Science.gov

Sample records for metal mediated transformations

  1. [Transition metal mediated transformations of small molecules

    SciTech Connect

    Sen, A.

    1992-01-01

    Work on organotransition metal chemistry, homogeneous and heterogeneous catalysis is summarized. Several cationic palladium(II) complexes with bulky phosphine or pyridine ligands were discovered that are highly selective catalysts for linear dimerization of vinyl monomers and linear polymerization of p-divinylbenzene, the reactions proceeding through a carbocationic mechanism. Our studies were continued on alternating olefin-carbon monoxide copolymers. The copolymerization reaction and reactivity of copolymers were examined. New catalytic systems for alternating copolymerization of [alpha]-olefins with CO were discovered. In the case of styrene derivatives, tactic copolymers were obtained. Poly(ethylenepyrrolediyl) derivatives were synthesized from alternating ethylene-carbon monoxide copolymer and become electronic conductors when doped with iodine. A catalytic system for direct synthesis of polyureas and polyoxamides from and diamines was also discovered. Pt metal catalyzed the oxidation of ethers, esters, and amines to carboxylic acids and the oxidation of olefins to 1,2-diols. Anaerobic and aerobic decomposition of molybdenum(VI)-oxoalkyl compounds were studied for heterogeneous oxidation of alkanes and olefins on Mo(VI)-oxide surfaces. Synthesis of polymer-trapped metal, metal oxide, and metal sulfide nanoclusters (size <1--10 nm) was studied.

  2. ENZYME-MEDIATED TRANSFORMATIONS OF HEAVY METALS/METALLOIDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major emphasis has been placed on the bioremediation of organic compounds and their fate and transport throughout the environment. However, another important class of chemicals polluting our environment are inorganic, particularly heavy metals and metalloids. Heavy metals are elements of the Per...

  3. [Transition metal mediated transformations of small molecules]. Progress report

    SciTech Connect

    Sen, A.

    1992-10-01

    Work on organotransition metal chemistry, homogeneous and heterogeneous catalysis is summarized. Several cationic palladium(II) complexes with bulky phosphine or pyridine ligands were discovered that are highly selective catalysts for linear dimerization of vinyl monomers and linear polymerization of p-divinylbenzene, the reactions proceeding through a carbocationic mechanism. Our studies were continued on alternating olefin-carbon monoxide copolymers. The copolymerization reaction and reactivity of copolymers were examined. New catalytic systems for alternating copolymerization of {alpha}-olefins with CO were discovered. In the case of styrene derivatives, tactic copolymers were obtained. Poly(ethylenepyrrolediyl) derivatives were synthesized from alternating ethylene-carbon monoxide copolymer and become electronic conductors when doped with iodine. A catalytic system for direct synthesis of polyureas and polyoxamides from and diamines was also discovered. Pt metal catalyzed the oxidation of ethers, esters, and amines to carboxylic acids and the oxidation of olefins to 1,2-diols. Anaerobic and aerobic decomposition of molybdenum(VI)-oxoalkyl compounds were studied for heterogeneous oxidation of alkanes and olefins on Mo(VI)-oxide surfaces. Synthesis of polymer-trapped metal, metal oxide, and metal sulfide nanoclusters (size <1--10 nm) was studied.

  4. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes.

    PubMed

    Maity, Ayan; Teets, Thomas S

    2016-08-10

    This Review highlights stoichiometric reactions and elementary steps of catalytic reactions involving cooperative participation of transition-metal hydrides and main group Lewis acids. Included are reactions where the transition-metal hydride acts as a reactant as well as transformations that form the metal hydride as a product. This Review is divided by reaction type, illustrating the diverse roles that Lewis acids can play in mediating transformations involving transition-metal hydrides as either reactants or products. We begin with a discussion of reactions where metal hydrides form direct adducts with Lewis acids, elaborating the structure and dynamics of the products of these reactions. The bulk of this Review focuses on reactions where the transition metal and Lewis acid act in cooperation, and includes sections on carbonyl reduction, H2 activation, and hydride elimination reactions, all of which can be promoted by Lewis acids. Also included is a section on Lewis acid-base secondary coordination sphere interactions, which can influence the reactivity of hydrides. Work from the past 50 years is included, but the majority of this Review focuses on research from the past decade, with the intent of showcasing the rapid emergence of this field and the potential for further development into the future. PMID:27164024

  5. Microbe and Mineral Mediated Transformation of Heavy Metals, Radionuclides, and Organic Contaminants

    NASA Astrophysics Data System (ADS)

    Gerlach, R.

    2011-12-01

    Microorganisms influence their surroundings in many ways and humans have utilized microbially catalyzed reactions for benefit for centuries. Over the past few decades, microorganisms have been used for the control of contaminant transport in subsurface environments where many microbe mineral interactions occur. This presentation will discuss microbially influenced mineral formation and transformation as well as their influence on the fate of organic contaminants such as chlorinated aliphatics & 2,4,6-trinitrotoluene (TNT), heavy metals such as chromium, and radionuclides such as uranium & strontium. Both, batch and flow experiments have been performed, which monitor the net effect of microbe mineral interactions on the fate of these contaminants. This invited presentation will place an emphasis on the relative importance of direct microbial (i.e. biotic) transformations, mineral-mediated transformations as well as other abiotic reactions influencing the fate of environmental contaminants. Experiments will be summarized and placed in context of past and future engineered applications for the control of subsurface contaminants.

  6. Theory of oxidation/reduction-induced valence transformations of metal ion dopants in oxide crystals mediated by oxide-vacancy diffusion: I. Thermodynamic analysis

    NASA Astrophysics Data System (ADS)

    Sinder, M.; Burshtein, Z.; Pelleg, J.

    2014-04-01

    We consider theoretically valence transformations of doping metal ions in oxide crystals induced by oxidation and reduction obtained by changes in the ambient oxygen partial pressure. Three types of oxygen vacancies are assumed to mediate transformations: neutral, singly ionized, and doubly ionized. We provide thermodynamic equilibrium analyses, yielding concentration relations among the oxygen vacancy, metal ions, holes and electrons as functions of the ambient oxygen pressure. The results suggest that experimental study of different species concentrations at thermodynamic equilibrium as functions of pressure and temperature should allow assessment of various reversible reaction constants controlling the process. In the Part II companion paper, the kinetic (diffusion) characteristics are considered in detail.

  7. Microorganism mediated biosynthesis of metal chalcogenides; a powerful tool to transform toxic effluents into functional nanomaterials.

    PubMed

    Vena, M Paula; Jobbágy, Matías; Bilmes, Sara A

    2016-09-15

    Cadmium contained in soil and water can be taken up by certain crops and aquatic organisms and accumulate in the food-chain, thus removal of Cd from mining or industrial effluents - i.e. Ni-Cd batteries, electroplating, pigments, fertilizers - becomes mandatory for human health. In parallel, there is an increased interest in the production of luminescent Q-dots for applications in bioimaging, sensors and electronic devices, even the present synthesis methods are economic and environmentally costly. An alternative green pathway for producing Metal chalcogenides (MC: CdS, CdSe, CdTe) nanocrystals is based on the metabolic activity of living organisms. Intracellular and extracellular biosynthesis of can be achieved within a biomimetic approach feeding living organisms with Cd precursors providing new routes for combining bioremediation with green routes for producing MC nanoparticles. In this mini-review we present the state-of-the-art of biosynthesis of MC nanoparticles with a critical discussion of parameters involved and protocols. Few existing examples of scaling-up are also discussed. A modular reactor based on microorganisms entrapped in biocompatible mineral matrices - already proven for bioremediation of dissolved dyes - is proposed for combining both Cd-depletion and MC nanoparticle's production. PMID:27157896

  8. Environmental transformation of toxic metals.

    PubMed

    Wade, M J; Davis, B K; Carlisle, J S; Klein, A K; Valoppi, L M

    1993-01-01

    Because toxicity varies enormously with the chemical state of metals, transformations in the environment control the level of the human health hazard. Important transformation processes include adsorption and desorption from soils and sediments, oxidation and reduction (redox) reactions, biotic metabolism, formation of organic metal compounds, and bioaccumulation. The six metals detailed in this chapter--arsenic, cadmium, chromium, lead, mercury, and selenium--were chosen because of their toxicity, frequency of occurrence at hazardous waste sites, and involvement in environmental contamination. PMID:8272980

  9. Transformable liquid-metal nanomedicine.

    PubMed

    Lu, Yue; Hu, Quanyin; Lin, Yiliang; Pacardo, Dennis B; Wang, Chao; Sun, Wujin; Ligler, Frances S; Dickey, Michael D; Gu, Zhen

    2015-01-01

    To date, numerous inorganic nanocarriers have been explored for drug delivery systems (DDSs). However, the clinical application of inorganic formulations has often been hindered by their toxicity and failure to biodegrade. We describe here a transformable liquid-metal nanomedicine, based on a core-shell nanosphere composed of a liquid-phase eutectic gallium-indium core and a thiolated polymeric shell. This formulation can be simply produced through a sonication-mediated method with bioconjugation flexibility. The resulting nanoparticles loaded with doxorubicin (Dox) have an average diameter of 107 nm and demonstrate the capability to fuse and subsequently degrade under a mildly acidic condition, which facilitates release of Dox in acidic endosomes after cellular internalization. Equipped with hyaluronic acid, a tumour-targeting ligand, this formulation displays enhanced chemotherapeutic inhibition towards the xenograft tumour-bearing mice. This liquid metal-based DDS with fusible and degradable behaviour under physiological conditions provides a new strategy for engineering theranostic agents with low toxicity. PMID:26625944

  10. Transformable liquid-metal nanomedicine

    PubMed Central

    Lu, Yue; Hu, Quanyin; Lin, Yiliang; Pacardo, Dennis B.; Wang, Chao; Sun, Wujin; Ligler, Frances S.; Dickey, Michael D.; Gu, Zhen

    2015-01-01

    To date, numerous inorganic nanocarriers have been explored for drug delivery systems (DDSs). However, the clinical application of inorganic formulations has often been hindered by their toxicity and failure to biodegrade. We describe here a transformable liquid-metal nanomedicine, based on a core–shell nanosphere composed of a liquid-phase eutectic gallium-indium core and a thiolated polymeric shell. This formulation can be simply produced through a sonication-mediated method with bioconjugation flexibility. The resulting nanoparticles loaded with doxorubicin (Dox) have an average diameter of 107 nm and demonstrate the capability to fuse and subsequently degrade under a mildly acidic condition, which facilitates release of Dox in acidic endosomes after cellular internalization. Equipped with hyaluronic acid, a tumour-targeting ligand, this formulation displays enhanced chemotherapeutic inhibition towards the xenograft tumour-bearing mice. This liquid metal-based DDS with fusible and degradable behaviour under physiological conditions provides a new strategy for engineering theranostic agents with low toxicity. PMID:26625944

  11. Transformable liquid-metal nanomedicine

    NASA Astrophysics Data System (ADS)

    Lu, Yue; Hu, Quanyin; Lin, Yiliang; Pacardo, Dennis B.; Wang, Chao; Sun, Wujin; Ligler, Frances S.; Dickey, Michael D.; Gu, Zhen

    2015-12-01

    To date, numerous inorganic nanocarriers have been explored for drug delivery systems (DDSs). However, the clinical application of inorganic formulations has often been hindered by their toxicity and failure to biodegrade. We describe here a transformable liquid-metal nanomedicine, based on a core-shell nanosphere composed of a liquid-phase eutectic gallium-indium core and a thiolated polymeric shell. This formulation can be simply produced through a sonication-mediated method with bioconjugation flexibility. The resulting nanoparticles loaded with doxorubicin (Dox) have an average diameter of 107 nm and demonstrate the capability to fuse and subsequently degrade under a mildly acidic condition, which facilitates release of Dox in acidic endosomes after cellular internalization. Equipped with hyaluronic acid, a tumour-targeting ligand, this formulation displays enhanced chemotherapeutic inhibition towards the xenograft tumour-bearing mice. This liquid metal-based DDS with fusible and degradable behaviour under physiological conditions provides a new strategy for engineering theranostic agents with low toxicity.

  12. Theory of oxidation/reduction-induced valence transformations of metal ion dopants in oxide crystals mediated by oxide-vacancy diffusion: II. Kinetic analysis

    NASA Astrophysics Data System (ADS)

    Sinder, M.; Burshtein, Z.; Pelleg, J.

    2014-04-01

    We consider theoretically valence transformations of doping metal ions in oxide crystals induced by oxidation and reduction obtained by changes in the ambient oxygen partial pressure. Three types of oxygen vacancies are assumed to mediate transformations: neutral, singly ionized, and doubly ionized. In the companion part I paper we provide thermodynamic analyses yielding concentration relations among the oxygen vacancy, metal ions, holes and electrons, as functions of the ambient oxygen pressure. In the present companion part II paper we provide time dependent concentration profiles of the various species and reaction rate profiles. The diffusion exhibits a complex behavior; under some conditions, it may be described by a constant diffusivity, and is symmetric with respect to oxidation and reduction. However, under a wide range of conditions, the ionic state changes are highly asymmetric with respect to oxidation and reduction. For example, in the case of a neutral vacancy, a very narrow reaction front may establish during reduction. In the inverse (oxidation) process, however, the different species' profiles are quite smooth.

  13. Trace metal transformations in gasification

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; O`Keefe, C.A.; Katrinak, K.; Allan, S.E.; Hassett, D.J.; Hauserman, W.B.; Zygarlicke, C.J.

    1995-11-01

    The Energy and Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems; (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions; and (3) identify methods to control trace element emissions. Results are presented and discussed on the partitioning of trace metals and the model design for predicting trace metals behavior.

  14. Agrobacterium-mediated transformation of Fusarium proliferatum.

    PubMed

    Bernardi-Wenzel, J; Quecine, M C; Azevedo, J L; Pamphile, J A

    2016-01-01

    Fusarium proliferatum is an important pathogen that is associated with plant diseases and primarily affects aerial plant parts by producing different mycotoxins, which are toxic to humans and animals. Within the last decade, this fungus has also been described as one of the causes of red root rot or sudden death syndrome in soybean, which causes extensive damage to this crop. This study describes the Agrobacterium tumefaciens-mediated transformation of F. proliferatum as a tool for the disruption of pathogenicity genes. The genetic transformation was performed using two binary vectors (pCAMDsRed and pFAT-GFP) containing the hph (hygromycin B resistance) gene as a selection marker and red and green fluorescence, respectively. The presence of acetosyringone and the use of filter paper or nitrocellulose membrane were evaluated for their effect on the transformation efficiency. A mean processing rate of 94% was obtained with 96 h of co-cultivation only in the presence of acetosyringone and the use of filter paper or nitrocellulose membrane did not affect the transformation process. Hygromycin B resistance and the presence of the hph gene were confirmed by PCR, and fluorescence due to the expression of GFP and DsRed protein was monitored in the transformants. A high rate of mitotic stability (95%) was observed. The efficiency of Agrobacterium-mediated transformation of F. proliferatum allows the technique to be used for random insertional mutagenesis studies and to analyze fungal genes involved in the infection process. PMID:27323127

  15. Microbial mediated retention/transformation of organic and inorganic materials in freshwater and marine ecosystems

    EPA Science Inventory

    Aquatic ecosystems are globally connected by hydrological and biogeochemical cycles. Microorganisms inhabiting aquatic ecosystems form the basis of food webs, mediate essential element cycles, decompose natural organic matter, transform inorganic nutrients and metals, and degrad...

  16. Reagents for diverse iodosilane-mediated transformations.

    PubMed

    Shibuya, Masatoshi; Abe, Masanori; Fujita, Shoji; Yamamoto, Yoshihiko

    2016-06-21

    It was observed that a PhSiH2I-mediated protocol using PhSiH3 and cat. I2 caused the deiodination of 2-(iodomethyl)-2-phenyltetrahydrofuran. Stemming from the investigation of the mechanism, we found that the PhSiH3-I2 system selectively promotes diverse cascade transformations from cyclic ethers to acyclic alkyl iodides, and the PhSiH3-N-iodosuccinimide (NIS) system also promotes cascade transformations from cyclic ethers to acyclic alcohols. PMID:27220485

  17. Metal Ions Mediated Morphology and Phase Transformation of Chalcogenide Semiconductor: From CuClSe2 Microribbon to CuSe Nanosheet.

    PubMed

    Liu, Yong-Qiang; Wu, Hao-Di; Zhao, Yu; Pan, Ge-Bo

    2015-05-01

    Foreign ions are of significant importance in controlling and modulating the morphology of semiconductor nanocrystals during the colloidal synthesis process. Herein, we demonstrate the potential of foreign metal ions to simultaneously control the morphology and crystal phase of chalcogenide semiconductors. The results indicate that the introduction of Al(3+) ions can induce the structural transformation from monoclinic CuClSe2 microribbons (MRs) to klockmannite CuSe nanosheets (NSs) and the growth of large-sized CuSe NSs. The as-prepared micrometer-sized CuSe NSs exhibit a high-conducting behavior, long-term durability, and environment stability. The novel properties enable CuSe NSs to open up a bright prospect for printable electrical interconnects and flexible electronic devices. PMID:25871334

  18. Rh(I)-catalyzed transformation of propargyl vinyl ethers into (E,Z)-dienals: stereoelectronic role of trans effect in a metal-mediated pericyclic process and a shift from homogeneous to heterogeneous catalysis during a one-pot reaction.

    PubMed

    Vidhani, Dinesh V; Krafft, Marie E; Alabugin, Igor V

    2014-01-01

    The combination of experiments and computations reveals unusual features of stereoselective Rh(I)-catalyzed transformation of propargyl vinyl ethers into (E,Z)-dienals. The first step, the conversion of propargyl vinyl ethers into allene aldehydes, proceeds under homogeneous conditions via a "cyclization-mediated" mechanism initiated by Rh(I) coordination at the alkyne. This path agrees well with the small experimental effects of substituents on the carbinol carbon. The key feature revealed by the computational study is the stereoelectronic effect of the ligand arrangement at the catalytic center. The rearrangement barriers significantly decrease due to the greater transfer of electron density from the catalytic metal center to the CO ligand oriented trans to the alkyne. This effect increases electrophilicity of the metal and lowers the calculated barriers by 9.0 kcal/mol. Subsequent evolution of the catalyst leads to the in situ formation of Rh(I) nanoclusters that catalyze stereoselective tautomerization. The intermediacy of heterogeneous catalysis by nanoclusters was confirmed by mercury poisoning, temperature-dependent sigmoidal kinetic curves, and dynamic light scattering. The combination of experiments and computations suggests that the initially formed allene-aldehyde product assists in the transformation of a homogeneous catalyst (or "a cocktail of catalysts") into nanoclusters, which in turn catalyze and control the stereochemistry of subsequent transformations. PMID:24304338

  19. Plant transformation via pollen tube-mediated gene transfer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation using foreign genes and the subsequent development of transgenic plants has been employed to develop enhanced elite germplasm. Although some skepticism exits regarding pollen tube-mediated gene transfer (PTT), reports demonstrating improved transformation efficiency with PTT ...

  20. Trace metal transformations in gasification

    SciTech Connect

    Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A.

    1995-08-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  1. Trace metal transformations in gasification

    SciTech Connect

    Benson, S.; Erickson, T.A.; Zygarlicke, C.J.

    1995-12-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  2. Trace metal transformation in gasification

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Zygarlicke, C.J.; O`Keefe, C.A.; Katrinak, K.A.; Allen, S.E.; Hassett, D.J.; Hauserman, W.B.; Holcombe, N.T.

    1996-12-31

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to 1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, 2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and 3) identify methods to control trace element emissions.

  3. Agrobacterium-mediated transformation of maize (Zea mays) immature embryos.

    PubMed

    Lee, Hyeyoung; Zhang, Zhanyuan J

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is one of the most efficient and simple gene delivery systems for genetic improvement and biology studies in maize. This system has become more widely used by both public and private laboratories. However, transformation efficiencies vary greatly from laboratory to laboratory for the same genotype. Here, we illustrate our advanced Agrobacterium-mediated transformation method in Hi-II maize using simple binary vectors. The protocol utilizes immature embryos as starting explants and the bar gene as a selectable marker coupled with bialaphos as a selective agent. The protocol offers efficient transformation results with high reproducibility, provided that some experimental conditions are well controlled. This transformation method, with minor modifications, can be also employed to transform certain maize inbreds. PMID:24243211

  4. Transformation of Botrytis cinerea by direct hyphal blasting or by wound-mediated transformation of sclerotia

    PubMed Central

    2011-01-01

    Background Botrytis cinerea is a haploid necrotrophic ascomycete which is responsible for 'grey mold' disease in more than 200 plant species. Broad molecular research has been conducted on this pathogen in recent years, resulting in the sequencing of two strains, which has generated a wealth of information toward developing additional tools for molecular transcriptome, proteome and secretome investigations. Nonetheless, transformation protocols have remained a significant bottleneck for this pathogen, hindering functional analysis research in many labs. Results In this study, we tested three different transformation methods for B. cinerea: electroporation, air-pressure-mediated and sclerotium-mediated transformation. We demonstrate successful transformation with three different DNA constructs using both air-pressure- and sclerotium-mediated transformation. Conclusions These transformation methods, which are fast, simple and reproducible, can expedite functional gene analysis of B. cinerea. PMID:22188865

  5. Goethite-mediated transformation of bisphenol A.

    PubMed

    Lin, Kunde; Ding, Jiafeng; Wang, Hongyu; Huang, Xinwen; Gan, Jay

    2012-10-01

    Bisphenol A (BPA) is an environmental endocrine disruptor widely present in the soil and sedimentary environment. In this study, we investigated the oxidative transformation of BPA by commercial and laboratory synthetic goethite. Both goethite samples effectively induced the transformation of BPA. The commercial goethite exhibited higher oxidation power towards BPA than the synthetic one. The transformation of BPA by goethite was pH dependent, showing that acidic conditions accelerated the reaction in the pH range of 4.0-8.5. Co-solutes such as Fe(2+), Fe(3+), and humic acid exhibited moderate to slight inhibitory effects on the reaction because of the reducing sorption of BPA on goethite surface in the presence of these co-solutes. Transformation of BPA by goethite was accompanied by the release of Fe(2+). In addition, three reaction intermediates or products were identified and pathways of the transformation of BPA by goethite were proposed. Given that goethite is widespread in soils and sediments, results of this study suggest that goethite may play an important role in the abiotic attenuation of BPA in the natural environment. PMID:22633858

  6. Tandem metal-mediated synthesis

    SciTech Connect

    Baker, R.T.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Boronic acids RB(OH){sub 2} are currently of interest for applications involving molecular recognition such as amine and sugar sensors and selective transport of biomolecules. They have also been shown to be powerful enzyme inhibitors and alpha-aminoboronic acids (ABAs) are particularly selective inhibitors of serine proteases. Unfortunately, current multistep synthetic routes to the latter compounds do not allow for the incorporation of a wide variety of organic substituents R that may lead to new, more selective enzyme inhibitors. In this work the author describes several direct routes to ABAs based on metal-catalyzed addition of diboron compounds to imines and nitriles. Several other applications of diboron additions to heteroatom-containing unsaturated organics are also described.

  7. Agrobacterium-mediated transformation of three freshwater microalgal strains.

    PubMed

    Sanitha, Mary; Radha, Sudhakar; Fatima, Anwar Aliya; Devi, Selvaraju Gayathri; Ramya, Mohandass

    2014-01-01

    Microalgal transformation has gained interest in recent years. Agrobacterium-mediated transformation remains as the most efficient method for the development of transgenic plants and microalgae due to its wide host range, inexpensive procedure and transfer of large segments of DNA. In the present study, three different microalgal species were isolated from freshwater environment and identified based on the morphological characteristics and ITS-2 region amplification. Agrobacterium-mediated transformation was successful for the isolates Chlorella sp., Ankistrodesmus sp and Scenedesmus bajacalifornicus. Gene integration and expression was confirmed by PCR amplification of hptII and GUS histochemical assay. A. tumifaciens contamination was checked by amplification of npt II gene (kanamycin resistant) which lies outside the T-border. Based on GUS assay, transformation efficiencies were found to be 12.25% for Chlorella sp. 2.96% for Scenedesmus bajacalifornicus and 3.5% for Ankistrodesmus sp. PMID:25804057

  8. Highly efficient Agrobacterium-mediated transformation of Volvariella volvacea.

    PubMed

    Wang, Jie; Guo, Liqiong; Zhang, Kai; Wu, Qi; Lin, Junfang

    2008-11-01

    Agrobacterium tumefaciens-mediated transformation (ATMT) was successfully applied to the edible straw mushroom, Volvariella volvacea. Mycelium pellets were transformed to cold stress resistance using the afp gene as both a selective marker and a reporter gene, under the control of a heterologous Lentinula edodes gpd promoter. The efficiency of transformation is over 100 times higher than that previously reported in V. volvacea. Stable integration of the afp gene with 1-4 copy numbers was confirmed in all 10 randomly selected transgenic events by Southern blot analysis. The mitotic stability of the transformants was demonstrated after five successive transfers on PDA medium without selection pressure and the PCR analysis of basidiospores harvested from transformants. PMID:18434137

  9. Agrobacterium-mediated genetic transformation of Prunus salicina

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report Agrobacterium tumefaciens-mediated transformation from hypocotyls slices of two Prunus salicina varieties, 'Angeleno' and 'Larry Anne', using a modification of the technique previously described for P. domestica. Regeneration rates on thidiazuron (TDZ) and indole-3-butyric acid (IBA) supp...

  10. Agrobacterium tumefaciens-mediated transformation of Botryosphaeria dothidea.

    PubMed

    Chen, Liang; Wang, Qun; Chen, Hua; Sun, Gengwu; Liu, Huixiang; Wang, Hongkai

    2016-07-01

    Botryosphaeria dothidea is a severe causal agent of die-back and cankers of many woody plants and causes great losses in many regions. The pathogenic mechanism of this pathogen has not been well explored due to lack of mutants and genetic information. In this study, we developed an Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for B. dothidea protoplasts using vector pBHt2 containing the hph gene as a selection marker under the control of trp C promoter. Using this protocol we successfully generated the B. dothidea transformants with efficiency about 23 transformants per 10(5) protoplasts. This is the first report of genetic transformation of B. dothidea via ATMT and this protocol provides an effective tool for B. dothidea genome manipulation, gene identification and functional analysis. PMID:27263001

  11. Is VIP1 important for Agrobacterium-mediated transformation?

    PubMed

    Shi, Yong; Lee, Lan-Ying; Gelvin, Stanton B

    2014-09-01

    Agrobacterium genetically transforms plants by transferring and integrating T-(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus-tagged VirE2 or Venus-tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1-Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY-2 protoplasts, regardless of whether VirE2 was co-expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium-mediated transformation or VirE2 subcellular localization. PMID:24953893

  12. Laccase mediated transformation of 17β-estradiol in soil.

    PubMed

    Singh, Rashmi; Cabrera, Miguel L; Radcliffe, David E; Zhang, Hao; Huang, Qingguo

    2015-02-01

    It is known that 17β-estradiol (E2) can be transformed by reactions mediated by some oxidoreductases such as laccase in water. Whether or how such reactions can happen in soil is however unknown although they may significantly impact the environmental fate of E2 that is introduced to soil by land application of animal wastes. We herein studied the reaction of E2 in a model soil mediated by laccase, and found that the reaction behaviors differ significantly from those in water partly because of the dramatic difference in laccase stability. We also examined E2 transformation in soil using (14)C-labeling in combination with soil organic matter extraction and size exclusion chromatography, which indicated that applied (14)C radioactivity was preferably bound to humic acids. The study provides useful information for understanding the environmental fate of E2 and for developing a novel soil remediation strategy via enzyme-enhanced humification reactions. PMID:25489747

  13. Amorphous metal distribution transformers: The energy-efficient alternative

    SciTech Connect

    Garrity, T.F.

    1994-12-31

    Amorphous metal distribution transformers have been commercially available for the past 13 years. During that time, they have realized the promise of exceptionally high core efficiency as compared to silicon steel transformer cores. Utility planners today must consider all options available to meet the requirements of load growth. While additional generation capacity will be added, many demand-side initiatives are being undertaken as complementary programs to generation expansion. The efficiency improvement provided by amorphous metal distribution transformers deserves to be among the demand-side options. The key to understanding the positive impact of amorphous metal transformer efficiency is to consider the aggregate contribution those transformers can make towards demand reduction. It is estimated that distribution transformer core losses comprise at least 1% of the utility`s peak demand. Because core losses are continuous, any significant reduction in their magnitude is of great significance to the planner. This paper describes the system-wide economic contributions amorphous metal distribution transformers can make to a utility and suggests evaluation techniques that can be used. As a conservation tool, the amorphous metal transformer contributes to reduced power plant emissions. Calibration of those emissions reductions is also discussed in the paper.

  14. Archaeal transformation of metals in the environment.

    PubMed

    Bini, Elisabetta

    2010-07-01

    We are becoming increasingly aware of the role played by archaea in the biogeochemical cycling of the elements. Metabolism of metals is linked to fundamental metabolic functions, including nitrogen fixation, energy production, and cellular processes based on oxidoreductions. Comparative genomic analyses have shown that genes for metabolism, resistance, and detoxification of metals are widespread throughout the archaeal domain. Archaea share with other organisms strategies allowing them to utilize essential metals and maintain metal ions within a physiological range, although comparative proteomics show, in a few cases, preferences for specific genetic traits related to metals. A more in-depth understanding of the physiology of acidophilic archaea might lead to the development of new strategies for the bioremediation of metal-polluted sites and other applications, such as biomining. PMID:20455933

  15. TRACE METAL TRANSFORMATION MECHANISMS DURING COAL COMBUSTION

    EPA Science Inventory

    The article reviews mechanisms governing the fate of trace metals during coal combustion and presents new theoretical results that interpret existing data. Emphasis is on predicting the size-segregated speciation of trace metals in pulverized-coal-fired power plant effluents. Thi...

  16. TRACE METAL TRANSFORMATION MECHANISMS DURING COAL COMBUSTION

    EPA Science Inventory

    The article reviews mechanisms governing the fate of trace metals during coal combustion and presents new theoretical results that interpret existing data. mphasis is on predicting the size-segregated speciation of trace metals in pulverized-coal-fired power plant effluents. his ...

  17. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens

    PubMed Central

    Hiei, Yukoh; Ishida, Yuji; Komari, Toshihiko

    2014-01-01

    Monocotyledonous plants were believed to be not transformable by the soil bacterium Agrobacterium tumefaciens until two decades ago, although convenient protocols for infection of leaf disks and subsequent regeneration of transgenic plants had been well established in a number of dicotyledonous species by then. This belief was reinforced by the fact that monocotyledons are mostly outside the host range of crown gall disease caused by the bacterium and by the failures in trials in monocotyledons to mimic the transformation protocols for dicotyledons. However, a key reason for the failure could have been the lack of active cell divisions at the wound sites in monocotyledons. The complexity and narrow optimal windows of critical factors, such as genotypes of plants, conditions of the plants from which explants are prepared, tissue culture methods and culture media, pre-treatments of explants, strains of A. tumefaciens, inducers of virulence genes, transformation vectors, selection marker genes and selective agents, kept technical hurdles high. Eventually it was demonstrated that rice and maize could be transformed by co-cultivating cells of callus cultures or immature embryos, which are actively dividing or about to divide, with A. tumefaciens. Subsequently, these initial difficulties were resolved one by one by many research groups, and the major cereals are now transformed quite efficiently. As many as 15 independent transgenic events may be regenerated from a single piece of immature embryo of rice. Maize transformation protocols are well established, and almost all transgenic events deregulated for commercialization after 2003 were generated by Agrobacterium-mediated transformation. Wheat, barley, and sorghum are also among those plants that can be efficiently transformed by A. tumefaciens. PMID:25426132

  18. Microbial-mediated method for metal oxide nanoparticle formation

    SciTech Connect

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  19. Oncogene-mediated tumor transformation sensitizes cells to autophagy induction.

    PubMed

    Gargini, Ricardo; García-Escudero, Vega; Izquierdo, Marta; Wandosell, Francisco

    2016-06-01

    The process of tumorigenesis induces alterations in numerous cellular pathways including the main eukaryotic metabolic routes. It has been recently demonstrated that autophagy is part of the oncogene-induced senescence phenotype although its role in tumor establishment has not been completely clarified. In the present study, we showed that non‑transformed cells are sensitized to mitochondrial stress and autophagy induction when they are transformed by oncogenes such as c-Myc or Ras. We observed that overexpression of c-Myc or Ras increased AMP-activated protein kinase (AMPK) phosphorylation and the expression of p62, a known partner for degradation by autophagy. The activation of AMPK was found to favor the activation of FoxO3 which was prevented by the inhibition of AMPK. The transcriptional activation mediated by FoxO3 upregulated genes such as BNIP3 and LC3. Finally, the transformation by oncogenes such as c-Myc and Ras predisposes tumor cells to autophagy induction as a consequence of mitochondrial stress and impairs tumor growth in vitro and in vivo, which may have therapeutic implications. PMID:27035659

  20. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation.

    PubMed

    Song, Geun Cheol; Lee, Soohyun; Hong, Jaehwa; Choi, Hye Kyung; Hong, Gun Hyong; Bae, Dong-Won; Mysore, Kirankumar S; Park, Yong-Soon; Ryu, Choong-Min

    2015-07-01

    Agrobacterium tumefaciens causes crown gall disease. Although Agrobacterium can be popularly used for genetic engineering, the influence of aboveground insect infestation on Agrobacterium induced gall formation has not been investigated. Nicotiana benthamiana leaves were exposed to a sucking insect (whitefly) infestation and benzothiadiazole (BTH) for 7 d, and these exposed plants were inoculated with a tumorigenic Agrobacterium strain. We evaluated, both in planta and in vitro, how whitefly infestation affects crown gall disease. Whitefly-infested plants exhibited at least a two-fold reduction in gall formation on both stem and crown root. Silencing of isochorismate synthase 1 (ICS1), required for salicylic acid (SA) synthesis, compromised gall formation indicating an involvement of SA in whitefly-derived plant defence against Agrobacterium. Endogenous SA content was augmented in whitefly-infested plants upon Agrobacterium inoculation. In addition, SA concentration was three times higher in root exudates from whitefly-infested plants. As a consequence, Agrobacterium-mediated transformation of roots of whitefly-infested plants was clearly inhibited when compared to control plants. These results suggest that aboveground whitefly infestation elicits systemic defence responses throughout the plant. Our findings provide new insights into insect-mediated leaf-root intra-communication and a framework to understand interactions between three organisms: whitefly, N. benthamiana and Agrobacterium. PMID:25676198

  1. Polarization-Mediated Thermal Stability of Metal/Oxide Heterointerface.

    PubMed

    Zhang, Qintong; You, Lu; Shen, Xi; Wan, Caihua; Yuan, Zhonghui; Zhang, Xuan; Huang, Li; Kong, Wenjie; Wu, Hao; Yu, Richeng; Wang, Junling; Han, Xiufeng

    2015-11-18

    A polarization-mediated heterointerface is designed to research the thermal stability of magnetic metal/oxide interfaces. Using polarization engineering, the thermal stability of the interface between BiFeO3 and CoFeB can be improved by about 100°C. This finding provides new insight into the chemistry of the metal/oxide heterointerface. PMID:26421975

  2. Lysosome-related Organelles as Mediators of Metal Homeostasis*

    PubMed Central

    Blaby-Haas, Crysten E.; Merchant, Sabeeha S.

    2014-01-01

    Metal ion assimilation is essential for all forms of life. However, organisms must properly control the availability of these nutrients within the cell to avoid inactivating proteins by mismetallation. To safeguard against an imbalance between supply and demand in eukaryotes, intracellular compartments contain metal transporters that load and unload metals. Although the vacuoles of Saccharomyces cerevisiae and Arabidopsis thaliana are well established locales for the storage of copper, zinc, iron, and manganese, related compartments are emerging as important mediators of metal homeostasis. Here we describe these compartments and review their metal transporter complement. PMID:25160625

  3. Metal transformable-volume structures for space engineering

    NASA Astrophysics Data System (ADS)

    Paton, Boris E.; Lobanov, Leonid M.; Volkov, Valentin S.

    2015-05-01

    The brief review of design solutions for existing transformable-volume structures (TVS) is given and main approaches are formulated for optimizing the metal transformable shell structures, allowing widening the sphere of their application in space engineering. Characterized are the methods, used for theoretical description of process of change in TVS shape, and also geometric parameters and properties of structural materials of thin shells allowing realization of their volume deforming at the maximum approach to the selected theoretical model. Technological aspects are described which are typical of the process of multi-sectional conical TVS design as applied to the conditions of its service under the effect of space environment factors (SEF).

  4. Transformation of heavy metal speciation during sludge drying: mechanistic insights

    SciTech Connect

    Weng, Huanxin; Ma, Xue-Wen; Fu, Feng-Xia; Zhang, Jin-Jun; Liu, Zan; Tian, Li-Xun; Liu, Chongxuan

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized the Cr, Cu, Cd and Pb in sludge by transforming acid-soluble, reducible and oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge.

  5. Biochar-mediated reductive transformation of nitro herbicides and explosives.

    PubMed

    Oh, Seok-Young; Son, Jong-Gil; Chiu, Pei C

    2013-03-01

    Biochar, a subset of black carbon produced via pyrolysis of biomass, has received much attention in recent years due to its potential to address many important issues, from energy and climate to agriculture and environmental quality. Biochar is known to influence the fate and transport of organic contaminants, although its role has been generally assumed to be as an adsorbent. In this study, the authors investigated the ability of biochar to catalyze the reductive reactions of nitro herbicides and explosives. Two biochars, derived from poultry litter and wastewater biosolids, were found to promote the reductive removal of the dinitro herbicides pendimethalin and trifluralin and the explosives 2,4-dinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by dithiothreitol. Parallel experiments using another black carbon material, graphite powder or granular activated carbon, in place of a biochar resulted in comparable rate enhancement to show reduction products, such as 2,4-diaminotoluene and formaldehyde. A cyclization product of trifluralin and reduction products of dinitrotoluene and RDX were detected only when biochar and dithiothreitol were both present, supporting the ability of biochar to promote redox reactions. Three possible catalysts, including graphene moieties, surface functional groups, and redox-active metals, in biochar may be responsible for the biochar-mediated reactions. The environmental significance, implications, and applications of this previously unrecognized role of biochar are discussed. PMID:23334991

  6. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    SciTech Connect

    REGUERA, GEMMA

    2014-01-16

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

  7. Fluid mediated transformation of aragonitic cuttlebone to calcite

    NASA Astrophysics Data System (ADS)

    Perdikouri, C.; Kasioptas, A.; Putnis, A.

    2009-04-01

    The aragonite to calcite transition has been studied extensively over the years because of its wide spectra of applications and of its significant geochemical interest. While studies of kinetics (e.g. Topor et al., 1981), thermodynamics (e.g. Wolf et al., 1996) and behavior of ions such as Sr and Mg (e.g. Yoshioka et al., 1986) have been made there are still unanswered questions regarding this reaction especially in the cases where the effects of fluid composition are considered. It is well known that when heated in air, aragonite transforms by a solid state reaction to calcite. The aragonite cuttlebone of the sepia officinalis that was used for our experiments undergoes a phase transition at ~370-390˚ C, measured by in situ heating experiments in a Philips X'pert X-ray powder diffractometer equipped with a HTK 1200 High temperature oven. Successive X-ray scans were taken at isothermal temperatures at 200C intervals. A similar temperature range was found by Vongsavat et al. 2006, who studied this transition in Acropora corals. It is possible however to promote this transition at considerably lower temperatures by means of a fluid mediated reaction where the replacement takes place by a dissolution-precipitation mechanism (Putnis & Putnis, 2007). We have successfully carried out hydrothermal experiments where cuttlebone has been converted to calcite at 200˚ C. Using the PhreeqC program we calculated the required composition of a solution that would be undersaturated with respect to aragonite and saturated with respect to calcite leading to dissolution of the aragonite and to a consequent precipitation of the new calcite phase, similar to the experiments described in an earlier study (Perdikouri et al, 2008). This reaction is not pseudomorphic and results in the destruction of the morphology, presumably due to the molar volume increase. A total transformation of the cuttlebone produced a fine calcite powder. The cuttlebone exhibits a unique microstructure, made

  8. Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic transformation is an essential tool in molecular biology for many purposes including the study of gene function and the genetic improvement of an organism. The genetic transformation of many fungal species is a well established process that can be carried out by utilizing different transform...

  9. Biomolecular Mechanisms Controlling Metal and Radionuclide Transformations in Anaeromyxobacter dehalogenans

    SciTech Connect

    Beliaev, Alexander S.; Fredrickson, James K.; Loeffler, Frank E.; Sanford, Robert A.

    2006-06-01

    Microbiological reduction and immobilization of U(VI) and Tc(VII) has been proposed as a strategy for remediating radionuclide-contaminated environments. Numerous studies focusing on the reduction kinetics and speciation of these metals have been carried out using contaminated sediment samples, microbial consortia, and pure bacterial cultures. While previous work with model organisms has increased the general understanding of radionuclide transformation processes, fundamental questions regarding radionuclide reduction mechanisms by indigenous microorganisms are poorly understood, especially under the commonly encountered scenario where multiple electron acceptors are present. Therefore, the overall goal of the proposed research is to elucidate the molecular mechanisms of radionuclide biotransformation by Anaeromyxobacter dehalogenans, a predominant member of indigenous microorganism commonly found in contaminated subsurface environments, and to assess the effects of relevant environmental factors affecting these transformation reactions.

  10. Redox-mediated activation of latent transforming growth factor-beta 1

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Dix, T. A.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Transforming growth factor beta 1 (TGF beta) is a multifunctional cytokine that orchestrates response to injury via ubiquitous cell surface receptors. The biological activity of TGF beta is restrained by its secretion as a latent complex (LTGF beta) such that activation determines the extent of TGF beta activity during physiological and pathological events. TGF beta action has been implicated in a variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. It was recently shown to be rapidly activated after in vivo radiation exposure, which also generates reactive oxygen species (ROS). In the present studies, the potential for redox-mediated LTGF beta activation was investigated using a cell-free system in which ROS were generated in solution by ionizing radiation or metal ion-catalyzed ascorbate reaction. Irradiation (100 Gray) of recombinant human LTGF beta in solution induced 26% activation compared with that elicited by standard thermal activation. Metal-catalyzed ascorbate oxidation elicited extremely efficient recombinant LTGF beta activation that matched or exceeded thermal activation. The efficiency of ascorbate activation depended on ascorbate concentrations and the presence of transition metal ions. We postulate that oxidation of specific amino acids in the latency-conferring peptide leads to a conformation change in the latent complex that allows release of TGF beta. Oxidative activation offers a novel route for the involvement of TGF beta in tissue processes in which ROS are implicated and endows LTGF beta with the ability to act as a sensor of oxidative stress and, by releasing TGF beta, to function as a signal for orchestrating the response of multiple cell types. LTGF beta redox sensitivity is presumably directed toward recovery of homeostasis; however, oxidation may also be a mechanism of LTGF beta activation that can be deleterious during

  11. Redox-mediated activation of latent transforming growth factor-beta 1.

    PubMed

    Barcellos-Hoff, M H; Dix, T A

    1996-09-01

    Transforming growth factor beta 1 (TGF beta) is a multifunctional cytokine that orchestrates response to injury via ubiquitous cell surface receptors. The biological activity of TGF beta is restrained by its secretion as a latent complex (LTGF beta) such that activation determines the extent of TGF beta activity during physiological and pathological events. TGF beta action has been implicated in a variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. It was recently shown to be rapidly activated after in vivo radiation exposure, which also generates reactive oxygen species (ROS). In the present studies, the potential for redox-mediated LTGF beta activation was investigated using a cell-free system in which ROS were generated in solution by ionizing radiation or metal ion-catalyzed ascorbate reaction. Irradiation (100 Gray) of recombinant human LTGF beta in solution induced 26% activation compared with that elicited by standard thermal activation. Metal-catalyzed ascorbate oxidation elicited extremely efficient recombinant LTGF beta activation that matched or exceeded thermal activation. The efficiency of ascorbate activation depended on ascorbate concentrations and the presence of transition metal ions. We postulate that oxidation of specific amino acids in the latency-conferring peptide leads to a conformation change in the latent complex that allows release of TGF beta. Oxidative activation offers a novel route for the involvement of TGF beta in tissue processes in which ROS are implicated and endows LTGF beta with the ability to act as a sensor of oxidative stress and, by releasing TGF beta, to function as a signal for orchestrating the response of multiple cell types. LTGF beta redox sensitivity is presumably directed toward recovery of homeostasis; however, oxidation may also be a mechanism of LTGF beta activation that can be deleterious during

  12. Transformation of metal-organic frameworks for molecular sieving membranes.

    PubMed

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-01-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively. PMID:27090597

  13. Transformation of metal-organic frameworks for molecular sieving membranes

    PubMed Central

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-01-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively. PMID:27090597

  14. Transformation of metal-organic frameworks for molecular sieving membranes

    NASA Astrophysics Data System (ADS)

    Li, Wanbin; Zhang, Yufan; Zhang, Congyang; Meng, Qin; Xu, Zehai; Su, Pengcheng; Li, Qingbiao; Shen, Chong; Fan, Zheng; Qin, Lei; Zhang, Guoliang

    2016-04-01

    The development of simple, versatile strategies for the synthesis of metal-organic framework (MOF)-derived membranes are of increasing scientific interest, but challenges exist in understanding suitable fabrication mechanisms. Here we report a route for the complete transformation of a series of MOF membranes and particles, based on multivalent cation substitution. Through our approach, the effective pore size can be reduced through the immobilization of metal salt residues in the cavities, and appropriate MOF crystal facets can be exposed, to achieve competitive molecular sieving capabilities. The method can also be used more generally for the synthesis of a variety of MOF membranes and particles. Importantly, we design and synthesize promising MOF membranes candidates that are hard to achieve through conventional methods. For example, our CuBTC/MIL-100 membrane exhibits 89, 171, 241 and 336 times higher H2 permeance than that of CO2, O2, N2 and CH4, respectively.

  15. Biosurfactant Mediated Biosynthesis of Selected Metallic Nanoparticles

    PubMed Central

    Płaza, Grażyna A.; Chojniak, Joanna; Banat, Ibrahim M.

    2014-01-01

    Developing a reliable experimental protocol for the synthesis of nanomaterials is one of the challenging topics in current nanotechnology particularly in the context of the recent drive to promote green technologies in their synthesis. The increasing need to develop clean, nontoxic and environmentally safe production processes for nanoparticles to reduce environmental impact, minimize waste and increase energy efficiency has become essential in this field. Consequently, recent studies on the use of microorganisms in the synthesis of selected nanoparticles are gaining increased interest as they represent an exciting area of research with considerable development potential. Microorganisms are known to be capable of synthesizing inorganic molecules that are deposited either intra- or extracellularly. This review presents a brief overview of current research on the use of biosurfactants in the biosynthesis of selected metallic nanoparticles and their potential importance. PMID:25110864

  16. Fungal transformation of metallic lead to pyromorphite in liquid medium.

    PubMed

    Rhee, Young Joon; Hillier, Stephen; Pendlowski, Helen; Gadd, Geoffrey Michael

    2014-10-01

    Many approaches have been proposed to reduce the toxicity of hazardous substances such as lead in the environment. Several techniques using microorganisms rely on metal removal from solution by non-specific biosorption. However, immobilization of metals through formation of biominerals mediated by metabolic processes offers another solution but which has been given limited attention. In this work, we have investigated lead biomineralization by Paecilomyces javanicus, a fungus isolated from a lead-contaminated soil, in a liquid medium. P. javanicus was able to grow in the presence of metallic lead, supplied as lead shot, and secondary lead minerals were deposited on the lead surfaces as revealed by scanning electron microscopy. Energy dispersive X-ray analysis and X-ray powder diffraction revealed that pyromorphite was formed in the presence of the fungus, but not in abiotic controls. Our results clearly demonstrate that fungal activities can play an important role in lead biocorrosion and biomineralization in an aqueous environment. These findings are relevant to bioremediation approaches for liquid wastes contaminated with lead, or other metals, and also to the immobilization and biorecovery of rare or valuable elements. They also provide further understanding of microbial roles in environmental lead cycling. PMID:25065784

  17. Transformation of lettuce (Lactuca sativa) mediated by Agrobacterium tumefaciens.

    PubMed

    Michelmore, R; Marsh, E; Seely, S; Landry, B

    1987-12-01

    Lactuca sativa can be routinely transformed using Ti plasmids of Agrobacterium tumefaciens containing a chimeric kanamycin resistance gene (NOS.NPTII.NOS). Critical experimental variables were plant genotype, bacterial concentration, presence of a nurse culture and timing of transfers between tissue culture media. Transformation was confirmed by the ability to callus and root in the presence of kanamycin, nopaline production, and by hybridization in Southern blots. Transformation has been achieved with several Ti vectors. Several hundred transformed plants have been regenerated. Kanamycin resistance was inherited monogenically. Homozygotes can be selected by growing R2 seedlings on media containing G418. PMID:24248927

  18. A Novel Phenolic Compound, Chloroxynil, Improves Agrobacterium-Mediated Transient Transformation in Lotus japonicus

    PubMed Central

    Kimura, Mitsuhiro; Cutler, Sean; Isobe, Sachiko

    2015-01-01

    Agrobacterium-mediated transformation is a commonly used method for plant genetic engineering. However, the limitations of Agrobacterium host-plant interactions and the complexity of plant tissue culture often make the production of transgenic plants difficult. Transformation efficiency in many legume species, including soybean and the common bean, has been reported to be quite low. To improve the transformation procedure in legumes, we screened for chemicals that increase the transformation efficiency of Lotus japonicus, a model legume species. A Chemical library was screened and chemicals that increase in transient transformation efficiency of L. japonicus accession, Miyakojima MG-20 were identified. The transient transformation efficiency was quantified by reporter activity in which an intron-containing reporter gene produces the GUS protein only when the T-DNA is expressed in the plant nuclei. We identified a phenolic compound, chloroxynil, which increased the genetic transformation of L. japonicus by Agrobacterium tumefaciens strain EHA105. Characterization of the mode of chloroxynil action indicated that it enhanced Agrobacterium-mediated transformation through the activation of the Agrobacterium vir gene expression, similar to acetosyringone, a phenolic compound known to improve Agrobacterium-mediated transformation efficiency. Transient transformation efficiency of L. japonicus with 5 μM chloroxynil was 60- and 6- fold higher than that of the control and acetosyringone treatment, respectively. In addition, transgenic L. japonicus lines were successfully generated by 5 μM chloroxynil treatment.Furthermore, we show that chloroxynil improves L. japonicus transformation by Agrobacterium strain GV3101 and rice transformation. Our results demonstrate that chloroxynil significantly improves Agrobacterium tumefaciens-mediated transformation efficiency of various agriculturally important crops. PMID:26176780

  19. Multiple host-cell recombination pathways act in Agrobacterium-mediated transformation of plant cells.

    PubMed

    Mestiri, Imen; Norre, Frédéric; Gallego, Maria E; White, Charles I

    2014-02-01

    Using floral-dip, tumorigenesis and root callus transformation assays of both germline and somatic cells, we present here results implicating the four major non-homologous and homologous recombination pathways in Agrobacterium-mediated transformation of Arabidopsis thaliana. All four single mutant lines showed similar mild reductions in transformability, but knocking out three of four pathways severely compromised Agrobacterium-mediated transformation. Although integration of T-DNA into the plant genome is severely compromised in the absence of known DNA double-strand break repair pathways, it does still occur, suggesting the existence of other pathways involved in T-DNA integration. Our results highlight the functional redundancy of the four major plant recombination pathways in transformation, and provide an explanation for the lack of strong effects observed in previous studies on the roles of plant recombination functions in transformation. PMID:24299074

  20. Enhanced transformation of triclosan by laccase in the presence of redox mediators.

    PubMed

    Murugesan, Kumarasamy; Chang, Yoon-Young; Kim, Young-Mo; Jeon, Jong-Rok; Kim, Eun-Ju; Chang, Yoon-Seok

    2010-01-01

    Triclosan (TCS), an antimicrobial agent, is an emerging and persistent environmental pollutant that is often found as a contaminant in surface waters and sediments; hence, knowledge of its degradability is important. In this study we investigated laccase-mediated TCS transformation and detoxification, using laccase (from the fungus Ganoderma lucidum) in the presence and absence of redox mediators. Transformation products were identified using HPLC, ESI-MS and GC-MS, and transformation mechanisms were proposed. In the absence of redox mediator, 56.5% TCS removal was observed within 24h, concomitant with formation of new products with molecular weights greater than that of TCS. These products were dimers and trimers of TCS, as confirmed by ESI-MS analysis. Among the various mediators tested, 1-hydroxybenzotriazole (HBT) and syringaldehyde (SYD) significantly enhanced TCS transformation ( approximately 90%). The presence of these mediators resulted in products with lower molecular weights than TCS, including 2,4-dichlorophenol (2,4-DCP; confirmed by GC-MS) and dechlorinated forms of 2,4-DCP. When SYD was used as the mediator, dechlorination resulted in 2-chlorohydroquinone (2-CHQ). Bacterial growth inhibition studies revealed that laccase-mediated transformation of TCS effectively decreased its toxicity, with ultimate conversion to less toxic or nontoxic products. Our results confirmed the involvement of two mechanisms of laccase-catalyzed TCS removal: (i) oligomerization in the absence of redox mediators, and (ii) ether bond cleavage followed by dechlorination in the presence of redox mediators. These results suggest that laccase in combination with natural redox mediator systems may be a useful strategy for the detoxification and elimination of TCS from aqueous systems. PMID:19854464

  1. Distinct tyrosine autophosphorylation sites negatively and positively modulate neu-mediated transformation.

    PubMed Central

    Dankort, D L; Wang, Z; Blackmore, V; Moran, M F; Muller, W J

    1997-01-01

    A number of cytoplasmic signaling molecules are thought to mediate mitogenic signaling from the activated Neu receptor tyrosine kinase through binding specific phosphotyrosine residues located within the intracellular portion of Neu/c-ErbB-2. An activated neu oncogene containing tyrosine-to-phenylalanine substitutions at each of the known autophosphorylation sites was generated and assessed for its specific transforming potential in Rat1 and NIH 3T3 fibroblasts. Mutation of these sites resulted in a dramatic impairment of the transforming potential of neu. To assess the role of these tyrosine phosphorylation sites in cellular transformation, the transforming potential of a series of mutants in which individual tyrosine residues were restored to this transformation-debilitated neu mutant was evaluated. Reversion of any one of four mutated sites to tyrosine residues restored wild-type transforming activity. While each of these transforming mutants displayed Ras-dependent signaling, the transforming activity of two of these mutants was correlated with their ability to bind either the GRB2 or SHC adapter molecules that couple receptor tyrosine kinases to the Ras signaling pathway. By contrast, restoration of a tyrosine residue located at position 1028 completely suppressed the basal transforming activity of this mutated neu molecule or other transforming neu molecules which possessed single tyrosine residues. These data argue that the transforming potential of activated neu is mediated both by positive and negative regulatory tyrosine phosphorylation sites. PMID:9271418

  2. Phosphate-Mediated Remediation of Metals and Radionuclides

    DOE PAGESBeta

    Martinez, Robert J.; Beazley, Melanie J.; Sobecky, Patricia A.

    2014-01-01

    Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods aremore » often too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. The in situ sequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.« less

  3. Transforming Ourselves through the Power of Mediated Instruction.

    ERIC Educational Resources Information Center

    Guadarrama, Irma N., Ed.; Kirksey, Lockie, Ed.

    1996-01-01

    A collection of essays on English-as-a-Second-Language (ESL) and bilingual education focuses on issues in making curricula meaningful for teachers and students. Articles include: "Critical Mediation: When Teachers and Students Connect in the 'Ecliptic Zone'" (Irma N. Guadarrama); "Reflecting on Ideological Baggage: Latino Pre-service Teachers and…

  4. Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals

    PubMed Central

    Gupta, Vivek Kumar; Singh, Shweta; Agrawal, Anju; Siddiqi, Nikhat Jamal; Sharma, Bechan

    2015-01-01

    Almost all the environmental components including both the abiotic and biotic factors have been consistently threatened by excessive contamination of heavy metals continuously released from various sources. Different heavy metals have been reported to generate adverse effects in many ways. Heavy metals induced neurotoxicity and impairment in signalling cascade leading to cell death (apoptosis) has been indicated by several workers. On one hand, these metals are required by the cellular systems to regulate various biological functions of normal cells, while on the other their biomagnification in the cellular systems produces adverse effects. The mechanism by which the heavy metals induce neurotoxicity follows free radicals production pathway(s) specially the generation of reactive oxygen species and reactive nitrogen species. These free radicals produced in excess have been shown to create an imbalance between the oxidative and antioxidative systems leading to emergence of oxidative stress, which may cause necrosis, DNA damage, and many neurodegenerative disorders. This mini review summarizes the current knowledge available on the protective role of varied natural products isolated from different herbs/plants in imparting protection against heavy metals (cadmium, lead, arsenic, and mercury) mediated neurotoxicity. PMID:26618004

  5. Phytochemicals Mediated Remediation of Neurotoxicity Induced by Heavy Metals.

    PubMed

    Gupta, Vivek Kumar; Singh, Shweta; Agrawal, Anju; Siddiqi, Nikhat Jamal; Sharma, Bechan

    2015-01-01

    Almost all the environmental components including both the abiotic and biotic factors have been consistently threatened by excessive contamination of heavy metals continuously released from various sources. Different heavy metals have been reported to generate adverse effects in many ways. Heavy metals induced neurotoxicity and impairment in signalling cascade leading to cell death (apoptosis) has been indicated by several workers. On one hand, these metals are required by the cellular systems to regulate various biological functions of normal cells, while on the other their biomagnification in the cellular systems produces adverse effects. The mechanism by which the heavy metals induce neurotoxicity follows free radicals production pathway(s) specially the generation of reactive oxygen species and reactive nitrogen species. These free radicals produced in excess have been shown to create an imbalance between the oxidative and antioxidative systems leading to emergence of oxidative stress, which may cause necrosis, DNA damage, and many neurodegenerative disorders. This mini review summarizes the current knowledge available on the protective role of varied natural products isolated from different herbs/plants in imparting protection against heavy metals (cadmium, lead, arsenic, and mercury) mediated neurotoxicity. PMID:26618004

  6. Transformations of metal species in ageing humic hydrocolloids studied by competitive ligand and metal exchange.

    PubMed

    Burba, Peter; Van den Bergh, Johan

    2004-03-01

    Transformations of metal species (particularly Al, Ca, Fe, Mg, Mn, Zn) in ageing humic hydrocolloids were studied, applying a competitive ligand and metal exchange approach. For this purpose, metal-containing hydrocolloids, freshly collected from humic-rich German bog lake waters (Hohlohsee (HO), Black Forest; Venner Moor (VM), Muensterland; Arnsberger Wald (AW), Northrhine-Westfalia) and conventionally pre-filtered through 0.45 microm membranes, were subjected on-site to an exchange with EDTA and Cu(II) ions, respectively, as a function of time. EDTA complexes gradually formed, metal fractions exchanged by Cu(II) (as well as free Cu(II) concentrations) were operationally discriminated by means of a small time-controlled tangential-flow ultrafiltration unit (nominal cutoff: 1 kDa). Metal and DOM (dissolved organic matter) fractions obtained this way were determined off-site using instrumental methods (AAS, ICP-OES, carbon analyzer). After weeks of storage, the collected hydrocolloids were studied again by this approach. The EDTA availability of colloid-bound metals (particularly Al and Fe) exhibited different ageing trends, dependent on the sample (VM: decrease of Fe availability (98-76%), HO: increase of Fe availability (76-82%)). In contrast, the Cu(II) exchange equilibria of colloid-bound metals revealed merely low availability of Al (16-38%) and Fe (5-11%) towards Cu(II) ions, also dependent on ageing effects. In particular, the conditional copper exchange constants Kex obtained from the exchange between Cu(II) ions and available metal species (such as Ca, Mg, Mn, Zn) exhibited a strong decrease (by a factor of 2-100) during sample storage, indicating considerable non-equilibria complexation of these metal ions in the original bogwaters studied on-site. PMID:15214428

  7. Mediating the Conflict between Transformative Pedagogy and Bureaucratic Practice

    ERIC Educational Resources Information Center

    Inderbitzin, Michelle; Storrs, Debbie A.

    2008-01-01

    This article reflects on the authors' experiences during a pilot year of an innovative core curriculum at a state research university and their attempts to create a "collaborative community" characterized by transformative pedagogy. It discusses their students' and colleagues' resistance to their inventive, albeit time-consuming and sometimes…

  8. Effects of Metal Oxides on a Fungal Laccase Activity and Catechol Transformation

    NASA Astrophysics Data System (ADS)

    Ahn, M.; Dec, J.; Bollag, J.

    2003-12-01

    The transformation of naturally occurring phenols to humic polymers is generally catalyzed by various phenoloxidases commonly present in soil. Some poorly crystalline metal oxides and hydroxides may also participate in these reactions. In this study, catechol (0.1 M) was incubated with a fungal laccase (950 unit/mL) in the presence of poorly crystalline minerals (ferrihydrite; 50 mg/mL: birnessite; 1 mg/mL: aluminum hydroxide; 50 mg/mL) to examine the interaction between these soil components under field conditions. Birnessite had an inhibitory effect on the laccase-mediated transformation of catechol (by up to 40%). Enzyme inhibition was possibly caused by the rapid production of humic-like polymers by birnessite. An additional inhibitory effect was caused by Manganese ion released from birnessite as it oxidized catechol (up to 70% loss in enzyme activity). In contrast to birnessite, aluminum hydroxide had an additive effect on the disappearance of catechol despite the rapid adsorption of the enzyme by this mineral (Xm=6.18μ g/mg). Apparently, the adsorbed laccase retained some enzyme activity. Ferrihydrite also had an additive effect on catechol transformation. However, as compared to aluminum hydroxide, ferrihydrite adsorbed less laccase (Xm=0.89μ g/mg) and more humic-like polymers. Unlike birnessite, aluminum hydroxide and ferrihydrite released negligible amounts of metal ions. In conclusion, under field conditions, phenoloxidase activity may be diminished by the presence of birnessite, but the presence of either ferrihydrite or aluminum hydroxide is less likely to inhibit enzyme activity, and may even enhance substrate transformation.

  9. Graphene nucleation on transition metal surface: structure transformation and role of the metal step edge.

    PubMed

    Gao, Junfeng; Yip, Joanne; Zhao, Jijun; Yakobson, Boris I; Ding, Feng

    2011-04-01

    The nucleation of graphene on a transition metal surface, either on a terrace or near a step edge, is systematically explored using density functional theory calculations and applying the two-dimensional (2D) crystal nucleation theory. Careful optimization of the supported carbon clusters, C(N) (with size N ranging from 1 to 24), on the Ni(111) surface indicates a ground state structure transformation from a one-dimensional C chain to a 2D sp(2) C network at N ≈ 10-12. Furthermore, the crucial parameters controlling graphene growth on the metal surface, nucleation barrier, nucleus size, and nucleation rate on a terrace or near a step edge are calculated. In agreement with numerous experimental observations, our analysis shows that graphene nucleation near a metal step edge is superior to that on a terrace. On the basis of our analysis, we propose the use of graphene seeds to synthesize high-quality graphene in large area. PMID:21384854

  10. Agrobacterium tumefaciens-mediated transient transformation of Arabidopsis thaliana leaves.

    PubMed

    Mangano, Silvina; Gonzalez, Cintia Daniela; Petruccelli, Silvana

    2014-01-01

    Transient assays provide a convenient alternative to stable transformation. Compared to the generation of stably transformed plants, agroinfiltration is more rapid, and samples can be analyzed a few days after inoculation. Nevertheless, at difference of tobacco and other plant species, Arabidopsis thaliana remains recalcitrant to routine transient assays. In this chapter, we describe a transient expression assay using simple infiltration of intact Arabidopsis leaves with Agrobacterium tumefaciens carrying a plasmid expressing a reporter fluorescent protein. In this protocol, Agrobacterium aggressiveness was increased by a prolonged treatment in an induction medium deficient in nutrients and containing acetosyringone. Besides, Arabidopsis plants were cultivated in intermediate photoperiod (12 h light-12 h dark) to promote leaf growth. PMID:24057365

  11. The long road to recombinase-mediated plant transformation.

    PubMed

    Ow, David W

    2016-02-01

    The use of site-specific recombinases to manipulate eukaryotic genomes began nearly three decades ago. Although seemingly parallel efforts were being made in animal and plant systems, the motivation for its development in plants was unique to, at least at the time, crop bioengineering issues. The impetus behind site-specific deletion in plants was to remove antibiotic resistance genes used during transformation but unnecessary in commercial products. Site-specific integration in plants was more than academic curiosity of position effects on gene expression, but a necessary step towards developing the serial stacking of DNA to the same chromosome locus - to insure that bioengineered crops can be improved over time through transgene additions without inflating the number of segregating loci. This article is not a review of the literature on site-specific recombination, but a first person account of the series of events leading to the development of a gene stacking transformation system in plants. PMID:26373969

  12. Regulatory focus and burnout in nurses: The mediating effect of perception of transformational leadership.

    PubMed

    Shi, Rui; Zhang, Shilei; Xu, Hang; Liu, Xufeng; Miao, Danmin

    2015-12-01

    This correlation study investigated the relationship between nurses' regulatory focus and burnout, as mediated by their perceptions of transformational leadership, using a cross-sectional research design with anonymous questionnaires. In July-August 2012, data were collected from 378 nurses from three hospitals in Shaanxi Province, China, using self-report questionnaires for measuring the nurses' regulatory focus, their level of burnout and their perception of whether the leadership of their supervisor was transformational. Structural equation modelling and bootstrapping procedures were used to identify the mediating effect of their perceptions of transformational leadership. The results supported our hypothesized model. The type of regulatory focus emerged as a significant predictor of burnout. Having a perception of transformational leadership partially mediated the relationship between regulatory focus and burnout. Having a promotion focus reduced burnout when the participants perceived transformational leadership, whereas having a prevention focus exhibited the opposite pattern. The mediating effect of the perception of transformational leadership suggests that a promotion focus may help diminish burnout, directly and indirectly. Nurse managers must be aware of the role of a regulatory focus and cultivate promotion focus in their followers. PMID:24724736

  13. Transforming DNA uptake gene orthologs do not mediate spontaneous plasmid transformation in Escherichia coli.

    PubMed

    Sun, Dongchang; Zhang, Xuewu; Wang, Lingyu; Prudhomme, Marc; Xie, Zhixiong; Martin, Bernard; Claverys, Jean-Pierre

    2009-02-01

    Spontaneous plasmid transformation of Escherichia coli occurs on nutrient-containing agar plates. E. coli has also been reported to use double-stranded DNA (dsDNA) as a carbon source. The mechanism(s) of entry of exogenous dsDNA that allows plasmid establishment or the use of DNA as a nutrient remain(s) unknown. To further characterize plasmid transformation, we first documented the stimulation of transformation by agar and agarose. We provide evidence that stimulation is not due to agar contributing a supplement of Ca(2+), Fe(2+), Mg(2+), Mn(2+), or Zn(2+). Second, we undertook to inactivate the E. coli orthologues of Haemophilus influenzae components of the transformation machine that allows the uptake of single-stranded DNA (ssDNA) from exogenous dsDNA. The putative outer membrane channel protein (HofQ), transformation pseudopilus component (PpdD), and transmembrane pore (YcaI) are not required for plasmid transformation. We conclude that plasmid DNA does not enter E. coli cells as ssDNA. The finding that purified plasmid monomers transform E. coli with single-hit kinetics supports this conclusion; it establishes that a unique monomer molecule is sufficient to give rise to a transformant, which is not consistent with the reconstitution of an intact replicon through annealing of partially overlapping complementary ssDNA, taken up from two independent monomers. We therefore propose that plasmid transformation involves internalization of intact dsDNA molecules. Our data together, with previous reports that HofQ is required for the use of dsDNA as a carbon source, suggest the existence of two routes for DNA entry, at least across the outer membrane of E. coli. PMID:19011021

  14. Reductive dechlorination of trichloroethene mediated by humic-metal complexes

    SciTech Connect

    O`Loughlin, E.J.; Burris, D.R.; Delcomyn, C.A.

    1999-04-01

    Experiments were conducted to determine if transition metal-humic acid complexes can act as e{sup {minus}} transfer mediators in the reductive dechlorination of trichloroethene (TCE) using Ti(III) citrate as the bulk reductant. In the presence of Ni-Aldrich humic acid (AHA) complexes, TCE reduction was rapid, with complete removal of TCE in less than 23 h. Cu-AHA complexes were less effective as e{sup {minus}} mediators than Ni-AHA complexes; only 60% of TCE was reduced after 150 h. Partially dechlorinated intermediates were observed during TCE reduction; however, they were transitory, and at no time accounted for more than 2% of the initial TCE mass on a mole C basis. Ethane and ethene were the primary end products of TCE reduction; however, a suite of other non-chlorinated hydrocarbons consisting of methane and C{sub 3} to C{sub 6} alkanes and alkenes were also observed. The results suggest that humic-metal complexes may represent a previously unrecognized class of electron mediators in natural environments.

  15. Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor.

    PubMed

    Phieler, René; Merten, Dirk; Roth, Martin; Büchel, Georg; Kothe, Erika

    2015-12-01

    Reclaiming land that has been anthropogenically contaminated with multiple heavy metal elements, e.g., during mining operations, is a growing challenge worldwide. The use of phytoremediation has been discussed with varying success. Here, we show that a careful examination of options of microbial determination of plant performance is a key element in providing a multielement remediation option for such landscapes. We used both (a) mycorrhiza with Rhizophagus irregularis and (b) bacterial amendments with Streptomyces acidiscabies E13 and Streptomyces tendae F4 to mediate plant-promoting and metal-accumulating properties to Sorghum bicolor. In pot experiments, the effects on plant growth and metal uptake were scored, and in a field trial at a former uranium leaching heap site near Ronneburg, Germany, we could show the efficacy under field conditions. Different metals could be extracted at the same time, with varying microbial inoculation and soil amendment scenarios possible when a certain metal is the focus of interest. Especially, manganese was extracted at very high levels which might be useful even for phytomining approaches. PMID:25874434

  16. Efficient Polyethylene Glycol (PEG) Mediated Transformation of the Moss Physcomitrella patens

    PubMed Central

    Liu, Yen-Chun; Vidali, Luis

    2011-01-01

    A simple and efficient method to transform Physcomitrella pantens protoplasts is described. This method is adapted from protocols for Physocmitrella protonemal protoplast and Arabidopsis mesophyll protoplast transformation1. Due to its capacity to undergo efficient mitotic homologous recombination, Physcomitrella patens has emerged as an important model system in recent years2. This capacity allows high frequencies of gene targeting3-9, which is not seen in other model plants such as Arabidopsis. To take full advantage of this system, we need an effective and easy method to deliver DNA into moss cells. The most common ways to transform this moss are particle bombardment10 and PEG-mediated DNA uptake11. Although particle bombardment can produce a high transformation efficiency12, gene guns are not readily available to many laboratories and the protocol is difficult to standardize. On the other hand, PEG mediated transformation does not require specialized equipments, and can be performed in any laboratory with a sterile hood. Here, we show a simple and highly efficient method for transformation of moss protoplasts. This method can generate more than 120 transient transformants per microgram of DNA, which is an improvement from the most efficient protocol previously reported13. Because of its simplicity, efficiency, and reproducibility, this method can be applied to projects requiring large number of transformants as well as for routine transformation. PMID:21540817

  17. Agrobacterium tumefaciens-Mediated Transformation of the Lichen Fungus, Umbilicaria muehlenbergii

    PubMed Central

    Wang, Hai-Ying; Kim, Jung A.; Yu, Nan-Hee; Kim, Sungbeom; Cheong, Yong Hwa; Kang, Seogchan; Lee, Yong-Hwan; Hur, Jae-Seoun

    2013-01-01

    Transformation-mediated mutagenesis in both targeted and random manners has been widely applied to decipher gene function in diverse fungi. However, a transformation system has not yet been established for lichen fungi, severely limiting our ability to study their biology and mechanism underpinning symbiosis via gene manipulation. Here, we report the first successful transformation of the lichen fungus, Umbilicaria muehlenbergii, via the use of Agrobacterium tumefaciens. We generated a total of 918 transformants employing a binary vector that carries the hygromycin B phosphotransferase gene as a selection marker and the enhanced green fluorescent protein gene for labeling transformants. Randomly selected transformants appeared mitotically stable, based on their maintenance of hygromycin B resistance after five generations of growth without selection. Genomic Southern blot showed that 88% of 784 transformants contained a single T-DNA insert in their genome. A number of putative mutants affected in colony color, size, and/or morphology were found among these transformants, supporting the utility of Agrobacterium tumefaciens-mediated transformation (ATMT) for random insertional mutagenesis of U. muehlenbergii. This ATMT approach potentially offers a systematic gene functional study with genome sequences of U. muehlenbergii that is currently underway. PMID:24386304

  18. Bcl-2 is a critical mediator of intestinal transformation.

    PubMed

    van der Heijden, Maartje; Zimberlin, Cheryl D; Nicholson, Anna M; Colak, Selcuk; Kemp, Richard; Meijer, Sybren L; Medema, Jan Paul; Greten, Florian R; Jansen, Marnix; Winton, Douglas J; Vermeulen, Louis

    2016-01-01

    Intestinal tumour formation is generally thought to occur following mutational events in the stem cell pool. However, active NF-κB signalling additionally facilitates malignant transformation of differentiated cells. We hypothesized that genes shared between NF-κB and intestinal stem cell (ISCs) signatures might identify common pathways that are required for malignant growth. Here, we find that the NF-κB target Bcl-2, an anti-apoptotic gene, is specifically expressed in ISCs in both mice and humans. Bcl-2 is dispensable in homeostasis and, although involved in protecting ISCs from radiation-induced damage, it is non-essential in tissue regeneration. Bcl-2 is upregulated in adenomas, and its loss or inhibition impairs outgrowth of oncogenic clones, because Bcl-2 alleviates apoptotic priming in epithelial cells following Apc loss. Furthermore, Bcl-2 expression in differentiated epithelial cells renders these cells amenable to clonogenic outgrowth. Collectively, our results indicate that Bcl-2 is required for efficient intestinal transformation following Apc-loss and constitutes a potential chemoprevention target. PMID:26956214

  19. Bcl-2 is a critical mediator of intestinal transformation

    PubMed Central

    van der Heijden, Maartje; Zimberlin, Cheryl D.; Nicholson, Anna M.; Colak, Selcuk; Kemp, Richard; Meijer, Sybren L.; Medema, Jan Paul; Greten, Florian R.; Jansen, Marnix; Winton, Douglas J.; Vermeulen, Louis

    2016-01-01

    Intestinal tumour formation is generally thought to occur following mutational events in the stem cell pool. However, active NF-κB signalling additionally facilitates malignant transformation of differentiated cells. We hypothesized that genes shared between NF-κB and intestinal stem cell (ISCs) signatures might identify common pathways that are required for malignant growth. Here, we find that the NF-κB target Bcl-2, an anti-apoptotic gene, is specifically expressed in ISCs in both mice and humans. Bcl-2 is dispensable in homeostasis and, although involved in protecting ISCs from radiation-induced damage, it is non-essential in tissue regeneration. Bcl-2 is upregulated in adenomas, and its loss or inhibition impairs outgrowth of oncogenic clones, because Bcl-2 alleviates apoptotic priming in epithelial cells following Apc loss. Furthermore, Bcl-2 expression in differentiated epithelial cells renders these cells amenable to clonogenic outgrowth. Collectively, our results indicate that Bcl-2 is required for efficient intestinal transformation following Apc-loss and constitutes a potential chemoprevention target. PMID:26956214

  20. Genetic transformation of wheat via Agrobacterium-mediated DNA delivery.

    PubMed

    Sparks, Caroline A; Doherty, Angela; Jones, Huw D

    2014-01-01

    The method described involves an initial incubation of wheat immature embryos in a liquid culture of Agrobacterium tumefaciens. The Agrobacterium strain is engineered to contain a binary vector with a gene of interest and a selectable marker gene placed between the T-DNA borders; the T-DNA is the region transferred to the plant cells, thus harnessing the bacterium's natural ability to deliver specific DNA into host cells. Following the initial inoculation with the Agrobacterium, the embryos are co-cultivated for several days after which the Agrobacterium is selectively destroyed using an antibiotic. Tissue culture of the embryos on plant media with a correct balance of hormones allows embryogenic callus formation followed by regeneration of plantlets, and in the later stages of tissue culture a selectable marker (herbicide) is included to minimize the incidence of non-transformed plants. This protocol has been used successfully to generate transformed plants of a wide range of wheat varieties, both spring and winter bread wheats (T. aestivum L.) and durum wheats (T. turgidum L.). PMID:24243208

  1. Agrobacterium tumefaciens mediated transformation of ChiV gene to Trichoderma harzianum.

    PubMed

    Yang, Liming; Yang, Qian; Sun, Kening; Tian, Ye; Li, Hulun

    2011-04-01

    As a soil-borne filamentous fungus, Trichoderma harzianum exhibits biological control properties because it parasitizes a large variety of phytopathogenic fungi. In this study, the vectors pBI121 and pCAMBIA1301 and cloning vector pUC18 were used to successfully construct expression vector pCA-GChiV for filamentous fungi transformation mediated by Agrobacterium tumefaciens.The ChiV gene was successfully transferred into the biocontrol fungus T. harzianum with an efficiency of 90-110 transformants per 10(7) spores using A. tumefaciens-mediated transformation. Putative transformants were analyzed to test the transformation by the southern blot, and the expression of ChiV was detected by reverse transcription PCR. The transformants were co-cultured to assay antifungal activities with Rhizoctonia solani. The inhibition rates of the transformants and no ChiV gene transferred T. harzianum were 98.56% and 82.42%, respectively, on the fourth day.The results showed that the ChiV transformants had significantly higher inhibition activity. PMID:20936373

  2. Chemically and temperature-induced phase transformations of metal vanadates

    NASA Astrophysics Data System (ADS)

    Patridge, Christopher James

    different individual beta'-Cu xV2O5 nanowires vary widely. Using scanning transmission X-ray microspectroscopy of individual beta'-CuxV2O 5 nanowires, correlations appear to exist between MIT characteristics and the markedly different orbital hybridization of vanadium and oxygen at the O K and V L absorption edges. These comprehensive nanostructure studies hint at the possibility of approaching the incredibly important realm of single-domain measurements which are needed to understand and exploit the intrinsic physical properties of materials. In addition to the bronze MIT studies, the classical MIT material vanadium dioxide, VO2, also shows new properties when scaling down to nanoscale dimensions as well as incorporation of substitutional dopants such as tungsten. X-ray absorption spectroscopy of the dopant local structure suggests an increased symmetry and depairing of V4+-V 4+, which is critical for transition to the lower temperature insulating phase thereby super-cooling the metallic phase to temperatures as low as 254 K. Mechanistic insight and structural changes associated with the intercalation of Li+ are key aspects in understanding and designing useful secondary Li ion batteries. In similarity to the MxV2O 5 studies, another metal vanadate, Ag2VO2PO 4, undergoes phase transformations due to introduction of Li and the vacancy of Ag ions. Employing a comprehensive study on Ag2VO 2PO4 using X-ray absorption spectroscopy, information about chemical state changes and rehybridization of frontier orbitals allows for a more precise understanding of how the material discharges, what, if any, intermediate phases exist during the process, and provides evidence for the posited structural stability at high depths of discharge.

  3. Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection

    PubMed Central

    Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2014-01-01

    Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306

  4. Agrobacterium tumefaciens-Mediated Transformation of Valsa mali: An Efficient Tool for Random Insertion Mutagenesis

    PubMed Central

    Wang, Caixia; Guan, Xiangnan; Wang, Hanyan; Li, Guifang; Dong, Xiangli; Wang, Guoping

    2013-01-01

    Valsa mali is a causal agent of apple and pear trees canker disease, which is a destructive disease that causes serious economic losses in eastern Asia, especially in China. The lack of an efficient transformation system for Valsa mali retards its investigation, which poses difficulties to control the disease. In this research, a transformation system for this pathogen was established for the first time using A. tumefaciens-mediated transformation (ATMT), with the optimal transformation conditions as follows: 106/mL conidia suspension, cocultivation temperature 22°C, cocultivation time 72 hours, and 200 μM acetosyringone (AS) in the inductive medium. The average transformation efficiency was 1015.00 ± 37.35 transformants per 106 recipient conidia. Thirty transformants were randomly selected for further confirmation and the results showed the presence of T-DNA in all hygromycin B resistant transformants and also revealed random and single gene integration with genetic stability. Compared with wild-type strain, those transformants exhibited various differences in morphology, conidia production, and conidia germination ability. In addition, pathogenicity assays revealed that 14 transformants had mitigated pathogenicity, while one had enhanced infection ability. The results suggest that ATMT of V. mali is a useful tool to gain novel insight into this economically important pathogen at molecular levels. PMID:24381526

  5. Plant-mediated transformation of perchlorate into chloride

    SciTech Connect

    Nzengung, V.A.; Wang, C.; Harvey, G.

    1999-05-01

    The decontamination of perchlorate-contaminated water by woody plants was investigated in sand and hydroponic bioreactors. Willow trees were found to be the most favorable woody plants with phraetophytic characteristics in comparative screen tests with eastern cottonwoods and Eucalyptus cineria. Willows decontaminated aqueous solutions dosed with 10--100 mg/.L of perchlorate to below the method detection limit of 2 {micro}g/L. Two phytoprocesses were identified as important in the remediation of perchlorate-contaminated water: (1) uptake and phytodegradation of perchlorate in the tree branches and leaves and (2) rhizodegradation. Exposure of rooted willow trees to perchlorate-dosed media stimulated rhizodegradation. Homogeneous degradation studies using media from the root zone of dosed willow trees confirmed that rhizosphere-associated microorganisms mediated the degradation of perchlorate to chloride. Experiments conducted with varying ranges of nitrate concentrations clearly indicated that high nitrate concentrations interfered with rhizodegradation of perchlorate. This study provides evidence that the efficacy of phytoremediation of perchlorate-contaminated environments may depend on the concentration of competing terminal electron acceptors, such as nitrate, and the nitrogen source of the nutrient solution., Since perchlorate does not volatilize from water readily, a perchlorate remediation scheme may involve an intensively cultivated plantation of trees with phraetophytic characteristics and irrigation with the contaminated water.

  6. Diffusion and Phase Transformations of Transition Metals on Silicon Surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Yi.

    The role of surface diffusion and surface phase reaction kinetics of nickel (Ni) and cobalt (Co) on Si(111) and Si(100) are investigated under Ultra High Vacuum (UHV) conditions using Auger Spectroscopy (AES), Reflection High Electron Energy Diffraction (RHEED) and surface X-ray diffraction. The surface segregation phenomenon and the formation conditions for Si(111)-sqrt{19 } x sqrt{19}- rm R+/-23.4^circ phase (hereafter called sqrt{19}) for Ni/Si(111) are studied by RHEED and AES. Quench cooling induces surface segregation which restores the total accumulated dose of Ni to two surfaces of the wafer. The coverage dependence of phases thus produced follows: 7 x 7 to 1 x 1-RC(0.05Ml) to sqrt{19} (0.16Ml) then to B-type NiSi_2. It is found that there are 3 Ni atoms in the sqrt{19 } unit cell. A "race" of bulk diffusion versus surface diffusion for Ni in/on Si(111) is studied by depositing a laterally confined dot of metal on one side of the double side polished and UHV cleaned Si wafer and then measuring the lateral Auger profile on the reverse side following annealing and quenching. Ni reaches the far side of the wafer at temperatures as low as 500C via bulk diffusion with no measurable contribution from the surface paths, which are short-circuited by numerous, fast bulk paths. Similar results are found for Ni and Co on Si(111) and Si(100). The diffusivity and solid solubility calculated from the experiments are close to the bulk values known from the literature. In addition, the thermal stability, phase transformation and different dissolution mechanisms of sqrt {19} and 1 x 1-RC surface phases of Ni/Si(111) are carefully examined. The activation energies of these processes are compared on an Arrhenius plot. These are discussed in terms of the migration and formation mechanisms involved in these phase transformations. An energy level diagram is used to summarize the atomistic kinetics.

  7. Phase transformations and thermodynamics of aluminum-based metallic glasses

    NASA Astrophysics Data System (ADS)

    Gao, Changhua (Michael)

    This thesis examines the thermodynamics and associated kinetics and phase transformations of the glass forming Al-Ni-Gd and Al-Fe-Gd systems. In order to fully understand the unique glass forming ability (GFA) of Al-based metallic glasses, the ternary Al-Fe-Gd and Al-Ni-Gd systems in their Al-rich corners were examined experimentally to assist in a thermodynamic assessment. The solid-state phase equilibria are determined using XRD and TEM-EDS techniques. While this work basically confirms the solid-state equilibria in Al-Fe-Gd reported previously, the ternary phase in Al-Ni-Gd system has been identified to be Al15Ni3Gd2 rather than Al16Ni 3Gd reported in the literature. DTA analysis of 24 alloys in the Al-Fe-Gd system and 42 alloys in the Al-Ni-Gd system have yielded critical temperatures pertaining to the solid-liquid transition. Based on these data and information from the literature, a self-consistent thermodynamic database for these systems has been developed using the CALPHAD technique. Parameters describing the Gibbs free energy for various phases of the Al-Gd, Al-Fe-Gd and Al-Ni-Gd systems are manually optimized in this study. Once constructed, the database is used to calculate driving forces for nucleation of crystalline phases which can qualitatively explain the phase formation sequence during crystallization at low temperatures. It was also confirmed that alloy compositions with the lowest Gibbs free energy difference between the equilibrium state and undercooled liquid state exhibit better GFA than other chemistries. Based on 250°C isothermal devitrification phase transformations of 17 Al-Ni-Gd alloys, a phase formation sequence map is constructed. Fcc-Al nanocrystals are formed first in most of the alloys studied, but eutectic crystallization of a metastable phase and fcc-Al is also observed. Addition of Al or Ni promotes fcc-Al phase formation, while increasing Gd suppresses it. The continuous heating DSC scans revealed that crystallization in Al

  8. Genetic transformation of Diaporthe phaseolorum, an endophytic fungus found in mangrove forests, mediated by Agrobacterium tumefaciens.

    PubMed

    Sebastianes, Fernanda L S; Lacava, Paulo T; Fávaro, Léia C L; Rodrigues, Maria B C; Araújo, Welington L; Azevedo, João L; Pizzirani-Kleiner, Aline A

    2012-02-01

    We describe the genetic transformation of the mycelial tissue of Diaporthe phaseolorum, an endophytic fungus isolated from the mangrove species Laguncularia racemosa, using Agrobacterium tumefaciens-mediated transformation (ATMT). ATMT uses both the hygromycin B resistant (hph) gene and green fluorescent protein as the selection agents. The T-DNA integration into the fungal genome was assessed by both PCR and Southern blotting. All transformants examined were mitotically stable. An analysis of the T-DNA flanking sequences by thermal asymmetric interlaced PCR (TAIL-PCR) demonstrated that the disrupted genes in the transformants had similarities with conserved domains in proteins involved in antibiotic biosynthesis pathways. A library of 520 transformants was generated, and 31 of these transformants had no antibiotic activity against Staphylococcus aureus, an important human pathogen. The protocol described here, using ATMT in D. phaseolorum, will be useful for the identification and analysis of fungal genes controlling pathogenicity and antibiotic pathways. Moreover, this protocol may be used as a reference for other species in the Diaporthe genus. This is the first report to describe Agrobacterium-mediated transformation of D. phaseolorum as a tool for insertional mutagenesis. PMID:22210192

  9. Agrobacterium tumefaciens-mediated genetic transformation of haptophytes (Isochrysis species).

    PubMed

    Prasad, Binod; Vadakedath, Nithya; Jeong, Hyun-Jeong; General, Thiyam; Cho, Man-Gi; Lein, Wolfgang

    2014-10-01

    Isochrysis galbana and Isochrysis sp. are economically important microalgae from the division of haptophytes. Here, we report Agrobacterium-mediated stable DNA transfer into their nuclear genomes. Initial studies were performed to standardize co-cultivation media and determine the sensitivity of the microalgae to selective agents. Up to 1 mg/ml of the antibiotic hygromycin did not inhibit growth, whereas both the haptophytes bleached in artificial seawater (ASW) medium containing micromolar concentrations of the herbicide norflurazon. Co-cultivation of Isochrysis sp. and I. galbana with Agrobacterium tumefaciens strain LBA 4404 harboring the binary vector pCAMBIA 1380-pds-L504R yielded norflurazon-resistant (NR) colonies visible on selective plates after 20-30 days. pCAMBIA 1380-pds-L540R was constructed by cloning a mutated genomic phytoene desaturase (pds) gene from Haematococcus pluvialis as a selectable marker gene into the binary vector system pCAMBIA 1380. Co-cultivation of Isochrysis sp. with A. tumefaciens in ASW medium containing 200 μM of acetosyringone for 72 h produced the highest number of NR cells. For I. galbana, 100 μM of acetosyringone, ASW medium, and 48 h co-cultivation period appeared to be optimum co-cultivation parameters. The NR colonies kept their resistance phenotype for at least 24 months, even in the absence of selective pressure. The transfer of the pds gene in NR cells was shown by PCR amplification of the T-DNA sequences from the genomic DNA of NR cells and Southern blot analysis using T-DNA sequences as probes. The genetic manipulation described here will allow metabolic engineering and a better understanding of several biochemical pathways in the future. PMID:24993358

  10. Optimized conditions for biolistic-mediated transformation of Lilium longilforum 'Nellie White'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of tissues were used for biolistic-mediated transformation of Lilum longiflorum 'Nellie White'. Transgenic plants were not recovered from five-month-old, non-embryogenic callus or suspension cells that had been bombarded with pDM327 that contains the bar-uidA fusion gene under control the ...

  11. Lox-dependent gene expression in transgenic plants obtained via Agrobacterium-mediated transformation.

    PubMed

    Shcherbak, N; Kishchenko, O; Sakhno, L; Komarnytsky, I; Kuchuk, M

    2013-01-01

    Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants. PMID:23821951

  12. Agrobacterium-mediated transformation for the investigation of somatic recombination in the fungal pathogen Armillaria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The honey fungus Armillaria mellea is a destructive soil-borne pathogen that affects over 300 plant species, and is of increasing interest due to its ability to decompose lignin. Here we report the transformation of this fungus. A range of techniques was evaluated, and Agrobacterium-mediated trans...

  13. Transformational Leadership and Knowledge Sharing: Mediating Roles of Employee's Empowerment, Commitment, and Citizenship Behaviors

    ERIC Educational Resources Information Center

    Han, Seung Hyun; Seo, Gaeun; Yoon, Seung Won; Yoon, Dong-Yeol

    2016-01-01

    Purpose: The purpose of this paper is to empirically examine the fundamental process through which transformational leaders play a significant role in employees' knowledge sharing by investigating mediating roles of individual affects, particularly psychological empowerment, organizational commitment and organizational citizenship behavior (OCB).…

  14. A Fruiting Body Tissue Method for Efficient Agrobacterium-Mediated Transformation of Agaricus bisporus

    PubMed Central

    Chen, Xi; Stone, Michelle; Schlagnhaufer, Carl; Romaine, C. Peter

    2000-01-01

    We describe a modified Agrobacterium-mediated method for the efficient transformation of Agaricus bisporus. Salient features of this procedure include cocultivation of Agrobacterium and fruiting body gill tissue and use of a vector with a homologous promoter. This method offers new prospects for the genetic manipulation of this commercially important mushroom species. PMID:11010906

  15. Transformational leadership, intrinsic motivation, and trust: a moderated-mediated model of workplace safety.

    PubMed

    Conchie, Stacey M

    2013-04-01

    Two studies examine the role of motivation and trust in the relationship between safety-specific transformational leadership and employees' safety behavior. Study 1 tested the prediction that intrinsic and identified regulation motivations mediate the relationship between safety-specific transformational leadership and employees' safety behaviors. Study 2 further explored this relationship by testing the prediction that the mediating role of intrinsic motivation is dependent on employees' level of trust in their leader. Survey data from the U.K. construction industry supported both predictions. However, the mediating role of intrinsic motivation was found only for challenge safety citizenship behaviors (i.e., voice) and not for affiliative safety citizenship behaviors (i.e., helping). These findings suggest that employees' intrinsic motivation is important to the effectiveness of leaders' efforts to promote some but not all forms of safety behavior. PMID:23506550

  16. Facile synthesis of metal/metal oxide nanoparticles inside a nanoporous carbon matrix (M/MO@C) through the morphology-preserved transformation of metal-organic framework.

    PubMed

    Bak, Woojeong; Kim, Hee Soo; Chun, Hyungphil; Yoo, Won Cheol

    2015-04-28

    A facile method to transform metal-organic frameworks (MOFs) into metal/metal oxide@carbon (M/MO@C) composites with well-defined shapes is reported. The porosity of carbon and the particle sizes of M/MO are readily controlled by a simple two-step process that includes impregnation of the polymer precursors and a thermolysis reaction. PMID:25813137

  17. Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration.

    PubMed

    Subramanyam, Kondeti; Subramanyam, Koona; Sailaja, K V; Srinivasulu, M; Lakshmidevi, K

    2011-03-01

    A reproducible and efficient transformation method was developed for the banana cv. Rasthali (AAB) via Agrobacterium-mediated genetic transformation of suckers. Three-month-old banana suckers were used as explant and three Agrobacterium tumefaciens strains (EHA105, EHA101, and LBA4404) harboring the binary vector pCAMBIA1301 were used in the co-cultivation. The banana suckers were sonicated and vacuum infiltered with each of the three A. tumefaciens strains and co-cultivated in the medium containing different concentrations of acetosyringone for 3 days. The transformed shoots were selected in 30 mg/l hygromycin-containing selection medium and rooted in rooting medium containing 1 mg/l IBA and 30 mg/l hygromycin. The presence and integration of the hpt II and gus genes into the banana genome were confirmed by GUS histochemical assay, polymerase chain reaction, and southern hybridization. Among the different combinations tested, high transformation efficiency (39.4 ± 0.5% GUS positive shoots) was obtained when suckers were sonicated and vacuum infiltered for 6 min with A. tumefaciens EHA105 in presence of 50 μM acetosyringone followed by co-cultivation in 50 μM acetosyringone-containing medium for 3 days. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into banana has been developed and that this transformation system could be useful for future studies on transferring economically important genes into banana. PMID:21212957

  18. Genes That Mediate Arsenic and Heavy Metal Detoxification in Plants

    SciTech Connect

    Lee, David A.; Gong, Ji-Ming; Schroeder, Julian I.

    2003-03-26

    To gain insight into the mechanisms of arsenic tolerance in plants, we developed a genetic screen to isolate Arabidopsis thaliana mutants with altered tolerance to arsenic. We report here on the isolation of ars1, a novel mutant with significantly increased tolerance to arsenate. ars1 accumulates similar levels of arsenic as wild type plants, but ars1 tolerance does not appear to be phytochelatin or glutathione dependent. ars1 plants do have a higher rate of phosphate uptake than wild type plants and plants grown with an excess of phosphate show increased tolerance to arsenate. Traditional models of arsenate tolerance in plants are based on the suppression of phosphate uptake pathways and, consequently, the reduced uptake of arsenate. Our data suggest that arsenate tolerance in ars1 is due to a new mechanism mediated by increased phosphate uptake in ars1. Results exploring increased metal tolerance through engineered phytochelatin expression will also be discussed.

  19. Direct oxidative coupling of amidine hydrochlorides and methylarenes: TBHP-mediated synthesis of substituted 1,3,5-triazines under metal-free conditions.

    PubMed

    Guo, Wei

    2015-11-01

    Various 2,4,6-trisubstituted 1,3,5-triazines were smoothly formed via TBHP-mediated direct oxidative coupling of amidine and methylarenes. This tandem oxidation-imination-cyclization transformation exhibits a straightforward protocol to prepare 1,3,5-triazines from easily available starting materials and green oxidants under metal-free conditions. PMID:26411699

  20. Efficient Agrobacterium tumefaciens-mediated transformation and regeneration of garlic (Allium sativum) immature leaf tissue.

    PubMed

    Kenel, Fernand; Eady, Colin; Brinch, Sheree

    2010-03-01

    Transgenic garlic (Allium sativum) plants have been recovered directly from immature leaf material by selective culture following Agrobacterium-mediated transformation. This method involved the use of a binary vector containing the mgfp-ER reporter gene and hpt selectable marker, and followed a similar protocol developed previously for the transformation of immature onion embryos. The choice of tissue and post-transformation selection procedure resulted in a large increase in recovery of transgenic plants compared with previously confirmed allium transformation protocols. The presence of transgenes in the genome of the plants was confirmed using Southern analysis. This improvement in frequency and the use of clonal commercial "Printanor" germplasm now makes possible the integration of useful agronomic and quality traits into this crop. PMID:20099065

  1. An Efficient PEG/CaCl₂-Mediated Transformation Approach for the Medicinal Fungus Wolfiporia cocos.

    PubMed

    Sun, Qiao; Wei, Wei; Zhao, Juan; Song, Jia; Peng, Fang; Zhang, Shaopeng; Zheng, Yonglian; Chen, Ping; Zhu, Wenjun

    2015-09-01

    Sclerotia of Wolfiporia cocos are of medicinal and culinary value. The genes and molecular mechanisms involved in W. cocos sclerotial formation are poorly investigated because of the lack of a suitable and reproducible transformation system for W. cocos. In this study, a PEG/ CaCl₂-mediated genetic transformation system for W. cocos was developed. The promoter Pgpd from Ganoderma lucidum effectively drove expression of the hygromycin B phosphotransferase gene in W. cocos, and approximately 30 transformants were obtained per 10 μg DNA when the protoplast suspension density was 10(6) protoplasts/ml. However, no transformants were obtained under the regulation of the PtrpC promoter from Aspergillus nidulans. PMID:26017228

  2. Simulating the transformation of heavy metals during coal or sewage sludge combustion

    SciTech Connect

    Han, J.; Xu, M.; Yao, H.; Furuuchi, M.; Sakano, T.; Kim, H.J.

    2007-01-15

    A mathematical model (FPM) is presented to predict the transformation of heavy metals in the downstream of combustor or incinerator. The model accounts for the transformation of heavy metals through the combined effect of condensation, nucleation, coagulation, external force and thermophoresis force. The calculation of heavy metals is embodied in the post-processor appended to Fluent software. Before the simulation, velocity, temperature, PbCl{sub 2} concentration and other initial parameters are obtained by experiment. In addition, the transformation of PbCl{sub 2} is also experimentally studied. The comparison of experimental and predicted results indicate that the fine particle model (FPM) is valid for predicting the transformation of heavy metals in the downstream of incinerator or combustor.

  3. Simulating the transformation of heavy metals during coal or sewage sludge combustion.

    PubMed

    Han, Jun; Xu, Minghou; Yao, Hong; Furuuchi, Masami; Sakano, Takeo; Kim, Hee Joon

    2007-02-01

    A mathematical model (FPM) is presented to predict the transformation of heavy metals in the downstream of combustor or incinerator. The model accounts for the transformation of heavy metals through the combined effect of condensation, nucleation, coagulation, external force and thermophoresis force. The calculation of heavy metals is embodied in the post-processor appended to Fluent soft. Before the simulation, velocity, temperature, PbCl2 concentration and other initial parameters are obtained by experiment. In addition, the transformation of PbCl2 is also experimentally studied. The comparison of experimental and predicted results indicate that the fine particle model (FPM) is valid for predicting the transformation of heavy metals in the downstream of incinerator or combustor. PMID:17182393

  4. Migration and transformation rule of heavy metals in sludge during hydrolysis for protein extraction.

    PubMed

    Li, Yulong; Xue, Fei; Li, Jiebing; Xu, Shi Hong; Li, Dengxin

    2016-03-01

    The content and speciation of heavy metals can fundamentally affect the hydrolysis of sludge. This research study investigates the migration and transformation rule of heavy metals during the hydrolysis process by measuring the content of exchangeables (F1), bound to carbonates (F2), bound to Fe-Mn oxides (F3), bound to organic matter (F4), and residuals (F5) under different periods of time undergoing hydrolysis. The results show that the hydrolysis process generally stabilized Cu, Zn, Mn, Ni, Pb, Cr, and As by transforming the unstable states into structurally stable states. Such transformations and stabilization were primarily caused by the changes in local metal ion environment and bonding structure, oxidation of sulfides, pyrolyzation of organic matter, and evaporation of resulting volatile materials. An X-ray diffractometry (XRD) of the residuals conducted after hydrolysis indicated that hydrolysis did have a significant influence on the transportation and transformation of heavy metals. PMID:26564189

  5. Contamination of the transformer oil of power transformers and shunting reactors by metal-containing colloidal particles

    SciTech Connect

    L'vov, S. Yu.; Komarov, V. B.; Bondareva, V. N.; Seliverstov, A. F.; Lyut'ko, E. O.; L'vov, Yu. N.; Ershov, B. G.

    2011-05-15

    The results of a measurement of the contamination of the oil in 66 transformers by metal-containing colloidal particles, formed as a result of the interaction of the oil with the structural materials (the copper of the windings, the iron of the tank and core etc.), and also the results of measurements of the optical turbidity of the oil in 136 transformers when they were examined at the Power Engineering Research and Development Center Company are presented. Methods of determining the concentration of copper and iron in transformer oil are considered. The limiting values of the optical turbidity factors, the copper and iron content are determined. These can serve as a basis for taking decisions on whether to replace the silica gel of the filters for continuously purifying the oil of power transformers and the shunting reactors in addition to the standardized oil contamination factors, namely, the dielectric loss tangent and the acidity number of the oil.

  6. Chemical transformations drive complex self-assembly of uracil on close-packed coinage metal surfaces.

    PubMed

    Papageorgiou, Anthoula C; Fischer, Sybille; Reichert, Joachim; Diller, Katharina; Blobner, Florian; Klappenberger, Florian; Allegretti, Francesco; Seitsonen, Ari P; Barth, Johannes V

    2012-03-27

    We address the interplay of adsorption, chemical nature, and self-assembly of uracil on the Ag(111) and Cu(111) surfaces as a function of molecular coverage (0.3 to 1 monolayer) and temperature. We find that both metal surfaces act as templates and the Cu(111) surface acts additionally as a catalyst for the resulting self-assembled structures. With a combination of STM, synchrotron XPS, and NEXAFS studies, we unravel a distinct polymorphism on Cu(111), in stark contrast to what is observed for the case of uracil on the more inert Ag(111) surface. On Ag(111) uracil adsorbs flat and intact and forms close-packed two-dimensional islands. The self-assembly is driven by stable hydrogen-bonded dimers with poor two-dimensional order. On Cu(111) complex structures are observed exhibiting, in addition, a strong annealing temperature dependence. We determine the corresponding structural transformations to be driven by gradual deprotonation of the uracil molecules. Our XPS study reveals unambiguously the tautomeric signature of uracil in the contact layer and on Cu(111) the molecule's deprotonation sites. The metal-mediated deprotonation of uracil and the subsequent electron localization in the molecule determine important biological reactions. Our data show a dependence between molecular coverage and molecule-metal interaction on Cu(111), as the molecules tilt at higher coverages in order to accommodate a higher packing density. After deprotonation of both uracil N atoms, we observe an adsorption geometry that can be understood as coordinative anchoring with a significant charge redistribution in the molecule. DFT calculations are employed to analyze the surface bonding and accurately describe the pertaining electronic structure. PMID:22356544

  7. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera.

    PubMed

    Maheshwari, Priti; Kovalchuk, Igor

    2016-01-01

    The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar - Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development. PMID:27014319

  8. Agrobacterium-mediated transformation of Vitis Cv. Monastrell suspension-cultured cells: Determination of critical parameters.

    PubMed

    Chu, Mingyu; Quiñonero, Carmen; Akdemir, Hülya; Alburquerque, Nuria; Pedreño, María Ángeles; Burgos, Lorenzo

    2016-05-01

    Although some works have explored the transformation of differentiated, embryogenic suspension-cultured cells (SCC) to produce transgenic grapevine plants, to our knowledge this is one of the first reports on the efficient transformation of dedifferentiated Vitis vinifera cv Monastrell SCC. This protocol has been developed using the sonication-assisted Agrobacterium-mediated transformation (SAAT) method. A construct harboring the selectable nptII and the eyfp/IV2 marker genes was used in the study and transformation efficiencies reached over 50 independent transformed SCC per gram of infected cells. Best results were obtained when cells were infected at the exponential phase. A high density plating (500 mg/dish) gave significantly better results. As selective agent, kanamycin was inefficient for the selection of Monastrell transformed SCC since wild type cells were almost insensitive to this antibiotic whereas application of paromomycin resulted in very effective selection. Selected eyfp-expressing microcalli were grown until enough tissue was available to scale up a new transgenic SCC. These transgenic SCC lines were evaluated molecularly and phenotypically demonstrating the presence and integration of both transgenes, the absence of Agrobacterium contamination and the ability of the transformed SCC to grow in highly selective liquid medium. The methodology described here opens the possibility of improving the production of valuable metabolites. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:725-734, 2016. PMID:26871543

  9. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera

    PubMed Central

    Maheshwari, Priti; Kovalchuk, Igor

    2016-01-01

    The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar – Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development. PMID:27014319

  10. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.

    PubMed

    Song, Hyunjoon

    2015-03-17

    In order to understand heterogeneous catalytic reactions, model catalysts such as a single crystalline surface have been widely studied for many decades. However, catalytic systems that actually advance the reactions are three-dimensional and commonly have multiple components including active metal nanoparticles and metal oxide supports. On the other hand, as nanochemistry has rapidly been developed and been applied to various fields, many researchers have begun to discuss the impact of nanochemistry on heterogeneous catalysis. Metal hybrid nanoparticles bearing multiple components are structurally very close to the actual catalysts, and their uniform and controllable morphology is suitable for investigating the relationship between the structure and the catalytic properties in detail. In this Account, we introduce four typical structures of metal hybrid nanoparticles that can be used to conduct catalytic organic and photochemical reactions. Metal@silica (or metal oxide) yolk-shell nanoparticles, in which metal cores exist in internal voids surrounded by thin silica (or metal oxide) shells, exhibited extremely high thermal and chemical stability due to the geometrical protection of the silica layers against the metal cores. The morphology of the metal cores and the pore density of the hollow shells were precisely adjusted to optimize the reaction activity and diffusion rates of the reactants. Metal@metal oxide core-shell nanoparticles and inverted structures, where the cores supported the shells serving an active surface, exhibited high activity with no diffusion barriers for the reactants and products. These nanostructures were used as effective catalysts for various organic and gas-phase reactions, including hydrogen transfer, Suzuki coupling, and steam methane reforming. In contrast to the yolk- and core-shell structures, an asymmetric arrangement of distinct domains generated acentric dumbbells and tipped rods. A large domain of each component added multiple

  11. Enhanced densification of metal powders by transformation-mismatch plasticity

    SciTech Connect

    Schuh, C.; Noel, P.; Dunand, D.C.

    2000-05-11

    The densification of titanium powders is investigated in uniaxial die pressing experiments carried out isothermally at 980 C (in the {beta}-field of titanium) and during thermal cycling between 860 and 980 C (about the {alpha}/{beta} phase transformation of titanium). Thermal cycling is found to enhance densification kinetics through the emergence of transformation-mismatch plasticity (the mechanism responsible for transformation superplasticity) as a densification mechanism. The isothermal hot-pressing data compare favorably with existing models of powder densification, and these models are successfully adapted to the case of transformation-mismatch plasticity during thermal cycling. Similar conclusions are reached for the densification of titanium powders containing 1, 5, or 10 vol.% ZrO{sub 2} particles. However, the addition of ZrO{sub 2} hinders densification by dissolving in the titanium matrix during the hot-pressing procedure.

  12. Metal-free aerobic oxidations mediated by N-hydroxyphthalimide. A concise review

    PubMed Central

    Melone, Lucio

    2013-01-01

    Summary Since the beginning of the century, N-hydroxyphthalimide and related compounds have been revealed to be efficient organocatalysts for free-radical processes and have found ample application in promoting the aerobic oxidation of a wide range of organic substrates. When combined with different co-catalysts, they are activated to the corresponding N-oxyl radical species and become able to promote radical chains, involving molecular oxygen, directly or indirectly. Most of the examples reported in the literature describe the use of these N-hydroxy derivatives in the presence of transition-metal complexes. However, eco-friendly standards, including the demand for highly selective transformations, impose the development of metal-free processes, especially for large-scale productions, as in the case of the oxygenation of hydrocarbons. For this reason, many efforts have been devoted in the past decade to the design of new protocols for the activation of N-hydroxy imides in the presence of nonmetal initiators. Herein we provide a concise overview of the most significant and successful examples in this field, with the final aim to furnish a useful instrument for all scientists actively involved in the O2-mediated selective oxidation of organic compounds and looking for environmentally safe alternatives to metal catalysis. PMID:23843925

  13. Agrobacterium-mediated genetic transformation and plant regeneration of the hardwood tree species Fraxinus profunda.

    PubMed

    Stevens, Micah E; Pijut, Paula M

    2014-06-01

    This transformation and regeneration protocol provides an integral framework for the genetic improvement of Fraxinus profunda (pumpkin ash) for future development of plants resistant to the emerald ash borer. Using mature hypocotyls as the initial explants, an Agrobacterium tumefaciens-mediated genetic transformation system was successfully developed for pumpkin ash (Fraxinus profunda). This transformation protocol is an invaluable tool to combat the highly aggressive, non-native emerald ash borer (EAB), which has the potential to eliminate native Fraxinus spp. from the natural landscape. Hypocotyls were successfully transformed with Agrobacterium strain EHA105 harboring the pq35GR vector, containing an enhanced green fluorescent protein (EGFP) as well as a fusion gene between neomycin phosphotransferase (nptII) and gusA. Hypocotyls were cultured for 7 days on Murashige and Skoog (MS) medium with 22.2 μM 6-benzyladenine (BA), 4.5 μM thidiazuron (TDZ), 50 mg L(-1) adenine hemisulfate (AS), and 10 % coconut water (CW) prior to transformation. Hypocotyls were transformed using 90 s sonication plus 10 min vacuum infiltration after Agrobacterium was exposed to 100 μM acetosyringone for 1 h. Adventitious shoots were regenerated on MS medium with 22.2 μM BA, 4.5 μM TDZ, 50 mg L(-1) AS, 10 % CW, 400 mg L(-1) timentin, and 20 mg L(-1) kanamycin. Timentin at 400 and 20 mg L(-1) kanamycin were most effective at controlling Agrobacterium growth and selecting for transformed cells, respectively. The presence of nptII, GUS (β-glucuronidase), and EGFP in transformed plants was confirmed using polymerase chain reaction (PCR), while the expression of EGFP was also confirmed through fluorescent microscopy and reverse transcription-PCR. This transformation protocol provides an integral foundation for future genetic modifications of F. profunda to provide resistance to EAB. PMID:24493252

  14. Metal mixture (As-Cd-Pb)-induced cell transformation is modulated by OLA1.

    PubMed

    Martínez-Baeza, Elia; Rojas, Emilio; Valverde, Mahara

    2016-07-01

    Environmental pollutants are complex mixtures in which metals are ubiquitous. Metal mixtures of arsenic, cadmium and lead are present in the occupational environment and generate health effects such as cardiovascular, renal and cancer diseases. Cell transformation induced by metal mixtures that depend on reactive oxygen species (ROS) generation, cell viability maintenance and avoidance of senescence was previously reported by our group. The aim of the present study was to explore the role of a Obg-like ATPase1 (OLA1) in the cell transformation of BALB/c 3T3 A31-1-1 clonal cells induced by a metal mixture (2 µM NaAsO2, 2 µM CdCl2 and 5 µM Pb(C2H3O2)2 3H2O) through ROS generation. The interest in OLA1 is justified because this protein has been proposed to be a negative regulator of the cellular antioxidant response. Small interfering RNA (siRNA) was used to knockdown OLA1 before the initiation stage of the transformation assay. We evaluated (ROS) and OLA1 protein expression throughout the initiation and promotion stages of transformation. OLA1 knockdown modulated metal mixture-induced cell transformation more strongly when the metal mixture was an initiator stimulus than when it was a promoter. The ability of the metal mixture to initiate cell transformation was diminished by OLA1 knockdown, an effect that depended on intracellular ROS levels. The effect of OLA1 was synergistic with N-Acetyl-l-cysteine (NAC) co-treatment. Oxidative stress-associated transcription factors Egr1 and Smad were also down-regulated by the OLA1 knockdown, contributing to the rescue of metal mixture cell transformation. PMID:26984302

  15. Strategies to improve low copy transgenic events in Agrobacterium-mediated transformation of maize.

    PubMed

    Sivamani, Elumalai; Li, Xianggan; Nalapalli, Samson; Barron, Yoshimi; Prairie, Anna; Bradley, David; Doyle, Michele; Que, Qiudeng

    2015-12-01

    Transgenic plants containing low copy transgene insertion free of vector backbone are highly desired for many biotechnological applications. We have investigated two different strategies for increasing the percentage of low copy events in Agrobacterium-mediated transformation experiments in maize. One of the strategies is to use a binary vector with two separate T-DNAs, one T-DNA containing an intact E.coli manA gene encoding phosphomannose isomerase (PMI) as selectable marker gene cassette and another T-DNA containing an RNAi cassette of PMI sequences. By using this strategy, low copy transgenic events containing the transgenes were increased from 43 to 60 % in maize. An alternate strategy is using selectable marker gene cassettes containing regulatory or coding sequences derived from essential plant genes such as 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) or MADS box transcription factor. In this paper we demonstrate that higher percentage of low copy transgenic events can be obtained in Agrobacterium-mediated maize transformation experiments using both strategies. We propose that the above two strategies can be used independently or in combination to increase transgenic events that contain low copy transgene insertion in Agrobacterium-mediated transformation experiments. PMID:26338266

  16. Engineered metal based nanomaterials in aqueous environments: Interactions, transformations and implications

    NASA Astrophysics Data System (ADS)

    Mudunkotuwa, Imali Ama

    Nanoscience and nanotechnology offer potential routes towards addressing critical issues such as clean and sustainable energy, environmental protection and human health. Specifically, metal and metal oxide nanomaterials are found in a wide range of applications and therefore hold a greater potential of possible release into the environment or for the human to be exposed. Understanding the aqueous phase behavior of metal and metal oxide nanomaterials is a key factor in the safe design of these materials because their interactions with living systems are always mediated through the aqueous phase. Broadly the transformations in the aqueous phase can be classified as dissolution, aggregation and adsorption which are dependent and linked processes to one another. The complexity of these processes at the liquid-solid interface has therefore been one of the grand challenges that has persisted since the beginning of nanotechnology. Although classical models provide guidance for understanding dissolution and aggregation of nanoparticles in water, there are many uncertainties associated with the recent findings. This is often due to a lack of fundamental knowledge of the surface structure and surface energetics for very small particles. Therefore currently the environmental health and safety studies related to nanomaterials are more focused on understanding the surface chemistry that governs the overall processes in the liquid-solid interfacial region at the molecular level. The metal based nanomaterials focused on in this dissertation include TiO2, ZnO, Cu and CuO. These are among the most heavily used in a number of applications ranging from uses in the construction industry to cosmetic formulation. Therefore they are produced in large scale and have been detected in the environment. There is debate within the scientific community related to their safety as a result of the lack of understanding on the surface interactions that arise from the detailed nature of the surfaces

  17. Study of the Effect of Transition Metals on Titanium Dioxide Phase Transformation

    NASA Astrophysics Data System (ADS)

    Bellifa, A.; Choukchou-Braham, A.; Kappenstein, C.; Pirault-Roy, L.

    MTiX samples with different atomic metal percentage were synthesised by sol-gel method and calcined at 400 °C under air. The anatase-rutile transformation in TiO2 in the presence of transition metals (Cr, V and Mn) was investigated. The kinetics of anatase-rutile transformations were determined by XRD over the temperature range 500-800 °C. It was found that the presence of V and Mn accelerate the transformation anatase-to-rutile. However, the anatase phase stability increases as the chromium content increases.

  18. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor.

    PubMed

    Heidmann, Iris; de Lange, Brenda; Lambalk, Joep; Angenent, Gerco C; Boutilier, Kim

    2011-06-01

    Pepper (Capsicum L.) is a nutritionally and economically important crop that is cultivated throughout the world as a vegetable, condiment, and food additive. Genetic transformation using Agrobacterium tumefaciens (agrobacterium) is a powerful biotechnology tool that could be used in pepper to develop community-based functional genomics resources and to introduce important agronomic traits. However, pepper is considered to be highly recalcitrant for agrobacterium-mediated transformation, and current transformation protocols are either inefficient, cumbersome or highly genotype dependent. The main bottleneck in pepper transformation is the inability to generate cells that are competent for both regeneration and transformation. Here, we report that ectopic expression of the Brassica napus BABY BOOM AP2/ERF transcription factor overcomes this bottleneck and can be used to efficiently regenerate transgenic plants from otherwise recalcitrant sweet pepper (C. annuum) varieties. Transient activation of BABY BOOM in the progeny plants induced prolific cell regeneration and was used to produce a large number of somatic embryos that could be converted readily to seedlings. The data highlight the utility of combining biotechnology and classical plant tissue culture approaches to develop an efficient transformation and regeneration system for a highly recalcitrant vegetable crop. PMID:21305301

  19. Successful Agrobacterium mediated transformation of Thielaviopsis basicola by optimizing multiple conditions.

    PubMed

    Tzima, Aliki K; Paplomatas, Epaminondas J; Schoina, Charikleia; Domazakis, Emmanouil; Kang, Seogchan; Goodwin, Paul H

    2014-08-01

    Thielaviopsis basicola is a hemibiotrophic root pathogen causing black root rot in a wide range of economically important crops. Our initial attempts to transform T. basicola using standard Agrobacterium tumefaciens-mediated transformation (ATMT) protocols were unsuccessful. Successful transformation required the addition of V8 juice (to induce germination of T. basicola chlamydospores) and higher concentrations of acetosyringone in the co-cultivation medium, and of chlamydospores/endoconidia, A. tumefaciens cells during co-cultivation. With these modifications, two T. basicola strains were successfully transformed with the green (egfp) or red (AsRed) fluorescent protein genes. Chlamydospores/endoconidia transformed with the egfp gene exhibited strong green fluorescence, but their fluorescence became weaker as the germ tubes emerged. Transformants harbouring the AsRed gene displayed strong red fluorescence in both chlamydospores/endoconidia and germ tubes. Fluorescent microscopic observations of an AsRed-labelled strain colonizing roots of transgenic Nicotiana benthamiana plants, which express the actin filaments labelled with EGFP, at 24 hours post inoculation showed varying levels of fungal germination and penetration. At this stage, the infection appeared to be biotrophic with the EGFP-labelled host actin filaments not being visibly degraded, even in host root cells in close contact with the hyphae. This is the first report of ATMT of T. basicola, and the use of an AsRed-labelled strain to directly observe the root infection process. PMID:25110130

  20. Agrobacterium tumefaciens-mediated transformation of Penicillium expansum PE-12 and its application in molecular breeding.

    PubMed

    Zhang, Tian; Qi, Zhen; Wang, Yueyue; Zhang, Fangyuan; Li, Renyong; Yu, Qingsheng; Chen, Xiangbin; Wang, Huojun; Xiong, Xin; Tang, Kexuan

    2013-03-30

    Lipase produced by Penicillium expansum is widely used in laundry detergent and leather industry; however, the absence of an efficient transformation technology sets a major obstacle for further enhancement of its lipase productivity through advanced gene engineering. In this work, Agrobacterium tumefaciens-mediated transformation (ATMT) was investigated for P. expansum PE-12 transformation, using hygromycin phosphotransferase (hph) as a selectable marker gene. As a result, we revealed that the frequency of transformation surpassed 100 transformants/10(5)condida, most of the integrated T-DNA appeared as a single copy at a random position in chromosomal DNA, and all the transformants showed mitotic stability. Facilitated by this newly established method, for the first time, P. expansum PE-12 was genetically engineered to improve the lipase yield, through a homologous expression vector carrying the endogenous lipase gene (PEL) driven by the strong constitutive promoter of the glyceraldehydes-3-phosphate dehydrogenase gene (gpdA) from Aspergillus nidulans. The highest expression level of the engineered strain reached up to 1700 U/mL, nearly 2-fold of the original industrial strain (900 U/mL). Our reproducible ATMT system has not only revealed the great potential of homologous expression-directed genetic engineering, which is more efficient and specific compared to traditional mutagenesis, but also provided new possibilities and perspectives for any other practical applications of P. expansum-related genetic engineering in the future. PMID:23265791

  1. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses.

    PubMed

    Zhang, Wan-Jun; Dewey, Ralph E; Boss, Wendy; Phillippy, Brian Q; Qu, Rongda

    2013-02-01

    Plant defense responses can lead to altered metabolism and even cell death at the sites of Agrobacterium infection, and thus lower transformation frequencies. In this report, we demonstrate that the utilization of culture conditions associated with an attenuation of defense responses in monocot plant cells led to highly improved Agrobacterium-mediated transformation efficiencies in perennial ryegrass (Lolium perenne L.). The removal of myo-inositol from the callus culture media in combination with a cold shock pretreatment and the addition of L-Gln prior to and during Agrobacterium-infection resulted in about 84 % of the treated calluses being stably transformed. The omission of myo-inositol from the callus culture media was associated with the failure of certain pathogenesis related genes to be induced after Agrobacterium infection. The addition of a cold shock and supplemental Gln appeared to have synergistic effects on infection and transformation efficiencies. Nearly 60 % of the stably transformed calluses regenerated into green plantlets. Calluses cultured on media lacking myo-inositol also displayed profound physiological and biochemical changes compared to ones cultured on standard growth media, such as reduced lignin within the cell walls, increased starch and inositol hexaphosphate accumulation, enhanced Agrobacterium binding to the cell surface, and less H(2)O(2) production after Agrobacterium infection. Furthermore, the cold treatment greatly reduced callus browning after infection. The simple modifications described in this report may have broad application for improving genetic transformation of recalcitrant monocot species. PMID:23242917

  2. Agrobacterium tumefaciens-mediated transformation of corn (Zea mays L.) multiple shoots

    PubMed Central

    Cao, Shi-liang; Masilamany, Pathmalojiny; Li, Wen-bin; Pauls, K. Peter

    2014-01-01

    An Agrobacterium tumefaciens-mediated corn transformation method based on multiple shoot tissue cultures was developed, which is effective with a variety of corn inbred lines and standard binary vectors. Six factors that affected the success of corn transformation were tested, including A. tumefaciens strain, corn genotype, tissue culture growth stage, medium composition, co-culture temperature and surfactant treatment. Agropine-type bacteria (EHA 101 and AGL 1) were eightfold more effective than octopine-type strain for corn multi-shoot tissues transformation. The average frequency of Glucuronidase (GUS)-positive explants obtained from 14 corn genotypes ranged from 36% to 76%. L-proline (0.7 g L−1) in the co-culture medium apparently improved the frequency of transformation. The newly initiated multi-shoot tissues were most responsive to Agrobacterium infection. A positive correlation was found between multi-shoot tissue susceptibility to Agrobacterium and the proportion of cells in G1 phase. Transformants were identified by reverse transcription Polymerase Chain Reaction (PCR) and by southern blot hybridization assays. The frequency of transformants was approximately 2% based on the number of multi-shoot explants co-cultivated with Agrobacterium. PMID:26019506

  3. Relationship between transformational leadership style and organizational commitment: Mediating effect of psychological empowerment

    NASA Astrophysics Data System (ADS)

    Asif, Muhammad; Ayyub, Samia; Bashir, Muhammad Khawar

    2014-12-01

    This study explores the relationship between style of transformational leadership and organizational commitment of employees with mediating role of psychological empowerment in the textile sector Punjab Pakistan. Data was collected using tools from 250 employees. The transformational leadership questionnaire, MLQ-Multifactor leadership Questionnaire [1] was used to verify the perception of the employees towards transformational leadership style in two dimensions i.e. idealized influence and inspirational motivation. The organizational commitment questionnaire designed by [2] was used to verify the affective organizational commitment. Further, psychological empowerment questionnaire was developed by [3] which was used to examine the state of psychological empowerment of textile sector employees. Pearson Correlation revealed that there exists a positive significant relationship between idealized influence and affective organizational commitment, Inspirational motivation and affective organizational commitment, affective organizational commitment and psychological empowerment. The results from the study put forward that there is a significant relationship between style of transformational leadership and organizational commitment. The mediating variable which one is suitable in the model i.e. psychological empowerment and the model is good fit as the F value is significant.

  4. Suppression of TET1-Dependent DNA Demethylation is Essential for KRAS-Mediated Transformation

    PubMed Central

    Wu, Bo-Kuan

    2014-01-01

    Summary Hypermethylation-mediated tumor suppressor gene (TSG) silencing is a central epigenetic alteration in RAS-dependent tumorigenesis. Ten-eleven translocation (TET) enzymes can depress DNA methylation by hydroxylation of 5-methylcytosine (5mC) bases to 5-hydroxymethylcytosine (5hmC). Here we report that suppression of TET1 is required for KRAS-induced DNA hypermethylation and cellular transformation. In distinct non-malignant cell lines, oncogenic KRAS promotes transformation by inhibiting TET1 expression via the ERK signaling pathway. This reduces chromatin occupancy of TET1 at TSG promoters, lowers levels of 5hmC, and increases levels of 5mC and 5mC-dependent transcriptional silencing. Restoration of TET1 expression by ERK pathway inhibition or ectopic TET1 reintroduction in KRAS-transformed cells reactivates TSGs and inhibits colony formation. KRAS knockdown increases TET1 expression and diminishes colony-forming ability, while KRAS/TET1 double knockdown bypasses the KRAS dependence of KRAS-addicted cancer cells. Thus, suppression of TET1-dependent DNA demethylation is critical for KRAS-mediated transformation. PMID:25466250

  5. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis

    PubMed Central

    Jinesh, GG; Molina, JR; Huang, L; Laing, NM; Mills, GB; Bar-Eli, M; Kamat, AM

    2016-01-01

    Apoptosis culminates in secondary necrosis due to lack of ATP. Cancer stem cells form spheres after apoptosis by evoking the blebbishield emergency program. Hence, determining how blebbishields avoid secondary necrosis is crucial. Here we demonstrate that N-Myc and VEGFR2 control transformation from blebbishields, during which oligomers of K-Ras, p27, BAD, Bax, and Bak boost glycolysis to avoid secondary necrosis. Non-apoptotic cancer cells also utilize oligomers to boost glycolysis, which differentiates the glycolytic function of oligomers from their apoptotic action. Smac mimetic in combination with TNF-α or TRAIL but not in combination with FasL abrogates transformation from blebbishields by inducing secondary necrosis. Thus blebbishield-mediated transformation is dependent on glycolysis, and Smac mimetics represent potential candidates to abrogate the blebbishield emergency program. PMID:27551498

  6. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis.

    PubMed

    Jinesh, G G; Molina, J R; Huang, L; Laing, N M; Mills, G B; Bar-Eli, M; Kamat, A M

    2016-01-01

    Apoptosis culminates in secondary necrosis due to lack of ATP. Cancer stem cells form spheres after apoptosis by evoking the blebbishield emergency program. Hence, determining how blebbishields avoid secondary necrosis is crucial. Here we demonstrate that N-Myc and VEGFR2 control transformation from blebbishields, during which oligomers of K-Ras, p27, BAD, Bax, and Bak boost glycolysis to avoid secondary necrosis. Non-apoptotic cancer cells also utilize oligomers to boost glycolysis, which differentiates the glycolytic function of oligomers from their apoptotic action. Smac mimetic in combination with TNF-α or TRAIL but not in combination with FasL abrogates transformation from blebbishields by inducing secondary necrosis. Thus blebbishield-mediated transformation is dependent on glycolysis, and Smac mimetics represent potential candidates to abrogate the blebbishield emergency program. PMID:27551498

  7. Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation.

    PubMed

    Saika, Hiroaki; Toki, Seiichi

    2010-12-01

    We previously established an efficient Agrobacterium-mediated transformation system using primary calli derived from mature seeds of the model japonica rice variety Nipponbare. We expected that the shortened tissue culture period would reduce callus browning--a common problem with the indica transformation system during prolonged tissue culture in the undifferentiated state. In this study, we successfully applied our efficient transformation system to Kasalath--a model variety of indica rice. The Luc reporter system is sensitive enough to allow quantitative analysis of the competency of rice callus for Agrobacterium-mediated transformation. We unexpectedly discovered that primary callus of Kasalath exhibits a remarkably high competency for Agrobacterium-mediated transformation compared to Nipponbare. Southern blot analysis and Luc luminescence showed that independent transformation events in primary callus of Kasalath occurred successfully at ca. tenfold higher frequency than in Nipponbare, and single copy T-DNA integration was observed in ~40% of these events. We also compared the competency of secondary callus of Nipponbare and Kasalath and again found superior competency in Kasalath, although the identification and subsequent observation of independent transformation events in secondary callus is difficult due to the vigorous growth of both transformed and non-transformed cells. An efficient transformation system in Kasalath could facilitate the identification of QTL genes, since many QTL genes are analyzed in a Nipponbare × Kasalath genetic background. The higher transformation competency of Kasalath could be a useful trait in the establishment of highly efficient systems involving new transformation technologies such as gene targeting. PMID:20853107

  8. Development of an Agrobacterium-Mediated Stable Transformation Method for the Sensitive Plant Mimosa pudica

    PubMed Central

    Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu

    2014-01-01

    The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements. PMID:24533121

  9. Development of an Agrobacterium-mediated stable transformation method for the sensitive plant Mimosa pudica.

    PubMed

    Mano, Hiroaki; Fujii, Tomomi; Sumikawa, Naomi; Hiwatashi, Yuji; Hasebe, Mitsuyasu

    2014-01-01

    The sensitive plant Mimosa pudica has long attracted the interest of researchers due to its spectacular leaf movements in response to touch or other external stimuli. Although various aspects of this seismonastic movement have been elucidated by histological, physiological, biochemical, and behavioral approaches, the lack of reverse genetic tools has hampered the investigation of molecular mechanisms involved in these processes. To overcome this obstacle, we developed an efficient genetic transformation method for M. pudica mediated by Agrobacterium tumefaciens (Agrobacterium). We found that the cotyledonary node explant is suitable for Agrobacterium-mediated transformation because of its high frequency of shoot formation, which was most efficiently induced on medium containing 0.5 µg/ml of a synthetic cytokinin, 6-benzylaminopurine (BAP). Transformation efficiency of cotyledonary node cells was improved from almost 0 to 30.8 positive signals arising from the intron-sGFP reporter gene by using Agrobacterium carrying a super-binary vector pSB111 and stabilizing the pH of the co-cultivation medium with 2-(N-morpholino)ethanesulfonic acid (MES) buffer. Furthermore, treatment of the explants with the detergent Silwet L-77 prior to co-cultivation led to a two-fold increase in the number of transformed shoot buds. Rooting of the regenerated shoots was efficiently induced by cultivation on irrigated vermiculite. The entire procedure for generating transgenic plants achieved a transformation frequency of 18.8%, which is comparable to frequencies obtained for other recalcitrant legumes, such as soybean (Glycine max) and pea (Pisum sativum). The transgene was stably integrated into the host genome and was inherited across generations, without affecting the seismonastic or nyctinastic movements of the plants. This transformation method thus provides an effective genetic tool for studying genes involved in M. pudica movements. PMID:24533121

  10. Bactericidal activity of metal-mediated peroxide-ascorbate systems.

    PubMed

    Drath, D B; Karnovsky, M L

    1974-11-01

    Model systems containing ascorbate, hydrogen peroxide, and divalent copper or cobalt have been shown to possess marked bactericidal activity. At equivalent concentrations, copper-containing systems were more bactericidal than the corresponding mixtures containing cobalt. Cobalt at concentrations below 10(-4) M did not appreciably augment microbicidal activity, whereas systems containing copper at concentrations as low as 5 x 10(-6) M were still capable of causing some bacterial death. Manganese was inactive. None of these systems was as potent as the well known myeloperoxidase-peroxide-halide system. The mechanisms of action of these systems are not as yet clear. The possibility that they function through the generation of superoxide (O(2) (-)), hydroxyl radical (OH.), or other free radicals was explored through the use of superoxide dismutase and several free radical scavengers. It seems likely at present that the two active metal-mediated systems function via separate mechanisms. The copper system acts with dehydroascorbate, whereas the cobalt system does not. Activity in the cobalt system appears to depend upon the generation of free radicals. PMID:16558093

  11. FUNCTIONALIZED METAL OXIDE NANOPARTICLES: ENVIRONMENTAL TRANSFORMATIONS AND ECOTOXICITY

    EPA Science Inventory

    This study will provide fundamental information on alterations in the surface chemistry of commercially important functionalized metal oxide NPs under environmentally relevant oxidative and reductive conditions, as well as needed data on the inherent and photo-enhanced toxicit...

  12. Integrative gene transfer in the truffle Tuber borchii by Agrobacterium tumefaciens-mediated transformation.

    PubMed

    Brenna, Andrea; Montanini, Barbara; Muggiano, Eleonora; Proietto, Marco; Filetici, Patrizia; Ottonello, Simone; Ballario, Paola

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is a powerful tool for reverse genetics and functional genomic analysis in a wide variety of plants and fungi. Tuber spp. are ecologically important and gastronomically prized fungi ("truffles") with a cryptic life cycle, a subterranean habitat and a symbiotic, but also facultative saprophytic lifestyle. The genome of a representative member of this group of fungi has recently been sequenced. However, because of their poor genetic tractability, including transformation, truffles have so far eluded in-depth functional genomic investigations. Here we report that A. tumefaciens can infect Tuber borchii mycelia, thereby conveying its transfer DNA with the production of stably integrated transformants. We constructed two new binary plasmids (pABr1 and pABr3) and tested them as improved transformation vectors using the green fluorescent protein as reporter gene and hygromycin phosphotransferase as selection marker. Transformants were stable for at least 12 months of in vitro culture propagation and, as revealed by TAIL- PCR analysis, integration sites appear to be heterogeneous, with a preference for repeat element-containing genome sites. PMID:24949275

  13. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in medicinal fungus Cordyceps militaris.

    PubMed

    Zheng, Zhuangli; Huang, Chuanhua; Cao, Li; Xie, Cuihong; Han, Richou

    2011-03-01

    Cordyceps militaris is an insect-born fungus with various biological and pharmacological activities. The mutant library of C. militaris was constructed by improved Agrobacterium tumefaciens-mediated transformation (ATMT), for the ultimate identification of genes involved in isolate degeneration during fruiting body production. Successful transformation of C. militaris JM4 by A. tumefaciens AGL-1 carrying vector pATMT1 was performed, with efficiency in the range of 30-600 transformants per 1×10(5) conidia. Acetosyringone (AS) supplement in C. militaris ATMT was not necessary during either precultivation or cocultivation. The transformation procedure was optimised based on the ratios between donor A. tumefaciens and recipient conidia, and pH value of cocultivation media. The integration of the hyg gene into C. militaris genome was determined by PCR and Southern blot analysis, suggesting that 67-88% resulting transformants in cultivation conditions with or without AS were inserted by T-DNA and 55-80% were single-copy. Special mutants with altered phenotypes and growth potentials were characterised. The efficient TAIL-PCR approach was established for identifying T-DNA flanking sequences from C. militaris mutants. The successful construction of the mutant library indicated the usefulness of this approach for functional genetic analysis in this important fungus. PMID:21354533

  14. Integrative gene transfer in the truffle Tuber borchii by Agrobacterium tumefaciens-mediated transformation

    PubMed Central

    2014-01-01

    Agrobacterium tumefaciens-mediated transformation is a powerful tool for reverse genetics and functional genomic analysis in a wide variety of plants and fungi. Tuber spp. are ecologically important and gastronomically prized fungi (“truffles”) with a cryptic life cycle, a subterranean habitat and a symbiotic, but also facultative saprophytic lifestyle. The genome of a representative member of this group of fungi has recently been sequenced. However, because of their poor genetic tractability, including transformation, truffles have so far eluded in-depth functional genomic investigations. Here we report that A. tumefaciens can infect Tuber borchii mycelia, thereby conveying its transfer DNA with the production of stably integrated transformants. We constructed two new binary plasmids (pABr1 and pABr3) and tested them as improved transformation vectors using the green fluorescent protein as reporter gene and hygromycin phosphotransferase as selection marker. Transformants were stable for at least 12 months of in vitro culture propagation and, as revealed by TAIL- PCR analysis, integration sites appear to be heterogeneous, with a preference for repeat element-containing genome sites. PMID:24949275

  15. Potential of acetylacetone as a mediator for Trametes versicolor laccase in enzymatic transformation of organic pollutants.

    PubMed

    Yang, Hua; Sun, Hongfei; Zhang, Shujuan; Wu, Bingdang; Pan, Bingcai

    2015-07-01

    Low-cost and environmentally friendly mediators could facilitate the application of laccase (EC 1.10.3.2) in variant biotechnological processes. Acetylacetone (AA) represents an inexpensive and low toxic small molecular diketone that has been proven as an effective mediator for laccase in free radical polymerization. However, the potential of AA as a mediator for laccase in pollutant detoxification and/or degradation is still unknown. In this work, the roles of AA in laccase-induced polymerization and transformation were investigated. AA was demonstrated to be a highly efficient mediator in the laccase-induced grafting copolymerization of acrylamide and chitosan. The efficacy of AA in the laccase-induced decoloration of malachite green (MG) was compared with that of the widely used 1-hydroxybenzotriazole (HBT). The laccase-AA system had the highest turnover number (TON, 39.1 μmol/U), followed by the laccase-only system (28.5 μmol/U), while the TON of the laccase-HBT system was the lowest (14.9 μmol/U). The pseudo-first-order transformation rate constant (k 1) of MG in the laccase-AA system was up to 0.283 h(-1) under the given conditions, while the k 1 of AA caused by laccase was only 0.008 h(-1). In the five-cycle run, the concentration of AA remained stable. The larger TON of the laccase-AA system and the stability of AA in the cycling runs demonstrate that AA was more recyclable than HBT in the LMS, leading to a prolonged serving life of laccase. These results suggest that AA might be a potential redox mediator for laccase. PMID:25772881

  16. [Genetic transformation of OSISAP1 gene to onion (Allium cepa L.) mediated by amicroprojectile bombardment].

    PubMed

    Xu, Qi-Jiang; Cui, Cheng-Ri

    2007-06-01

    Microprojectile bombardment-mediated transformation method has been developed for onion (Allium cepa L.) using embryogenic calli, induced from stem discs, as target tissue. Zinc-finger protein gene OSISAP1 (Oryza sative subspecies indica stress-associated protein gene) was introduced into the open-pollinated onion cultivar (subs.) 'HG400B'. Bombardment parameters were optimized as: the pressure is 1,100 psi, the distance is 6 cm, two times, the ratio of mass between plasmid DNA and golden particles is 1:320. An efficient microprojectile bombardment-mediated transformation system of onion (Allium cepa L.) callus has been established. The binary vector used carried the nptII gene for kanamycin resistance and the GUS reporter gene. Transgenic cultures were screened for their ability to express the GUS reporter gene and to grow in the presence of kanamycin (150 mg/L). Transient expression of GUS reporter gene was observed through histochemical staining of embryogenic callus transformed by microprojectile bombardment. The putative transgenic plants were analysed at the molecular level using PCR, southern hybridization, and RT-PCR. The results confirmed that the OSISAP1 gene was integrated as one copy into the genome of onion and expression. Transgenic plants were produced efficiently with a transformation frequency of about 10%. Test of salinity-alkali stress showed that sodium chloride and sodium bicarbonate at 200 mmol/L effectively killed non-transgenic plants within 1 week of irrigation, while the transgenic plants were completely unaffected by salinity of 400 mmol/L. So transformation with the OSISAP1 gene raised the salinity-alkali-tolerance of the transgenic plants to a high level. PMID:17556805

  17. An embryogenic suspension cell culture system for Agrobacterium-mediated transformation of citrus.

    PubMed

    Dutt, M; Grosser, J W

    2010-11-01

    A method for the genetic transformation of several citrus cultivars is described, including cultivars observed to be recalcitrant to conventional epicotyl-mediated transformation. Embryogenic cell suspension cultures, established from unfertilized ovules were used as target tissues for Agrobacterium-mediated transformation. Several modifications were made to the culture environment to investigate factors required for efficient transfer of the T-DNA and the subsequent regeneration of transgenic citrus plants. It was determined that co-cultivation of citrus cells and Agrobacterium in EME medium supplemented with maltose (EME-M) and 100 μM acetosyringone for 5 days at 25°C was optimum for transformation of each of the citrus cultivars. Efficient selection was obtained and escapes were prevented when the antibiotic hygromycin B was used as a selection antibiotic following transformation with an Agrobacterium strain containing hptII in the T-DNA region. Transgenic embryo regeneration and development was enhanced in medium that contained a liquid overlay consisting of a 1:2 mixture of 0.6 M BH3 and 0.15 M EME-M media. PCR and Southern blot analyses confirmed the presence of the T-DNA and the stable integration into the genome of regenerated plants, while RT-PCR demonstrated variable amounts of RNA being transcribed in different transgenic lines. This protocol can create an avenue for insertion of useful traits into any polyembryonic citrus cultivar that can be established as embryogenic cell suspension cultures, including popular specialty mandarins and seedless cultivars. PMID:20711728

  18. Agrobacterium tumefaciens-mediated transformation of the causative agent of Valsa canker of apple tree Valsa mali var. mali.

    PubMed

    Hu, Yang; Dai, Qingqing; Liu, Yangyang; Yang, Zhe; Song, Na; Gao, Xiaoning; Voegele, Ralf Thomas; Kang, Zhensheng; Huang, Lili

    2014-06-01

    Valsa mali var. mali (Vmm), which is the causative agent of Valsa canker of apple tree, causes heavy damage to apple production in eastern Asia. In this article, we report Agrobacterium tumefaciens-mediated transformation (ATMT) of Vmm and expression of gfp (green fluorescent protein) in this fungus. The transformation system was optimized to a transformation efficiency of approximately 150 transformants/10(6) conidia, and a library containing over 4,000 transformants was generated. The tested transformants were mitotically stable. One hundred percent hph (hygromycin B phosphotransferase) integration into Vmm was identified by PCR and five single-copy integration of T-DNA was detected in the eighteen transformants by Southern blot. To our knowledge, this is the first report of ATMT of Vmm. Furthermore, this library has been used to identify genes involved in the virulence of the pathogen, and the transformation system may also be useful to the transformation of other species of the genus Valsa. PMID:24554343

  19. Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava.

    PubMed

    Bull, S E; Owiti, J A; Niklaus, M; Beeching, J R; Gruissem, W; Vanderschuren, H

    2009-01-01

    Agrobacterium-mediated transformation of friable embryogenic calli (FEC) is the most widely used method to generate transgenic cassava plants. However, this approach has proven to be time-consuming and can lead to changes in the morphology and quality of FEC, influencing regeneration capacity and plant health. Here we present a comprehensive, reliable and improved protocol, taking approximately 6 months, that optimizes Agrobacterium-mediated transformation of FEC from cassava model cultivar TMS60444. We cocultivate the FEC with Agrobacterium directly on the propagation medium and adopt the extensive use of plastic mesh for easy and frequent transfer of material to new media. This minimizes stress to the FEC cultures and permits a finely balanced control of nutrients, hormones and antibiotics. A stepwise increase in antibiotic concentration for selection is also used after cocultivation with Agrobacterium to mature the transformed FEC before regeneration. The detailed information given here for each step should enable successful implementation of this technology in other laboratories, including those being established in developing countries where cassava is a staple crop. PMID:20010938

  20. Differences in kinase-mediated regulation of cell cycle progression in normal and transformed cells

    SciTech Connect

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Stevenson, A.P.; Kraemer, P.M.; Bustos, L.D.; Dickson, J.A.; Bradbury, E.M. )

    1993-01-01

    Staurosporine (Stsp), a general protein kinase inhibitor, was used to investigate the role of kinase-mediated mechanisms in regulating mammalian cell proliferation. Low levels of Stsp (1-2nM) prevented nontransformed cells from entering S phase, indicating that protein phosphorylation processes are essential for commitment of DNA replication in normal cells. Cells resumed cycling when Stsp was removed. The period of sensitivity of nontransformed human diploid fibroblasts to low levels of the drug commenced 3 h later than the G0/G1 boundary and extended through the G1/S boundary. The initial block point at 3 h corresponds neither to the serum nor the amino acid restriction point. In contrast, neither low nor high concentrations (100nm) of Stsp affected G1 progression of transformed cells. High drug concentrations blocked normal cells in G1 and G2 but affected only G2-progression in transformed cells. These results indicate that kinase-mediated regulation of DNA replication is lost as a result of neoplastic transformation, but the G2-arrest mechanism remains intact.

  1. Ezrin function is required for ROCK-mediated fibroblast transformation by the Net and Dbl oncogenes.

    PubMed

    Tran Quang, C; Gautreau, A; Arpin, M; Treisman, R

    2000-09-01

    The small G protein RhoA and its GDP/GTP exchange factors (GEFs) Net and Dbl can transform NIH 3T3 fibroblasts, dependent on the activity of the RhoA effector kinase ROCK. We investigated the role of the cytoskeletal linker protein ezrin in this process. RhoA effector loop mutants which can bind ROCK induce relocalization of ezrin to dorsal actin-containing cell surface protrusions, as do Net and Dbl. Both processes are inhibited by the ROCK inhibitor Y27632, which also inhibits association of ezrin with the cytoskeleton, and phosphorylation of T567, conserved between ezrin and its relatives radixin and moesin. ROCK can phosphorylate the ezrin C-terminus in vitro. The ezrin mutant T567A cannot be relocalized by activated RhoA, Net or Dbl or by ROCK itself, and also inhibits RhoA-mediated contractility and focal adhesion formation. Moreover, ezrin T567A, but not wild-type ezrin, restores contact inhibition to Net- and Dbl-transformed cells, and inhibits the activity of Net and Ras in focus formation assays. These results implicate ROCK-mediated ezrin C-terminal phosphorylation in transformation by RhoGEFs. PMID:10970850

  2. MBNL1-mediated regulation of differentiation RNAs promotes myofibroblast transformation and the fibrotic response

    PubMed Central

    Davis, Jennifer; Salomonis, Nathan; Ghearing, Natasha; Lin, Suh-Chin J.; Kwong, Jennifer Q.; Mohan, Apoorva; Swanson, Maurice S.; Molkentin, Jeffery D.

    2015-01-01

    The differentiation of fibroblasts into myofibroblasts mediates tissue wound healing and fibrotic remodelling, although the molecular programme underlying this process remains poorly understood. Here we perform a genome-wide screen for genes that control myofibroblast transformation, and identify the RNA-binding protein muscleblind-like1 (MBNL1). MBNL1 overexpression promotes transformation of fibroblasts into myofibroblasts, whereas loss of Mbnl1 abrogates transformation and impairs the fibrotic phase of wound healing in mouse models of myocardial infarction and dermal injury. Mechanistically, MBNL1 directly binds to and regulates a network of differentiation-specific and cytoskeletal/matrix-assembly transcripts to promote myofibroblast differentiation. One of these transcripts is the nodal transcriptional regulator serum response factor (SRF), whereas another is calcineurin Aβ. CRISPR-Cas9-mediated gene-editing of the MBNL1-binding site within the Srf 3′UTR impairs myofibroblast differentiation, whereas in vivo deletion of Srf in fibroblasts impairs wound healing and fibrosis. These data establish a new RNA-dependent paradigm for myofibroblast formation through MBNL1. PMID:26670661

  3. Agrobacterium-Mediated Transformation of the Recalcitrant Vanda Kasem's Delight Orchid with Higher Efficiency

    PubMed Central

    Gnasekaran, Pavallekoodi; James Antony, Jessica Jeyanthi; Uddain, Jasim; Subramaniam, Sreeramanan

    2014-01-01

    The presented study established Agrobacterium-mediated genetic transformation using protocorm-like bodies (PLBs) for the production of transgenic Vanda Kasem's Delight Tom Boykin (VKD) orchid. Several parameters such as PLB size, immersion period, level of wounding, Agrobacterium density, cocultivation period, and concentration of acetosyringone were tested and quantified using gusA gene expression to optimize the efficiency of Agrobacterium-mediated genetic transformation of VKD's PLBs. Based on the results, 3-4 mm PLBs wounded by scalpel and immersed for 30 minutes in Agrobacterium suspension of 0.8 unit at A600nm produced the highest GUS expression. Furthermore, cocultivating infected PLBs for 4 days in the dark on Vacin and Went cocultivation medium containing 200 𝜇M acetosyringone enhanced the GUS expression. PCR analysis of the putative transformants selected in the presence of 250 mg/L cefotaxime and 30 mg/L geneticin proved the presence of wheatwin1, wheatwin2, and nptII genes. PMID:24977213

  4. Hydrated lime for metals immobilization and explosives transformation: Treatability study.

    PubMed

    Martin, W Andy; Larson, S L; Nestler, C C; Fabian, G; O'Connor, G; Felt, D R

    2012-05-15

    Fragmentation grenades contain Composition B (RDX and TNT) within a steel shell casing. There is the potential for off-site migration of high explosives and metals from hand grenade training ranges by transport in surface water and subsurface transport in leachate. This treatability study used bench-scale columns and mesocosm-scale laboratory lysimeters to investigate the potential of hydrated lime as a soil amendment for in situ remediation of explosives and metals stabilization in hand grenade range soils. Compared to the unamended soil there was a 26-92% reduction of RDX in the leachate and runoff water from the lime treated soils and a 66-83% reduction of zinc in the leachate and runoff water samples; where the hand grenade range metals of concern were zinc, iron, and manganese. The amended soil was maintained at the target pH of greater than 10.5 for optimum explosives decomposition. The treatability study indicated a high potential of success for scale-up to an in situ field study. PMID:22445717

  5. Mechanistic Variants in Gas-Phase Metal-Oxide Mediated Activation of Methane at Ambient Conditions.

    PubMed

    Li, Jilai; Zhou, Shaodong; Zhang, Jun; Schlangen, Maria; Usharani, Dandamudi; Shaik, Sason; Schwarz, Helmut

    2016-09-01

    The C-H bond activation of methane mediated by a prototypical heteronuclear metal-oxide cluster, [Al2Mg2O5](•+), was investigated by using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) in conjunction with high-level quantum mechanical calculations. Experimentally, hydrogen-atom abstraction from methane by the cluster ion [Al2Mg2O5](•+) takes place at ambient conditions. As to the mechanism, according to our computational findings, both the proton-coupled electron transfer (PCET) and the conventional hydrogen-atom transfer (HAT) are feasible and compete with each other. This is in distinct contrast to the [XYO2](+) (X, Y = Mg, Al, Si) cluster oxide ions which activate methane exclusively via the PCET route (Li, J.; Zhou, S.; Zhang, J.; Schlangen, M.; Weiske, T.; Usharani, D.; Shaik, S.; Schwarz, H. J. Am. Chem. Soc. 2016, 138, 7973-7981). The electronic origins of the mechanistically rather complex reactivity scenarios of the [Al2Mg2O5](•+)/CH4 couple were elucidated. For the PCET mechanism, in which the Lewis acid-base pair [Al(+)-O(-)] of the cluster acts as the active site, a clear correlation has been established between the nature of the transition state, the corresponding barrier height, the Lewis acidity-basicity of the [M(+)-O(-)] unit, as well as the bond order of the M(+)-O(-) bond. Also addressed is the role of the spin and charge distributions of a terminal oxygen radical site in the direct HAT route. The knowledge of the factors that control the reactivity of PCET and HAT pathways not only deepens our mechanistic understanding of metal-oxide mediated C-H bond activation but may also provide guidance for the rational design of catalysts. PMID:27518766

  6. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops.

    PubMed

    Singh, Roshan Kumar; Prasad, Manoj

    2016-05-01

    Steady increase in global population poses several challenges to plant science research, including demand for increased crop productivity, grain yield, nutritional quality and improved tolerance to different environmental factors. Transgene-based approaches are promising to address these challenges by transferring potential candidate genes to host organisms through different strategies. Agrobacterium-mediated gene transfer is one such strategy which is well known for enabling efficient gene transfer in both monocot and dicots. Due to its versatility, this technique underwent several advancements including development of improved in vitro plant regeneration system, co-cultivation and selection methods, and use of hyper-virulent strains of Agrobacterium tumefaciens harbouring super-binary vectors. The efficiency of this method has also been enhanced by the use of acetosyringone to induce the activity of vir genes, silver nitrate to reduce the Agrobacterium-induced necrosis and cysteine to avoid callus browning during co-cultivation. In the last two decades, extensive efforts have been invested towards achieving efficient Agrobacterium-mediated transformation in cereals. Though high-efficiency transformation systems have been developed for rice and maize, comparatively lesser progress has been reported in other graminaceous crops. In this context, the present review discusses the progress made in Agrobacterium-mediated transformation system in rice, maize, wheat, barley, sorghum, sugarcane, Brachypodium, millets, bioenergy and forage and turf grasses. In addition, it also provides an overview of the genes that have been recently transferred to these graminaceous crops using Agrobacterium, bottlenecks in this technique and future possibilities for crop improvement. PMID:26660352

  7. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  8. Agrobacterium-mediated transformation of two Serbian potato cultivars (Solanum tuberosum L. cv. Dragacevka and cv. Jelica)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An efficient protocol for Agrobacterium-mediated transformation of Serbian potato cultivars Dragacevka and Jelica, enabling the introduction of oryzacystatin genes OCI and OCII, was established. Starting with leaf explants a two-stage transformation protocol combining procedures of Webb and Wenzler...

  9. Agrobacterium-mediated transformation of tomato with the ICE1 transcription factor gene.

    PubMed

    Juan, J X; Yu, X H; Jiang, X M; Gao, Z; Zhang, Y; Li, W; Duan, Y D; Yang, G

    2015-01-01

    ICE1 genes play a very important role in plants in cold conditions. To improve the cold resistance of tomato, the ICE1 gene of Arabidopsis thaliana was used to construct the plant expression vector p3301-ICE1, and was overexpressed in tomato through Agrobacterium-mediated transformation. Five strains of resistant plants were obtained. PCR and half-quantitative results showed that the ICE1 gene was transferred to tomato; three strains tested positive. After low-temperature stress treatment, praline content and peroxide and catalase activities in the transgenic tomato plants were higher compared with non-transgenic controls, while malondialdehyde content was clearly lower. PMID:25729995

  10. Agrobacterium rhizogenes-Mediated Transformation of the Parasitic Plant Phtheirospermum japonicum

    PubMed Central

    Ishida, Juliane K.; Yoshida, Satoko; Ito, Masaki; Namba, Shigetou; Shirasu, Ken

    2011-01-01

    Background Plants within the Orobanchaceae are an agriculturally important group of parasites that attack economically important crops to obtain water and nutrients from their hosts. Despite their agricultural importance, molecular mechanisms of the parasitism are poorly understood. Methodology/Principal Findings We developed transient and stable transformation systems for Phtheirospermum japonicum, a facultative parasitic plant in the Orobanchaceae. The transformation protocol was established by a combination of sonication and acetosyringone treatments using the hairy-root-inducing bacterium, Agrobacterium rhizogenes and young seedlings. Transgenic hairy roots of P. japonicum were obtained from cotyledons 2 to 3 weeks after A. rhizogenes inoculation. The presence and the expression of transgenes in P. japonicum were verified by genomic PCR, Southern blot and RT-PCR methods. Transgenic roots derived from A. rhizogenes-mediated transformation were able to develop haustoria on rice and maize roots. Transgenic roots also formed apparently competent haustoria in response to 2,6-dimethoxy-1,4-benzoquinone (DMBQ), a haustorium-inducing chemical. Using this system, we introduced a reporter gene with a Cyclin B1 promoter into P. japonicum, and visualized cell division during haustorium formation. Conclusions We provide an easy and efficient method for hairy-root transformation of P. japonicum. Transgenic marker analysis revealed that cell divisions during haustorium development occur 24 h after DMBQ treatment. The protocols described here will allow functional analysis of genes involved in plant parasitism. PMID:21991355

  11. AGROBACTERIUM-MEDIATED TRANSFORMATION IN THE GREEN ALGA HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE, VOLVOCALES)(1).

    PubMed

    Kathiresan, S; Chandrashekar, A; Ravishankar, G A; Sarada, R

    2009-06-01

    The first successful Agrobacterium-mediated transformation of the green alga Haematococcus pluvialis Flot. using the binary vectors hosting the genes coding for GUS (β-glucuronidase), GFP (green fluorescent protein), and hpt (hygromycin phosphotransferase) is reported here. Colonies resistant to hygromycin at 10 mg · L(-1) expressed β-glucuronidase. The greenish yellow fluorescence of GFP was observed when the hygromycin-resistant cells were viewed with a fluorescent microscope. PCR was used to successfully amplify fragments of the hpt (407 bp) and GUS (515 bp) genes from transformed cells, while Southern blots indicated the integration of the hygromycin gene into the genome of H. pluvialis. SEM indicated that the cell wall of H. pluvialis was altered on infection with Agrobacterium. The transformation achieved here by Agrobacterium does not need treatment with acetosyringone or the wounding of cells. A robust transformation method for this alga would pave the way for manipulation of many important pathways relevant to the food, pharmaceutical, and nutraceutical industries. PMID:27034041

  12. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell.

    PubMed

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  13. Yeast Actin-Related Protein ARP6 Negatively Regulates Agrobacterium-Mediated Transformation of Yeast Cell

    PubMed Central

    Luo, Yumei; Chen, Zikai; Zhu, Detu; Tu, Haitao; Pan, Shen Quan

    2015-01-01

    The yeasts, including Saccharomyces cerevisiae and Pichia pastoris, are single-cell eukaryotic organisms that can serve as models for human genetic diseases and hosts for large scale production of recombinant proteins in current biopharmaceutical industry. Thus, efficient genetic engineering tools for yeasts are of great research and economic values. Agrobacterium tumefaciens-mediated transformation (AMT) can transfer T-DNA into yeast cells as a method for genetic engineering. However, how the T-DNA is transferred into the yeast cells is not well established yet. Here our genetic screening of yeast knockout mutants identified a yeast actin-related protein ARP6 as a negative regulator of AMT. ARP6 is a critical member of the SWR1 chromatin remodeling complex (SWR-C); knocking out some other components of the complex also increased the transformation efficiency, suggesting that ARP6 might regulate AMT via SWR-C. Moreover, knockout of ARP6 led to disruption of microtubule integrity, higher uptake and degradation of virulence proteins, and increased DNA stability inside the cells, all of which resulted in enhanced transformation efficiency. Our findings have identified molecular and cellular mechanisms regulating AMT and a potential target for enhancing the transformation efficiency in yeast cells. PMID:26425545

  14. Hypocotyl-based Agrobacterium-mediated transformation of soybean (Glycine max) and application for RNA interference.

    PubMed

    Wang, Geliang; Xu, Yinong

    2008-07-01

    An efficient system of gene transformation is necessary for soybean [Glycine max (L.) Merrill] functional genomics and gene modification by using RNA interference (RNAi) technology. To establish such system, we improved the conditions of tissue culture and transformation for increasing the frequency of adventitious shoots and decreasing the browning and necrosis of hypocotyls. Adding N(6)-benzylaminopurine (BAP) and silver nitrate in culture medium enhanced the shoot formation on hypocotyls. BAP increased the frequency of the hypocotyls containing adventitious shoots, while silver nitrate increased the number of shoots on the hypocotyls. As a result, the number of adventitious shoots on hypocotyls cultured in medium containing both BAP and silver nitrate was 5-fold higher than the controls. Adding antioxidants in co-cultivation medium resulted in a significant decrease in occurrence of browning and necrosis of hypocotyls and increase in levels of beta-Glucuronidase (GUS) gene expression. Histochemical assays showed that the apical meristem of hypocotyls was the "target tissue" for Agrobacterium tumefaciens transformation of soybean. Gene silencing of functional gene by using RNAi technology was carried out under above conditions. A silencing construct containing an inverted-repeat fragment of the GmFAD2 gene was introduced into soybean by using the A. tumefaciens-mediated transformation. Several lines with high oleic acid were obtained, in which mean oleic acid content ranged from 71.5 to 81.9%. Our study demonstrates that this transgenic approach could be efficiently used to improve soybean quality and productivity through functional genomics. PMID:18347801

  15. Critical indices for reversible gamma-alpha phase transformation in metallic cerium

    NASA Astrophysics Data System (ADS)

    Soldatova, E. D.; Tkachenko, T. B.

    1980-08-01

    Critical indices for cerium have been determined within the framework of the pseudobinary solution theory along the phase equilibrium curve, the critical isotherm, and the critical isobar. The results obtained verify the validity of relationships proposed by Rushbrook (1963), Griffiths (1965), and Coopersmith (1968). It is concluded that reversible gamma-alpha transformation in metallic cerium is a critical-type transformation, and cerium has a critical point on the phase diagram similar to the critical point of the liquid-vapor system.

  16. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge.

    PubMed

    Huang, Hua-Jun; Yuan, Xing-Zhong

    2016-01-01

    Various hydrothermal treatment methods, including hydrothermal carbonization, liquefaction and sub/super-critical water gasification, have been applied to the disposal of sewage sludge for producing bio-materials or bio-fuels. It has become a research hotspot whether the heavy metals contained in sewage sludge can be well treated/stabilized after the hydrothermal treatments. This review firstly summarized the methods of assessing heavy metals' contamination level/risk and then discussed the migration and transformation behaviors of heavy metals from the following aspects: the effect of reaction temperature, the effect of additives (catalysts and other biomass), the effect of the type of solvent and the effect of reaction time. This review can provide an important reference for the further study of the migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. PMID:26577578

  17. A rapid, highly efficient and economical method of Agrobacterium-mediated in planta transient transformation in living onion epidermis.

    PubMed

    Xu, Kedong; Huang, Xiaohui; Wu, Manman; Wang, Yan; Chang, Yunxia; Liu, Kun; Zhang, Ju; Zhang, Yi; Zhang, Fuli; Yi, Liming; Li, Tingting; Wang, Ruiyue; Tan, Guangxuan; Li, Chengwei

    2014-01-01

    Transient transformation is simpler, more efficient and economical in analyzing protein subcellular localization than stable transformation. Fluorescent fusion proteins were often used in transient transformation to follow the in vivo behavior of proteins. Onion epidermis, which has large, living and transparent cells in a monolayer, is suitable to visualize fluorescent fusion proteins. The often used transient transformation methods included particle bombardment, protoplast transfection and Agrobacterium-mediated transformation. Particle bombardment in onion epidermis was successfully established, however, it was expensive, biolistic equipment dependent and with low transformation efficiency. We developed a highly efficient in planta transient transformation method in onion epidermis by using a special agroinfiltration method, which could be fulfilled within 5 days from the pretreatment of onion bulb to the best time-point for analyzing gene expression. The transformation conditions were optimized to achieve 43.87% transformation efficiency in living onion epidermis. The developed method has advantages in cost, time-consuming, equipment dependency and transformation efficiency in contrast with those methods of particle bombardment in onion epidermal cells, protoplast transfection and Agrobacterium-mediated transient transformation in leaf epidermal cells of other plants. It will facilitate the analysis of protein subcellular localization on a large scale. PMID:24416168

  18. Prevention of KLF4-mediated tumor initiation and malignant transformation by UAB30 rexinoid.

    PubMed

    Jiang, Wen; Deng, Wentao; Bailey, Sarah K; Nail, Clint D; Frost, Andra R; Brouillette, Wayne J; Muccio, Donald D; Grubbs, Clinton J; Ruppert, J Michael; Lobo-Ruppert, Susan M

    2009-02-01

    The transcription factor KLF4 acts in post-mitotic epithelial cells to promote differentiation and functions in a context-dependent fashion as an oncogene. In the skin KLF4 is co-expressed with the nuclear receptors RARgamma and RXRalpha, and formation of the skin permeability barrier is a shared function of these three proteins. We utilized a KLF4-transgenic mouse model of skin cancer in combination with cultured epithelial cells to examine functional interactions between KLF4 and retinoic acid receptors. In cultured cells, activation of a conditional, KLF4-estrogen receptor fusion protein by 4-hydroxytamoxifen resulted in rapid upregulation of transcripts for nuclear receptors including RARgamma and RXRalpha. We tested retinoids in epithelial cell transformation assays, including an RAR-selective agonist (all-trans RA), an RXR-selective agonist (9-cis UAB30, rexinoid), and a pan agonist (9-cis RA). Unlike for several other genes, transformation by KLF4 was inhibited by each retinoid, implicating distinct nuclear receptor heterodimers as modulators of KLF4 transforming activity. When RXRalpha expression was suppressed by RNAi in cultured cells, transformation was promoted and the inhibitory effect of 9-cis UAB30 was attenuated. Similarly as shown for other mouse models of skin cancer, rexinoid prevented skin tumor initiation resulting from induction of KLF4 in basal keratinocytes. Rexinoid permitted KLF4 expression and KLF4-induced cell cycling, but attenuated the KLF4-induced misexpression of cytokeratin 1 in basal cells. Neoplastic lesions including hyperplasia, dysplasia and squamous cell carcinoma-like lesions were prevented for up to 30 days. Taken together, the results identify retinoid receptors including RXRalpha as ligand-dependent inhibitors of KLF4-mediated transformation or tumorigenesis. PMID:19197145

  19. Deletions in the Gibberellin Biosynthesis Gene Cluster of Gibberella fujikuroi by Restriction Enzyme-Mediated Integration and Conventional Transformation-Mediated Mutagenesis

    PubMed Central

    Linnemannstöns, Pia; Voß, Thorsten; Hedden, Peter; Gaskin, Paul; Tudzynski, Bettina

    1999-01-01

    We induced mutants of Gibberella fujikuroi deficient in gibberellin (GA) biosynthesis by transformation-mediated mutagenesis with the vector pAN7-1. We recovered 24 GA-defective mutants in one of nine transformation experiments performed without the addition of a restriction enzyme. Each mutant had a similar Southern blot pattern, suggesting the integration of the vector into the same site. The addition of a restriction enzyme by restriction enzyme-mediated integration (REMI) significantly increased the transformation rate and the rate of single-copy integration events. Of 1,600 REMI transformants, two produced no GAs. Both mutants had multiple copies of the vector pAN7-1 and one had a Southern blot pattern similar to those of the 24 conventionally transformed GA-deficient mutants. Biochemical analysis of the two REMI mutants confirmed that they cannot produce ent-kaurene, the first specific intermediate of the GA pathway. Feeding the radioactively labelled precursors ent-kaurene and GA12-aldehyde followed by high-performance liquid chromatography and gas chromatography-mass spectrometry analysis showed that neither of these intermediates was converted to GAs in the mutants. Southern blot analysis and pulsed-field gel electrophoresis of the transformants using the bifunctional ent-copalyl diphosphate/ent-kaurene synthase gene (cps/ks) and the flanking regions as probes revealed a large deletion in the GA-deficient REMI transformants and in the GA-deficient transformants obtained by conventional insertional transformation. We conclude that transformation procedures with and without the addition of restriction enzymes can lead to insertion-mediated mutations and to deletions and chromosome translocations. PMID:10347043

  20. Theory of ordering transformations in metals and minerals

    SciTech Connect

    Lindsey, T.F. . Dept. of Materials Science and Mineral Engineering Lawrence Berkeley Lab., CA )

    1991-07-01

    This dissertation presents an investigation of ordering in FCC based systems using the pair potential approximation in the ground state and mean field limits. The theoretical approach is used to explain the occurrence of observed equilibrium phases and characteristics of thermodynamic instabilities, in particular, spinodal ordering and decomposition. It is shown that the stability of non-integer domain sizes in long period superstructures such as Al{sub 3}Ti and Ag{sub 3}Mg may result from the tendency of a system to reduce the number of non-dominant ordering waves, thus producing domain sizes that have rational fraction form n/m. This conclusion is used to explain the domain size stability with respect to variations in temperature and electron concentration. The cation ordering in the precipitate phases in calcite and dolomite is analyzed by analogy with ordering in FCC based metals. The ordered phases in calcite and dolomite are shown to be consistent with pair potential minima at {l brace}100{r brace} and {l brace}1/2, 1/2, 1/2{r brace} positions in reciprocal space respectively. 32 refs., 6 figs.

  1. Localized surface plasmon mediated photochemistry and charge transfer in noble metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Xiaomu

    This thesis addresses the fundamental physical and chemical processes of localized surface plasmon mediated photochemistry and charge transfer in noble metal nanoparticles. The first chapter introduces the theory and application of surface plasmons. It includes a discussion of propagating and localized surface plasmons, plasmon decay dynamics, factors governing plasmon excitation of metal nanoparticles, near-field enhanced photochemistry and plasmon mediated charge transfer. The second chapter presents a photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. The process relies on the excitation of silver surface plasmons and requires citrate and oxygen. The transformation rate is first-order in seed concentration. The mechanism involves oxidative etching of seeds and subsequent photoreduction of aqueous silver ions preferentially onto silver prisms that have a cathodic photovoltage resulting from plasmon hot hole citrate photo- oxidation. This idea also explains several previously reported experiments including single and dual wavelength irradiation and the core/shell synthesis of silver layers on gold seeds. The third chapter explores the photo-driven growth of citrate stabilized silver nanoparticles. Under plasmon excitation, particles that absorb/scatter light weakly reduce dioxygen and lose silver ions, whereas particles with resonant plasmons build up a high photovoltage due to citrate photo-oxidation and reduce silver ions. Overall, growth is favored for on-resonant particles. Compared to the borohydride reduction method, more monodisperse, round 10-20 nm diameter silver nanoparticles are obtained by plasmon mediated approaches. Adding a trace amount of potassium chloride can speed up the growth and inhibit the formation of Ag aggregates. The fourth chapter investigates the plasmon induced photochemical charge separation in gold nanoparticles on a transparent indium tin oxide (ITO) substrate

  2. Oxidative transformation of aqueous phenolic mixtures by birnessite-mediated catalysis.

    PubMed

    Rao, Maria A; Iamarino, Giuseppina; Scelza, Rosalia; Russo, Fabio; Gianfreda, Liliana

    2008-12-15

    The catalytic efficiency of birnessite in the removal of catechol, hydroxytyrosol, methylcatechol and m-tyrosol, four phenols commonly present in polluted wastewaters, was studied in mono-substrate solutions or in mixtures of two, three, and four substrates. In single phenolic solutions the transformation order of phenols was catechol>hydroxytyrosol>methylcatechol>m-tyrosol. With phenolic mixtures different responses were observed and the amount of each phenol transformed and the crossing effects among the various phenols depended on the type and number of phenols present in the mixture. In particular, general inhibitory effects were observed for hydroxytyrosol and m-tyrosol that were transformed less when present in combination with the other phenols. By contrast the effects by the presence of more than one phenol were basically annulled for catechol and methylcatechol at 24 h incubation in all the mixtures. A simultaneous, but often no stoichiometric, release of soluble Mn2+ in the reaction mixtures occurred. The multi-substrate systems were designed to mimic birnessite-mediated oxidative processes that could occur under field conditions. Therefore they could be of great interest to environmental and soil science. The use of birnessite as a potential tool for an effective detoxification and recovery of phenol-polluted systems could be also envisaged. PMID:18812250

  3. Homeologous plastid DNA transformation in tobacco is mediated by multiple recombination events.

    PubMed Central

    Kavanagh, T A; Thanh, N D; Lao, N T; McGrath, N; Peter, S O; Horváth, E M; Dix, P J; Medgyesy, P

    1999-01-01

    Efficient plastid transformation has been achieved in Nicotiana tabacum using cloned plastid DNA of Solanum nigrum carrying mutations conferring spectinomycin and streptomycin resistance. The use of the incompletely homologous (homeologous) Solanum plastid DNA as donor resulted in a Nicotiana plastid transformation frequency comparable with that of other experiments where completely homologous plastid DNA was introduced. Physical mapping and nucleotide sequence analysis of the targeted plastid DNA region in the transformants demonstrated efficient site-specific integration of the 7.8-kb Solanum plastid DNA and the exclusion of the vector DNA. The integration of the cloned Solanum plastid DNA into the Nicotiana plastid genome involved multiple recombination events as revealed by the presence of discontinuous tracts of Solanum-specific sequences that were interspersed between Nicotiana-specific markers. Marked position effects resulted in very frequent cointegration of the nonselected peripheral donor markers located adjacent to the vector DNA. Data presented here on the efficiency and features of homeologous plastid DNA recombination are consistent with the existence of an active RecA-mediated, but a diminished mismatch, recombination/repair system in higher-plant plastids. PMID:10388829

  4. Metal complex-based electron-transfer mediators in dye-sensitized solar cells

    DOEpatents

    Elliott, C. Michael; Sapp, Shawn A.; Bignozzi, Carlo Alberto; Contado, Cristiano; Caramori, Stefano

    2006-03-28

    This present invention provides a metal-ligand complex and methods for using and preparing the same. In particular, the metal-ligand complex of the present invention is of the formula: L.sub.a-M-X.sub.b where L, M, X, a, and b are those define herein. The metal-ligand complexes of the present invention are useful in a variety of applications including as electron-transfer mediators in dye-sensitized solar cells and related photoelectrochromic devices.

  5. High Pressure Phase Transformations in Heavy Rare Earth Metals and Connections to Actinide Crystal Structures

    SciTech Connect

    Vohra, Yogesh K.; Sangala, Bagvanth Reddy; Stemshorn, Andrew K.; Hope, Kevin M.

    2008-07-01

    High-pressure studies have been performed on heavy rare earth metals Terbium (Tb) to 155 GPa and Holmium (Ho) to 134 GPa in a diamond anvil cell at room temperature. The following crystal structure sequence was observed in both metals hcp {yields} Sm-type {yields} dhcp {yields} distorted fcc (hR-24) {yields} monoclinic (C2/m) with increasing pressure. The last transformation to a low symmetry monoclinic phase is accompanied by a volume collapse of 5 % for Tb at 51 GPa and a volume collapse of 3 % for Ho at 103 GPa. This volume collapse under high pressure is reminiscent of f-shell delocalization in light rare earth metal Cerium (Ce), Praseodymium (Pr), and heavy actinide metals Americium (Am) and Curium (Cm). The orthorhombic Pnma phase that has been reported in Am and Cm after f-shell delocalization is not observed in heavy rare earth metals under high pressures. (authors)

  6. Nanoscale Twinning and Martensitic Transformation in Shock-Deformed BCC Metals

    SciTech Connect

    Hsiung, L L

    2005-03-22

    Shock-induced twinning and martensitic transformation in BCC-based polycrystalline metals (Ta and U-6wt%Nb) have been observed and studied using transmission electron microscopy (TEM). The length-scale of domain thickness for both twin lamella and martensite phase is found to be smaller than 100 nm. While deformation twinning of {l_brace}112{r_brace}<111>-type is found in Ta when shock-deformed at 15 GPa, both twinning and martensitic transformation are found in Ta when shock-deformed at 45 GPa. Similar phenomena of nanoscale twinning and martensitic transformation are also found in U6Nb shock-deformed at 30 GPa. Since both deformation twinning and martensitic transformation occurred along the {l_brace}211{r_brace}{sub b} planes associated with high resolved shear stresses, it is suggested that both can be regarded as alternative paths for shear transformations to occur in shock-deformed BCC metals. Heterogeneous nucleation mechanisms for shock-induced twinning and martensitic transformation are proposed and discussed.

  7. Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton.

    PubMed

    Zhang, Tianzhen; Wu, Shen-Jie

    2012-01-01

    Agrobacterium tumefaciens-mediated transformation of cotton embryogenic calli (EC) was enhanced by choosing appropriate EC and improving efficiency of coculture, selection cultivation, and plant regeneration. The binary vector pBI121 (containing a neomycin phosphotransferase II gene npt-II as a selection marker and a uidA gene as a reporter gene) was used to research transformation efficiency. After 48 h cocultivation, the number of β-glucuronidase (GUS)-positive calli characterized by yellow, loose, and fine-grained EC was twofold greater than that of gray, brown, and coarse granule EC. It indicated that the efficiency of transient transformation was affected by EC morphology. Transient transformation efficiency also was improved by cocultivation on the medium by adding 50 mg/L acetosyringone at 19°C for 48 h. Subculturing EC on the selection medium with low cell density increased the production of kanamycin-resistant (Km-R) calli lines. From an original 0.3 g EC, an average of 20 Km-R calli lines were obtained from a selection dish, and the GUS-positive rate of Km-R clones was 81.97%. A large number of normal plants were rapidly regenerated on the differentiation medium with dehydration treatments, and the GUS-positive rate of regeneration plants was about 72.6%. Polymerase chain reaction analysis of GUS-positive plantlets revealed a 100% positive detection rate for neomycin phosphotransferase II gene and gus gene. Southern blot of transgenic plants regenerated from different Km-R calli lines demonstrated that the target gene, mostly with the low copy number, was integrated into the cotton genome. PMID:22351014

  8. Toward "metalloMOFzymes": Metal-Organic Frameworks with Single-Site Metal Catalysts for Small-Molecule Transformations.

    PubMed

    Cohen, Seth M; Zhang, Zhenjie; Boissonnault, Jake A

    2016-08-01

    Metal-organic frameworks (MOFs) are being increasingly studied as scaffolds and supports for catalysis. The solid-state structures of MOFs, combined with their high porosity, suggest that MOFs may possess advantages shared by both heterogeneous and homogeneous catalysts, with few of the shortcomings of either. Herein, efforts to create single-site catalytic metal centers appended to the organic ligand struts of MOFs will be discussed. Reactions important for advanced energy applications, such as H2 production and CO2 reduction, will be highlighted. Examining how these active sites can be introduced, their performance, and their existing limitations should provide direction for design of the next generation of MOF-based catalysts for energy-relevant, small-molecule transformations. Finally, the introduction of second-sphere interactions (e.g., hydrogen bonding via squaramide groups) as a possible route to enhancing the activity of these metal centers is reported. PMID:27231968

  9. Agrobacterium-mediated transformation of potato using PLRV-rep and PVY CP genes and assessment of replicase mediated resistance against natural infection of PLRV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replicase-and coat protein gene-mediated resistances against potato leafroll virus (PLRV) and potato virus Y (PVY), respectively, demonstrated to be an effective way of protecting potato against two major virus problems (PLRV & PVY) world-wide. Potato cultivar Desiree was transformed using Agrobacte...

  10. Transforming growth factor-β: an important mediator in Helicobacter pylori-associated pathogenesis

    PubMed Central

    Li, Nianshuang; Xie, Chuan; Lu, Nong-Hua

    2015-01-01

    Helicobacter pylori (H.pylori) is a Gram-negative, microaerophilic, helical bacillus that specifically colonizes the gastric mucosa. The interaction of virulence factors, host genetic factors, and environmental factors contributes to the pathogenesis of H. pylori-associated conditions, such as atrophic gastritis and intestinal metaplasia. Infection with H. pylori has recently been recognized as the strongest risk factor for gastric cancer. As a pleiotropic cytokine, transforming growth factor (TGF)-β regulates various biological processes, including cell cycle, proliferation, apoptosis, and metastasis. Recent studies have shed new light on the involvement of TGF-β signaling in the pathogenesis of H. pylori infection. This review focuses on the potential etiological roles of TGF-β in H. pylori-mediated gastric pathogenesis. PMID:26583078

  11. Transformation of soybean Gy3 gene into Artemisaarenaria mediated by corona discharge

    NASA Astrophysics Data System (ADS)

    Chao, Lu-meng; Na, Ri; Xue, Dan; Xu, Yongze; Liu, Teng

    2013-03-01

    In order to improve the protein content of desert plant, a method of genetic transformation mediated by corona discharge was established. Artemisia seeds were processed in corona electric field for 120 min at 12 kV, and then soaked in 0.1 SSC media that contained Soybean Gy3 gene DNA to incubate for 12 h at 26 °C. Finally the seeds were inoculated on the differentiation medium. Polymerase Chain Reaction (PCR) and Reverse Transcription Polymerase Chain Reaction (RT-PCR) detection showed that the Soybean Gy3 gene had been successfully introduced into genomic DNA of the regenerated plants of Artemisaarenaria. The study provided a new way for corona discharge in plant genetic modification.

  12. Studies of transformational leadership in consumer service: leadership trust and the mediating-moderating role of cooperative conflict management.

    PubMed

    Yang, Yi-Feng

    2012-02-01

    This is the third in a series of studies evaluating how transformational leadership is associated with related variables such as job satisfaction, change commitment, leadership trust, cooperative conflict management, and market orientation. The present paper evaluates the effects of transformational leadership and cooperative conflict management along with their mediating and moderating of leadership trust in the life insurance industry for two sample groups, sales managers and sales employees. The main effect of leadership trust was mediated and moderated by cooperative conflict management. Cooperative conflict management made a more important contribution than transformational leadership or the moderating effect (interaction), but these three together were the most important variables predicting highest leadership trust. Transformational leadership has an indirect influence on leadership trust. This work summarizes the specific contribution and importance of building successful leadership trust associations with employees in relation to leadership and satisfaction with change commitment. PMID:22489397

  13. Metal nanodot arrays fabricated via seed-mediated electroless plating with block copolymer thin film scaffolding

    NASA Astrophysics Data System (ADS)

    Komiyama, Hideaki; Iyoda, Tomokazu; Sanji, Takanobu

    2015-10-01

    We present an alternative approach to fabricating hexagonally arranged nanodot arrays of various metals by seed-mediated electroless plating with a cylinder-forming block copolymer thin film, PEO-b-PMA(Az), as a scaffold. Metal ions were selectively incorporated into PEO cylinders, followed by their reduction to metal and the etching of the scaffold to obtain highly ordered seed arrays of Au, Pd, and Pt. Nanodot arrays of the target metals (Au, Ag, and Ni) were selectively grown on the seed with their highly ordered arrangement by electroless plating. We studied the fabrication processes’ suitability for control of the nanodot array size, as well as the plasmonic properties thereof.

  14. Controlling the plasmonic surface waves of metallic nanowires by transformation optics

    SciTech Connect

    Liu, Yichao; Yuan, Jun; Yin, Ge; Ma, Yungui; He, Sailing

    2015-07-06

    In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.

  15. Steering light by a sub-wavelength metallic grating from transformation optics.

    PubMed

    Xu, Yadong; Fu, Yangyang; Chen, Huanyang

    2015-01-01

    Transformation optics has shown great ability in designing devices with novel functionalities, such as invisibility cloaking. A recent work shows that it can also be used to design metasurfaces which usually come from the concept of phase discontinuities. However, metasurfaces from transformation optics have very complicated material parameters. Here in this work, we propose a practical design, a sub-wavelength metallic grating with discrete and gradient index materials. Such a design not only inherits some functionalities of metasurfaces from phase discontinuities, but also shows richer physics. Our work will also provide a guidance to recent activities of acoustic metasurfaces, especially for those made of extremely anisotropic metamaterials. PMID:26183391

  16. Controlling the plasmonic surface waves of metallic nanowires by transformation optics

    NASA Astrophysics Data System (ADS)

    Liu, Yichao; Yuan, Jun; Yin, Ge; He, Sailing; Ma, Yungui

    2015-07-01

    In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.

  17. Steering light by a sub-wavelength metallic grating from transformation optics

    NASA Astrophysics Data System (ADS)

    Xu, Yadong; Fu, Yangyang; Chen, Huanyang

    2015-07-01

    Transformation optics has shown great ability in designing devices with novel functionalities, such as invisibility cloaking. A recent work shows that it can also be used to design metasurfaces which usually come from the concept of phase discontinuities. However, metasurfaces from transformation optics have very complicated material parameters. Here in this work, we propose a practical design, a sub-wavelength metallic grating with discrete and gradient index materials. Such a design not only inherits some functionalities of metasurfaces from phase discontinuities, but also shows richer physics. Our work will also provide a guidance to recent activities of acoustic metasurfaces, especially for those made of extremely anisotropic metamaterials.

  18. Steering light by a sub-wavelength metallic grating from transformation optics

    PubMed Central

    Xu, Yadong; Fu, Yangyang; Chen, Huanyang

    2015-01-01

    Transformation optics has shown great ability in designing devices with novel functionalities, such as invisibility cloaking. A recent work shows that it can also be used to design metasurfaces which usually come from the concept of phase discontinuities. However, metasurfaces from transformation optics have very complicated material parameters. Here in this work, we propose a practical design, a sub-wavelength metallic grating with discrete and gradient index materials. Such a design not only inherits some functionalities of metasurfaces from phase discontinuities, but also shows richer physics. Our work will also provide a guidance to recent activities of acoustic metasurfaces, especially for those made of extremely anisotropic metamaterials. PMID:26183391

  19. Mediation of wound-related Rous sarcoma virus tumorigenesis by TFG (transforming growth factor)-. beta

    SciTech Connect

    Sieweke, M.H.; Bissell, M.J. ); Thompson, N.L.; Sporn, M.B. )

    1990-06-29

    In Rous sarcoma virus (RSV)-infected chickens, wounding leads to tumor formation with nearly 100% frequency in tissues that would otherwise remain tumor-free. Identifying molecular mediators of this phenomenon should yield important clues to the mechanisms involved in RSV tumorigenesis. Immunohistochemical staining showed that TGF-{beta} is present locally shortly after wounding, but not in unwounded controls. In addition, subcutaneous administration of recombinant transforming growth factor {beta}1 (TGF-{beta}1) could substitute completely for wounding in tumor induction. A treatment protocol of four doses of 800 nanograms of TGF-{beta} resulted in v-src-expressing tumors with 100% frequency; four doses of only 10 nanograms still led to tumor formation in 80% of the animals. This effect was specific, as other growth factors with suggested roles in would healing did not elicit the same response. Epidermal growth factor (EGF) or TGF-{alpha} had no effect, and platelet-derived growth factor (PDGF) or insulin-like growth factor-1 (IGF-1) yielded only occasional tumors after longer latency. TGF-{beta} release during the would-healing response may thus be a critical event that creates a conducive environment for RSV tumorigenesis and may act as a cofactor for transformation in this system. 31 refs., 3 figs., 2 tabs.

  20. Sonication-assisted Agrobacterium rhizogenes-mediated transformation of Verbascum xanthophoeniceum Griseb. for bioactive metabolite accumulation.

    PubMed

    Georgiev, Milen I; Ludwig-Müller, Jutta; Alipieva, Kalina; Lippert, Annemarie

    2011-05-01

    An efficient protocol for the establishment of transformed root culture of Verbascum xanthophoeniceum using sonication-assisted Agrobacterium rhizogenes-mediated transformation is reported. Only 10 days after the inoculation with A. rhizogenes ATCC 15834 and 45 s ultrasound exposure, hairy roots appeared on 75% of the Verbascum leaves. Ten hairy root lines were isolated, although only half of them were free of bacterial contamination and started growing when excised from mother explants. The transgenic nature of the most vigorously growing hairy root clones (VX1 and VX6) was confirmed by polymerase chain reaction. Under submerged cultivation both hairy root clones accumulated high biomass amounts (12.8 and 14.3 g L(-1), respectively) and significant amounts of bioactive phenylethanoid glycoside verbascoside (over 6-times more than in mother plant leaves). LC-APCI-MS analyses confirmed verbascoside accumulation in hairy root clones along with three other phenylethanoid glycosides (forsythoside B, leucosceptoside B and martynoside) and an iridoid glycoside aucubin. This is the first report on the induction of hairy roots of Verbascum plants. PMID:21184229

  1. Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Sankaran; Chia, Perq-Jon; Yeo, Yee-Chia; Chua, Lay-Lay; Ho, Peter K.-H.

    2007-02-01

    Although organic semiconductors have received the most attention, the development of compatible passive elements, such as interconnects and electrodes, is also central to plastic electronics. For this, ligand-protected metal-cluster films have been shown to anneal at low temperatures below 250∘C to highly conductive metal films, but they suffer from cracking and inadequate substrate adhesion. Here, we report printable metal-cluster-polymer nanocomposites that anneal to a controlled-percolation nanostructure without complete sintering of the metal clusters. This overcomes the previous challenges while still retaining the desired low transformation temperatures. Highly water- and alcohol-soluble gold clusters (75mgml-1) were synthesized and homogeneously dispersed into poly(3,4-ethylenedioxythiophene) to give a material with annealed d.c. conductivity tuneable between 10-4 and 105Scm-1. These composites can inject holes efficiently into all-printed polymer organic transistors. The insulator-metal transformation can also be electrically induced at 1MVcm-1, suggesting possible memory applications.

  2. Detection of defects in formed sheet metal using medial axis transformation

    NASA Astrophysics Data System (ADS)

    Murmu, Naresh C.; Velgan, Roman

    2003-05-01

    In the metal forming processes, the sheet metals are often prone to various defects such as thinning, dents, wrinkles etc. In the present manufacturing environments with ever increasing demand of higher quality, detecting the defects of formed sheet metal using an effective and objective inspection system is the foremost norm to remain competitive in market. The defect detection using optical techniques aspire to satisfy its needs to be non-contact and fast. However, the main difficulties to achieve this goal remain essentially on the development of efficient evaluation technique and accurate interpretation of extracted data. The defect like thinning is detected by evaluating the deviations of the thickness in the formed sheet metal against its nominal value. The present evaluation procedure for determination of thickness applied on the measurements data is not without deficiency. To improve this procedure, a new evaluation approach based on medial axis transformation is proposed here. The formed sheet metals are digitized using fringe projection systems in different orientations, and afterwards registered into one coordinate frame. The medial axis transformation (MAT) is applied on the point clouds, generating the point clouds of MAT. This data is further processed and medial surface is determined. The thinning defect is detected by evaluating local wall thickness and other defects like wrinkles are determined using the shape recognition on the medial surface. The applied algorithm is simple, fast and robust.

  3. Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale.

    PubMed

    Berman, Diana; Deshmukh, Sanket A; Narayanan, Badri; Sankaranarayanan, Subramanian K R S; Yan, Zhong; Balandin, Alexander A; Zinovev, Alexander; Rosenmann, Daniel; Sumant, Anirudha V

    2016-01-01

    The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large area. Here, we introduce a direct approach to transform polycrystalline diamond into high-quality graphene layers on wafer scale (4 inch in diameter) using a rapid thermal annealing process facilitated by a nickel, Ni thin film catalyst on top. We show that the process can be tuned to grow single or multilayer graphene with good electronic properties. Molecular dynamics simulations elucidate the mechanism of graphene growth on polycrystalline diamond. In addition, we demonstrate the lateral growth of free-standing graphene over micron-sized pre-fabricated holes, opening exciting opportunities for future graphene/diamond-based electronics. PMID:27373740

  4. Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale

    PubMed Central

    Berman, Diana; Deshmukh, Sanket A.; Narayanan, Badri; Sankaranarayanan, Subramanian K. R. S.; Yan, Zhong; Balandin, Alexander A.; Zinovev, Alexander; Rosenmann, Daniel; Sumant, Anirudha V.

    2016-01-01

    The degradation of intrinsic properties of graphene during the transfer process constitutes a major challenge in graphene device fabrication, stimulating the need for direct growth of graphene on dielectric substrates. Previous attempts of metal-induced transformation of diamond and silicon carbide into graphene suffers from metal contamination and inability to scale graphene growth over large area. Here, we introduce a direct approach to transform polycrystalline diamond into high-quality graphene layers on wafer scale (4 inch in diameter) using a rapid thermal annealing process facilitated by a nickel, Ni thin film catalyst on top. We show that the process can be tuned to grow single or multilayer graphene with good electronic properties. Molecular dynamics simulations elucidate the mechanism of graphene growth on polycrystalline diamond. In addition, we demonstrate the lateral growth of free-standing graphene over micron-sized pre-fabricated holes, opening exciting opportunities for future graphene/diamond-based electronics. PMID:27373740

  5. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    NASA Astrophysics Data System (ADS)

    Personna, Yves Robert; Ntarlagiannis, Dimitrios; Slater, Lee; Yee, Nathan; O'Brien, Michael; Hubbard, Susan

    2008-06-01

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface. We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfovibrio vulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS-) sensitive silver-silver chloride (Ag-AgCl) electrodes (˜-630 mV) were diagnostic of induced transitions between anaerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed ˜10 mrad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  6. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    SciTech Connect

    Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.; Slater, L.; Yee, N.; O'Brien, M.; Hubbard, S.

    2008-02-15

    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  7. Pressure-induced Transformations of Dense Carbonyl Sulfide to Singly Bonded Amorphous Metallic Solid

    PubMed Central

    Kim, Minseob; Dias, Ranga; Ohishi, Yasuo; Matsuoka, Takehiro; Chen, Jing-Yin; Yoo, Choong-Shik

    2016-01-01

    The application of pressure, internal or external, transforms molecular solids into non-molecular extended network solids with diverse crystal structures and electronic properties. These transformations can be understood in terms of pressure-induced electron delocalization; however, the governing mechanisms are complex because of strong lattice strains, phase metastability and path dependent phase behaviors. Here, we present the pressure-induced transformations of linear OCS (R3m, Phase I) to bent OCS (Cm, Phase II) at 9 GPa; an amorphous, one-dimensional (1D) polymer at 20 GPa (Phase III); and an extended 3D network above ~35 GPa (Phase IV) that metallizes at ~105 GPa. These results underscore the significance of long-range dipole interactions in dense OCS, leading to an extended molecular alloy that can be considered a chemical intermediate of its two end members, CO2 and CS2. PMID:27527241

  8. Pressure-induced Transformations of Dense Carbonyl Sulfide to Singly Bonded Amorphous Metallic Solid.

    PubMed

    Kim, Minseob; Dias, Ranga; Ohishi, Yasuo; Matsuoka, Takehiro; Chen, Jing-Yin; Yoo, Choong-Shik

    2016-01-01

    The application of pressure, internal or external, transforms molecular solids into non-molecular extended network solids with diverse crystal structures and electronic properties. These transformations can be understood in terms of pressure-induced electron delocalization; however, the governing mechanisms are complex because of strong lattice strains, phase metastability and path dependent phase behaviors. Here, we present the pressure-induced transformations of linear OCS (R3m, Phase I) to bent OCS (Cm, Phase II) at 9 GPa; an amorphous, one-dimensional (1D) polymer at 20 GPa (Phase III); and an extended 3D network above ~35 GPa (Phase IV) that metallizes at ~105 GPa. These results underscore the significance of long-range dipole interactions in dense OCS, leading to an extended molecular alloy that can be considered a chemical intermediate of its two end members, CO2 and CS2. PMID:27527241

  9. Feature extraction based on contourlet transform and its application to surface inspection of metals

    NASA Astrophysics Data System (ADS)

    Ai, Yonghao; Xu, Ke

    2012-11-01

    Surface defects that affect the quality of metals are an important factor. Machine vision systems commonly perform surface inspection, and feature extraction of defects is essential. The rapidity and universality of the algorithm are two crucial issues in actual application. A new method of feature extraction based on contourlet transform and kernel locality preserving projections is proposed to extract sufficient and effective features from metal surface images. Image information at certain direction is important to recognition of defects, and contourlet transform is introduced for its flexible direction setting. Images of metal surfaces are decomposed into multiple directional subbands with contourlet transform. Then features of all subbands are extracted and combined into a high-dimensional feature vector, which is reduced to a low-dimensional feature vector by kernel locality preserving projections. The method is tested with a Brodatz database and two surface defect databases from industrial surface-inspection systems of continuous casting slabs and aluminum strips. Experimental results show that the proposed method performs better than the other three methods in accuracy and efficiency. The total classification rates of surface defects of continuous casting slabs and aluminum strips are up to 93.55% and 92.5%, respectively.

  10. Improved dominant selection markers and co-culturing conditions for efficient Agrobacterium tumefaciens-mediated transformation of Ustilago scitaminea.

    PubMed

    Sun, Longhua; Yan, Meixin; Ding, Zhaojian; Liu, Yanbin; Du, Minge; Xi, Pinggen; Liao, Jinling; Ji, Lianghui; Jiang, Zide

    2014-06-01

    Ustilago scitaminea is the causal agent of sugar-cane smut disease. There is, however, no genetic transformation method for it. Here we report the development of an efficient mutagenesis method based on Agrobacterium tumefaciens-mediated transformation. To improve transformation efficiency, a range of conditions, including the codon-usage preference of the selection marker gene, promoters and the culture conditions for transformation were optimized. A strong promoter to drive marker gene expression, optimized codon usage of selection marker gene, controlled water content and pH of co-culture medium were critical factors affecting transformation efficiency. Our findings provide a useful tool for genetic analysis of this important plant pathogen. PMID:24563317

  11. [Effects of stabilization treatment on migration and transformation of heavy metals in mineral waste residues].

    PubMed

    Zhao, Shu-Hua; Chen, Zhi-Liang; Zhang, Tai-Ping; Pan, Wei-Bin; Peng, Xiao-Chun; Che, Rong; Ou, Ying-Juan; Lei, Guo-Jian; Zhou, Ding

    2014-04-01

    Different forms of heavy metals in soil will produce different environmental effects, and will directly influence the toxicity, migration and bioavailability of heavy metals. This study used lime, fly ash, dried sludge, peanut shells as stabilizers in the treatment of heavy metals in mineral waste residues. Morphological analyses of heavy metal, leaching experiments, potted plant experiments were carried out to analyze the migration and transformation of heavy metals. The results showed that after adding stabilizers, the pH of the acidic mineral waste residues increased to more than neutral, and the organic matter content increased significantly. The main existing forms of As, Pb, and Zn in the mineral waste residues were the residual. The contents of exchangeable and organic matter-bound As decreased by 65.6% and 87.7% respectively after adding fly ash, dried sludge and peanut shells. Adding lime, fly ash and peanut shells promoted the transformation of As from the Fe-Mn oxide-bound to the carbonate-bound, and adding lime and fly ash promoted the transformation of Pb and Zn from the exchangeable, Fe-Mn oxide-bound, organic matter-bound to the residual. After the early stage of the stabilization treatment, the contents of As, Pb and Zn in the leachate had varying degrees of decline, and adding peanut shells could reduce the contents of As, Pb and Zn in the leachate further. Among them, the content of As decreased most significantly after treatment with fly ash, dried sludge and peanut shells, with a decline of 57.4%. After treatment with lime, fly ash and peanut shells, the content of Zn decreased most significantly, by 24.9%. The addition of stabilizers was advantageous to the germination and growth of plants. The combination of fly ash, dried sludge and peanut shell produced the best effect, and the Vetiveria zizanioides germination rate reached 76% in the treated wasted mineral residues. PMID:24946616

  12. Alcohol-Mediated Resistance-Switching Behavior in Metal-Organic Framework-Based Electronic Devices.

    PubMed

    Liu, Yaqing; Wang, Hong; Shi, Wenxiong; Zhang, Weina; Yu, Jiancan; Chandran, Bevita K; Cui, Chenlong; Zhu, Bowen; Liu, Zhiyuan; Li, Bin; Xu, Cai; Xu, Zhiling; Li, Shuzhou; Huang, Wei; Huo, Fengwei; Chen, Xiaodong

    2016-07-25

    Metal-organic frameworks (MOFs) have drawn increasing attentions as promising candidates for functional devices. Herein, we present MOF films in constructing memory devices with alcohol mediated resistance switching property, where the resistance state is controlled by applying alcohol vapors to achieve multilevel information storage. The ordered packing mode and the hydrogen bonding system of the guest molecules adsorbed in MOF crystals are shown to be the reason for the alcohol mediated electrical switching. This chemically mediated memory device can be a candidate in achieving environment-responsive devices and exhibits potential applications in wearable information storage systems. PMID:27311703

  13. Disclination mediated dynamic recrystallization in metals at low temperature

    NASA Astrophysics Data System (ADS)

    Aramfard, Mohammad; Deng, Chuang

    2015-09-01

    Recrystallization is one of the most important physical phenomena in condensed matter that has been utilized for materials processing for thousands of years in human history. It is generally believed that recrystallization is thermally activated and a minimum temperature must be achieved for the necessary atomic mechanisms to occur. Here, using atomistic simulations, we report a new mechanism of dynamic recrystallization that can operate at temperature as low as T = 10 K in metals during deformation. In contrast to previously proposed dislocation-based models, this mechanism relies on the generation of disclination quadrupoles, which are special defects that form during deformation when the grain boundary migration is restricted by structural defects such as triple junctions, cracks or obstacles. This mechanism offers an alternative explanation for the grain refinement in metals during severe plastic deformation at cryogenic temperature and may suggest a new method to tailor the microstructure in general crystalline materials.

  14. Disclination mediated dynamic recrystallization in metals at low temperature

    PubMed Central

    Aramfard, Mohammad; Deng, Chuang

    2015-01-01

    Recrystallization is one of the most important physical phenomena in condensed matter that has been utilized for materials processing for thousands of years in human history. It is generally believed that recrystallization is thermally activated and a minimum temperature must be achieved for the necessary atomic mechanisms to occur. Here, using atomistic simulations, we report a new mechanism of dynamic recrystallization that can operate at temperature as low as T = 10 K in metals during deformation. In contrast to previously proposed dislocation-based models, this mechanism relies on the generation of disclination quadrupoles, which are special defects that form during deformation when the grain boundary migration is restricted by structural defects such as triple junctions, cracks or obstacles. This mechanism offers an alternative explanation for the grain refinement in metals during severe plastic deformation at cryogenic temperature and may suggest a new method to tailor the microstructure in general crystalline materials. PMID:26374603

  15. Mineral transformations during the dissolution of uranium ore minerals by dissimilatory metal-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Glasauer, S.; Weidler, P.; Fakra, S.; Tyliszczak, T.; Shuh, D.

    2011-12-01

    Carnotite minerals [X2(UO2)2(VO4)2]; X = K, Ca, Ba, Mn, Na, Cu or Pb] form the major ore of uranium in the Colorado Plateau. These deposits are highly oxidized and contain U(VI) and V(IV). The biotransformation of U(VI) bound in carnotite by bacteria during dissimilatory metal reduction presents a complex puzzle in mineral chemistry. Both U(VI) and V(V) can be respired by metal reducing bacteria, and the mineral structure can change depending on the associated counterion. We incubated anaerobic cultures of S. putrefaciens CN32 with natural carnotite minerals from southeastern Utah in a nutrient-limited defined medium. Strain CN32 is a gram negative bacterium and a terrestrial isolate from New Mexico. The mineral and metal transformations were compared to a system that contained similar concentrations of soluble U(VI) and V(V). Electron (SEM, TEM) microscopies and x-ray spectromicroscopy (STXM) were used in conjunction with XRD to track mineral changes, and bacterial survival was monitored throughout the incubations. Slow rates of metal reduction over 10 months for the treatment with carnotite minerals revealed distinct biotic and abiotic processes, providing insight on mineral transformation and bacteria-metal interactions. The bacteria existed as small flocs or individual cells attached to the mineral phase, but did not adsorb soluble U or V, and accumulated very little of the biominerals. Reduction of mineral V(V) necessarily led to a dismantling of the carnotite structure. Bioreduction of V(V) by CN32 contributed small but profound changes to the mineral system, resulting in new minerals. Abiotic cation exchange within the carnotite group minerals induced the rearrangement of the mineral structures, leading to further mineral transformation. In contrast, bacteria survival was poor for treatments with soluble U(VI) and V(V), although both metals were reduced completely and formed solid UO2 and VO2; we also detected V(III). For these treatments, the bacteria

  16. Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China.

    PubMed

    Fang, Hongwei; Huang, Lei; Wang, Jingyu; He, Guojian; Reible, Danny

    2016-01-25

    The environmental impact of heavy metal (Cu, Cd, Zn, Pb, Ni, (90)Sr and (137)Cs) transport and transformation in the Hangzhou Bay (China) was assessed through a comprehensive model that integrates hydrodynamics, sediment and heavy metal transport. A mechanistic surface complexation model was used to estimate the adsorption and desorption of heavy metal by suspended sediment under different aqueous chemistry conditions. The dynamics of metal exchange to and from the seabed was also assessed. The primary processes regulating heavy metal distribution, i.e., convection-diffusion, adsorption-desorption, sedimentation-resuspension, as well as other physical and chemical processes related to mass exchange between adjacent sediment layers, were considered in detail. The accidental discharge of (137)Cs was simulated as an example and results showed that (137)Cs transported along the coast driven by tidal flow. Most (137)Cs distributed near the outfall and accumulated in the seabed sediment. The proposed model can be a useful tool for predicting heavy metal transport and fate and provide a theoretical basis to guide field sampling, assessment of risks and the design of remediation strategies. PMID:26521090

  17. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  18. Promoting safety voice with safety-specific transformational leadership: the mediating role of two dimensions of trust.

    PubMed

    Conchie, Stacey M; Taylor, Paul J; Donald, Ian J

    2012-01-01

    Although safety-specific transformational leadership is known to encourage employee safety voice behaviors, less is known about what makes this style of leadership effective. We tested a model that links safety-specific transformational leadership to safety voice through various dimensions of trust. Data from 150 supervisor-employee dyads from the United Kingdom oil industry supported our predictions that the effects of safety-specific transformational leadership are sequentially mediated by affect-based trust beliefs and disclosure trust intentions. Moreover, we found that reliance trust intentions moderated the effect of disclosure: employees' disclosure intentions mediated the effects of affect-based trust on safety voice behaviors only when employees' intention to rely on their leader was moderate to high. These findings suggest that leaders seeking to encourage safety voice behaviors should go beyond "good reason" arguments and develop affective bonds with their employees. PMID:21875211

  19. Valproic acid overcomes transforming growth factor-β-mediated sorafenib resistance in hepatocellular carcinoma

    PubMed Central

    Matsuda, Yasunobu; Wakai, Toshifumi; Kubota, Masayuki; Osawa, Mami; Hirose, Yuki; Sakata, Jun; Kobayashi, Takashi; Fujimaki, Shun; Takamura, Masaaki; Yamagiwa, Satoshi; Aoyagi, Yutaka

    2014-01-01

    Sorafenib is a multi-kinase inhibitor approved for hepatocellular carcinoma, but rarely causes tumor regression in patients with chronic liver diseases. To investigate whether growth factor-mediated signaling is involved in sorafenib resistance, HepG2 and PLC/PRF/5 hepatoma cells were exposed to epidermal growth factor (EGF), hepatocyte growth factor (HGF) or transforming growth factor-β (TGF-β) prior to treatment with sorafenib. Furthermore, to identify an effective combination treatment with sorafenib, growth factor-sensitized cells were treated with sorafenib alone or in combination with celecoxib, lovastatin or valproic acid (VPA). Trypan blue staining and Annexin V assays showed that the cytotoxic effect of sorafenib was inhibited by 15-54% in cells sensitized to TGF-β (P<0.05). Western blotting analysis showed that TGF-β significantly activated extracellular signal-regulated kinase (ERK)-mediated AKT signaling, and sorafenib failed to suppress both ERK and AKT in TGF-β-sensitized cells. The decreased anti-tumor effect of sorafenib was rescued by chemical inhibition of ERK and AKT. When TGF-β-sensitized cells were treated with sorafenib plus VPA, the levels of phosphorylated ERK and AKT were considerably suppressed and the numbers of dead cells were increased by 3.7-5.7-fold compared with those exposed to sorafenib alone (P<0.05). Moreover, low dose sorafenib-induced cell migration was effectively suppressed by combination treatment with sorafenib and VPA. Collectively, TGF-β/ERK/AKT signaling might play a critical role in sorafenib resistance in hepatoma cells, and combination treatment with VPA may be effective against this drug resistance. PMID:24817927

  20. The interplay between Eps8 and IRSp53 contributes to Src-mediated transformation.

    PubMed

    Liu, P-S; Jong, T-H; Maa, M-C; Leu, T-H

    2010-07-01

    As an oncoprotein, Eps8 participates in v-Src-induced cellular transformation. To delineate the underlying mechanism, we conducted a yeast two-hybrid screening and identified IRSp53S, a protein critical in cell mobilization, as one of the Eps8-binding partners from a human brain cDNA library. The association was mediated by the multiple proline-rich regions of Eps8 and the C-terminal SH3-WWB containing domains of IRSp53S. In this study, we observed that Eps8 modulated the expression of IRSp53 in v-Src-transformed cells (IV5), raising the question of whether Eps8/IRSp53 interaction was crucial in carcinogenesis. To address this issue, we generated IV5-expressing irsp53 siRNA cells. Attenuation of IRSp53 reduced cell proliferation of IV5 in culture dish and tumor formation in mice, which could be partly rescued by ectopically expressed human IRSp53S. In addition, IRSp53 knockdown impaired activity of phosphatidylinositol 3-kinase (as reflected by Pi-Ser473 AKT) and Stat3 (as reflected by Pi-Tyr705 Stat3), and reduced cyclin D1 expression that culminated to impede G(1)-phase cell-cycle progression. Ectopically expressed human IRSp53S, but not its Eps8-binding defective mutants (that is, Delta363 and PPPDA), rescued these defects and partly restored cell proliferation. Remarkably, through activation of Src, EGF increased the formation of Eps8/IRSp53 complex and Stat3 activation in HeLa cells. With these results, we show for the first time that IRSp53, through its interaction with Eps8, not only affects cell migration but also dictates cellular growth in cancer cells. PMID:20418908

  1. Long- and short-term temperature responses of microbially-mediated boreal soil organic matter transformations

    NASA Astrophysics Data System (ADS)

    Min, K.; Buckeridge, K. M.; Edwards, K. A.; Ziegler, S. E.; Billings, S. A.

    2015-12-01

    Microorganisms use exoenzymes to decay soil organic matter into assimilable substrates, some of which are transformed into CO2. Microbial CO2 efflux contributes up to 60% of soil respiration, a feature that can change with temperature due to altered exoenzyme activities (short-term) and microbial communities producing different exoenzymes (longer-term). Often, however, microbial temperature responses are masked by factors that also change with temperature in soil, making accurate projections of microbial CO2 efflux with warming challenging. Using soils along a natural climate gradient similar in most respects except for temperature regime (Newfoundland Labrador Boreal Ecosystem Latitudinal Transect), we investigated short-vs. long-term temperature responses of microbially-mediated organic matter transformations. While incubating soils at 5, 15, and 25°C for 84 days, we measured exoenzyme activities, CO2 efflux rates and biomass, and extracted DNA at multiple times. We hypothesized that short-term, temperature-induced increases in exoenzyme activities and CO2 losses would be smaller in soils from warmer regions, because microbes presumably adapted to warmer regions should use assimilable substrates more efficiently and thus produce exoenzymes at a lower rate. While incubation temperature generally induced greater exoenzyme activities (p<0.001), exoenzymes' temperature responses depended on enzymes and regions (p<0.001). Rate of CO2 efflux was affected by incubation temperature (P<0.001), but not by region. Microbial biomass and DNA sequencing will reveal how microbial community abundance and composition change with short-vs. longer-term temperature change. Though short-term microbial responses to temperature suggest higher CO2 efflux and thus lower efficiency of resource use with warming, longer-term adaptations of microbial communities to warmer climates remain unknown; this work helps fill that knowledge gap.

  2. Formation of nanostructured Group IIA metal activated sensors: The transformation of Group IIA metal compound sites

    NASA Astrophysics Data System (ADS)

    Tune, Travis C.; Baker, Caitlin; Hardy, Neil; Lin, Arthur; Widing, Timothy J.; Gole, James L.

    2015-05-01

    Trends in the Group IIA metal oxides and hydroxides of magnesium, calcium, and barium are unique in the periodic table. In this study we find that they display novel trends as decorating nanostructures for extrinsic semiconductor interfaces. The Group IIA metal ions are strong Lewis acids. We form these M2+ ions in aqueous solution and bring these solutions in contact with a porous silicon interface to form interfaces for conductometric measurements. Observed responses are consistent with the formation of MgO whereas the heavier elements display behaviors which suggest the effect of their more basic nature. Mg(OH)2, when formed, represents a weak base whereas the heavier metal hydroxides of Ca, Sr, and Ba are strong bases. However, the hydroxides tend to give up hydrogen and act as Brönsted acids. For the latter elements, the reversible interaction response of nanostructures deposited to the porous silicon (PS) interface is modified, as the formation of more basic sites appears to compete with M2+ Lewis acidity and hydroxide Brönsted acidity. Mg2+ forms an interface whose response to the analytes NH3 and NO is consistent with MgO and well explained by the recently developing Inverse Hard/Soft Acid/Base model. The behavior of the Ca2+ and Ba2+ decorated interfaces as they interact with the hard base NH3 follows a reversal of the model, indicating a decrease in acidic character as the observed conductometric response suggests the interaction with hydroxyl groups. A change from oxide-like to hydroxide-like constituents is supported by XPS studies. The changes in conductometric response is easily monitored in contrast to changes associated with the Group IIA oxides and hydroxides observed in XPS, EDAX, IR, and NMR measurements.

  3. Ionically-mediated electromechanical hysteresis in transition metal oxides

    SciTech Connect

    Kim, Yunseok; Kumar, Amit; Jesse, Stephen; Kalinin, Sergei V

    2012-01-01

    Electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO2 and SrTiO3 are observed. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Ginsburg Landau Devonshire (GLD) theory. The possible origins of electromechanical coupling including ionic dynamics, surface-charge induced electrostriction, and ionically-induced ferroelectricity are identified. For the latter, the ionic contribution can change the sign of first order GLD expansion coefficient, rendering material effectively ferroelectric. These studies provide possible explanation for ferroelectric-like behavior in centrosymmetric transition metal oxides.

  4. Influence of organic matter transformations on the bioavailability of heavy metals in a sludge based compost.

    PubMed

    Ingelmo, Florencio; Molina, Maria José; Soriano, Maria Desamparados; Gallardo, Antonio; Lapeña, Leonor

    2012-03-01

    The agricultural use of anaerobically digested sewage sludge (ADSS) as stable, mature compost implies knowing its total content in heavy metals and their bioavailability. This depends not only on the initial characteristics of the composted substrates but also on the organic matter transformations during composting which may influence the chemical form of the metals and their bioavailability. The objective of this work was to examine the relationships between the changes in the organic matter content and humus fractions, and the bioavailability of heavy metals. A detailed sampling at 0, 14, 84, and 140 days of the composting process was performed to measure C contents in humic acids (HAs), fulvic acids, (FAs) and humin, the total content of Zn, Pb, Cu, Ni, and Cd, and also their distribution into mobile and mobilisable (MB), and low bioavailability (LB) forms. Significant changes of C contents in HA, FA, and Humin, and in the FA/HA, HA/Humin and C(humus)/TOC ratios were observed during composting. The MB and LB fractions of each metal also varied significantly during composting. The MB fraction increased for Zn, Cu, Ni, and Cd, and the LB fraction increased for Pb. Stepwise linear regressions and quadratic curve estimation conducted on the MB and LB fractions of each metal as dependent on the measured organic variables suggested that Zn bioavailability was mainly associated to percentage of C in FAs. Bioavailability of Cu, Ni and Cd during composting was associated to humin and HAs. Pb concentration increased in the LB form, and its variations followed a quadratic function with the C(humus)/TOC ratio. Our results suggest that the composting process renders the metals in more available forms. The main forms of metal binding in the sludge and their availability in the final compost may be better described when metal fractionation obtained in sequential extraction and humus fractionation during composting are considered together. PMID:21570172

  5. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  6. Agrobacterium tumefaciens-mediated transformation in the entomopathogenic fungus Lecanicillium lecanii and development of benzimidazole fungicide resistant strains.

    PubMed

    Zhang, Yan-Jun; Zhao, Jin-Jin; Xie, Ming; Peng, De-Liang

    2014-10-01

    Lecanicillium lecanii has been used in the biological control of several insects in agricultural practice. Since the gene manipulation tools for this entomopathogenic fungus have not been sufficiently developed, Agrobacterium tumefaciens-mediated transformation (ATMT) in L. lecanii was investigated in this study, using the wild-type isolate FZ9906 as a progenitor strain and the hygromycin B resistance (hph) gene as a selection marker. Furthermore, a field carbendazim-resistant (mrt) gene from Botrytis cinerea was expressed in L. lecanii FZ9906 via the ATMT system. The results revealed that the frequency of transformation surpassed 25transformants/10(6) conidia, most of the putative transformants contained a single copy of T-DNA, and the T-DNA inserts were stably inherited after five generations. All putative transformants had indistinguishable biological characteristics relative to the wild-type strain, excepting two transformants with altered growth habits or virulence. Moreover, the resistance of the putative transformants to carbendazim (MBC) was improved, and the highest one was 380-fold higher than the wild-type strain. In conclusion, ATMT is an effective and suitable system for L. lecanii transformation, and will be a useful tool for the basic and application research of gene functions and gene modifications of this strain. PMID:25107375

  7. Adaptation or Malignant Transformation: The Two Faces of Epigenetically Mediated Response to Stress

    PubMed Central

    Zoldoš, Vlatka

    2013-01-01

    Adaptive response to stress is a fundamental property of living systems. At the cellular level, many different types of stress elicit an essentially limited repertoire of adaptive responses. Epigenetic changes are the main mechanism for medium- to long-term adaptation to accumulated (intense, long-term, or repeated) stress. We propose the adaptive deregulation of the epigenome in response to stress (ADERS) hypothesis which assumes that the unspecific adaptive stress response grows stronger with the increasing stress level, epigenetically activating response gene clusters while progressively deregulating other cellular processes. The balance between the unspecific adaptive response and the general epigenetic deregulation is critical because a strong response can lead to pathology, particularly to malignant transformation. The main idea of our hypothesis is the continuum traversed by a cell subjected to accumulated stress, which lies between an unspecific adaptive response and pathological deregulation—the two extremes sharing the same underlying cause, which is a manifestation of a unified epigenetically mediated adaptive response to stress. The evolutionary potential of epigenetic regulation in multigenerational adaptation is speculatively discussed in the light of neo-Lamarckism. Finally, an approach to testing the proposed hypothesis is presented, relying on either the publicly available datasets or on conducting new experiments. PMID:24187667

  8. Adaptation or malignant transformation: the two faces of epigenetically mediated response to stress.

    PubMed

    Vojta, Aleksandar; Zoldoš, Vlatka

    2013-01-01

    Adaptive response to stress is a fundamental property of living systems. At the cellular level, many different types of stress elicit an essentially limited repertoire of adaptive responses. Epigenetic changes are the main mechanism for medium- to long-term adaptation to accumulated (intense, long-term, or repeated) stress. We propose the adaptive deregulation of the epigenome in response to stress (ADERS) hypothesis which assumes that the unspecific adaptive stress response grows stronger with the increasing stress level, epigenetically activating response gene clusters while progressively deregulating other cellular processes. The balance between the unspecific adaptive response and the general epigenetic deregulation is critical because a strong response can lead to pathology, particularly to malignant transformation. The main idea of our hypothesis is the continuum traversed by a cell subjected to accumulated stress, which lies between an unspecific adaptive response and pathological deregulation--the two extremes sharing the same underlying cause, which is a manifestation of a unified epigenetically mediated adaptive response to stress. The evolutionary potential of epigenetic regulation in multigenerational adaptation is speculatively discussed in the light of neo-Lamarckism. Finally, an approach to testing the proposed hypothesis is presented, relying on either the publicly available datasets or on conducting new experiments. PMID:24187667

  9. Riboflavin-mediated RDX transformation in the presence of Shewanella putrefaciens CN32 and lepidocrocite.

    PubMed

    Bae, Sungjun; Lee, Yoonhwa; Kwon, Man Jae; Lee, Woojin

    2014-06-15

    The potential of riboflavin for the reductive degradation of a cyclic nitramine, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), was investigated in the presence of lepidocrocite and/or Shewanella putrefaciens CN32. RDX reduction by CN32 alone or CN32 with lepidocrocite was insignificant, while 110 μM RDX was completely reduced by CN32 with riboflavin in 78 h. The transformation products identified included nitroso metabolites, formaldehyde, and ammonium, indicating the ring cleavage of RDX. UV and visible light analysis revealed that riboflavin was microbially reduced by CN32, and that the reduced riboflavin was linked to the complete degradation of RDX. In the presence of both CN32 and lepidocrocite (γ-FeOOH), 100 μM-riboflavin increased the rate and extent of Fe(II) production as well as RDX reduction. An abiotic study also showed that Fe(II)-riboflavin complex, and Fe(II) adsorbed on lepidocrocite, reduced RDX by 48% and 21%, respectively. The findings in this study suggest that riboflavin-mediated RDX degradation pathways in subsurface environments are diverse and complex. However, riboflavin, either from bacteria or exogenous sources, can significantly increase RDX degradation. This will provide a sustainable clean-up option for explosive-contaminated subsurface environments. PMID:24762697

  10. The distribution of cotransformed transgenes in particle bombardment-mediated transformed wheat.

    PubMed

    Han, Yonghua; Blechl, Ann; Wang, Daowen

    2015-12-01

    Although particle bombardment is the predominant method of foreign DNA direct transfer, whether transgene is integrated randomly into the genome has not been determined. In this study, we identified the distribution of transgene loci in 45 transgenic wheat (Triticum aestivum L.) lines containing co-transformed high molecular weight glutenin subunit genes and the selectable marker bar using fluorescence in situ hybridization. Transgene loci were shown to distribute unevenly throughout the genome and incorporate into different locations along individual chromosomes. There was only a slight tendency towards the localization of transgenes in distal chromosome regions. High proportions of transgenes in separate plasmids integrated at the same site and only 7 lines had 2 or 3 loci. Such loci may not segregate frequently in subsequent generations so it is difficult to remove selectable markers from transgenic lines after regeneration. We also found that three transgene lines were associated with rearranged chromosomes, suggesting a the close relationship between particle bombardment-mediated transgene integration and chromosomal rearrangements. PMID:26405007

  11. Generation of transgenic plants of a potential oilseed crop Camelina sativa by Agrobacterium-mediated transformation.

    PubMed

    Lu, Chaofu; Kang, Jinling

    2008-02-01

    Camelina sativa is an alternative oilseed crop that can be used as a potential low-cost biofuel crop or a source of health promoting omega-3 fatty acids. Currently, the fatty acid composition of camelina does not uniquely fit any particular uses, thus limit its commercial value and large-scale production. In order to improve oil quality and other agronomic characters, we have developed an efficient and simple in planta method to generate transgenic camelina plants. The method included Agrobacterium-mediated inoculation of plants at early flowering stage along with a vacuum infiltration procedure. We used a fluorescent protein (DsRed) as a visual selection marker, which allowed us to conveniently screen mature transgenic seeds from a large number of untransformed seeds. Using this method, over 1% of transgenic seeds can be obtained. Genetic analysis revealed that most of transgenic plants contain a single copy of transgene. In addition, we also demonstrated that transgenic camelina seeds produced novel hydroxy fatty acids by transforming a castor fatty acid hydroxylase. In conclusion, our results provide a rapid means to genetically improve agronomic characters of camelina, including fatty acid profiles of its seed oils. Camelina may serve as a potential industrial crop to produce novel biotechnology products. PMID:17899095

  12. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  13. Alkali metal mediated C–C bond coupling reaction

    SciTech Connect

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C–C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz){sub 2}, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz){sub 2}, the structure of [Li(Bz){sub 2}]{sup −} was drastically changed: Bz–Bz parallel form was rapidly fluctuated as a function of time, and a new C–C single bond was formed in the C{sub 1}–C{sub 1}′ position of Bz–Bz interaction system. In the hole capture, the intermolecular vibration between Bz–Bz rings was only enhanced. The mechanism of C–C bond formation in the electron capture was discussed on the basis of theoretical results.

  14. Frictional Dissipation Pathways Mediated by Hydrated Alkali Metal Ions.

    PubMed

    Gaisinskaya-Kipnis, Anastasia; Ma, Liran; Kampf, Nir; Klein, Jacob

    2016-05-17

    Frictional energy dissipation between sliding solid surfaces in aqueous media may proceed by different pathways. Using a surface force balance (SFB), we have examined systematically how such dissipation is mediated by the series of hydrated cations M(+) = Li(+), Na(+), and K(+) that are trapped between two atomically smooth, negatively charged, mica surfaces sliding across the ionic solutions over many orders of magnitude loading. By working at local contact pressures up to ca. 30 MPa (∼300 atm), up to 2 orders of magnitude higher than earlier studies, we could show that the frictional dissipation at constant sliding velocity, represented by the coefficient of sliding friction μM+, decreased as μLi+ > μNa+ ≳ μK+. This result contrasts with the expectation (in conceptual analogy with the Hofmeister series) that the lubrication would improve with the extent of ionic hydration, since that would have led to the opposite μM+ sequence. It suggests, rather, that frictional forces, even in such simple systems, can be dominated by rate-activated pathways where the size of the hydration shell becomes a dissipative liability, rather than by the hydration-shell dissipation expected via the hydration lubrication mechanism. PMID:27089022

  15. Characterization of Solid State Phase Transformation in Continuously Heated and Cooled Ferritic Weld Metal

    SciTech Connect

    Narayana, B; Mills, Michael J.; Specht, Eliot D; Santella, Michael L; Babu, Sudarsanam Suresh

    2010-12-01

    Arc welding processes involve cooling rates that vary over a wide range (1-100 K/s). The final microstructire is thus a product of the heating and cooling cycles experienced by the weld in addition to the weld composition. It has been shown that the first phase to form under weld cooling conditions may not be that predicted by equilibrium calculations. The partitioning of different interstitial/substitutional alloying elements at high temperatures can dramatically affect the subsequent phase transformations. In order to understand the effect of alloying on phase transformation temperatures and final microstructures time-resolved X-ray diffraction technique has been successfully used for characterization. The work by Jacot and Rappaz on pearlitic steels provided insight into austenitization of hypoeutectic steels using a finite volume model. However there is very little work done on the effect of heating and cooling rates on the phase transformation paths in bainitic/martensitic steels and weld metals. Previous work on a weld with higher aluminum content, deposited with a FCAW-S process indicated that even at aluminum levels where the primary phase to solidify from liquid should be delta ferrite, non-equilibrium austenite was observed. The presence of inhomogeneity in composition of the parent microstructure has been attributed to differences in transformation modes, temperatures and microstructures in dual-phase, TRIP steels and ferritic welds. The objectives of the work included the identification of the stability regions of different phases during heating and cooling, differences in the effect of weld heating and cooling rates on the phase transformation temperatures, and the variation in phase fractions of austenite and ferrite in the two phase regions as a function of temperature. The base composition used for the present work is a Fe-1%Al-2%Mn-1%Ni-0.04%C weld metal. A pseudo-binary phase diagram shows the expected solidification path under equilibrium

  16. Metal-mediated molecular materials at the nano- and mesoscale

    NASA Astrophysics Data System (ADS)

    Arroyo, Itzia Zoraida

    The synthesis of materials via self-assembly is a powerful bottom-up approach for assembling matter from subnanometer up to micrometer scales. This methodology involves the spontaneous and reversible organization of small molecules to create larger structures driven by non-covalent interactions such as hydrogen bonding, hydrophobic forces and metal-ligand coordination interactions. In this dissertation we developed the synthetic methods to generate materials at the nano- and meso-scale using coordination-directed strategies for molecular self-assembly in solid-state and in water. In addition, we produced materials with a modular increased complexity with potential applications in advanced technologies and medicine. Molecular materials in the solid-state were engineered using the coordination directed approach by synthesizing organic ligands with well-defined geometries and symmetries that self-assembly with transition metals in aprotic media into supra-molecular arrays. These structures were crystallized and characterized by techniques such as X-ray Crystallography, Multi-Nuclear Magnetic Resonance (NMR), Mass Spectrometry (MS), Infrared (IR) and Ultraviolet-Visible (UV-vis) Spectroscopies. Potential application as hydrogen storage systems was evaluated using 2H NMR spectroscopy. Coordination-directed molecular materials that self-assembly in water were achieved by combining coordination capable amphiphilic molecules and designing their chemistry so that they can rearrange in water to produce different lyotropic phases. We characterized these materials using Extended X-ray Absorbance Fine Structure Spectroscopy (EXAFS), Dynamic Light Scattering, Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM), Optical Microscopy and X-ray Photoelectron Spectroscopy (XPS). The new class of metallo-liposomes was used as a DNA delivery system and demonstrated to be effective for the transfection of pEGFP-N1 plasmid into HEK 293-T cells. Modular molecular

  17. Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury.

    PubMed

    Vázquez-Rodríguez, Adiari I; Hansel, Colleen M; Zhang, Tong; Lamborg, Carl H; Santelli, Cara M; Webb, Samuel M; Brooks, Scott C

    2015-01-01

    Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. Here, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. They also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment. PMID:26157421

  18. Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury

    PubMed Central

    Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; Lamborg, Carl H.; Santelli, Cara M.; Webb, Samuel M.; Brooks, Scott C.

    2015-01-01

    Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. Here, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. They also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment. PMID:26157421

  19. High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda)

    NASA Technical Reports Server (NTRS)

    Wenck, A. R.; Quinn, M.; Whetten, R. W.; Pullman, G.; Sederoff, R.; Brown, C. S. (Principal Investigator)

    1999-01-01

    Agrobacterium-mediated gene transfer is the method of choice for many plant biotechnology laboratories; however, large-scale use of this organism in conifer transformation has been limited by difficult propagation of explant material, selection efficiencies and low transformation frequency. We have analyzed co-cultivation conditions and different disarmed strains of Agrobacterium to improve transformation. Additional copies of virulence genes were added to three common disarmed strains. These extra virulence genes included either a constitutively active virG or extra copies of virG and virB, both from pTiBo542. In experiments with Norway spruce, we increased transformation efficiencies 1000-fold from initial experiments where little or no transient expression was detected. Over 100 transformed lines expressing the marker gene beta-glucuronidase (GUS) were generated from rapidly dividing embryogenic suspension-cultured cells co-cultivated with Agrobacterium. GUS activity was used to monitor transient expression and to further test lines selected on kanamycin-containing medium. In loblolly pine, transient expression increased 10-fold utilizing modified Agrobacterium strains. Agrobacterium-mediated gene transfer is a useful technique for large-scale generation of transgenic Norway spruce and may prove useful for other conifer species.

  20. Carcinogenic potential of metal nanoparticles in BALB/3T3 cell transformation assay.

    PubMed

    Sighinolfi, G L; Artoni, E; Gatti, A M; Corsi, L

    2016-05-01

    Metal-based nanoparticles (NPs), are currently used in many application fields including consumer products, pharmaceuticals, and biomedical treatments. In spite to their wide applications, an in-depth study of their potential toxic effects is still lacking. The aim of the present research was to investigate the potential initiator or promoter-like activity of different metallic NPs such as gold, iron, cobalt, and cerium using the Balb/3T3 two-stage transformation assay. The results indicated that all the selected metallic NPs, except for cobalt, when used as initiators did not induce any transformation in Balb/3T3 cell line. Moreover, Au and Fe3 O4 NPs, when used in place of the tumor promoter treatment TPA, increased significantly the number of Foci/dish as compared to the MCA treatment alone. The number of Foci/dish was 2.6 for Au NPs and 2.13 for Fe3 O4 ones, similar to those obtained by the positive control treatment (MCA + TPA), whereas 1.27 for MCA treatment alone. On the contrary, CeO2 NPs did not show any difference in the number of Foci/dish, as compared to MCA alone, but it decreased the number of foci by 65% in comparison to the positive control (MCA + TPA). As expected, cobalt NPs showed an increased cytotoxicity and only a few surviving cells were found at the time of analysis showing a number of Foci/dish of 0.13. For the first time, our data clearly showed that Au and Fe3 O4 NPs act as promoters in the two stage transformational assay, suggesting the importance to fully investigate the NPs carcinogenic potential with different models. PMID:25358123

  1. Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways.

    PubMed

    Penuel, E; Martin, G S

    1999-06-01

    An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded. PMID:10359590

  2. Transformation by v-Src: Ras-MAPK and PI3K-mTOR Mediate Parallel Pathways

    PubMed Central

    Penuel, Elicia; Martin, G. Steven

    1999-01-01

    An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded. PMID:10359590

  3. An ultrathin twist-structure polarization transformer based on fish-scale metallic wires

    NASA Astrophysics Data System (ADS)

    Han, Jin; Li, Hongqiang; Fan, Yuancheng; Wei, Zeyong; Wu, Chao; Cao, Yang; Yu, Xing; Li, Fang; Wang, Zhanshan

    2011-04-01

    This study theoretically and experimentally investigates the transmission properties of a metamaterial slab comprised of two layers of metallic fish-scale structure arrays and a sandwiched dielectric layer. Calculations show that the asymmetric transmission can be tuned by varying the slab thickness, due to near-field interlayer coupling. The spatial evolution of the electric field indicates that the twist structure functions as a perfect polarization transformer at certain frequencies. Measured transmission spectra are in good agreement with calculated results when material dissipation is considered.

  4. Influence of phase transformation on stress evolution during growth of metal thin films on silicon.

    PubMed

    Fillon, A; Abadias, G; Michel, A; Jaouen, C; Villechaise, P

    2010-03-01

    In situ stress measurements during two-dimensional growth of low mobility metal films on amorphous Si were used to demonstrate the impact of interface reactivity and phase transformation on stress evolution. Using Mo1-xSix films as examples, the results show that the tensile stress rise, which develops after the film has become crystalline, is correlated with an increase in lateral grain size. The origin of the tensile stress is attributed to the volume change resulting from the alloy crystallization, which occurs at a concentration-dependent critical thickness. PMID:20366996

  5. Humic substances as a mediator for microbially catalyzed metal reduction

    USGS Publications Warehouse

    Lovley, D.R.; Fraga, J.L.; Blunt-Harris, E. L.; Hayes, L.A.; Phillips, E.J.P.; Coates, J.D.

    1998-01-01

    The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 ??M of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants.

  6. Identification of weak ultrasonic signals in testing of metallic materials using wavelet transform

    NASA Astrophysics Data System (ADS)

    Fan, Xianfeng; Zuo, Ming J.; Wang, Xiaodong

    2006-12-01

    Non-destructive testing using ultrasonic signals has been widely employed to detect material damage and prevent accidents. A collected ultrasonic signal may be noisy and weak because of the grains in materials, incomplete contact between transducers and the mounting surface, and the long transmission path. Stationary wavelet transform has been applied together with kurtosis and universal de-noising to analyze ultrasonic signals in an attempt to identify the weak signals encountered in testing of metallic materials. The time-of-flight of signal in a metallic material is estimated by cross-correlation analysis. Application of the method is demonstrated through the ultrasonic testing of a thin steel plate with a slot.

  7. Metal Complexes Supported on Solid Matrices for Visible-Light-Driven Molecular Transformations.

    PubMed

    Mori, Kohsuke; Yamashita, Hiromi

    2016-08-01

    Hybridization of visible-light-responsive metal complexes with solid matrices offers an attractive route for practical catalyst design of nanostructured photocatalysts that are operationally simple and can attain unprecedented reactions owing to synergistic effects. This Minireview highlights the precise architectures of hybrid photocatalysts that enable efficient and selective photochemical molecular transformations, including selective oxidation by O2 and H2 evolution from water. Several techniques for the immobilization of metal complexes are discussed, including encapsulation within zeolite cavities, anchoring within mesoporous channels, incorporation within the macroreticular space of ion-exchange resins, intercalation within the interlayer spaces of layered materials, and anchoring onto the plasmonic colloidal Ag nanoparticles. The relationships between photoluminescence characteristics and photocatalytic activities of these hybrid materials are also discussed. PMID:27314619

  8. Increased transforming growth factor beta 1 expression mediates ozone-induced airway fibrosis in mice

    PubMed Central

    Katre, Ashwini; Ballinger, Carol; Akhter, Hasina; Fanucchi, Michelle; Kim, Dae-Kee; Postlethwait, Edward; Liu, Rui-Ming

    2013-01-01

    Ozone (O3), a commonly encountered environmental pollutant, has been shown to induce pulmonary fibrosis in different animal models; the underlying mechanism, however, remains elusive. To investigate the molecular mechanism underlying O3-induced pulmonary fibrosis, 6- to 8-week-old C57BL/6 male mice were exposed to a cyclic O3 exposure protocol consisting of 2 days of filtered air and 5 days of O3 exposure (0.5 ppm, 8 h/day) for 5 and 10 cycles with or without intraperitoneal injection of IN-1233, a specific inhibitor of the type 1 receptor of transforming growth factor beta (TGF-β), the most potent profibrogenic cytokine. The results showed that O3 exposure for 5 or 10 cycles increased the TGF-β protein level in the epithelial lining fluid (ELF), associated with an increase in the expression of plasminogen activator inhibitor 1 (PAI-1), a TGF-β-responsive gene that plays a critical role in the development of fibrosis under various pathological conditions. Cyclic O3 exposure also increased the deposition of collagens and alpha smooth muscle actin (α-SMA) in airway walls. However, these fibrotic changes were not overt until after 10 cycles of O3 exposure. Importantly, blockage of the TGF-β signaling pathway with IN-1233 suppressed O3-induced Smad2/3 phosphorylation, PAI-1 expression, as well as collagens and α-SMA deposition in the lung. Our data demonstrate for the first time that O3 exposure increases TGF-β expression and activates TGF-β signaling pathways, which mediates O3-induced lung fibrotic responses in vivo. PMID:21689010

  9. Stromal inhibition of prostatic epithelial cell proliferation not mediated by transforming growth factor beta.

    PubMed Central

    Kooistra, A.; van den Eijnden-van Raaij, A. J.; Klaij, I. A.; Romijn, J. C.; Schröder, F. H.

    1995-01-01

    The paracrine influence of prostatic stroma on the proliferation of prostatic epithelial cells was investigated. Stromal cells from the human prostate have previously been shown to inhibit anchorage-dependent as well as anchorage-independent growth of the prostatic tumour epithelial cell lines PC-3 and LNCaP. Antiproliferative activity, mediated by a diffusible factor in the stromal cell conditioned medium, was found to be produced specifically by prostatic stromal cells. In the present study the characteristics of this factor were examined. It is demonstrated that prostate stroma-derived inhibiting factor is an acid- and heat-labile, dithiothreitol-sensitive protein. Although some similarities with type beta transforming growth factor (TGF-beta)-like inhibitors are apparent, evidence is presented that the factor is not identical to TGF-beta or to the TGF-beta-like factors activin and inhibin. Absence of TGF-beta activity was shown by the lack of inhibitory response of the TGF-beta-sensitive mink lung cell line CCL-64 to prostate stromal cell conditioned medium and to concentrated, partially purified preparations of the inhibitor. Furthermore, neutralising antibodies against TGF-beta 1 or TGF-beta 2 did not cause a decline in the level of PC-3 growth inhibition caused by partially purified inhibitor. Using Northern blot analyses, we excluded the involvement of inhibin or activin. It is concluded that the prostate stroma-derived factor may be a novel growth inhibitor different from any of the currently described inhibiting factors. Images Figure 5 PMID:7543773

  10. Composition mediated serration dynamics in Zr-based bulk metallic glasses

    SciTech Connect

    Wang, Z.; Qiao, J. W. E-mail: mwchen@wpi-aimr.tohoku.ac.jp; Wang, B. C.; Xu, B. S.; Tian, H.; Sun, B. A.; Chen, M. W. E-mail: mwchen@wpi-aimr.tohoku.ac.jp

    2015-11-16

    The composition mediated serration dynamics in Zr-based bulk metallic glasses (BMGs) is investigated by statistics analyses of the elastic-energy density, and free volumes during shear-banding are beneficial to understand serrated-flow behavior. The amplitude and elastic-energy density display a gradually increasing and then decreasing trend with increasing the content of Zr. It is based on the free-volume theory describing the atomic-level structure of ternary Zr-Cu-Al BMGs. The good agreement between the molecular dynamics simulation and experimental results provides evidence for the variation of free volumes as the elementary mechanism of composition mediated serration dynamics.

  11. Understanding Dissolved and Colloidal Metal Transport and Transformation - Pathways for Aquatic Toxicity

    NASA Astrophysics Data System (ADS)

    Kimball, B. A.; Besser, J. M.

    2004-05-01

    transformation. Both processes lead to an enrichment of both copper and zinc in the mineral and algal coatings of cobbles and bed sediments where these metals enter the food web through benthic grazing, but the fates of these metals in stream food webs differ substantially. Zinc accumulates to high concentrations in grazing invertebrates but concentrations are substantially lower in higher-order consumers, whereas copper is passed more efficiently to higher order consumers and may pose risks of dietary toxicity to fish. Although this example addresses streams affected by mine drainage, these processes could be active and significant in many other settings where iron or other colloidal transport occurs.

  12. Origin of somatic embryos from repetitively embryogenic cultures of walnut (Juglans regia L.): Implications forAgrobacterium-mediated transformation.

    PubMed

    Polito, V S; McGranahan, G; Pinney, K; Leslie, C

    1989-04-01

    Early stages of somatic embryo development from embryogenic cultures ofJuglans regia (Persian or English walnut) are described. Histological examination reveals that secondary somatic embryos arise from cotyledons and hypocotyls of primary embryos cultured in the dark. The embryos originate by transverse to oblique divisions of surface cells. Single-cell origin of the secondary embryos confirms the potential of the repetitive embryogenesis system forAgrobacterium-mediated transformation and regeneration of non-chimeric, transgenic walnut plants. PMID:24233141

  13. Female Reproductive Tissues Are the Primary Target of Agrobacterium-Mediated Transformation by the Arabidopsis Floral-Dip Method1

    PubMed Central

    Desfeux, Christine; Clough, Steven J.; Bent, Andrew F.

    2000-01-01

    The floral-dip method for Agrobacterium-mediated transformation of Arabidopsis allows efficient plant transformation without need for tissue culture. To facilitate use with other plant species, we investigated the mechanisms that underlie this method. In manual outcrossing experiments, application of Agrobacterium tumefaciens to pollen donor plants did not produce any transformed progeny, whereas application of Agrobacterium to pollen recipient plants yielded transformants at a rate of 0.48%. Agrobacterium strains with T-DNA carrying gusA (encoding β-glucuronidase [GUS]) under the control of 35S, LAT52, or ACT11 promoters revealed delivery of GUS activity to developing ovules, whereas no GUS staining of pollen or pollen tubes was observed. Transformants derived from the same seed pod contained independent T-DNA integration events. In Arabidopsis flowers, the gynoecium develops as an open, vase-like structure that fuses to form closed locules roughly 3 d prior to anthesis. In correlation with this fact, we found that the timing of Agrobacterium infection was critical. Transformants were obtained and GUS staining of ovules and embryo sacs was observed only if the Agrobacterium were applied 5 d or more prior to anthesis. A 6-fold higher rate of transformation was obtained with a CRABS-CLAW mutant that maintains an open gynoecium. Our results suggest that ovules are the site of productive transformation in the floral-dip method, and further suggest that Agrobacterium must be delivered to the interior of the developing gynoecium prior to locule closure if efficient transformation is to be achieved. PMID:10889238

  14. Effects of surface stability on the morphological transformation of metals and metal oxides as investigated by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Andrés, Juan; Gracia, Lourdes; Fernandes Gouveia, Amanda; Meneghetti Ferrer, Mateus; Longo, Elson

    2015-10-01

    Morphology is a key property of materials. Owing to their precise structure and morphology, crystals and nanocrystals provide excellent model systems for joint experimental and theoretical investigations into surface-related properties. Faceted polyhedral crystals and nanocrystals expose well-defined crystallographic planes depending on the synthesis method, which allow for thoughtful investigations into structure-reactivity relationships under practical conditions. This feature article introduces recent work, based on the combined use of experimental findings and first-principles calculations, to provide deeper knowledge of the electronic, structural, and energetic properties controlling the morphology and the transformation mechanisms of different metals and metal oxides: Ag, anatase TiO2, BaZrO3, and α-Ag2WO4. According to the Wulff theorem, the equilibrium shapes of these systems are obtained from the values of their respective surface energies. These investigations are useful to gain further understanding of how to achieve morphological control of complex three-dimensional crystals by tuning the ratio of the surface energy values of the different facets. This strategy allows the prediction of possible morphologies for a crystal and/or nanocrystal by controlling the relative values of surface energies.

  15. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT

    SciTech Connect

    Xu, Hanwen; Pirisi, Lucia; Creek, Kim E.

    2015-01-01

    Previous studies in our laboratory discovered that SIX1 mRNA expression increased during in vitro progression of HPV16-immortalized human keratinocytes (HKc/HPV16) toward a differentiation-resistant (HKc/DR) phenotype. In this study, we explored the role of Six1 at early stages of HPV16-mediated transformation by overexpressing Six1 in HKc/HPV16. We found that Six1 overexpression in HKc/HPV16 increased cell proliferation and promoted cell migration and invasion by inducing epithelial–mesenchymal transition (EMT). Moreover, the overexpression of Six1 in HKc/HPV16 resulted in resistance to serum and calcium-induced differentiation, which is the hallmark of the HKc/DR phenotype. Activation of MAPK in HKc/HPV16 overexpressing Six1 is linked to resistance to calcium-induced differentiation. In conclusion, this study determined that Six1 overexpression resulted in differentiation resistance and promoted EMT at early stages of HPV16-mediated transformation of human keratinocytes. - Highlights: • Six1 expression increases during HPV16-mediated transformation. • Six1 overexpression causes differentiation resistance in HPV16-immortalized cells. • Six1 overexpression in HPV16-immortalized keratinocytes activates MAPK. • Activation of MAPK promotes EMT and differentiation resistance. • Six1 overexpression reduces Smad-dependent TGF-β signaling.

  16. An approach to crystallizing proteins by metal-mediated synthetic symmetrization

    SciTech Connect

    Laganowsky, Arthur; Zhao, Minglei; Soriaga, Angela B.; Sawaya, Michael R.; Cascio, Duilio; Yeates, Todd O.

    2011-12-09

    Combining the concepts of synthetic symmetrization with the approach of engineering metal-binding sites, we have developed a new crystallization methodology termed metal-mediated synthetic symmetrization. In this method, pairs of histidine or cysteine mutations are introduced on the surface of target proteins, generating crystal lattice contacts or oligomeric assemblies upon coordination with metal. Metal-mediated synthetic symmetrization greatly expands the packing and oligomeric assembly possibilities of target proteins, thereby increasing the chances of growing diffraction-quality crystals. To demonstrate this method, we designed various T4 lysozyme (T4L) and maltose-binding protein (MBP) mutants and cocrystallized them with one of three metal ions: copper (Cu2+), nickel (Ni2+), or zinc (Zn2+). The approach resulted in 16 new crystal structures-eight for T4L and eight for MBP-displaying a variety of oligomeric assemblies and packing modes, representing in total 13 new and distinct crystal forms for these proteins. We discuss the potential utility of the method for crystallizing target proteins of unknown structure by engineering in pairs of histidine or cysteine residues. As an alternate strategy, we propose that the varied crystallization-prone forms of T4L or MBP engineered in this work could be used as crystallization chaperones, by fusing them genetically to target proteins of interest.

  17. An approach to crystallizing proteins by metal-mediated synthetic symmetrization.

    PubMed

    Laganowsky, Arthur; Zhao, Minglei; Soriaga, Angela B; Sawaya, Michael R; Cascio, Duilio; Yeates, Todd O

    2011-11-01

    Combining the concepts of synthetic symmetrization with the approach of engineering metal-binding sites, we have developed a new crystallization methodology termed metal-mediated synthetic symmetrization. In this method, pairs of histidine or cysteine mutations are introduced on the surface of target proteins, generating crystal lattice contacts or oligomeric assemblies upon coordination with metal. Metal-mediated synthetic symmetrization greatly expands the packing and oligomeric assembly possibilities of target proteins, thereby increasing the chances of growing diffraction-quality crystals. To demonstrate this method, we designed various T4 lysozyme (T4L) and maltose-binding protein (MBP) mutants and cocrystallized them with one of three metal ions: copper (Cu²⁺, nickel (Ni²⁺), or zinc (Zn²⁺). The approach resulted in 16 new crystal structures--eight for T4L and eight for MBP--displaying a variety of oligomeric assemblies and packing modes, representing in total 13 new and distinct crystal forms for these proteins. We discuss the potential utility of the method for crystallizing target proteins of unknown structure by engineering in pairs of histidine or cysteine residues. As an alternate strategy, we propose that the varied crystallization-prone forms of T4L or MBP engineered in this work could be used as crystallization chaperones, by fusing them genetically to target proteins of interest. PMID:21898649

  18. Abnormal correlation between phase transformation and cooling rate for pure metals

    NASA Astrophysics Data System (ADS)

    Han, J. J.; Wang, C. P.; Liu, X. J.; Wang, Y.; Liu, Z.-K.; Zhang, T.-Y.; Jiang, J. Z.

    2016-03-01

    This work aims to achieve deep insight into the phenomenon of phase transformation upon rapid cooling in metal systems and reveal the physical meaning of scatter in the time taken to reach crystallization. The total number of pure metals considered in this work accounts for 14. Taking pure copper as an example, the correlation between phase selection of crystal or glass and cooling rate was investigated using molecular dynamic simulations. The obtained results demonstrate that there exists a cooling rate region of 6.3 × 1011–16.6 × 1011 K/s, in which crystalline fractions largely fluctuate along with cooling rates. Glass transformation in this cooling rate region is determined by atomic structure fluctuation, which is controlled by thermodynamic factors. According to the feature of bond-orientation order at different cooling rates, we propose two mechanisms of glass formation: (i) kinetic retardation of atom rearrangement or structural relaxation at a high cooling rate; and (ii) competition of icosahedral order against crystal order near the critical cooling rate.

  19. Abnormal correlation between phase transformation and cooling rate for pure metals.

    PubMed

    Han, J J; Wang, C P; Liu, X J; Wang, Y; Liu, Z-K; Zhang, T-Y; Jiang, J Z

    2016-01-01

    This work aims to achieve deep insight into the phenomenon of phase transformation upon rapid cooling in metal systems and reveal the physical meaning of scatter in the time taken to reach crystallization. The total number of pure metals considered in this work accounts for 14. Taking pure copper as an example, the correlation between phase selection of crystal or glass and cooling rate was investigated using molecular dynamic simulations. The obtained results demonstrate that there exists a cooling rate region of 6.3 × 10(11)-16.6 × 10(11) K/s, in which crystalline fractions largely fluctuate along with cooling rates. Glass transformation in this cooling rate region is determined by atomic structure fluctuation, which is controlled by thermodynamic factors. According to the feature of bond-orientation order at different cooling rates, we propose two mechanisms of glass formation: (i) kinetic retardation of atom rearrangement or structural relaxation at a high cooling rate; and (ii) competition of icosahedral order against crystal order near the critical cooling rate. PMID:26939584

  20. Abnormal correlation between phase transformation and cooling rate for pure metals

    PubMed Central

    Han, J. J.; Wang, C. P.; Liu, X. J.; Wang, Y.; Liu, Z.-K.; Zhang, T.-Y.; Jiang, J. Z.

    2016-01-01

    This work aims to achieve deep insight into the phenomenon of phase transformation upon rapid cooling in metal systems and reveal the physical meaning of scatter in the time taken to reach crystallization. The total number of pure metals considered in this work accounts for 14. Taking pure copper as an example, the correlation between phase selection of crystal or glass and cooling rate was investigated using molecular dynamic simulations. The obtained results demonstrate that there exists a cooling rate region of 6.3 × 1011–16.6 × 1011 K/s, in which crystalline fractions largely fluctuate along with cooling rates. Glass transformation in this cooling rate region is determined by atomic structure fluctuation, which is controlled by thermodynamic factors. According to the feature of bond-orientation order at different cooling rates, we propose two mechanisms of glass formation: (i) kinetic retardation of atom rearrangement or structural relaxation at a high cooling rate; and (ii) competition of icosahedral order against crystal order near the critical cooling rate. PMID:26939584

  1. Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems

    SciTech Connect

    J. Helble; Clara Smith; David Miller

    2009-08-31

    The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

  2. Genetic transformation of Fusarium avenaceum by Agrobacterium tumefaciens mediated transformation and the development of a USER-Brick vector construction system

    PubMed Central

    2014-01-01

    Background The plant pathogenic and saprophytic fungus Fusarium avenaceum causes considerable in-field and post-field losses worldwide due to its infections of a wide range of different crops. Despite its significant impact on the profitability of agriculture production and a desire to characterize the infection process at the molecular biological level, no genetic transformation protocol has yet been established for F. avenaceum. In the current study, it is shown that F. avenaceum can be efficiently transformed by Agrobacterium tumefaciens mediated transformation. In addition, an efficient and versatile single step vector construction strategy relying on Uracil Specific Excision Reagent (USER) Fusion cloning, is developed. Results The new vector construction system, termed USER-Brick, is based on a limited number of PCR amplified vector fragments (core USER-Bricks) which are combined with PCR generated fragments from the gene of interest. The system was found to have an assembly efficiency of 97% with up to six DNA fragments, based on the construction of 55 vectors targeting different polyketide synthase (PKS) and PKS associated transcription factor encoding genes in F. avenaceum. Subsequently, the ΔFaPKS3 vector was used for optimizing A. tumefaciens mediated transformation (ATMT) of F. avenaceum with respect to six variables. Acetosyringone concentration, co-culturing time, co-culturing temperature and fungal inoculum were found to significantly impact the transformation frequency. Following optimization, an average of 140 transformants per 106 macroconidia was obtained in experiments aimed at introducing targeted genome modifications. Targeted deletion of FaPKS6 (FA08709.2) in F. avenaceum showed that this gene is essential for biosynthesis of the polyketide/nonribosomal compound fusaristatin A. Conclusion The new USER-Brick system is highly versatile by allowing for the reuse of a common set of building blocks to accommodate seven different types of genome

  3. Infrared spectrum of the Ag(+)-(pyridine)2 ionic complex: probing interactions in artificial metal-mediated base pairing.

    PubMed

    Chakraborty, Shamik; Dopfer, Otto

    2011-07-11

    The isolated pyridine-Ag(+)-pyridine unit (Py-Ag(+)-Py) is employed as a model system to characterize the recently observed Ag(+)-mediated base pairing in DNA oligonucleotides at the molecular level. The structure and infrared (IR) spectrum of the Ag(+)-Py(2) cationic complex are investigated in the gas phase by IR multiple-photon dissociation (IRMPD) spectroscopy and quantum chemical calculations to determine the preferred metal-ion binding site and other salient properties of the potential-energy surface. The IRMPD spectrum has been obtained in the 840-1720 cm(-1) fingerprint region by coupling the IR free electron laser at the Centre Laser Infrarouge d'Orsay (CLIO) with a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with an electrospray ionization source. The spectroscopic results are interpreted with quantum chemical calculations conducted at the B3LYP/aug-cc-pVDZ level. The analysis of the IRMPD spectrum is consistent with a σ complex, in which the Ag(+) ion binds to the nitrogen lone pairs of the two Py ligands in a linear configuration. The binding motif of Py-Ag(+)-Py in the gas phase is the same as that observed in Ag(+)-mediated base pairing in solution. Ag(+) bonding to the π-electron system of the aromatic ring is predicted to be a substantially less-favorable binding motif. PMID:21442717

  4. Transient down-regulation of the RNA silencing machinery increases efficiency of Agrobacterium-mediated transformation of Arabidopsis.

    PubMed

    Bilichak, Andriy; Yao, Youli; Kovalchuk, Igor

    2014-06-01

    Agrobacterium tumefaciens is a plant pathogen that is widely used in plant transformation. As the process of transgenesis includes the delivery of single-stranded T-DNA molecule, we hypothesized that transformation rate may negatively correlate with the efficiency of the RNA-silencing machinery. Using mutants compromised in either the transcriptional or post-transcriptional gene-silencing pathways, two inhibitors of stable transformation were revealed-AGO2 and NRPD1a. Furthermore, an immunoprecipitation experiment has shown that NRPD1, a subunit of Pol IV, directly interacts with Agrobacterium T-DNA in planta. Using the Tobacco rattle virus (TRV)--based virus-induced gene silencing (VIGS) technique, we demonstrated that the transient down-regulation of the expression of either AGO2 or NRPD1a genes in reproductive organs of Arabidopsis, leads to an increase in transformation rate. We observed a 6.0- and 3.5-fold increase in transformation rate upon transient downregulation of either AGO2 or NRPD1a genes, respectively. This is the first report demonstrating the increase in the plant transformation rate via VIGS-mediated transient down-regulation of the components of epigenetic machinery in reproductive tissue. PMID:24472037

  5. Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation

    PubMed Central

    Bennewitz, Roland

    2015-01-01

    Summary We combine non-contact atomic force microscopy (AFM) imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111) and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on plastic deformation mechanisms of crystalline Pt(111) are consistent with the discrete mechanisms established for larger scales: Plasticity is mediated by dislocation gliding and no rate dependence is observed. For the metallic glass we have discovered that plastic deformation at the nanometer scale is not discrete but continuous and localized around the indenter, and does not exhibit rate dependence. This contrasts with the observation of serrated, rate-dependent flow of metallic glasses at larger scales. Our results reveal a lower size limit for metallic glasses below which shear transformation mechanisms are not activated by indentation. In the case of metallic glass, we conclude that the energy stored in the stressed volume during nanometer-scale indentation is insufficient to account for the interfacial energy of a shear band in the glassy matrix. PMID:26425424

  6. Anomalous structure-property relationships in metallic glasses through pressure-mediated glass formation

    NASA Astrophysics Data System (ADS)

    Ding, Jun; Asta, Mark; Ritchie, Robert O.

    2016-04-01

    Metallic glasses are commonly found to favor denser packing structures and icosahedral order in experiments, simulations, and theoretical models. Here we present a molecular dynamics simulation study of Cu-Zr metallic glasses, prepared through a pressure-mediated pathway. The resulting glasses exhibit anomalous structure-property relationships; these glasses are less energetically stable, concomitant with a denser atomic packing and a significant increase in icosahedral short-range order. The enhanced icosahedral order is shown to be accompanied by a pressure-mediated change in chemical short-range order. The results demonstrate that in amorphous alloys (nonmonatomic), theoretical frameworks of the two-order-parameter model must be generalized to account for chemical degrees of freedom.

  7. Carbene-mediated self-assembly of diamondoids on metal surfaces

    NASA Astrophysics Data System (ADS)

    Adhikari, Bibek; Meng, Sheng; Fyta, Maria

    2016-04-01

    N-heterocyclic carbenes (NHC)s are emerging as an alternative class of molecules to thiol-based self-assembled monolayers (SAMs), making carbene-based SAMs much more stable under harsh environmental conditions. In this work, we have functionalized tiny diamondoids using NHCs in order to prepare highly stable carbene-mediated diamondoid SAMs on metal substrates. Using quantum-mechanical simulations and two different configurations for the carbene-functionalized diamondoids attached on gold, silver, and platinum surfaces we were able to study in detail these materials. Specifically, we focus on the binding characteristics, stability, and adsorption of the NHC-mediated diamondoid SAMs on the metal surfaces. A preferential binding to platinum surfaces was found, while a modulation of the work function in all cases was clear. The surface morphology of all NHC-based diamondoid SAMs was revealed through simulated STM images, which show characteristic features for each surface.

  8. AgarTrap-mediated genetic transformation using intact gemmae/gemmalings of the liverwort Marchantia polymorpha L.

    PubMed

    Tsuboyama-Tanaka, Shoko; Kodama, Yutaka

    2015-03-01

    The dioecious liverwort, Marchantia polymorpha L., is an emerging model plant. Various molecular biological techniques have been optimized for M. polymorpha for the past several years, and recently we reported a simplified Agrobacterium-mediated transformation method using sporelings (immature thalli from spores) of M. polymorpha. This method, termed AgarTrap (Agar-utilized Transformation with Pouring Solutions), completed by exchanging appropriate solutions on a single Petri dish to produce a sufficient number of independent transgenic sporelings. However, because spores are produced by crosses between males and females, the genetic backgrounds of resulting transgenic sporelings are not uniform. To easily produce transgenic liverworts with a uniform genetic background using AgarTrap, we developed an AgarTrap-mediated transformation method using intact gemmae/gemmalings produced by asexual reproduction. Using AgarTrap with male and female gemmae/gemmalings produced a sufficient number of independent transgenic gemmalings with uniform genetic backgrounds. The optimized transformation efficiencies were approximately 30 and 50 % in males and females, respectively. As with AgarTrap using sporelings, AgarTrap using intact gemmae/gemmalings will be useful in promoting studies of the molecular biology of M. polymorpha. PMID:25663453

  9. Agrobacterium tumefaciens-mediated transformation of Lasiodiplodia theobromae, the causal agent of gummosis in cashew nut plants.

    PubMed

    Muniz, C R; da Silva, G F; Souza, M T; Freire, F C O; Kema, G H J; Guedes, M I F

    2014-01-01

    Lasiodiplodia theobromae is a major pathogen of many different crop cultures, including cashew nut plants. This paper describes an efficient Agrobacterium tumefaciens-mediated transformation (ATMT) system for the successful delivery of T-DNA, transferring the genes of green fluorescent protein (gfp) and hygromycin B phosphotransferase (hph) to L. theobromae. When the fungal pycnidiospores were co-cultured with A. tumefaciens harboring the binary vector with hph-gfp gene, hygromycin-resistant fungus only developed with acetosyringone supplementation. The cashew plants inoculated with the fungus expressing GFP revealed characteristic pathogen colonization by epifluorescence microscopy. Intense and bright green hyphae were observed for transformants in all extensions of mycelium cultures. The penetration of parenchyma cells near to the inoculation site, beneath the epicuticle surface, was observed prior to 25 dpi. Penetration was followed by the development of hyphae within invaded host cells. These findings provide a rapid and reproducible ATMT method for L. theobromae transformation. PMID:24634294

  10. Sustainable Redox Mediation for Lithium-Oxygen Batteries by a Composite Protective Layer on the Lithium-Metal Anode.

    PubMed

    Lee, Dong Jin; Lee, Hongkyung; Kim, Yun-Jung; Park, Jung-Ki; Kim, Hee-Tak

    2016-02-01

    A synergic combination of a soluble -redox mediator and a protected Li metal -electrode to prevent the self-discharge of the redox mediator is realized by -exploiting a 2,2,6,6-tetramethylpiperidinyl 1-oxyl (TEMPO) redox mediator and an Al2 O3 /PVdF-HFP composite -protective layer (CPL). Stabilization of Li metal by simple CPL coating is effective at -suppressing the chemical reduction of the oxidized TEMPO and opens up the possibility of sustainable redox mediation for robust cycling of Li-O2 batteries. PMID:26627981

  11. Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces▿

    PubMed Central

    Quaranta, Davide; Krans, Travis; Santo, Christophe Espírito; Elowsky, Christian G.; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2011-01-01

    Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process called contact-mediated killing. Cellular copper ion homeostasis systems influenced the kinetics of contact-mediated killing in both organisms. Deregulated copper ion uptake through a hyperactive S. cerevisiae Ctr1p (ScCtr1p) copper uptake transporter in Saccharomyces resulted in faster inactivation of mutant cells than of wild-type cells. Similarly, lack of the C. albicans Crp1p (CaCrp1p) copper-efflux P-type ATPase or the metallothionein CaCup1p caused more-rapid killing of Candida mutant cells than of wild-type cells. Candida and Saccharomyces took up large quantities of copper ions as soon as they were in contact with copper surfaces, as indicated by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and by the intracellular copper ion-reporting dye coppersensor-1. Exposure to metallic copper did not cause lethality through genotoxicity, deleterious action on a cell's genetic material, as indicated by a mutation assay with Saccharomyces. Instead, toxicity mediated by metallic copper surfaces targeted membranes in both yeast species. With the use of Live/Dead staining, onset of rapid and extensive cytoplasmic membrane damage was observed in cells from copper surfaces. Fluorescence microscopy using the indicator dye DiSBaC2(3) indicated that cell membranes were depolarized. Also, during contact-mediated killing, vacuoles first became enlarged and then disappeared from the cells. Lastly, in metallic copper-stressed yeasts, oxidative stress in the cytoplasm and in mitochondria was elevated. PMID:21097600

  12. [Influence of sulfur on the speciation transformation and phyto-availability of heavy metals in soil: a review].

    PubMed

    Sun, Li-Juan; Duan, De-Chao; Peng, Cheng; He, Jun-Yu; Shi, Ji-Yan

    2014-07-01

    The biogeochemical cycle of sulfur can directly affect the speciation transformation of heavy metals in soils and their accumulation in plants. The toxicity of heavy metals in plants can be alleviated by their complexation with sulfur compounds like phytochelatins or metallothiones, consisting of the major mechanisms of phytodetoxification. Sulfur deficiency is becoming one of the limiting factors that influence Chinese agricultural production. Although the applications of sulfur fertilizer in soil have received much attention in recent years, the interaction mechanism of heavy metal with sulfur metabolism has not been studied extensively. In this paper, we reviewed current research advance on the impact of sulfur on the speciation transformation of soil heavy metals and their accumulation in plants, discussed the effect of sulfur on the detoxification mechanism of heavy metal in plants and provided further research prospective in this field. PMID:25345069

  13. Surface-Mediated in Situ Metalation of Porphyrins at the Solid-Vacuum Interface.

    PubMed

    Marbach, Hubertus

    2015-09-15

    The investigation of porphyrin derivatives at the solid-vacuum interface has become a vivid research field with the prospect to tailor functional molecular architectures and as prototype examples to study the fundamental properties of porphyrin derivatives in regard to their vital role in many natural processes. The functional properties of the porphyrin derivatives are mainly determined by the central metal atom. Thus, the recent exploration of the surface-confined in situ metalation of porphyrins is an important step toward the realization of molecule-based functional devices. The corresponding metalation reaction of free base porphyrin derivatives can be conveniently realized in situ in ultrahigh vacuum by post- or predeposition of metal atoms or directly with substrate atoms in the so-called self-metalation. Moderate heating above room temperature (RT) might be necessary either to realize the transport of the metal to the porphyrin via diffusion or to overcome an activation barrier determined by the redox reaction itself. Surface science techniques like scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD) are powerful tools to scrutinize the reaction and give valuable insights into the metalation process. For example, the completed metalation can be reflected in an enhanced apparent height of the corresponding porphyrin in STM or can be evidenced by characteristic changes in the N 1s region in XPS. These signatures allow monitoring of the progress of the metalation, and it was found that the reaction generally proceeds with very high yield. Surface diffusion of the coadsorbed metal atoms mediates the reaction and is crucial for the high yields of the corresponding reactions with pre- and postadsorbed metals. It was also demonstrated that the completed metalation can indeed significantly alter the adsorption behavior and the electronic properties and thus the functionality of the porphyrin

  14. Agrobacterium-mediated genetic transformation using cotyledons in Japanese pear (Pyrus pyrifolia)

    PubMed Central

    Nakajima, Ikuko; Sato, Yoshihiko; Saito, Toshihiro; Moriguchi, Takaya; Yamamoto, Toshiya

    2013-01-01

    Genetic transformation was successfully established producing both transformed adventitious shoots and calli in Japanese pear (Pyrus pyrifolia Nakai) by using cotyledons as explants. Cotyledons of five cultivars were co-cultivated with Agrobacterium tumefaciens strain LBA4404 carrying the pBIN19-sgfp, which contained a green fluorescent protein gene and the neomycin phosphotransferase gene. In order to increase transformation efficiency, sonication and ethylenedioxybis (ethylamine)-N,N,N′,N′-tetraacetic acid (EGTA) treatments were applied, which could produce physical wounds across the tissue and prevent plant defense reaction, respectively. Green fluorescent protein (GFP) fluorescence was evaluated two weeks and five months after Agrobacterium inoculation as measures of transient and stable transformations, respectively. As a result, sonication significantly increased both transient and stable expression of GFP fluorescence, whereas EGTA treatment did not show a positive effect on either. Out of 18 regenerated plantlets obtained, one plant regenerated from ‘Agenosho Shinanashi’ showed stable GFP fluorescence. This plant was confirmed as a transformant by PCR and genomic Southern blotting. Three other transformed regenerated shoots by myb gene showed red color, which were derived from ‘Imamuraaki’ by the same transformation method. Transformation system in this study was shown to be reproducible since plural transformants were obtained. PMID:24273422

  15. Transforming Environmental Knowledge into Behavior: The Mediating Role of Environmental Emotions

    ERIC Educational Resources Information Center

    Carmi, Nurit; Arnon, Sara; Orion, Nir

    2015-01-01

    The present study was based on the premise that environmental knowledge can drive environmental behavior only if it arouses environmental emotions. Using a structural equations modeling approach, we tested the direct, as well as the indirect (mediated) effects of knowledge on behavior and assessed the mediating role of environmental emotions. We…

  16. Involvement of HIF-2α-mediated inflammation in arsenite-induced transformation of human bronchial epithelial cells

    SciTech Connect

    Xu, Yuan; Zhao, Yue; Xu, Wenchao; Luo, Fei; Wang, Bairu; Li, Yuan; Pang, Ying; Liu, Qizhan

    2013-10-15

    Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis. - Highlights: • Arsenite induces inflammation. • Arsenite-induced the increases of IL-6 and IL-8 via HIF-2α. • Inflammation is involved in arsenite-induced carcinogenesis.

  17. Improved Agrobacterium-mediated transformation and high efficiency of root formation from hypocotyl meristem of spring Brassica napus 'Precocity' cultivar.

    PubMed

    Liu, X X; Lang, S R; Su, L Q; Liu, X; Wang, X F

    2015-01-01

    Rape seed (Brassica napus L.) is one of the most important oil seed crops in the world. Genetic manipulation of rapeseed requires a suitable tissue culture system and an efficient method for plant regeneration, as well as an efficient transformation procedure. However, development of transgenic B. napus has been problematic, and current studies are limited to cultivated varieties. In this study, we report a protocol for regeneration of transgenic rape after Agrobacterium-mediated transformation of hypocotyls from the spring B. napus 'Precocity' cultivar. We analyzed the effects of plant growth regulators in the medium on regeneration. Additionally, factors affecting the transformation efficiency, including seedling age, Agrobacterium concentration, infection time, and co-cultivation time, were assessed by monitoring GUS expression. Results from these experiments revealed that transformation was optimized when the meristematic parts of the hypocotyls were taken from 8 day-old seedlings, cultured on Murashinge and Skoog basal media containing 0.1 mg/L 1-naphthaleneacetic acid and 2.5 mg/L 6-benzylaminopurine, and incubated in Agrobacterium suspension (OD600 = 0.5) for 3 to 5 min, followed by 2 days of co-cultivation. Integration of T-DNA into the plant genome was confirmed by polymerase chain reaction (PCR), b-glucuronidase histochemical staining, and quantitative real-time PCR. The protocols developed for regeneration, transformation, and rooting described in this study could help to accelerate the development of transgenic spring rape varieties with novel features. PMID:26681030

  18. Water mediated alterations in gravity signal transform phytofilertation capability in hydroponic plants

    NASA Astrophysics Data System (ADS)

    Singh, Yogranjan; Singh Marabi, Rakesh; Satpute, Gyanesh Kumar; Mishra, Stuti

    2012-07-01

    An exorbitant sum of different synthetic molecules of chemicals including dyes and pigments are discharged into the environment, mainly via industrial effluents every year worldwide. The physical-chemical treatments for remediation viz adsorption, precipitation, ion exchange or filtration have proved to be disadvantageous because of high cost, low efficiency and inapplicability to a wide variety of dyes, or the formation of by-products and thereby creating waste disposal problems. Similarly the limited ability of micro-organisms to degrade xenobiotic especially sulphonoaromatic compounds, limits the efficiency and, therefore, the use of conventional wastewater treatment plants. In this context, the development of alternative biological treatments to eliminate these pollutants from industrial effluents is an important requirement. Plant metabolism, is extremely diverse and can be exploited to treat recalcitrant pollutants, not degradable by bacteria or fungi and can act as an important global sink for environmental pollutants. The presence of putative metabolites, in leaves of hydrophytes has been observed, indicating the transformation of several xenobiotics. A diverse range of the enzymes involved in the early stages of the detoxification process are closely associated with the redox biochemistry of the cell. The activities of enzymes such as glutathione transferases, peroxidases and cytochrome P450 monooxygenases and its multigenic family have implications with respect to the maintenance of redox homeostasis. Besides activating xenobiotics, cytochromes P450 is involved vitally in cell signaling for counteracting buoyant balance. Signal transduction cascades, including the role of cytochrome P450 monooxygenases in responding to gravitational cues, appear to be affected by buoyancy as well. Gravitropism is the orientation of growth in response to gravity and involves the perception of the gravitational force in the columella cells of the root cap where the primary

  19. Transformational Leadership and Creative Problem-Solving: The Mediating Role of Psychological Safety and Reflexivity

    ERIC Educational Resources Information Center

    Carmeli, Abraham; Sheaffer, Zachary; Binyamin, Galy; Reiter-Palmon, Roni; Shimoni, Tali

    2014-01-01

    Previous research has pointed to the importance of transformational leadership in facilitating employees' creative outcomes. However, the mechanism by which transformational leadership cultivates employees' creative problem-solving capacity is not well understood. Drawing on theories of leadership, information processing and creativity,…

  20. Interferon regulatory factor 4 is activated through c-Src-mediated tyrosine phosphorylation in virus-transformed cells.

    PubMed

    Wang, Ling; Ning, Shunbin

    2013-09-01

    The importance of the oncogenic transcription factor interferon regulatory factor 4 (IRF4) in hematological malignancies has been increasingly recognized. We have previously identified the B cell integration cluster (BIC), the gene encoding miR-155, as the first microRNA (miRNA)-encoding gene transcriptionally targeted by IRF4 in virus-transformed cancer cells. Activation of IRFs is prerequisite for their functions. However, how IRF4 is activated in cancer is an open question. Our phosphoproteome profiling has identified several tyrosine phosphorylation sites on IRF4 in Epstein-Barr virus (EBV)-transformed cells. Further, we show here that c-Src dramatically stimulates IRF4 phosphorylation and activity and that Y61 and Y124 are two key sites responding to c-Src-mediated activation. Consistently, c-Src is constitutively expressed and active in EBV-transformed cells. However, c-Src is unlikely to be a direct kinase for IRF4. Furthermore, we have a polyclonal antibody specific to phospho-IRF4(Y121/124) developed in rabbit. We have further shown that inhibition of c-Src activity reduces p-IRF4(Y121/124) and significantly represses transcription of the IRF4 target BIC in EBV-transformed cells. Our results therefore, for the first time, demonstrate that IRF4 is phosphorylated and activated through a c-Src-mediated pathway in virus-transformed cells. These findings will improve our understanding of IRF4 in neoplasia and will provide profound insights into the interaction of oncogenic viruses with IRF4 in the development of hematological malignancies. PMID:23804646

  1. Agrobacterium tumefaciens-mediated transformation: An efficient tool for insertional mutagenesis and targeted gene disruption in Harpophora oryzae.

    PubMed

    Liu, Ning; Chen, Guo-Qing; Ning, Guo-Ao; Shi, Huan-Bin; Zhang, Chu-Long; Lu, Jian-Ping; Mao, Li-Juan; Feng, Xiao-Xiao; Liu, Xiao-Hong; Su, Zhen-Zhu; Lin, Fu-Cheng

    2016-01-01

    The endophytic filamentous fungus Harpophora oryzae is a beneficial endosymbiont isolated from the wild rice. H. oryzae could not only effectively improve growth rate and biomass yield of rice crops, but also induce systemic resistance against the rice blast fungus, Magnaporthe oryzae. In this study, Agrobacterium tumefaciens-mediated transformation (ATMT) was employed and optimized to modify the H. oryzae genes by either random DNA fragment integration or targeted gene replacement. Our results showed that co-cultivation of H. oryzae conidia with A. tumefaciens in the presence of acetosyringone for 48 h at 22 °C could lead to a relatively highest frequency of transformation, and 200 μM acetosyringone (AS) pre-cultivation of A. tumefaciens is also suggested. ATMT-mediated knockout mutagenesis was accomplished with the gene-deletion cassettes using a yeast homologous recombination method with a yeast-Escherichia-Agrobacterium shuttle vector pKOHo. Using the ATMT-mediated knockout mutagenesis, we successfully deleted three genes of H. oryzae (HoATG5, HoATG7, and HoATG8), and then got the null mutants ΔHoatg5, ΔHoatg7, and ΔHoatg8. These results suggest that ATMT is an efficient tool for gene modification including randomly insertional mutagenesis and gene deletion mutagenesis in H. oryzae. PMID:26686612

  2. The development of coil short circuits when transformer windings become contaminated with metal-containing colloidal particles

    SciTech Connect

    L'vov, S. Yu.; Lyut'ko, E. O.; Bondareva, V. N.; Komarov, V. B.; L'vov, Yu. N.

    2012-01-15

    The radiational-thermal development of coil short circuits due to the action of partial discharges of the first kind when the windings of transformers, autotransformers and shunting reactors become contaminated with metal-containing colloidal particles, formed in the transformer oil as a result of the interaction of the oil with the constructional materials (the copper of the windings, the iron of the tank, the core etc.) is considered. Acriterion of dangerous contamination of the coil insulation of the windings by metal-containing colloidal particles is proposed, namely, 3% of the mass content of copper and iron in it, which, if exceeded, may serve as a basis for recognizing the state of transformers, autotransformers and shunting reactors at a voltage of 110 kV and above the limit. It is shown that filters for continuously cleaning the oil play a considerable role in prolonging the life of transformer equipment.

  3. Zirconia phase transformation, metal transfer, and surface roughness in retrieved ceramic composite femoral heads in total hip arthroplasty.

    PubMed

    Elpers, Marcella; Nam, Denis; Boydston-White, Susie; Ast, Michael P; Wright, Timothy M; Padgett, Douglas E

    2014-11-01

    Ceramic femoral heads have had promising results as a bearing surface in total hip arthroplasty. Our objective was to evaluate a series of retrieved alumina-zirconia composite ceramic femoral heads for evidence of the tetragonal to monoclinic zirconia phase transformation, metal transfer and articular surface roughness. Raman spectra showed evidence of the zirconia phase transformation in all retrieved specimens, with distinct monoclinic peaks at 183, 335, 383, and 479 cm(-1). All components displayed metal transfer. An increase in the zirconia phase transformation was seen with increasing time in vivo. No correlation between extent of zirconia phase transformation and the surface roughness was found. These short-term results suggest that the use of an alumina-zirconia composite ceramic is a viable option for femoral heads in THA. PMID:25212282

  4. Development of Protoporphyrinogen Oxidase as an Efficient Selection Marker for Agrobacterium tumefaciens-Mediated Transformation of Maize

    PubMed Central

    Li, Xianggan; Volrath, Sandy L.; Nicholl, David B.G.; Chilcott, Charles E.; Johnson, Marie A.; Ward, Eric R.; Law, Marcus D.

    2003-01-01

    In this article, we report the isolation of plant protoporphyrinogen oxidase (PPO) genes and the isolation of herbicide-tolerant mutants. Subsequently, an Arabidopsis double mutant (Y426M + S305L) was used to develop a selectable marker system for Agrobacterium tumefaciens-mediated transformation of maize (Zea mays) and to obtain multiple events tolerant to the PPO family of herbicides. Maize transformants were produced via butafenacil selection using a flexible light regime to increase selection pressure. Butafenacil selection per se did not change transgene copy number distribution relative to other selectable marker systems, but the most tolerant events identified in the greenhouse were more likely to contain multiple copies of the introduced mutant PPO gene. To date, more than 2,500 independent transgenic maize events have been produced using butafenacil selection. The high frequency of A. tumefaciens-mediated transformation via PPO selection enabled us to obtain single-copy transgenic maize lines tolerant to field levels of butafenacil. PMID:12972658

  5. Radon transform based automatic metal artefacts generation for 3D threat image projection

    NASA Astrophysics Data System (ADS)

    Megherbi, Najla; Breckon, Toby P.; Flitton, Greg T.; Mouton, Andre

    2013-10-01

    Threat Image Projection (TIP) plays an important role in aviation security. In order to evaluate human security screeners in determining threats, TIP systems project images of realistic threat items into the images of the passenger baggage being scanned. In this proof of concept paper, we propose a 3D TIP method which can be integrated within new 3D Computed Tomography (CT) screening systems. In order to make the threat items appear as if they were genuinely located in the scanned bag, appropriate CT metal artefacts are generated in the resulting TIP images according to the scan orientation, the passenger bag content and the material of the inserted threat items. This process is performed in the projection domain using a novel methodology based on the Radon Transform. The obtained results using challenging 3D CT baggage images are very promising in terms of plausibility and realism.

  6. Phase transformations and metallization of magnesium oxide at high pressure and temperature.

    PubMed

    McWilliams, R Stewart; Spaulding, Dylan K; Eggert, Jon H; Celliers, Peter M; Hicks, Damien G; Smith, Raymond F; Collins, Gilbert W; Jeanloz, Raymond

    2012-12-01

    Magnesium oxide (MgO) is representative of the rocky materials comprising the mantles of terrestrial planets, such that its properties at high temperatures and pressures reflect the nature of planetary interiors. Shock-compression experiments on MgO to pressures of 1.4 terapascals (TPa) reveal a sequence of two phase transformations: from B1 (sodium chloride) to B2 (cesium chloride) crystal structures above 0.36 TPa, and from electrically insulating solid to metallic liquid above 0.60 TPa. The transitions exhibit large latent heats that are likely to affect the structure and evolution of super-Earths. Together with data on other oxide liquids, we conclude that magmas deep inside terrestrial planets can be electrically conductive, enabling magnetic field-producing dynamo action within oxide-rich regions and blurring the distinction between planetary mantles and cores. PMID:23180773

  7. Interpenetrating Metal-Metalloporphyrin Framework for Selective CO2 Uptake and Chemical Transformation of CO2.

    PubMed

    Gao, Wen-Yang; Tsai, Chen-Yen; Wojtas, Lukasz; Thiounn, Timmy; Lin, Chu-Chieh; Ma, Shengqian

    2016-08-01

    Herein we report a robust primitive cubic (pcu)-topology metal-metalloporphyrin framework (MMPF), MMPF-18, which was constructed from a ubiquitous secondary building unit of a tetranuclear zinc cluster, Zn4(μ4-O)(-COO)6, and a linear organic linker of 5,15-bis(4-carboxyphenyl)porphyrin (H2bcpp). The strong π-π stacking from porphyrins and the lengthy H2bcpp ligand affords a 4-fold-interpenetrating network along with reduced void spaces and confined narrow channels. Thereby, MMPF-18 presents segmented pores and high-density metalloporphyrin centers for selective CO2 uptake over CH4 and size-selective chemical transformation of CO2 with epoxides forming cyclic carbonates under ambient conditions. PMID:27337152

  8. Reversible transformations of silver oxide and metallic silver nanoparticles inside SiO{sub 2} films

    SciTech Connect

    Pal, Sudipto; De, Goutam

    2009-02-04

    Reversible transformation of silver oxide and metallic nanoparticles inside a relatively porous silica film has been established. Annealing of Ag-doped films in oxidizing (air) atmosphere at 450 deg. C yielded colorless films containing AgO{sub x}. These films were turned yellow when heated in H{sub 2}-N{sub 2} (reducing atmosphere) due to the formation of Ag nanoparticles. This yellow coloration (due to nano Ag{sup 0}) and bleaching (conversion of Ag{sup 0} {yields} Ag{sup +}) are reversible. Optical and photoluminescence spectra are well consistent with this coloration and bleaching. The soaking test of the air-annealed film in Na{sub 2}S{sub 2}O{sub 3} solution supports the presence of Ag{sup +}. Grazing incidence X-ray diffraction and transmission electron microscopy studies reveal the formation of Ag-oxides and Ag nanoparticles in the oxidized and reduced films, respectively.

  9. Genetic transformation of Metroxylon sagu (Rottb.) cultures via Agrobacterium-mediated and particle bombardment.

    PubMed

    Ibrahim, Evra Raunie; Hossain, Md Anowar; Roslan, Hairul Azman

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258

  10. Genetic Transformation of Metroxylon sagu (Rottb.) Cultures via Agrobacterium-Mediated and Particle Bombardment

    PubMed Central

    Ibrahim, Evra Raunie

    2014-01-01

    Sago palm (Metroxylon sagu) is a perennial plant native to Southeast Asia and exploited mainly for the starch content in its trunk. Genetic improvement of sago palm is extremely slow when compared to other annual starch crops. Urgent attention is needed to improve the sago palm planting material and can be achieved through nonconventional methods. We have previously developed a tissue culture method for sago palm, which is used to provide the planting materials and to develop a genetic transformation procedure. Here, we report the genetic transformation of sago embryonic callus derived from suspension culture using Agrobacterium tumefaciens and gene gun systems. The transformed embryoids cells were selected against Basta (concentration 10 to 30 mg/L). Evidence of foreign genes integration and function of the bar and gus genes were verified via gene specific PCR amplification, gus staining, and dot blot analysis. This study showed that the embryogenic callus was the most suitable material for transformation as compared to the fine callus, embryoid stage, and initiated shoots. The gene gun transformation showed higher transformation efficiency than the ones transformed using Agrobacterium when targets were bombarded once or twice using 280 psi of helium pressure at 6 to 8 cm distance. PMID:25295258

  11. Agrobacterium tumefasciens-mediated transformation of the aquatic fungus Blastocladiella emersonii.

    PubMed

    Vieira, André L G; Camilo, César M

    2011-08-01

    Agrobacterium tumefaciens is widely used for plant DNA transformation and more recently, has also been used to transform yeast, filamentous fungi and even human cells. Using this technique, we developed the first transformation protocol for the saprobic aquatic fungus Blastocladiella emersonii, a Blastocladiomycete localized at the base of fungal phylogenetic tree, which has been shown as a promising and interesting model of study of cellular function and differentiation. We constructed binary T-DNA vectors containing hygromycin phosphotransferase (hph) or enhanced green fluorescent protein (egfp) genes, under the control of Aspergillus nidulans trpC promoter and terminator sequences. 24 h of co-cultivation in induction medium (IM) agar plates, followed by transfer to PYG-agar plates containing cefotaxim to kill Agrobacterium tumefsciens and hygromycin to select transformants, resulted in growth and sporulation of resistant transformants. Genomic DNA from the pool o resistant zoospores were shown to contain T-DNA insertion as evidenced by PCR amplification of hph gene. Using a similar protocol we could also evidence the expression of enhanced green fluorescent protein (EGFP) in zoospores derived from transformed cells. This protocol can also open new perspectives for other non-transformable closely related fungi, like the Chytridiomycete class. PMID:21396477

  12. Effect of composition on the transformation of {delta}-ferrite to {sigma} in type 316 stainless steel weld metals

    SciTech Connect

    Gill, T.P.S.; Shankar, V.; Pujar, M.G.; Rodriguez, P.

    1995-05-15

    A study of the effect of Cr on {delta}-ferrite transformation kinetics has yielded a relationship between the kinetics parameter n{sub 2} and weld metal chromium content. The amount of {sigma}{sub 0.9} formed from {delta}-ferrite has been correlated with weld metal composition. A nomogram is proposed, to predict the amount of {sigma}{sub 0.9} formed after 90% ferrite transformation in a given weld metal, as a function of C, Cr and Mo contents. The nomogram can be employed to optimize the composition for reducing high temperature embrittlement resulting from {sigma} precipitation in type 316 stainless steel weld metals. The nomogram has been developed from data obtained at 650 C but has been shown to be valid in the temperature range 600--700 C.

  13. The Role of the Secondary Coordination Sphere in Metal-Mediated Dioxygen Activation

    PubMed Central

    Shook, Ryan L.

    2012-01-01

    Alfred Werner proposed nearly 100 years ago that the secondary coordination sphere has a role in determining physical properties of transition metal complexes. We now know that the secondary coordination sphere impacts nearly all aspects of transition metal chemistry, including the reactivity and selectivity in metal-mediated processes. These features are highlighted in the binding and activation of dioxygen by transition metal complexes. There are clear connections between the control of the secondary coordination sphere and the ability of metal complexes to 1) reversibly bind dioxygen or 2) bind and activate dioxygen to form highly reactive M–oxo complexes. In this forum article, several biological and synthetic examples are presented and discussed in terms of structure-function relationships. Particular emphasis is given to systems with defined non-covalent interactions, such as intramolecular hydrogen bonds involving dioxygen-derived ligands. To further illustrate these effects, the homolytic cleavage of C–H bonds by M–oxo complexes with basic oxo ligands is described. PMID:20380466

  14. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal

    SciTech Connect

    Dong, Zhihui; Zhang, Feng; Wang, Dong; Liu, Xia; Jin, Jian

    2015-04-15

    By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI–PD/GO composite nanosheets. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, Hg{sup 2+} are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI–PD/RGO aerogel was prepared through hydrothermal and achieved a high surface area up to 373 m{sup 2}/g. Although the adsorption capacity of PEI–PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI–PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, and Hg{sup 2+}, respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater. - Graphical abstract: Polyethylenimine (PEI) brushes were grafted onto the surface of graphene oxide (GO) uniformly via a Michael-Addition reaction between the PEI and polydopamine interlayer coated on GO surface. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions compared to PEI-coated GO and pure GO. - Highlights: • We prepared polyethylenimine grafted polydopamine-mediated graphene oxide composites. • Introduction of PD layer increases metal ions adsorption capacity. • PEI–PD/RGO aerogel exhibited a superior adsorption performance. • PEI–PD/RGO aerogel can be recycled several times in a simple way.

  15. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    SciTech Connect

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; Jin, Changqing; Zhao, Yusheng

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can be attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.

  16. High pressure phase-transformation induced texture evolution and strengthening in zirconium metal: Experiment and modeling

    DOE PAGESBeta

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; et al

    2015-07-28

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can bemore » attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.« less

  17. High Pressure Phase-Transformation Induced Texture Evolution and Strengthening in Zirconium Metal: Experiment and Modeling

    PubMed Central

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; Jin, Changqing; Zhao, Yusheng

    2015-01-01

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5–1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can be attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation. PMID:26218405

  18. Microwave Frequency Transitions Requiring Laser Ablated Uranium Metal Discovered Using Chirp-Pulse Fourier Transform Spectroscopy

    NASA Astrophysics Data System (ADS)

    Long, B. E.; Cooke, S. A.

    2014-06-01

    A rod of depleted uranium metal (mp = 1,132° C) has been ablated with the fundamental operating frequency of a Nd:YAG laser. The resulting ablation plume of uranium was then mixed with argon gas and expanded between the transmit/receive horn antennae of a chirp-pulse Fourier transform microwave spectrometer. The recorded spectra show nine strong transitions which are not present when the laser is not used in the experimental procedure. A series of experiments in which the backing gas conditions were altered provides evidence that the nine observed transitions are carried by the same species. Should the transitions be from one species it is most likely an asymmetric top. The transitions persist even when ultra-pure argon is used as the sole backing gas. The oxide coating of the uranium metal likely provides a source of oxygen and, presently, the ``top" candidate for the unknown molecule is UO_3, which is known to have C_2v symmetry. Double resonance experiments are planned to aid transition assignments. A plausible explanation for an elusive assignment to date is the presence of pseudo-rotation.

  19. High Pressure Phase-Transformation Induced Texture Evolution and Strengthening in Zirconium Metal: Experiment and Modeling

    NASA Astrophysics Data System (ADS)

    Yu, Xiaohui; Zhang, Ruifeng; Weldon, David; Vogel, Sven C.; Zhang, Jianzhong; Brown, Donald W.; Wang, Yanbin; Reiche, Helmut M.; Wang, Shanmin; Du, Shiyu; Jin, Changqing; Zhao, Yusheng

    2015-07-01

    We studied the phase-transition induced texture changes and strengthening mechanism for zirconium metal under quasi-hydrostatic compression and uni-axial deformation under confined high pressure using the deformation-DIA (D-DIA) apparatus. It is shown that the experimentally obtained texture for ω-phase Zr can be qualitatively described by combining a subset of orientation variants previously proposed in two different models. The determined flow stress for the high-pressure ω-phase is 0.5-1.2 GPa, more than three times higher than that of the α-phase. Using first-principles calculations, we investigated the mechanical and electronic properties of the two Zr polymorphs. We find that the observed strengthening can be attributed to the relatively strong directional bonding in the ω phase, which significantly increases its shear plastic resistance over the α-phase Zr. The present findings provide an alternate route for Zr metal strengthening by high-pressure phase transformation.

  20. Rare Earth Metal-Mediated Precision Polymerization of Vinylphosphonates and Conjugated Nitrogen-Containing Vinyl Monomers.

    PubMed

    Soller, Benedikt S; Salzinger, Stephan; Rieger, Bernhard

    2016-02-24

    This review focuses on introducing and explaining the rare earth metal-mediated group transfer polymerization (REM-GTP) of polar monomers and is composed of three main sections: poly(vinylphosphonate)s, surface-initiated group transfer polymerization (SI-GTP), and extension to N-coordinating Michael-type monomers (2-vinylpridine (2VP), 2-isopropenyl-2-oxazoline (IPOx)). The poly(vinylphosphonate)s section is divided into two parts: radical, anionic, and silyl ketene acetal group transfer polymerization (SKA-GTP) of vinylphosphonates in comparison to REM-GTP, and properties of poly(vinylphosphonate)s. The mechanism of vinylphosphonate REM-GTP is discussed in detail for initiation and propagation including activation enthalpies ΔH(‡) and entropies ΔS(‡) according to the Eyring equation. SI-GTP is presented as a method for surface functionalization, and recent trends for 2VP and IPOx polymerization are summarized. This review will serve as a good resource or guideline for researchers who are currently working in the field of rare earth metal mediated polymerization catalysis as well as for those who are interested in beginning to employ rare earth metal complexes for the synthesis of new materials from polar monomers. PMID:26718632

  1. Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat

    PubMed Central

    Jones, Huw D; Doherty, Angela; Wu, Huixia

    2005-01-01

    Since the first report of wheat transformation by Agrobacterium tumefaciens in 1997, various factors that influence T-DNA delivery and regeneration in tissue culture have been further investigated and modified. This paper reviews the current methodology literature describing Agrobacterium transformation of wheat and provides a complete protocol that we have developed and used to produce over one hundred transgenic lines in both spring and winter wheat varieties. PMID:16270934

  2. Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat.

    PubMed

    Jones, Huw D; Doherty, Angela; Wu, Huixia

    2005-09-01

    Since the first report of wheat transformation by Agrobacterium tumefaciens in 1997, various factors that influence T-DNA delivery and regeneration in tissue culture have been further investigated and modified. This paper reviews the current methodology literature describing Agrobacterium transformation of wheat and provides a complete protocol that we have developed and used to produce over one hundred transgenic lines in both spring and winter wheat varieties. PMID:16270934

  3. Composition-Mediated Order-Disorder Transformation in FePt Nanoparticles

    SciTech Connect

    Johnston-Peck, Aaron C; Cullen, David A; Tracy, Joseph B

    2013-01-01

    Thumbnail image of graphical abstract Heat-treated alloy FePt nanoparticles transform into L10 FePt and mixed L10/L12 FePt3 intermetallic phases. Enrichment in Pt in some nanoparticles, rather than intrinsic thermodynamic effects, drives phase segregation. FePt nanoparticles of uniform, equimolar composition are expected to transform into phase-pure, highly ordered L10 FePt nanoparticles.

  4. Resistance to transforming growth factor β-mediated tumor suppression in melanoma: are multiple mechanisms in place?

    PubMed Central

    Lasfar, Ahmed; Cohen-Solal, Karine A.

    2010-01-01

    Resistance to transforming growth factor (TGF) β-mediated tumor suppression in melanoma appears to be a crucial step in tumor aggressiveness since it is usually coupled with the ability of TGFβ to drive the oncogenic process via autocrine and paracrine effects. In this review, we will focus mainly on the mechanisms of escape from TGFβ-induced cell cycle arrest because the mechanisms of resistance to TGFβ-mediated apoptosis are still essentially speculative. As expected, some of these mechanisms can directly affect the function of the main downstream effectors of TGFβ, Smad2 and Smad3, resulting in compromised Smad-mediated antiproliferative activity. Other mechanisms can counteract or overcome TGFβ-mediated cell cycle arrest independently of the Smads. In melanoma, some models of resistance to TGFβ have been suggested and will be described. In addition, we propose additional models of resistance taking into consideration the information available on the dysregulation of fundamental cellular effectors and signaling pathways in melanoma. PMID:20656791

  5. The relationship between transformational teaching and adolescent physical activity: the mediating roles of personal and relational efficacy beliefs.

    PubMed

    Bourne, Jessica; Liu, Yan; Shields, Christopher A; Jackson, Ben; Zumbo, Bruno D; Beauchamp, Mark R

    2015-02-01

    The purpose of this study was to examine the extent to which transformational teaching, exhibited by secondary school physical education teachers, predicts within-class physical activity and leisure-time physical activity among adolescents. The study used a prospective observational design and involved data collected from 874 Grade 10 adolescents (M age = 15.41, (SD) = .61). Through use of structural equation modeling, the results revealed that adolescents' perceptions of transformational teaching were positively related to within-class physical activity and leisure-time physical activity, and these effects were mediated by adolescents' estimation of their teacher's confidence in their abilities (i.e. relation-inferred self-efficacy) and self-efficacy beliefs. PMID:24058115

  6. Defect-mediated magnetism of transition metal doped zinc oxide thin films

    NASA Astrophysics Data System (ADS)

    Roberts, Bradley Kirk

    Magnetism in transition metal doped wide band-gap materials is of interest to further the fundamental science of materials and future spintronics applications. Large inter-dopant separations require mediation of ferromagnetism by some method; carrier-mediated mechanisms are typically applicable to dilute magnetic semiconductors with low Curie temperatures. Dilute magnetic oxides, commonly with poor conductivity and TC above room temperature, cannot be described within this theory. Recent experiment and theory developments suggest that ferromagnetic exchange in these materials can be mediated by defects. This research includes experimental results justifying and developing this approach. Thin films of Cr doped ZnO (band gap ˜3.3 eV) were deposited with several processing variations to enhance the effects of either 0-dimensional (vacancy, hydrogen-related defect) or two-dimensional defects (surface/interface) and thereby affect magnetism and conductivity. We observe surface magnetism in dielectric thin films of oxygen-saturated ZnO:Cr with spontaneous magnetic moment and conductance dropping approximately exponentially with increasing thickness. Uniform defect concentrations would not result in such magnetic ordering behavior indicating that magnetism is mediated either by surface defects or differing concentrations of point defects near the surface. Polarized neutron reflectivity profiling confirms a magnetically active region of ˜8 nm at the film surface. Hydrogen is notoriously present as a defect and carrier dopant in ZnO, and artificial introduction of hydrogen in dielectric ZnO:Cr films results in varying electronic and magnetic behavior. Free carriers introduced with hydrogen doping are not spin-polarized requiring an alternative explanation for ferromagnetism. We find from positron annihilation spectroscopy measurements that hydrogen doping increases the concentration of an altered VZn-related defect (a preliminary interpretation) throughout the film, which

  7. Metal-Mediated Assembly of 1,N(6)-Ethenoadenine: From Surfaces to DNA Duplexes.

    PubMed

    Mandal, Soham; Wang, Can; Prajapati, Rajneesh K; Kösters, Jutta; Verma, Sandeep; Chi, Lifeng; Müller, Jens

    2016-07-18

    The design of multinuclear metal complexes requires a match of the ligand-to-metal vectors and the preferred coordination geometries of the metal ions. Only a few ligands are known with a parallel orientation of N→M vectors that brings the metal ions into close proximity. We establish here the adenine derivative 1,N(6)-ethenoadenine (εA) as an ideal bis(monodentate) ligand. Scanning tunneling microscope images of alkylated εA on graphite surface clearly indicate that these ligands bind to Ag(I) ions. The molecular structures of [Ag2(1)2](ClO4)2 and [Ag2(2)2](ClO4)2 (1, 9-ethyl-1,N(6)-ethenoadenine; 2, 9-propyl-1,N(6)-propylenoadenine) confirm that dinuclear complexes with short Ag···Ag distances are formed (3.0256(3) and 2.984(1) Å, respectively). The structural motif can be extended to divalent metal ions, as was shown by determining the molecular structure of [Cu2(1)2(CHO2)2(OH2)2](NO3)2·2H2O with a Cu···Cu distance of 3.162(2) Å. Moreover, when introducing the 1,N(6)-ethenoadenine deoxyribonucleoside into parallel-stranded DNA duplexes, even dinuclear Ag(I)-mediated base pairs are formed, featuring the same transoid orientation of the glycosidic bonds as the model complexes. Hence, 1,N(6)-ethenoadenine and its derivatives are ideally suited as bis(monodentate) ligands with a parallel alignment of the N→M vectors for the construction of supramolecular metal complexes that require two metal ions at close distance. PMID:27347746

  8. Purvalanol A, a CDK inhibitor, effectively suppresses Src-mediated transformation by inhibiting both CDKs and c-Src.

    PubMed

    Hikita, Tomoya; Oneyama, Chitose; Okada, Masato

    2010-10-01

    The nonreceptor tyrosine kinase c-Src is frequently over-expressed or hyperactivated in various human cancers and contributes to cancer progression in cooperation with up-regulated growth factor receptors. However, Src-selective anticancer drugs are still in clinical trials. To identify more effective inhibitors of c-Src-mediated cancer progression, we developed a new screening platform using Csk-deficient cells that can be transformed by c-Src. We found that purvalanol A, developed as a CDK inhibitor, potently suppressed the anchorage-independent growth of c-Src-transformed cells, indicating that the activation of CDKs contributes to the c-Src transformation. We also found that purvalanol A suppressed the c-Src activity as effectively as the Src-selective inhibitor PP2, and that it reverted the transformed morphology to a nearly normal shape with less cytotoxicity than PP2. Purvalanol A induced a strong G2-M arrest, whereas PP2 weakly acted on the G1-S transition. Furthermore, when compared with PP2, purvalanol A more effectively suppressed the growth of human colon cancer HT29 and SW480 cells, in which Src family kinases and CDKs are activated. These findings demonstrate that the coordinated inhibition of cell cycle progression and tyrosine kinase signaling by the multi-selective purvalanol A is effective in suppressing cancer progression associated with c-Src up-regulation. PMID:20825494

  9. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation.

    PubMed

    Paz, Margie M; Martinez, Juan Carlos; Kalvig, Andrea B; Fonger, Tina M; Wang, Kan

    2006-03-01

    The utility of transformation for soybean improvement requires an efficient system for production of stable transgenic lines. We describe here an improved cotyledonary node method using an alternative explant for Agrobacterium tumefaciens-mediated soybean transformation. We use the term "half-seed" to refer to this alternative cotyledonary explant that is derived from mature seed of soybean following an overnight imbibition and to distinguish it from cotyledonary node derived from 5-7-day-old seedlings. Transformation efficiencies using half-seed explants ranged between 1.4 and 8.7% with an overall efficiency of 3.8% based on the number of transformed events that have been confirmed in the T1 generation by phenotypic assay using the herbicide Liberty (active ingredient glufosinate) and by Southern analysis. This efficiency is 1.5-fold higher than the cotyledonary node method used in our laboratory. Significantly, the half-seed system is simple and does not require deliberate wounding of explants, which is a critical and technically demanding step in the cotyledonary node method. PMID:16249869

  10. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    PubMed Central

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-01-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738

  11. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders

    NASA Astrophysics Data System (ADS)

    Nayak, Nadiya B.; Nayak, Bibhuti B.

    2016-05-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications.

  12. Temperature-mediated phase transformation, pore geometry and pore hysteresis transformation of borohydride derived in-born porous zirconium hydroxide nanopowders.

    PubMed

    Nayak, Nadiya B; Nayak, Bibhuti B

    2016-01-01

    Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738

  13. Effects of Sediment Iron Mineral Composition on Microbially Mediated Changes in Divalent Metal Speciation: Importance of Ferrihydrite

    SciTech Connect

    D. Craig Cooper; Andrew H. Neal; Ravichandran K. Kukkadapu; Dale Brewe; Aaron Coby; Flynn W. Picardal

    2005-04-01

    Dissimilatory metal reducing bacteria (DMRB) can influence geochemical processes that affect the speciation and mobility of metallic contaminants within natural environments. Most investigations into the effect of DMRB on sediment geochemistry utilize various synthetic oxides as the FeIII source (e.g., ferrihydrite, goethite, hematite). These synthetic materials do not represent the mineralogical composition of natural systems, and do not account for the effect of sediment mineral composition on microbially mediated processes. Our experiments with a DMRB (Shewanella putrefaciens 200) and a divalent metal (ZnII) indicate that, while complexity in sediment mineral composition may not strongly impact the degree of “microbial iron reducibility,” it does alter the geochemical consequences of such microbial activity. The ferrihydrite and clay mineral content are key factors. Microbial reduction of a synthetic blend of goethite and ferrihydrite (VHSA-G) carrying previously adsorbed ZnII increased both [ZnII-aq] and the proportion of adsorbed ZnII that is insoluble in 0.5 M HCl. Microbial reduction of FeIII in similarly treated iron-bearing clayey sediment (Fe-K-Q) and hematite sand, which contained minimal amounts of ferrihydrite, had no similar effect. Addition of ferrihydrite increased the effect of microbial FeIII reduction on ZnII association with a 0.5 M HCl insoluble phase in all sediment treatments, but the effect was inconsequential in the Fe-K-Q. Zinc k-edge X-ray absorption spectroscopy (XAS) data indicate that microbial FeIII reduction altered ZnII bonding in fundamentally different ways for VHSA-G and Fe-K-Q. In VHSA-G, ZnO6 octahedra were present in both sterile and reduced samples; with a slightly increased average Zn-O coordination number and a slightly higher degree of long-range order in the reduced sample. This result may be consistent with enhanced ZnII substitution within goethite in the microbially reduced sample, though these data do not show the

  14. Ammonia-Borane and Amine-Borane Dehydrogenation Mediated by Complex Metal Hydrides.

    PubMed

    Rossin, Andrea; Peruzzini, Maurizio

    2016-08-10

    This review is a comprehensive survey of the last 10 years of research on ammonia-borane and amine-borane dehydrogenation mediated by complex metal hydrides (CMHs), within the broader context of chemical hydrogen storage. The review also collects those cases where CMHs are the catalyst spent form or its resting state. Highlights on the reaction mechanism (strictly dependent on the CMH of choice) and the catalysts efficiency (in terms of equivalents of H2 produced and relative reaction rates) are provided throughout the discussion. PMID:27075435

  15. Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14.

    PubMed

    Nyaboga, Evans N; Njiru, Joshua M; Tripathi, Leena

    2015-01-01

    Routine production of large numbers of transgenic plants is required to fully exploit advances in cassava biotechnology and support development of improved germplasm for deployment to farmers. This article describes an improved, high-efficiency transformation protocol for recalcitrant cassava cultivar TME14 preferred in Africa. Factors that favor production of friable embryogenic calli (FEC) were found to be use of DKW medium, crushing of organized embryogenic structures (OES) through 1-2 mm sized metal wire mesh, washing of crushed OES tissues and short exposure of tyrosine to somatic embryos; and transformation efficiency was enhanced by use of low Agrobacterium density during co-cultivation, co-centrifugation of FEC with Agrobacterium, germination of paramomycin resistant somatic embryos on medium containing BAP with gradual increase in concentration and variations of the frequency of subculture of cotyledonary-stage embryos on shoot elongation medium. By applying the optimized parameters, FEC were produced for cassava cultivar TME14 and transformed using Agrobacterium strain LBA4404 harboring the binary vector pCAMBIA2301. About 70-80 independent transgenic lines per ml settled cell volume (SCV) of FEC were regenerated on selective medium. Histochemical GUS assays confirmed the expression of gusA gene in transformed calli, somatic embryos and transgenic plants. The presence and integration of the gusA gene were confirmed by PCR and Southern blot analysis, respectively. RT-PCR analysis of transgenic plants confirmed the expression of gusA gene. This protocol demonstrates significantly enhanced transformation efficiency over existing cassava transformation protocols and could become a powerful tool for functional genomics and transferring new traits into cassava. PMID:26113851

  16. Factors influencing somatic embryogenesis, regeneration, and Agrobacterium-mediated transformation of cassava (Manihot esculenta Crantz) cultivar TME14

    PubMed Central

    Nyaboga, Evans N.; Njiru, Joshua M.; Tripathi, Leena

    2015-01-01

    Routine production of large numbers of transgenic plants is required to fully exploit advances in cassava biotechnology and support development of improved germplasm for deployment to farmers. This article describes an improved, high-efficiency transformation protocol for recalcitrant cassava cultivar TME14 preferred in Africa. Factors that favor production of friable embryogenic calli (FEC) were found to be use of DKW medium, crushing of organized embryogenic structures (OES) through 1–2 mm sized metal wire mesh, washing of crushed OES tissues and short exposure of tyrosine to somatic embryos; and transformation efficiency was enhanced by use of low Agrobacterium density during co-cultivation, co-centrifugation of FEC with Agrobacterium, germination of paramomycin resistant somatic embryos on medium containing BAP with gradual increase in concentration and variations of the frequency of subculture of cotyledonary-stage embryos on shoot elongation medium. By applying the optimized parameters, FEC were produced for cassava cultivar TME14 and transformed using Agrobacterium strain LBA4404 harboring the binary vector pCAMBIA2301. About 70–80 independent transgenic lines per ml settled cell volume (SCV) of FEC were regenerated on selective medium. Histochemical GUS assays confirmed the expression of gusA gene in transformed calli, somatic embryos and transgenic plants. The presence and integration of the gusA gene were confirmed by PCR and Southern blot analysis, respectively. RT-PCR analysis of transgenic plants confirmed the expression of gusA gene. This protocol demonstrates significantly enhanced transformation efficiency over existing cassava transformation protocols and could become a powerful tool for functional genomics and transferring new traits into cassava. PMID:26113851

  17. Altering genomic integrity: heavy metal exposure promotes trans-posable element-mediated damage

    PubMed Central

    Morales, Maria E.; Servant, Geraldine; Ade, Catherine; Roy-Enge, Astrid M.

    2015-01-01

    Maintenance of genomic integrity is critical for cellular homeostasis and survival. The active transposable elements (TEs) composed primarily of three mobile element lineages LINE-1, Alu, and SVA comprise approximately 30% of the mass of the human genome. For the past two decades, studies have shown that TEs significantly contribute to genetic instability and that TE-caused damages are associated with genetic diseases and cancer. Different environmental exposures, including several heavy metals, influence how TEs interact with its host genome increasing their negative impact. This mini-review provides some basic knowledge on TEs, their contribution to disease and an overview of the current knowledge on how heavy metals influence TE-mediated damage. PMID:25774044

  18. Transition metal-catalyzed ketone-directed or mediated C-H functionalization.

    PubMed

    Huang, Zhongxing; Lim, Hee Nam; Mo, Fanyang; Young, Michael C; Dong, Guangbin

    2015-11-01

    Transition metal-catalyzed C-H functionalization has evolved into a prominent and indispensable tool in organic synthesis. While nitrogen, phosphorus and sulfur-based functional groups (FGs) are widely employed as effective directing groups (DGs) to control the site-selectivity of C-H activation, the use of common FGs (e.g. ketone, alcohol and amine) as DGs has been continuously pursued. Ketones are an especially attractive choice of DGs and substrates due to their prevalence in various molecules and versatile reactivity as synthetic intermediates. Over the last two decades, transition metal-catalyzed C-H functionalization that is directed or mediated by ketones has experienced vigorous growth. This review summarizes these advancements into three major categories: use of ketone carbonyls as DGs, direct β-functionalization, and α-alkylation/alkenylation with unactivated olefins and alkynes. Each of these subsections is discussed from the perspective of strategic design and reaction discovery. PMID:26185960

  19. Agrobacterium-mediated transformation of promising oil-bearing marine algae Parachlorella kessleri.

    PubMed

    Rathod, Jayant Pralhad; Prakash, Gunjan; Pandit, Reena; Lali, Arvind M

    2013-11-01

    Parachlorella kessleri is a unicellular alga which grows in fresh as well as marine water and is commercially important as biomass/lipid feedstock and in bioremediation. The present study describes the successful transformation of marine P. kessleri with the help of Agrobacterium tumefaciens. Transformed marine P. kessleri was able to tolerate more than 10 mg l(-1) hygromycin concentration. Co-cultivation conditions were modulated to allow the simultaneous growth of both marine P. kessleri and A. tumefaciens. For co-cultivation, P. kessleri was shifted from Walne's to tris acetate phosphate medium to reduce the antibiotic requirement during selection. In the present study, the transfer of T-DNA was successful without using acetosyringone. Biochemical and genetic analyses were performed for expression of transgenes by GUS assay and PCR in transformants. Establishment of this protocol would be useful in further genetic modification of oil-bearing Parachlorella species. PMID:24097049

  20. Hermes-mediated germ-line transformation of the Mediterranean fruit fly Ceratitis capitata.

    PubMed

    Michel, K; Stamenova, A; Pinkerton, A C; Franz, G; Robinson, A S; Gariou-Papalexiou, A; Zacharopoulou, A; O'Brochta, D A; Atkinson, P W

    2001-04-01

    We report the use of the Hermes transposable element for germ-line transformation of the Mediterranean fruit fly, Ceratitis capitata. Hermes was able to genetically transform this insect at an estimated frequency between 0.6 and 1.1%, which is comparable to the transformation frequencies obtained for this species when using other transposable elements. Hermes integrates into the medfly genome by a cut-and-paste mechanism and the sequences integrated into the genome are delimited by the terminal nucleotides of the Hermes inverted terminal repeats. Integration resulted in the generation of 8 bp target site duplications, the sequences of which conformed to the target site duplications generated by hAT element transposition in insects. The Hermes element is one additional genetic tool that can be deployed in manipulating and characterizing the medfly genome. PMID:11422511

  1. Cadophora finlandia and Phialocephala fortinii: Agrobacterium-mediated transformation and functional GFP expression.

    PubMed

    Gorfer, Markus; Klaubauf, Sylvia; Bandian, Dragana; Strauss, Joseph

    2007-07-01

    Hygromycin B resistance was transferred to the sterile mycelia of Cadophora finlandia and Phialocephala fortinii by co-cultivation with Agrobacterium tumefaciens. Constitutively expressed green fluorescent protein (GFP) was also introduced using the same vector. Confocal laser scanning microscopy (CLSM) revealed strong fluorescence of transformants. Both traits were mitotically stable during one year of subculturing on non-selective growth medium. Southern blot analysis showed that the majority of the transformants contained single-copy integrations at random sites in the genome. PMID:17662587

  2. PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival

    PubMed Central

    Panfil, Amanda R.; Al-Saleem, Jacob; Howard, Cory M.; Mates, Jessica M.; Kwiek, Jesse J.; Baiocchi, Robert A.; Green, Patrick L.

    2015-01-01

    Human T-cell leukemia virus type-1 (HTLV-1) is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL). This disease manifests after a long clinical latency period of up to 2–3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5) on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i) in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment. PMID:26729154

  3. Spermine detection via metal-mediated ethynylarene ‘turn-on’ fluorescence signaling

    PubMed Central

    Fletcher, James T.; Bruck, Brent S.

    2014-01-01

    A dicarboxylated ethynylarene was shown to behave as a fluorescent chemosensor for millimolar concentrations of polyamines when mixed with Cd(II), Pb(II) or Zn(II) ions at micromolar concentrations. A bathochromic shift and intensification of fluorescence emission was observed with increasing amounts of metal ion in the presence of aqueous polyamines buffered at pH = 7.6. Such perturbations manifested as ‘turn-on’ signals from a ratiometric comparison of emission intensities at 390 nm versus 340 nm. Using Pb(II) as the metal mediator, spermine was selectively detected as a 40-fold signal enhancement relative to spermidine, putrescine, cadaverine and several other non-biogenic diamines. Evaluation of additional triamine and tetraamine analytes showed the influence that amine group quantity and spacing had on signal generation. By increasing the ratio of Pb(II) relative to ethynylarene, the detection limit for spermine was successfully lowered to a 25 micromolar level. Noncovalent association between ethynylarene, metal ion and polyamine are believed to promote the observed spectroscopic changes. This study exploits the subtle impact that polyamine structural identity has on transition metal chelation to define a new approach towards polyamine chemosensor development. PMID:25530671

  4. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme

    PubMed Central

    Camenisch, Todd D.; Spicer, Andrew P.; Brehm-Gibson, Tammy; Biesterfeldt, Jennifer; Augustine, Mary Lou; Calabro, Anthony; Kubalak, Steven; Klewer, Scott E.; McDonald, John A.

    2000-01-01

    We identified hyaluronan synthase-2 (Has2) as a likely source of hyaluronan (HA) during embryonic development, and we used gene targeting to study its function in vivo. Has2–/– embryos lack HA, exhibit severe cardiac and vascular abnormalities, and die during midgestation (E9.5–10). Heart explants from Has2–/– embryos lack the characteristic transformation of cardiac endothelial cells into mesenchyme, an essential developmental event that depends on receptor-mediated intracellular signaling. This defect is reproduced by expression of a dominant-negative Ras in wild-type heart explants, and is reversed in Has2–/– explants by gene rescue, by administering exogenous HA, or by expressing activated Ras. Conversely, transformation in Has2–/– explants mediated by exogenous HA is inhibited by dominant-negative Ras. Collectively, our results demonstrate the importance of HA in mammalian embryogenesis and the pivotal role of Has2 during mammalian development. They also reveal a previously unrecognized pathway for cell migration and invasion that is HA-dependent and involves Ras activation. PMID:10930438

  5. piggybac- and PhiC31-Mediated Genetic Transformation of the Asian Tiger Mosquito, Aedes albopictus (Skuse)

    PubMed Central

    Labbé, Geneviève M. C.; Nimmo, Derric D.; Alphey, Luke

    2010-01-01

    Background The Asian tiger mosquito, Aedes albopictus (Skuse), is a vector of several arboviruses including dengue and chikungunya. This highly invasive species originating from Southeast Asia has travelled the world in the last 30 years and is now established in Europe, North and South America, Africa, the Middle East and the Caribbean. In the absence of vaccine or antiviral drugs, efficient mosquito control strategies are crucial. Conventional control methods have so far failed to control Ae. albopictus adequately. Methodology/Principal Findings Germline transformation of Aedes albopictus was achieved by micro-injection of embryos with a piggyBac-based transgene carrying a 3xP3-ECFP marker and an attP site, combined with piggyBac transposase mRNA and piggyBac helper plasmid. Five independent transgenic lines were established, corresponding to an estimated transformation efficiency of 2–3%. Three lines were re-injected with a second-phase plasmid carrying an attB site and a 3xP3-DsRed2 marker, combined with PhiC31 integrase mRNA. Successful site-specific integration was observed in all three lines with an estimated transformation efficiency of 2–6%. Conclusions/Significance Both piggybac- and site-specific PhiC31-mediated germline transformation of Aedes albopictus were successfully achieved. This is the first report of Ae. albopictus germline transformation and engineering, a key step towards studying and controlling this species using novel molecular techniques and genetic control strategies. PMID:20808959

  6. Race, Diversity Pedagogy: Mediated Learning Experience for Transforming Racist Habitus and Predispositions

    ERIC Educational Resources Information Center

    Cross, Michael; Naidoo, Devika

    2012-01-01

    This article foregrounds the salience of "lived experience" in the mediation of unlearning racialized habitus (Bourdieu and Wacquant 1992), and in learning and relearning the "truth about reality," or the truth about others. This article emphasizes the value of positive "lived experience" for anti-racist and reconciliation pedagogies, in addition…

  7. ELUCIDATING THE ROLE OF ELECTRON TRANSFER MEDIATORS IN REDUCTIVE TRANSFORMATIONS IN NATURAL SEDIMENTS

    EPA Science Inventory

    To study the identity and reactivity of electron transfer mediators (ETMs) in natural sediments, the reduction kinetics of a glass bead-azo dye complex were measured in abiotic and biotic model systems, as well as in natural sediments. In abiotic model systems, the bead-dye comp...

  8. Transmission, Transformation and Ritual: An Investigation of Students' and Researchers' Digitally Mediated Communications and Collaborative Work

    ERIC Educational Resources Information Center

    Timmis, Sue; Joubert, Marie; Manuel, Anne; Barnes, Sally

    2010-01-01

    This article explores the use of multiple digital tools for mediating communications, drawing on two recent empirical studies in which students and researchers in UK higher education worked on collaborative activities: how different tools were used and the quality of the communications and their contributions to collaborative working and knowledge…

  9. Role of Transformational Leadership in Effective Organizational Knowledge Creation Practices: Mediating Effects of Employees' Work Engagement

    ERIC Educational Resources Information Center

    Song, Ji Hoon; Kolb, Judith A.; Lee, Ung Hee; Kim, Hye Kyoung

    2012-01-01

    Engagement as an area of increasing interest has been discussed in terms of a wide array of organizational policies, practices, and outcomes. This study focuses on a specific aspect of work engagement and its relationship with leadership practices and the outcome of knowledge creation. The mediating effect of employees' work engagement level was…

  10. Aegle marmelos Mediated Green Synthesis of Different Nanostructured Metal Hexacyanoferrates: Activity against Photodegradation of Harmful Organic Dyes.

    PubMed

    Jassal, Vidhisha; Shanker, Uma; Kaith, B S

    2016-01-01

    Prussian blue analogue potassium metal hexacyanoferrate (KMHCF) nanoparticles Fe4[Fe(CN)6]3 (FeHCF), K2Cu3[Fe(CN)6]2 (KCuHCF), K2Ni[Fe(CN)6]·3H2O (KNiHCF), and K2Co[Fe(CN)6] (KCoHCF) have been synthesized using plant based biosurfactant Aegle marmelos (Bael) and water as a green solvent. It must be emphasized here that no harmful reagent or solvent was used throughout the study. Plant extracts are easily biodegradable and therefore do not cause any harm to the environment. Hence, the proposed method of synthesis of various KMHCF nanoparticles followed a green path. The synthesized nanoparticles were characterized by powder X-ray diffraction (PXRD), Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FT-IR). MHCF nanoparticles were used for the photocatalytic degradation of toxic dyes like Malachite Green (MG), Eriochrome Black T (EBT), Methyl Orange (MO), and Methylene Blue (MB). Under optimized reaction conditions, maximum photocatalytic degradation was achieved in case of KCuHCF nanoparticles mediated degradation process (MG: 96.06%, EBT: 83.03%, MB: 94.72%, and MO: 63.71%) followed by KNiHCF (MG: 95%, EBT: 80.32%, MB: 91.35%, and MO: 59.42%), KCoHCF (MG: 91.45%, EBT: 78.84%, MB: 89.28%, and MO: 58.20%). PMID:27034896

  11. Aegle marmelos Mediated Green Synthesis of Different Nanostructured Metal Hexacyanoferrates: Activity against Photodegradation of Harmful Organic Dyes

    PubMed Central

    Jassal, Vidhisha; Kaith, B. S.

    2016-01-01

    Prussian blue analogue potassium metal hexacyanoferrate (KMHCF) nanoparticles Fe4[Fe(CN)6]3 (FeHCF), K2Cu3[Fe(CN)6]2 (KCuHCF), K2Ni[Fe(CN)6]·3H2O (KNiHCF), and K2Co[Fe(CN)6] (KCoHCF) have been synthesized using plant based biosurfactant Aegle marmelos (Bael) and water as a green solvent. It must be emphasized here that no harmful reagent or solvent was used throughout the study. Plant extracts are easily biodegradable and therefore do not cause any harm to the environment. Hence, the proposed method of synthesis of various KMHCF nanoparticles followed a green path. The synthesized nanoparticles were characterized by powder X-ray diffraction (PXRD), Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), and Fourier Transform Infrared Spectroscopy (FT-IR). MHCF nanoparticles were used for the photocatalytic degradation of toxic dyes like Malachite Green (MG), Eriochrome Black T (EBT), Methyl Orange (MO), and Methylene Blue (MB). Under optimized reaction conditions, maximum photocatalytic degradation was achieved in case of KCuHCF nanoparticles mediated degradation process (MG: 96.06%, EBT: 83.03%, MB: 94.72%, and MO: 63.71%) followed by KNiHCF (MG: 95%, EBT: 80.32%, MB: 91.35%, and MO: 59.42%), KCoHCF (MG: 91.45%, EBT: 78.84%, MB: 89.28%, and MO: 58.20%). PMID:27034896

  12. Flexible sorption and transformation behavior in a microporous metal-organic framework.

    PubMed

    Cussen, Edmund J; Claridge, John B; Rosseinsky, Matthew J; Kepert, Cameron J

    2002-08-14

    Crystals of the metal-organic framework material Ni(2)(4,4'-bipyridine)(3)(NO(3))(4) (A) have been grown by reaction of Ni(NO(3))(2).6H(2)O and 4,4'-bipyridine in methanol solution. Single-crystal X-ray diffraction experiments show that the ladder structure of the framework is maintained after desolvation of the material, resulting in the production of a porous solid stable to 215(4) degrees C. Powder X-ray diffraction has been employed to confirm the bulk purity and temperature stability of this material. The crystal structure indicates that the pore window has an area of 12.3 A(2). However, sorption experiments show these windows will admit toluene, which has a minimum cross-sectional area of 26.6 A(2), with no significant change in the structure. Monte Carlo docking calculations show that toluene can be accommodated within the large pores of the structure. Exposure of the related microporous material Ni(2)(4,4'-bipyridine)(3)(NO(3))(4).2C(2)H(5)OH (B) to methanol vapor causes a guest-driven solid-state transformation to A which is observed using powder X-ray diffraction. This structural rearrangement proceeds directly from crystalline B to crystalline A and is complete in less than 1 day. Mechanisms for the transformation are proposed which require breaking of at least one in six of the covalent bonds that confer rigidity on the framework. PMID:12167052

  13. Lifting off the Ground to Return Anew: Mediated Praxis, Transformative Learning, and Social Design Experiments

    ERIC Educational Resources Information Center

    Gutierrez, Kris D.; Vossoughi, Shirin

    2010-01-01

    This article examines a praxis model of teacher education and advances a new method for engaging novice teachers in reflective practice and robust teacher learning. Social design experiments--cultural historical formations designed to promote transformative learning for adults and children--are organized around expansive notions of learning and…

  14. Possible stibnite transformation at the friction surface of the semi-metallic friction composites designed for car brake linings

    NASA Astrophysics Data System (ADS)

    Matějka, V.; Lu, Y.; Matějková, P.; Smetana, B.; Kukutschová, J.; Vaculík, M.; Tomášek, V.; Zlá, S.; Fan, Y.

    2011-12-01

    After a friction process several changes in phase composition of friction composites are often registered. High temperature, accompanied by high pressure induced during braking can cause initiation of chemical reactions which do not run at room or elevated temperatures under the atmospheric pressure. Most of the studies in the field of tribochemistry at friction surfaces of automotive semi-metallic brake linings deal with phenolic resin degradation and corrosion of metallic components. The paper addresses the formation of elemental antimony as well as the alloying process of iron with antimony observed on the surface of laboratory prepared semi-metallic friction composites containing stibnite. The role of alumina abrasives in the process of stibnite transformation is also discussed and mechanism of stibnite transformation was outlined.

  15. P21 Activated Kinase-1 Mediates Transforming Growth Factor β1-Induced Prostate Cancer Cell Epithelial to Mesenchymal Transition

    PubMed Central

    Al-Azayzih, Ahmad; Gao, Fei; Somanath, Payaningal R.

    2015-01-01

    Transforming growth factor beta (TGFβ) is believed to play a dual role in prostate cancer. Molecular mechanism by which TGFβ1 suppresses early prostate tumor growth and induces epithelial-to-mesenchymal transition (EMT) in advanced stages is not known. We determined if P21-activated kinase1 (Pak1), which mediates cytoskeletal remodeling is necessary for the TGFβ1 induced prostate cancer EMT. Effects of TGFβ1 on control prostate cancer PC3 and DU145 cells and those with IPA 3 and siRNA mediated Pak1 inhibition were tested for prostate tumor xenograft in vivo and EMT in vitro. TGFβ1 inhibited PC3 tumor xenograft growth via activation of P38-MAPK and caspase-3, 9. Long-term stimulation with TGFβ1 induced PC3 and DU145 cell scattering and increased expression of EMT markers such as Snail and N-cadherin through tumor necrosis factor receptor-associated factor-6 (TRAF6)-mediated activation of Rac1/Pak1 pathway. Selective inhibition of Pak1 using IPA 3 or knockdown using siRNA both significantly inhibited TGFβ1-induced prostate cancer cell EMT and expression of mesenchymal markers. Our study demonstrated that TGFβ1 induces apoptosis and EMT in prostate cancer cells via activation of P38-MAPK and Rac1/Pak1 respectively. Our results reveal the potential therapeutic benefits of targeting TGFβ1-Pak1 pathway for advanced-stage prostate cancer. PMID:25746720

  16. 6-Pyrazolylpurine as an Artificial Nucleobase for Metal-Mediated Base Pairing in DNA Duplexes

    PubMed Central

    Léon, J. Christian; Sinha, Indranil; Müller, Jens

    2016-01-01

    The artificial nucleobase 6-pyrazol-1-yl-purine (6PP) has been investigated with respect to its usability in metal-mediated base pairing. As was shown by temperature-dependent UV spectroscopy, 6PP may form weakly stabilizing 6PP–Ag(I)–6PP homo base pairs. Interestingly, 6PP can be used to selectively recognize a complementary pyrimidine nucleobase. The addition of Ag(I) to a DNA duplex comprising a central 6PP:C mispair (C = cytosine) leads to a slight destabilization of the duplex. In contrast, a stabilizing 6PP–Ag(I)–T base pair is formed with a complementary thymine (T) residue. It is interesting to note that 6PP is capable of differentiating between the pyrimidine moieties despite the fact that it is not as sterically crowded as 6-(3,5-dimethylpyrazol-1-yl)purine, an artificial nucleobase that had previously been suggested for the recognition of nucleic acid sequences via the formation of a metal-mediated base pair. Hence, the additional methyl groups of 6-(3,5-dimethylpyrazol-1-yl)purine may not be required for the specific recognition of the complementary nucleobase. PMID:27089326

  17. Metal ion mediated synthesis of molecularly imprinted polymers targeting tetracyclines in aqueous samples.

    PubMed

    Qu, Guorun; Zheng, Sulian; Liu, Yumin; Xie, Wei; Wu, Aibo; Zhang, Dabing

    2009-10-01

    Molecularly imprinted polymers (MIPs) prepared in water-containing systems are more appropriate as adsorption materials in analyte extraction from biological samples. However, water as a polar solvent involved in the synthesis of MIPs frequently disrupts non-covalent interactions, and causes non-specific binding. In this study Fe(2+) was used as mediator to prepare MIPs, targeting tetracyclines (TCs) of tetracycline (TC), oxytetracycline (OTC) and chlortetracycline (CTC), with TC as template molecule and methacrylic acid (MAA) as functional monomer. The subsequent binding assay indicated that Fe(2+) was responsible for substantially improved specific binding in recognition of TCs by decreasing the non-specific binding. Spectrophotometric analysis suggested the existence of the strong interactions among TC, metal ions and MAA in the mixture of methanol and water. Moreover, mass spectrometric measurements verified that Fe(2+) could bridge between TC and MAA to form a ternary complex of one TC, one Fe(2+) and four MAAs with a mass of 844.857. Furthermore, combined with molecularly imprinted solid-phase extraction (MISPE) for sample pretreatment, HPLC-UV analysis data revealed good performance of the obtained MIPs as adsorbents. The recoveries of TC, OTC and CTC in urine samples were 80.1-91.6%, 78.4-89.3% and 78.2-86.2%, respectively. This research strategy provides an example for preparation of desirable water-compatible MIPs extracting target drugs from aqueous samples by introducing metal ion as mediator into conventional polymerization system. PMID:19726243

  18. Cyclin dependent kinase 2 (CDK2) is a key mediator for EGF-induced cell transformation mediated through the ELK4/c-Fos signaling pathway

    PubMed Central

    Peng, Cong; Zeng, Weiqi; Su, Juan; Kuang, Yehong; He, Yijin; Zhao, Shuang; Zhang, Jianglin; Ma, Weiya; Bode, Ann M.; Dong, Zigang; Chen, Xiang

    2015-01-01

    Cyclin dependent kinase 2 (CDK2) is a known regulator in the cell cycle control of the G1/S and S/G2 transitions. However, the role of CDK2 in tumorigenesis is controversial. Evidence from knockout mice as well as colon cancer cell lines indicated that CDK2 is dispensable for cell proliferation. In this study, we found that ectopic CDK2 enhances Ras (G12V)-induced foci formation and knocking down CDK2 expression dramatically decreases EGF-induced cell transformation mediated through the down-regulation of c-fos expression. Interestingly, CDK2 directly phosphorylates ELK4 at Thr194 and Ser387 and regulates ELK4 transcriptional activity, which serves as a mechanism to regulate c-fos expression. In addition, ELK4 is over-expressed in melanoma and knocking down ELK4 or CDK2 expression significantly attenuated the malignant phenotype of melanoma cells. Taken together, our study reveals a novel function of CDK2 in EGF-induced cell transformation and the associated signal transduction pathways. This indicates that CDK2 is a useful molecular target for chemoprevention and therapy against skin cancer. PMID:26028036

  19. Development of an Agrobacterium-mediated transformation system for the cold-adapted fungi Pseudogymnoascus destructans and P. pannorum.

    PubMed

    Zhang, Tao; Ren, Ping; Chaturvedi, Vishnu; Chaturvedi, Sudha

    2015-08-01

    The mechanisms of cold adaptation by fungi remain unknown. This topic is of high interest due to the emergence of white-nose syndrome (WNS), a skin infection of hibernating bats caused by Pseudogymnoascus destructans (Pd). Recent studies indicated that apart from Pd, there is an abundance of other Pseudogymnoascus species in the hibernacula soil. We developed an Agrobacterium tumefaciens-mediated transformation (ATMT) system for Pd and a related fungus Pseudogymnoascus pannorum (Pp) to advance experimental studies. URE1 gene encoding the enzyme urease was used as an easy to screen marker to facilitate molecular genetic analyses. A Uracil-Specific Excision Reagent (USER) Friendly pRF-HU2 vector containing Pd or Pp ure1::hygromycin (HYG) disruption cassette was introduced into A. tumefaciens AGL-1 cells by electroporation and the resulting strains were co-cultivated with conidia of Pd or Pp for various durations and temperatures to optimize the ATMT system. Overall, 680 Pd (0.006%) and 1800 Pp (0.018%) transformants were obtained from plating of 10(7) conidia; their recoveries were strongly correlated with the length of the incubation period (96h for Pd; 72h for Pp) and with temperature (15-18°C for Pd; 25°C for Pp). The homologous recombination in transformants was 3.1% for Pd and 16.7% for Pp. The availability of a standardized ATMT system would allow future molecular genetic analyses of Pd and related cold-adapted fungi. PMID:26051491

  20. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants

    NASA Technical Reports Server (NTRS)

    Cardoza, V.; Stewart, C. N.

    2003-01-01

    An efficient protocol for the production of transgenic Brassica napus cv. Westar plants was developed by optimizing two important parameters: preconditioning time and co-cultivation time. Agrobacterium tumefaciens-mediated transformation was performed using hypocotyls as explant tissue. Two variants of a green fluorescent protein (GFP)-encoding gene--mGFP5-ER and eGFP--both under the constitutive expression of the cauliflower mosaic virus 35S promoter, were used for the experiments. Optimizing the preconditioning time to 72 h and co-cultivation time with Agrobacterium to 48 h provided the increase in the transformation efficiency from a baseline of 4% to 25%. With mGFP5-ER, the transformation rate was 17% and with eGFP it was 25%. Transgenic shoots were selected on 200 mg/l kanamycin. Rooting efficiency was 100% on half-strength Murashige and Skoog medium with 10 g/l sucrose and 0.5 mg/l indole butyric acid in the presence of kanamycin.

  1. Porphyrin-Metalation-Mediated Tuning of Photoredox Catalytic Properties in Metal–Organic Frameworks

    SciTech Connect

    Johnson, Jacob A.; Luo, Jian; Zhang, Xu; Chen, Yu-Sheng; Morton, Martha D.; Echeverría, Elena; Torres, Fernand E.; Zhang, Jian

    2015-09-04

    Photoredox catalytic activation of organic molecules via single-electron transfer processes has proven to be a mild and efficient synthetic methodology. However, the heavy reliance on expensive ruthenium and iridium complexes limits their applications for scale-up synthesis. To this end, photoactive metal–organic frameworks (MOFs) exhibit unique advantages as novel heterogeneous photocatalytic systems, yet their utilization toward organic transformations has been limited. Here we describe the preparation and synthetic applications of four isostructural porphyrinic MOFs, namely, UNLPF-10a, -10b, -11, and -12, which are composed of free base, InIII-, SnIVCl2-, and SnIV-porphyrin building blocks, respectively. We demonstrate that the metalation with high valent metal cations (InIII and SnIV) significantly modifies the electronic structure of porphyrin macrocycle and provides a highly oxidative photoexcited state that can undergo efficient reductive quenching processes to facilitate organic reactions. In particular, UNLPF-12 exhibits both outstanding photostability and efficient photocatalytic activities toward a range of important organic transformations including aerobic hydroxylation of arylboronic acids, amine coupling, and the Mannich reaction.

  2. Utilizing Hilbert-Huang transform in detection some of mechanical properties of the refractory metals

    NASA Astrophysics Data System (ADS)

    Mohammed, Arshed Abdulhamed; Haris, Sallehuddin Mohamed; Nuawi, Mohd Zaki

    2016-02-01

    This study is one of the first to report on the use of Hilbert-Huang transform (HHT) to determine the modulus of elasticity of a material, which is one of the most important properties of metals. In addition, this study involves an analytical study of the process of transfer of energy, which was represented in the form of intrinsic mode functions (IMFs). Moreover, the distribution of IMFs within the time-frequency-plain was determined by testing eight test specimens. Five test specimens were refractory materials, namely, Ti, Ti6AL4V, Zr, Nb, and Ta, and the other three were non-refractory materials, namely, Al, Brass, and ST4340. The new setup was composed of Mg and involves the use of two piezoelectric transducers, which were used as the emitter and receiver. The setup was designed and implemented in this research based on Mg usage to test the metals. First, a new relationship was derived between the pressure transmission coefficient (PTC) of the transmitted wave (through the emitter-water-test specimen-Mg to the receiver) and the corresponding values of the product of the density (ρ) and the modulus of elasticity (E) for the same test specimen. Another relationship was established between the PTCs and the total energy transmitted at high frequencies. This energy indicates the summation of IMFs that have high frequencies (THIMFs), higher than 10 kHz, can determine E better than TOF for most test specimens. To verify this results, with regard to the second conclusion, a new simulation for this setup was carried out using Simulink in MATLAB. Twelve theoretical tests were done, for high acoustic impedance metals, like Hf, Mo, WNiFe and W in addition to test the same group which was tested experimentally. The results of theoretical tests supported the experimental results except for Nb. Most of the conclusions were obtained through practical results and analytical studies. The results proved that THIMFs can determine the change in the microstructure of the alloys

  3. Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange.

    PubMed

    Bateman, Jack R; Lee, Anne M; Wu, C-ting

    2006-06-01

    Position effects can complicate transgene analyses. This is especially true when comparing transgenes that have inserted randomly into different genomic positions and are therefore subject to varying position effects. Here, we introduce a method for the precise targeting of transgenic constructs to predetermined genomic sites in Drosophila using the C31 integrase system in conjunction with recombinase-mediated cassette exchange (RMCE). We demonstrate the feasibility of this system using two donor cassettes, one carrying the yellow gene and the other carrying GFP. At all four genomic sites tested, we observed exchange of donor cassettes with an integrated target cassette carrying the mini-white gene. Furthermore, because RMCE-mediated integration of the donor cassette is necessarily accompanied by loss of the target cassette, we were able to identify integrants simply by the loss of mini-white eye color. Importantly, this feature of the technology will permit integration of unmarked constructs into Drosophila, even those lacking functional genes. Thus, C31 integrase-mediated RMCE should greatly facilitate transgene analysis as well as permit new experimental designs. PMID:16547094

  4. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions

    SciTech Connect

    Zhang, Yugang; Pal, Suchetan; Srinivasan, Babji; Vo, Thi; Kumar, Sanat; Gang, Oleg

    2015-05-25

    The rapid development of self-assembly approaches has enabled the creation of materials with desired organization of nanoscale components. However, achieving dynamic control, wherein the system can be transformed on demand into multiple entirely different states, is typically absent in atomic and molecular systems and has remained elusive in designed nanoparticle systems. Here, we demonstrate with in situ small-angle x-ray scattering that, by using DNA strands as inputs, the structure of a three-dimensional lattice of DNA-coated nanoparticles can be switched from an initial 'mother' phase into one of multiple 'daughter' phases. The introduction of different types of re-programming DNA strands modifies the DNA shells of the nanoparticles within the superlattice, thereby shifting interparticle interactions to drive the transformation into a particular daughter phase. We mapped quantitatively with free-energy calculations the selective re-programming of interactions onto the observed daughter phases.

  5. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions

    DOE PAGESBeta

    Zhang, Yugang; Pal, Suchetan; Srinivasan, Babji; Vo, Thi; Kumar, Sanat; Gang, Oleg

    2015-05-25

    The rapid development of self-assembly approaches has enabled the creation of materials with desired organization of nanoscale components. However, achieving dynamic control, wherein the system can be transformed on demand into multiple entirely different states, is typically absent in atomic and molecular systems and has remained elusive in designed nanoparticle systems. Here, we demonstrate with in situ small-angle x-ray scattering that, by using DNA strands as inputs, the structure of a three-dimensional lattice of DNA-coated nanoparticles can be switched from an initial 'mother' phase into one of multiple 'daughter' phases. The introduction of different types of re-programming DNA strands modifiesmore » the DNA shells of the nanoparticles within the superlattice, thereby shifting interparticle interactions to drive the transformation into a particular daughter phase. We mapped quantitatively with free-energy calculations the selective re-programming of interactions onto the observed daughter phases.« less

  6. Assessment of the fatigue transformation zone in bulk metallic glasses using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, M.; Vallery, R. S.; Gidley, D. W.; Launey, M. E.; Kruzic, J. J.

    2009-05-01

    Depth-profiled Doppler broadening spectroscopy of positron annihilation on fatigue fracture surfaces of two amorphous Zr44Ti11Ni10Cu10Be25 metallic glass specimens reveals the presence of a layer of increased free volume induced by cyclic deformation, as compared to surfaces that have been etched to remove any surface damage. The damage layer, or fatigue transformation zone (FTZ), is generated by the propagating fatigue crack tip and the deduced size of that zone is similar to the predicted cyclic plastic zone size at a number of locations where the crack grew at different stress intensities. The presence of the FTZ is independent of the initial amount of bulk free volume, which was varied between the two specimens by structural relaxation via annealing, and the free volume sites generated in the zone are distinct from those typical of the bulk, as evidenced by the higher S parameter. Such observations support the concept that the mechanically induced free volume within the FTZ zone controls the fatigue crack growth rates rather than the initial free volume of the bulk material.

  7. Transformations of particles, metal elements and natural organic matter in different water treatment processes.

    PubMed

    Yan, Ming-Quan; Wang, Dong-Sheng; Shi, Bao-You; Wei, Qun-Shan; Qu, Jiu-Hui; Tang, Hong-Xiao

    2007-01-01

    Characterizing natural organic matter (NOM), particles and elements in different water treatment processes can give a useful information to optimize water treatment operations. In this article, transformations of particles, metal elements and NOM in a pilot-scale water treatment plant were investigated by laser light granularity system, particle counter, glass-fiber membrane filtration, inductively coupled plasma-optical emission spectroscopy, ultra filtration and resin absorbents fractionation. The results showed that particles, NOM and trihalomethane formation precursors were removed synergistically by sequential treatment of different processes. Pre-ozonation markedly changed the polarity and molecular weight of NOM, and it could be conducive to the following coagulation process through destabilizing particles and colloids; mid-ozonation enhanced the subsequent granular activated carbon (GAC) filtration process by decreasing molecular weight of organic matters. Coagulation-flotation and GAC were more efficient in removing fixed suspended solids and larger particles; while sand-filtration was more efficient in removing volatile suspended solids and smaller particles. Flotation performed better than sedimentation in terms of particle and NOM removal. The type of coagulant could greatly affect the performance of coagulation-flotation. Pre-hydrolyzed composite coagulant (HPAC) was superior to FeCl3 concerning the removals of hydrophobic dissolved organic carbon and volatile suspended solids. The leakages of flocs from sand-filtration and microorganisms from GAC should be mitigated to ensure the reliability of the whole treatment system. PMID:17918586

  8. Agrobacterium tumefaciens-Mediated Transformation for Investigation of Somatic Recombination in the Fungal Pathogen Armillaria mellea▿

    PubMed Central

    Baumgartner, Kendra; Fujiyoshi, Phillip; Foster, Gary D.; Bailey, Andy M.

    2010-01-01

    Armillaria root disease is one of the most damaging timber and fruit tree diseases in the world. Despite its economic importance, many basic questions about the biology of the causal fungi, Armillaria spp., are unanswered. For example, Armillaria undergoes matings between diploid and haploid mycelia, which can result in a recombinant diploid without meiosis. Evidence of such somatic recombination in natural populations suggests that this reproductive mode may affect the pathogen's ecology. Investigations of the mechanisms and adaptive consequences of somatic recombination are, however, hampered by the lack of a method to reliably synthesize somatic recombinants. Here we report the first genetic transformation system for the genus Armillaria. We transformed A. mellea with selective markers for use in diploid-haploid matings to reliably synthesize somatic recombinants. This was accomplished with Agrobacterium tumefaciens carrying pBGgHg, which carries the hygromycin phosphotransferase gene (hph). hph was integrated into transformants, as evidenced by serial transfer to selective media, PCR, reverse transcription-PCR (RT-PCR), and Southern hybridization. Nuclear and mitochondrial markers were developed to genotype synthesized mycelia. In matings between a wild-type diploid and hygromycin-resistant haploids (transgenic), we identified recombinant, hygromycin-resistant diploids and, additionally, hygromycin-resistant triploids, all with the mitochondrial haplotype of the haploid partner. Our approach created no mycelium in which the haploid nucleus was replaced by the diploid nucleus, the typical outcome of diploid-haploid matings in Armillaria. This genetic transformation system, in combination with new markers to track chromosomal and cytoplasmic inheritance in A. mellea, will advance research aimed at characterizing the significance of somatic recombination in the ecology of this important fungus. PMID:20952653

  9. [Establishment of high efficiency genetic transformation system of maize mediated by Agrobacterium tumefaciens].

    PubMed

    WEI, Kai-Fa

    2009-11-01

    In order to establish high-frequency regeneration and high-efficiency genetic transformation system in maize, the significance of the 11 factors influencing maize embryonic callus induction and 9 factors affecting embryonic callus differentiation was researched by orthogonal experiment. The results showed that genotype had highly significant impact on induction of embryonic callus. The concentration of 6-BA, AgNO3, 2,4-D, ABA, and medium are the significant factors. The Multi-comparison showed that ABA 2 mg/L has a significant influence. Among the callus differentiation factors, the genotype and 6-BA concentration showed a strong main effect, the concentrations of NAA, medium, KT and 2,4-D had significant impacts on callus differentiation. Southern blotting analysis demonstrated that the resistant callus rate under the selection pressure of 25 mg/L hygromycin was a reliable indicator for system optimization in resistance screening. The concentration of acetosyringone (AS) showed sensitive differences among genotypes. The highest transformation rate was found with the optimized combination of 24-25 degrees C for co-culture temperature, 0.7 ODx15 min for Agrobacterium tumefa-ciens concentration and incubation-time, and pH 5.5-6.2. By this optimized combination, the survival rate of resistant calli as an index for the stable transformation rates of inbred lines Huangzao 4 and Zong 31 by introducing GUS gene into maize inbred lines was as high as 48.6% and 46.2%, respectively. PMID:19933098

  10. Biophysical and functional consequences of receptor-mediated nerve fiber transformation.

    PubMed Central

    Tanelian, D L; Markin, V S

    1997-01-01

    Stimulation of the nervous system by substance P, a G protein-coupled receptor, and subsequent receptor internalization causes dendrites to change their shape from homogeneous cylinders to a heterogeneous string of swollen varicosities (beads) connected by thin segments. In this paper we have analyzed this phenomenon and propose quantitative mechanisms to explain this type of physical shape transformation. We developed a mathematical solution to describe the relationship between the initial radius of a cylindrical nerve fiber and the average radii of the subsequently created varicosities and connecting segments, as well as the periodicity of the varicosities along the nerve fiber. Theoretical predictions are in good agreement with our own and published experimental data from dorsal root ganglion neurons, spinal cord, and brain. Modeling the electrical properties of these beaded fibers has led to an understanding of the functional biophysical consequences of nerve fiber transformation. Several hypotheses for how this shape transformation can be used to process information within the nervous system have been put forth. Images FIGURE 1 FIGURE 6 PMID:9138558

  11. Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency

    PubMed Central

    He, Y.; Jones, H. D.; Chen, S.; Chen, X. M.; Wang, D. W.; Li, K. X.; Wang, D. S.; Xia, L. Q.

    2010-01-01

    An efficient Agrobacterium-mediated durum wheat transformation system has been developed for the production of 121 independent transgenic lines. This improved system used Agrobacterium strain AGL1 containing the superbinary pGreen/pSoup vector system and durum wheat cv Stewart as the recipient plant. Acetosyringone at 400 μM was added to both the inoculation and cultivation medium, and picloram at 10 mg l−1 and 2 mg l−1 was used in the cultivation and induction medium, respectively. Compared with 200 μM in the inoculation and cultivation media, the increased acetosyringone concentration led to significantly higher GUS (β-glucuronidase) transient expression and T-DNA delivery efficiency. However, no evident effects of acetosyringone concentration on regeneration frequency were observed. The higher acetosyringone concentration led to an improvement in average final transformation efficiency from 4.7% to 6.3%. Furthermore, the concentration of picloram in the co-cultivation medium had significant effects on callus induction and regeneration. Compared with 2 mg l−1 picloram in the co-cultivation medium, increasing the concentration to 10 mg l−1 picloram resulted in improved final transformation frequency from 2.8% to 6.3%, with the highest frequency of 12.3% reached in one particular experiment, although statistical analysis showed that this difference in final transformation efficiency had a low level of significance. Stable integration of foreign genes, their expression, and inheritance were confirmed by Southern blot analyses, GUS assay, and genetic analysis. Analysis of T1 progeny showed that, of the 31 transgenic lines randomly selected, nearly one-third had a segregation ratio of 3:1, while the remainder had ratios typical of two or three independently segregating loci. PMID:20202997

  12. In situ-generated metal oxide catalyst during CO oxidation reaction transformed from redox-active metal-organic framework-supported palladium nanoparticles

    PubMed Central

    2012-01-01

    The preparation of redox-active metal-organic framework (ra-MOF)-supported Pd nanoparticles (NPs) via the redox couple-driven method is reported, which can yield unprotected metallic NPs at room temperature within 10 min without the use of reducing agents. The Pd@ra-MOF has been exploited as a precursor of an active catalyst for CO oxidation. Under the CO oxidation reaction condition, Pd@ra-MOF is transformed into a PdOx-NiOy/C nanocomposite to generate catalytically active species in situ, and the resultant nanocatalyst shows sustainable activity through synergistic stabilization. PMID:22898143

  13. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal

    NASA Astrophysics Data System (ADS)

    Dong, Zhihui; Zhang, Feng; Wang, Dong; Liu, Xia; Jin, Jian

    2015-04-01

    By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI-PD/GO composite nanosheets. The PEI-PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu2+, Cd2+, Pb2+, Hg2+ are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI-PD/RGO aerogel was prepared through hydrothermal and achieved a high surface area up to 373 m2/g. Although the adsorption capacity of PEI-PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI-PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu2+, Cd2+, Pb2+, and Hg2+, respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater.

  14. Hyperbranched polymer mediated fabrication of water soluble carbon nanotube-metal nanoparticle hybrids

    NASA Astrophysics Data System (ADS)

    Li, Haiqing; Cooper-White, Justin J.

    2013-03-01

    1-Pyrenemethanol initiated hyperbranched polyglycerol (PiHP) has been synthesized and utilized to non-covalently functionalize pristine multi-walled carbon nanotubes (CNTs) through π-π stacking interactions. Mediated with the PiHP coating, a variety of metal nanoparticles (Au, Ag, Pd and Pt) were in situ generated and randomly tethered on the CNT sidewalls, producing various water-soluble CNT/PiHP/metal hybrids. Particularly, the resulting CNT/PiHP/Pt hybrids possess improved metal coverage in comparison to the reported CNT/Pt nanohybrids obtained by the use of conventional non-covalent CNT surface-modifiers. Depending on the using concentration of Pt2+ precursor, Pt coverage in CNT/PiHP/Pt hybrids can be effectively controlled. In the meanwhile, Pt component on the CNT sidewalls can be either well isolated nanoparticles or loose ``nanoclusters''. To test the promising catalytic application of these obtained CNT/PiHP/Pt hybrids, a systematic investigation on their catalytic performance towards the reduction of 4-nitrophenol to produce 4-aminophenol was performed. Surprisingly, these hybrids exhibited significantly enhanced catalytic activity compared with the conventionally utilized Au and Ag nanoparticles. Moreover, they can be easily recovered and reused without significant loss in catalytic activity after running 6 circles.

  15. Metal-Mediated Affinity and Orientation Specificity in a Computationally Designed Protein Homodimer

    SciTech Connect

    Der, Bryan S.; Machius, Mischa; Miley, Michael J.; Mills, Jeffrey L.; Szyperski, Thomas; Kuhlman, Brian

    2015-10-15

    Computationally designing protein-protein interactions with high affinity and desired orientation is a challenging task. Incorporating metal-binding sites at the target interface may be one approach for increasing affinity and specifying the binding mode, thereby improving robustness of designed interactions for use as tools in basic research as well as in applications from biotechnology to medicine. Here we describe a Rosetta-based approach for the rational design of a protein monomer to form a zinc-mediated, symmetric homodimer. Our metal interface design, named MID1 (NESG target ID OR37), forms a tight dimer in the presence of zinc (MID1-zinc) with a dissociation constant <30 nM. Without zinc the dissociation constant is 4 {micro}M. The crystal structure of MID1-zinc shows good overall agreement with the computational model, but only three out of four designed histidines coordinate zinc. However, a histidine-to-glutamate point mutation resulted in four-coordination of zinc, and the resulting metal binding site and dimer orientation closely matches the computational model (C{alpha} rmsd = 1.4 {angstrom}).

  16. Chromosome 17p13.2 transfer reverts transformation phenotypes and Fas-mediated apoptosis in breast epithelial cells.

    PubMed

    Lareef, Mohamed H; Tahin, Quivo; Song, Joon; Russo, Irma H; Mihaila, Dana; Slater, Carolyn M; Balsara, Binaifer; Testa, Joseph R; Broccoli, Dominique; Grobelny, Jennifer V; Mor, Gil; Cuthbert, Andrew; Russo, Jose

    2004-04-01

    Transformation of the human breast epithelial cells (HBEC) MCF-10F with the carcinogen benz(a)pyrene (BP) into BP1-E cells resulted in the loss of the chromosome 17 p13.2 locus (D17S796 marker) and formation of colonies in agar-methocel (colony efficiency (CE)), loss of ductulogenic capacity in collagen matrix, and resistance to anti-Fas monoclonal antibody (Mab)-induced apoptosis. For testing the role of that specific region of chromosome 17 in the expression of transformation phenotypes, we transferred chromosome 17 from mouse fibroblast donors to BP1-E cells. Chromosome 11 was used as negative control. After G418 selection, nine clones each were randomly selected from BP1-E-11neo and BP1-E-17neo hybrids, respectively, and tested for the presence of the donor chromosomes by fluorescent in situ hybridization and polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analyses. Sensitivity to Fas Mab-induced apoptosis and evaluation of transformation phenotype expression were tested in MCF-10F, BP1-E, and nine BP1-E-11neo and BP1-E-17neo clones each. Six BP1-E-17neo clones exhibited a reversion of transformation phenotypes and a dose dependent sensitivity to Fas Mab-induced apoptosis, behaving similarly to MCF-10F cells. All BP1-E-11neo, and three BP1-E-17neo cell clones, like BP1-E cells, retained a high CE, loss of ductulogenic capacity, and were resistant to all Fas Mab doses tested. Genomic analysis revealed that those six BP1-E-17neo clones that were Fas-sensitive and reverted their transformed phenotypes had retained the 17p13.2 (D17S796 marker) region, whereas it was absent in all resistant clones, indicating that the expression of transformation phenotypes and the sensitivity of the cells to Fas-mediated apoptosis were under the control of genes located in this region. PMID:15057875

  17. Treatment of percolate from metal sulfide mine tailings with a permeable reactive barrier of transformed red mud.

    PubMed

    Zijlstra, J J P; Dessì, R; Peretti, R; Zucca, A

    2010-04-01

    Metal sulfide tailings of the Sardinian (Italy) abandoned Baccu Locci arsenic mine show high concentrations of aluminum, arsenic, cadmium, copper, manganese, lead, and zinc in acid percolate (pH = 4) and have been classified as "dangerous waste." This paper shows that the release of toxic metals can be strongly reduced when the tailings are placed on a reactive permeable bed (7 wt %) of porous, alkaline pellets of transformed red mud (TRM). During a laboratory percolation test, two columns with 80 kg of waste, of which one contained a bottom layer of TRM pellets, were each alimented with 600 L of de-ionized water. Comparing pH, electroconductivity, metal, and sulfate concentrations of collected percolate from both columns demonstrates efficient neutralization (pH = 7.4) and removal of metals (80 to 99%) for the column with the permeable reactive bottom layer. PMID:20432649

  18. Expression and genomic integration of transgenes after Agrobacterium-mediated transformation of mature barley embryos.

    PubMed

    Uçarlı, C; Tufan, F; Gürel, F

    2015-01-01

    Mature embryos in tissue cultures are advantageous because of their abundance and rapid germination, which reduces genomic instability problems. In this study, 2-day-old isolated mature barley embryos were infected with 2 Agrobacterium hypervirulent strains (AGL1 and EHA105), followed by a 3-day period of co-cultivation in the presence of L-cystein amino acid. Chimeric expression of the b-glucuronidase gene (gusA) directed by a viral promoter of strawberry vein banding virus was observed in coleoptile epidermal cells and seminal roots in 5-day-old germinated seedlings. In addition to varying infectivity patterns in different strains, there was a higher ratio of transient b-glucuronidase expression in developing coleoptiles than in embryonic roots, indicating the high competency of shoot apical meristem cells in the mature embryo. A total of 548 explants were transformed and 156 plants developed to maturity on G418 media after 18-25 days. We detected transgenes in 74% of the screened plant leaves by polymerase chain reaction, and 49% of these expressed neomycin phosphotransferase II gene following AGL1 transformation. Ten randomly selected T0 transformants were analyzed using thermal asymmetric interlaced polymerase chain reaction and 24 fragments ranged between 200-600 base pairs were sequenced. Three of the sequences flanked with transferred-DNA showed high similarity to coding regions of the barley genome, including alpha tubulin5, homeobox 1, and mitochondrial 16S genes. We observed 70-200-base pair filler sequences only in the coding regions of barley in this study. PMID:25730049

  19. Epigenetic mediated transcriptional activation of WNT5A participates in arsenical-associated malignant transformation

    SciTech Connect

    Jensen, Taylor J.; Wozniak, Ryan J.; Eblin, Kylee E.; Wnek, Sean M.; Gandolfi, A. Jay; Futscher, Bernard W.

    2009-02-15

    Arsenic is a human carcinogen with exposure associated with cancer of the lung, skin, and bladder. Many potential mechanisms have been implicated as playing a role in the process of arsenical-induced malignancy including the perturbation of signaling pathways and aberrant epigenetic regulation. We initiated studies to examine the role of a member of the non-canonical WNT signaling pathway, WNT5A, in UROtsa cells and arsenite [URO-ASSC] and monomethylarsonous acid [URO-MSC] malignantly transformed variants. We present data herein that suggest that WNT5A is transcriptionally activated during arsenical-induced malignant transformation. This WNT5A transcriptional activation is correlated with the enrichment of permissive histone modifications and the reduction of repressive modifications in the WNT5A promoter region. The epigenetic activation of WNT5A expression and acetylation of its promoter remain after the removal of the arsenical, consistent with the maintenance of an anchorage independent growth phenotype in these cells. Additionally, treatment with epigenetic modifying drugs supports a functional role for these epigenetic marks in controlling gene expression. Reduction of WNT5A using lentiviral shRNA greatly attenuated the ability of these cells to grow in an anchorage independent fashion. Extension of our model into human bladder cancer cell lines indicates that each of the cell lines examined also express WNT5A. Taken together, these data suggest that the epigenetic remodeling of the WNT5A promoter is correlated with its transcriptional activation and this upregulation likely participates in arsenical-induced malignant transformation.

  20. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: Reliable techniques for analysis of Parthenium mediated vermicompost

    NASA Astrophysics Data System (ADS)

    Rajiv, P.; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung.

  1. Fourier transform-infrared spectroscopy and Gas chromatography-mass spectroscopy: reliable techniques for analysis of Parthenium mediated vermicompost.

    PubMed

    Rajiv, P; Rajeshwari, Sivaraj; Venckatesh, Rajendran

    2013-12-01

    Fourier transform infrared spectroscopy (FT-IR) and Gas chromatography-mass spectroscopy have been carried out to investigate the chemical composition of Parthenium mediated vermicompost. Four different concentrations of Parthenium and cow dung mixtures were vermicomposted using the earthworms (Eudrilus eugeniae). FT-IR spectra reveal the absence of Parthenin toxin (sesquiterpene lactone) and phenols in vermicompost which was obtained from high concentration of cow dung mixed treatments. GC-MS analysis shows no phenolic compounds and predominant level of intermediate metabolites such as 4,8,12,16-Tetramethylheptadecan-4-olide (7.61%), 2-Pentadecanone, 6,10,14-trimethyl- (5.29%) and Methyl 16-methyl-heptadecanoate (4.69%) during the vermicomposting process. Spectral results indicated that Parthenin toxin and phenols can be eradicated via vermicomposting if mixed with appropriate quantity of cow dung. PMID:23998948

  2. Metal-mediated modulation of streptococcal cysteine protease activity and its biological implications.

    PubMed

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A; Caruso, Joseph A; Kotb, Malak

    2014-07-01

    Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues (47)Cys and (195)His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625

  3. Metal-Mediated Modulation of Streptococcal Cysteine Protease Activity and Its Biological Implications

    PubMed Central

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A.; Caruso, Joseph A.

    2014-01-01

    Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues 47Cys and 195His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625

  4. Development of Agrobacterium-mediated transformation of highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease.

    PubMed

    Elayabalan, Sivalingam; Kalaiponmani, Kalaimughilan; Subramaniam, Sreeramanan; Selvarajan, Ramasamy; Panchanathan, Radha; Muthuvelayoutham, Ramlatha; Kumar, Krish K; Balasubramanian, Ponnuswami

    2013-04-01

    One of the most severe viral diseases of hill banana is caused by banana bunchy top virus (BBTV), a nanovirus transmitted by the aphid Pentalonia nigronervosa. In this study, we reported the Agrobacterium-mediated transformation on a highly valued hill banana cultivar Virupakshi (AAB) for resistance to BBTV disease. The target of the RNA interference (RNAi) is the rep gene, encoded by the BBTV-DNA1. In order to develop RNAi construct targeting the BBTV rep gene, the full-length rep gene of 870 bp was polymerase chain reaction amplified from BBTV infected hill banana sample DNA, cloned and confirmed by DNA sequencing. The partial rep gene fragment was cloned in sense and anti sense orientation in the RNAi intermediate vector, pSTARLING-A. After cloning in pSTARLING-A, the cloned RNAi gene cassette was released by NotI enzyme digestion and cloned into the NotI site of binary vector, pART27. Two different explants, embryogenic cells and embryogenic cell suspension derived microcalli were used for co-cultivation. Selection was done in presence of 100 mg/L kanamycin. In total, 143 putative transgenic hill banana lines were generated and established in green house condition. The presence of the transgenes was confirmed in the selected putative transgenic hill banana lines by PCR and reverse transcription PCR analyses. Transgenic hill banana plants expressing RNAi-BBTV rep were obtained and shown to resist infection by BBTV. The transformed plants are symptomless, and the replication of challenge BBTV almost completely suppressed. Hence, the RNAi mediating resistances were shown to be effective management of BBTV in hill banana. PMID:23184576

  5. Lack of Radiation Dose or Quality Dependence of Epithelial-to-Mesenchymal Transition (EMT) Mediated by Transforming Growth Factor {beta}

    SciTech Connect

    Andarawewa, Kumari L.; Costes, Sylvain V.; Fernandez-Garcia, Ignacio; Chou, William S.; Ravani, Shraddha A.; Park, Howard; Barcellos-Hoff, Mary Helen

    2011-04-01

    Purpose: Epithelial-to-mesenchymal transition (EMT) is a phenotype that alters cell morphology, disrupts morphogenesis, and increases motility. Our prior studies have shown that the progeny of human mammary epithelial cells (HMECs) irradiated with 2 Gy undergoes transforming growth factor {beta} (TGF-{beta})-mediated EMT. In this study we determined whether radiation dose or quality affected TGF-{beta}-mediated EMT. Methods and Materials: HMECs were cultured on tissue culture plastic or in Matrigel (BD Biosciences, San Jose, CA) and exposed to low or high linear energy transfer (LET) and TGF-{beta} (400 pg/mL). Image analysis was used to measure membrane-associated E-cadherin, a marker of functional epithelia, or fibronectin, a product of mesenchymal cells, as a function of radiation dose and quality. Results: E-cadherin was reduced in TGF-{beta}-treated cells irradiated with low-LET radiation doses between 0.03 and 2 Gy compared with untreated, unirradiated cells or TGF-{beta} treatment alone. The radiation quality dependence of TGF-{beta}-mediated EMT was determined by use of 1 GeV/amu (gigaelectron volt / atomic mass unit) {sup 56}Fe ion particles at the National Aeronautics and Space Administration's Space Radiation Laboratory. On the basis of the relative biological effectiveness of 2 for {sup 56}Fe ion particles' clonogenic survival, TGF-{beta}-treated HMECs were irradiated with equitoxic 1-Gy {sup 56}Fe ion or 2-Gy {sup 137}Cs radiation in monolayer. Furthermore, TGF-{beta}-treated HMECs irradiated with either high- or low-LET radiation exhibited similar loss of E-cadherin and gain of fibronectin and resulted in similar large, poorly organized colonies when embedded in Matrigel. Moreover, the progeny of HMECs exposed to different fluences of {sup 56}Fe ion underwent TGF-{beta}-mediated EMT even when only one-third of the cells were directly traversed by the particle. Conclusions: Thus TGF-{beta}-mediated EMT, like other non-targeted radiation effects, is

  6. Functional Analysis and Discovery of Microbial Genes Transforming Metallic and Organic Pollutants: Database and Experimental Tools

    SciTech Connect

    Lawrence P. Wackett; Lynda B.M. Ellis

    2004-12-09

    Microbial functional genomics is faced with a burgeoning list of genes which are denoted as unknown or hypothetical for lack of any knowledge about their function. The majority of microbial genes encode enzymes. Enzymes are the catalysts of metabolism; catabolism, anabolism, stress responses, and many other cell functions. A major problem facing microbial functional genomics is proposed here to derive from the breadth of microbial metabolism, much of which remains undiscovered. The breadth of microbial metabolism has been surveyed by the PIs and represented according to reaction types on the University of Minnesota Biocatalysis/Biodegradation Database (UM-BBD): http://umbbd.ahc.umn.edu/search/FuncGrps.html The database depicts metabolism of 49 chemical functional groups, representing most of current knowledge. Twice that number of chemical groups are proposed here to be metabolized by microbes. Thus, at least 50% of the unique biochemical reactions catalyzed by microbes remain undiscovered. This further suggests that many unknown and hypothetical genes encode functions yet undiscovered. This gap will be partly filled by the current proposal. The UM-BBD will be greatly expanded as a resource for microbial functional genomics. Computational methods will be developed to predict microbial metabolism which is not yet discovered. Moreover, a concentrated effort to discover new microbial metabolism will be conducted. The research will focus on metabolism of direct interest to DOE, dealing with the transformation of metals, metalloids, organometallics and toxic organics. This is precisely the type of metabolism which has been characterized most poorly to date. Moreover, these studies will directly impact functional genomic analysis of DOE-relevant genomes.

  7. Compositional analysis of metal chelating materials using near-field photothermal Fourier transform infrared microspectroscopy.

    PubMed

    Moffat, Jonathan G; Mayes, Andrew G; Belton, Peter S; Craig, Duncan Q M; Reading, Mike

    2010-01-01

    Photothermal-Fourier transform-infrared (PT-FT-IR) microspectroscopy employs a thermal probe mounted in a scanning probe microscope (SPM). By placement of the tip of the probe on the surface of a solid sample, it can obtain localized IR spectra of a wide range of samples. A second mode of analysis is also available; a sample can be taken from the selected location using a technique called thermally assisted nanosampling (TAN), then a spectrum can be obtained of the nanosample while the probe is remote from the surface. We report a novel method of local compositional analysis that combines both of these types of measurement; a reagent is attached to the tip using TAN, then the reagent is placed in contact with analyte. IR spectroscopy can then be used to analyze any interaction between the reagent and surface it is placed in contact with. All of these modes of analysis were illustrated using a metal chelating agent. In the surface mode, changes to a solid bead of a chelating resin were measured using standard PT-FT-IR. In the nanosampling mode of analysis, a particle of a chelating polymer was attached to the tip of the probe using TAN and this was placed in contact with a concentrated calcium solution. Strong spectral changes were observed that mirrored those found when exposing the surface bound chelating resin bead to a solution of the same ion. A semiquantitative simulation of the PT spectrum for a chelating resin bead was achieved using a thermal diffusion model derived from photoacoustic spectroscopy indicating that semiquantitative or quantitative measurements will be possible in such a system. PMID:19957959

  8. Detection of DNA damage based on metal-mediated molecular beacon and DNA strands displacement reaction

    NASA Astrophysics Data System (ADS)

    Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin

    2014-01-01

    DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.

  9. The kinases MEKK2 and MEKK3 regulate transforming growth factor-β-mediated helper T cell differentiation.

    PubMed

    Chang, Xing; Liu, Fang; Wang, Xiaofang; Lin, Aiping; Zhao, Hongyu; Su, Bing

    2011-02-25

    Mitogen-activated protein kinases (MAPKs) are key mediators of the T cell receptor (TCR) signals but their roles in T helper (Th) cell differentiation are unclear. Here we showed that the MAPK kinase kinases MEKK2 (encoded by Map3k2) and MEKK3 (encoded by Map3k3) negatively regulated transforming growth factor-β (TGF-β)-mediated Th cell differentiation. Map3k2(-/-)Map3k3(Lck-Cre/-) mice showed an abnormal accumulation of regulatory T (Treg) and Th17 cells in the periphery, consistent with Map3k2(-/-)Map3k3(Lck-Cre/-) naive CD4(+) T cells' differentiation into Treg and Th17 cells with a higher frequency than wild-type (WT) cells after TGF-β stimulation in vitro. In addition, Map3k2(-/-)Map3k3(Lck-Cre/-) mice developed more severe experimental autoimmune encephalomyelitis. Map3k2(-/-)Map3k3(Lck-Cre/-) T cells exhibited impaired phosphorylation of SMAD2 and SMAD3 proteins at their linker regions, which negatively regulated the TGF-β responses in T cells. Thus, the crosstalk between TCR-induced MAPK and the TGF-β signaling pathways is important in regulating Th cell differentiation. PMID:21333552

  10. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    SciTech Connect

    Zhou Yongchun; Liu Junye; Li Jing; Zhang Jie; Xu Yuqiao; Zhang Huawei; Qiu Lianbo; Ding Guirong; Su Xiaoming; Mei Shi; Guo Guozhen

    2011-12-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  11. TRANSFORMING GROWTH FACTOR-BETA MEDIATED SUPPRESSION OF ANTI-TUMOR T CELLS REQUIRES FOXP1 TRANSCRIPTION FACTOR EXPRESSION

    PubMed Central

    Stephen, Tom L.; Rutkowski, Melanie R.; Allegrezza, Michael J.; Perales-Puchalt, Alfredo; Tesone, Amelia J.; Svoronos, Nikolaos; Nguyen, Jenny M.; Sarmin, Fahmida; Borowsky, Mark E.; Tchou, Julia; Conejo-Garcia, Jose R.

    2014-01-01

    SUMMARY Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the up-regulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8+ T cells from proliferating and up-regulating Granzyme-B and interferon-γ (IFN-γ) in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors, and promoted protection against tumor re-challenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in pre-activated CD8+ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. PMID:25238097

  12. Atomistic Modeling of Diffusion and Phase Transformations in Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Purja Pun, Ganga Prasad

    Dissertation consists of multiple works. The first part is devoted to self-diffusion along dislocation cores in aluminum followed by the development of embedded atom method potentials for Co, NiAl, CoAl and CoNi systems. The last part focuses on martensitic phase transformation (MPT) in Ni xAl1--x and Al xCoyNi1-- x--y alloys. New calculation methods were developed to predict diffusion coefficients in metal as functions of temperature. Self-diffusion along screw and edge dislocations in aluminum was studied by molecular dynamic (MD) simulations. Three types of simulations were performed with and without (intrinsic) pre-existing vacancies and interstitials in the dislocation core. We found that the diffusion along the screw dislocation was dominated by the intrinsic mechanism, whereas the diffusion along the edge dislocation was dominated by the vacancy mechanism. The diffusion along the screw dislocation was found to be significantly faster than the diffusion along the edge dislocation, and the both diffusivities were in reasonable agreement with experimental data. The intrinsic diffusion mechanism can be associated with the formation of dynamic Frenkel pairs, possibly activated by thermal jogs and/or kinks. The simulations show that at high temperatures the dislocation core becomes an effective source/sink of point defects and the effect of pre-existing defects on the core diffusivity diminishes. First and the foremost ingredient needed in all atomistic computer simulations is the description of interaction between atoms. Interatomic potentials for Co, NiAl, CoAl and CoNi systems were developed within the Embedded Atom Method (EAM) formalism. The binary potentials were based on previously developed accurate potentials for pure Ni and pure Al and pure Co developed in this work. The binaries constitute a version of EAM potential of AlCoNi ternary system. The NiAl potential accurately reproduces a variety of physical properties of the B2-NiAl and L12--Ni3Al phases

  13. Genetic Transformation of Watermelon with Pumpkin DNA by Low Energy Ion Beam-Mediated Introduction

    NASA Astrophysics Data System (ADS)

    Wang, Hao-bo; Gao, Xiu-wu; Guo, Jin-hua; Huang, Qun-ce; Yu, Zeng-liang

    2002-12-01

    The No.601 watermelon (citrullus lanatus) seeds were treated with 25 keV N+ implantation at the dosage of 7.8 × 1016 ions/cm2. After treatment, watermelon seeds were incubated with 380 μg/μl pumpkin (Cucubita, maxima Duch) DNA solution at 35 °C for 5 hours. By two-generations of selection and resistance screening at seedling stage, one transformed material was selected out, whose rind color is similar to that of the donor pumpkin and whose size of seeds is between that of the donor and the receptor. Using AFLP (amplified fragment length polymorphism) technique, two polymorphic DNA fragments were amplified. This primarily testified that the donor DNA fragments/gene were introduced into the receptor cell and integrated into the genomic DNA of the receptor.

  14. The PHD fingers of MLL block MLL fusion protein–mediated transformation

    PubMed Central

    Muntean, Andrew G.; Giannola, Diane; Udager, Aaron M.

    2008-01-01

    Chromosomal translocations involving the mixed lineage leukemia (MLL) gene are associated with aggressive acute lymphoid and myeloid leukemias. These translocations are restricted to an 8.3-kb breakpoint region resulting in fusion of amino terminal MLL sequences in frame to 1 of more than 60 different translocation partners. The translocations consistently delete the plant homeodomain (PHD) fingers and more carboxyl terminal MLL sequences. The function of the PHD fingers is obscure and their specific role in transformation has not been explored. Here we show that inclusion of the PHD fingers in the MLL fusion protein MLL-AF9 blocked immortalization of hematopoietic progenitors. Inclusion of 2 or more PHD fingers reduced association with the Hoxa9 locus and suppressed Hoxa9 up-regulation in hematopoietic progenitors. These data provide an explanation for why MLL translocation breakpoints exclude the PHD fingers and suggest a possible role for these domains in regulating the function of wild-type MLL. PMID:18796627

  15. Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation.

    PubMed Central

    Neumann, E; Kakorin, S; Tsoneva, I; Nikolova, B; Tomov, T

    1996-01-01

    Detailed kinetic data suggest that the direct transfer of plasmid DNA (YEp 351, 5.6 kbp, supercoiled, Mr approximately 3.5 x 10(6)) by membrane electroporation of yeast cells (Saccharomyces cerevisiae, strain AH 215) is mainly due to electrodiffusive processes. The rate-limiting step for the cell transformation, however, is a bimolecular DNA-binding interaction in the cell interior. Both the adsorption of DNA, directly measured with [32P]dCTP DNA, and the number of transformants are collinearly enhanced with increasing total concentrations [Dt] and [Cat] of DNA and of calcium, respectively. At [Cat] = 1 mM, the half-saturation or equilibrium constant is KD = 15 +/- 1 nM at 293 K (20 degrees C). The optimal transformation frequency is TFopt = 4.1 +/- 0.4 X 10(-5) if a single exponential pulse of initial field strength E0 = 4 kV cm-1 and decay time constant tauE = 45 ms is applied at [Dt] = 2.7 nM and 10(8) cells in 0.1 ml. The dependence of TF on [Cat] yields the equilibrium constants KCazero = 1.8 +/- 0.2 mM (in the absence of DNA) and K'Ca (at 2.7 nM DNA), comparable with and derived from electrophoresis data. In yeast cells, too, the appearance of a DNA molecule in its whole length in the cell interior is clearly an after-field event. At Eo = 4.0 kV cm-1 and T = 293 K, the flow coefficient of DNA through the porous membrane patches is Kto = 7.0 +/- 0.7 x 10(3)S-1 and the electrodiffusion of DNA is approximately 10 times more effective than simple diffusion: D/D0 approximately 10.3. The mean radius of these pores is rp = 0.39 +/- 0.05 nm, and the mean number of pores per cell (of size ø approximately 5.5 microns) is Np = 2.2 +/- 0.2 x 10(4). The maximal membrane area that is involved in the electrodiffusive penetration of adsorbed DNA into the outer surface of the electroporated cell membrane patches is only 0.023% of the total cell surface. The surface penetration is followed either by additional electrodiffusive or by passive (after-field) diffusive

  16. Mexican immigrant transnational social capital and class transformation: examining the role of peer mediation in insurgent science

    NASA Astrophysics Data System (ADS)

    Richardson Bruna, Katherine

    2010-06-01

    In this article, I return to the interactions of Augusto and his teacher in an "English Learner Science" classroom in a demographically-transitioning US Midwest community (Richardson Bruna and Vann in Cult Stud Sci Educ 2:19-59, 2007) and further engage a class-first perspective to achieve two main conceptual objectives. First, I examine Augusto's science education experience as a way of understanding processes Rouse (Towards a transnational perspective on migration: Race, class, ethnicity, and nationalism reconsidered. The New York Academy of Sciences, New York, 1992) refers to as "the disciplinary production of class-specific subjects" (p. 31). Coming from a subsistence farming community in rural Mexico to an industrialized meatpacking community in semi-rural Iowa, I describe how Augusto undergoes a change in his class identity (experiences a Class Transformation) that is not just reflected but, in fact, produced in his science class. Second, I examine the work Augusto does to resist these processes of disciplinary production as he reshapes his teacher's instruction (promotes a class transformation) through specific transnational social capital he leverages as peer mediation. My overall goals in the article are to demonstrate the immediate relevance of a socio-historical, situated perspective to science teaching and learning and to outline domains of action for an insurgent, class-cognizant, science education practice informed by transnational social capital, like Augusto's.

  17. Exercise-induced lactate accumulation regulates intramuscular triglyceride metabolism via transforming growth factor-β1 mediated pathways.

    PubMed

    Nikooie, Rohollah; Samaneh, Sajadian

    2016-01-01

    The mechanism regulating the utilization of intramuscular triacylglycerol (IMTG) during high-intensity interval training (HIIT) and post-exercise recovery period remains elusive. In this study, the acute and long-term effects of HIIT on transforming growth factor beta 1 (TGF-β1) abundance in rat skeletal muscle and role of lactate and TGF-β1 in IMTG lipolysis during post-exercise recovery period were examined. TGF-β1 and Adipose triacylglycerol lipase (ATGL) abundance as well as total lipase activity in the gastrocnemius muscle significantly increased to a maximum value 10 h after acute bout of HIIT. Inhibition of TGF-β1 signaling by intramuscular injection of SB431542 30 min prior to the acute exercise attenuated ATGL abundance and total lipase activity in the gastrocnemius muscle in response to acute exercise. Intramuscular acute injection of lactate increased TGF-β1 and ATGL abundance in the gastrocnemius muscle and there were a significant increase in Muscle TGF-β1 and ATGL abundance after 5 weeks of HIIT/lactate treatment. These results indicate that exercise-induced lactate accumulation regulates intramuscular triglyceride metabolism via transforming growth factor-β1 mediated pathways during post-exercise recovery from strenuous exercise. PMID:26522131

  18. Slit-Robo signaling induces malignant transformation through Hakai-mediated E-cadherin degradation during colorectal epithelial cell carcinogenesis

    PubMed Central

    Zhou, Wei-Jie; Geng, Zhen H; Chi, Shan; Zhang, Wenli; Niu, Xiao-Feng; Lan, Shu-Jue; Ma, Li; Yang, Xuesong; Wang, Li-Jing; Ding, Yan-Qing; Geng, Jian-Guo

    2011-01-01

    The Slit family of guidance cues binds to Roundabout (Robo) receptors and modulates cell migration. We report here that ectopic expression of Slit2 and Robo1 or recombinant Slit2 treatment of Robo1-expressing colorectal epithelial carcinoma cells recruited an ubiquitin ligase Hakai for E-cadherin (E-cad) ubiquitination and lysosomal degradation, epithelial-mesenchymal transition (EMT), and tumor growth and liver metastasis, which were rescued by knockdown of Hakai. In contrast, knockdown of endogenous Robo1 or specific blockade of Slit2 binding to Robo1 prevented E-cad degradation and reversed EMT, resulting in diminished tumor growth and liver metastasis. Ectopic expression of Robo1 also triggered a malignant transformation in Slit2-positive human embryonic kidney 293 cells. Importantly, the expression of Slit2 and Robo1 was significantly associated with an increased metastatic risk and poorer overall survival in colorectal carcinoma patients. We conclude that engagement of Robo1 by Slit2 induces malignant transformation through Hakai-mediated E-cad ubiquitination and lysosomal degradation during colorectal epithelial cell carcinogenesis. PMID:21283129

  19. Agrobacterium-mediated transformation of the β-subunit gene in 7S globulin protein in soybean using RNAi technology.

    PubMed

    Qu, J; Liu, S Y; Wang, P W; Guan, S Y; Fan, Y G; Yao, D; Zhang, L; Dai, J L

    2016-01-01

    The objective of this study was to use RNA interference (RNAi) to improve protein quality and decrease anti-nutritional effects in soybean. Agrobacterium tumefaciens-mediated transformation was conducted using RNAi and an expression vector containing the 7S globulin β-subunit gene. The BAR gene was used as the selective marker and cotyledonary nodes of soybean genotype Jinong 27 were chosen as explant material. Regenerated plants were detected by molecular biology techniques. Transformation of the β-subunit gene in the 7S protein was detected by PCR, Southern blot, and q-PCR. Positive plants (10 T0, and 6 T1, and 13 T2) were tested by PCR. Hybridization bands were detected by Southern blot analysis in two of the T1 transgenic plants. RNAi expression vectors containing the soybean 7S protein β-subunit gene were successfully integrated into the genome of transgenic plants. qRT-PCR analysis in soybean seeds showed a clear decrease in expression of the soybean β-subunit gene. The level of 7S protein β-subunit expression in transgenic plants decreased by 77.5% as compared to that of the wild-type plants. This study has established a basis for the application of RNAi to improve the anti-nutritional effects of soybean. PMID:27173254

  20. Ultrasound-Mediated DNA Transformation in Thermophilic Gram-Positive Anaerobes

    PubMed Central

    Ji, Yuetong; He, Zhili; Pu, Yunting; Zhou, Jizhong; Xu, Jian

    2010-01-01

    Background Thermophilic, Gram-positive, anaerobic bacteria (TGPAs) are generally recalcitrant to chemical and electrotransformation due to their special cell-wall structure and the low intrinsic permeability of plasma membranes. Methodology/Principal Findings Here we established for any Gram-positive or thermophiles an ultrasound-based sonoporation as a simple, rapid, and minimally invasive method to genetically transform TGPAs. We showed that by applying a 40 kHz ultrasound frequency over a 20-second exposure, Texas red-conjugated dextran was delivered with 27% efficiency into Thermoanaerobacter sp. X514, a TGPA that can utilize both pentose and hexose for ethanol production. Experiments that delivered plasmids showed that host-cell viability and plasmid DNA integrity were not compromised. Via sonoporation, shuttle vectors pHL015 harboring a jellyfish gfp gene and pIKM2 encoding a Clostridium thermocellum β-1,4-glucanase gene were delivered into X514 with an efficiency of 6×102 transformants/µg of methylated DNA. Delivery into X514 cells was confirmed via detecting the kanamycin-resistance gene for pIKM2, while confirmation of pHL015 was detected by visualization of fluorescence signals of secondary host-cells following a plasmid-rescue experiment. Furthermore, the foreign β-1,4-glucanase gene was functionally expressed in X514, converting the host into a prototypic thermophilic consolidated bioprocessing organism that is not only ethanologenic but cellulolytic. Conclusions/Significance In this study, we developed an ultrasound-based sonoporation method in TGPAs. This new DNA-delivery method could significantly improve the throughput in developing genetic systems for TGPAs, many of which are of industrial interest yet remain difficult to manipulate genetically. PMID:20838444

  1. Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta.

    PubMed Central

    Wolf, G; Mueller, E; Stahl, R A; Ziyadeh, F N

    1993-01-01

    Previous studies by our group have demonstrated that angiotensin II (ANG II), as a single factor in serum-free medium, induces cellular hypertrophy of a cultured murine proximal tubular cell line (MCT). The present study was performed to test the hypothesis that this growth effect was mediated by activation of endogenous transforming growth factor-beta (TGF-beta). Exogenous TGF-beta 1 (1 ng/ml) mimicked the growth effects observed with 10(-8) M ANG II (inhibition of DNA synthesis and induction of cellular hypertrophy). A neutralizing anti-TGF-beta antibody attenuated the ANG II-induced increase in de novo protein and total RNA synthesis as well as total protein content. This antibody also abolished the ANG II-mediated inhibition of [3H]thymidine incorporation into quiescent MCT cells. Control IgG or an unrelated antibody had no effect. A bioassay for TGF-beta using mink lung epithelial cells revealed that MCT cells treated with ANG II released active TGF-beta into the cell culture supernatant. Northern blot analysis and semi-quantitative cDNA amplification demonstrated increases in steady-state levels for TGF-beta 1 mRNA after ANG II stimulation of MCT cells, but not in a syngeneic murine mesangial cell line. Our data indicate that the ANG II-induced hypertrophy in MCT cells is mediated by synthesis and activation of endogenous TGF-beta. It is intriguing to speculate that TGF-beta may play a role in the early tubular cell hypertrophy and the subsequent interstitial scarring observed in several models of chronic renal injury that are characterized by increased activity of intrarenal ANG II. Images PMID:7690779

  2. Mechanism of hydrogenolysis and isomerization of oxacycloalkanes on metals. IV. Mechanism of transformation of oxiranes on Cu catalyst

    SciTech Connect

    Notheisz, F.; Molnar, A.; Zsigmond, A.G.; Bartok, M.

    1986-03-01

    The mechanism of isomerization of methyloxirane to propanal and acetone was studied on a Cu catalyst. During the transformation, the deoxidation reaction causes the oxidation of the catalyst surface, and Lewis acid site-basic site pairs are produced. Propanal is formed predominantly on these centers. The rate of formation of such active centers, and hence that of propanal, is maximum on the partially oxidized surface. Acetone is formed on the reduced metal surface. Both reactions may be regarded as hydroisomerization.

  3. Studies of transformational leadership in the consumer service workgroup: cooperative conflict resolution and the mediating roles of job satisfaction and change commitment.

    PubMed

    Yang, Yi-Feng

    2012-10-01

    The present paper evaluates the effect of transformational leadership on job satisfaction and change commitment along with their interconnected effects (mediation) on cooperative conflict resolution (management) in customer service activities in Taiwan. The multi-source samples consist of data from personnel serving at customer centers (workgroups), such as phone service personnel, customer representatives, financial specialists, and front-line salespeople. An empirical study was carried out using a multiple mediation procedure incorporating boot-strapping techniques and PRODCLIN2 with structural equation modeling (SEM) analysis. The results indicate that the main effect of the leadership style on cooperative conflict resolution is mediated by change commitment and job satisfaction. PMID:23234098

  4. STAT3-Mediated Metabolic Reprograming in Cellular Transformation and Implications for Drug Resistance

    PubMed Central

    Poli, Valeria; Camporeale, Annalisa

    2015-01-01

    Signal transducer and activator of transcription (STAT)3 mediates the signaling downstream of cytokine and growth factor receptors, regulating the expression of target genes. It is constitutively phosphorylated on tyrosine (Y-P) in many tumors, where its transcriptional activity can induce a metabolic switch toward aerobic glycolysis and down-regulate mitochondrial activity, a prominent metabolic feature of most cancer cells, correlating with reduced production of ROS, delayed senescence, and protection from apoptosis. STAT3 can, however, also localize to mitochondria, where its serine-phosphorylated (S-P) form preserves mitochondrial oxidative phosphorylation and controls the opening of the mitochondrial permeability transition pore, also promoting survival and resistance to apoptosis in response to specific signals/oncogenes such as RAS. Thus, downstream of different signals, both nuclear, Y-P STAT3, and mitochondrial, S-P STAT3, can act by promoting cell survival and reducing ROS production. Here, we discuss these properties in the light of potential connections between STAT3-driven alterations of mitochondrial metabolism and the development of drug resistance in cancer patients. PMID:26106584

  5. An Improved Binary Vector and Escherichia coli Strain for Agrobacterium tumefaciens-Mediated Plant Transformation

    PubMed Central

    Watson, Michael R.; Lin, Yu-fei; Hollwey, Elizabeth; Dodds, Rachel E.; Meyer, Peter; McDowall, Kenneth J.

    2016-01-01

    The plasmid vector pGreenII is widely used to produce plant transformants via a process that involves propagation in Escherichia coli. However, we show here that pGreenII-based constructs can be unstable in E. coli as a consequence of them hampering cell division and promoting cell death. In addition, we describe a new version of pGreenII that does not cause these effects, thereby removing the selective pressure for mutation, and a new strain of E. coli that better tolerates existing pGreenII-based constructs without reducing plasmid yield. The adoption of the new derivative of pGreenII and the E. coli strain, which we have named pViridis and MW906, respectively, should help to ensure the integrity of genes destined for study in plants while they are propagated and manipulated in E. coli. The mechanism by which pGreenII perturbs E. coli growth appears to be dysregulation within the ColE1 origin of replication. PMID:27194805

  6. Influence of the nacnac Ligand in Iron(I)-Mediated P4 Transformations.

    PubMed

    Spitzer, Fabian; Graßl, Christian; Balázs, Gábor; Zolnhofer, Eva M; Meyer, Karsten; Scheer, Manfred

    2016-03-18

    A study of P4 transformations at low-valent iron is presented using β-diketiminato (L) Fe(I) complexes [LFe(tol)] (tol=toluene; L=L(1) (1 a), L(2) (1 b), L(3) (1 c)) with different combinations of aromatic and backbone substituents at the ligand. The products [(LFe)4 (μ4 -η(2) :η(2) :η(2) :η(2) -P8 )] (L=L(1) (2 a), L(2) (2 b)) containing a P8 core were obtained by the reaction of 1 a,b with P4 in toluene at room temperature. Using a slightly more sterically encumbered ligand in 1 c results in the formation of [(L(3) Fe)2 (μ-η(4) :η(4) -P4 )] (2 c), possessing a cyclo-P4 moiety. Compounds 2 a-c were comprehensively characterized and their electronic structures investigated by SQUID magnetization and (57) Fe Mössbauer spectroscopy as well as by DFT methods. PMID:26924606

  7. Finite element method for conserved phase fields: Stress-mediated diffusional phase transformation

    NASA Astrophysics Data System (ADS)

    Zaeem, Mohsen Asle; Mesarovic, Sinisa Dj.

    2010-12-01

    Phase-field models with conserved phase-field variables result in a 4th order evolution partial differential equation (PDE). When coupled with the usual 2nd order thermo-mechanics equations, such problems require special treatment. In the past, the finite element method (FEM) has been successfully applied to non-conserved phase fields, governed by a 2nd order PDE. For higher order equations, the convergence of the standard Galerkin FEM requires that the interpolation functions belong to a higher continuity class. We consider the Cahn-Hilliard phase-field model for diffusion-controlled solid state phase transformation in binary alloys, coupled with elasticity of the solid phases. A Galerkin finite element formulation is developed, with mixed-order interpolation: C 0 interpolation functions for displacements, and C 1 interpolation functions for the phase-field variable. To demonstrate convergence of the mixed interpolation scheme, we first study a one-dimensional problem - nucleation and growth of the intermediate phase in a thin-film diffusion couple with elasticity effects. Then, we study the effects of completeness of C 1 interpolation on parabolic problems in two space dimensions by considering the growth of the intermediate phase in a binary system. Quadratic convergence, expected for conforming elements, is achieved for both one- and two-dimensional systems.

  8. Transformation/Transcription Domain-Associated Protein (TRRAP)-Mediated Regulation of Wee1

    PubMed Central

    Calonge, Teresa M.; Eshaghi, Majid; Liu, Jianhua; Ronai, Ze'ev; O'Connell, Matthew J.

    2010-01-01

    The G2 DNA damage checkpoint inhibits Cdc2 and mitotic entry through the dual regulation of Wee1 and Cdc25 by the Chk1 effector kinase. Upregulation of Chk1 by mutation or overexpression bypasses the requirement for upstream regulators or DNA damage to promote a G2 cell cycle arrest. We screened in fission yeast for mutations that rendered cells resistant to overexpressed chk1+. We identified a mutation in tra1, which encodes one of two homologs of transformation/transcription domain-associated protein (TRRAP), an ATM/R-related pseudokinase that scaffolds several histone acetyltransferase (HAT) complexes. Inhibition of histone deacetylases reverts the resistance to overexpressed chk1+, suggesting this phenotype is due to a HAT activity, although expression of checkpoint and cell cycle genes is not greatly affected. Cells with mutant or deleted tra1 activate Chk1 normally and are checkpoint proficient. However, these cells are semi-wee even when overexpressing chk1+ and accumulate inactive Wee1 protein. The changed division response (Cdr) kinases Cdr1 and Cdr2 are negative regulators of Wee1, and we show that they are required for the Tra1-dependent alterations to Wee1 function. This identifies Tra1 as another component controlling the timing of entry into mitosis via Cdc2 activation. PMID:20194963

  9. Asbestos fibers mediate transformation of monkey cells by exogenous plasmid DNA

    SciTech Connect

    Appel, J.D.; Fasy, T.M.; Kohtz, D.S.; Kohtz, J.D.; Johnson, E.M. )

    1988-10-01

    The authors have tested the ability of chrysotile asbestos fibers to introduce plasmid DNA into monkey COS-7 cells and the ability of this DNA to function in both replication and gene expression. Chrysotile fibers are at least as effective as calcium phosphate in standard transfection assays at optimal ratios of asbestos to DNA. After transfection with chrysotile, a minor percentage of introduced plasmid DNA bearing a simian virus 40 origin of replication replicates after 24 hr. Fragmentation of entering DNA is more prominent with asbestos than with calcium phosphate, and after 72 hr most DNA introduced by asbestos is associated with chromosomal DNA. Cells transfected with plasmid p11-4, bearing the p53 protooncogene, express this gene. Cells transfected with pSV2-neo express a gene conferring resistance of antibiotic G418, allowing isolation of colonies of transformed cells after 18 days. The introduction of exogenous DNA into eukaryotic cells could cause mutations in several ways and thus contribute to asbestos-induced oncogenesis.

  10. Influence of the nacnac Ligand in Iron(I)‐Mediated P4 Transformations

    PubMed Central

    Spitzer, Fabian; Graßl, Christian; Balázs, Gábor; Zolnhofer, Eva M.; Meyer, Karsten

    2016-01-01

    Abstract A study of P4 transformations at low‐valent iron is presented using β‐diketiminato (L) FeI complexes [LFe(tol)] (tol=toluene; L=L1 (1 a), L2 (1 b), L3 (1 c)) with different combinations of aromatic and backbone substituents at the ligand. The products [(LFe)4(μ4‐η2:η2:η2:η2‐P8)] (L=L1 (2 a), L2 (2 b)) containing a P8 core were obtained by the reaction of 1 a,b with P4 in toluene at room temperature. Using a slightly more sterically encumbered ligand in 1 c results in the formation of [(L3Fe)2(μ‐η4:η4‐P4)] (2 c), possessing a cyclo‐P4 moiety. Compounds 2 a–c were comprehensively characterized and their electronic structures investigated by SQUID magnetization and 57Fe Mössbauer spectroscopy as well as by DFT methods. PMID:26924606

  11. Double-stranded RNA-mediated interference of dumpy genes in Bursaphelenchus xylophilus by feeding on filamentous fungal transformants.

    PubMed

    Wang, Meng; Wang, Diandong; Zhang, Xi; Wang, Xu; Liu, Wencui; Hou, Xiaomeng; Huang, Xiaoyin; Xie, Bingyan; Cheng, Xinyue

    2016-05-01

    RNA interference (RNAi) is a valuable tool for studying gene function in vivo and provides a functional genomics platform in a wide variety of organisms. The pinewood nematode, Bursaphelenchus xylophilus, is a prominent invasive plant-parasitic nematode and has become a serious worldwide threat to forest ecosystems. Presently, the complete genome sequence of B. xylophilus has been published, and research involving genome-wide functional analyses is likely to increase. In this study, we describe the construction of an effective silencing vector, pDH-RH, which contains a transcriptional unit for a hairpin loop structure. Utilising this vector, double-stranded (ds)RNAs with sequences homologous to the target genes can be expressed in a transformed filamentous fungus via Agrobacterium tumefaciens-mediated transformation technology, and can subsequently induce the knockdown of target gene mRNA expression in B. xylophilus by allowing the nematode to feed on the fungal transformants. Four dumpy genes (Bx-dpy-2, 4, 10 and 11) were used as targets to detect RNAi efficiency. By allowing the nematode to feed on target gene-transformed Fusarium oxysporum strains, target transcripts were knocked down 34-87% compared with those feeding on the wild-type strain as determined by real-time quantitative PCR (RT-qPCR). Morphological RNAi phenotypes were observed, displaying obviously reduced body length; weak dumpy or small (short and thin) body size; or general abnormalities. Moreover, compensatory regulation and non-specific silencing of dpy genes were found in B. xylophilus. Our results indicate that RNAi delivery by feeding in B. xylophilus is a successful technique. This platform may provide a new opportunity for undertaking RNAi-based, genome-wide gene functional studies in vitro in B. xylophilus. Moreover, as B. xylophilus feeds on endophytic fungi when a host has died, RNAi feeding technology will offer the prospect for developing a novel control strategy for the nematode

  12. Transforming growth factor-β mediates endothelial dysfunction in rats during high salt intake.

    PubMed

    Feng, Wenguang; Ying, Wei-Zhong; Aaron, Kristal J; Sanders, Paul W

    2015-12-15

    Endothelial dysfunction has been shown to be predictive of subsequent cardiovascular events and death. Through a mechanism that is incompletely understood, increased dietary salt intake promotes endothelial dysfunction in healthy, salt-resistant humans. The present study tested the hypothesis that dietary salt-induced transforming growth factor (TGF)-β promoted endothelial dysfunction and salt-dependent changes in blood pressure (BP). Sprague-Dawley rats that received diets containing 0.3% NaCl [low salt (LS)] or 8.0% NaCl [high salt (HS)] were treated with vehicle or SB-525334, a specific inhibitor of TGF-β receptor I/activin receptor-like kinase 5, beginning on day 5. BP was monitored using radiotelemetry in four groups of rats (LS, LS + SB-525334, HS, and HS + SB-525334) for up to 14 days. By day 14 of the study, mean daytime systolic BP and mean pulse pressure of the HS group treated with vehicle was greater than those in the other three groups; mean daytime systolic BP and pulse pressure of the HS + SB-525334 group did not differ from the LS and LS + SB-525334-treated groups. Whereas mean systolic BP, mean diastolic BP, and mean arterial pressure did not differ among the groups on the seventh day of the study, endothelium-dependent vasorelaxation was impaired specifically in the HS group; treatment with the activin receptor-like kinase 5 inhibitor prevented the dietary HS intake-induced increases in phospho-Smad2 (Ser(465/467)) and NADPH oxidase-4 in endothelial lysates and normalized endothelial function. These findings suggest that HS-induced endothelial dysfunction and the development of salt-dependent increases in BP were related to endothelial TGF-β signaling. PMID:26447221

  13. The effect of low-temperature transformation of mixtures of sewage sludge and plant materials on content, leachability and toxicity of heavy metals.

    PubMed

    Gondek, Krzysztof; Baran, Agnieszka; Kopeć, Michał

    2014-12-01

    The aim of the study was to determine the influence of the process of low-temperature transformation and the addition of plant material to sewage sludge diversifying the content of mobile forms of heavy metals and their ecotoxicity. The experimental design included: sewage sludge+rape straw, sewage sludge+wheat straw, sewage sludge+sawdust, sewage sludge+bark and sewage sludge with no addition. The mixtures were subjected to thermal transformation in a chamber furnace, under conditions without air. The procedure consisted of two stages: the first stage (130°C for 40 min) focused on drying the material, whereas in the second stage (200°C for 30 min) proper thermal transformation of materials took place. Thermal transformation of the materials, caused an increase in total contents of heavy metals in comparison to the material before transformation. From among elements, the cadmium content changed the most in materials after thermal transformation. As a result of thermal transformation, the content of water soluble form of the heavy metals decreased significantly in all the prepared mixtures. Low toxicity of the extracts from materials for Vibrio fischeri and Lepidium sativum was found in the research, regardless of transformation process. L. sativum showed higher sensitivity to heavy metals occurring in the studied extracts from materials than V. fischeri, evidence of which are the positive significant correlations between the content of metals and the inhibition of root growth of L. sativum. PMID:25433992

  14. Scope and mechanism of the highly stereoselective metal-mediated domino aldol reactions of enolates with aldehydes.

    PubMed

    Cinar, M Emin; Engelen, Bernward; Panthöfer, Martin; Deiseroth, Hans-Jörg; Schlirf, Jens; Schmittel, Michael

    2016-01-01

    A one-pot transformation, which involves the reaction of ketones with aldehydes in the presence of metal halides to furnish tetrahydro-2H-pyran-2,4-diols in a highly diastereoselective manner, is investigated thoroughly by experiments and computations. The reaction was also successfully implemented on a flow micro reactor system. PMID:27340472

  15. Scope and mechanism of the highly stereoselective metal-mediated domino aldol reactions of enolates with aldehydes

    PubMed Central

    Engelen, Bernward; Panthöfer, Martin; Deiseroth, Hans-Jörg; Schlirf, Jens

    2016-01-01

    Summary A one-pot transformation, which involves the reaction of ketones with aldehydes in the presence of metal halides to furnish tetrahydro-2H-pyran-2,4-diols in a highly diastereoselective manner, is investigated thoroughly by experiments and computations. The reaction was also successfully implemented on a flow micro reactor system. PMID:27340472

  16. Immobilization of metal-humic acid complexes in anaerobic granular sludge for their application as solid-phase redox mediators in the biotransformation of iopromide in UASB reactors.

    PubMed

    Cruz-Zavala, Aracely S; Pat-Espadas, Aurora M; Rangel-Mendez, J Rene; Chazaro-Ruiz, Luis F; Ascacio-Valdes, Juan A; Aguilar, Cristobal N; Cervantes, Francisco J

    2016-05-01

    Metal-humic acid complexes were synthesized and immobilized by a granulation process in anaerobic sludge for their application as solid-phase redox mediators (RM) in the biotransformation of iopromide. Characterization of Ca- and Fe-humic acid complexes revealed electron accepting capacities of 0.472 and 0.556milli-equivalentsg(-1), respectively. Once immobilized, metal-humic acid complexes significantly increased the biotransformation of iopromide in upflow anaerobic sludge blanket (UASB) reactors. Control UASB reactor (without humic material) achieved 31.6% of iopromide removal, while 80% was removed in UASB reactors supplied with each metal-humic acid complex. Further analyses indicated multiple transformation reactions taking place in iopromide including deiodination, N-dealkylation, decarboxylation and deacetylation. This is the first successful application of immobilized RM, which does not require a supporting material to maintain the solid-phase RM in long term operation of bioreactors. The proposed redox catalyst could be suitable for enhancing the redox conversion of different recalcitrant pollutants present in industrial effluents. PMID:26868154

  17. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors.

    PubMed

    van der Zee, F P; Bouwman, R H; Strik, D P; Lettinga, G; Field, J A

    2001-12-20

    Azo dyes are nonspecifically reduced under anaerobic conditions but the slow rates at which reactive azo dyes are converted presents a serious problem for the application of anaerobic technology as a first stage in the complete biodegradation of these compounds. As quinones have been found to catalyze reductive transfers by acting as redox mediators, the application of anthraquinone-2,6-disulfonic acid (AQDS) during continuous anaerobic treatment of the reactive azo dye, Reactive Red 2 (RR2), was evaluated. A mixture of volatile fatty acids was used as the electron-donating primary substrate. Batch experiments demonstrated that AQDS could increase the first-order rate constant of RR2 reductive cleavage by one order of magnitude. In the continuous experiment, treatment of RR2 containing synthetic wastewater in a lab-scale upflow anaerobic sludge blanket (UASB) reactor yielded low dye removal efficiencies (<30%). Consequently, severe toxicity problems occurred, eventually resulting in almost complete inhibition of the methanogenic activity. Addition of catalytic concentrations of AQDS (19 microM) to the reactor influent caused an immediate increase in the dye removal efficiency and recovery of biological activity. Ultimately, RR2 removal efficiency stabilized at 88%, and higher AQDS loads resulted in higher RR2 removal efficiencies (up to 98% at 155 microM AQDS). Examination of the RR2 decolorizing properties of dye-adapted reactor sludge and of nonadapted reactor seed sludge revealed that RR2 decolorization was principally a biologically driven transfer of reducing equivalents from endogenous and added substrates to the dye. Hydrogen, added in bulk, was clearly the preferred electron donor. Bacteria that couple dye decolorization to hydrogen oxidation were naturally present in seed sludge. However, enrichment was required for the utilization of electrons from volatile fatty acids for dye reduction. The stimulatory effect of AQDS on RR2 decolorization by AQDS

  18. The transformation of organic amines by transition metal cluster compounds. Progress report, 1992--1993

    SciTech Connect

    Adams, R.D.

    1993-01-01

    The paper reports results on the following five studies: (1) The activation of tertiary amines by osmium cluster complexes; (2) Nucleophilic ring opening of thietane ligand in metal carbonyl cluster complexes; (3) Ring opening of a nitrogen containing strained ring heterocycle by an osmium cluster complex; (4) Insertion of an alkynes into a metal-metal bond -- evidence for an intramolecular insertion with a trans-stereochemistry; and (5) Cyclobutyne -- the ligand. Plans for future research are also briefly discussed. Two studies are planned: (1) studies of the synthesis and reactivity of strained ring ligands in metal cluster compounds; and (2) studies of the reactivity of dimetallic complexes with alkynes.

  19. The release of transforming growth factor-beta following haemorrhage: its role as a mediator of host immunosuppression.

    PubMed Central

    Ayala, A; Meldrum, D R; Perrin, M M; Chaudry, I H

    1993-01-01

    Haemorrhage in the absence of trauma is reported to induce a profound depression in cell-mediated immunity. Recent studies have drawn attention to the cytokine transforming growth factor-beta (TGF-beta) that, while important in wound healing, also has marked immunosuppressive effects. The aim of this study was to determine whether: (1) haemorrhage induces an increase in circulating TGF-beta and if this is associated with the loss of host immunoresponsiveness; and (2) administration of monoclonal antibody (mAb) to TGF-beta following haemorrhage ablates these changes. To determine this, C3H/HeN mice were bled to and maintained at a mean arterial pressure of 35 mmHg for 1 hr. This required removing approximately 50% of the circulating blood volume. Following this period of hypotension, the mice were adequately resuscitated. Blood samples obtained at 24 and 72 hr, but not at 2 hr, following haemorrhage showed a significant elevation in plasma TGF-beta levels when compared to shams. At 24 hr, the increase of TGF-beta in the plasma was associated with decreases in both concanavalin A (Con A)-induced splenocyte proliferation and splenic macrophage antigen presentation. Treating animals with neutralizing antibody (animals received 200 micrograms mAb against bovine TGF-beta 1,2,3/mouse intraarterially) not only reduced the levels of TGF-beta in the blood at 24 hr, but also restored splenocyte functions, such as Con A-induced proliferation, interleukin-2 (IL-2) release, and the capacity of splenic macrophages to present antigen. However, elevated levels of prostaglandin E2 (PGE2) seen in plasma during haemorrhage were only partially depressed by the antibody treatment. These results indicate that the release of TGF-beta contributes to the protracted (> or = 24 hr) suppression of cell-mediated immunity following haemorrhage. PMID:8406575

  20. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    DOE PAGESBeta

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentationmore » studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.« less

  1. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Wang, H.; Zhang, X.

    2016-01-01

    Although abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. Numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction, have been applied to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. Here we briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. In the amorphous CuZrAl, in situ nanoindentation studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.

  2. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    SciTech Connect

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentation studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.

  3. Speciation and transformation of heavy metals during vermicomposting of animal manure.

    PubMed

    Lv, Baoyi; Xing, Meiyan; Yang, Jian

    2016-06-01

    This work was conducted to evaluate the effects of vermicomposting on the speciation and mobility of heavy metals (Zn, Pb, Cr, and Cu) in cattle dung (CD) and pig manure (PM) using tessier sequential extraction method. Results showed that the pH, total organic carbon and C/N ratio were reduced, while the electric conductivity and humic acid increased after 90days vermicomposting. Moreover, the addition of earthworm could accelerate organic stabilization in vermicomposting. The total heavy metals in final vermicompost from CD and PM were higher than the initial values and the control without worms. Sequential extraction indicated that vermicomposting decreased the migration and availability of heavy metals, and the earthworm could reduce the mobile fraction, while increase the stable fraction of heavy metals. Furthermore, these results indicated that vermicomposting played a positive role in stabilizing heavy metals in the treatment of animal manure. PMID:26976060

  4. Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus.

    PubMed

    Clarke, Jihong Liu; Spetz, Carl; Haugslien, Sissel; Xing, Shaochen; Dees, Merete W; Moe, Roar; Blystad, Dag-Ragnar

    2008-06-01

    Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virus-derived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium in which about 75% of the explants produced somatic embryos. In 5 experiments utilizing 868 explants, 18 independent transgenic lines were generated. An average transformation frequency of 2.1% (range 1.2-3.5%) was revealed. Stable integration of transgenes into the poinsettia nuclear genome was confirmed by PCR and Southern blot analysis. Both single- and multiple-copy transgene integration into the poinsettia genome were found among transformants. Transgenic poinsettia plants showing resistance to mechanical inoculation of PnMV were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Northern blot analysis of low molecular weight RNA revealed that transgene-derived small interfering (si) RNA molecules were detected among the poinsettia transformants prior to inoculation. The Agrobacterium-mediated transformation methodology developed in the current study should facilitate improvement of this ornamental plant with enhanced disease resistance, quality improvement and desirable colour alteration. Because poinsettia is a non-food, non-feed plant and is not propagated through sexual reproduction, this is likely to be more acceptable even in areas where genetically modified crops are currently not cultivated. PMID:18327592

  5. Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus

    PubMed Central

    Spetz, Carl; Haugslien, Sissel; Xing, Shaochen; Dees, Merete W.; Moe, Roar; Blystad, Dag-Ragnar

    2008-01-01

    Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virus-derived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium in which about 75% of the explants produced somatic embryos. In 5 experiments utilizing 868 explants, 18 independent transgenic lines were generated. An average transformation frequency of 2.1% (range 1.2–3.5%) was revealed. Stable integration of transgenes into the poinsettia nuclear genome was confirmed by PCR and Southern blot analysis. Both single- and multiple-copy transgene integration into the poinsettia genome were found among transformants. Transgenic poinsettia plants showing resistance to mechanical inoculation of PnMV were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Northern blot analysis of low molecular weight RNA revealed that transgene-derived small interfering (si) RNA molecules were detected among the poinsettia transformants prior to inoculation. The Agrobacterium-mediated transformation methodology developed in the current study should facilitate improvement of this ornamental plant with enhanced disease resistance, quality improvement and desirable colour alteration. Because poinsettia is a non-food, non-feed plant and is not propagated through sexual reproduction, this is likely to be more acceptable even in areas where genetically modified crops are currently not cultivated. PMID:18327592

  6. GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation

    PubMed Central

    Nolan-Stevaux, Olivier; Lau, Janet; Truitt, Morgan L.; Chu, Gerald C.; Hebrok, Matthias; Fernández-Zapico, Martin E.; Hanahan, Douglas

    2009-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by the deregulation of the hedgehog signaling pathway. The Sonic Hedgehog ligand (Shh), absent in the normal pancreas, is highly expressed in pancreatic tumors and is sufficient to induce neoplastic precursor lesions in mouse models. We investigated the mechanism of Shh signaling in PDAC carcinogenesis by genetically ablating the canonical bottleneck of hedgehog signaling, the transmembrane protein Smoothened (Smo), in the pancreatic epithelium of PDAC-susceptible mice. We report that multistage development of PDAC tumors is not affected by the deletion of Smo in the pancreas, demonstrating that autocrine Shh–Ptch–Smo signaling is not required in pancreatic ductal cells for PDAC progression. However, the expression of Gli target genes is maintained in Smo-negative ducts, implicating alternative means of regulating Gli transcription in the neoplastic ductal epithelium. In PDAC tumor cells, we find that Gli transcription is decoupled from upstream Shh–Ptch–Smo signaling and is regulated by TGF-β and KRAS, and we show that Gli1 is required both for survival and for the KRAS-mediated transformed phenotype of cultured PDAC cancer cells. PMID:19136624

  7. Constitutive Smad linker phosphorylation in melanoma: a mechanism of resistance to transforming growth factor-β-mediated growth inhibition.

    PubMed

    Cohen-Solal, Karine A; Merrigan, Kim T; Chan, Joseph L-K; Goydos, James S; Chen, Wenjin; Foran, David J; Liu, Fang; Lasfar, Ahmed; Reiss, Michael

    2011-06-01

    Melanoma cells are resistant to transforming growth factor-β (TGFβ)-induced cell-cycle arrest. In this study, we investigated a mechanism of resistance involving a regulatory domain, called linker region, in Smad2 and Smad3, main downstream effectors of TGFβ. Melanoma cells in culture and tumor samples exhibited constitutive Smad2 and Smad3 linker phosphorylation. Treatment of melanoma cells with the MEK1/2 inhibitor, U0126, or the two pan-CDK and GSK3 inhibitors, Flavopiridol and R547, resulted in decreased linker phosphorylation of Smad2 and Smad3. Overexpression of the linker phosphorylation-resistant Smad3 EPSM mutant in melanoma cells resulted in an increase in expression of p15(INK4B) and p21(WAF1) , as compared with cells transfected with wild-type (WT) Smad3. In addition, the cell numbers of EPSM Smad3-expressing melanoma cells were significantly reduced compared with WT Smad3-expressing cells. These results suggest that the linker phosphorylation of Smad3 contributes to the resistance of melanoma cells to TGFβ-mediated growth inhibition. PMID:21477078

  8. Immunosuppression of breast cancer cells mediated by transforming growth factor-β in exosomes from cancer cells

    PubMed Central

    RONG, LEI; LI, RONG; LI, SHAOYING; LUO, RONGCHENG

    2016-01-01

    Exosomes derived from tumor cells are essential for processes involved in tumor progression, including angiogenesis, tumor cell proliferation and immunoregulation. In addition, exosome secretion may contribute to the mechanisms of hypoxia-induced angiogenesis and metastasis of tumors. In the present study, as it is one of the most common cancers in females, breast cancer, cell lines were cultured under hypoxic (1% O2) and normoxic conditions to evaluate the effects of hypoxia on exosome production. Under hypoxic conditions an increase in the number of exosomes in the medium, determined by CD63 immunoblotting, was observed. Application of these exosomes to T cells revealed that they were able to suppress T cell proliferation. As transforming growth factor-β (TGF-β), interleukin-10, and prostaglandin E2 are important factors in the mediation of T cell suppression, the exosomes were subsequently treated with antibodies against these three factors. The results revealed that anti-TGF-β was capable of ameliorating the immunosuppressive effects of exosomes. These data demonstrate that hypoxia enhances the secretion of exosomes by breast cancer cells, which acts to suppress T cell proliferation via TGF-β. The findings have significant implications for understanding the underlying mechanisms of immunosuppression in tumor microenvironments, and for the potential development of cancer therapies. PMID:26870240

  9. p-Benzoquinone-mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals.

    PubMed

    Wang, Xuejiang; Liu, Mian; Wang, Xin; Wu, Zhen; Yang, Lianzhen; Xia, Siqing; Chen, Ling; Zhao, Jianfu

    2013-03-15

    A rapid and reliable p-benzoquinone-mediated amperometric biosensor (ToxTell) incorporated with Psychrobacter sp. to detect toxicities of heavy metal ions has been developed. This ToxTell biosensor relied on the real-time monitoring of inhibition effect for metabolism by toxicant to provide early detection and assessment of the degree of toxicity to living cells. The effect of growth phase on the sensitivity of Psychrobacter sp. biosensor was studied. The results showed that at the middle of the logarithmic phase or transition from logarithmic to stationary phase, the Psychrobacter sp. ToxTell biosensor had a higher sensitivity to toxicants. The effects of pH, salinity in respiratory substrates and incubation time on the performance of Psychrobacter sp. biosensor were also investigated. EC(50) values of Cu(2+), Cd(2+), Zn(2+), Cr(6+), Hg(2+) and Pb(2+) to Psychrobacter sp. determined at incubation time 30 min were 2.6 mg/L, 47.3 mg/L, 10.9 mg/L, 14.0 mg/L, 0.8 mg/L and 110.1 mg/L, respectively. The ToxTell microbial biosensor developed in this work demonstrated excellent storage stability for more than 60 days. The biosensor could incorporate different microbial species as biocomponent to reflect the comprehensive values for toxicants in real samples and the results therefore had high degree of validity. PMID:23062555

  10. Characteristics and Kinetic Analysis of AQS Transformation and Microbial Goethite Reduction:Insight into “Redox mediator-Microbe-Iron oxide” Interaction Process

    PubMed Central

    Zhu, Weihuang; Shi, Mengran; Yu, Dan; Liu, Chongxuan; Huang, Tinglin; Wu, Fengchang

    2016-01-01

    The characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into “redox mediator-iron oxide” interaction in the presence of DIRB. Two pre-incubation reaction systems of the “strain S12- goethite” and the “strain S12-AQS” were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of the redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for “Quinone-Iron” interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among “quinone-DIRB- goethite” under biotic/abiotic driven. PMID:27020166

  11. Characteristics and Kinetic Analysis of AQS Transformation and Microbial Goethite Reduction:Insight into “Redox mediator-Microbe-Iron oxide” Interaction Process

    NASA Astrophysics Data System (ADS)

    Zhu, Weihuang; Shi, Mengran; Yu, Dan; Liu, Chongxuan; Huang, Tinglin; Wu, Fengchang

    2016-03-01

    The characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into “redox mediator-iron oxide” interaction in the presence of DIRB. Two pre-incubation reaction systems of the “strain S12- goethite” and the “strain S12-AQS” were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of the redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for “Quinone-Iron” interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among “quinone-DIRB- goethite” under biotic/abiotic driven.

  12. Genotoxicity and contamination of natural and anthropogenically transformed soils of the city of Rostov-on-Don with heavy metals

    NASA Astrophysics Data System (ADS)

    Gorbov, S. N.; Bezuglova, O. S.; Varduni, T. V.; Gorovtsov, A. V.; Tagiverdiev, S. S.; Hildebrant, Yu. A.

    2015-12-01

    The integrated characteristics of urban soils included the assessment of heavy metal pollution linked to the determination of soil genotoxicity, which characterizes the soil capacity to affect the structural and functional state of the genetic apparatus of soil biota. Increased concentration of chromium caused by the high background level was found in soils of the city of Rostov-on-Don. A weak contamination of surface horizons with lead and arsenic was also noted. Maximum permissible concentration of zinc was locally exceeded, including deep soil horizons. It was found that there is no definite correlation between the total content of heavy metals, their mobile compounds, and the parameters of genotoxicity in the natural and anthropogenically transformed soils. It was concluded that soil genotoxicity characterizes the total mutagenic activity associated with the presence of a set of genotoxicants of different nature.

  13. COMPREHENSIVE PROGRESS REPORT FOR FOURIER TRANSFORM NMR (NUCLEAR MAGNETIC RESONANCE) OF METALS OF ENVIRONMENTAL SIGNIFICANCE

    EPA Science Inventory

    Interactions of the metals cadmium and selenium with various biologically important substrates were studied by nuclear magnetic resonance (NMR) spectroscopy. Cadmium-113 NMR was used for a critical examination of three metalloproteins: concanavalin A, bovine superoxide dismutase ...

  14. Chemical transformations and disproportionation of sulfur dioxide on transition metal complexes

    SciTech Connect

    Kubas, G.J.

    1994-07-01

    Aside from its renown as a source of acid precipitation, sulfur dioxide is remarkable in possessing physicochemical and coordination properties that are more diverse than those of any other small molecule. SO{sub 2} is amphoteric, behaving as a Lewis acid or base, mild oxidant or reductant, or oxygen donor or acceptor. It is an excellent nonaqueous solvent when liquefied at -10{degrees}C and coordinates to many types of compounds, including metal complexes at both metal and ligand sites, strong Lewis acids, and virtually all nucleophiles, even halide ion. SO{sub 2} can bind strongly to low-valent metals like CO or NO or completely reversibly like O{sub 2} or H{sub 2}. The diversity of metal-SO{sub 2} bonding geometries is unmatched and has been reviewed. This Account will focus on the reactivity of SO{sub 2} e.g. SO double bond cleavage. 72 refs., 7 figs., 1 tab.

  15. Synthesis of GeFe1.4 Nanoparticles Using the Transformation of Iron Trisoxalategermanium Metal Coordination Nanopolymers by Solid Phase Reduction

    NASA Astrophysics Data System (ADS)

    Yamada, Mami; Ohkawa, Ryuji; Miyake, Mikio

    In this communication, we demonstrate the novel preparation of alloy metal nanoparticles using a nanometer-sized metal coordination polymer (MCNP) as a precursor. The presented method works effectively for the construction of an uncommon alloy nanoparticle such as a IV semiconductor-transition metal alloy. Iron trisoxalategermanium MCNPs stabilized by stealylamine (SA) were newly synthesized in reverse micelle technique, and Ge-ox-Fe-SA was successfully transformed into GeFe1.4 alloy metal nanoparticles by a gas phase reduction of metal sites under H2, accompanied by the removal of the bridging oxalate ligands. The prepared GeFe1.4 nanoparticles exhibited unique ferromagnetic behavior.

  16. Metal-Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations.

    PubMed

    Zhang, Teng; Manna, Kuntal; Lin, Wenbin

    2016-03-01

    New and active earth-abundant metal catalysts are critically needed to replace precious metal-based catalysts for sustainable production of commodity and fine chemicals. We report here the design of highly robust, active, and reusable cobalt-bipyridine- and cobalt-phenanthroline-based metal-organic framework (MOF) catalysts for alkene hydrogenation and hydroboration, aldehyde/ketone hydroboration, and arene C-H borylation. In alkene hydrogenation, the MOF catalysts tolerated a variety of functional groups and displayed unprecedentedly high turnover numbers of ∼2.5 × 10(6) and turnover frequencies of ∼1.1 × 10(5) h(-1). Structural, computational, and spectroscopic studies show that site isolation of the highly reactive (bpy)Co(THF)2 species in the MOFs prevents intermolecular deactivation and stabilizes solution-inaccessible catalysts for broad-scope organic transformations. Computational, spectroscopic, and kinetic evidence further support a hitherto unknown (bpy(•-))Co(I)(THF)2 ground state that coordinates to alkene and dihydrogen and then undergoing σ-complex-assisted metathesis to form (bpy)Co(alkyl)(H). Reductive elimination of alkane followed by alkene binding completes the catalytic cycle. MOFs thus provide a novel platform for discovering new base-metal molecular catalysts and exhibit enormous potential in sustainable chemical catalysis. PMID:26864496

  17. c-Jun/AP-1 pathway-mediated cyclin D1 expression participates in low dose arsenite-induced transformation in mouse epidermal JB6 Cl41 cells

    SciTech Connect

    Zhang Dongyun; Li Jingxia; Gao Jimin; Huang Chuanshu

    2009-02-15

    Arsenic is a well-documented human carcinogen associated with skin carcinogenesis. Our previous work reveals that arsenite exposure is able to induce cell transformation in mouse epidermal cell JB6 Cl41 through the activation of ERK, rather than JNK pathway. Our current studies further evaluate downstream pathway in low dose arsenite-induced cell transformation in JB6 Cl41 cells. Our results showed that treatment of cells with low dose arsenite induced activation of c-Jun/AP-1 pathway, and ectopic expression of dominant negative mutant of c-Jun (TAM67) blocked arsenite-induced transformation. Furthermore, our data indicated that cyclin D1 was an important downstream molecule involved in c-Jun/AP-1-mediated cell transformation upon low dose arsenite exposure, because inhibition of cyclin D1 expression by its specific siRNA in the JB6 Cl41 cells resulted in impairment of anchorage-independent growth of cells induced by low dose arsenite. Collectively, our results demonstrate that c-Jun/AP-1-mediated cyclin D1 expression is at least one of the key events implicated in cell transformation upon low dose arsenite exposure.

  18. HTLV-I Tax-Mediated Inactivation of Cell Cycle Checkpoints and DNA Repair Pathways Contribute to Cellular Transformation: “A Random Mutagenesis Model”

    PubMed Central

    Nicot, Christophe

    2015-01-01

    To achieve cellular transformation, most oncogenic retroviruses use transduction by proto-oncogene capture or insertional mutagenesis, whereby provirus integration disrupts expression of tumor suppressors or proto-oncogenes. In contrast, the Human T-cell leukemia virus type 1 (HTLV-I) has been classified in a separate class referred to as “transactivating retroviruses”. Current views suggest that the viral encoded Tax protein transactivates expression of cellular genes leading to deregulated growth and transformation. However, if Tax-mediated transactivation was indeed sufficient for cellular transformation, a fairly high frequency of infected cells would eventually become transformed. In contrast, the frequency of transformation by HTLV-I is very low, likely less than 5%. This review will discuss the current understanding and recent discoveries highlighting critical functions of Tax in cellular transformation. HTLV-I Tax carries out essential functions in order to override cell cycle checkpoints and deregulate cellular division. In addition, Tax expression is associated with increased DNA damage and genome instability. Since Tax can inhibit multiple DNA repair pathways and stimulate unfaithful DNA repair or bypass checkpoints, these processes allow accumulation of genetic mutations in the host genome. Given this, a “Random Mutagenesis” transformation model seems more suitable to characterize the oncogenic activities of HTLV-I. PMID:26835512

  19. A Fast and Practical Yeast Transformation Method Mediated by Escherichia coli Based on a Trans-Kingdom Conjugal Transfer System: Just Mix Two Cultures and Wait One Hour

    PubMed Central

    Moriguchi, Kazuki; Yamamoto, Shinji; Ohmine, Yuta; Suzuki, Katsunori

    2016-01-01

    Trans-kingdom conjugation is a phenomenon by which DNA is transferred into a eukaryotic cell by a bacterial conjugal transfer system. Improvement in this method to facilitate the rapid co-cultivation of donor bacterial and recipient eukaryotic cell cultures could make it the simplest transformation method, requiring neither isolation of vector DNA nor preparation of competent recipient cells. To evaluate this potential advantage of trans-kingdom conjugation, we examined this simple transformation method using vector combinations, helper plasmids, and recipient Saccharomyces cerevisiae strains. Mixing donor Escherichia coli and recipient S. cerevisiae overnight cultures (50 μL each) consistently yielded on the order of 101 transformants using the popular experimental strain BY4742 derived from S288c and a shuttle vector for trans-kingdom conjugation. Transformation efficiency increased to the order of 102 using a high receptivity trans-kingdom conjugation strain. In addition, either increasing the amount of donor cells or pretreating the recipient cells with thiols such as dithiothreitol improved the transformation efficiency by one order of magnitude. This simple trans-kingdom conjugation-mediated transformation method could be used as a practical yeast transformation method upon enrichment of available vectors and donor E. coli strains. PMID:26849654

  20. Calycosin inhibits migration and invasion through modulation of transforming growth factor beta-mediated mesenchymal properties in U87 and U251 cells

    PubMed Central

    Nie, Xiao-hu; Ou-yang, Jia; Xing, Ying; Li, Dan-yan; Liu, Ru-en; Xu, Ru-xiang

    2016-01-01

    In this study, we investigated the potential anticancer effects of calycosin against human glioblastoma cells, including the impacts on cell proliferation, apoptosis, and cell cycle distribution. We further studied its inhibitory activity on migration and invasion in U87 and U251 cells. Furthermore, transforming growth factor beta-mediated reductions of mesenchymal-associated genes/activators, matrix metalloproteinases-2, and -9 were detected in this process. Administration of calycosin in a glioblastoma xenograft model showed that calycosin could not only reduce tumor volume but also suppress transforming growth factor beta as well as its downstream molecules. These results revealed calycosin as a potential antitumor agent in human glioblastoma. PMID:26955262

  1. Transformation of metal-organic framework to polymer gel by cross-linking the organic ligands preorganized in metal-organic framework.

    PubMed

    Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki

    2013-04-10

    Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now. PMID:23472763

  2. Role of Leptothrix discophora in mediating metal uptake in the filter-feeding bivalve Mytilus trossulus (edulis).

    PubMed

    Widmeyer, Joline R; Crozier, E Daryl; Moore, Margo M; Jurgensen, Astrid; Bendell-Young, Leah I

    2004-02-01

    The potential for filter-feeding bivalves to accumulate metals from a wide range of food sources is an important consideration when examining trophic transfer of metals up the food chain. The objective of this study was to determine the role of Leptothrix discophora in mediating metal uptake in the filter-feeding bivalve Mytilus trossulus. The bacterium L. discophora SP-6 was cultured in the absence or presence of Mn, allowing for a naturally formed Mn oxide sheath to develop. Secondary metals (Cd and Pb) were then added to the cultures, allowing for potential Cd and Pb adsorption to the Mn oxide sheath. Resulting bacterial aggregates of known diameter were then fed to the bivalve M. trossulus using a flow-through system. Initial concentrations of both Pb and Cd on the bacterium did not differ significantly in the presence or absence of the Mn oxide; conversely both Pb (F = 7.39, p < 0.0001) and Cd (F= 33.65, p < 0.0001) were found at lower concentrations in the mussel tissue when the Mn oxide was present. To determine whether these differences in metal uptake could be attributed to sorting by the mussel based on food quality, nutritional analysis was performed. Bacterial food matrixes containing Mn oxides were found to have significantly lower levels of carbon (F = 256, p < 0.0001). Particle clearance rates for the various food matrixes were positively correlated with organic content (R2 = 0.852, p > 0.008). The results of our study suggest that metal uptake in M. trossulus was significantly decreased for Cd with a similar trend for Pb when the SP-6 sheath contained Mn oxides. The mechanism mediating this differential uptake is best explained by food quality, in that a higher quality food source enhanced metal uptake due to an increased clearance rate of organic-rich particles by M. trossulus. PMID:14968863

  3. 14-3-3 sigma and 14-3-3 zeta plays an opposite role in cell growth inhibition mediated by transforming growth factor-beta 1.

    PubMed

    Hong, Hye-Young; Jeon, Woo-Kwang; Bae, Eun-Jin; Kim, Shin-Tae; Lee, Ho-Jae; Kim, Seong-Jin; Kim, Byung-Chul

    2010-03-01

    The expression of 14-3-3 proteins is dysregulated in various types of cancer. This study was undertaken to investigate the effects of 14-3-3 zeta and 14-3-3 sigma on cell growth inhibition mediated by transforming growth factor-beta 1 (TGF-beta1). Mouse mammary epithelial cells (Eph4) that are transformed with oncogenic c-H-Ras (EpRas) and no longer sensitive to TGF-beta1-mediated growth inhibition displayed increased expression of 14-3-3 zeta and decreased expression of 14-3-3 sigma compared with parental Eph4 cells. Using small interfering RNA-mediated knockdown and overexpression of 14-3-3 sigma or 14-3-3 zeta, we showed that 14-3-3 sigma is required for TGF-beta1-mediated growth inhibition whereas 14-3-3 zeta negatively modulates this growth inhibitory response. Notably, overexpression of 14-3-3 zeta increased the level of Smad3 protein that is phosphorylated at linker regions and cannot mediate the TGF-beta1 growth inhibitory response. Consistent with this finding, mutation of the 14-3-3 zeta phosphorylation sites in Smad3 markedly reduced the 14-3-3 zeta-mediated inhibition of TGF-beta1-induced p15 promoter-reporter activity and cell cycle arrest, suggesting that these residues are critical targets of 14-3-3 zeta in the suppression of TGF-beta1-mediated growth. Taken together, our findings indicate that dysregulation of 14-3-3 sigma or 14-3-3 zeta contributes to TGF-beta1 resistance in cancer cells. PMID:20082218

  4. Cytoplasmic membrane is the target organelle for transition metal mediated damage induced by paraquat in Escherichia coli

    SciTech Connect

    Kohen, R.; Chevion, M.

    1988-04-05

    Bacterial survival indicates that copper or iron is an essential mediator in paraquat toxicity in Escherichia coli. In this study the authors have identified the cytoplasmic membrane as a target organelle in metal-mediated paraquat toxicity and have demonstrated the complete correlation of the membrane damage with the levels of adventitious copper (or iron). The extent of membrane damage was related by use of four parameters: (a) the level of cellular ATP, (b) the level of cellular potassium, (c) the cellular capacity to accumulate and retain radiolabeled leucine, and (d) the cellular integrity as reflected by transmission electron microscopy (TEM). Exposure of bacterial cells to a combination of paraquat and copper caused a marked decline in parameters a, b, and c. This decline was found to occur in parallel with, or even to precede, the sharp loss of survival of E. coli under the same conditions. Likewise, TEM micrographs clearly indicated alternations in cellular structure that possibly reflect sites of detachment of the cytoplasmic membrane from the bacterial capsule. In contradistinction, copper alone or paraquat alone could not bring about similar changes in cellular structure. These findings are in accord with the suggested site-specific metal-mediated Haber-Weiss mechanism for paraquat toxicity and support our notion that specific chelators of transition metals could reduce or prevent the biological deleterious effects of this herbicide.

  5. Influenza Promotes Collagen Deposition via αvβ6 Integrin-mediated Transforming Growth Factor β Activation*

    PubMed Central

    Jolly, Lisa; Stavrou, Anastasios; Vanderstoken, Gilles; Meliopoulos, Victoria A.; Habgood, Anthony; Tatler, Amanda L.; Porte, Joanne; Knox, Alan; Weinreb, Paul; Violette, Shelia; Hussell, Tracy; Kolb, Martin; Stampfli, Martin R.; Schultz-Cherry, Stacey; Jenkins, Gisli

    2014-01-01

    Influenza infection exacerbates chronic pulmonary diseases, including idiopathic pulmonary fibrosis. A central pathway in the pathogenesis of idiopathic pulmonary fibrosis is epithelial injury leading to activation of transforming growth factor β (TGFβ). The mechanism and functional consequences of influenza-induced activation of epithelial TGFβ are unclear. Influenza stimulates toll-like receptor 3 (TLR3), which can increase RhoA activity, a key event prior to activation of TGFβ by the αvβ6 integrin. We hypothesized that influenza would stimulate TLR3 leading to activation of latent TGFβ via αvβ6 integrin in epithelial cells. Using H1152 (IC50 6.1 μm) to inhibit Rho kinase and 6.3G9 to inhibit αvβ6 integrins, we demonstrate their involvement in influenza (A/PR/8/34 H1N1) and poly(I:C)-induced TGFβ activation. We confirm the involvement of TLR3 in this process using chloroquine (IC50 11.9 μm) and a dominant negative TLR3 construct (pZERO-hTLR3). Examination of lungs from influenza-infected mice revealed augmented levels of collagen deposition, phosphorylated Smad2/3, αvβ6 integrin, and apoptotic cells. Finally, we demonstrate that αvβ6 integrin-mediated TGFβ activity following influenza infection promotes epithelial cell death in vitro and enhanced collagen deposition in vivo and that this response is diminished in Smad3 knock-out mice. These data show that H1N1 and poly(I:C) can induce αvβ6 integrin-dependent TGFβ activity in epithelial cells via stimulation of TLR3 and suggest a novel mechanism by which influenza infection may promote collagen deposition in fibrotic lung disease. PMID:25339175

  6. Molecular analysis of the Trichosporon cutaneum DSM 70698 argA gene and its use for DNA-mediated transformations.

    PubMed Central

    Reiser, J; Glumoff, V; Ochsner, U A; Fiechter, A

    1994-01-01

    Genomic clones capable of complementing a previously isolated arginine auxotrophic mutant strain of the filamentous yeast Trichosporon cutaneum DSM 70698 have been identified by DNA-mediated transformation, and a complementing 4,082-bp subfragment was sequenced. This analysis revealed an intact gene (arg4) showing a high degree of homology with the Saccharomyces cerevisiae CPA2 gene encoding the large subunit of carbamoyl-phosphate synthetase (CPS-A). The inferred amino acid sequence of the T. cutaneum argA-encoded protein contains 1,168 residues showing 62% identity with the sequence of the S. cerevisiae CPA2 protein, and the comparison of the two sequences uncovered a putative intron sequence of 81 nucleotides close to the 5' end of the coding region of the T. cutaneum argA gene. The presence of this intron was confirmed by nuclease protection studies and by direct DNA sequence analysis of a cDNA fragment which had been obtained by PCR amplification. The T. cutaneum intron shares the general characteristics of introns found in yeasts and filamentous fungi. A major transcript of around 4 kb was found in Northern (RNA) blots. The T. cutaneum argA coding region was expressed in Escherichia coli under the control of the regulatable tac promoter. A roughly 130-kDa protein which was found to cross-react with an anti-rat CPS antibody in Western blots (immunoblots) was observed. Two putative ATP-binding domains were identified, one in the amino-terminal half of the argA-encoded protein and the other in the carboxy-terminal half. These domains are highly conserved among the known CPS-A sequences from S. cerevisiae, E. coli, and the rat. From these results we conclude that the T. cutaneum argA gene encodes the large subunit of CPS. This is the first gene to be identified and analyzed in the T. cutaneum DSM 70698 strain. Images PMID:8188603

  7. Metal-Free Mediated Meerwein-Type Reaction: A Radical Cascade Arylation/Aryl Migration/Desulfonylation of Conjugated Alkenes.

    PubMed

    Ni, Zhangqin; Huang, Xin; Pan, Yuanjiang

    2016-06-01

    A metal-free cascade arylation/aryl migration/desulfonylation of N-phenyl-N-(phenylsulfonyl)methacrylamide is described. The in situ generated diazonium salts from anilines and t-BuONO are used as aryl precursors. This process provides an efficient strategy for the synthesis of α-all-carbon quaternary stereocenters amides. A radical mechanism was proposed for this transformation. PMID:27219900

  8. The transformation of organic amines by transition metal cluster compounds. Progress report, 1993--1994

    SciTech Connect

    Adams, R.D.

    1994-01-01

    In the recent year, the authors extended investigations into insertion reactions by investigating the insertion of dicarboxylate acetylene into the metal-metal bond of Re{sub 2}(CO){sub 9}(NCMe). Secondly, the authors considered the ring opening reactions of the cyclic thioethers: tetrahydrothiophene and thiacyclohexane when complexed to Os{sub 3}(CO){sub 10}(NCMe){sub 2}. In a third effort, various osmium complexes of cyclobutynes were synthesized and the subsequent reactivity probed. Finally, energy storage (via absorption of UV-visible photons) in osmium cluster compounds was investigated.

  9. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain.

    PubMed

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects. PMID:23185399

  10. Leaching Behavior of Heavy Metals and Transformation of Their Speciation in Polluted Soil Receiving Simulated Acid Rain

    PubMed Central

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects. PMID:23185399

  11. Primary Transformation Kinetics in Zr-Al-Ni-Cu-Pd Bulk Metallic Glass Correlated with Relaxation State

    NASA Astrophysics Data System (ADS)

    Saida, Junji; Setyawan, Albertus D.

    2013-05-01

    The primary transformation kinetics of nanoicosahedral quasicrystalline (QC) phase formation were investigated in Zr65Al7.5Ni10Cu12.5Pd5 bulk metallic glass (BMG) in various relaxation states. A less relaxed (unrelaxed) BMG exhibited higher activation energy for atomic diffusion in the glassy structure than that of a relaxed one, which represents a change in the nucleation and grain growth kinetics of the primary phase with the relaxation state. Actually, the grain growth rate of a QC particle near the crystallization temperature was approximately 1 × 10-9 m/s in the less relaxed BMGs, which was less than half of that in the relaxed BMGs. In contrast, the calculated homogeneous nucleation rate significantly increased in the less relaxed samples. It increased with the volume fraction transformed in the early stage. It is concluded that the relaxation state of glassy alloys markedly affects the primary transformation kinetics. The current study also indicates a necessity of development of the relaxation state for structure controlling in industrial applications of BMGs.

  12. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts.

    PubMed

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-10-21

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields. PMID:24056899

  13. The heavy metal cadmium induces valosin-containing protein (VCP)-mediated aggresome formation

    SciTech Connect

    Song, Changcheng Xiao Zhen; Nagashima, Kunio; Li, Chou-Chi H.; Lockett, Stephen J.; Dai Renming; Cho, Edward H.; Conrads, Thomas P.; Veenstra, Timothy D.; Colburn, Nancy H.; Wang Qing; Wang Jiming

    2008-05-01

    Cadmium (Cd{sup 2+}) is a heavy metal ion known to have a long biological half-life in humans. Accumulating evidence shows that exposure to Cd{sup 2+} is associated with neurodegenerative diseases characterized by the retention of ubiquitinated and misfolded proteins in the lesions. Here, we report that Cd{sup 2+} directly induces the formation of protein inclusion bodies in cells. The protein inclusion body is an aggresome, a major organelle for collecting ubiquitinated or misfolded proteins. Our results show that aggresomes are enriched in the detergent-insoluble fraction of Cd{sup 2+}-treated cell lysates. Proteomic analysis identified 145 proteins in the aggresome-enriched fractions. One of the proteins is the highly conserved valosin-containing protein (VCP), which has been shown to colocalize with aggresomes and bind ubiquitinated proteins through its N domain (1-200). Our subsequent examination of VCP's role in the formation of aggresomes induced by Cd{sup 2+} indicates that the C-terminal tail (no. 780-806) of VCP interacts with histone deacetylase HDAC6, a mediator for aggresome formation, suggesting that VCP participates in transporting ubiquitinated proteins to aggresomes. This function of VCP is impaired by inhibition of the deacetylase activity of HDAC6 or by over-expression of VCP mutants that do not bind ubiquitinated proteins or HDAC6. Our results indicate that Cd{sup 2+} induces the formation of protein inclusion bodies by promoting the accumulation of ubiquitinated proteins in aggresomes through VCP and HDAC6. Our delineation of the role of VCP in regulating cell responses to ubiquitinated proteins has important implications for understanding Cd{sup 2+} toxicity and associated diseases.

  14. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity

    SciTech Connect

    Shimomura, Tadanori; Miyamura, Norio; Hata, Shoji; Miura, Ryota; Hirayama, Jun Nishina, Hiroshi

    2014-01-17

    Highlights: •Loss of the PDZ-binding motif inhibits constitutively active YAP (5SA)-induced oncogenic cell transformation. •The PDZ-binding motif of YAP promotes its nuclear localization in cultured cells and mouse liver. •Loss of the PDZ-binding motif inhibits YAP (5SA)-induced CTGF transcription in cultured cells and mouse liver. -- Abstract: YAP is a transcriptional co-activator that acts downstream of the Hippo signaling pathway and regulates multiple cellular processes, including proliferation. Hippo pathway-dependent phosphorylation of YAP negatively regulates its function. Conversely, attenuation of Hippo-mediated phosphorylation of YAP increases its ability to stimulate proliferation and eventually induces oncogenic transformation. The C-terminus of YAP contains a highly conserved PDZ-binding motif that regulates YAP’s functions in multiple ways. However, to date, the importance of the PDZ-binding motif to the oncogenic cell transforming activity of YAP has not been determined. In this study, we disrupted the PDZ-binding motif in the YAP (5SA) protein, in which the sites normally targeted by Hippo pathway-dependent phosphorylation are mutated. We found that loss of the PDZ-binding motif significantly inhibited the oncogenic transformation of cultured cells induced by YAP (5SA). In addition, the increased nuclear localization of YAP (5SA) and its enhanced activation of TEAD-dependent transcription of the cell proliferation gene CTGF were strongly reduced when the PDZ-binding motif was deleted. Similarly, in mouse liver, deletion of the PDZ-binding motif suppressed nuclear localization of YAP (5SA) and YAP (5SA)-induced CTGF expression. Taken together, our results indicate that the PDZ-binding motif of YAP is critical for YAP-mediated oncogenesis, and that this effect is mediated by YAP’s co-activation of TEAD-mediated CTGF transcription.

  15. Single Particle ICPMS for Characterizing Metal-based Nanoparticles and Monitoring Transformation Processes in Surface Water

    EPA Science Inventory

    Engineered metal-based nanomaterials will likely be used in increasing quantities in consumer and industrial products. These may be introduced into surface waters by a variety of paths depending on usage. Other naturally occurring and anthropogenic particles containing these met...

  16. Phase and structural transformations in metallic iron under the action of heavy ions and recoil nuclei.

    PubMed

    Alekseev, I; Novikov, D

    2014-02-01

    By the use of various modes of Mössbauer spectroscopy after effects of irradiation of metal iron with (12)C(4+) and (14)N(5+) ions of medium energies, and alpha-particles and the (208)Tl, (208,212)Pb, and (216)Po recoil from a (228)Th-source have been studied. The experimental data obtained in the study enabled various types of external and internal radiation to be compared in regard to the damage they cause, as well as to their effect on the structure-, phase composition- and corrosion resistance properties of metallic iron. Irradiation with (12)C(4+) and (14)N(5+) ions is accompanied by both structural disordering of the α-Fe lattice, and the appearance of γ-phase in the bulk metal. This is indicated by a single line which is 2 to 3-fold broadened (as compared to the lines of the magnetic sextet). This is a result of a strong local heating of the lattice in the thermal spike area with a subsequent instant cooling-down and recrystallization of this "molted" area. Irradiation of iron foils with (12)C(4+)- and (14)N(5+) ions and with recoil nuclei does provoke corrosion processes (the formation of γ-FeOOH) and is accompanied by an intensive oxidation of the metal. PMID:24378918

  17. X-ray diffraction studies of phase transformations in heavy-metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.; Doremus, R. H.

    1985-01-01

    Powder X-ray diffraction and differential scanning calorimetry studies of the crystallization properties of five ZrF4-based glass compositions have indicated that the crystalline phase in Zr-Ba-La-Pb fluoride glass is beta-BaZrF6; no such identification of crystal phases was obtainable, however, for the other glasses. Reversible polymorphic phase transformations occur in Zr-Ba-La-Li and Zr-Ba-La-Na fluoride glasses, upon heating to higher temperatures.

  18. Studies of transformational leadership in consumer service: market orientation behavior and alternative roles for the mediators and moderators of change commitment.

    PubMed

    Yang, Yi-Feng

    2013-12-01

    The present paper evaluates the relation between transformational leadership and market orientation along with the mediating and moderating effects of change commitment for employees in customer centers in Taiwan. 327 questionnaires were returned by personnel at several customer centers in four different insurance companies. Inter-rater agreement was acceptable based on the multiple raters (i.e., the consumer-related employees from the division groups) of one individual (i.e., a manager)--indicating the aggregated measures were acceptable. The multi-source sample comprised data taken from the four division centers: phone services, customer representatives, financial specialists, and front-line salespeople. The relations were assessed using a multiple mediation procedure incorporating bootstrap techniques and PRODCLIN2 with structural equation modeling analysis. The results reflect a mediating role for change commitment. PMID:24693811

  19. Agrobacterium-mediated genetic transformation of commercially elite rice restorer line using nptII gene as a plant selection marker.

    PubMed

    Chakraborty, M; Sairam Reddy, P; Laxmi Narasu, M; Krishna, Gaurav; Rana, Debashis

    2016-01-01

    Transformation of commercially important indica cultivars remains challenging for the scientific community even though Agrobacterium-mediated transformation protocols for a few indica rice lines have been well established. We report successful transformation of a commercially important restorer line JK1044R of indica rice hybrid JKRH 401. While following existing protocol, we optimized several parameters for callusing, regeneration and genetic transformation of JK1044R. Calli generated from the rice scutellum tissue were used for transformation by Agrobacterium harboring pCAMBIA2201. A novel two tire selection scheme comprising of Geneticin (G418) and Paramomycin were deployed for selection of transgenic calli as well as regenerated plantlets that expressed neomycin phosphotransferase-II gene encoded by the vector. One specific combination of G418 (30 mg l(-1)) and Paramomycin (70 mg l(-1)) was very effective for calli selection. Transformed and selected calli were detected by monitoring the expression of the reporter gene uidA (GUS). Regenerated plantlets were confirmed through PCR analysis of nptII and gus genes specific primers as well as dot blot using gus gene specific as probe. PMID:27186018

  20. Development of a transgenic hairy root system in jute (Corchorus capsularis L.) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation.

    PubMed

    Chattopadhyay, Tirthartha; Roy, Sheuli; Mitra, Adinpunya; Maiti, Mrinal K

    2011-04-01

    Transgenic hairy root system is important in several recalcitrant plants, where Agrobacterium tumefaciens-mediated plant transformation and generation of transgenic plants are problematic. Jute (Corchorus spp.), the major fibre crop in Indian subcontinent, is one of those recalcitrant plants where in vitro tissue culture has provided a little success, and hence, Agrobacterium-mediated genetic transformation remains to be a challenging proposition in this crop. In the present work, a system of transgenic hairy roots in Corchorus capsularis L. has been developed through genetic transformation by Agrobacterium rhizogenes harbouring two plasmids, i.e. the natural Ri plasmid and a recombinant binary vector derived from the disarmed Ti plasmid of A. tumefaciens. Our findings indicate that the system is relatively easy to establish and reproducible. Molecular analysis of the independent lines of transgenic hairy roots revealed the transfer of relevant transgenes from both the T-DNA parts into the plant genome, indicating the co-transformation nature of the event. High level expression and activity of the gusA reporter gene advocate that the transgenic hairy root system, thus developed, could be applicable as gene expression system in general and for root functional genomics in particular. Furthermore, these transgenic hairy roots can be used in future as explants for plantlet regeneration to obtain stable transgenic jute plants. PMID:21153028

  1. Herpesvirus ateles and herpesvirus saimiri transform marmoset T cells into continuously proliferating cell lines that can mediate natural killer cell-like cytotoxicity.

    PubMed Central

    Johnson, D R; Jondal, M

    1981-01-01

    Herpesvirus ateles (HVA) and herpesvirus saimiri (HVS) have the capacity to transform cotton-topped marmoset T lymphocytes into continuously proliferating cell lines that retain some functions associated with cell-mediated immunity. In the present paper, we demonstrate that HVA/HVS-transformed T cell lines are cytotoxic in a short-term 51Cr release assay and that this killing resembles killing by marmoset natural killer (NK) cells. The relationship between NK cells and HVA/HVS-transformed killer cell lines is discussed in view of present knowledge of the origin and function of the NK system. It is suggested that the described cytotoxic cell lines may be useful for further defining cellular cytotoxicity with regard to cell surface recognition, regulatory events, and lytic mechanisms. PMID:6273869

  2. Correlated structural and electronic phase transformations in transition metal chalcogenide under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Chunyu; Ke, Feng; Hu, Qingyang; Yu, Zhenhai; Zhao, Jinggeng; Chen, Zhiqiang; Yan, Hao

    2016-04-01

    Here, we report comprehensive studies on the high-pressure structural and electrical transport properties of the layered transition metal chalcogenide (Cr2S3) up to 36.3 GPa. A structural phase transition was observed in the rhombohedral Cr2S3 near 16.5 GPa by the synchrotron angle dispersive X-ray diffraction measurement using a diamond anvil cell. Through in situ resistance measurement, the electric resistance value was detected to decrease by an order of three over the pressure range of 7-15 GPa coincided with the structural phase transition. Measurements on the temperature dependence of resistivity indicate that it is a semiconductor-to-metal transition in nature. The results were also confirmed by the electronic energy band calculations. Above results may shed a light on optimizing the performance of Cr2S3 based applications under extreme conditions.

  3. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel.

    PubMed

    Ravanfar, Seyed Ali; Aziz, Maheran Abdul; Saud, Halimi Mohd; Abdullah, Janna Ong

    2015-11-01

    An efficient system for shoot regeneration and Agrobacterium tumefaciens-mediated transformation of Brassica oleracea cv. Green Marvel cultivar is described. This study focuses on developing shoot regeneration from hypocotyl explants of broccoli cv. Green Marvel using thidiazuron (TDZ), zeatin, and kinetin, the optimization of factors affecting Agrobacterium-mediated transformation of the hypocotyl explants with heat-resistant cDNA, followed by the confirmation of transgenicity of the regenerants. High shoot regeneration was observed in 0.05-0.1 mg dm(-3) TDZ. TDZ at 0.1 mg dm(-3) produced among the highest percentage of shoot regeneration (96.67 %) and mean number of shoot formation (6.17). The highest percentage (13.33 %) and mean number (0.17) of putative transformant production were on hypocotyl explants subjected to preculture on shoot regeneration medium (SRM) with 200 µM acetosyringone. On optimization of bacterial density and inoculation time, the highest percentage and mean number of putative transformant production were on hypocotyl explants inoculated with a bacterial dilution of 1:5 for 30 min. Polymerase chain reaction (PCR) assay indicated a transformation efficiency of 8.33 %. The luciferase assay showed stable integration of the Arabidopsis thaliana HSP101 (AtHSP101) cDNA in the transgenic broccoli regenerants. Three out of five transgenic lines confirmed through PCR showed positive hybridization bands of the AtHSP101 cDNA through Southern blot analysis. The presence of AtHSP101 transcripts in the three transgenic broccoli lines indicated by reverse transcription-PCR (RT-PCR) confirmed the expression of the gene. In conclusion, an improved regeneration system has been established from hypocotyl explants of broccoli followed by successful transformation with AtHSP101 for resistance to high temperature. PMID:25986972

  4. Free energy contributions to the hcp-bcc transformation in transition metals

    SciTech Connect

    Moroni, E.G.; Grimvall, G.; Jarlborg, T.

    1996-04-01

    The electronic and vibrational free energies of some hcp and bcc transition metals are computed {ital ab} {ital initio}. The vibrational part is obtained from a total-energy calculation over lattices with atoms randomly displaced according to a Gaussian distribution. The relative importance of electronic and vibrational excitations in the stabilization of the high-temperature bcc structure is clarified. {copyright} {ital 1996 The American Physical Society.}

  5. Mechanical contact induced transformation from the amorphous to the crystalline state in metallic glass

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Friction and wear tests were conducted with 3.2- and 6.4-millimeter-diameter aluminum oxide spheres sliding, in reciprocating motion, on a Fe67Co18B14Si1 metallic foil. Crystallites with a size range of 10 to 150 nanometers were produced on the wear surface of the amorphous alloy. A strong interaction between transition metals and metalloids such as silicon and boron results in strong segregation during repeated sliding, provides preferential transition metal-metalloid clustering in the amorphous alloy, and subsequently produces the diffused honeycomb structure formed by dark grey bands and primary crystals, that is, alpha-Fe in the matrix. Large plastic flow occurs on an amorphous alloy surface with sliding and the flow film of the alloy transfers to the aluminum oxide pin surface. Multiple slip bands due to shear deformation are observed on the side of the wear track. Two distinct types of wear debris were observed as a result of sliding: an alloy wear debris, and/or powdery-whiskery oxide debris.

  6. Mechanical-contact-induced transformation from the amorphous to the partially crystalline state in metallic glass

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    Friction and wear tests were conducted with 3.2- and 6.4-millimeter-diameter aluminum oxide spheres sliding, in reciprocating motion, on a Fe67Co18B14Si1 metallic foil. Crystallites with a size range of 10 to 150 nanometers were produced on the wear surface of the amorphous alloy. A strong interaction between transition metals and metalloids such as silicon and boron results in strong segregation during repeated sliding, provides preferential transition metal-metalloid clustering in the amorphous alloy, and subsequently produces the diffused honeycomb structure formed by dark grey bands and primary crystals, that is, alpha-Fe in the matrix. Large plastic flow occurs on an amorphous alloy surface with sliding and the flow film of the alloy transfers to the aluminum oxide pin surface. Multiple slip bands due to shear deformation are observed on the side of the wear track. Two distinct types of wear debris were observed as a result of sliding: an alloy wear debris, and/or powdery-whiskery oxide debris.

  7. The transformation of organic amines by transition metal cluster compounds: Progress report

    SciTech Connect

    Adams, R.D.

    1994-11-01

    Research during the current award period has covered several related topics which have emerged and grown as a consequence of the various discoveries that have been made during this award period. They have been divided into the following subsections for clarity and emphasis: The activation of tertiary amines by osmium cluster complexes; CH bond activation and ring opening of a nitrogen containing strained ring heterocycle by an osmium cluster complex; Ring opening of cyclic thioethers; cyclooligomerization of Thietanes; Studies of the cyclobutyne ligand; Insertion of an alkynes into metal-metal bonds; and Energy storage in metal clusters. A summary of the results of these studies is given in the following sections of this report. These studies have resulted in 50 scientific publications over the last three years and details of their studies beyond that given in the following sections can be found in those reports. All of these reports are listed in the final section of this report by the author`s names, title and journal citation.

  8. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms

    PubMed Central

    2013-01-01

    Background Cadmium is a non-essential metal that is toxic because of its interference with essential metals such as iron, calcium and zinc causing numerous detrimental metabolic and cellular effects. The amount of this metal in the environment has increased dramatically since the advent of the industrial age as a result of mining activities, the use of fertilizers and sewage sludge in farming, and discharges from manufacturing activities. The metal bioremediation utility of phototrophic microbes has been demonstrated through their ability to detoxify Hg(II) into HgS under aerobic conditions. Metal sulfides are generally very insoluble and therefore, biologically unavailable. Results When Cd(II) was exposed to cells it was bioconverted into CdS by the green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the cyanobacterium, Synechoccocus leopoliensis. Supplementation of the two eukaryotic algae with extra sulfate, but not sulfite or cysteine, increased their cadmium tolerances as well as their abilities to produce CdS, indicating an involvement of sulfate assimilation in the detoxification process. However, the combined activities of extracted serine acetyl-transferase (SAT) and O-acetylserine(thiol)lyase (OASTL) used to monitor sulfate assimilation, was not significantly elevated during cell treatments that favored sulfide biosynthesis. It is possible that the prolonged incubation of the experiments occurring over two days could have compensated for the low rates of sulfate assimilation. This was also the case for S. leopoliensis where sulfite and cysteine as well as sulfate supplementation enhanced CdS synthesis. In general, conditions that increased cadmium sulfide production also resulted in elevated cysteine desulfhydrase activities, strongly suggesting that cysteine is the direct source of sulfur for CdS synthesis. Conclusions Cadmium(II) tolerance and CdS formation were significantly enhanced by sulfate supplementation, thus

  9. Evaluating Transition-Metal Catalyzed Transformations for the Synthesis of Laulimalide

    PubMed Central

    Trost, Barry M.; Amans, Dominique; Seganish, W. Michael; Chung, Cheol K.

    2009-01-01

    Laulimalide is a structurally unique 20-membered marine macrolide displaying microtubule stabilizing activity similar to that of paclitaxel and the epothilones. The use of atom economical transformations such as a rhodium-catalyzed cycloisomerization to form the endocyclic dihydropyran, a dinuclear zinc-catalyzed asymmetric glycolate aldol to prepare the syn 1,2-diol and an intramolecular ruthenium-catalyzed alkene-alkyne coupling to build the macrocycle enabled us to synthesize laulimalide via an efficient and convergent pathway. The designed synthetic route also allowed us to prepare an analogue of the natural product that possesses significant cytotoxic activity. PMID:19891433

  10. Time-distance domain transformation for Acoustic Emission source localization in thin metallic plates.

    PubMed

    Grabowski, Krzysztof; Gawronski, Mateusz; Baran, Ireneusz; Spychalski, Wojciech; Staszewski, Wieslaw J; Uhl, Tadeusz; Kundu, Tribikram; Packo, Pawel

    2016-05-01

    Acoustic Emission used in Non-Destructive Testing is focused on analysis of elastic waves propagating in mechanical structures. Then any information carried by generated acoustic waves, further recorded by a set of transducers, allow to determine integrity of these structures. It is clear that material properties and geometry strongly impacts the result. In this paper a method for Acoustic Emission source localization in thin plates is presented. The approach is based on the Time-Distance Domain Transform, that is a wavenumber-frequency mapping technique for precise event localization. The major advantage of the technique is dispersion compensation through a phase-shifting of investigated waveforms in order to acquire the most accurate output, allowing for source-sensor distance estimation using a single transducer. The accuracy and robustness of the above process are also investigated. This includes the study of Young's modulus value and numerical parameters influence on damage detection. By merging the Time-Distance Domain Transform with an optimal distance selection technique, an identification-localization algorithm is achieved. The method is investigated analytically, numerically and experimentally. The latter involves both laboratory and large scale industrial tests. PMID:26950889

  11. Stepwise Transformation of the Molecular Building Blocks in a Porphyrin-Encapsulating Metal-Organic Material

    SciTech Connect

    Zhang, Zhenjie; Wojtas, Lukasz; Eddaoudi, Mohamed; Zaworotko, Michael J.

    2013-06-05

    When immersed in solutions containing Cu(II) cations, the microporous metal–organic material P11 ([Cd4(BPT)4]·[Cd(C44H36N8)(S)]·[S], BPT = biphenyl-3,4',5-tricarboxylate) undergoes a transformation of its [Cd2(COO)6]2– molecular building blocks (MBBs) into novel tetranuclear [Cu4X2(COO)6(S)2] MBBs to form P11-Cu. The transformation occurs in single-crystal to single-crystal fashion, and its stepwise mechanism was studied by varying the Cd2+/Cu2+ ratio of the solution in which crystals of P11 were immersed. P11-16/1 (Cd in framework retained, Cd in encapsulated porphyrins exchanged) and other intermediate phases were thereby isolated and structurally characterized. P11-16/1 and P11-Cu retain the microporosity of P11, and the relatively larger MBBs in P11-Cu permit a 20% unit cell expansion and afford a higher surface area and a larger pore size.

  12. Molecular identification of foreign inclusions in inflammatory tissue surrounding metal implants by Fourier transform laser microprobe mass spectrometry.

    PubMed

    De Nollin, S; Poels, K; Van Vaeck, L; De Clerck, N; Bakker, A; Duwel, V; Vandevelde, D; Van Marck, E

    1997-01-01

    Fourier transform laser microprobe mass spectrometry (FT LMMS) is a novel technique for micro-analysis of solids with a lateral resolution in the 5 microns range. One of the major advantages of the technique is the capability to perform characterisation of the molecular composition of both organic and inorganic compounds. The information is directly deduced from the signals without the aid of reference spectra. FT LMMS was applied to the characterisation of black tissue fragments in a biopsy from a patient, in which a constrained condylar nodular knee system was implanted ten years ago. The tissue contained numerous foreign giant cells with a black non-birefringent pigment in their cytoplasm. FT LMMS analysis allowed us to detect directly by means of molecular signals, that the debris consisted primarily of titanium oxide and not metallic titanium, while the implant itself only contained titanium. PMID:9258958

  13. Radially and azimuthally polarized laser induced shape transformation of embedded metallic nanoparticles in glass.

    PubMed

    Tyrk, Mateusz A; Zolotovskaya, Svetlana A; Gillespie, W Allan; Abdolvand, Amin

    2015-09-01

    Radially and azimuthally polarized picosecond (~10 ps) pulsed laser irradiation at 532 nm wavelength led to the permanent reshaping of spherical silver nanoparticles (~30 - 40 nm in diameter) embedded in a thin layer of soda-lime glass. The observed peculiar shape modifications consist of a number of different orientations of nano-ellipsoids in the cross-section of each written line by laser. A Second Harmonic Generation cross-sectional scan method from silver nanoparticles in transmission geometry was adopted for characterization of the samples after laser modification. The presented approach may lead to sophisticated marking of information in metal-glass nanocomposites. PMID:26368440

  14. Enzymatically mediated bioprecipitation of heavy metals from industrial wastes and single ion solutions by mammalian alkaline phosphatase.

    PubMed

    Chaudhuri, Gouri; Shah, Gaurav A; Dey, Pritam; S, Ganesh; Venu-Babu, P; Thilagaraj, W Richard

    2013-01-01

    The study was aimed at investigating the potential use of calf intestinal alkaline phosphatase (CIAP) enzyme in the removal of heavy metals (Cd(2+), Ni(2+), Co(2+) and Cr(3+/6+)) from single ion solutions as well as tannery and electroplating effluents. CIAP mediated bioremediation (white biotechnology) is a novel technique that is eco-friendly and cost effective unlike the conventional chemical technologies. Typical reactions containing the enzyme (CIAP) and p-nitrophenyl phosphate (pNPP) as substrate in Tris-HCl buffer (pH 8 and 11) and either single ion metal solutions (250 ppm and 1000 ppm) or effluents from tannery or electroplating industry were incubated at 37°C for 30 min, 60 min and 120 min. The inorganic phosphate (P(i)) generated due to catalytic breakdown of pNPP complexes free metal ions as metal-phosphate and the amount of metal precipitated was derived by estimating the reduction in the free metal ion present in the supernatant of reactions employing atomic absorption spectrophotometer (AAS). Better precipitation of metal was obtained at pH 11 than at pH 8 and between the two concentrations of different metals tested, an initial metal concentration of 250 ppm in the reaction gave more precipitation than with 1000 ppm. Experimental data showed that at pH 11, the percentage of removal of metal ions (for an initial concentration of 250 ppm) was in the following order: Cd(2+) (80.99%) > Ni(2+) (64.78%) > Cr(3+) > (46.15%) > Co(2+) (36.47%) > Cr(6+) (32.33%). The overall removal of Cr(3+) and Cr(6+) from tannery effluent was 32.77% and 37.39% respectively in 120 min at pH 11. Likewise, the overall removal of Cd(2+), Co(2+) and Ni(2+) from electroplating effluent was 50.42%, 13.93% and 38.64% respectively in 120 min at pH 11. The study demonstrates that bioprecipitation by CIAP may be a viable and environmental friendly method for clean-up of heavy metals from tannery and electroplating effluents. PMID:23030390

  15. Development of an Efficient Agrobacterium-Mediated Transformation System and Production of Herbicide-Resistant Transgenic Plants in Garlic (Allium sativum L.)

    PubMed Central

    Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong

    2013-01-01

    The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst non-transgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits. PMID:23832764

  16. Development of an efficient Agrobacterium-mediated transformation system and production of herbicide-resistant transgenic plants in garlic (Allium sativum L.).

    PubMed

    Ahn, Yul-Kyun; Yoon, Moo-Kyoung; Jeon, Jong-Seong

    2013-08-01

    The genetic improvement of garlic plants (Allium sativum L.) with agronomical beneficial traits is rarely achieved due to the lack of an applicable transformation system. Here, we developed an efficient Agrobacterium-mediated transformation procedure with Danyang, an elite Korean garlic cultivar. Examination of sGFP (synthetic green fluorescence protein) expression revealed that treatment with 2-(N-morpholino) ethanesulfonic acid (MES), L-cysteine and/or dithiothreitol (DTT) gives the highest efficiency in transient gene transfer during Agrobacterium co-cultivation with calli derived from the roots of in vitro plantlets. To increase stable transformation efficiency, a two-step selection was employed on the basis of hygromycin resistance and sGFP expression. Of the hygromycin-resistant calli initially produced, only sGFP-expressing calli were subcultured for selection of transgenic calli. Transgenic plantlets produced from these calli were grown to maturity. The transformation efficiency increased up to 10.6% via our optimized procedure. DNA and RNA gel-blot analysis indicated that transgenic garlic plants stably integrated and expressed the phosphinothricin acetyltransferase (PAT) gene. A herbicide spraying assay demonstrated that transgenic plants of garlic conferred herbicide resistance, whilst nontransgenic plants and weeds died. These results indicate that our transformation system can be efficiently utilized to produce transgenic garlic plants with agronomic benefits. PMID:23832764

  17. [Effects of Hydrothermal Treatment Time on the Transformations of N, P, K and Heavy Metals in Sewage Sludge].

    PubMed

    Wang, Xing-dong; Lin, Jing-jiang; Li, Zhi-wei; Chao, Huan-ping; Yu, Guang-wei; Wang, Yin

    2016-03-15

    Hydrothermal treatment (HTT) of sewage sludge was conducted, focusing on the influence of HTT time on the dewaterability of sludge and transformations of elements N, P, K and heavy metals. The results showed that at a hydrotherma temperature of 160°C, with HTT time increasing from 30 to 120 min, the sludge dewatering performance was significantly improved. The transfer rate of N element in the sludge transferring to aqueous product increased gradually. Almost all of P element remained in the solid phase, and most of K element (57%-62%) was still in the solid phase although it was more easily transferred to the liquid phase than P element. The transferring behavior of heavy metals during the HTT related to their own properties, and their transferring behaviors were different with the increase of HTT time. Compared with the raw sludge, the contents of Cu, Zn, Cr and Pb in the dewatered sludge increased significantly, As increased slowly, while Ni and Cd were first lower than those in raw sludge, and then increased with the prolonging HTT time. PMID:27337899

  18. Metal-Semiconductor Transition Concomitant with a Structural Transformation in Tetrahedrite Cu12Sb4S13

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromi I.; Suekuni, Koichiro; Umeo, Kazunori; Nagasaki, Toshiki; Sato, Hitoshi; Kutluk, Galif; Nishibori, Eiji; Kasai, Hidetaka; Takabatake, Toshiro

    2016-01-01

    The tetrahedrite Cu12Sb4S13 undergoes a metal-semiconductor transition (MST) at TMST = 85 K, whose mechanism remains elusive. Our Cu 2p X-ray photoemission spectroscopy study revealed the monovalent state of Cu ions occupying the two sites in this compound. This fact excludes the possibilities of previously proposed antiferromagnetic order and Jahn-Teller instability inherent in a divalent Cu system. A synchrotron X-ray diffraction study has revealed that the body-centered cubic cell of Cu12Sb4S13 transforms into a body-centered 2a × 2a × 2c tetragonal supercell below TMST, where the cell volume per formula unit expands by 0.25%. We have further studied pressure effects on the MST as well as the effects of the substitution of As for Sb. The application of pressure above 1 GPa completely inhibits the MST and leads to a metallic state, suggesting that the low-temperature structure with a larger volume becomes unstable under pressure. The As substitution also reduces the volume and suppresses the MST but the full substitution induces another transition at 124 K.

  19. Proton Conduction in a Phosphonate-Based Metal-Organic Framework Mediated by Intrinsic "Free Diffusion inside a Sphere".

    PubMed

    Pili, Simona; Argent, Stephen P; Morris, Christopher G; Rought, Peter; García-Sakai, Victoria; Silverwood, Ian P; Easun, Timothy L; Li, Ming; Warren, Mark R; Murray, Claire A; Tang, Chiu C; Yang, Sihai; Schröder, Martin

    2016-05-25

    Understanding the molecular mechanism of proton conduction is crucial for the design of new materials with improved conductivity. Quasi-elastic neutron scattering (QENS) has been used to probe the mechanism of proton diffusion within a new phosphonate-based metal-organic framework (MOF) material, MFM-500(Ni). QENS suggests that the proton conductivity (4.5 × 10(-4) S/cm at 98% relative humidity and 25 °C) of MFM-500(Ni) is mediated by intrinsic "free diffusion inside a sphere", representing the first example of such a mechanism observed in MOFs. PMID:27182787

  20. Visible-Light-Mediated Synthesis of Amidyl Radicals: Transition-Metal-Free Hydroamination and N-Arylation Reactions.

    PubMed

    Davies, Jacob; Svejstrup, Thomas D; Fernandez Reina, Daniel; Sheikh, Nadeem S; Leonori, Daniele

    2016-07-01

    The development of photoredox reactions of aryloxy-amides for the generation of amidyl radicals and their use in hydroamination-cyclization and N-arylation reactions is reported. Owing to the ease of single-electron-transfer reduction of the aryloxy-amides, the organic dye eosin Y was used as the photoredox catalyst, which results in fully transition-metal-free processes. These transformations exhibit a broad scope, are tolerant to several important functionalities, and have been used in the late-stage modification of complex and high-value N-containing molecules. PMID:27327358

  1. MicroRNA 17-92 cluster mediates ETS1 and ETS2-dependent RAS-oncogenic transformation.

    PubMed

    Kabbout, Mohamed; Dakhlallah, Duaa; Sharma, Sudarshana; Bronisz, Agnieszka; Srinivasan, Ruchika; Piper, Melissa; Marsh, Clay B; Ostrowski, Michael C

    2014-01-01

    The ETS-family transcription factors Ets1 and Ets2 are evolutionarily conserved effectors of the RAS/ERK signaling pathway, but their function in Ras cellular transformation and biology remains unclear. Taking advantage of Ets1 and Ets2 mouse models to generate Ets1/Ets2 double knockout mouse embryonic fibroblasts, we demonstrate that deletion of both Ets1 and Ets2 was necessary to inhibit HrasG12V induced transformation both in vitro and in vivo. HrasG12V expression in mouse embryonic fibroblasts increased ETS1 and ETS2 expression and binding to cis-regulatory elements on the c-Myc proximal promoter, and consequently induced a robust increase in MYC expression. The expression of the oncogenic microRNA 17-92 cluster was increased in HrasG12V transformed cells, but was significantly reduced when ETS1 and ETS2 were absent. MYC and ETS1 or ETS2 collaborated to increase expression of the oncogenic microRNA 17-92 cluster in HrasG12V transformed cells. Enforced expression of exogenous MYC or microRNA 17-92 rescued HrasG12V transformation in Ets1/Ets2-null cells, revealing a direct function for MYC and microRNA 17-92 in ETS1/ETS2-dependent HrasG12V transformation. PMID:24968297

  2. Autophagy mediated by arginine depletion activation of the nutrient sensor GCN2 contributes to interferon-γ-induced malignant transformation of primary bovine mammary epithelial cells.

    PubMed

    Xia, X-J; Gao, Y-Y; Zhang, J; Wang, L; Zhao, S; Che, Y-Y; Ao, C-J; Yang, H-J; Wang, J-Q; Lei, L-C

    2016-01-01

    Autophagy has been linked to the regulation of both the prevention and progression of cancer. IFN-γ has been shown to induce autophagy in multiple cell lines in vitro. However, whether IFN-γ can induce autophagy and whether autophagy promotes malignant transformation in healthy lactating bovine mammary epithelial cells (BMECs) remain unclear. Here, we provide the first evidence of the correlation between IFN-γ treatment, autophagy and malignant transformation and of the mechanism underlying IFN-γ-induced autophagy and subsequent malignant transformation in primary BMECs. IFN-γ levels were significantly increased in cattle that received normal long-term dietary corn straw (CS) roughage supplementation. In addition, an increase in autophagy was clearly observed in the BMECs from the mammary tissue of cows expressing high levels of IFN-γ. In vitro, autophagy was clearly induced in primary BMECs by IFN-γ within 24 h. This induced autophagy could subsequently promote dramatic primary BMEC transformation. Furthermore, we found that IFN-γ promoted arginine depletion, activated the general control nonderepressible-2 kinase (GCN2) signalling pathway and resulted in an increase in autophagic flux and the amount of autophagy in BMECs. Overall, our findings are the first to demonstrate that arginine depletion and kinase GCN2 expression mediate IFN-γ-induced autophagy that may promote malignant progression and that immunometabolism, autophagy and cancer are strongly correlated. These results suggest new directions and paths for preventing and treating breast cancer in relation to diet. PMID:27551491

  3. Autophagy mediated by arginine depletion activation of the nutrient sensor GCN2 contributes to interferon-γ-induced malignant transformation of primary bovine mammary epithelial cells

    PubMed Central

    Xia, X-j; Gao, Y-y; Zhang, J; Wang, L; Zhao, S; Che, Y-y; Ao, C-j; Yang, H-j; Wang, J-q; Lei, L-c

    2016-01-01

    Autophagy has been linked to the regulation of both the prevention and progression of cancer. IFN-γ has been shown to induce autophagy in multiple cell lines in vitro. However, whether IFN-γ can induce autophagy and whether autophagy promotes malignant transformation in healthy lactating bovine mammary epithelial cells (BMECs) remain unclear. Here, we provide the first evidence of the correlation between IFN-γ treatment, autophagy and malignant transformation and of the mechanism underlying IFN-γ-induced autophagy and subsequent malignant transformation in primary BMECs. IFN-γ levels were significantly increased in cattle that received normal long-term dietary corn straw (CS) roughage supplementation. In addition, an increase in autophagy was clearly observed in the BMECs from the mammary tissue of cows expressing high levels of IFN-γ. In vitro, autophagy was clearly induced in primary BMECs by IFN-γ within 24 h. This induced autophagy could subsequently promote dramatic primary BMEC transformation. Furthermore, we found that IFN-γ promoted arginine depletion, activated the general control nonderepressible-2 kinase (GCN2) signalling pathway and resulted in an increase in autophagic flux and the amount of autophagy in BMECs. Overall, our findings are the first to demonstrate that arginine depletion and kinase GCN2 expression mediate IFN-γ-induced autophagy that may promote malignant progression and that immunometabolism, autophagy and cancer are strongly correlated. These results suggest new directions and paths for preventing and treating breast cancer in relation to diet. PMID:27551491

  4. Effect of pH and organic acids on nitrogen transformations and metal dissolution in soils

    SciTech Connect

    Fu, Minhong.

    1989-01-01

    The effect of pH (4, 6, and 8) on nitrogen mineralization was evaluated in three Iowa surface soils treated with crop residues (corn (Zea mays L.), soybean (Glycine max (L.) Merr.), and sorghum (Sorghum vulgare Pers.), or alfalfa (Medicago sativa L.)) and incubated in leaching columns under aerobic conditions at 30C for 20 weeks. In general, N mineralization was significantly depressed at soil pH 4, compared with pH 6 or 8. The types of crop residues added influenced the pattern and amount of N mineralization. A study on the effect of 19 trace elements on the nitrate red activity of four Iowa surface soils showed that most trace elements inhibited this enzyme in acid and neutral soils. The trace elements Ag(I), Cd(II), Se(IV), As(V), and W(VI) were the most effective inhibitors, with >75% inhibition. Mn(II) was the least effective inhibitor, with <10% inhibition. Other trace elements included Cu(I), Co(II), Cu(II), Fe(II), Ni(II), Pb(II), Zn(II), Al(III), As(III), Cr(III), Fe(III), V(IV), Mo(VI), and Se(VI). The application of high-performance liquid chromatography (HPLC) showed that, when coupled to a refractive index detector, it is a rapid, sensitive, and accurate method for determining organic acids in soils. Three organic acids, acetic (2-20 mM), propionic (0-3 mM), and n-butyric (0-1.4 mM), were identified with HPLC and confirmed by gas chromatography in crop-residue-treated soils incubated under waterlogged conditions at 25C for 72 h. No organic acids were detected under aerobic conditions. Four mineral acids and 29 organic acids were studied for their effect on N mineralization and metal dissolution in soils incubated under waterlogged conditions at 30C for 10 days.

  5. Mitogen-Inducible Gene-6 Mediates Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and Thereby Limits Malignant Transformation.

    PubMed

    Milewska, Malgorzata; Romano, David; Herrero, Ana; Guerriero, Maria Luisa; Birtwistle, Marc; Quehenberger, Franz; Hatzl, Stefan; Kholodenko, Boris N; Segatto, Oreste; Kolch, Walter; Zebisch, Armin

    2015-01-01

    BRAF functions in the RAS-extracellular signal-regulated kinase (ERK) signaling cascade. Activation of this pathway is necessary to mediate the transforming potential of oncogenic BRAF, however, it may also cause a negative feedback that inhibits the epidermal growth factor receptor (EGFR). Mitogen-inducible gene-6 (MIG-6) is a potent inhibitor of the EGFR and has been demonstrated to function as a tumor suppressor. As MIG-6 can be induced via RAS-ERK signaling, we investigated its potential involvement in this negative regulatory loop. Focus formation assays were performed and demonstrated that MIG-6 significantly reduces malignant transformation induced by oncogenic BRAF. Although this genetic interaction was mirrored by a physical interaction between MIG-6 and BRAF, we did not observe a direct regulation of BRAF kinase activity by MIG-6. Interestingly, a selective chemical EGFR inhibitor suppressed transformation to a similar degree as MIG-6, whereas combining these approaches had no synergistic effect. By analyzing a range of BRAF mutated and wildtype cell line models, we could show that BRAF V600E causes a strong upregulation of MIG-6, which was mediated at the transcriptional level via the RAS-ERK pathway and resulted in downregulation of EGFR activation. This feedback loop is operational in tumors, as shown by the analysis of almost 400 patients with papillary thyroid cancer (PTC). Presence of BRAF V600E correlated with increased MIG-6 expression on the one hand, and with inactivation of the EGFR and of PI3K/AKT signaling on the other hand. Importantly, we also observed a more aggressive disease phenotype when BRAF V600E coexisted with low MIG-6 expression. Finally, analysis of methylation data was performed and revealed that higher methylation of MIG-6 correlated to its decreased expression. Taken together, we demonstrate that MIG-6 efficiently reduces cellular transformation driven by oncogenic BRAF by orchestrating a negative feedback circuit directed

  6. Agrobacterium-mediated genetic transformation of Pogostemon cablin (Blanco) Benth. Using leaf explants: bactericidal effect of leaf extracts and counteracting strategies.

    PubMed

    Paul, Anamika; Bakshi, Souvika; Sahoo, Debee Prasad; Kalita, Mohan Chandra; Sahoo, Lingaraj

    2012-04-01

    An optimized protocol for Agrobacterium tumefaciens-mediated transformation of patchouli using leaf disk explants is reported. In vitro antibacterial activity of leaf extracts of the plants revealed Agrobacterium sensitivity to the extracts. Fluorometric assay of bacterial cell viability indicated dose-dependent cytotoxic activity of callus extract against Agrobacterium cells. Addition of 0.1% Tween 20 and 2 g/l L-glutamine to Agrobacterium infection medium counteracted the bactericidal effect and significantly increased the T-DNA delivery to explants. A short preculture of explants for 2 days followed by infection with Agrobacterium in medium containing 150 μM of acetosyringone were found essential for efficient T-DNA delivery. Cocultivation for 3 days at 22 °C in conjunction with other optimized factors resulted in maximum T-DNA delivery. The Agrobacterium-mediated transformation of leaf disk explants were found significantly related to physiological age of the explants, age and origin of the of the donor plant. Leaf explants from second node of the 3-month-old in vivo plants showed highest transformation efficiency (94.3%) revealed by transient GUS expression assay. Plants selected on medium containing 20 mg/l kanamycin showed stable GUS expression in leaves and stem. The elongated shoots readily developed roots on kanamycin-free rooting medium and on transfer to soil, plants were successfully established. Polymerase chain reaction (PCR) and reverse-transcriptase PCR analysis in putative plants confirmed their transgenic nature. The established transformation method should provide new opportunities for the genetic improvement of patchouli for desirable trait. PMID:22434351

  7. Mitogen-Inducible Gene-6 Mediates Feedback Inhibition from Mutated BRAF towards the Epidermal Growth Factor Receptor and Thereby Limits Malignant Transformation

    PubMed Central

    Milewska, Malgorzata; Romano, David; Herrero, Ana; Guerriero, Maria Luisa; Birtwistle, Marc; Quehenberger, Franz; Hatzl, Stefan; Kholodenko, Boris N.; Segatto, Oreste; Kolch, Walter; Zebisch, Armin

    2015-01-01

    BRAF functions in the RAS-extracellular signal-regulated kinase (ERK) signaling cascade. Activation of this pathway is necessary to mediate the transforming potential of oncogenic BRAF, however, it may also cause a negative feedback that inhibits the epidermal growth factor receptor (EGFR). Mitogen-inducible gene-6 (MIG-6) is a potent inhibitor of the EGFR and has been demonstrated to function as a tumor suppressor. As MIG-6 can be induced via RAS-ERK signaling, we investigated its potential involvement in this negative regulatory loop. Focus formation assays were performed and demonstrated that MIG-6 significantly reduces malignant transformation induced by oncogenic BRAF. Although this genetic interaction was mirrored by a physical interaction between MIG-6 and BRAF, we did not observe a direct regulation of BRAF kinase activity by MIG-6. Interestingly, a selective chemical EGFR inhibitor suppressed transformation to a similar degree as MIG-6, whereas combining these approaches had no synergistic effect. By analyzing a range of BRAF mutated and wildtype cell line models, we could show that BRAF V600E causes a strong upregulation of MIG-6, which was mediated at the transcriptional level via the RAS-ERK pathway and resulted in downregulation of EGFR activation. This feedback loop is operational in tumors, as shown by the analysis of almost 400 patients with papillary thyroid cancer (PTC). Presence of BRAF V600E correlated with increased MIG-6 expression on the one hand, and with inactivation of the EGFR and of PI3K/AKT signaling on the other hand. Importantly, we also observed a more aggressive disease phenotype when BRAF V600E coexisted with low MIG-6 expression. Finally, analysis of methylation data was performed and revealed that higher methylation of MIG-6 correlated to its decreased expression. Taken together, we demonstrate that MIG-6 efficiently reduces cellular transformation driven by oncogenic BRAF by orchestrating a negative feedback circuit directed

  8. RNAi-Mediated Knock-Down of transformer and transformer 2 to Generate Male-Only Progeny in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel)

    PubMed Central

    Li, Jianwei; Zhang, Guifen; Wan, Fanghao

    2015-01-01

    The transformer (tra) gene appears to act as the genetic switch that promotes female development by interaction with the transformer2 (tra-2) gene in several dipteran species including the Medfly, housefly and Drosophila melanogaster. In this study, we describe the isolation, expression and function of tra and tra-2 in the economically important agricultural pest, the oriental fruit fly, Bactrocera dorsalis (Hendel). Bdtra and Bdtra-2 are similar to their homologs from other tephritid species. Bdtra demonstrated sex-specific transcripts: one transcript in females and two transcripts in males. In contrast, Bdtra-2 only had one transcript that was common to males and females, which was transcribed continuously in different adult tissues and developmental stages. Bdtra-2 and the female form of Bdtra were maternally inherited in eggs, whereas the male form of Bdtra was not detectable until embryos of 1 and 2 h after egg laying. Function analyses of Bdtra and Bdtra-2 indicated that both were indispensable for female development, as nearly 100% males were obtained with embryonic RNAi against either Bdtra or Bdtra-2. The fertility of these RNAi-generated males was subsequently tested. More than 80% of RNAi-generated males could mate and the mated females could lay eggs, but only 40-48.6% males gave rise to progeny. In XX-reversed males and intersex individuals, no clear female gonadal morphology was observed after dissection. These results shed light on the development of a genetic sexing system with male-only release for this agricultural pest. PMID:26057559

  9. Two-State Reactivity in Low-Valent Iron-Mediated C-H Activation and the Implications for Other First-Row Transition Metals.

    PubMed

    Sun, Yihua; Tang, Hao; Chen, Kejuan; Hu, Lianrui; Yao, Jiannian; Shaik, Sason; Chen, Hui

    2016-03-23

    C-H bond activation/functionalization promoted by low-valent iron complexes has recently emerged as a promising approach for the utilization of earth-abundant first-row transition metals to carry out this difficult transformation. Herein we use extensive density functional theory and high-level ab initio coupled cluster calculations to shed light on the mechanism of these intriguing reactions. Our key mechanistic discovery for C-H arylation reactions reveals a two-state reactivity (TSR) scenario in which the low-spin Fe(II) singlet state, which is initially an excited state, crosses over the high-spin ground state and promotes C-H bond cleavage. Subsequently, aryl transmetalation occurs, followed by oxidation of Fe(II) to Fe(III) in a single-electron transfer (SET) step in which dichloroalkane serves as an oxidant, thus promoting the final C-C coupling and finalizing the C-H functionalization. Regeneration of the Fe(II) catalyst for the next round of C-H activation involves SET oxidation of the Fe(I) species generated after the C-C bond coupling. The ligand sphere of iron is found to play a crucial role in the TSR mechanism by stabilization of the reactive low-spin state that mediates the C-H activation. This is the first time that the successful TSR concept conceived for high-valent iron chemistry is shown to successfully rationalize the reactivity for a reaction promoted by low-valent iron complexes. A comparative study involving other divalent middle and late first-row transition metals implicates iron as the optimum metal in this TSR mechanism for C-H activation. It is predicted that stabilization of low-spin Mn(II) using an appropriate ligand sphere should produce another promising candidate for efficient C-H bond activation. This new TSR scenario therefore emerges as a new strategy for using low-valent first-row transition metals for C-H activation reactions. PMID:26907535

  10. Catalytic transformations of biomass substrates using mixed metal oxides derived from substituted hydrotalcites

    NASA Astrophysics Data System (ADS)

    Macala, Gerald Stephen, II

    Fueled by seemingly endless reserves of cheap and easily accessible fossil energy, the industrial age has brought to the developed world tremendous advances in human health and well being. Unfortunately the burning of fossil fuels has also been implicated in increasing atmospheric CO2 concentrations and global climate change. Concerns about short-term and long-term supply further build a case for the need for alternative energy sources. Biomass derived materials are a tantalizing source of fuels and fine chemicals. Unlike petroleum derived hydrocarbons, biomass can be both renewable and carbon neutral. Crops can be regenerated annually or even more often in tropical climates, and since the captured carbon originates as atmospheric CO2, the overall cycle has the potential to be nearly carbon neutral regardless of the final fate of the carbon. In contrast to petroleum derived hydrocarbons, which can often be made more valuable by adding functionality, biomass derived materials are already highly functionalized and can usually be made more valuable by selective removal of functionality. The development of robust catalysts capable of selective defuntionalization of biomass derived substrates remains an important challenge with potentially enormous economic and societal impact. In addition to being robust and selective, catalysts should preferably be heterogeneous to allow for easier removal and regeneration after the reaction is complete. New materials consisting of Mg-Al hydrotalcite-like structures, with a limiting percentage of Mg or Al substituted with other M2+ or M3+ cations, were synthesized by a co-precipitation process in basic aqueous solution with carbonate as counterion. Calcination of these materials at 460 °C resulted in evolution of CO2 and water and yielded high surface area mixed metal oxides with enhanced reactivity. Materials were characterized by ICP for elemental analysis, XRD for structural information, XPS for surface elemental analysis and TEM

  11. Factors Influencing the Tissue Culture and the Agrobacterium tumefaciens-Mediated Transformation of Hybrid Aspen and Poplar Clones

    PubMed Central

    De Block, Marc

    1990-01-01

    Tissue culture conditions and transformation have been established for both aspen and poplar. The use of previously described culture conditions resulted in shoot tip necrosis in the shoot cultures and necrosis of stem and leaf explants. Shoot tip necrosis could be overcome by buffering the medium with 2-(N-morpholino)ethanesulfonic acid and Ca-gluconate and by growing the shoots below 25°C. Necrosis of the explants was probably due to an accumulation of ammonium in the explants and could be overcome by adapting the NO3−/NH4+ ratio of the media. Stem explants of established shoot cultures of the aspen hybrid Populus alba × P. tremula and of the poplar hybrid Populus trichocarpa × P. deltoides were cocultivated with Agrobacterium strains having chimeric bar and neo genes on their disarmed tDNAs. Transformed aspen shoots were obtained from 30 to 40% of the explants, while transformed poplar shoots were obtained from 10% of the explants. Extracts from the transformed trees contained high phosphinotricin acetyltransferase and neomycin phosphotransferase activities, and the trees contained one to three copies of the chimeric genes. The transformed trees were completely resistant to the commercial preparations of the herbicide phosphinotricin (glufosinate), while control trees were not. Images Figure 1 Figure 2 Figure 4 PMID:16667565

  12. Development of a simple and effective protocol for Agrobacterium tumefaciens mediated leaf disc transformation of commercial tomato cultivars.

    PubMed

    Van, Dang Thi; Ferro, Noel; Jacobsen, Hans-Jörg

    2010-01-01

    The transformation of tomato (Solanum lycopersicum) through Agrobacterium tumefaciens is still far from being routine, particularly when it comes to commercial varieties. In the present paper, we present an efficient and simple protocol for leaf disc transformation of three Vietnamese tomato cultivars (DM8, MTS, FM372C) by comparing shoot regeneration media for expanding leaves and examining different parameters of inoculation, co-culture and selection conditions. The present transformation method requires neither feeder layers of cell suspension cultures nor pre-culture. The data clearly show that appropriate cytokinin- and auxin combinations and concentrations provide competent tissues for transformation. Supplementing of 8 µM trans-zeatin and 5 µM indoleacetic acid (IAA) into pre-treatment, inoculation and co-culture media resulted in higher frequency of transformation and stronger GUS-expression than that of media supplemented with 4 µM trans-zeatin and 2 µM IAA. The experiments also exhibited that tomato leaf tissues were more sensitive to glufosinate after inoculation with Agrobacteria compared to the untreated controls, so a more sophisticated scheme for the glufosinate selection had to be established. PMID:21844688

  13. P21-activated protein kinase (PAK2)-mediated c-Jun phosphorylation at 5 threonine sites promotes cell transformation

    PubMed Central

    Li, Tingting; Zhang, Jishuai; Zhu, Feng; Wen, Weihong; Zykova, Tatyana; Li, Xiang; Liu, Kangdong; Peng, Cong; Ma, Weiya; Shi, Guozheng; Dong, Ziming; Bode, Ann M.; Dong, Zigang

    2011-01-01

    The oncoprotein c-Jun is one of the components of the activator protein-1 (AP-1) transcription factor complex. AP-1 regulates the expression of many genes and is involved in a variety of biological functions such as cell transformation, proliferation, differentiation and apoptosis. AP-1 activates a variety of tumor-related genes and therefore promotes tumorigenesis and malignant transformation. Here, we found that epidermal growth factor (EGF) induces phosphorylation of c-Jun by P21-activated kinase (PAK) 2. Our data showed that PAK2 binds and phosphorylates c-Jun at five threonine sites (Thr2, Thr8, Thr89, Thr93 and Thr286) in vitro and ex vivo. Knockdown of PAK2 in JB6 Cl41 (P+) cells had no effect on c-Jun phosphorylation at Ser63 or Ser73 but resulted in decreases in EGF-induced anchorage-independent cell transformation, proliferation and AP-1 activity. Mutation at all five c-Jun threonine sites phosphorylated by PAK2 decreased the transforming ability of JB6 cells. Knockdown of PAK2 in SK-MEL-5 melanoma cells also decreased colony formation, proliferation and AP-1 activity. These results indicated that PAK2/c-Jun signaling plays an important role in EGF-induced cell proliferation and transformation. PMID:21177766

  14. Quantitative Mass Spectrometry Reveals Changes in Histone H2B Variants as Cells Undergo Inorganic Arsenic-Mediated Cellular Transformation.

    PubMed

    Rea, Matthew; Jiang, Tingting; Eleazer, Rebekah; Eckstein, Meredith; Marshall, Alan G; Fondufe-Mittendorf, Yvonne N

    2016-07-01

    Exposure to inorganic arsenic, a ubiquitous environmental toxic metalloid, leads to carcinogenesis. However, the mechanism is unknown. Several studies have shown that inorganic arsenic exposure alters specific gene expression patterns, possibly through alterations in chromatin structure. While most studies on understanding the mechanism of chromatin-mediated gene regulation have focused on histone post-translational modifications, the role of histone variants remains largely unknown. Incorporation of histone variants alters the functional properties of chromatin. To understand the global dynamics of chromatin structure and function in arsenic-mediated carcinogenesis, analysis of the histone variants incorporated into the nucleosome and their covalent modifications is required. Here we report the first global mass spectrometric analysis of histone H2B variants as cells undergo arsenic-mediated epithelial to mesenchymal transition. We used electron capture dissociation-based top-down tandem mass spectrometry analysis validated with quantitative reverse transcription real-time polymerase chain reaction to identify changes in the expression levels of H2B variants in inorganic arsenic-mediated epithelial-mesenchymal transition. We identified changes in the expression levels of specific histone H2B variants in two cell types, which are dependent on dose and length of exposure of inorganic arsenic. In particular, we found increases in H2B variants H2B1H/1K/1C/1J/1O and H2B2E/2F, and significant decreases in H2B1N/1D/1B as cells undergo inorganic arsenic-mediated epithelial-mesenchymal transition. The analysis of these histone variants provides a first step toward an understanding of the functional significance of the diversity of histone structures, especially in inorganic arsenic-mediated gene expression and carcinogenesis. PMID:27169413

  15. Benzene under high pressure: A story of molecular crystals transforming to saturated networks, with a possible intermediate metallic phase

    SciTech Connect

    Wen, Xiao-Dong; Hoffmann, Roald; Ashcroft, N. W.

    2011-01-01

    In a theoretical study, benzene is compressed up to 300 GPa. The transformations found between molecular phases generally match the experimental findings in the moderate pressure regime (<20 GPa): phase I (Pbca) is found to be stable up to 4 GPa, while phase II (P43212) is preferred in a narrow pressure range of 4–7 GPa. Phase III (P21/c) is at lowest enthalpy at higher pressures. Above 50 GPa, phase V (P21 at 0 GPa; P21/c at high pressure) comes into play, slightly more stable than phase III in the range of 50–80 GP, but unstable to rearrangement to a saturated, four-coordinate (at C), one-dimensional polymer. Actually, throughout the entire pressure range, crystals of graphane possess lower enthalpy than molecular benzene structures; a simple thermochemical argument is given for why this is so. In several of the benzene phases there nevertheless are substantial barriers to rearranging the molecules to a saturated polymer, especially at low temperatures. Even at room temperature these barriers should allow one to study the effect of pressure on the metastable molecular phases. Molecular phase III (P21/c) is one such; it remains metastable to higher pressures up to ~200 GPa, at which point it too rearranges spontaneously to a saturated, tetracoordinate CH polymer. At 300 K the isomerization transition occurs at a lower pressure. Nevertheless, there may be a narrow region of pressure, between P = 180 and 200 GPa, where one could find a metallic, molecular benzene state. We explore several lower dimensional models for such a metallic benzene. We also probe the possible first steps in a localized, nucleated benzene polymerization by studying the dimerization of benzene molecules. Several new (C6H6)2 dimers are predicted.

  16. Nanoscale Transformations in Covellite (CuS) Nanocrystals in the Presence of Divalent Metal Cations in a Mild Reducing Environment

    PubMed Central

    2015-01-01

    We studied the structural and compositional transformations of colloidal covellite (CuS) nanocrystals (and of djurleite (Cu1.94S) nanocrystals as a control) when exposed to divalent cations, as Cd2+ and Hg2+, at room temperature in organic solvents. All the experiments were run in the absence of phosphines, which are a necessary ingredient for cation exchange reactions involving copper chalcogenides, as they strongly bind to the expelled Cu+ ions. Under these experimental conditions, no remarkable reactivity was indeed seen for both CuS and Cu1.94S nanocrystals. On the other hand, in the covellite structure 2/3 of sulfur atoms form covalent S–S bonds. This peculiarity suggests that the combined presence of electron donors and of foreign metal cations can trigger the entry of both electrons and cations in the covellite lattice, causing reorganization of the anion framework due to the rupture of the S–S bonds. In Cu1.94S, which lacks S–S bonds, this mechanism should not be accessible. This hypothesis was proven by the experimental evidence that adding ascorbic acid increased the fraction of metal ions incorporated in the covellite nanocrystals, while it had no noticeable effect on the Cu1.94S ones. Once inside the covellite particles, Cd2+ and Hg2+ cations engaged in exchange reactions, pushing the expelled Cu+ ions toward the not-yet exchanged regions in the same particles, or out to the solution, from where they could be recaptured by other covellite nanoparticles/domains. Because no good solvating agent for Cu ions was present in solution, they essentially remained in the nanocrystals. PMID:26617434

  17. Direct experimental evidence of metal-mediated etching of suspended graphene.

    PubMed

    Ramasse, Quentin M; Zan, Recep; Bangert, Ursel; Boukhvalov, Danil W; Son, Young-Woo; Novoselov, Konstantin S

    2012-05-22

    Atomic resolution high angle annular dark field imaging of suspended, single-layer graphene, onto which the metals Cr, Ti, Pd, Ni, Al, and Au atoms had been deposited, was carried out in an aberration-corrected scanning transmission electron microscope. In combination with electron energy loss spectroscopy, employed to identify individual impurity atoms, it was shown that nanoscale holes were etched into graphene, initiated at sites where single atoms of all the metal species except for gold come into close contact with the graphene. The e-beam scanning process is instrumental in promoting metal atoms from clusters formed during the original metal deposition process onto the clean graphene surface, where they initiate the hole-forming process. Our observations are discussed in the light of calculations in the literature, predicting a much lowered vacancy formation in graphene when metal ad-atoms are present. The requirement and importance of oxygen atoms in this process, although not predicted by such previous calculations, is also discussed, following our observations of hole formation in pristine graphene in the presence of Si-impurity atoms, supported by new calculations which predict a dramatic decrease of the vacancy formation energy, when SiO(x) molecules are present. PMID:22533553

  18. Isolation of a conjugative F-like plasmid from a multidrug-resistant Escherichia coli strain CM6 using tandem shock wave-mediated transformation.

    PubMed

    Soto-Alonso, G; Cruz-Medina, J A; Caballero-Pérez, J; Arvizu-Hernández, I; Ávalos-Esparza, L M; Cruz-Hernández, A; Romero-Gómez, S; Rodríguez, A L; Pastrana-Martínez, X; Fernández, F; Loske, A M; Campos-Guillén, J

    2015-07-01

    Genetic characterization of plasmids from bacterial strains provides insight about multidrug resistance. Ten wild type Escherichia coli (E. coli) strains isolated from cow fecal samples were characterized by their antibiotic resistance profile, plasmid patterns and three different identification methods. From one of the strains, a fertility factor-like plasmid was replicated using tandem shock wave-mediated transformation. Underwater shock waves with a positive pressure peak of up to approximately 40 MPa, followed by a pressure trough of approximately -19 MPa were generated using an experimental piezoelectric shock wave source. Three different shock wave energies and a fixed delay of 750 μs were used to study the relationship between energy and transformation efficiency (TE), as well as the influence of shock wave energy on the integrity of the plasmid. Our results showed that the mean shock wave-mediated TE and the integrity of the large plasmid (~70 kb) were reduced significantly at the energy levels tested. The sequencing analysis of the plasmid revealed a high identity to the pHK17a plasmid, including the replication system, which was similar to the plasmid incompatibility group FII. It also showed that it carried an extended spectrum beta-lactamase gene, ctx-m-14. Furthermore, diverse genes for the conjugative mechanism were identified. Our results may be helpful in improving methodologies for conjugative plasmid transfer and directly selecting the most interesting plasmids from environmental samples. PMID:25914035

  19. Crystal Structure of Cu/Zn Superoxide Dismutase from Taenia Solium Reveals Metal-mediated Self-assembly

    SciTech Connect

    A Hernandez-Santoyo; A Landa; E Gonzalez-Mondragon; M Pedraza-Escalona; R Parra-Unda; A Rodriguez-Romero

    2011-12-31

    Taenia solium is the cestode responsible for porcine and human cysticercosis. The ability of this parasite to establish itself in the host is related to its evasion of the immune response and its antioxidant defence system. The latter includes enzymes such as cytosolic Cu/Zn superoxide dismutase. In this article, we describe the crystal structure of a recombinant T. solium Cu/Zn superoxide dismutase, representing the first structure of a protein from this organism. This enzyme shows a different charge distribution at the entrance of the active channel when compared with human Cu/Zn superoxide dismutase, giving it interesting properties that may allow the design of specific inhibitors against this cestode. The overall topology is similar to other superoxide dismutase structures; however, there are several His and Glu residues on the surface of the protein that coordinate metal ions both intra- and intermolecularly. Interestingly, one of these ions, located on the {beta}2 strand, establishes a metal-mediated intermolecular {beta}-{beta} interaction, including a symmetry-related molecule. The factors responsible for the abnormal protein-protein interactions that lead to oligomerization are still unknown; however, high metal levels have been implicated in these phenomena, but exactly how they are involved remains unclear. The present results suggest that this structure could be useful as a model to explain an alternative mechanism of protein aggregation commonly observed in insoluble fibrillar deposits.

  20. NF-κB-mediated inflammation leading to EMT via miR-200c is involved in cell transformation induced by cigarette smoke extract.

    PubMed

    Zhao, Yue; Xu, Yuan; Li, Yuan; Xu, Wenchao; Luo, Fei; Wang, Bairu; Pang, Ying; Xiang, Quanyong; Zhou, Jianwei; Wang, Xinru; Liu, Qizhan

    2013-10-01

    Cigarette smoking constitutes a major human health hazard because it is the most important risk factor for lung cancer. Although evidence for smoking-induced lung cancer in humans is strong, the molecular mechanisms by which smoking causes cancer remain to be established. In this investigation, we evaluated the roles of inflammation and the epithelial-mesenchymal transition (EMT) in cigarette smoke extract (CSE)-induced transformation of human bronchial epithelial (HBE) cells. The results showed that chronic exposure to CSE induced EMT and transformation of these cells. Activation of nuclear factor-κB (NF-κB) by CSE increased levels of the proinflammatory interleukin-6 (IL-6), and acute and chronic exposures to CSE caused decreases in miR-200c levels. By blocking NF-κB with Bay11-7082 and IL-6 with anti-IL-6 antibody and enhancement of IL-6 with human recombinant IL-6, we found that the NF-κB signal pathway was involved in CSE-induced increases of IL-6, which suppressed miR-200c expression and promoted EMT. Moreover, IL-6 was necessary for maintenance of CSE-induced transformation and for malignant progression of HBE cells. Finally, blocking of NF-κB with Bay11-7082 prevented CSE-induced EMT and malignant transformation due to decreases of E-cadherin and miR-200c and elevations of IL-6, N-cadherin, and vimentin. Thus, we have defined a link between inflammation and EMT, processes involved in the malignant transformation of cells caused by CSE. This link, mediated through miRNAs, establishes a mechanism for CSE-induced lung carcinogenesis. PMID:23824089

  1. Highly efficient Agrobacterium-mediated transformation of embryogenic cell suspensions of Musa acuminata cv. Mas (AA) via a liquid co-cultivation system.

    PubMed

    Huang, Xia; Huang, Xue-Lin; Xiao, Wang; Zhao, Jie-Tang; Dai, Xue-Mei; Chen, Yun-Feng; Li, Xiao-Ju

    2007-10-01

    A high efficient protocol of Agrobacterium-mediated transformation of Musa acuminata cv. Mas (AA), a major banana variety of the South East Asia region, was developed in this study. Male-flower-derived embryogenic cell suspensions (ECS) were co-cultivated in liquid medium with Agrobacterium strain EHA105 harboring a binary vector pCAMBIA2301 carrying nptII and gusA gene in the T-DNA. Depending upon conditions and duration of co-cultivation in liquid medium, 0-490 transgenic plants per 0.5 ml packed cell volume (PCV) of ECS were obtained. The optimum duration of inoculation was 2 h, and the highest transformation frequency was achieved when infected ECS were co-cultivated in liquid medium first for 12 h at 40 rpm and then for 156 h at 100 rpm on a rotary shaker. Co-cultivation for a shorter duration (72 h) or shaking constantly at 100 rpm at the same duration gave 1.6 and 1.8 folds lower transformation efficiency, respectively. No transgenic plants were obtained in parallel experiments carried on semi-solid media. Histochemical GUS assay and molecular analysis in several tissues of the transgenic plants demonstrated that foreign genes were stably integrated into the banana genome. Compared to semi-solid co-cultivation transformation in other banana species, it is remarkable that liquid co-cultivation was much more efficient for transformation of the Mas cultivar, and was at least 1 month faster for regenerating transgenic plants. PMID:17551731

  2. Agrobacterium-mediated transformation of Eucalyptus globulus using explants with shoot apex with introduction of bacterial choline oxidase gene to enhance salt tolerance.

    PubMed

    Matsunaga, Etsuko; Nanto, Kazuya; Oishi, Masatoshi; Ebinuma, Hiroyasu; Morishita, Yoshihiko; Sakurai, Nozomu; Suzuki, Hideyuki; Shibata, Daisuke; Shimada, Teruhisa

    2012-01-01

    Eucalyptus globulus is one of the most economically important plantation hardwoods for paper making. However, its low transformation frequency has prevented genetic engineering of this species with useful genes. We found the hypocotyl section with a shoot apex has the highest regeneration ability among another hypocotyl sections, and have developed an efficient Agrobacterium-mediated transformation method using these materials. We then introduced a salt tolerance gene, namely a bacterial choline oxidase gene (codA) with a GUS reporter gene, into E. globulus. The highest frequency of transgenic shoot regeneration from hypocotyls with shoot apex was 7.4% and the average frequency in four experiments was 4.0%, 12-fold higher than that from hypocotyls without shoot apex. Using about 10,000 explants, over 250 regenerated buds were confirmed as transformants by GUS analysis. Southern blot analysis of 100 elongated shoots confirmed successful generation of stable transformants. Accumulation of glycinebetaine was investigated in 44 selected transgenic lines, which showed 1- to 12-fold higher glycinebetaine levels than non-transgenic controls. Rooting of 16 transgenic lines was successful using a photoautotrophic method under enrichment with 1,000 ppm CO(2). The transgenic whole plantlets were transplanted into potting soil and grown normally in a growth room. They showed salt tolerance to 300 mM NaCl. The points of our system are using explants with shoot apex as materials, inhibiting the elongation of the apex on the selection medium, and regenerating transgenic buds from the side opposite to the apex. This approach may also solve transformation problems in other important plants. PMID:22009051

  3. Peptide-mediated vectorization of metal complexes: conjugation strategies and biomedical applications.

    PubMed

    Soler, Marta; Feliu, Lidia; Planas, Marta; Ribas, Xavi; Costas, Miquel

    2016-08-16

    The rich chemical and structural versatility of transition metal complexes provides numerous novel paths to be pursued in the design of molecules that exert particular chemical or physicochemical effects that could operate over specific biological targets. However, the poor cell permeability of metallodrugs represents an important barrier for their therapeutic use. The conjugation between metal complexes and a functional peptide vector can be regarded as a versatile and potential strategy to improve their bioavailability and accumulation inside cells, and the site selectivity of their effect. This perspective lies in reviewing the recent advances in the design of metallopeptide conjugates for biomedical applications. Additionally, we highlight the studies where this approach has been directed towards the incorporation of redox active metal centers into living organisms for modulating the cellular redox balance, as a tool with application in anticancer therapy. PMID:27095089

  4. Evaluation of Metal-Mediated DNA Binding of Benzoazole Ligands by Electrospray Ionization Mass Spectrometry

    PubMed Central

    Mazzitelli, Carolyn L.; Rodriguez, Mireya; Kerwin, Sean; Brodbelt, Jennifer S.

    2008-01-01

    The binding of a series of benzoxazole analogs with different amide- and ester-linked side chains to duplex DNA in the absence and presence of divalent metal cations is examined. All ligands were found to form complexes with Ni2+, Cu2+, and Zn2+, with 2:1 ligand/metal cation binding stoichiometries dominating for ligands containing shorter side chains (2, 6, 7, and 8), while 1:1 complexes were the most abundant for ligands with long side chains (9, 10 and 11). Ligand binding with duplex DNA in the absence of metal cations was assessed, and the long side-chain ligands were found to form low abundance complexes with 1:1 ligand/DNA binding stoichiometries. The ligands with the shorter side chains only formed DNA complexes in the presence of metal cations, most notably for 7 and 8 binding to DNA in the presence of Cu2+. The binding of long side-chain ligands was enhanced by Cu2+ and to a lesser degree by Ni2+ and Zn2+. The cytotoxicities of all of the ligands against the A549 lung cancer and MCF7 breast cancer cell lines were also examined. The ligands exhibiting the most dramatic metal-enhanced DNA binding also demonstrated the greatest cytotoxic activity. Both 7 and 8 were found to be the most cytotoxic against the A549 lung cancer cell line and 8 demonstrated moderate cytotoxicity against MCF7 breast cancer cells. Metal ions also enhanced the DNA binding of the ligands with the long side-chains, especially for 9, which also exhibited the highest level of cytotoxicity of the long side-chain compounds. PMID:17583529

  5. The Potential for Transition Metal-Mediated Neurodegeneration in Amyotrophic Lateral Sclerosis

    PubMed Central

    Lovejoy, David B.; Guillemin, Gilles J.

    2014-01-01

    Modulations of the potentially toxic transition metals iron (Fe) and copper (Cu) are implicated in the neurodegenerative process in a variety of human disease states including amyotrophic lateral sclerosis (ALS). However, the precise role played by these metals is still very much unclear, despite considerable clinical and experimental data suggestive of a role for these elements in the neurodegenerative process. The discovery of mutations in the antioxidant enzyme Cu/Zn superoxide dismutase 1 (SOD-1) in ALS patients established the first known cause of ALS. Recent data suggest that various mutations in SOD-1 affect metal-binding of Cu and Zn, in turn promoting toxic protein aggregation. Copper homeostasis is also disturbed in ALS, and may be relevant to ALS pathogenesis. Another set of interesting observations in ALS patients involves the key nutrient Fe. In ALS patients, Fe loading can be inferred by studies showing increased expression of serum ferritin, an Fe-storage protein, with high serum ferritin levels correlating to poor prognosis. Magnetic resonance imaging of ALS patients shows a characteristic T2 shortening that is attributed to the presence of Fe in the motor cortex. In mutant SOD-1 mouse models, increased Fe is also detected in the spinal cord and treatment with Fe-chelating drugs lowers spinal cord Fe, preserves motor neurons, and extends lifespan. Inflammation may play a key causative role in Fe accumulation, but this is not yet conclusive. Excess transition metals may enhance induction of endoplasmic reticulum (ER) stress, a system that is already under strain in ALS. Taken together, the evidence suggests a role for transition metals in ALS progression and the potential use of metal-chelating drugs as a component of future ALS therapy. PMID:25100994

  6. Thermal effects in the shear-transformation-zone theory of amorphous plasticity: comparisons to metallic glass data.

    PubMed

    Falk, M L; Langer, J S; Pechenik, L

    2004-07-01

    We extend our earlier shear-transformation-zone theory of amorphous plasticity to include the effects of thermally assisted molecular rearrangements. This version of our theory is a substantial revision and generalization of conventional theories of flow in noncrystalline solids. As in our earlier work, it predicts a dynamic transition between jammed and flowing states at a yield stress. Below that yield stress, it now describes thermally assisted creep. We show that this theory accounts for the experimentally observed strain-rate dependence of the viscosity of metallic glasses, and that it also captures many of the details of the transient stress-strain behavior of those materials during loading. In particular, it explains the apparent onset of superplasticity at sufficiently high stress as a transition between creep at low stresses and plastic flow near the yield stress. We also argue that there are internal inconsistencies in the conventional theories of these deformation processes, and suggest ways in which further experimentation as well as theoretical analysis may lead to better understanding of a broad range of nonequilibrium phenomena. PMID:15324056

  7. Chemical stabilization of metals in mine wastes by transformed red mud and other iron compounds: laboratory tests.

    PubMed

    Ardau, C; Lattanzi, P; Peretti, R; Zucca, A

    2014-01-01

    A series of static and kinetic laboratory-scale tests were designed in order to evaluate the efficacy of transformed red mud (TRM) from bauxite refining residues, commercial zero-valent iron, and synthetic iron (III) hydroxides as sorbents/reagents to minimize the generation of acid drainage and the release of toxic elements from multi-contaminant-laden mine wastes. In particular, in some column experiments the percolation of meteoric water through a waste pile, alternated with periods of dryness, was simulated. Wastes were placed in columns together with sorbents/reagents in three different set-ups: as blended amendment (mixing method), as a bed at the bottom of the column (filtration method), or as a combination of the two previous methods. The filtration methods, which simulate the creation of a permeable reactive barrier downstream of a waste pile, are the most effective, while the use of sorbents/reagents as amendments leads to unsatisfactory results, because of the selective removal of only some contaminants. The efficacy of the filtration method is not significantly affected by the periods of dryness, except for a temporary rise of metal contents in the leachates due to dissolution of soluble salts formed upon evaporation in the dry periods. These results offer original information on advantages/limits in the use of TRM for the treatment of multi-contaminant-laden mine wastes, and represent the starting point for experimentation at larger scale. PMID:25244134

  8. Characterization of a water-dispersible metal protective coating with Fourier transform infrared spectroscopy, modulated differential scanning calorimetry, and ellipsometry.

    PubMed

    Boyatzis, Stamatis C; Douvas, Antonios M; Argyropoulos, Vassilike; Siatou, Amalia; Vlachopoulou, Marilena

    2012-05-01

    An ethylene-methacrylic acid copolymer, formulated by BASF as a waterborne suspension of its alkylammonium salt and used, among other applications, in art conservation as a temporary protective coating was characterized using Fourier transform infrared (FT-IR) spectroscopy aided by modulated differential scanning calorimetry (MDSC) and ellipsometry. The thermal conversion of thin copolymer films from the freshly applied state, where carboxylic acid and carboxylate ion functional groups co-exist, to a purely acidic working state was spectroscopically followed. Transmission mid-infrared data of the working state showed a 1 : 12 ratio of methacrylic acid towards ethylene units. The glass transition temperature (T(g)) in the same state was found at 45 °C. Copolymer films spin-coated on mechanically polished bronze and iron coupons were characterized with transflection infrared spectroscopy and compared to corresponding transmission mid-infrared spectra of copolymer films spin-coated on silicon wafers. In the case of bronze coupons, evidence for interaction of the carboxylate ion with the copper substrate was obtained. The chemical structure and the thermal behavior of the coating, as well as some implications on its protective capability towards iron and copper alloys, is discussed as this material has received considerable attention in the field of metal conservation and coatings. PMID:22524964

  9. GAP JUNCTION COMMUNICATION MEDIATES TRANSFORMING GROWTH FACTOR-BETA ACTIVATION AND ENDOTHELIAL-INDUCED MURAL CELL DIFFERENTIATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During blood vessel assembly, endothelial cells recruit mesenchymal progenitors and induce their differentiation into mural cells via contact-dependent transforming growth factor-beta (TGF-beta) activation. We investigated whether gap junction channels are formed between endothelial cells and recrui...

  10. Sonication, Vacuum Infiltration and Thiol Compounds Enhance the Agrobacterium-Mediated Transformation Frequency of Withania somnifera (L.) Dunal

    PubMed Central

    Sivanandhan, Ganeshan; Kapil Dev, Gnajothi; Theboral, Jeevaraj; Selvaraj, Natesan; Ganapathi, Andy; Manickavasagam, Markandan

    2015-01-01

    In the present study, we have established a stable transformation protocol via Agrobacterium tumafacines for the pharmaceutically important Withania somnifera. Six day-old nodal explants were used for 3 day co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring the vector pCAMIBA2301. Among the different injury treatments, sonication, vacuum infiltration and their combination treatments tested, a vacuum infiltration for 10 min followed by sonication for 10 sec with A. tumefaciens led to a higher transient GUS expression (84% explants expressing GUS at regenerating sites). In order to improve gene integration, thiol compounds were added to co-cultivation medium. A combined treatment of L-Cys at 100 mg/l, STS at 125 mg/l, DTT at 75 mg/l resulted in a higher GUS expression (90%) in the nodal explants. After 3 days of co-cultivation, the explants were subjected to three selection cycles with increasing concentrations of kanamycin [100 to 115 mg/l]. The integration and expression of gusA gene in T0 and T1 transgenic plants were confirmed by polymerase chain reaction (PCR), and Southern blott analysis. These transformed plants (T0 and T1) were fertile and morphologically normal. From the present investigation, we have achieved a higher transformation efficiency of (10%). Withanolides (withanolide A, withanolide B, withanone and withaferin A) contents of transformed plants (T0 and T1) were marginally higher than control plants. PMID:25927703

  11. High School Principal Transformational Leadership Behaviors and Teacher Extra Effort during Educational Reform: The Mediating Role of Teacher Agency Beliefs

    ERIC Educational Resources Information Center

    Boberg, John Eric

    2013-01-01

    Transformational leadership has been shown to affect organizational commitment, capacity development, and performance. However, these relationships have received very little attention in schools, especially high schools in the United States that are experiencing educational reform initiatives under No Child Left Behind. Using a sample of 1403 high…

  12. Activation of Methane and Carbon Dioxide Mediated by Transition-Metal Doped Magnesium Oxide Clusters [MMgO](+/0/-) (M=Sc-Zn).

    PubMed

    Li, Jilai; González-Navarrete, Patricio; Schlangen, Maria; Schwarz, Helmut

    2015-05-18

    Mission: impossible? DFT calculations show that the trends in the thermochemistry are very different for the activation of CO2 and CH4 mediated by transition-metal doped magnesium oxide clusters [MMgO](+/0/-) (M=Sc-Zn). Thus, seeking a "simple" reagent to simultaneously mediate activation and coupling of CH4 and CO2 with high efficiency seems extremely daunting, if not impossible. PMID:25867011

  13. Epithelial-mesenchymal transition and cancer stem cells, mediated by a long non-coding RNA, HOTAIR, are involved in cell malignant transformation induced by cigarette smoke extract

    SciTech Connect

    Liu, Yi; Luo, Fei; Xu, Yuan; Wang, Bairu; Zhao, Yue; Xu, Wenchao; Shi, Le; Lu, Xiaolin; Liu, Qizhan

    2015-01-01

    The incidence of lung diseases, including cancer, caused by cigarette smoke is increasing, but the molecular mechanisms of gene regulation induced by cigarette smoke remain unclear. This report describes a long noncoding RNA (lncRNA) that is induced by cigarette smoke extract (CSE) and experiments utilizing lncRNAs to integrate inflammation with the epithelial-mesenchymal transition (EMT) in human bronchial epithelial (HBE) cells. The present study shows that, induced by CSE, IL-6, a pro-inflammatory cytokine, leads to activation of STAT3, a transcription activator. A ChIP assay determined that the interaction of STAT3 with the promoter regions of HOX transcript antisense RNA (HOTAIR) increased levels of HOTAIR. Blocking of IL-6 with anti-IL-6 antibody, decreasing STAT3, and inhibiting STAT3 activation reduced HOTAIR expression. Moreover, for HBE cells cultured in the presence of HOTAIR siRNA for 24 h, the CSE-induced EMT, formation of cancer stem cells (CSCs), and malignant transformation were reversed. Thus, IL-6, acting on STAT3 signaling, which up-regulates HOTAIR in an autocrine manner, contributes to the EMT and to CSCs induced by CSE. These data define a link between inflammation and EMT, processes involved in the malignant transformation of cells caused by CSE. This link, mediated through lncRNAs, establishes a mechanism for CSE-induced lung carcinogenesis. - Highlights: • STAT3 directly regulates the levels of LncRNA HOTAIR. • LncRNA HOTAIR mediates the link between inflammation and EMT. • LncRNA HOTAIR is involved in the malignant transformation of cells caused by CSE.

  14. Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms.

    PubMed

    Matés, José M; Segura, Juan A; Alonso, Francisco J; Márquez, Javier

    2010-11-15

    Oxidants have critical functions inside healthy and unhealthy cells. Deregulated cell cycle and apoptosis, both regulated by oxidative stress, have been described as hallmarks of mitotic (cancer) and postmitotic (neuronal) cells. This review provides an updated revision of the oxidant effects of some environmental contaminants such as dioxins and the heavy metals cadmium, cobalt, and copper. Dioxins exert their toxic actions by acting on phase I and phase II enzymes, such as cytochromes P450, superoxide dismutase, and glutathione peroxidase, promoting cell proliferation, growth arrest, and apoptosis, affecting cancer homeostasis and neuronal function. Heavy metals manifest cytotoxic effects in various cells and tissues, and tight regulation of metals is essential to the health of organisms. Cadmium modulates gene expression and signal transduction and reduces activities of proteins involved in antioxidant defense, interfering with DNA repair and modifying cancer development and brain function. Cobalt provokes generation of reactive oxygen species and DNA damage in cancer cells and brain tissues, altering proliferation and differentiation and causing apoptosis. Copper is a key metal in cell division processes in both normal and tumor cells. Copper also has been shown to have an important role in neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. PMID:20696237

  15. Metal free sulfenylation and bis-sulfenylation of indoles: persulfate mediated synthesis.

    PubMed

    Prasad, Ch Durga; Kumar, Shailesh; Sattar, Moh; Adhikary, Amit; Kumar, Sangit

    2013-12-14

    A method which avoids metal and halogen for the synthesis of 3-arylthioindoles from indoles and diaryl disulfides using ammonium persulfate in methanol has been presented. Moreover, double C-H sulfenylation of indoles at 2 and 3-positions has also been achieved using iodine and ammonium persulfate. PMID:24166084

  16. Mediating Mental Models of Metals: Acknowledging the Priority of the Learner's Prior Learning

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2003-01-01

    This paper describes the conceptualizations, or mental models, of the nature of the bonding and structure of metals of a group of U.K. college students. It is suggested that these mental models may be understood in terms of the students' prior learning about covalent and ionic bonding, and the prevalence of a common alternative conceptual…

  17. Graphene oxide and metal-mediated base pairs based "molecular beacon" integrating with exonuclease I for fluorescence turn-on detection of biothiols.

    PubMed

    Xing, Xiaojing; Zhou, Ying; Liu, Xueguo; Pang, Daiwen; Tang, Hongwu

    2014-08-27

    A novel fluorescence turn-on strategy, based on the resistance of metal-mediated molecular-beacons (MBs) toward nuclease digestion and the remarkable difference in the affinity of graphene oxide (GO) with MBs and the mononucleotides, is designed for the biothiols assay. Specifically, the metal-mediated base pairs facilitate the dye labeled MBs to fold into a hairpin structure preventing the digestion by exonuclease I, and thus allow the fluorescence quenching. The competition binding by biothiols removes metal ions from the base pairs, causing the nuclease reaction, and less decrease in the fluorescence is obtained after incubating with GO due to the weak affinity of the product-mononucleotides to GO. Hg(2+)-mediated MBs were firstly designed for the biothiols detection, and glutathione (GSH) was applied as the model target. Under the optimal conditions, the approach exhibits high sensitivity to GSH with a detection limit of 1.53 nM. Ag(+)-mediated MBs based sensor was also constructed to demonstrate its versatility, and cysteine was studied as the model target. The satisfactory results in the determination of biothiols in serum demonstrate that the method possesses great potential for detecting thiols in biological fluids. This new approach is expected to promote the exploitation of metal-mediated base pairs-based biosensors in biochemical and biomedical studies. PMID:24788855

  18. Effect of metal loading processes on the stability and thermal transformation of Co{sup 2+}- and Cu{sup 2+}-zeolite Y prepared from Egyptian kaolin

    SciTech Connect

    EL-Mekkawi, Doaa M. Selim, Mohamed M.

    2012-07-15

    This paper aims to assess the effect of the transition metals (TM) loading procedure on the incorporation of Co{sup 2+} and Cu{sup 2+} in zeolite Y, and their relevance to stability of the zeolite, particularly with respect to the thermal transformation to the spinel phases. In this work, zeolite Y prepared from Egyptian kaolin was used. XRF, XRD, TEM, UV/visible absorption measurements, and atomic absorption analyses in addition to the visual observations are recorded. XRF has been used to investigate the materials composition. TEM and XRD indicate the presence of nanoparticle spinel upon the calcination of the TM-zeolites at 1000 Degree-Sign C. In addition to spinel particles, XRD shows the formation of metal oxides, SiO{sub 2} and alumino-silicate phases. According to the transition metal and the cation loading process, different phases were detected. UV/visible absorption measurements and the visual observations are used to determine the experimental condition of the highest spinel content. It has been noticed that the experimental conditions of the metal sorption processes greatly affect the phase transformation. Stability and thermal transformation of zeolite depend on the initial concentration of the transition cation solutions and the number of loading cycles. - Highlights: Black-Right-Pointing-Pointer We study the effects of loading procedure in the incorporation of TM in zeolite Y. Black-Right-Pointing-Pointer Synthetic zeolite Y prepared from Egyptian kaolin has been used. Black-Right-Pointing-Pointer The type of TM affects the stability and thermal transformation of zeolite. Black-Right-Pointing-Pointer Loading processes affect the stability and thermal transformation of zeolite.

  19. Role of the Water–Metal Ion Bridge in Mediating Interactions between Quinolones and Escherichia coli Topoisomerase IV

    PubMed Central

    2015-01-01

    Although quinolones have been in clinical use for decades, the mechanism underlying drug activity and resistance has remained elusive. However, recent studies indicate that clinically relevant quinolones interact with Bacillus anthracis (Gram-positive) topoisomerase IV through a critical water–metal ion bridge and that the most common quinolone resistance mutations decrease drug activity by disrupting this bridge. As a first step toward determining whether the water–metal ion bridge is a general mechanism of quinolone–topoisomerase interaction, we characterized drug interactions with wild-type Escherichia coli (Gram-negative) topoisomerase IV and a series of ParC enzymes with mutations (S80L, S80I, S80F, and E84K) in the predicted bridge-anchoring residues. Results strongly suggest that the water–metal ion bridge is essential for quinolone activity against E. coli topoisomerase IV. Although the bridge represents a common and critical mechanism that underlies broad-spectrum quinolone function, it appears to play different roles in B. anthracis and E. coli topoisomerase IV. The water–metal ion bridge is the most important binding contact of clinically relevant quinolones with the Gram-positive enzyme. However, it primarily acts to properly align clinically relevant quinolones with E. coli topoisomerase IV. Finally, even though ciprofloxacin is unable to increase levels of DNA cleavage mediated by several of the Ser80 and Glu84 mutant E. coli enzymes, the drug still retains the ability to inhibit the overall catalytic activity of these topoisomerase IV proteins. Inhibition parallels drug binding, suggesting that the presence of the drug in the active site is sufficient to diminish DNA relaxation rates. PMID:25115926

  20. Multidrug resistance of DNA-mediated transformants is linked to transfer of the human mdr1 gene.

    PubMed Central

    Shen, D W; Fojo, A; Roninson, I B; Chin, J E; Soffir, R; Pastan, I; Gottesman, M M

    1986-01-01

    Mouse NIH 3T3 cells were transformed to multidrug resistance with high-molecular-weight DNA from multidrug-resistant human KB carcinoma cells. The patterns of cross resistance to colchicine, vinblastine, and doxorubicin hydrochloride (Adriamycin; Adria Laboratories Inc.) of the human donor cell line and mouse recipients were similar. The multidrug-resistant human donor cell line contains amplified sequences of the mdr1 gene which are expressed at high levels. Both primary and secondary NIH 3T3 transformants contained and expressed these amplified human mdr1 sequences. Amplification and expression of the human mdr1 sequences and amplification of cotransferred human Alu sequences in the mouse cells correlated with the degree of multidrug resistance. These data suggest that the mdr1 gene is likely to be responsible for multidrug resistance in cultured cells. Images PMID:3796599

  1. High damping NiTi/Ti3Sn in situ composite with transformation-mediated plasticity

    SciTech Connect

    Zhang, Junsong; Liu, Yinong; Huan, Yong; Hao, Shijie; Jiang, Daqiang; Ren, Yang; Shao, Yang; Ru, Yadong; Wang, Zhongqiang; Cui, Lishan

    2014-11-01

    The concept of transformation-induced plasticity effect is introduced in this work to improve the plasticity of brittle intermetallic compound Ti3Sn, which is a potent high damping material. This concept is achieved in an in situ NiTi/Ti3Sn composite. The composite is composed of primary Ti3Sn phase and (NiTi + Ti3Sn) eutectic structure formed via hypereutectic solidification. The composite exhibits a high damping capacity of 0.075 (indexed by tan δ), a high ultimate compressive strength of 1350 MPa, and a large plasticity of 27.5%. In situ synchrotron high-energy X-ray diffraction measurements revealed clear evidence of the stress-induced martensitic transformation (B2 → B19) of the NiTi component during deformation. The strength of the composite mainly stems from the Ti3Sn, whereas the NiTi component is responsible for the excellent plasticity of the composite.

  2. Abrogation of growth arrest signals by human papillomavirus type 16 E7 is mediated by sequences required for transformation.

    PubMed Central

    Demers, G W; Espling, E; Harry, J B; Etscheid, B G; Galloway, D A

    1996-01-01

    Cells arrest in the G1 or G0 phase of the cell cycle in response to a variety of negative growth signals that induce arrest by different molecular pathways. The ability of human papillomavirus (HPV) oncogenes to bypass these signals and allow cells to progress into the S phase probably contributes to the neoplastic potential of the virus. The E7 protein of HPV-16 was able to disrupt the response of epithelial cells to three different negative growth arrest signals: quiescence imposed upon suprabasal epithelial cells, G1 arrest induced by DNA damage, and inhibition of DNA synthesis caused by treatment with transforming growth factor beta. The same set of mutated E7 proteins was able to abrogate all three growth arrest signals. Mutant proteins that failed to abrogate growth arrest signals were transformation deficient and included E7 proteins that bound retinoblastoma protein in vitro. In contrast, HPV-16 E6 was able to bypass only DNA damage-induced G1 arrest, not suprabasal quiescence or transforming growth factor beta-induced arrest. The E6 and E7 proteins from the low-risk virus HPV-6 were not able to bypass any of the growth arrest signals. PMID:8794328

  3. Comparison of Transition Metal-Mediated Oxidation Reactions of Guanine in Nucleoside and Single-Stranded Oligodeoxynucleotide Contexts

    PubMed Central

    Ghude, Pranjali; Schallenberger, Mark A.; Fleming, Aaron M.; Muller, James G.; Burrows, Cynthia J.

    2011-01-01

    As the most readily oxidized of DNA’s four natural bases, guanine is a prime target for attack by reactive oxygen species (ROS) and transition metal-mediated oxidants. The oxidation products of a modified guanosine nucleoside and of a single-stranded oligodeoxynucleotide, 5′-d(TTTTTTTGTTTTTTT)-3′ have been studied using oxidants that include CoII, NiII, and IrIV compounds as well as photochemically generated oxidants such as sulphate radical, electron-transfer agents (riboflavin) and singlet oxygen. The oxidized lesions formed include spiroiminodihydantoin (Sp), guanidinohydantoin (Gh), imidazolone (Iz), oxazolone (Z) and 5-carboxamido-5-formamido-2-iminohydantion (2-Ih) nucleosides with a high degree of dependence on the exact oxidation system employed. Interestingly, a nickel(II) macrocyclic complex in conjunction with KHSO5 leads to the recently reported 2-Ih heterocycle as the major product in both the nucleoside and oligonucleotide contexts. PMID:21516189

  4. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    SciTech Connect

    Hestand, Nicholas J.; Spano, Frank C.

    2015-12-28

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (t{sub e}) and hole (t{sub h}) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product t{sub e}t{sub h} and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in “null-aggregates” which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

  5. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks

    NASA Astrophysics Data System (ADS)

    Hestand, Nicholas J.; Spano, Frank C.

    2015-12-01

    The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (te) and hole (th) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product teth and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in "null-aggregates" which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

  6. Metal mediated sol-gel chemistry of 1,2-Bis(triethoxysilyl)-ethene

    SciTech Connect

    Carpenter, J.P.; Yamanaka, S.A.; McClain, M.D.

    1996-10-01

    Ethenyl-bridged polysilsesquioxane xerogels and aerogels were formed from the sol-gel polymerization of 1,2-bis(triethoxysilyl)ethene. Gels were synthesized from the cis- and trans-isomers by both acid and base catalysis. While the trans-monomer exhibited relatively fast gelation times, the cis-monomer depending on the conditions either formed no gel of had very long gelation times. The addition of a coordinating metal such as Pd to the cis-monomer sol results in dramatically decreased gelation times. The addition of salts with noncoordinating metals did not significantly shorten the gelation times indicating that a template effect may be directing the polymerization of the cis-monomer. The ethenyl-bridged polysilsesquioxanes were characterized by solid state {sup 29}Si and {sup 13}C NMR, nitrogen sorption porosimetry, and transmission electron microscopy.

  7. Transition metal half-sandwich complexes as redox mediators to glucose oxidase.

    PubMed

    Forrow, Nigel J; Walters, Stephen J

    2004-02-15

    Chromium and manganese half-sandwich complexes are evaluated as mediators to glucose oxidase (GOx) since they are of similar size to ferrocene derivatives (sandwich complexes) and contain a single pi-ligand for interaction with the enzyme co-factor. A series of seven amino derivatives of [(eta-C(6)H(6))Cr(CO)(3)] were investigated of which only [[eta-C(6)Me(4)(NH(2))(2)]Cr(CO)(3)] (7), with the lowest oxidation potential of +40 mV (versus SCE), was found to display reversible electrochemistry. Small catalytic currents were recorded in the presence of GOx and glucose when complex (7) was incorporated in a screen-printed carbon electrode. Manganese cyclopentadienyl (Cp) half-sandwich complexes were found to be more effective GOx mediators and comparable in efficacy to ferrocene derivatives. A mediator rate constant k(M) of 2.1 x 10(5)M(-1)s(-1) was determined for the water-soluble complex [(eta-MeC(5)H(4))Mn(NO)(CN)(2)]Na (11) compared to a range of 3 x 10(4) to 8 x 10(6)M(-1)s(-1) previously determined for ferrocenes under the same experimental conditions. beta-Cyclodextrin (beta-cd) was found to be helpful in solubilising hydrophobic complexes such as [(eta-MeC(5)H(4))Mn(NO)(S(2)CNMe(2))] (15) and the neutral oxidised form of [MeCpMn(NO)[(SCCN)(2)

  8. Reductive Cleavage of CO2 by Metal-Ligand-Cooperation Mediated by an Iridium Pincer Complex.

    PubMed

    Feller, Moran; Gellrich, Urs; Anaby, Aviel; Diskin-Posner, Yael; Milstein, David

    2016-05-25

    A unique mode of stoichiometric CO2 activation and reductive splitting based on metal-ligand-cooperation is described. The novel Ir hydride complexes [((t)Bu-PNP*)Ir(H)2] (2) ((t)Bu-PNP*, deprotonated (t)Bu-PNP ligand) and [((t)Bu-PNP)Ir(H)] (3) react with CO2 to give the dearomatized complex [((t)Bu-PNP*)Ir(CO)] (4) and water. Mechanistic studies have identified an adduct in which CO2 is bound to the ligand and metal, [((t)Bu-PNP-COO)Ir(H)2] (5), and a di-CO2 iridacycle [((t)Bu-PNP)Ir(H)(C2O4-κC,O)] (6). DFT calculations confirm the formation of 5 and 6 as reversibly formed side products, and suggest an η(1)-CO2 intermediate leading to the thermodynamic product 4. The calculations support a metal-ligand-cooperation pathway in which an internal deprotonation of the benzylic position by the η(1)-CO2 ligand leads to a carboxylate intermediate, which further reacts with the hydride ligand to give complex 4 and water. PMID:27124097

  9. Potassium chloride and rare earth elements improve plant growth and increase the frequency of the Agrobacterium tumefaciens-mediated plant transformation.

    PubMed

    Boyko, Alex; Matsuoka, Aki; Kovalchuk, Igor

    2011-04-01

    Plant transformation efficiency depends on the ability of the transgene to successfully interact with plant host factors. Our previous work and the work of others showed that manipulation of the activity of host factors allows for increased frequency of transformation. Recently we reported that exposure of tobacco plants to increased concentrations of ammonium nitrate increases the frequency of both homologous recombination and plant transgenesis. Here we tested the influence of KCl and salts of rare earth elements, Ce and La on the efficiency of Agrobacterium-mediated plant transformation. We found that exposure to KCl, CeCl(3) and LaCl(3) leads to an increase in recombination frequency in Arabidopsis and tobacco. Plants grown in the presence of CeCl(3) and LaCl(3) had higher biomass, longer roots and greater root number. Analysis of transformation efficiency showed that exposure of tobacco plants to 50 mM KCl resulted in ~6.0-fold increase in the number of regenerated calli and transgenic plants as compared to control plants. Exposure to various concentrations of CeCl(3) showed a maximum increase of ~3.0-fold in both the number of calli and transgenic plants. Segregation analysis showed that exposure to KCl and cerium (III) chloride leads to more frequent integrations of the transgene at a single locus. Analysis of transgene intactness showed better preservation of right T-DNA border during transgene integration. Our data suggest that KCl and CeCl(3) can be effectively used to improve quantity and quality of transgene integrations. PMID:21132499

  10. Toehold-mediated internal control to probe the near-field interaction between the metallic nanoparticle and the fluorophore

    NASA Astrophysics Data System (ADS)

    Ang, Y. S.; Yung, L. Y. L.

    2014-10-01

    Metallic nanoparticles (MNPs) are known to alter the emission of vicinal fluorophores through the near-field interaction, leading to either fluorescence quenching or enhancement. Much ambiguity remains in the experimental outcome of such a near-field interaction, particularly for bulk colloidal solution. It is hypothesized that the strong far-field interference from the inner filter effect of the MNPs could mask the true near-field MNP-fluorophore interaction significantly. Thus, in this work, a reliable internal control capable of decoupling the near-field interaction from far-field interference is established by the use of the DNA toehold concept to mediate the in situ assembly and disassembly of the MNP-fluorophore conjugate. A model gold nanoparticle (AuNP)-Cy3 system is used to investigate our proposed toehold-mediated internal control system. The maximum fluorescence enhancement is obtained for large-sized AuNP (58 nm) separated from Cy3 at an intermediate distance of 6.8 nm, while fluorescence quenching is observed for smaller-sized AuNP (11 nm and 23 nm), which is in agreement with the theoretical values reported in the literature. This work shows that the toehold-mediated internal control design can serve as a central system for evaluating the near-field interaction of other MNP-fluorophore combinations and facilitate the rational design of specific MNP-fluorophore systems for various applications.Metallic nanoparticles (MNPs) are known to alter the emission of vicinal fluorophores through the near-field interaction, leading to either fluorescence quenching or enhancement. Much ambiguity remains in the experimental outcome of such a near-field interaction, particularly for bulk colloidal solution. It is hypothesized that the strong far-field interference from the inner filter effect of the MNPs could mask the true near-field MNP-fluorophore interaction significantly. Thus, in this work, a reliable internal control capable of decoupling the near

  11. Regularities of the distribution and heavy metal forms in technogenically transformed chernozems of the southern Angara River basin and northeastern China

    NASA Astrophysics Data System (ADS)

    Belogolova, G. A.; Gordeeva, O. N.; Koval, P. V.; Zhou, Q. X.; Guo, G. L.

    2009-04-01

    Specific features of heavy metals and As migration in the system soil-plant are considered on the basis of the results obtained in the analysis of different forms of toxic elements in technogenically transformed chernozems of the southern Baikal Lake basin. These results are compared to the data of analogous studies conducted in northeastern China. The regularities in the bioaccumulation of heavy metals and As were related to their forms, their concentration in the soils, and the plant species. Cadmium was found to be the most mobile element, which accumulated in the chernozems to the greatest degree; lead was the least mobile element.

  12. Trends in alkali metal hydrosulfides: A combined Fourier transform microwave/millimeter-wave spectroscopic study of KSH (X~1A')

    NASA Astrophysics Data System (ADS)

    Bucchino, M. P.; Sheridan, P. M.; Young, J. P.; Binns, M. K. L.; Ewing, D. W.; Ziurys, L. M.

    2013-12-01

    The pure rotational spectrum of KSH (tilde X1A') has been measured using millimeter-wave direct absorption and Fourier transform microwave (FTMW) techniques. This work is the first gas-phase experimental study of this molecule and includes spectroscopy of KSD as well. In the millimeter-wave system, KSH was synthesized in a DC discharge from a mixture of potassium vapor, H2S, and argon; a discharge-assisted laser ablation source, coupled with a supersonic jet expansion, was used to create the species in the FTMW instrument. Five and three rotational transitions in the range 3-57 GHz were recorded with the FTMW experiment for KSH and KSD, respectively, in the Ka = 0 component; in these data, potassium quadrupole hyperfine structure was observed. Five to six transitions with Ka = 0-5 were measured in the mm-wave region (260-300 GHz) for the two species. The presence of multiple asymmetry components in the mm-wave spectra indicates that KSH has a bent geometry, in analogy to other alkali hydrosulfides. The data were analyzed with an S-reduced asymmetric top Hamiltonian, and rotational, centrifugal distortion, and potassium electric quadrupole coupling constants were determined for both isotopolgues. The r0 geometry for KSH was calculated to be rS-H = 1.357(1) Å, rK-S = 2.806(1) Å, and θM-S-H (°) = 95.0 (1). FTMW measurements were also carried out on LiSH and NaSH; metal electric quadrupole coupling constants were determined for comparison with KSH. In addition, ab initio computations of the structures and vibrational frequencies at the CCSD(T)/6-311++G(3df,2pd) and CCSD(T)/aug-cc-pVTZ levels of theory were performed for LiSH, NaSH, and KSH. Overall, experimental and computational data suggest that the metal-ligand bonding in KSH is a combination of electrostatic and covalent forces.

  13. Trends in alkali metal hydrosulfides: a combined Fourier transform microwave/millimeter-wave spectroscopic study of KSH (X1A').

    PubMed

    Bucchino, M P; Sheridan, P M; Young, J P; Binns, M K L; Ewing, D W; Ziurys, L M

    2013-12-01

    The pure rotational spectrum of KSH (X(1)A') has been measured using millimeter-wave direct absorption and Fourier transform microwave (FTMW) techniques. This work is the first gas-phase experimental study of this molecule and includes spectroscopy of KSD as well. In the millimeter-wave system, KSH was synthesized in a DC discharge from a mixture of potassium vapor, H2S, and argon; a discharge-assisted laser ablation source, coupled with a supersonic jet expansion, was used to create the species in the FTMW instrument. Five and three rotational transitions in the range 3-57 GHz were recorded with the FTMW experiment for KSH and KSD, respectively, in the K(a) = 0 component; in these data, potassium quadrupole hyperfine structure was observed. Five to six transitions with K(a) = 0-5 were measured in the mm-wave region (260-300 GHz) for the two species. The presence of multiple asymmetry components in the mm-wave spectra indicates that KSH has a bent geometry, in analogy to other alkali hydrosulfides. The data were analyzed with an S-reduced asymmetric top Hamiltonian, and rotational, centrifugal distortion, and potassium electric quadrupole coupling constants were determined for both isotopolgues. The r0 geometry for KSH was calculated to be r(S-H) = 1.357(1) Å, r(K-S) = 2.806(1) Å, and θ(M-S-H) (°) = 95.0 (1). FTMW measurements were also carried out on LiSH and NaSH; metal electric quadrupole coupling constants were determined for comparison with KSH. In addition, ab initio computations of the structures and vibrational frequencies at the CCSD(T)/6-311++G(3df,2pd) and CCSD(T)/aug-cc-pVTZ levels of theory were performed for LiSH, NaSH, and KSH. Overall, experimental and computational data suggest that the metal-ligand bonding in KSH is a combination of electrostatic and covalent forces. PMID:24320380

  14. Unusual M2-mediated metal-insulator transition in epitaxial VO2 thin films on GaN substrates

    NASA Astrophysics Data System (ADS)

    Yang, Hyoung Woo; Inn Sohn, Jung; Yang, Jae Hoon; Jang, Jae Eun; Cha, Seung Nam; Kim, Jongmin; Kang, Dae Joon

    2015-01-01

    We report on the epitaxial growth of vanadium dioxide (\\text{VO}2) thin films on (0001) GaN substrates using a radio frequency magnetron sputtering method and discuss their unusual M2-mediated metal-insulator transition (MIT) properties. We found that large lattice misfits between the \\text{VO}2 film and the GaN substrate could favor the stabilization of the intermediate insulating \\text{M}2 phase, which is known to be observed only in either doped or uniaxially strained samples. We demonstrated that the MIT in \\text{VO}2 films on GaN substrates could be mediated via a monoclinic \\text{M}2 phase during the transition from a monoclinic \\text{M}1 to a rutile R phase. This was confirmed by temperature-dependent Raman studies that exhibited both an evident upshift of a high-frequency phonon mode (ω\\text{V-O}) from 618 \\text{cm}-1 (\\text{M}1) to 645 \\text{cm}-1 (\\text{M}2) and a distinct peak splitting of a low-frequency phonon mode (ω\\text{V-V}) at 221 \\text{cm}-1 (\\text{M}2) for increasing temperatures. Moreover, a resistance change of four orders of magnitude was observed for \\text{VO}2 thin films on GaN substrates, being indicative of the high quality of \\text{VO}2 thin films. This study may offer great opportunities not only to improve the understanding of M2-mediated MIT behavior in \\text{VO}2 thin films, but also to realize novel electronic and optoelectronic devices.

  15. Metal Ion-dependent Heavy Chain Transfer Activity of TSG-6 Mediates Assembly of the Cumulus-Oocyte Matrix.

    PubMed

    Briggs, David C; Birchenough, Holly L; Ali, Tariq; Rugg, Marilyn S; Waltho, Jon P; Ievoli, Elena; Jowitt, Thomas A; Enghild, Jan J; Richter, Ralf P; Salustri, Antonietta; Milner, Caroline M; Day, Anthony J

    2015-11-27

    The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix. PMID:26468290

  16. Metal Ion-dependent Heavy Chain Transfer Activity of TSG-6 Mediates Assembly of the Cumulus-Oocyte Matrix*

    PubMed Central

    Briggs, David C.; Birchenough, Holly L.; Ali, Tariq; Rugg, Marilyn S.; Waltho, Jon P.; Ievoli, Elena; Jowitt, Thomas A.; Enghild, Jan J.; Richter, Ralf P.; Salustri, Antonietta; Milner, Caroline M.; Day, Anthony J.

    2015-01-01

    The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix. PMID:26468290

  17. Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis.

    PubMed

    Oh, Jae-Min; Choi, Soo-Jin; Lee, Go-Eun; Kim, Jung-Eun; Choy, Jin-Ho

    2009-01-01

    Layered double hydroxides (LDHs) are biocompatible materials which can be used as drug-delivery nanovehicles. In order to define the optimum size of LDH nanoparticles for efficient cellular uptake and drug-delivery pathway, we prepared different sized LDH nanoparticles with narrow size distribution by modulating the crystal growth rate, and labelled each LDH particle with a fluorophore using a silane coupling reaction. The cellular uptake rate of LDHs was found to be highly dependent on particle size (50 > 200 > or = 100 > 350 nm), whose range of 50 to 200 nm was selectively internalized into cells through clathrin-mediated endocytosis with enhanced permeability and retention. Our study clearly shows that not only the particle size plays an important role in the endocytic pathway and processing, but also the size control of LDH nanoparticles results in their targeted uptake to site-specific clathrin-mediated endocytosis. This result provides a new perspective for the design of LDH nanoparticles with maximum ability towards targeted drug delivery. PMID:18988236

  18. Evidence for the microbially mediated abiotic formation of reversible and non-reversible sulfamethoxazole transformation products during denitrification.

    PubMed

    Nödler, Karsten; Licha, Tobias; Barbieri, Manuela; Pérez, Sandra

    2012-05-01

    The antibiotic sulfonamide drug sulfamethoxazole (SMX) is extensively used in both human and veterinary medicine. Since it cannot be completely eliminated by the typical state-of-the-art wastewater treatment technology, it is frequently detected in the water cycle. SMX, as aromatic amine, can undergo abiotic transformations with the under denitrifying conditions produced nitrogen species nitric oxide (NO) and nitrite (NO(2)(-)). NO and aromatic amines are commonly known to form diazonium cations. Depending on the reaction conditions the diazonium cation disintegrates under cleavage of elementary nitrogen and substitutes its diazo-group by an NO(2)-group or by hydrogen. Following this approach, two transformation products (TPs) of the persistent SMX under denitrifying conditions were hypothesized and synthesized: 4-nitro-N-(5-methylisoxazol-3-yl)-benzenesulfonamide (4-nitro-SMX) and N-(5-methylisoxazol-3-yl)-benzenesulfonamide (desamino-SMX). The synthesized compounds were identified by Nuclear Magnetic Resonance (NMR) spectroscopy and used as reference standards for their confirmation and quantification in denitrifying water/sediment batch experiments and in environmental samples. During the denitrifying degradation experiment SMX was no longer detected after 10 days whereas increasing concentrations of the two TPs were observed. However, at day 87 the SMX concentration recovered to 53 ± 16% of the initial concentration after most of the nitrate was consumed. A retransformation of 4-nitro-SMX to SMX was postulated and confirmed by another anoxic water/sediment test in the absence of nitrate as electron acceptor. Both TPs were also detected in karst spring samples, highlighting the need and benefit of focusing on transformation products in environmental studies. Furthermore, the consideration of the retransformation potential of 4-nitro-SMX can substantially improve the understanding of SMX behavior during processes such as bank filtration and artificial recharge

  19. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines

    PubMed Central

    Sciamanna, Ilaria; Gualtieri, Alberto; Cossetti, Cristina; Osimo, Emanuele Felice; Ferracin, Manuela; Macchia, Gianfranco; Aricò, Eleonora; Prosseda, Gianni; Vitullo, Patrizia; Misteli, Tom; Spadafora, Corrado

    2013-01-01

    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the ‘normal’ small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the

  20. Formation of Amides from Imines via Cyanide-Mediated Metal-Free Aerobic Oxidation.

    PubMed

    Seo, Hong-Ahn; Cho, Yeon-Ho; Lee, Ye-Sol; Cheon, Cheol-Hong

    2015-12-18

    A new protocol for the direct formation of amides from imines derived from aromatic aldehydes via metal-free aerobic oxidation in the presence of cyanide is described. This protocol was applicable to various aldimines, and the desired amides were obtained in moderate to good yields. Mechanistic studies suggested that this aerobic oxidative amidation might proceed via the addition of cyanide to imines followed by proton transfer from carbon to nitrogen in the original imines, leading to carbanions of α-amino nitriles, which undergo subsequent oxidation with molecular oxygen in air to provide the desired amide compounds. PMID:26580330