karaborni, S. . Dept. of Chemical Engineering)

    1991-01-01

    The aim of this work is to determine the solvation structure in supercritical water composed with that in ambient water and in simple supercritical solvents. Molecular dynamics studies have been undertaken of systems that model ionic sodium and chloride, atomic argon, and molecular methanol in supercritical aqueous solutions using the simple point charge model of Berendsen for water. Because of the strong interactions between water and ions, ionic solutes are strongly attractive in supercritical water, forming large clusters of water molecules around each ion. Methanol is found to be a weakly-attractive solute in supercritical water. The cluster of excess water molecules surrounding a dissolved ion or polar molecule in supercritical aqueous solutions is comparable to the solvent clusters surrounding attractive solutes in simple supercritical fluids. Likewise, the deficit of water molecules surrounding a dissolved argon atom in supercritical aqueous solutions is comparable to that surrounding repulsive solutes in simple supercritical fluids. The number of hydrogen bonds per water molecule in supercritical water was found to be about one third the number in ambient water. The number of hydrogen bonds per water molecule surrounding a central particle in supercritical water was only mildly affected by the identify of the central particle--atom, molecule, or ion. These results should be helpful in developing a qualitative understanding of important processes that occur in supercritical water. 29 refs., 6 figs.

  16. Metal assisted focused-ion beam nanopatterning

    NASA Astrophysics Data System (ADS)

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates.

  17. Metal assisted focused-ion beam nanopatterning.

    PubMed

    Kannegulla, Akash; Cheng, Li-Jing

    2016-09-01

    Focused-ion beam milling is a versatile technique for maskless nanofabrication. However, the nonuniform ion beam profile and material redeposition tend to disfigure the surface morphology near the milling areas and degrade the fidelity of nanoscale pattern transfer, limiting the applicability of the technique. The ion-beam induced damage can deteriorate the performance of photonic devices and hinders the precision of template fabrication for nanoimprint lithography. To solve the issue, we present a metal assisted focused-ion beam (MAFIB) process in which a removable sacrificial aluminum layer is utilized to protect the working material. The new technique ensures smooth surfaces and fine milling edges; in addition, it permits direct formation of v-shaped grooves with tunable angles on dielectric substrates or metal films, silver for instance, which are rarely achieved by using traditional nanolithography followed by anisotropic etching processes. MAFIB was successfully demonstrated to directly create nanopatterns on different types of substrates with high fidelity and reproducibility. The technique provides the capability and flexibility necessary to fabricate nanophotonic devices and nanoimprint templates. PMID:27479713

  18. Molecular origin of high free energy barriers for alkali metal ion transfer through ionic liquid-graphene electrode interfaces.

    PubMed

    Ivaništšev, Vladislav; Méndez-Morales, Trinidad; Lynden-Bell, Ruth M; Cabeza, Oscar; Gallego, Luis J; Varela, Luis M; Fedorov, Maxim V

    2016-01-14

    In this work we study mechanisms of solvent-mediated ion interactions with charged surfaces in ionic liquids by molecular dynamics simulations, in an attempt to reveal the main trends that determine ion-electrode interactions in ionic liquids. We compare the interfacial behaviour of Li(+) and K(+) at a charged graphene sheet in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, and its mixtures with lithium and potassium tetrafluoroborate salts. Our results show that there are dense interfacial solvation structures in these electrolytes that lead to the formation of high free energy barriers for these alkali metal cations between the bulk and direct contact with the negatively charged surface. We show that the stronger solvation of Li(+) in the ionic liquid leads to the formation of significantly higher interfacial free energy barriers for Li(+) than for K(+). The high free energy barriers observed in our simulations can explain the generally high interfacial resistance in electrochemical storage devices that use ionic liquid-based electrolytes. Overcoming these barriers is the rate-limiting step in the interfacial transport of alkali metal ions and, hence, appears to be a major drawback for a generalised application of ionic liquids in electrochemistry. Some plausible strategies for future theoretical and experimental work for tuning them are suggested. PMID:26661060

  19. Incorporation of metal ions into polyimides

    NASA Technical Reports Server (NTRS)

    Taylor, L. T.; Carver, V. C.; Furtsch, T. A.; Saint Clair, A. K.

    1980-01-01

    The effects of the incorporation of metal ions into various polyimides on polyimide properties are investigated. Polyimide films derived from 3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BDTA) 3,3'-diaminobenzophenone (m,m'-DABP), 4,4'-diaminobenzophenone (p,p'-DABP) or 4,4'-oxydianiline were prepared with the concurrent addition of approximately 20 metals in a variety of forms. In general, it is found that the films derived from BDTA + p,p'-DABP were brittle and of poor quality, with brittle films also produced in most of the BDTA + m, m'-DABP polyimides regardless of whether the added metal was hydrate or anhydrous. Thermomechanical analysis, torsional braid analysis, thermal gravimetric analysis, infrared spectral analysis and isothermal studies on many of the polyimide films produced indicate that the softening temperature is generally increased upon the addition of metal ions, at the expense of thermal stability, while no changes in chemical functionality are observed. The best system studied in regard to polymer property enhancement appears to be tri(acetylacetonato)aluminum(III) added to the m, m'-DABP polyamide, which has been found to exhibit four times the lap shear strength of the polyimide alone.

  20. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  1. On the Metal Ion Selectivity of Oxoacid Extractants

    SciTech Connect

    Hay, Benjamin; Chagnes, Alexandre; Cote, Gerard

    2013-01-01

    Relationships between metal chelate stability, ligand basicity, and metal ion acidity are reviewed and the general applicability is illustrated by linear correlations between aqueous stability constants and ligand pKa values for 35 metals with 26 ligands. The results confirm that most individual ligands of this type exhibit a stability ordering that correlates with the Lewis acidity of the metal ion. It is concluded that the general metal ion selectivity exhibited by liquid-liquid oxoacid extractants such as carboxylic acids, -diketones, and alkylphosphoric acids reflects the intrinsic affinity of the metal ion for the negative oxygen donor ligand.

  2. Liquid metal alloy ion source based metal ion injection into a room-temperature electron beam ion source

    SciTech Connect

    Thorn, A.; Ritter, E.; Zschornack, G.; Ullmann, F.; Pilz, W.; Bischoff, L.

    2012-02-15

    We have carried out a series of measurements demonstrating the feasibility of using the Dresden electron beam ion source (EBIS)-A, a table-top sized, permanent magnet technology based electron beam ion source, as a charge breeder. Low charged gold ions from an AuGe liquid metal alloy ion source were injected into the EBIS and re-extracted as highly charged ions, thereby producing charge states as high as Au{sup 60+}. The setup, the charge breeding technique, breeding efficiencies as well as acceptance and emittance studies are presented.

  3. Liquid metal ion source assembly for external ion injection into an electron string ion source (ESIS)

    NASA Astrophysics Data System (ADS)

    Segal, M. J.; Bark, R. A.; Thomae, R.; Donets, E. E.; Donets, E. D.; Boytsov, A.; Ponkin, D.; Ramsdorf, A.

    2016-02-01

    An assembly for a commercial Ga+ liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga+ ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga+ and Au+ ion beams will be reported as well.

  4. Metal ion binding to iron oxides

    NASA Astrophysics Data System (ADS)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  5. Rational Design of Metal Ion Sequestering Agents

    SciTech Connect

    Raymond, Kenneth N.

    2000-09-30

    The discriminate bonding of metal ions is a challenge to the synthetic chemist and a phenomenon of considerable practical importance.1 An important feature of many technical applications is the specific or preferential binding of a single metal ion in the presence of many metals. Examples range from large-volume uses (e.g. ferric EDTA as a plant food, calcium complexing agents as water softeners or anticaking formulations) to very high technology applications (technetium complexation in radiopharmaceuticals, synthetic metalloenzymes). We are interested in efficient and discriminate binding of actinides for waste stream remediation. Actinides represent a major and long-lived contaminant in nuclear waste. While the separation of actinides from other radioactive components of waste, such as Sr and Cs, is relatively well established, the separation of actinides from each other and in complex solutions (e.g. those found in tank wastes) is not as well resolved. The challenge of designing metal-specific (actinide) ligands is facilitated by examples from nature. Bacteria synthesize Fe(III)-specific ligands, called siderophores, to sequester Fe(III) from the environment and return it to the cell. The similarities between Fe(III) and Pu(IV) (their charge-to-size ratios and acidity), make the siderophores prototypical for designing actinide-specific ligands. The chelating groups present in siderophores are usually hydroxamic acids and catecholamides. We have developed derivatives of these natural products which have improved properties. The catechol derivatives are the 2,3-dihydroxyterephthalamides (TAMs), and 3,4-dihydroxysulfonamides (SFAMs), and the hydroxamic acid derivatives are three isomers of hydroxypyridinones, 1,2- HOPO, 3,2-HOPO, and 3,4-HOPO. All of these ligands are attached to molecular backbones by amides and a very important feature of HOPO and CAM ligands is a strong hydrogen bonds formed between the amide proton and the adjacent phenolic oxygen in the metal

  6. Substrate Profile and Metal-ion Selectivity of Human Divalent Metal-ion Transporter-1*

    PubMed Central

    Illing, Anthony C.; Shawki, Ali; Cunningham, Christopher L.; Mackenzie, Bryan

    2012-01-01

    Divalent metal-ion transporter-1 (DMT1) is a H+-coupled metal-ion transporter that plays essential roles in iron homeostasis. DMT1 exhibits reactivity (based on evoked currents) with a broad range of metal ions; however, direct measurement of transport is lacking for many of its potential substrates. We performed a comprehensive substrate-profile analysis for human DMT1 expressed in RNA-injected Xenopus oocytes by using radiotracer assays and the continuous measurement of transport by fluorescence with the metal-sensitive PhenGreen SK fluorophore. We provide validation for the use of PhenGreen SK fluorescence quenching as a reporter of cellular metal-ion uptake. We determined metal-ion selectivity under fixed conditions using the voltage clamp. Radiotracer and continuous measurement of transport by fluorescence assays revealed that DMT1 mediates the transport of several metal ions that were ranked in selectivity by using the ratio Imax/K0.5 (determined from evoked currents at −70 mV): Cd2+ > Fe2+ > Co2+, Mn2+ ≫ Zn2+, Ni2+, VO2+. DMT1 expression did not stimulate the transport of Cr2+, Cr3+, Cu+, Cu2+, Fe3+, Ga3+, Hg2+, or VO+. 55Fe2+ transport was competitively inhibited by Co2+ and Mn2+. Zn2+ only weakly inhibited 55Fe2+ transport. Our data reveal that DMT1 selects Fe2+ over its other physiological substrates and provides a basis for predicting the contribution of DMT1 to intestinal, nasal, and pulmonary absorption of metal ions and their cellular uptake in other tissues. Whereas DMT1 is a likely route of entry for the toxic heavy metal cadmium, and may serve the metabolism of cobalt, manganese, and vanadium, we predict that DMT1 should contribute little if at all to the absorption or uptake of zinc. The conclusion in previous reports that copper is a substrate of DMT1 is not supported. PMID:22736759

  7. Antifungal Properties of Electrically Generated Metallic Ions

    PubMed Central

    Berger, T. J.; Spadaro, J. A.; Bierman, Richard; Chapin, S. E.; Becker, R. O.

    1976-01-01

    A qualitative and quantitative investigation was undertaken to study the susceptibility of unicellular eucaryotic organisms (yeasts) to metallic cations generated by low levels of direct current. Results were characteristic of effects obtained previously using clinical and standard bacteria test organisms. The present study demonstrated that anodic silver (Ag+) at low direct currents had inhibitory and fungicidal properties. Broth dilution susceptibility tests were made on several species of Candida and one species of Torulopsis. Growth in all isolates was inhibited by concentrations of electrically generated silver ions between 0.5 and 4.7 μg/ml, and silver exhibited fungicidal properties at concentrations as low as 1.9 μg/ml. The inhibitory and fungicidal concentrations of electrically generated silver ions are lower than those reported for other silver compounds. Images PMID:1034467

  8. Metal Ion Intercalated graphitic as Transparent Electrodes

    NASA Astrophysics Data System (ADS)

    Wan, Jiayu; Bao, Wenzhong; Gu, Feng; Fuhrer, Michael; Hu, Liangbing; UMD Team

    To best utilize the performance of graphene based transparent electrodes, we novelized Li-ion intercalation in graphene, and achieved highest performance of carbon based transparent electrodes. Transmission as high as 91.7% with a sheet resistance of 3.0 ohm/sq is achieved for 19-layer LiC6, significantly higher than any other continuous transparent electrodes. The unconventional modification of ultrathin graphite optoelectronic properties is explained by the suppression of interband optical transitions and a small intraband Drude conductivity near the interband edge. To achieve low cost, large scale graphene-based transparent electrodes, we further developed Na-ion intercalated printed reduced graphene oxide (RGO) film. The larger layer-layer distance of RGO allows Na-ion intercalation, leading to simultaneously much higher DC conductivity and higher optical transmittance. Typical increase of transmittance from 36% to 79% and decrease of sheet resistance from 83 kohms/sq to 311 ohms/sq in the printed network was observed. This study demonstrated the great potential of metal-ion intercalation to improve the performance of graphene-based materials for transparent conductor applications.

  9. Solvation and kinetic isotope effects in H and D abstraction reactions from formate ions by D, H, and Mu atoms in aqueous solutions.

    SciTech Connect

    Lossack, A. M.; Roduner, E.; Bartels, D. M.; Chemistry; Univ. of Stuttgart

    2001-01-01

    Electron paramagnetic resonance free induction decay attenuation and muon spin rotation measurements were performed in the temperature range of liquid water for the reactions of the hydrogen isotopes D, H, and Mu with undeuterated and deuterated formate ions. Accurate rate constants were determined, and excellent Arrhenius behavior represented bywas found in all cases. Ab initio calculations at the MP2 and the QCISD level with the aug-cc-pvDZ basis set reveal that the reaction has no electronic barrier in the gas phase. This contrasts with quite sizeable activation energies observed in aqueous solution, and it suggests that the barrier is entirely solvent induced. Calculations at the above mentioned ab initio level using a polarized dielectric continuum for the solvated reaction system restore a realistic barrier and confirm this interpretation. It is shown that the solvent effect is a consequence of a pronounced change of polarization of the system along the reaction path. It may be more appropriate to describe the reaction as a consecutive electron-proton transfer rather than an H atom abstraction.

  10. Behavior of metal ions in bioelectrochemical systems: A review

    NASA Astrophysics Data System (ADS)

    Lu, Zhihao; Chang, Dingming; Ma, Jingxing; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-02-01

    Bioelectrochemical systems (BESs) have been focused on by many researchers to treat wastewater and recover energy or valuable chemicals from wastes. In BESs, metal ions play an important role in the conductivity of solution, reactors' internal resistance, power generation, chemical production and activity of microorganisms. Additionally, the metal ions are also involved in anodic or cathodic reaction processes directly or indirectly in BESs. This paper reviews the behavior of metal ions in BESs, including (1) increase of the conductivity of electrolyte and decrease of internal resistance, (2) transfer for desalination, (3) enhancement or inhibition of the biocatalysis in anode, (4) improvement of cathodic performance by metal ions through electron acceptance or catalysis in cathodic process and (5) behavior of metal ions on membranes. Moreover, the perspectives of BESs removing heavy metal ions in wastewater or solid waste are discussed to realize recovery, reduction and detoxification simultaneously.

  11. Metal ion cooperativity in ribozyme cleavage of RNA

    PubMed Central

    Brännvall, Mathias; Kirsebom, Leif A.

    2001-01-01

    Combinations of chemical and genetic approaches were used to study the function of divalent metal ions in cleavage of RNA by the ribozyme RNase P RNA. We show that different divalent metal ions have differential effects on cleavage site recognition and rescue of cleavage activity by mixing divalent metal ions that do not promote cleavage by themselves. We conclude that efficient and correct cleavage is the result of cooperativity between divalent metal ions bound at different sites in the RNase P RNA-substrate complex. Complementation of a mutant RNase P RNA phenotype as a result of divalent metal ion replacement is demonstrated also. This finding together with other data indicate that one of the metal ions involved in this cooperativity is positioned near the cleavage site. The possibility that the Mg2+/Ca2+ ratio might regulate the activity of biocatalysts that depend on RNA for activity is discussed. PMID:11606743

  12. Fluorescence enhancement aided by metal ion displacement.

    PubMed

    Susini, Vanessa; Ienco, Andrea; Lucia Rossi, Veronica; Paolicchi, Aldo; Sanesi, Antonio

    2016-06-15

    Immunosensors are one of the most common platform used in clinical laboratories, in particular the class based on Enzyme Linked Fluorescent Assays (ELFA) takes advantage of the amplification step of the enzyme, usually the alkaline phosphatase, that catalyzes the hydrolysis of a fluorescent substrate leading it to fluoresce. Anyway, they suffer in sensitivity if compared to molecular diagnostic or more modern in vitro diagnostic devices. In our work, a simple and effective mechanism to enhance the fluorescent signal, and hence the sensitivity of the system, is presented. It is based on the metal ion displacement principle in which a second fluorophore, in our case Calcein Blue, quenched by a cobalt ion is add to the first one (4-MUP), and, in presence of inorganic phosphate, it will be progressively activated by the inorganic phosphate itself leading to the metal displacement. In this way Calcein Blue, newly free to fluoresce, contributes to global fluorescent signal generated by 4-MU. We have tested our proof of principle on a currently used immunoanalyzer, that is VIDAS® system (bioMérieux, Marcy l'Etoile, France) obtaining a fluorescence enhancement of about 50% for each concentration of hydrolyzed 4-MUP tested. PMID:26851581

  13. Separation of traces of metal ions from sodium matrices

    NASA Technical Reports Server (NTRS)

    Korkisch, J.; Orlandini, K. A.

    1969-01-01

    Method for isolating metal ion traces from sodium matrices consists of two extractions and an ion exchange step. Extraction is accomplished by using 2-thenoyltrifluoracetone and dithizone followed by cation exchange.

  14. Biosorption of metal ions from aqueous solutions

    SciTech Connect

    Chen, Jiaping; Yiacoumi, Sotira

    1997-01-01

    Copper biosorption from aqueous solutions by calcium alginate is reported in this paper. The experimental section includes potentiometric titrations of biosorbents, batch equilibrium and kinetic studies of copper biosorption, as well as fixed-bed biosorption experiments. The potentiometric titration results show that the surface charge increases with decreasing pH. The biosorption of copper strongly depends on solution pH; the metal ion binding increases from 0 to 90 percent in pH ranging from 1.5 to 5.0. In addition, a decrease in ionic strength results in an increase of copper ion removal. Kinetic studies indicate that mass transfer plays an important role in the biosorption rate. Furthermore, a fixed-bed biosorption experiment shows that calcium alginate has a significant capacity for copper ion removal. The two-pK Basic Stem model successfully represents the surface charge and equilibrium biosorption experimental data. The calculation results demonstrate that the copper removal may result from the binding of free copper and its hydroxide with surface functional groups of the biosorbents.

  15. Comet Encke: Meteor metallic ion identification by mass spectrometer

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.

    1973-01-01

    Positive metallic ions have been measured in the earth's atmosphere between 85 and 120 km, during the period of the beta Taurids meteor shower, which is associated with Comet Encke. The ions originate during and following ablation of extraterrestrial debris by the earth's atmosphere. The enhancement of metal ion density during meteor showers is primary evidence for their extraterrestrial origin. The present results were obtained from a rocket-borne ion mass spectrometer.

  16. THE ROLES OF METAL IONS IN REGULATION BY RIBOSWITCHES

    PubMed Central

    2012-01-01

    Metal ions are required by all organisms in order to execute an array of essential molecular functions. They play a critical role in many catalytic mechanisms and structural properties. Proper homeostasis of ions is critical; levels that are aberrantly low or high are deleterious to cellular physiology. To maintain stable intracellular pools, metal ion-sensing regulatory (metalloregulatory) proteins couple metal ion concentration fluctuations with expression of genes encoding for cation transport or sequestration. However, these transcriptional-based regulatory strategies are not the only mechanisms by which organisms coordinate metal ions with gene expression. Intriguingly, a few classes of signal-responsive RNA elements have also been discovered to function as metalloregulatory agents. This suggests that RNA-based regulatory strategies can be precisely tuned to intracellular metal ion pools, functionally akin to metalloregulatory proteins. In addition to these metal-sensing regulatory RNAs, there is a yet broader role for metal ions in directly assisting the structural integrity of other signal-responsive regulatory RNA elements. In this chapter, we discuss how the intimate physicochemical relationship between metal ions and nucleic acids is important for the structure and function of metal ion- and metabolite-sensing regulatory RNAs. PMID:22010271

  17. Plasma immersion ion implantation for reducing metal ion release

    SciTech Connect

    Diaz, C.; Garcia, J. A.; Maendl, S.; Pereiro, R.; Fernandez, B.; Rodriguez, R. J.

    2012-11-06

    Plasma immersion ion implantation of Nitrogen and Oxygen on CoCrMo alloys was carried out to improve the tribological and corrosion behaviors of these biomedical alloys. In order to optimize the implantation results we were carried experiments at different temperatures. Tribocorrosion tests in bovine serum were used to measure Co, Cr and Mo releasing by using Inductively Coupled Plasma Mass Spectrometry analysis after tests. Also, X-ray Diffraction analysis were employed in order to explain any obtained difference in wear rate and corrosion tests. Wear tests reveals important decreases in rate of more than one order of magnitude for the best treatment. Moreover decreases in metal release were found for all the implanted samples, preserving the same corrosion resistance of the unimplanted samples. Finally this paper gathers an analysis, in terms of implantation parameters and achieved properties for industrial implementation of these treatments.

  18. Fluorescence imaging of metal ions implicated in diseases.

    PubMed

    Qian, Xuhong; Xu, Zhaochao

    2015-07-21

    Metal ions play an important role in various biological processes, their abnormal homeostasis in cells is related to many diseases, such as neurodegenerative disease, cancer and diabetes. Fluorescent imaging offers a unique route to detect metal ions in cells via a contactless and damage-free way with high spatial and temporal fidelity. Consequently, it represents a promising method to advance the understanding of physiological and pathological functions of metal ions in cell biology. In this highlight article, we will discuss recent advances in fluorescent imaging of metal ions by small-molecule sensors for understanding the role of metals in related diseases. We will also discuss challenges and opportunities for the design of small-molecule sensors for fluorescent detection of cellular metal ions as a potential method for disease diagnosis. PMID:25556818

  19. A biosystem for removal of metal ions from water

    SciTech Connect

    Kilbane, J.J. II.

    1990-01-01

    The presence of heavy metal ions in ground and surface waters constitutes a potential health risk and is an environmental concern. Moreover, processes for the recovery of valuable metal ions are of interest. Bioaccumulation or biosorption is not only a factor in assessing the environmental risk posed by metal ions; it can also be used as a means of decontamination. A biological system for the removal and recovery of metal ions from contaminated water is reported here. Exopolysaccharide-producing microorganisms, including a methanotrophic culture, are demonstrated to have superior metal binding ability, compared with other microbial cultures. This paper describes a biosorption process in which dried biomass obtained from exopolysaccharide-producing microorganisms is encapsulated in porous plastic beads and is used for metal ion binding and recovery. 22 refs., 13 figs.

  20. Ion solvation and hydrogen bonding in Eu 3+-doped mono-urethanesil hybrids carrying pendant short polyether chains

    NASA Astrophysics Data System (ADS)

    Gonçalves, M. C.; de Zea Bermudez, V.; Ostrovskii, D.; Carlos, L. D.

    2002-06-01

    Sol-gel derived Eu 3+-doped materials based on a poly(oxyethylene)/siloxane hybrid host incorporating two coordinating functionalities (polymer ether- and cross-link carbonyl-type oxygen atoms) have been investigated by mid-infrared and Raman spectroscopies with the goal of elucidating the cation/polymer and cation/cross-link interactions and hydrogen bonding. The organic/inorganic matrix of these ormosils is composed of a siliceous backbone bonded through urethane groups to methyl end-capped polyether chains with approximately seven oxyethylene repeat units. This framework, called mono-urethanesil, has been doped with europium triflate, Eu(CF 3SO 3) 3. Xerogels with salt composition n (where n is the molar ratio of OCH 2CH 2 moieties per Eu 3+ ion) ranging from ∞ to 5 have been analyzed. The results obtained indicate that in the mono-urethanesils with n≥60 the Eu 3+ ions coordinate solely to the urethane carbonyl oxygen atoms. The first evidences of the complexation of the polyether chains to the cations have been found at a salt concentration that corresponds to n=40, that is considerably lower than the saturation level the carbonyl groups has attained (in theory at n=7). At a higher salt content (n<40), both types of cation coordination are apparent.

  1. Metal Ion Capture Mechanism of a Copper Metallochaperone.

    PubMed

    Chakravorty, Dhruva K; Li, Pengfei; Tran, Trang T; Bayse, Craig A; Merz, Kenneth M

    2016-01-26

    A novel cation-π interaction between the bound Cu(+) metal ion and Trp44 in the periplasmic Cu(+)/Ag(+) metallochaperone Escherichia coli CusF protects Cu(+) from the oxidative influence of the periplasm. In a popular model of metal ion transfer, a conformational change in the metal binding loop disrupts the cation-π interaction and moves Trp44 aside to provide access to the occluded metal ion binding site in an "open" conformation. In this study, our molecular dynamics simulations support this putative mechanism of metal ion transfer. We find that the apoprotein undergoes a transition back and forth from the crystallographically observed "closed" state to the hypothesized open conformation over multiple microseconds. In agreement with nuclear magnetic resonance data, our simulations show that similar transitions are prohibited in Cu(+)·CusF, suggesting that the conformational transitions are gated by a metal ion-mediated second-shell hydrogen bond between metal binding residue His36 and Asp37 of the metal binding loop region. Ab initio quantum mechanical calculations indicate that metal ion binding strengthens this interaction significantly, much like what is found in the case of other metalloproteins. The study builds toward a common evolutionary role of metal ion-mediated second-shell hydrogen bonds in metalloprotein structure and function. PMID:26690586

  2. Molecular Turnstiles Regulated by Metal Ions.

    PubMed

    Wang, Guangxia; Xiao, Hongmei; He, Jiaojiao; Xiang, Junfeng; Wang, Ying; Chen, Xuebo; Che, Yanke; Jiang, Hua

    2016-04-15

    A family of novel molecular turnstiles 1-3 composed of two stators with pyridyl binding sites and a different-sized triptycene rotor was synthesized. The molecular turnstiles behave in an open state at room temperature in the absence of metal ions but display significantly different closed states in the presence of Ag(+) and Pd(2+). The Ag(+)-mediated turnstiles 1-3Ag exhibited closed states but unreadable bistability at ambient temperature because the Ag(+)-mediated macrocyclic framework is not able to restrict the rotations of the rotors; while temperature was decreased, the macrocyclic frameworks became stable enough to halt the rotations of the rotors, eventually leading to the readable closed states for 1-3Ag. In contrast, Pd(2+)-mediated macrocyclic frameworks are stable, giving rise to a detectable closed state of turnstiles 1-3Pd in a wide range of temperatures. These findings have also been supported by DFT calculations. PMID:26986992

  3. Probing structural patterns of ion association and solvation in mixtures of imidazolium ionic liquids with acetonitrile by means of relative (1)H and (13)C NMR chemical shifts.

    PubMed

    Marekha, Bogdan A; Kalugin, Oleg N; Bria, Marc; Idrissi, Abdenacer

    2015-09-21

    Mixtures of ionic liquids (ILs) with polar aprotic solvents in different combinations and under different conditions (concentration, temperature etc.) are used widely in electrochemistry. However, little is known about the key intermolecular interactions in such mixtures depending on the nature of the constituents and mixture composition. In order to systematically address the intermolecular interactions, the chemical shift variation of (1)H and (13)C nuclei has been followed in mixtures of imidazolium ILs 1-n-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4), 1-n-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), 1-n-butyl-3-methylimidazolium trifluoromethanesulfonate (BmimTfO) and 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) with molecular solvent acetonitrile (AN) over the entire composition range at 300 K. The concept of relative chemical shift variation is proposed to assess the observed effects on a unified and unbiased scale. We have found that hydrogen bonds between the imidazolium ring hydrogen atoms and electronegative atoms of anions are stronger in BmimBF4 and BmimTfO ILs than those in BmimTFSI and BmimPF6. Hydrogen atom at position 2 of the imidazolium ring is substantially more sensitive to interionic hydrogen bonding than those at positions 4-5 in the case of BmimTfO and BmimTFSI ILs. These hydrogen bonds are disrupted upon dilution in AN due to ion dissociation which is more pronounced at high dilutions. Specific solvation interactions between AN molecules and IL cations are poorly manifested. PMID:26278514

  4. Biomolecular electrostatics and solvation: a computational perspective

    PubMed Central

    Ren, Pengyu; Chun, Jaehun; Thomas, Dennis G.; Schnieders, Michael J.; Marucho, Marcelo; Zhang, Jiajing; Baker, Nathan A.

    2012-01-01

    An understanding of molecular interactions is essential for insight into biological systems at the molecular scale. Among the various components of molecular interactions, electrostatics are of special importance because of their long-range nature and their influence on polar or charged molecules, including water, aqueous ions, proteins, nucleic acids, carbohydrates, and membrane lipids. In particular, robust models of electrostatic interactions are essential for understanding the solvation properties of biomolecules and the effects of solvation upon biomolecular folding, binding, enzyme catalysis, and dynamics. Electrostatics, therefore, are of central importance to understanding biomolecular structure and modeling interactions within and among biological molecules. This review discusses the solvation of biomolecules with a computational biophysics view towards describing the phenomenon. While our main focus lies on the computational aspect of the models, we provide an overview of the basic elements of biomolecular solvation (e.g., solvent structure, polarization, ion binding, and nonpolar behavior) in order to provide a background to understand the different types of solvation models. PMID:23217364

  5. Metal Ion Sensors Based on DNAzymes and Related DNA Molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Bing; Kong, Rong-Mei; Lu, Yi

    2011-07-01

    Metal ion sensors are an important yet challenging field in analytical chemistry. Despite much effort, only a limited number of metal ion sensors are available for practical use because sensor design is often a trial-and-error-dependent process. DNAzyme-based sensors, in contrast, can be developed through a systematic selection that is generalizable for a wide range of metal ions. Here, we summarize recent progress in the design of DNAzyme-based fluorescent, colorimetric, and electrochemical sensors for metal ions, such as Pb2+, Cu2+, Hg2+, and UO22+. In addition, we also describe metal ion sensors based on related DNA molecules, including T-T or C-C mismatches and G-quadruplexes.

  6. Metal Ion Sensors Based on DNAzymes and Related DNA Molecules

    PubMed Central

    Kong, Rong-Mei

    2011-01-01

    Metal ion sensors are an important yet challenging field in analytical chemistry. Despite much effort, only a limited number of metal ion sensors are available for practical use because sensor design is often a trial-and-error-dependent process. DNAzyme-based sensors, in contrast, can be developed through a systematic selection that is generalizable for a wide range of metal ions. Here, we summarize recent progress in the design of DNAzyme-based fluorescent, colorimetric, and electrochemical sensors for metal ions, such as Pb2+, Cu2+, Hg2+, and UO22+ In addition, we also describe metal ion sensors based on related DNA molecules, including T-T or C-C mismatches and G-quadruplexes. PMID:21370984

  7. Multiply stripped ion generation in the metal vapor vacuum arc

    SciTech Connect

    Brown, I.G.; Feinberg, B.; Galvin, J.E.

    1986-08-01

    We consider the charge state distribution of ions produced in the metal vapor vacuum arc plasma discharge. A high current metal ion source, the MEVVA ion source, in which the ion beam is extracted from a metal vapor vacuum arc plasma, has been used to obtain the spectra of multiple charged ions produced within the cathode spots. A computer calculation of the charge state distribution that evolves within the spots via stepwide ionization of ions by electron impact provides a theoretical basis for comparison of the data. In this paper we report on the measured charge state distributions for a wide variety of metallic species and compare these results with the predictions of this theory. 55 refs.

  8. Structural insights into protein-metal ion partnerships.

    PubMed

    Barondeau, David P; Getzoff, Elizabeth D

    2004-12-01

    New metalloprotein structures continue to provide discoveries regarding protein-metal ion partnerships. Many recent structures reveal metal ion sites that control or are controlled by protein conformational change, including modulation by alternative splice variants and striking conformational changes. Only a few novel catalytic metal centers have been revealed recently, such as the surprising Ni-hook superoxide dismutase catalytic site and the cubane-like Mn(3)CaO(4) photosynthetic oxygen-evolving center. However, important new variations on old heme themes, breakthroughs in the fields of metal ion regulation and metallochaperones, and captivating insights into partnerships between proteins and minerals have also been described. Very high resolution metal site structures and metalloprotein design will be increasingly important in order to leverage the wealth of native metalloprotein structures into a deep understanding of metal ion site specificity and activity. PMID:15582401

  9. Alkali metal ion battery with bimetallic electrode

    SciTech Connect

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  10. A self-sputtering ion source: A new approach to quiescent metal ion beams

    SciTech Connect

    Oks, Efim M.; Anders, Andre

    2009-09-03

    A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield like Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering (HIPIMS) discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density which reached about 10 mA/cm2 at an extraction voltage of 45 kV and a first gap spacing of 12 mm.

  11. A self-sputtering ion source: A new approach to quiescent metal ion beams

    SciTech Connect

    Oks, Efim

    2010-02-15

    A new metal ion source is presented based on sustained self-sputtering plasma in a magnetron discharge. Metals exhibiting high self-sputtering yield such as Cu, Ag, Zn, and Bi can be used in a high-power impulse magnetron sputtering discharge such that the plasma almost exclusively contains singly charged metal ions of the target material. The plasma and extracted ion beam are quiescent. The ion beams consist mostly of singly charged ions with a space-charge limited current density which reached about 10 mA/cm{sup 2} at an extraction voltage of 45 kV and a first gap spacing of 12 mm.

  12. Development of a lithium liquid metal ion source for MeV ion beam analysis

    SciTech Connect

    Read, P.M.; Maskrey, J.T.; Alton, G.D.

    1988-01-01

    Lithium liquid metal ion sources are an attractive complement to the existing gaseous ion sources that are extensively used for ion beam analysis. This is due in part to the high brightness of the liquid metal ion source and in part to the availability of a lithium ion beam. High brightness is of particular importance to MeV ion microprobes which are now approaching current density limitations on targets determined by the ion source. The availability of a lithium beam provides increased capabilities for hydrogen profiling and high resolution Rutherford backscattering spectrometry. This paper describes the design and performance of a lithium liquid metal ion source suitable for use on a 5MV Laddertron accelerator. Operational experience with the source and some of its uses for ion beam analysis are discussed. 8 refs., 2 figs.

  13. Metal ion adsorption at the ionic liquid-mica interface

    NASA Astrophysics Data System (ADS)

    McDonald, Samila; Elbourne, Aaron; Warr, Gregory G.; Atkin, Rob

    2015-12-01

    Mica has been employed in many studies of ionic liquid (IL) interfaces on account of its atomic smoothness and well defined surface properties. However, until now it has been unclear whether ions dissolved in ILs can compete with the IL cation and adsorb to mica charge sites. In this work amplitude modulated atomic force microscopy (AM-AFM) has been used to probe metal ion adsorption at the interface of mica with propylammonium nitrate (PAN), a room temperature IL. Lithium, sodium, potassium, magnesium and calcium nitrate salts were added to PAN at a concentration of ~60 mM. Aluminum nitrate was also investigated, but only at 5 mM because its solubility in PAN is much lower. The AM-AFM images obtained when the metal ions were present are strikingly different to that of pure PAN, indicating that the ions compete effectively with the propylammonium cation and adsorb to negatively charged sites on the mica surface despite their much lower concentration. This is a consequence of electrostatic attractions between the mica charge sites and the metal ions being significantly stronger than for the propylammonium cation; compared to the metal ions the propylammonium charged group is relatively constrained sterically. A distinct honeycomb pattern is noted for the PAN + Al3+ system, less obviously for the divalent ions and not at all for monovalent ions. This difference is attributed to the strength of electrostatic interactions between metal ions and mica charge sites increasing with the ion charge, which means that divalent and (particularly) trivalent ions are located more precisely above the charged sites of the mica lattice. The images obtained allow important distinctions between metal ion adsorption at mica-water and mica-PAN interfaces to be made.Mica has been employed in many studies of ionic liquid (IL) interfaces on account of its atomic smoothness and well defined surface properties. However, until now it has been unclear whether ions dissolved in ILs can compete

  14. Impregnated-electrode-type liquid metal ion source

    NASA Astrophysics Data System (ADS)

    Ishikawa, J.; Gotoh, Y.; Tsuji, H.; Takagi, T.

    We have developed an impregnated-electrode-type liquid metal ion source whose tip is a sintered-porous structure made of a refractory metal such as tungsten. By this structure the ratio of the liquid metal surface area facing the vacuum to the volume is low, which decreases useless metal evaporation from the surface. The maximum vapour pressure of the metal in operation for this ion source is 10 -1-10 0 Torr, which is 2-3 orders of magnitude higher than that for the needle type. Therefore, useful metal ions such as Ga +, Au +, Ag +, In +, Si 2+, Ge 2+, and Sb 2+ can be extracted from single element metals or alloys. The porous structure of the tip has also an effect on the positive control of the liquid metal flow rate to the tip head. Thus, a stable operation with a high current of a few hundreds of μA can be obtained together with a low current high brightness ion beam. Therefore, this ion source is suitable not only for microfocusing but also for a general use as a metal ion source.

  15. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  16. Computation of methodology-independent single-ion solvation properties from molecular simulations. IV. Optimized Lennard-Jones interaction parameter sets for the alkali and halide ions in water

    SciTech Connect

    Reif, Maria M.; Huenenberger, Philippe H.

    2011-04-14

    The raw single-ion solvation free energies computed from atomistic (explicit-solvent) simulations are extremely sensitive to the boundary conditions and treatment of electrostatic interactions used during these simulations. However, as shown recently [M. A. Kastenholz and P. H. Huenenberger, J. Chem. Phys. 124, 224501 (2006); M. M. Reif and P. H. Huenenberger, J. Chem. Phys. 134, 144103 (2010)], the application of appropriate correction terms permits to obtain methodology-independent results. The corrected values are then exclusively characteristic of the underlying molecular model including in particular the ion-solvent van der Waals interaction parameters, determining the effective ion size and the magnitude of its dispersion interactions. In the present study, the comparison of calculated (corrected) hydration free energies with experimental data (along with the consideration of ionic polarizabilities) is used to calibrate new sets of ion-solvent van der Waals (Lennard-Jones) interaction parameters for the alkali (Li{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, Cs{sup +}) and halide (F{sup -}, Cl{sup -}, Br{sup -}, I{sup -}) ions along with either the SPC or the SPC/E water models. The experimental dataset is defined by conventional single-ion hydration free energies [Tissandier et al., J. Phys. Chem. A 102, 7787 (1998); Fawcett, J. Phys. Chem. B 103, 11181] along with three plausible choices for the (experimentally elusive) value of the absolute (intrinsic) hydration free energy of the proton, namely, {Delta}G{sub hyd} {sup O-minus} [H{sup +}]=-1100, -1075 or -1050 kJ mol{sup -1}, resulting in three sets L, M, and H for the SPC water model and three sets L{sub E}, M{sub E}, and H{sub E} for the SPC/E water model (alternative sets can easily be interpolated to intermediate {Delta}G{sub hyd} {sup O-minus} [H{sup +}] values). The residual sensitivity of the calculated (corrected) hydration free energies on the volume-pressure boundary conditions and on the effective

  17. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  18. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  19. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced. PMID:26860297

  20. Preferential solvation of lithium cations and impacts on oxygen reduction in lithium–air batteries

    SciTech Connect

    Zheng, Dong; Qu, Deyu; Yang, Xiao -Qing; Lee, Hung -Sui; Qu, Deyang

    2015-09-16

    The solvation of Li⁺ with eleven non-aqueous solvents commonly used as the electrolytes for Li batteries were studied. The solvation preferences of different solvents were compared by means of electrospray mass spectrometry and collision-induced dissociation. The relative strength of the solvent for the solvation of Li⁺ was determined. The Lewis acidity of the solvated Li⁺ cations was determined by the preferential solvation of the solvent in the solvation shell. The kinetics of the catalytic disproportionation of the O₂⁻ depends on the relative Lewis acidity of the solvated Li⁺ ion. The impact of the solvated Li⁺ cation on the O₂ redox reaction was also investigated.

  1. Preferential solvation of lithium cations and impacts on oxygen reduction in lithium–air batteries

    DOE PAGESBeta

    Zheng, Dong; Qu, Deyu; Yang, Xiao -Qing; Lee, Hung -Sui; Qu, Deyang

    2015-09-16

    The solvation of Li⁺ with eleven non-aqueous solvents commonly used as the electrolytes for Li batteries were studied. The solvation preferences of different solvents were compared by means of electrospray mass spectrometry and collision-induced dissociation. The relative strength of the solvent for the solvation of Li⁺ was determined. The Lewis acidity of the solvated Li⁺ cations was determined by the preferential solvation of the solvent in the solvation shell. The kinetics of the catalytic disproportionation of the O₂⁻ depends on the relative Lewis acidity of the solvated Li⁺ ion. The impact of the solvated Li⁺ cation on the O₂ redoxmore » reaction was also investigated.« less

  2. Sequence-selective metal ion binding to DNA oligonucleotides.

    PubMed

    Frøystein, N A; Davis, J T; Reid, B R; Sletten, E

    1993-07-01

    Metal ion titrations of several DNA oligonucleotides, 10 dodecamers and one decamer have been monitored by 1H NMR spectroscopy in order to elucidate metal ion binding patterns. Also, the effects of paramagnetic impurities on resonance linewidths and NOESY cross-peak intensities have been reversed by EDTA back-titration experiments. 1H 1D NMR spectra were recorded after successive additions of aliquots of different metal salts to oligonucleotide samples. Paramagnetic manganese(II) salts were used in most cases, but a few samples were also titrated with diamagnetic zinc(II). From this study, we conclude that there exists a sequence-selective metal ion binding pattern. The metal ions bind predominantly to 5'-G in the contexts 5'-GC and 5'-GA. The order of preference seems to be GG > or = GA > GT > > GC. No evidence of metal ion binding to 5'-G in 5'-GC steps or to non-G residues was found. The H6 or H8 resonances on preceding (5'-) bases were affected by the adjacent bound paramagnetic metal ion, but no effect was observed on the protons of the succeeding (3'-) base. The metal binding site in the duplexes is most likely at G-N7, as manifested by the pronounced paramagnetic line broadening or diamagnetic shift of the G-H8 signal. This sequence selectivity may be qualitatively explained by a sequence-dependent variation in the molecular electrostatic potentials of guanine residues (MEPs) along the oligonucleotide chain. PMID:8363924

  3. Metal ion adsorption at the ionic liquid-mica interface.

    PubMed

    McDonald, Samila; Elbourne, Aaron; Warr, Gregory G; Atkin, Rob

    2016-01-14

    Mica has been employed in many studies of ionic liquid (IL) interfaces on account of its atomic smoothness and well defined surface properties. However, until now it has been unclear whether ions dissolved in ILs can compete with the IL cation and adsorb to mica charge sites. In this work amplitude modulated atomic force microscopy (AM-AFM) has been used to probe metal ion adsorption at the interface of mica with propylammonium nitrate (PAN), a room temperature IL. Lithium, sodium, potassium, magnesium and calcium nitrate salts were added to PAN at a concentration of ∼60 mM. Aluminum nitrate was also investigated, but only at 5 mM because its solubility in PAN is much lower. The AM-AFM images obtained when the metal ions were present are strikingly different to that of pure PAN, indicating that the ions compete effectively with the propylammonium cation and adsorb to negatively charged sites on the mica surface despite their much lower concentration. This is a consequence of electrostatic attractions between the mica charge sites and the metal ions being significantly stronger than for the propylammonium cation; compared to the metal ions the propylammonium charged group is relatively constrained sterically. A distinct honeycomb pattern is noted for the PAN + Al(3+) system, less obviously for the divalent ions and not at all for monovalent ions. This difference is attributed to the strength of electrostatic interactions between metal ions and mica charge sites increasing with the ion charge, which means that divalent and (particularly) trivalent ions are located more precisely above the charged sites of the mica lattice. The images obtained allow important distinctions between metal ion adsorption at mica-water and mica-PAN interfaces to be made. PMID:26661934

  4. Separation of platinum group metal ions by Donnan dialysis

    SciTech Connect

    Brajter, K.; Slonawska, K.; Cox, J.A.

    1985-10-01

    Separations of metal ions on the basis of Donnan dialysis across anion-exchange membranes should be possible if the receiver electrolyte composition favors the formation of selected anionic complexes of the sample metal ions. Moreover, such a separation has the possibility of being better suited from some applications than batch or column experiments with anion-exchange resins. The above hypothesis are tested on the platinum-group metal ions, Pt(IV), Rh(III), Pd(II), Ir(III), and Ir(IV). 13 references, 4 tables.

  5. Progress in metal ion separation and preconcentration : an overview.

    SciTech Connect

    Bond, A. H.

    1998-05-19

    A brief historical perspective covering the most mature chemically-based metal ion separation methods is presented, as is a summary of the recommendations made in the 1987 National Research Council (NRC) report entitled ''Separation and Purification: Critical Needs and Opportunities''. A review of Progress in Metal Ion Separation and Preconcentration shows that advances are occurring in each area of need cited by the NRC. Following an explanation of the objectives and general organization of this book, the contents of each chapter are briefly summarized and some future research opportunities in metal ion separations are presented.

  6. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis.

    PubMed

    Ramírez-Sandoval, Roxana; Luévano-Rodríguez, Nayeli; Rodríguez-Rodríguez, Mayra; Pérez-Pérez, María Elena; Saldívar-Elias, Sergio; Gurrola-Carlos, Reinaldo; Avalos-Díaz, Esperanza; Bollain-y-Goytia, Juan José; Herrera-Esparza, Rafael

    2015-01-01

    Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO3)2. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis. PMID:26064998

  7. An Animal Model Using Metallic Ions to Produce Autoimmune Nephritis

    PubMed Central

    Ramírez-Sandoval, Roxana; Luévano-Rodríguez, Nayeli; Rodríguez-Rodríguez, Mayra; Pérez-Pérez, María Elena; Saldívar-Elias, Sergio; Gurrola-Carlos, Reinaldo; Avalos-Díaz, Esperanza; Bollain-y-Goytia, Juan José

    2015-01-01

    Autoimmune nephritis triggered by metallic ions was assessed in a Long-Evans rat model. The parameters evaluated included antinuclear autoantibody production, kidney damage mediated by immune complexes detected by immunofluorescence, and renal function tested by retention of nitrogen waste products and proteinuria. To accomplish our goal, the animals were treated with the following ionic metals: HgCl2, CuSO4, AgNO3, and Pb(NO3)2. A group without ionic metals was used as the control. The results of the present investigation demonstrated that metallic ions triggered antinuclear antibody production in 60% of animals, some of them with anti-DNA specificity. Furthermore, all animals treated with heavy metals developed toxic glomerulonephritis with immune complex deposition along the mesangium and membranes. These phenomena were accompanied by proteinuria and increased concentrations of urea. Based on these results, we conclude that metallic ions may induce experimental autoimmune nephritis. PMID:26064998

  8. Rechargeable dual-metal-ion batteries for advanced energy storage.

    PubMed

    Yao, Hu-Rong; You, Ya; Yin, Ya-Xia; Wan, Li-Jun; Guo, Yu-Guo

    2016-04-14

    Energy storage devices are more important today than any time before in human history due to the increasing demand for clean and sustainable energy. Rechargeable batteries are emerging as the most efficient energy storage technology for a wide range of portable devices, grids and electronic vehicles. Future generations of batteries are required to have high gravimetric and volumetric energy, high power density, low price, long cycle life, high safety and low self-discharge properties. However, it is quite challenging to achieve the above properties simultaneously in state-of-the-art single metal ion batteries (e.g. Li-ion batteries, Na-ion batteries and Mg-ion batteries). In this contribution, hybrid-ion batteries in which various metal ions simultaneously engage to store energy are shown to provide a new perspective towards advanced energy storage: by connecting the respective advantages of different metal ion batteries they have recently attracted widespread attention due to their novel performances. The properties of hybrid-ion batteries are not simply the superposition of the performances of single ion batteries. To enable a distinct description, we only focus on dual-metal-ion batteries in this article, for which the design and the benefits are briefly discussed. We enumerate some new results about dual-metal-ion batteries and demonstrate the mechanism for improving performance based on knowledge from the literature and experiments. Although the search for hybrid-ion batteries is still at an early age, we believe that this strategy would be an excellent choice for breaking the inherent disadvantages of single ion batteries in the near future. PMID:26996438

  9. Metal ion levels: how can they help us?

    PubMed

    Griffin, William L

    2014-04-01

    Ion levels have been shown to reliably predict abnormal function of the bearing surface with increased wear, but ion levels should not be used alone as a trigger for when to proceed with revision surgery with metal-metal articulations. Risk stratification strategies help determine which patients should be monitored more closely with serial ion levels, cross-sectional imaging with a MARS MRI, or proceed on to revision. Based on the current data available, an ion level greater than 4.5 ppb (Cr or Co) may serve as a threshold for when abnormal wear is occurring, and is suggested as a trigger for a MARS MRI scan. PMID:24655610

  10. Effects of metal ions on fibroblasts and spiral ganglion cells.

    PubMed

    Paasche, G; Ceschi, P; Löbler, M; Rösl, C; Gomes, P; Hahn, A; Rohm, H W; Sternberg, K; Lenarz, T; Schmitz, K-P; Barcikowski, S; Stöver, T

    2011-04-01

    Degeneration of spiral ganglion cells (SGC) after deafness and fibrous tissue growth around the electrode carrier after cochlear implantation are two of the major challenges in current cochlear implant research. Metal ions are known to possess antimicrobial and antiproliferative potential. The use of metal ions could therefore provide a way to reduce tissue growth around the electrode array after cochlear implantation. Here, we report on in vitro experiments with different concentrations of metal salts with antiproliferative and toxic effects on fibroblasts, PC-12 cells, and freshly isolated spiral ganglion cells, the target cells for electrical stimulation by a cochlear implant. Standard cell lines (NIH/3T3 and L-929 fibroblasts and PC-12 cells) and freshly isolated SGC were incubated with concentrations of metal ions between 0.3 μmol/liter and 10 mmol/liter for 48 hr. Cell survival was investigated by neutral red uptake, CellQuantiBlue assay, or counting of stained surviving neurons. Silver ions exhibited distinct thresholds for proliferating and confluent cells. For zinc ions, the effective concentration was lower for fibroblasts than for PC-12 cells. SGC showed comparable thresholds for reduced cell survival not only for silver and zinc ions but also for copper(II) ions, indicating that these ions might be promising for reducing tissue growth on the surface of CI electrode arrays. These effects were also observed when combinations of two of these ions were investigated. PMID:21312225

  11. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  12. Extracting metal ions with diphosphonic acid, or derivative thereof

    DOEpatents

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  13. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1984-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  14. Metallic glass as a temperature sensor during ion plating

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    The temperature of the interface and/or a superficial layer of a substrate during ion plating was investigated using a metallic glass of the composition Fe67Co18B14Si1 as the substrate and as the temperature sensor. Transmission electron microscopy and diffraction studies determined the microstructure of the ion-plated gold film and the substrate. Results indicate that crystallization occurs not only in the film, but also in the substrate. The grain size of crystals formed during ion plating was 6 to 60 nm in the gold film and 8 to 100 nm in the substrate at a depth of 10 to 15 micrometers from the ion-plated interface. The temperature rise of the substrate during ion plating was approximately 500 C. Discontinuous changes in metallurgical microstructure, and physical, chemical, and mechanical properties during the amorphous to crystalline transition in metallic glasses make metallic glasses extremely useful materials for temperature sensor applications in coating processes.

  15. Predicting the relative toxicity of metal ions using ion characteristics: Microtox{reg_sign} bioluminescence assay

    SciTech Connect

    McCloskey, J.T.; Newman, M.C.; Clark, S.B.

    1996-10-01

    Quantitative structure-activity relationships have been used to predict the relative toxicity of organic compounds. Although not as common, ion characteristics have also proven useful for predicting the relative toxicity of metal ions. The purpose of this study was to determine if the relative toxicity of metal ions using the Microtox{reg_sign} bioassay was predictable using ion characteristics. Median effect concentrations (EC50s) were determined for 20 metals in a NaNO{sub 3} medium, which reflected freshwater speciation conditions, using the Microtox bacterial assay. The log of EC50 values was modeled using several ion characteristics, and Akaike`s Information Criterion was calculated to determine which ion characteristics provided the best fit. Whether modeling total ion or free ion EC50 values, the one variable which best modeled EC50s was the softness index, while a combination of {chi}{sub m}{sup 2}r ({chi}{sub m} = electronegativity, r = Pauling ionic radius) and {vert_bar}log K{sub OH}{vert_bar} was the best two-variable model. Other variables, including {Delta}E{sub 0} and {chi}{sub m}{sup 2}r (one-variable models) and (AN/{Delta}IP, {Delta}E{sub 0}) and ({chi}{sub m}{sup 2}r, Z{sup 2}/r) (two-variable models), also gave adequate fits. Modeling with speciated (free ion) versus unspeciated (total ion) EC50 values did not improve fits. Modeling mono-, di-, and trivalent metal ions separately improved the models. The authors conclude that ion characteristics can be used to predict the relative toxicity of metal ions whether in freshwater (NaNO{sub 3} medium) or saltwater (NaCl medium) speciation conditions and that this approach can be applied to metal ions varying widely in both valence and binding tendencies.

  16. An Engineered Palette of Metal Ion Quenchable Fluorescent Proteins

    PubMed Central

    Yu, Xiaozhen; Strub, Marie-Paule; Barnard, Travis J.; Noinaj, Nicholas; Piszczek, Grzegorz; Buchanan, Susan K.; Taraska, Justin W.

    2014-01-01

    Many fluorescent proteins have been created to act as genetically encoded biosensors. With these sensors, changes in fluorescence report on chemical states in living cells. Transition metal ions such as copper, nickel, and zinc are crucial in many physiological and pathophysiological pathways. Here, we engineered a spectral series of optimized transition metal ion-binding fluorescent proteins that respond to metals with large changes in fluorescence intensity. These proteins can act as metal biosensors or imaging probes whose fluorescence can be tuned by metals. Each protein is uniquely modulated by four different metals (Cu2+, Ni2+, Co2+, and Zn2+). Crystallography revealed the geometry and location of metal binding to the engineered sites. When attached to the extracellular terminal of a membrane protein VAMP2, dimeric pairs of the sensors could be used in cells as ratiometric probes for transition metal ions. Thus, these engineered fluorescent proteins act as sensitive transition metal ion-responsive genetically encoded probes that span the visible spectrum. PMID:24752441

  17. DFT solvation studies of carbohydrates: implicit and explicit solvation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solvents play a role in carbohydrate structure. Therefore, it is important to include solvation effects in calculations to allow a more realistic comparison with experimental data. A possible way to include solvation effects is to use implicit solvation models such as COSMO and PCM. Another avenu...

  18. Smart textile device using ion polymer metal compound.

    PubMed

    Nakamura, Taro; Ihara, Tadashi

    2013-01-01

    We have developed a smart textile device that detects angular displacement of attached surface using ion polymer metal compound. The device was composed of ion polymer metal compound (IPMC) which was fabricated from Nafion resin by heat-press and chemical gold plating. The generated voltage from IPMC was measured as a function of bending angle. Fabricated IPMC device was weaved into a cotton cloth and multidirectional movements were detected. PMID:24109750

  19. An optical dosimeter for monitoring heavy metal ions in water

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Regan, Fiona; Leamy, D.; Mencaglia, A. A.; Ciaccheri, L.

    2005-05-01

    This work presents an optochemical dosimeter for determining and discriminating nickel, copper, and cobalt ions in water that can be used as an early warning system for water pollution. An inexpensive fiber optic spectrophotometer monitors the sensor's spectral behavior under exposure to water solutions of heavy metal ions in the 1-10 mg/l concentration range. The Principal Component Analysis (PCA) method quantitatively determines the heavy metals and discriminates their type and combination.

  20. Metal ion implantation for large scale surface modification

    SciTech Connect

    Brown, I.G.

    1992-10-01

    Intense energetic beams of metal ions can be produced by using a metal vapor vacuum arc as the plasma discharge from which the ion beam is formed. We have developed a number of ion sources of this kind and have built a metal ion implantation facility which can produce repetitively pulsed ion beams with mean ion energy up to several hundred key, pulsed beam current of more than an ampere, and time averaged current of several tens of milliamperes delivered onto a downstream target. We've also done some preliminary work on scaling up this technology to very large size. For example, a 50-cm diameter (2000 cm[sup 2]) set of beam formation electrodes was used to produce a pulsed titanium beam with ion current over 7 amperes at a mean ion energy of 100 key. Separately, a dc embodiment has been used to produce a dc titanium ion beam with current over 600 mA, power supply limited in this work, and up to 6 amperes of dc plasma ion current was maintained for over an hour. In a related program we've developed a plasma immersion method for applying thin metallic and compound films in which the added species is atomically mixed to the substrate. By adding a gas flow to the process, well-bonded compound films can also be formed; metallic films and multilayers as well as oxides and nitrides with mixed transition zones some hundreds of angstroms thick have been synthesized. Here we outline these parallel metal-plasma-based research programs and describe the hardware that we've developed and some of the surface modification research that we've done with it.

  1. Production of negative hydrogen ions on metal grids

    SciTech Connect

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  2. Functional Identification of Catalytic Metal Ion Binding Sites within RNA

    PubMed Central

    2005-01-01

    The viability of living systems depends inextricably on enzymes that catalyze phosphoryl transfer reactions. For many enzymes in this class, including several ribozymes, divalent metal ions serve as obligate cofactors. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s). In the Tetrahymena group I intron, previous work using atomic mutagenesis and quantitative analysis of metal ion rescue behavior identified three metal ions (MA, MB, and MC) that make five interactions with the ribozyme substrates in the reaction's transition state. Here, we combine substrate atomic mutagenesis with site-specific phosphorothioate substitutions in the ribozyme backbone to develop a powerful, general strategy for defining the ligands of catalytic metal ions within RNA. In applying this strategy to the Tetrahymena group I intron, we have identified the pro-SP phosphoryl oxygen at nucleotide C262 as a ribozyme ligand for MC. Our findings establish a direct connection between the ribozyme core and the functionally defined model of the chemical transition state, thereby extending the known set of transition-state interactions and providing information critical for the application of the recent group I intron crystallographic structures to the understanding of catalysis. PMID:16092891

  3. Implantation of nitrogen, carbon, and phosphorus ions into metals

    SciTech Connect

    Guseva, M.I.; Gordeeva, G.V.

    1987-01-01

    The application of ion implantation for alloying offers a unique opportunity to modify the chemical composition, phase constitution, and microstructure of the surface layers of metals. The authors studied ion implantation of nitrogen and carbon into the surface layers of metallic targets. The phase composition of the implanted layers obtained on the Kh18N10T stainless steel, the refractory molybdenum alloy TsM-6, niobium, and nickel was determined according to the conventional method of recording the x-ray diffraction pattern of the specimens using monochromatic FeK/sub alpha/-radiation on a DRON-2,0 diffractometer. The targets were bombarded at room temperature in an ILU-3 ion accelerator. The implantation of metalloid ions was also conducted with the targets being bombarded with 100-keV phosphorus ions and 40-keV carbon ions.

  4. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  5. Metal ion adsorption to complexes of humic acid and metal oxides: Deviations from the additivity rule

    SciTech Connect

    Vermeer, A.W.P.; McCulloch, J.K.; Van Riemsdijk, W.H.; Koopal, L.K.

    1999-11-01

    The adsorption of cadmium ions to a mixture of Aldrich humic acid and hematite is investigated. The actual adsorption to the humic acid-hematite complex is compared with the sum of the cadmium ion adsorptivities to each of the isolated components. It is shown that the sum of the cadmium ion adsorptivities is not equal to the adsorption to the complex. In general, the adsorption of a specific metal ion to the complex can be understood and qualitatively predicted using the adsorptivities to each of the pure components and taking into account the effect of the pH on the interaction between humic acid and iron oxide on the metal ion adsorption. Due to the interaction between the negatively charged humic acid and the positively charged iron oxide, the adsorption of metal ions on the mineral oxide in the complex will increase as compared to that on the isolated oxide, whereas the adsorption to the humic acid will decrease as compared to that on the isolated humic acid. As a result, the overall adsorption of a specific metal ion to the complex will be smaller than predicted by the additivity rule when this metal ion has a more pronounced affinity for the humic acid than for the mineral oxide, whereas it will be larger than predicted by the additivity rule when the metal ion has a higher affinity for the oxide than for the humic acid.

  6. Polar solvation and electron transfer

    SciTech Connect

    Not Available

    1993-04-13

    The report is divided into the following sections: completion of previous studies on solvation dynamics, dipole lattice studies, inertial components of solvation response, simple models of solvation dynamics, rotational dynamics and dielectric friction, intramolecular electron transfer reactions, and intermolecular donor-acceptor complexes.

  7. Structural Metals in the Group I Intron: A Ribozyme with a Multiple Metal Ion Core

    SciTech Connect

    Stahley,M.; Adams, P.; Wang, J.; Strobel, S.

    2007-01-01

    Metal ions play key roles in the folding and function for many structured RNAs, including group I introns. We determined the X-ray crystal structure of the Azoarcus bacterial group I intron in complex with its 5' and 3' exons. In addition to 222 nucleotides of RNA, the model includes 18 Mg2+ and K+ ions. Five of the metals bind within 12 Angstroms of the scissile phosphate and coordinate the majority of the oxygen atoms biochemically implicated in conserved metal-RNA interactions. The metals are buried deep within the structure and form a multiple metal ion core that is critical to group I intron structure and function. Eight metal ions bind in other conserved regions of the intron structure, and the remaining five interact with peripheral structural elements. Each of the 18 metals mediates tertiary interactions, facilitates local bends in the sugar-phosphate backbone or binds in the major groove of helices. The group I intron has a rich history of biochemical efforts aimed to identify RNA-metal ion interactions. The structural data are correlated to the biochemical results to further understand the role of metal ions in group I intron structure and function.

  8. Plasma spectroscopy of metal ions for hyper-electron cyclotron resonance ion source.

    PubMed

    Muto, Hideshi; Ohshiro, Yukimitsu; Yamaka, Shoichi; Watanabe, Shin-ichi; Oyaizu, Michihiro; Kubono, Shigeru; Yamaguchi, Hidetoshi; Kase, Masayuki; Hattori, Toshiyuki; Shimoura, Susumu

    2014-02-01

    In this research, the optical line spectra of metal ions from ECR plasma were observed using a grating monochromator with a photomultiplier. The light intensity of line spectrum from the ECR plasma had a strong correlation with ion beam intensity measured by a magnetic mass analyzer. This correlation is a significant information for the beam tuning process, because it allows to conduct the extraction of the desired metal ion species from the ECR plasma. Separation of ion species of the same charge to mass ratio with an electromagnetic mass analyzer is known to be an exceptionally complex process, but this research provides a new approach for its simplification. In this paper the grating monochromator method for metal ion beam tuning such as (40)Ca(12+), (56)Fe(15+), and (85)Rb(20+) of hyper-ECR ion source as an injector for RIKEN Azimuthal Varying Field cyclotron is described. PMID:24593484

  9. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    NASA Astrophysics Data System (ADS)

    Resta, V.; Quarta, G.; Farella, I.; Maruccio, L.; Cola, A.; Calcagnile, L.

    2014-07-01

    The implantation of 1 MeV metal (63Cu+, 107Ag+, 197Au+) and non-metal (4He+, 12C+) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 1013 ions cm-2, the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated Cdbnd C bonds. For fluences around 1 × 1017 ions cm-2, the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C0x clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C0x cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼107 Ω/sq has been measured for implantation with metals at doses higher than 5 × 1016 ions cm-2, being 1017 Ω/sq the corresponding sheet resistance for pristine PC.

  10. Removal of metal ions from aqueous solution

    SciTech Connect

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1990-03-20

    This patent describes a method of removing heavy metals from aqueous solution, a composition of matter used in effecting the removal, and apparatus used in effecting the removal. One or more of the polypeptides, poly ({gamma}-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ({gamma}-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  11. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  12. Removal of metal ions from aqueous solution

    SciTech Connect

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1988-08-26

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly ({gamma}-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ({gamma}-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  13. Removal of metal ions from aqueous solution

    SciTech Connect

    Jackson, P.J.; Delhaize, E.; Robinson, N.J.; Unkefer, C.J.; Furlong, C.

    1990-11-13

    A method is disclosed of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly ([gamma]glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly ([gamma]glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form. 1 fig.

  14. Removal of metal ions from aqueous solution

    SciTech Connect

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-11-13

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  15. In Vivo Metal Ion Imaging Using Fluorescent Sensors.

    PubMed

    Van de Bittner, Genevieve C; Hirayama, Tasuku

    2016-01-01

    In vivo imaging in living animals provides the ability to monitor alterations of signaling molecules, ions, and other biological components during various life stages and in disease. The data gained from in vivo imaging can be used for biological discovery or to determine elements of disease progression and can inform the development and translation of therapeutics. Herein, we present theories behind small-molecule, fluorescent, metal ion sensors as well as the methods for their successful application to in vivo metal ion imaging, including ex vivo validation. PMID:27283424

  16. Neutralization by Metal Ions of the Toxicity of Sodium Selenide

    PubMed Central

    Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre

    2013-01-01

    Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag+, Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co2+ and Ni2+) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca2+, Mg2+, Mn2+) or weakly interact (Fe2+) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds. PMID:23342137

  17. The Use of Divalent Metal Ions by Type II Topoisomerases

    PubMed Central

    Deweese, Joseph E.; Osheroff, Neil

    2010-01-01

    Type II topoisomerases are essential enzymes that regulate DNA under- and overwinding and remove knots and tangles from the genetic material. In order to carry out their critical physiological functions, these enzymes utilize a double-stranded DNA passage mechanism that requires them to generate a transient double-stranded break. Consequently, while necessary for cell survival, type II topoisomerases also have the capacity to fragment the genome. This feature of the prokaryotic and eukaryotic enzymes, respectively, is exploited to treat a variety of bacterial infections and cancers in humans. All type II topoisomerases require divalent metal ions for catalytic function. These metal ions function in two separate active sites and are necessary for the ATPase and DNA cleavage/ligation activities of the enzymes. ATPase activity is required for the strand passage process and utilizes the metal-dependent binding and hydrolysis of ATP to drive structural rearrangements in the protein. Both the DNA cleavage and ligation activities of type II topoisomerases require divalent metal ions and appear to utilize a novel variant of the canonical two-metal-ion phosphotransferase/hydrolase mechanism to facilitate these reactions. This article will focus primarily on eukaryotic type II topoisomerases and the roles of metal ions in the catalytic functions of these enzymes. PMID:20703329

  18. Metal ion implantation in inert polymers for strain gauge applications

    NASA Astrophysics Data System (ADS)

    Di Girolamo, Giovanni; Massaro, Marcello; Piscopiello, Emanuela; Tapfer, Leander

    2010-10-01

    Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu + and Ni +) and with fluences in the range between 1 × 10 16 and 1 × 10 17 ions/cm 2, in order to promote the precipitation of dispersed metal nanoparticles or the formation of a continuous thin film. The nanoparticle morphology and the microstructural properties of polymer nanocomposites were investigated by glancing-incidence X-ray diffraction and transmission electron microscopy (TEM) measurements. At lower fluences (<5 × 10 16 ions/cm 2) a spontaneous precipitation of spherical-shaped metal nanoparticles occurred below the polymer top-surface (˜50 nm), whereas at higher fluences the aggregation of metal nanoparticles produced the formation of a continuous polycrystalline nanofilm. Furthermore, a characteristic surface plasmon resonance peak was observed for nanocomposites produced at lower ion fluences, due to the presence of Cu nanoparticles. A reduced electrical resistance of the near-surface metal-polymer nanocomposite was measured. The variation of electrical conductivity as a function of the applied surface load was measured: we found a linear relationship and a very small hysteresis.

  19. The use of divalent metal ions by type II topoisomerases.

    PubMed

    Deweese, Joseph E; Osheroff, Neil

    2010-07-01

    Type II topoisomerases are essential enzymes that regulate DNA under- and overwinding and remove knots and tangles from the genetic material. In order to carry out their critical physiological functions, these enzymes utilize a double-stranded DNA passage mechanism that requires them to generate a transient double-stranded break. Consequently, while necessary for cell survival, type II topoisomerases also have the capacity to fragment the genome. This feature of the prokaryotic and eukaryotic enzymes, respectively, is exploited to treat a variety of bacterial infections and cancers in humans. All type II topoisomerases require divalent metal ions for catalytic function. These metal ions function in two separate active sites and are necessary for the ATPase and DNA cleavage/ligation activities of the enzymes. ATPase activity is required for the strand passage process and utilizes the metal-dependent binding and hydrolysis of ATP to drive structural rearrangements in the protein. Both the DNA cleavage and ligation activities of type II topoisomerases require divalent metal ions and appear to utilize a novel variant of the canonical two-metal-ion phosphotransferase/hydrolase mechanism to facilitate these reactions. This article will focus primarily on eukaryotic type II topoisomerases and the roles of metal ions in the catalytic functions of these enzymes. PMID:20703329

  20. Luminometric Label Array for Quantification and Identification of Metal Ions.

    PubMed

    Pihlasalo, Sari; Montoya Perez, Ileana; Hollo, Niklas; Hokkanen, Elina; Pahikkala, Tapio; Härmä, Harri

    2016-05-17

    Quantification and identification of metal ions has gained interest in drinking water and environmental analyses. We have developed a novel label array method for the quantification and identification of metal ions in drinking water. This simple ready-to-go method is based on the nonspecific interactions of multiple unstable lanthanide chelates and nonantenna ligands with sample leading to a luminescence signal profile, unique to the sample components. The limit of detection at ppb concentration level and average coefficient of variation of 10% were achieved with the developed label array. The identification of 15 different metal ions including different oxidation states Cr(3+)/Cr(6+), Cu(+)/Cu(2+), Fe(2+)/Fe(3+), and Pb(2+)/Pb(4+) was demonstrated. Moreover, a binary mixture of Cu(2+) and Fe(3+) and ternary mixture of Cd(2+), Ni(2+), and Pb(2+) were measured and individual ions were distinguished. PMID:27086705

  1. Ion beam induced nanosized Ag metal clusters in glass

    NASA Astrophysics Data System (ADS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-04-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam.

  2. Hall transport of divalent metal ion modified DNA lattices

    SciTech Connect

    Dugasani, Sreekantha Reddy; Lee, Keun Woo; Yoo, Sanghyun; Gnapareddy, Bramaramba; Bashar, Saima; Park, Sung Ha; Kim, Si Joon; Jung, Joohye; Jung, Tae Soo; Kim, Hyun Jae

    2015-06-29

    We investigate the Hall transport characteristics of double-crossover divalent metal ion (Cu{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, and Co{sup 2+})-modified DNA (M-DNA) lattices grown on silica via substrate-assisted growth. The electronic characteristics of the M-DNA lattices are investigated by varying the concentration of the metal ions and then conducting Hall measurements, including resistivity, Hall mobility, carrier concentration, and magneto resistance. The tendency of the resistivity and Hall mobility was to initially decrease as the ion concentration increased, until reaching the saturation concentration (C{sub s}) of each metal ion, and then to increase as the ion concentration increased further. On the other hand, the carrier concentration revealed the opposite tendency as the resistivity and Hall mobility. The specific binding (≤C{sub s}) and the nonspecific aggregates (>C{sub s}) of the ions into the DNA lattices were significantly affected by the Hall characteristics. The numerical ranges of the Hall parameters revealed that the M-DNA lattices with metal ions had semiconductor-like characteristics. Consequently, the distinct characteristics of the electrical transport through M-DNA lattices will provide useful information on the practical use of such structures in physical devices and chemical sensors.

  3. Effect of ionic size on solvate stability of glyme-based solvate ionic liquids.

    PubMed

    Mandai, Toshihiko; Yoshida, Kazuki; Tsuzuki, Seiji; Nozawa, Risa; Masu, Hyuma; Ueno, Kazuhide; Dokko, Kaoru; Watanabe, Masayoshi

    2015-01-29

    A series of binary mixtures composed of glymes (triglyme, G3; tetraglyme, G4; pentaglyme, G5) and alkali-metal bis(trifluoromethanesulfonyl)amide salts (M[TFSA]; M = Li, Na, and K) were prepared, and the correlation between the composition and solvate stability was systematically investigated. Their phase diagrams and Raman spectra suggested complexation of the glymes with M[TFSA] in 1:1 and/or 2:1 molar ratio(s). From isothermal stability measurements, it was found that the formation of structurally stable complexes in the solid state did not necessarily ensure their thermal stability in the liquid state, especially in the case of 2:1 complexes, where uncoordinating or highly exchangeable glyme ligands existed in the molten complexes. The phase-state-dependent Raman spectra also supported the presence of free glymes in certain liquid complexes. The effect of the electric field induced by the alkali-metal cations on the oxidative stability of certain glyme complexes was examined by linear sweep voltammetry and quantum chemical calculations. Although the actual oxidative stability of complexes did not necessarily reflect the calculated HOMO energy levels of the glymes, the strong electric field induced by the smaller M(+) cations and proper coordination structures impart high stability to the glyme complexes. The results of thermogravimetry of complexes with different M(+) cations revealed that a balance of competitive interactions of the M(+) ions with the glymes and [TFSA](-) anions predominates the thermal stability. PMID:25530321

  4. The Oil-Water Interface: Mapping the Solvation Potential

    SciTech Connect

    Bell, Richard C.; Wu, Kai; Iedema, Martin J.; Schenter, Gregory K.; Cowin, James P.

    2009-01-06

    Ions moving across the oil water interface are strongly impacted by the continuous changes in solvation. The solvation potential for Cs+ is directly measured as they approach the oil-water interface (“oil” = 3-methylpentane), from 0.4 to 4 nm away. The oil-water interfaces are created at 40K using molecular beam epitaxy and a softlanding ion beam, with pre-placed ions. The solvation potential slope was determined at each distance by balancing it against an increasing electrostatic potential made by increasing the number of imbedded ions at that distance, and monitoring the resulting ion motion. The potential approaches the Born model for greater than z>0.4nm, and shows the predicted reduction of the polarizability at z<0.4nm.

  5. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  6. A vacuum spark ion source: High charge state metal ion beams

    NASA Astrophysics Data System (ADS)

    Yushkov, G. Yu.; Nikolaev, A. G.; Oks, E. M.; Frolova, V. P.

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.

  7. A vacuum spark ion source: High charge state metal ion beams.

    PubMed

    Yushkov, G Yu; Nikolaev, A G; Oks, E M; Frolova, V P

    2016-02-01

    High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less than 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described. PMID:26931966

  8. Metal ions potentiate microglia responsiveness to endotoxin.

    PubMed

    Rachmawati, Dessy; Peferoen, Laura A N; Vogel, Daphne Y S; Alsalem, Inás W A; Amor, Sandra; Bontkes, Hetty J; von Blomberg, B Mary E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2016-02-15

    Oral metal exposure has been associated with diverse adverse reactions, including neurotoxicity. We showed previously that dentally applied metals activate dendritic cells (MoDC) via TLR4 (Ni, Co, Pd) and TLR3 (Au). It is still unknown whether the low levels of dental metals reaching the brain can trigger local innate cells or prime them to become more responsive. Here we tested whether dentally applied metals (Cr, Fe, Co, Ni, Cu, Zn, Au, Hg) activate primary human microglia in vitro and, as a model, monocytic THP-1-cells, in high non-toxic as well as near-physiological concentrations. In addition the effects of 'near-physiological' metal exposure on endotoxin (LPS) responsiveness of these cells were evaluated. IL-8 and IL-6 production after 24h was used as read out. In high, non-toxic concentrations all transition metals except Cr induced IL-8 and IL-6 production in microglia, with Ni and Co providing the strongest stimulation. When using near-physiological doses (up to 10× the normal plasma concentration), only Zn and Cu induced significant IL-8 production. Of note, the latter metals also markedly potentiated LPS responsiveness of microglia and THP-1 cells. In conclusion, transition metals activate microglia similar to MoDCs. In near-physiological concentrations Zn and Cu are the most effective mediators of innate immune activation. A clear synergism between innate responses to Zn/Cu and LPS was observed, shedding new light on the possible relation between oral metal exposure and neurotoxicity. PMID:26857501

  9. Does Ion Release Differ Between Hip Resurfacing and Metal-on-metal THA?

    PubMed Central

    Moroni, Antonio; Cadossi, Matteo; Baldini, Nicola; Giannini, Sandro

    2008-01-01

    Modern metal-on-metal hip resurfacing was introduced as a bone-preserving method of joint reconstruction for young and active patients; however, the large diameter of the bearing surfaces is of concern for potential increased metal ion release. We hypothesized there were no differences in serum concentrations of chromium, cobalt, and molybdenum between patients who had metal-on-metal hip resurfacing (Group A; average head diameter, 48 mm; median followup, 24 months) and patients who had 28-mm metal-on-metal THA (Group B; median followup, 25 months). Serum concentrations also were compared with concentrations in healthy subjects. We identified no differences in ion levels between Groups A and B. A distinction was made according to gender. Women showed a higher chromium release in Group A whereas men had a higher cobalt release in Group B. Values obtained from Group A were higher than those of the control subjects. Our data suggest metal-on-metal bearings for THA should not be rejected because of concern regarding potential increased metal ion release; however, patients with elevated ion levels, even without loosening or toxicity, could be at higher risk and should be followed up periodically. Level of Evidence: Level III, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence. PMID:18196364

  10. Colored thin films for specific metal ion detection.

    PubMed

    Schauer, Caroline L; Chen, Mu-San; Price, Ronald R; Schoen, Paul E; Ligler, Frances S

    2004-08-15

    This paper describes the investigation of chitosan and poly(allylamine) (PAH) for the creation of a multi-film, color-based dipstick for the detection of metal ions in solution. Thin, colored films of chitosan and PAH cross-linked with hexamethylene 1,6-di(aminocarboxysulfonate) (HDACS) are created where color is due to film thickness and optical interference effects. The films are investigated for their ability to selectively detect aqueous metal ions via changes in thickness and/or color. Chitosan-HDACS films were selective for Cr(VI) over all other metal ions tested including Cr(acac)3 and Cr(NO3)3 x 9H2O, and PAH-HDACS films were selective for Cu(II) and Cu(I) salts over all other metal ions tested. The irreversible, selective changes due to metal ion solutions were not caused by varying the pH. Potomac River water was also tested using the two films, with results indicating the presence of Cu(II) in the aqueous sample. PMID:15382871

  11. Metal ion coupled protein folding and allosteric motions

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    2014-03-01

    Many proteins need the help of cofactors for their successful folding and functioning. Metal ions, i.e., Zn2+, Ca2+, and Mg2+ etc., are typical biological cofactors. Binding of metal ions can reshape the energy landscapes of proteins, thereby modifying the folding and allosteric motions. For example, such binding may make the intrinsically disordered proteins have funneled energy landscapes, consequently, ensures their spontaneous folding. In addition, the binding may activate certain biological processes by inducing related conformational changes of regulation proteins. However, how the local interactions involving the metal ion binding can induce the global conformational motions of proteins remains elusive. Investigating such question requires multiple models with different details, including quantum mechanics, atomistic models, and coarse grained models. In our recent work, we have been developing such multiscale methods which can reasonably model the metal ion binding induced charge transfer, protonation/deprotonation, and large conformational motions of proteins. With such multiscale model, we elucidated the zinc-binding induced folding mechanism of classical zinc finger and the calcium-binding induced dynamic symmetry breaking in the allosteric motions of calmodulin. In addition, we studied the coupling of folding, calcium binding and allosteric motions of calmodulin domains. In this talk, I will introduce the above progresses on the metal ion coupled protein folding and allosteric motions. We thank the finacial support from NSFC and the 973 project.

  12. Membranes Remove Metal Ions Fron Industrial Liquids

    NASA Technical Reports Server (NTRS)

    Hsu, W. P. L.; May, C.

    1983-01-01

    Use of membrane films affords convenient and economical alternative for removing and recovering metal cations present in low concentrations from large quantities of liquid solutions. Possible applications of membrane films include use in analytical chemistry for determination of small amounts of toxic metallic impurities in lakes, streams, and municipal effluents. Also suitable for use as absorber of certain pollutant gases and odors present in confined areas.

  13. Process for modifying the metal ion sorption capacity of a medium

    DOEpatents

    Lundquist, Susan H.

    2002-01-01

    A process for modifying a medium is disclosed that includes treating a medium having a metal ion sorption capacity with a solution that includes: A) an agent capable of forming a complex with metal ions; and B) ions selected from the group consisting of sodium ions, potassium ions, magnesium ions, and combinations thereof, to create a medium having an increased capacity to sorb metal ions relative to the untreated medium.

  14. Theoretical study of metal noble-gas positive ions

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1989-01-01

    Theoretical calculations have been performed to determine the spectroscopic constant for the ground and selected low-lying electronic states of the transition-metal noble-gas ions Var(+), FeAr(+), CoAr(+), CuHe(+), CuAr(+), and CuKr(+). Analogous calculations have been performed for the ground states of the alkali noble-gas ions LiAr(+), LiKr(+), NaAr(+), and KAr(+) and the alkaline-earth noble-gas ion MgAr(+) to contrast the difference in binding energies between the simple and transition-metal noble-gas ions. The binding energies increase with increasing polarizability of the noble-gas ions, as expected for a charge-induced dipole bonding mechanism. It is found that the spectroscopic constants of the X 1Sigma(+) states of the alkali noble-gas ions are well described at the self-consistent field level. In contrast, the binding energies of the transition-metal noble-gas ions are substantially increased by electron correlation.

  15. Charge-Dependent Cavity Radii for an Accurate Dielectric Continuum Model of Solvation with Emphasis on Ions: Aqueous Solutes with Oxo, Hydroxo, Amino, Methyl, Chloro, Bromo and Fluoro Functionalities

    SciTech Connect

    Ginovska, Bojana; Camaioni, Donald M; Dupuis, Michel; Schwerdtfeger, Christine A; Gilcrease, Quinn

    2008-10-23

    Dielectric continuum solvation models are widely used because they are a computationally efficacious way to simulate equilibrium properties of solutes. With advances that allow for molecular-shaped cavities, they have reached a high level of accuracy, in particular for neutral solutes. However, benchmark tests show that existing schemes for defining cavities are unable to consistently predict accurately the effects of solvation on ions, especially anions. This work involves the further development of a protocol put forth earlier for defining the cavities of aqueous solutes, with resulting advances that are most striking for anions. Molecular cavities are defined as interlocked spheres around atoms or groups of atoms in the solute, but the sphere radii are determined by simple empirically-based expressions involving the effective atomic charges of the solute atoms (derived from molecular electrostatic potential) and base radii. Both of these terms are optimized for the different types of atoms or functional groups in a training set of neutral and charged solutes. Parameters in these expressions for radii were fitted by minimizing residuals between calculated and measured standard free energies of solvation (ΔGs*), weighted by the uncertainty in the measured value. The calculations were performed using density functional theory with the B3LYP functional and the 6-311+G** basis set and the COnductor-like Screening MOdel (COSMO). The optimized radii definitions reproduce ΔGs* of neutral solutes and singly-charged ions in the training set to within experimental uncertainty and, more importantly, accurately predict ΔGs* of compounds outside the training set, in particular anions. Inherent to this approach, the cavity definitions reflect the strength of specific solute-water interactions. We surmise that this feature underlies the success of the model, referred to as the CD-COSMO model for Charge-Dependent (also Camaioni-Dupuis) COSMO

  16. Localized ion milling of metallic and ceramic TEM specimens

    SciTech Connect

    Fisher, A.T.; Bentley, J.

    1986-01-01

    The utility of localized ion milling in the preparation of metallic and ceramic specimens for TEM and AEM is being evaluated from the standpoint of optimizing procedures and identifying limitations and milling characteristics. The equipment used was a Gatan model 645 precision ion milling system (PIMS). This device is a scanning ion beam instrument with which selected areas of a sample can be imaged by either secondary electron or secondary ion signals and selectively ion milled in a small region within the imaged area. The 1 to 10 keV ion beam can be focussed to a 2 ..mu..m spot. Specimens are thinned without removing them from the electron microscope specimen holder.

  17. Reducing hazardous heavy metal ions using mangium bark waste.

    PubMed

    Khabibi, Jauhar; Syafii, Wasrin; Sari, Rita Kartika

    2016-08-01

    The objective of this study was to evaluate the characteristics of mangium bark and its biosorbent ability to reduce heavy metal ions in standard solutions and wastewater and to assess changes in bark characteristics after heavy metal absorption. The experiments were conducted to determine heavy metal absorption from solutions of heavy metals alone and in mixtures as well as from wastewater. The results show that mangium bark can absorb heavy metals. Absorption percentages and capacities from single heavy metal solutions showed that Cu(2+) > Ni(2+) > Pb(2+) > Hg(2+), while those from mixture solutions showed that Hg(2+) > Cu(2+) > Pb(2+) > Ni(2+). Wastewater from gold mining only contained Cu, with an absorption percentage and capacity of 42.87 % and 0.75 mg/g, respectively. The highest absorption percentage and capacity of 92.77 % and 5.18 mg/g, respectively, were found for Hg(2+) in a mixture solution and Cu(2+) in single-metal solution. The Cu(2+) absorption process in a single-metal solution changed the biosorbent characteristics of the mangium bark, yielding a decreased crystalline fraction; changed transmittance on hydroxyl, carboxyl, and carbonyl groups; and increased the presence of Cu. In conclusion, mangium bark biosorbent can reduce hazardous heavy metal ions in both standard solutions and wastewater. PMID:27179811

  18. Low coefficient of thermal expansion polyimides containing metal ion additives

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1992-01-01

    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The incorporation of metal ion-containing additives into polyimides, resulting in significantly lowered CTE's, has been studied. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12 percent to over 100 percent depending on the choice of additive and its concentration.

  19. Ion exchange properties of novel hydrous metal oxide materials

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.

    1996-12-31

    Hydrous metal oxide (HMO) materials are inorganic ion exchangers which have many desirable characteristics for catalyst support applications, including high cation exchange capacity, anion exchange capability, high surface area, ease of adjustment of acidity and basicity, bulk or thin film preparation, and similar chemistry for preparation of various transition metal oxides. Cation exchange capacity is engineered into these materials through the uniform incorporation of alkali cations via manipulation of alkoxide chemistry. Specific examples of the effects of Na stoichiometry and the addition of SiO{sub 2} to hydrous titanium oxide (HTO) on ion exchange behavior will be given. Acid titration and cationic metal precursor complex exchange will be used to characterize the ion exchange behavior of these novel materials.

  20. Low coefficient of thermal expansion polyimides containing metal ion additives

    SciTech Connect

    Stoakley, D.M.; St.Clair, A.K. )

    1992-07-01

    Polyimides have become widely used as high performance polymers as a result of their excellent thermal stability and toughness. However, lowering their coefficient of thermal expansion (CTE) would increase their usefulness for aerospace and electronic applications where dimensional stability is a requirement. The CTE's of conventional polyimides range from 30 to 60 ppm/C. Approaches that have been reported to lower their CTE's include linearizing the polymer molecular structure and orienting the polyimide film. This current study involves the incorporation of metal ion-containing additives into polyimides and has resulted in significantly lowered CTE's. Various metal ion additives have been added to both polyamic acid resins and soluble polyimide solutions in the concentration range of 4-23 weight percent. The incorporation of these metal ions has resulted in reductions in the CTE's of the control polyimides of 12% to over 100% depending on the choice of additive and its concentration.

  1. A first-principle protocol for calculating ionization energies and redox potentials of solvated molecules and ions: Theory and application to aqueous phenol and phenolate

    PubMed Central

    Ghosh, Debashree; Roy, Anirban; Seidel, Robert; Winter, Bernd; Bradforth, Stephen; Krylov, Anna I.

    2012-01-01

    The effect of hydration on the lowest vertical ionization energy (VIE) of phenol and phenolate solvated in bulk water was characterized using the equation-of-motion ionization potential coupled-cluster (EOM-IP-CCSD) and effective fragment potential (EFP) methods (referred to as EOM/EFP), and determined experimentally by valence photo-emission measurements using microjets and synchrotron radiation. The computed solvent-induced shifts in VIEs (ΔVIE) are −0.66 eV and +5.72 eV for phenol and phenolate, respectively. Our best estimates of the absolute values of VIEs (7.9 and 7.7 eV for phenol and phenolate) agree reasonably well with the respective experimental values (7.8±0.1 eV and 7.1±0.1 eV). The EOM/EFP scheme was benchmarked against full EOM-IP-CCSD using micro-solvated phenol and phenolate clusters. A protocol for calculating redox potentials with EOM/EFP was developed based on linear response approximation (LRA) of free energy determination. The oxidation potentials of phenol and phenolate calculated using LRA and EOM/EFP are 1.32 V and 0.89 V, respectively; they agree well with experimental values. PMID:22497288

  2. Metal plasma immersion ion implantation and deposition: A review

    SciTech Connect

    Anders, A.

    1996-09-01

    Metal Plasma Immersion Ion Implantation and Deposition (MePIIID) is a hybrid process combining cathodic arc deposition and plasma immersion ion implantation. The properties of metal plasma produced by vacuum arcs are reviewed and the consequences for MePIIID are discussed. Different version of MePIIID are described and compared with traditional methods of surface modification such as ion beam assisted deposition (IBAD). MePIIID is a very versatile approach because of the wide range of ion species and energies used. In one extreme case, films are deposited with ions in the energy range 20--50 eV, and at the other extreme, ions can be implanted with high energy (100 keV or more) without film deposition. Novel features of the technique include the use of improved macroparticle filters; the implementation of several plasma sources for multi-element surface modification; tuning of ion energy during implantation and deposition to tailor the substrate-film intermixed layer and structure of the growing film; simultaneous pulsing of the plasma potential (positive) and substrate bias (negative) with a modified Marx generator; and the use of high ion charge states.

  3. Comet encke: meteor metallic ion identification by mass spectrometer.

    PubMed

    Goldberg, R A; Aikin, A C

    1973-04-20

    Metal ions including 23(+) (Na(+)), 24(+) (Mg(+)) 28(+) (Si(+)), 39(+) (K(+)), 40(+) (Ca(+)), 45(+) (Sc(+)), 52(+) Cr(+)). 56(+) (Fe(+)), and 58(+) (Ni(+)) have been detected in the upper atmosphere during the period of the Beta Taurids meteor shower. The abundances of these ions relative to Si(+) show, agreement in most instances with abundances in chondrites. A notable exception is 45(+), which, if it is Sc(+), is 100 times more abundant than neutral scandium found in chondrites. PMID:17816288

  4. Comet Encke: Meteor metallic ion identification by mass spectrometer

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Aikin, A. C.

    1972-01-01

    Metal ions including Na-40(+), Mg-24(+), Si-28(+), K-39(+), Ca-40(+), Sc-45(+), Cr-52(+), Fe-56(+), and Ni-58(+) were detected in the upper atmosphere during the beta Taurids meteor shower. Abundances of these ions relative to Si(+) show agreement in most instances with chondrites. A notable exception is 45(+), which is Sc(+), is 100 times more abundant than neutral scandium found in chondrites.

  5. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    2000-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  6. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, L.R.; Lundquist, S.H.

    1999-08-10

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions. 2 figs.

  7. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    1999-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  8. Smart responsive microcapsules capable of recognizing heavy metal ions.

    PubMed

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. PMID:20656104

  9. Metal-Ion Additives Reduce Thermal Expansion Of Polyimides

    NASA Technical Reports Server (NTRS)

    Stoakley, Diane M.; St. Clair, Anne K.; Emerson, Burt R., Jr.; Willis, George L.

    1994-01-01

    Polyimides widely used as high-performance polymers because of their excellent thermal stability and toughness. However, their coefficients of thermal expansion (CTE's) greater than those of metals, ceramics, and glasses. Decreasing CTE's of polyimides increase usefulness for aerospace and electronics applications in which dimensional stability required. Additives containing metal ions reduce coefficients of thermal expansion of polyimides. Reductions range from 11 to over 100 percent.

  10. Data mining of metal ion environments present in protein structures

    PubMed Central

    Zheng, Heping; Chruszcz, Maksymilian; Lasota, Piotr; Lebioda, Lukasz; Minor, Wladek

    2010-01-01

    Analysis of metal-protein interaction distances, coordination numbers, B-factors (displacement parameters), and occupancies of metal binding sites in protein structures determined by X-ray crystallography and deposited in the PDB shows many unusual values and unexpected correlations. By measuring the frequency of each amino acid in metal ion binding sites, the positive or negative preferences of each residue for each type of cation were identified. Our approach may be used for fast identification of metal-binding structural motifs that cannot be identified on the basis of sequence similarity alone. The analysis compares data derived separately from high and medium resolution structures from the PDB with those from very high resolution small-molecule structures in the Cambridge Structural Database (CSD). For high resolution protein structures, the distribution of metal-protein or metal-water interaction distances agrees quite well with data from CSD, but the distribution is unrealistically wide for medium (2.0 – 2.5 Å) resolution data. Our analysis of cation B-factors versus average B-factors of atoms in the cation environment reveals substantial numbers of structures contain either an incorrect metal ion assignment or an unusual coordination pattern. Correlation between data resolution and completeness of the metal coordination spheres is also found. PMID:18614239