Science.gov

Sample records for metal mixture responses

  1. Toxic responses of bivalves to metal mixtures

    SciTech Connect

    Mathew, P.; Menon, N.R. )

    1992-02-01

    Although there is a growing body of information on the toxicity of individual heavy metals to economically important on the toxicity of individual heavy metals to economically important species of bivalves, literature on the lethal toxicity of metal mixtures to bivalves under controlled conditions is rather limited. In the present investigation the toxic effects of combinations of copper - mercury and copper - mercury and copper - cadmium at lethal levels of two marine bivalve species, Perna indica and Donax incarnatus, have been delineated.

  2. Toxicological Responses of Environmental Mixtures: Environmental Metals Mixtures Display Synergistic Induction of Metal-Responsive and Oxidative Stress Genes in Placental Cells

    PubMed Central

    Adebambo, Oluwadamilare A.; Ray, Paul D.; Shea, Damian; Fry, Rebecca C.

    2016-01-01

    Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metals mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu2+ transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals. PMID:26472158

  3. Children Exposed to Metals Mixtures Demonstrate Dysregulation of Infectious Disease Response

    EPA Science Inventory

    Exposure to toxic metals can have harmful health effects, particularly in children. Although studies have investigated the individual effects toxic metals have on gene expression and health outcomes, there are no studies assessing the effect of metal mixtures on gene expression p...

  4. Transcriptional impact of organophosphate and metal mixtures on olfaction: Copper dominates the chlorpyrifos-induced response in adult zebrafish

    PubMed Central

    Tilton, Fred A.; Tilton, Susan C.; Bammler, Theo K.; Beyer, Richard P.; Stapleton, Patricia L.; Scholz, Nathaniel L.; Gallagher, Evan P.

    2013-01-01

    Chemical exposures in fish have been linked to loss of olfaction leading to an inability to detect predators and prey and decreased survival. However, the mechanisms underlying olfactory neurotoxicity are not well characterized, especially in environmental exposures which involve chemical mixtures. We used zebrafish to characterize olfactory transcriptional responses by two model olfactory inhibitors, the pesticide chlorpyrifos (CPF) and mixtures of CPF with the neurotoxic metal copper (Cu). Microarray analysis was performed on RNA from olfactory tissues of zebrafish exposed to CPF alone or to a mixture of CPF and Cu. Gene expression profiles were analyzed using Principal Component Analysis and hierarchical clustering, whereas gene set analysis was used to identify biological themes in the microarray data. Microarray results were confirmed by real-time PCR on genes serving as potential biomarkers of olfactory injury. In addition, we mined our previously published Cu-induced zebrafish olfactory transcriptional response database (Tilton et al., 2008) for the purposes of discriminating pathways of olfaction impacted by either the individual agents or the CPF-Cu mixture transcriptional signatures. CPF exposure altered the expression of gene pathways associated with cellular morphogenesis and odorant binding, but not olfactory signal transduction, a known olfactory pathway for Cu. The mixture profiles shared genes from the Cu and CPF datasets, whereas some genes were altered only by the mixtures. The transcriptional signature of the mixtures was more similar to that in zebrafish exposed to Cu alone then for CPF. In conclusion, exposure to a mixture containing a common environmental metal and pesticide causes a unique transcriptional signature that is heavily influenced by the metal, even when organophosphate predominates. Our findings support using zebrafish microarray analysis to elucidate mechanisms of olfactory loss and to identify the components of mixtures which

  5. A multimodal imaging workflow to visualize metal mixtures in the human placenta and explore colocalization with biological response markers.

    PubMed

    Niedzwiecki, Megan M; Austin, Christine; Remark, Romain; Merad, Miriam; Gnjatic, Sacha; Estrada-Gutierrez, Guadalupe; Espejel-Nuñez, Aurora; Borboa-Olivares, Hector; Guzman-Huerta, Mario; Wright, Rosalind J; Wright, Robert O; Arora, Manish

    2016-04-01

    Fetal exposure to essential and toxic metals can influence life-long health trajectories. The placenta regulates chemical transmission from maternal circulation to the fetus and itself exhibits a complex response to environmental stressors. The placenta can thus be a useful matrix to monitor metal exposures and stress responses in utero, but strategies to explore the biologic effects of metal mixtures in this organ are not well-developed. In this proof-of-concept study, we used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to measure the distributions of multiple metals in placental tissue from a low-birth-weight pregnancy, and we developed an approach to identify the components of metal mixtures that colocalized with biological response markers. Our novel workflow, which includes custom-developed software tools and algorithms for spatial outlier identification and background subtraction in multidimensional elemental image stacks, enables rapid image processing and seamless integration of data from elemental imaging and immunohistochemistry. Using quantitative spatial statistics, we identified distinct patterns of metal accumulation at sites of inflammation. Broadly, our multiplexed approach can be used to explore the mechanisms mediating complex metal exposures and biologic responses within placentae and other tissue types. Our LA-ICP-MS image processing workflow can be accessed through our interactive R Shiny application 'shinyImaging', which is available at or through our laboratory's website, . PMID:26987553

  6. Systematic Proteomic Approach to Characterize the Impacts of Chemical Interactions on Protein and Cytotoxicity Responses to Metal Mixture Exposures

    EPA Science Inventory

    Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems...

  7. Predicting the toxicity of metal mixtures.

    PubMed

    Balistrieri, Laurie S; Mebane, Christopher A

    2014-01-01

    The toxicity of single and multiple metal (Cd, Cu, Pb, and Zn) solutions to trout is predicted using an approach that combines calculations of: (1) solution speciation; (2) competition and accumulation of cations (H, Ca, Mg, Na, Cd, Cu, Pb, and Zn) on low abundance, high affinity and high abundance, low affinity biotic ligand sites; (3) a toxicity function that accounts for accumulation and potency of individual toxicants; and (4) biological response. The approach is evaluated by examining water composition from single metal toxicity tests of trout at 50% mortality, results of theoretical calculations of metal accumulation on fish gills and associated mortality for single, binary, ternary, and quaternary metal solutions, and predictions for a field site impacted by acid rock drainage. These evaluations indicate that toxicity of metal mixtures depends on the relative affinity and potency of toxicants for a given aquatic organism, suites of metals in the mixture, dissolved metal concentrations and ratios, and background solution composition (temperature, pH, and concentrations of major ions and dissolved organic carbon). A composite function that incorporates solution composition, affinity and competition of cations for two types of biotic ligand sites, and potencies of hydrogen and individual metals is proposed as a tool to evaluate potential toxicity of environmental solutions to trout. PMID:23973545

  8. Transcriptional responses to complex mixtures: a review.

    PubMed

    Sen, Banalata; Mahadevan, Brinda; DeMarini, David M

    2007-01-01

    Exposure of people to hazardous compounds is primarily through complex environmental mixtures, those that occur through media such as air, soil, water, food, cigarette smoke, and combustion emissions. Microarray technology offers the ability to query the entire genome after exposure to such an array of compounds, permitting a characterization of the biological effects of such exposures. This review summarizes the published literature on the transcriptional profiles resulting from exposure of cells or organisms to complex environmental mixtures such as cigarette smoke, diesel emissions, urban air, motorcycle exhaust, carbon black, jet fuel, and metal ore and fumes. The majority of the mixtures generally up-regulate gene expression, with heme oxygenase 1 and CYP1A1 being up-regulated by all of the mixtures. Most of the mixtures altered the expression of genes involved in oxidative stress response (OH-1, metallothioneins), immune/inflammation response (IL-1b, protein kinase), xenobiotic metabolism (CYP1A1, CYP1B1), coagulation and fibrinolysis (plasminogen activator/inhibitor), proto-oncogenes (FUS1, JUN), heat-shock response (HSP60, HSP70), DNA repair (PCNA, GADD45), structural unit of condensed DNA (Crf15Orf16, DUSP 15), and extracellular matrix degradation (MMP1, 8, 9, 11, 12). Genes involved in aldehyde metabolism, such as ALDH3, appeared to be uniquely modulated by cigarette smoke. Cigarette smoke-exposed populations have been successfully distinguished from control nonexposed populations based on the expression pattern of a subset of genes, thereby demonstrating the utility of this approach in identifying biomarkers of exposure and susceptibility. The analysis of gene-expression data at the pathway and functional level, along with a systems biology approach, will provide a more comprehensive insight into the biological effects of complex mixtures and will improve risk assessment of the same. We suggest critical components of study design and reporting that will

  9. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    DOEpatents

    Quinby, Thomas C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution leaving a molten urea solution containing the metal values. The molten urea solution is heated to above about 180.degree. C. whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles.

  10. A test of the additivity of acute toxicity of binary-metal mixtures of ni with Cd, Cu, and Zn to Daphnia magna, using the inflection point of the concentration-response curves.

    PubMed

    Traudt, Elizabeth M; Ranville, James F; Smith, Samantha A; Meyer, Joseph S

    2016-07-01

    Mixtures of metals are often present in surface waters, leading to toxicity that is difficult to predict. To provide data for development of multimetal toxicity models, Daphnia magna neonates were exposed to individual metals (Cd, Cu, Ni, Zn) and to binary combinations of those metals in standard 48-h lethality tests conducted in US Environmental Protection Agency moderately hard reconstituted water with 3 mg dissolved organic carbon (DOC)/L added as Suwannee River fulvic acid. Toxicity tests were performed with mixtures of Ni and 1) Cd, which is considerably more toxic than Ni; 2) Cu, which is less toxic than Cd but more toxic than Ni; and 3) Zn, which has a toxicity threshold similar to Ni. For each combination of metals in the binary mixtures, the concentration of 1 metal was held constant while the second metal was varied through a series that ranged from nonlethal to lethal concentrations; then the roles of the metals were reversed. Inflection points of the concentration-response curves were compared to test for additivity of toxicity. Sublethal concentrations of Ni caused less-than-additive toxicity with Cd, slightly less-than-additive toxicity with Zn, and greater-than-additive toxicity with Cu. One explanation of these results might be competition among the metals for binding to biological ligands and/or dissolved organic matter. Therefore, models might have to incorporate sometimes competing chemical interactions to accurately predict metal-mixture toxicity. Environ Toxicol Chem 2016;35:1843-1851. © 2015 SETAC. PMID:26681657

  11. Predicting the shock compression response of heterogeneous powder mixtures

    NASA Astrophysics Data System (ADS)

    Fredenburg, D. A.; Thadhani, N. N.

    2013-06-01

    A model framework for predicting the dynamic shock-compression response of heterogeneous powder mixtures using readily obtained measurements from quasi-static tests is presented. Low-strain-rate compression data are first analyzed to determine the region of the bulk response over which particle rearrangement does not contribute to compaction. This region is then fit to determine the densification modulus of the mixture, σD, an newly defined parameter describing the resistance of the mixture to yielding. The measured densification modulus, reflective of the diverse yielding phenomena that occur at the meso-scale, is implemented into a rate-independent formulation of the P-α model, which is combined with an isobaric equation of state to predict the low and high stress dynamic compression response of heterogeneous powder mixtures. The framework is applied to two metal + metal-oxide (thermite) powder mixtures, and good agreement between the model and experiment is obtained for all mixtures at stresses near and above those required to reach full density. At lower stresses, rate-dependencies of the constituents, and specifically those of the matrix constituent, determine the ability of the model to predict the measured response in the incomplete compaction regime.

  12. Combined toxicity of heavy metal mixtures in liver cells.

    PubMed

    Lin, Xialu; Gu, Yuanliang; Zhou, Qi; Mao, Guochuan; Zou, Baobo; Zhao, Jinshun

    2016-09-01

    With rapid industrialization, China is now facing great challenges in heavy metal contamination in the environment. Human exposure to heavy metals through air, water and food commonly involves a mixture consisting of multiple heavy metals. In this study, eight common heavy metals (Pb, Cd, Hg, Cu, Zn, Mn, Cr, Ni) that cause environmental contamination were selected to investigate the combined toxicity of different heavy metal mixtures in HL7702 cells. Toxicity (24 h LC50 ) of each individual metal on the cells ranked Hg > Cr = Cd > Cu > Zn > Ni > Mn > Pb; toxicity of the different mixtures ranked: M5 > M3PbHgCd > M5+Mn > M5+Cu > M2CdNi > M4A > M8-Mn > M8 > M5+Zn > M4B > M8-Cr > M8-Zn > M8-Cu > M8-Pb > M8-Cd > M8-Hg > M8-Ni > M3PbHgNi > M3CuZnMn. The cytotoxicity data of individual metals were successfully used to build the additive models of two- to eight-component metal mixtures. The comparison between additive model and combination model or partly additive model was useful to evaluate the combined effects in mixture. Synergistic, antagonistic or additive effects of the toxicity were observed in different mixtures. These results suggest that the combined effects should be considered in the risk assessment of heavy metal co-exposure, and more comprehensive investigations on the combined effects of different heavy metal mixtures are needed in the future. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26865462

  13. Assessing the risk of metal mixtures in contaminated sediments on Chironomus riparius based on cytosolic accumulation.

    PubMed

    Péry, Alexandre R R; Geffard, Alain; Conrad, Arnaud; Mons, Raphaël; Garric, Jeanne

    2008-11-01

    Sediments usually contain mixtures of trace metals introduced via natural geochemical processes and anthropogenic activities. Kinetics and effects of these metals are strongly dependent both on the composition of the mixture and on the physico-chemical characteristics of the sediment. Relating effects to metal concentration may consequently be advised. However, total accumulation may be a poor predictor of metal toxicity for Chironomus riparius exposed to contaminated field sediments. As an alternative, we proposed to relate effects on Chironomus growth with cytosolic metal accumulation, measured in larvae after a short exposure period. Dose-response relationships were derived for zinc, copper, and cadmium through single-metal exposure data analysed with toxicokinetics and toxicodynamics models. They permitted, on the basis of cytosolic accumulation measures, to predict successfully the effects of mixtures of cadmium, zinc, and copper on the growth of larvae exposed to spiked sediments, as well as to field sediments in which zinc and copper were assumed to be predominant. PMID:18514899

  14. Accumulation and effects of metal mixtures in two seaweed species.

    PubMed

    Jarvis, Tayler A; Bielmyer-Fraser, Gretchen K

    2015-05-01

    Metal pollution, due to various anthropogenic sources, may pose a threat to marine ecosystems. Metals can be introduced into food chains via bioaccumulation in primary producers, and may potentially lead to toxic effects. Macroalgae are used as food by a wide variety of organisms, and are therefore extremely important in aquatic systems. This study investigated the accumulation and effects of metals in two macroalgae species. The green seaweed, Ulva lactuca and the red seaweed, Agardhiella subulata were each concurrently exposed to five metals (Cu, Ni, Pb, Cd, and Zn) and U. lactuca was also exposed to each metal individually for 48 h. Metal accumulation in the seaweed was measured, and various photosynthetic parameters were assessed, using imaging pulse amplitude modulated (PAM) fluorometry. Increased metal accumulation occurred in both seaweed species after 48 h exposure to metal mixtures and each metal individually. The distribution of metals in both seaweed species changed with increasing metal exposure concentrations, resulting in higher proportions of Cu and Zn in the metal-exposed groups, as compared to respective controls. Further, U. lactuca accumulated higher concentrations of metals when exposed to each metal individually rather than in metal mixtures, suggesting interactions among metals for uptake and/or bioaccumulation. Significant impairment of photosynthetic parameters in U. lactuca was observed after exposure to 100 and 1000 μg/L metal mixtures, as well as 100 μg/L of either Cd or Cu. These results demonstrate metal bioaccumulation and toxic effects in important primary producers, and may have implications for higher trophic levels. PMID:25814321

  15. Effects of metal salt mixtures on Daphnia magna reproduction

    SciTech Connect

    Biesinger, K.E.; Christensen, G.M.; Fiandt, J.T.

    1986-02-01

    Three binary metal experiments were conducted using a complete block design; testing the chlorides of Cd, Hg, and Zn individually and in combinations of Cd-Hg, Cd-Zn, and Zn-Hg on Daphnia magna reproduction. These mixtures were tested at one-half, once, and twice the 16% reproductive impairment concentration previously determined for individual metals. The Cd-Hg, Cd-Zn, and Zn-Hg mixtures all showed significant reductions in reproduction at concentrations where the metal salts alone caused no significant effect.

  16. Metal mixture (As-Cd-Pb)-induced cell transformation is modulated by OLA1.

    PubMed

    Martínez-Baeza, Elia; Rojas, Emilio; Valverde, Mahara

    2016-07-01

    Environmental pollutants are complex mixtures in which metals are ubiquitous. Metal mixtures of arsenic, cadmium and lead are present in the occupational environment and generate health effects such as cardiovascular, renal and cancer diseases. Cell transformation induced by metal mixtures that depend on reactive oxygen species (ROS) generation, cell viability maintenance and avoidance of senescence was previously reported by our group. The aim of the present study was to explore the role of a Obg-like ATPase1 (OLA1) in the cell transformation of BALB/c 3T3 A31-1-1 clonal cells induced by a metal mixture (2 µM NaAsO2, 2 µM CdCl2 and 5 µM Pb(C2H3O2)2 3H2O) through ROS generation. The interest in OLA1 is justified because this protein has been proposed to be a negative regulator of the cellular antioxidant response. Small interfering RNA (siRNA) was used to knockdown OLA1 before the initiation stage of the transformation assay. We evaluated (ROS) and OLA1 protein expression throughout the initiation and promotion stages of transformation. OLA1 knockdown modulated metal mixture-induced cell transformation more strongly when the metal mixture was an initiator stimulus than when it was a promoter. The ability of the metal mixture to initiate cell transformation was diminished by OLA1 knockdown, an effect that depended on intracellular ROS levels. The effect of OLA1 was synergistic with N-Acetyl-l-cysteine (NAC) co-treatment. Oxidative stress-associated transcription factors Egr1 and Smad were also down-regulated by the OLA1 knockdown, contributing to the rescue of metal mixture cell transformation. PMID:26984302

  17. ADDITIVITY ASSESSMENT OF TRIHALOMETHANE MIXTURES BY PROPORTIONAL RESPONSE ADDITION

    EPA Science Inventory

    If additivity is known or assumed, the toxicity of a chemical mixture may be predicted from the dose response curves of the individual chemicals comprising the mixture. As single chemical data are abundant and mixture data sparse, mixture risk methods that utilize single chemical...

  18. Enhanced selective metal adsorption on optimised agroforestry waste mixtures.

    PubMed

    Rosales, Emilio; Ferreira, Laura; Sanromán, M Ángeles; Tavares, Teresa; Pazos, Marta

    2015-04-01

    The aim of this work is to ascertain the potentials of different agroforestry wastes to be used as biosorbents in the removal of a mixture of heavy metals. Fern (FE), rice husk (RI) and oak leaves (OA) presented the best removal percentages for Cu(II) and Ni(II), Mn(II) and Zn(II) and Cr(VI), respectively. The performance of a mixture of these three biosorbents was evaluated, and an improvement of 10% in the overall removal was obtained (19.25mg/g). The optimum mixture proportions were determined using simplex-centroid mixture design method (FE:OA:RI=50:13.7:36.3). The adsorption kinetics and isotherms of the optimised mixture were fit by the pseudo-first order kinetic model and Langmuir isotherm. The adsorption mechanism was studied, and the effects of the carboxylic, hydroxyl and phenolic groups on metal-biomass binding were demonstrated. Finally, the recoveries of the metals using biomass were investigated, and cationic metal recoveries of 100% were achieved when acidic solutions were used. PMID:25681794

  19. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.

  20. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  1. MRNA and miRNA expression patterns associated to pathways linked to metal mixture health effects.

    PubMed

    Martínez-Pacheco, M; Hidalgo-Miranda, A; Romero-Córdoba, S; Valverde, M; Rojas, E

    2014-01-10

    Metals are a threat to human health by increasing disease risk. Experimental data have linked altered miRNA expression with exposure to some metals. MiRNAs comprise a large family of non-coding single-stranded molecules that primarily function to negatively regulate gene expression post-transcriptionally. Although several human populations are exposed to low concentrations of As, Cd and Pb as a mixture, most toxicology research focuses on the individual effects that these metals exert. Thus, this study aims to evaluate global miRNA and mRNA expression changes induced by a metal mixture containing NaAsO2, CdCl2, Pb(C2H3O2)2·3H2O and to predict possible metal-associated disease development under these conditions. Our results show that this metal mixture results in a miRNA expression profile that may be responsible for the mRNA expression changes observed under experimental conditions in which coding proteins are involved in cellular processes, including cell death, growth and proliferation related to the metal-associated inflammatory response and cancer. PMID:24080485

  2. Comparative Analysis of Stress Induced Gene Expression in Caenorhabditis elegans following Exposure to Environmental and Lab Reconstituted Complex Metal Mixture

    PubMed Central

    Kumar, Ranjeet; Pradhan, Ajay; Khan, Faisal Ahmad; Lindström, Pia; Ragnvaldsson, Daniel; Ivarsson, Per; Olsson, Per-Erik; Jass, Jana

    2015-01-01

    Metals are essential for many physiological processes and are ubiquitously present in the environment. However, high metal concentrations can be harmful to organisms and lead to physiological stress and diseases. The accumulation of transition metals in the environment due to either natural processes or anthropogenic activities such as mining results in the contamination of water and soil environments. The present study used Caenorhabditis elegans to evaluate gene expression as an indicator of physiological response, following exposure to water collected from three different locations downstream of a Swedish mining site and a lab reconstituted metal mixture. Our results indicated that the reconstituted metal mixture exerted a direct stress response in C. elegans whereas the environmental waters elicited either a diminished or abrogated response. This suggests that it is not sufficient to use the biological effects observed from laboratory mixtures to extrapolate the effects observed in complex aquatic environments and apply this to risk assessment and intervention. PMID:26168046

  3. Method of treating alkali metal sulfide and carbonate mixtures

    DOEpatents

    Kohl, Arthur L.; Rennick, Robert D.; Savinsky, Martin W.

    1978-01-01

    A method of removing and preferably recovering sulfur values from an alkali metal sulfide and carbonate mixture comprising the steps of (1) introducing the mixture in an aqueous medium into a first carbonation zone and reacting the mixture with a gas containing a major amount of CO.sub.2 and a minor amount of H.sub.2 S; (2) introducing the resultant product from step 1 into a stripping zone maintained at subatmospheric pressure, and contacting this product with steam to produce a gaseous mixture, comprising H.sub.2 S and water vapor, and a liquor of reduced sulfide content; (3) introducing the liquor of reduced sulfide content into a second carbonation zone, and reacting the liquor with substantially pure gaseous CO.sub.2 in an amount sufficient to precipitate bicarbonate crystals and produce an offgas containing CO.sub.2 and H.sub.2 S for use in step 1; (4) recovering the bicarbonate crystals from step 3, and thermally decomposing the crystals to produce an alkaline metal carbonate product and a substantially pure CO.sub.2 offgas for use in step 3.

  4. Transcriptional responses to complex mixtures - A review

    EPA Science Inventory

    Exposure of people to hazardous compounds is primarily through complex environmental mixtures, those that occur through media such as air, soil, water, food, cigarette smoke, and combustion emissions. Microarray technology offers the ability to query the entire genome after expos...

  5. Metal mixture modeling evaluation project: 2. Comparison of four modeling approaches.

    PubMed

    Farley, Kevin J; Meyer, Joseph S; Balistrieri, Laurie S; De Schamphelaere, Karel A C; Iwasaki, Yuichi; Janssen, Colin R; Kamo, Masashi; Lofts, Stephen; Mebane, Christopher A; Naito, Wataru; Ryan, Adam C; Santore, Robert C; Tipping, Edward

    2015-04-01

    As part of the Metal Mixture Modeling Evaluation (MMME) project, models were developed by the National Institute of Advanced Industrial Science and Technology (Japan), the US Geological Survey (USA), HDR|HydroQual (USA), and the Centre for Ecology and Hydrology (United Kingdom) to address the effects of metal mixtures on biological responses of aquatic organisms. A comparison of the 4 models, as they were presented at the MMME workshop in Brussels, Belgium (May 2012), is provided in the present study. Overall, the models were found to be similar in structure (free ion activities computed by the Windermere humic aqueous model [WHAM]; specific or nonspecific binding of metals/cations in or on the organism; specification of metal potency factors or toxicity response functions to relate metal accumulation to biological response). Major differences in modeling approaches are attributed to various modeling assumptions (e.g., single vs multiple types of binding sites on the organism) and specific calibration strategies that affected the selection of model parameters. The models provided a reasonable description of additive (or nearly additive) toxicity for a number of individual toxicity test results. Less-than-additive toxicity was more difficult to describe with the available models. Because of limitations in the available datasets and the strong interrelationships among the model parameters (binding constants, potency factors, toxicity response parameters), further evaluation of specific model assumptions and calibration strategies is needed. PMID:25418584

  6. Effects of Binary Mixtures of Inducers (Toluene Analogs) and of Metals on Bioluminescence Induction of a Recombinant Bioreporter Strain

    PubMed Central

    Kong, In Chul

    2014-01-01

    This paper investigated the effects of binary mixtures of bioluminescence inducers (toluene, xylene isomers, m-toluate) and of metals (Cu, Cd, As(III), As(V), and Cr) on bioluminescence activity of recombinant (Pm-lux) strain KG1206. Different responses and sensitivities were observed depending on the types and concentrations of mixtures of inducers or metals. In the case of inducer mixtures, antagonistic and synergistic modes of action were observed, whereas metal mixtures showed all three modes of action. Antagonistic mode of action was most common for mixtures of indirect inducers, which showed bioluminescence ranging from 29% to 62% of theoretically expected effects (P(E)). On the other hand, synergistic mode of action was observed for mixtures of direct and indirect inducers, which showed bioluminescence between 141% and 243% of P(E).In the case of binary metal mixtures, bioluminescence activities were ranged from 62% to 75% and 113% to 164% of P(E) for antagonistic and synergistic modes of action, respectively (p-values 0.0001–0.038). Therefore, mixture effects could not be generalized since they were dependent on both the types and concentrations of chemicals, suggesting that biomonitoring may constitute a better strategy by investigating types and concentrations of mixture pollutants at contaminated sites. PMID:25313497

  7. Testing an application of a biotic ligand model to predict acute toxicity of metal mixtures to rainbow trout.

    PubMed

    Iwasaki, Yuichi; Kamo, Masashi; Naito, Wataru

    2015-04-01

    The authors tested the applicability of a previously developed biotic ligand model (BLM) to predict acute toxicity of single metals and metal mixtures (cadmium, lead, and zinc) to rainbow trout fry (Oncorhynchus mykiss) from a single available dataset. The BLM used in the present study hypothesizes that metals inhibit an essential cation (calcium) and organisms die as a result of its deficiency, leading to an assumption that the proportion of metal-binding ligand (f) is responsible for the toxic effects of metals on the survival of rainbow trout. The f value is a function of free-ion concentrations of metals computed by a chemical speciation model, and the function has affinity constants as model parameters. First, the survival effects of single metals were statistically modeled separately (i.e., f-survival relationship) by using the generalized linear mixed model with binomial distribution. The modeled responses of survival rates to f overlapped reasonably irrespective of metals tested, supporting the theoretical prediction from the BLM that f-survival relationships are comparable regardless of metal species. The authors thus developed the generalized linear mixed model based on all data pooled across the single-metal tests. The best-fitted model well predicted the survival responses observed in mixture tests (r = 0.97), providing support for the applicability of the BLM to predict effects of metal mixtures. PMID:25323464

  8. Behavioral avoidance of a metals mixture by rainbow trout and brown trout

    SciTech Connect

    Hansen, J.A.; Bergman, H.L.; Woodward, D.F.; Little, E.E.; Deloney, A.J.

    1994-12-31

    Behavioral avoidance responses by rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) were determined in the laboratory to predict the effect of mixtures of copper, cadmium, lead, and zinc on the spatial distribution of fishes in the Clark fork River (CFR), Montana. The typical ambient concentration of these metals (in {micro}g/l) in the CFR was 12 Cu, 1.1 Cd, 3.2 Pb, and 50 Zn. Laboratory tests were conducted in an opposing-flow avoidance chamber using metals concentrations ranging from 10% to 1,000% of this CFR ambient concentration. Rainbow trout avoided all metals concentrations tested from 10% to 1,000% of ambient. Brown trout failed to avoid the 10% metals concentration but did avoid all concentrations higher than 50%. In a further experiment, both species were acclimated to pH 8.0 water and avoided all changes in acidity. However, the avoidance of metals was not altered by acidity additions in brown trout and only slightly altered in rainbow trout. In all experiments, brown trout were less sensitive than rainbow trout, which was consistent with observed species distributions within the river. Behavior avoidance of this metals mixture by rainbow and brown trout in the laboratory indicates metals may have contributed to reduced abundance and altered distribution of salmonids in the CFR.

  9. Acute phytotoxicity of seven metals alone and in mixture: Are Italian soil threshold concentrations suitable for plant protection?

    SciTech Connect

    Baderna, Diego Lomazzi, Eleonora; Pogliaghi, Alberto; Ciaccia, Gianluca; Lodi, Marco; Benfenati, Emilio

    2015-07-15

    Metals can pollute soils in both urban and rural areas with severe impacts on the health of humans, plants and animals living there. Information on metal toxicity is therefore important for ecotoxicology. This study investigated the phytotoxicity of different metals frequently found as pollutants in soils: arsenic, cadmium, chromium, lead, mercury, nickel and zinc. Cucumber (Cucumis sativus), sorghum (Sorghum saccharatum) and cress (Lepidium sativum) seeds were used as models for other plants used in human nutrition such as cereals, rice, fruits and vegetables. The 72-h germination rate and root elongations were selected as short-term ecotoxicological endpoints in seeds exposed to single metals and mixtures. Metals were spiked onto OECD standard soils in concentrations comparable to current Italian contamination threshold concentrations for residential and commercial soils. Arsenic, chromium, mercury and nickel were the most toxic metals in our experimental conditions, particularly to cress seeds (5.172, 152 and 255.4 mg/kg as 72 h IC50 for arsenic, mercury and nickel respectively). Italian limits were acceptable for plant protection only for exposure to each metal alone but not for the mixtures containing all the metals concentrations expected by their respective legislative threshold. The effects of the mixture were class-specific: trends were comparable in dicots but different in monocots. The response induced by the mixture at high concentrations differed from that theoretically obtainable by summing the effects of the individual metals. This might be due to partial antagonism of the metals in soil or to the formation of complexes between the metals, which reduce the bioavailability of the pollutants for plants. - Graphical abstract: Metals investigated: Arsenic, Cadmium, Chromium, Lead, Mercury, Nickel and Zinc. - Highlights: • The short-term phytotoxicity of seven metals was investigated with 3 higher plants. • Italian limits for arsenic and nickel in

  10. Dynamic Response of Monolithic and Laminate/Particulate Reactive Mixtures

    NASA Astrophysics Data System (ADS)

    Wei, Chung-Ting

    Two dynamic compression methods were applied to a monolithic metal and reactive mixtures to investigate their responses: (a) Dynamic experiments using a split Hopkinson pressure bar were applied to reactive mixtures densified by explosive consolidation in order to establish their mechanical response and failure mechanisms. (b) Laser compression and release, which can impart high stresses, up to hundreds GPa, in times of nanoseconds and fractions thereof, was applied to establish the spalling strength of vanadium and the reaction threshold for Ni/Al laminates. The spallation and fragmentation exhibited by recovered mono- and poly-crystalline vanadium prove that the laser intensities and crystal structure play important roles in determining spall strength, fragmentation, and microstructural processes. Densified reactive mixtures with different microstructures (Ni, Mo, W, Nb and Ta with Al) were subjected to the quasi-static and dynamic strain rates. Two distinct failure mechanisms, axial splitting and shear failure, were observed in the recovered specimens. Axial splitting occurred when the bonding between the powders was poor; shear failure was primarily associated with extensive deformation of continuous Ta and Nb phases. Finite element simulations provided valuable information in interpreting the experimental results and predicting failure mechanisms akin to those observed. Ni/Al laminates were subjected to laser compression. The strain rates varied from 105 to 108 s-1, and the initial stress varied from 30 to ˜300 GPa. It is found the thickness of the lamellar and the interlaminar bonding strength are the two critical factors in determining mechanical failure. The intermetallic reaction leading to Ni3Al and NiAl were produced by the laser energies and laser pulse durations in direct laser shock experiments. Laser-driven compression was also applied to study the high temperature synthesis in nano-scale Ni/Al laminates with bilayer thickness 54 nm. Intermetallic

  11. Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment.

    PubMed

    Barata, Carlos; Baird, D J; Nogueira, A J A; Soares, A M V M; Riva, M C

    2006-06-10

    Two different concepts, termed concentration addition (CA) and independent action (IA), describe general relationships between the effects of single substances and their corresponding mixtures allowing calculation of an expected mixture toxicity on the basis of known toxicities of the mixture components. Both concepts are limited to cases in which all substances in a mixture influence the same experimental endpoint, and are usually tested against a "fixed ratio design" where the mixture ratio is kept constant throughout the studies and the overall concentration of the mixture is systematically varied. With this design, interaction among toxic components across different mixture ratios and endpoints (i.e. lethal versus sublethal) is not assessed. In this study lethal and sublethal (feeding) responses of Daphnia magna individuals to single and binary combinations of similarly and dissimilarly acting chemicals including the metals (cadmium, copper) and the pyrethroid insecticides (lambda-cyhalothrin and deltamethrin) were assayed using a composite experimental design to test for interactions among toxic components across mixture effect levels, mixture ratios, lethal and sublethal toxic effects. To account for inter-experiment response variability, in each binary mixture toxicity assay the toxicity of the individual mixture constituents was also assessed. Model adequacy was then evaluated comparing the slopes and elevations of predicted versus observed mixture toxicity curves with those estimated for the individual components. Model predictive abilities changed across endpoints. The IA concept was able to predict accurately mixture toxicities of dissimilarly acting chemicals for lethal responses, whereas the CA concept did so in three out of four pairings for feeding response, irrespective of the chemical mode of action. Interaction effects across mixture effect levels, evidenced by crossing slopes, were only observed for the binary mixture Cd and Cu for lethal effects

  12. A Mixture Rasch Model with Item Response Time Components

    ERIC Educational Resources Information Center

    Meyer, J. Patrick

    2010-01-01

    An examinee faced with a test item will engage in solution behavior or rapid-guessing behavior. These qualitatively different test-taking behaviors bias parameter estimates for item response models that do not control for such behavior. A mixture Rasch model with item response time components was proposed and evaluated through application to real…

  13. Complex mixtures, complex responses: Assessing pharmaceutical mixtures using field and laboratory approaches

    USGS Publications Warehouse

    Schoenfuss, Heiko L.; Furlong, Edward T.; Phillips, Patrick J.; Scott, Tia-Marie; Kolpin, Dana W.; Cetkovic-Cvrlje, Marina; Lesteberg, Kelsey E.; Rearick, Daniel C.

    2016-01-01

    Pharmaceuticals are present in low concentrations (<100 ng/L) in most municipal wastewater effluents but may be elevated locally because of factors such as input from pharmaceutical formulation facilities. Using existing concentration data, the authors assessed pharmaceuticals in laboratory exposures of fathead minnows (Pimephales promelas) and added environmental complexity through effluent exposures. In the laboratory, larval and mature minnows were exposed to a simple opioid mixture (hydrocodone, methadone, and oxycodone), an opioid agonist (tramadol), a muscle relaxant (methocarbamol), a simple antidepressant mixture (fluoxetine, paroxetine, venlafaxine), a sleep aid (temazepam), or a complex mixture of all compounds. Larval minnow response to effluent exposure was not consistent. The 2010 exposures resulted in shorter exposed minnow larvae, whereas the larvae exposed in 2012 exhibited altered escape behavior. Mature minnows exhibited altered hepatosomatic indices, with the strongest effects in females and in mixture exposures. In addition, laboratory-exposed, mature male minnows exposed to all pharmaceuticals (except the selective serotonin reuptake inhibitor mixture) defended nest sites less rigorously than fish in the control group. Tramadol or antidepressant mixture exposure resulted in increased splenic T lymphocytes. Only male minnows exposed to whole effluent responded with increased plasma vitellogenin concentrations. Female minnows exposed to pharmaceuticals (except the opioid mixture) had larger livers, likely as a compensatory result of greater prominence of vacuoles in liver hepatocytes. The observed alteration of apical endpoints central to sustaining fish populations confirms that effluents containing waste streams from pharmaceutical formulation facilities can adversely impact fish populations but that the effects may not be temporally consistent. The present study highlights the importance of including diverse biological endpoints spanning

  14. Complex mixtures, complex responses: Assessing pharmaceutical mixtures using field and laboratory approaches.

    PubMed

    Schoenfuss, Heiko L; Furlong, Edward T; Phillips, Pat J; Scott, Tia-Marie; Kolpin, Dana W; Cetkovic-Cvrlje, Marina; Lesteberg, Kelsey E; Rearick, Daniel C

    2016-04-01

    Pharmaceuticals are present in low concentrations (<100 ng/L) in most municipal wastewater effluents but may be elevated locally because of factors such as input from pharmaceutical formulation facilities. Using existing concentration data, the authors assessed pharmaceuticals in laboratory exposures of fathead minnows (Pimephales promelas) and added environmental complexity through effluent exposures. In the laboratory, larval and mature minnows were exposed to a simple opioid mixture (hydrocodone, methadone, and oxycodone), an opioid agonist (tramadol), a muscle relaxant (methocarbamol), a simple antidepressant mixture (fluoxetine, paroxetine, venlafaxine), a sleep aid (temazepam), or a complex mixture of all compounds. Larval minnow response to effluent exposure was not consistent. The 2010 exposures resulted in shorter exposed minnow larvae, whereas the larvae exposed in 2012 exhibited altered escape behavior. Mature minnows exhibited altered hepatosomatic indices, with the strongest effects in females and in mixture exposures. In addition, laboratory-exposed, mature male minnows exposed to all pharmaceuticals (except the selective serotonin reuptake inhibitor mixture) defended nest sites less rigorously than fish in the control group. Tramadol or antidepressant mixture exposure resulted in increased splenic T lymphocytes. Only male minnows exposed to whole effluent responded with increased plasma vitellogenin concentrations. Female minnows exposed to pharmaceuticals (except the opioid mixture) had larger livers, likely as a compensatory result of greater prominence of vacuoles in liver hepatocytes. The observed alteration of apical endpoints central to sustaining fish populations confirms that effluents containing waste streams from pharmaceutical formulation facilities can adversely impact fish populations but that the effects may not be temporally consistent. The present study highlights the importance of including diverse biological endpoints spanning

  15. Effect of a heavy metal model mixture on biological parameters of rainbow trout Oncorhynchus mykiss.

    PubMed

    Vosyliene, Milda Zita; Kazlauskiene, Nijole; Svecevicius, Gintaras

    2003-01-01

    The effects of a model mixture (HMMM) of seven heavy metals (Cu, Zn, Ni, Cr, Pb, Cd, Mn) on the rainbow trout Oncorhynchus mykiss at all stages of development (embryos, larvae, adults) were investigated based on the annual average concentrations of these metals in cooling waste waters discharging from Ignalina Nuclear Power Plant (Lithuania) into the Drŭksiai lake. According to mortality parameters, the most sensitive to HMMM were larvae, although no significant differences between the sensitivity of embryos and adult fish to HMMM were found. Maximal toxic effect of HMMM was observed during the hatching period. Long-term exposure to sublethal concentrations of HMMM affected embryo development, growth of larvae, their cardio-respiratory and behavioural responses, induced significant changes in morphological, morpho-physiological, physiological and haematological parameters of adult fish. Respiratory responses and growth parameters of fish were found to be the most sensitive to low concentrations of HMMM. Adult fish were capable of detecting and avoiding low, sublethal concentrations of HMMM. Heavy metals in a mixture at low concentrations were more toxic than single ones. According to the background of the damages induced by HMMM, after-effects in a fish organism, as well as in a whole population, can be predicted. PMID:12729042

  16. Metal mixture modeling evaluation project: 3. Lessons learned and steps forward.

    PubMed

    Farley, Kevin J; Meyer, Joseph S

    2015-04-01

    A comparison of 4 metal mixture toxicity models (that were based on the biotic ligand model [BLM] and the Windermere humic aqueous model using the toxicity function [WHAM-FTOX ]) was presented in a previous paper. In the present study, a streamlined version of the 4 models was developed and applied to multiple data sets and test conditions to examine key assumptions and calibration strategies that are crucial in modeling metal mixture toxicity. Results show that 1) a single binding site on or in the organism was a useful and oftentimes sufficient framework for predicting metal toxicity; 2) a linear free energy relationship (LFER) for bidentate binding of metals and cations to the biotic ligand provided a good first estimate of binding coefficients; 3) although adjustments in metal binding coefficients or adjustments in chemical potency factors can both be used in model calibration for single-metal exposures, changing metal binding coefficients or chemical potency factors had different effects on model predictions for metal mixtures; and 4) selection of a mixture toxicity model (based on concentration addition or independent action) was important in predicting metal mixture toxicity. Moving forward, efforts should focus on reducing uncertainties in model calibration, including development of better methods to characterize metal binding to toxicologically active binding sites, conducting targeted exposure studies to advance the understanding of metal mixture toxicity, and further developing LFERs and other tools to help constrain the model calibration. PMID:25475765

  17. Evaluation of the nephrotoxicity of complex mixtures containing organics and metals: advantages and disadvantages of the use of real-world complex mixtures.

    PubMed Central

    Simmons, J E; Yang, R S; Berman, E

    1995-01-01

    As part of a multidisciplinary health effects study, the nephrotoxicity of complex industrial waste mixtures was assessed. Adult, male Fischer 344 rats were gavaged with samples of complex industrial waste and nephrotoxicity evaluated 24 hr later. Of the 10 tested samples, 4 produced increased absolute or relative kidney weight, or both, coupled with a statistically significant alteration in at least one of the measured serum parameters (urea nitrogen (BUN), creatinine (CREAT), and BUN/CREAT ratio). Although the waste samples had been analyzed for a number of organic chemicals and 7 of the 10 samples were analyzed also for 12 elemental metals and metalloids, their nephrotoxicity was not readily predicted from the partial chemical characterization data. Because the chemical form or speciation of the metals was unknown, it was not possible to estimate their contribution to the observed biological response. Various experimental approaches, including use of real-world complex mixtures, chemically defined synthetic mixtures, and simple mixtures, will be necessary to adequately determine the potential human health risk from exposure to complex chemical mixtures. PMID:7621803

  18. Acute phytotoxicity of seven metals alone and in mixture: Are Italian soil threshold concentrations suitable for plant protection?

    PubMed

    Baderna, Diego; Lomazzi, Eleonora; Pogliaghi, Alberto; Ciaccia, Gianluca; Lodi, Marco; Benfenati, Emilio

    2015-07-01

    Metals can pollute soils in both urban and rural areas with severe impacts on the health of humans, plants and animals living there. Information on metal toxicity is therefore important for ecotoxicology. This study investigated the phytotoxicity of different metals frequently found as pollutants in soils: arsenic, cadmium, chromium, lead, mercury, nickel and zinc. Cucumber (Cucumis sativus), sorghum (Sorghum saccharatum) and cress (Lepidium sativum) seeds were used as models for other plants used in human nutrition such as cereals, rice, fruits and vegetables. The 72-h germination rate and root elongations were selected as short-term ecotoxicological endpoints in seeds exposed to single metals and mixtures. Metals were spiked onto OECD standard soils in concentrations comparable to current Italian contamination threshold concentrations for residential and commercial soils. Arsenic, chromium, mercury and nickel were the most toxic metals in our experimental conditions, particularly to cress seeds (5.172, 152 and 255.4 mg/kg as 72 h IC50 for arsenic, mercury and nickel respectively). Italian limits were acceptable for plant protection only for exposure to each metal alone but not for the mixtures containing all the metals concentrations expected by their respective legislative threshold. The effects of the mixture were class-specific: trends were comparable in dicots but different in monocots. The response induced by the mixture at high concentrations differed from that theoretically obtainable by summing the effects of the individual metals. This might be due to partial antagonism of the metals in soil or to the formation of complexes between the metals, which reduce the bioavailability of the pollutants for plants. PMID:25841179

  19. Joint toxic action of binary metal mixtures of copper, manganese and nickel to Paronychiurus kimi (Collembola).

    PubMed

    Son, Jino; Lee, Yun-Sik; Kim, Yongeun; Shin, Key-Il; Hyun, Seunghun; Cho, Kijong

    2016-10-01

    The joint toxic effects of binary metal mixtures of copper (Cu), manganese (Mn) and nickel (Ni) on reproduction of Paronhchiurus kimi (Lee) was evaluated using a toxic unit (TU) approach by judging additivity across a range of effect levels (10-90%). For all metal mixtures, the joint toxic effects of metal mixtures on reproduction of P. kimi decreased in a TU-dependent manner. The joint toxic effects of metal mixtures also changed from less than additive to more than additive at an effect level lower than or equal to 50%, while a more than additive toxic effects were apparent at higher effect levels. These results indicate that the joint toxicity of metal mixtures is substantially different from that of individual metals based on additivity. Moreover, the close relationship of toxicity to effect level suggests that it is necessary to encompass a whole range of effect levels rather than a specific effect level when judging mixture toxicity. In conclusion, the less than additive toxicity at low effect levels suggests that the additivity assumption is sufficiently conservative to warrant predicting joint toxicity of metal mixtures, which may give an additional margin of safety when setting soil quality standards for ecological risk assessment. PMID:27318557

  20. pH-Dependent Metal Ion Toxicity Influences the Antibacterial Activity of Two Natural Mineral Mixtures

    PubMed Central

    Cunningham, Tanya M.; Koehl, Jennifer L.; Summers, Jack S.; Haydel, Shelley E.

    2010-01-01

    Background Recent studies have demonstrated that several mineral products sold for medicinal purposes demonstrate antimicrobial activity, but little is known about the physicochemical properties involved in antibacterial activity. Methodology/Principal Findings Using in vitro mineral suspension testing, we have identified two natural mineral mixtures, arbitrarily designated BY07 and CB07, with antibacterial activity against a broad-spectrum of bacterial pathogens. Mineral-derived aqueous leachates also exhibited antibacterial activity, revealing that chemical, not physical, mineral characteristics were responsible for the observed activity. The chemical properties essential for bactericidal activity against Escherichia coli were probed by testing antibacterial activity in the presence of metal chelators, the hydroxyl radical scavenger, thiourea, and varying pH levels. Chelation of the BY07 minerals with EDTA or desferrioxamine eliminated or reduced BY07 toxicity, respectively, suggesting a role of an acid-soluble metal species, particularly Fe3+ or other sequestered metal cations, in mineral toxicity. This conclusion was supported by NMR relaxation data, which indicated that BY07 and CB07 leachates contained higher concentrations of chemically accessible metal ions than leachates from non-bactericidal mineral samples. Conclusions/Significance We conclude that the acidic environment of the hydrated minerals significantly contributes to antibacterial activity by increasing the availability and toxicity of metal ions. These findings provide impetus for further investigation of the physiological effects of mineral products and their applications in complementary antibacterial therapies. PMID:20209160

  1. Shock Compression and Impact Response of Ta + Iron(III)Oxide Powder Mixtures

    NASA Astrophysics Data System (ADS)

    Fredenburg, D. Anthony; Thadhani, Naresh N.

    2009-06-01

    The shock compression and impact response of equivolumetric Ta + Iron(III)Oxide thermite powder mixtures is investigated through instrumented parallel plate and rod-on-anvil impact experiments. Measurements of stress and shock velocity in the powder mixtures are made with PFDV stress gauges using a uniaxial strain configuration, allowing for determination of the materials' shock compressibility. Results reveal densification of the mixture at stresses up to the crush strength of ˜ 5.4 GPa. Densification trends are incorporated into existing compaction models to determine their applicability to the present metal + oxide powder mixture. At stresses above 5.4 GPa an expanded volume state is observed in the plane strain configuration, indicating possible reaction in the mixture. Reaction initiation conditions are also studied in the plane stress configuration, where powders pressed to ˜ 75 % theoretical density are mounted on a rod and accelerated to impact an anvil over the velocity range 300-500 m/s. Initiation of reactive mixtures is observed through high-speed digital photography. Research funded by DTRA Grant # HDTRA1-D7-1-0018.

  2. Shock compression response of Ti+B reactive powder mixtures

    NASA Astrophysics Data System (ADS)

    Gonzales, M.; Gurumurthy, A.; Kennedy, G. B.; Gokhale, A. M.; Thadhani, N. N.

    2014-05-01

    The shock compression response of Ti+2B (1:2 Ti:B stoichiometric ratio) reactive powder mixtures at ~50% theoretical material density (TMD) is investigated for shock pressures up to 5 GPa to investigate the possible shock-induced chemical reactivity of this highly exothermic mixture. The shock adiabat is produced from instrumented parallel-plate gas-gun impact experiments on encapsulated powders using poly-vinylidene fluoride (PVDF) stress gauges to measure the input and propagated stresses and wave speed in the powder. The shock compression regime is probed from crush-up to full density and onward to assess the potential onset of a shock-induced chemical reaction event in the powder mixture. A series of two-dimensional continuum meso-scale simulations on validated simulated microstructures are performed to predict the shock compression response and identify the meso-scale mechanics that are essential for reaction. The suitability of the synthetic microstructural representations is evaluated by comparing the experimental and predicted pressure traces.

  3. Shock compression response of Ti+B reactive powder mixtures

    NASA Astrophysics Data System (ADS)

    Gonzales, Manny; Gurumurthy, Ashok; Kennedy, Gregory; Gokhale, Arun; Thadhani, Naresh

    2013-06-01

    The shock compression response of Ti+2B (1:2 Ti:B stoichiometric ratio) reactive powder mixtures at ~50% theoretical material density (TMD) is investigated for shock pressures up to 5 GPa to investigate the possible shock-induced chemical reactivity of this highly exothermic mixture. The shock adiabat is produced from instrumented parallel-plate gas-gun impact experiments on encapsulated powders using poly-vinylidene fluoride (PVDF) stress gauges to measure the input and propagated stress and wave speed in the powder. The shock compression regime is probed from crush-up to full density and onward to assess the potential onset of a shock-induced chemical reaction event in the powder mixture. A series of two-dimensional continuum meso-scale simulations on real and simulated microstructures are performed to predict the shock compression response and identify the meso-scale mechanics that is essential for the so-called ``ballotechnic'' reaction. These meso-scale mechanics are investigated through stereological evolution metrics that track particle interface evolution and their respective field variables. The suitability of the synthetic microstructural representations is evaluated by comparing the experimental and predicted pressure traces. We gratefully acknowledge support and funding from DTRA through Grant No. HDTRA1-10-1-0038 and the National Defense Science and Engineering Graduate (NDSEG) Fellowship through the High Performance Computing and Modernization Office (HPCMO).

  4. Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions

    PubMed Central

    Grimshaw, Pengpeng; Calo, Joseph M.; Hradil, George

    2011-01-01

    The description and operation of a novel cyclic electrowinning/precipitation (CEP) system for the simultaneous removal of mixtures of heavy metals from aqueous solutions are presented. CEP combines the advantages of electrowinning in a spouted particulate electrode (SPE) with that of chemical precipitation and redissolution, to remove heavy metals at low concentrations as solid metal deposits on particulate cathode particles without exporting toxic metal precipitate sludges from the process. The overall result is very large volume reduction of the heavy metal contaminants as a solid metal deposit on particles that can either be safely discarded as such, or further processed to recover particular metals. The performance of this system is demonstrated with data on the removal of mixtures of copper, nickel, and cadmium from aqueous solutions. PMID:22102792

  5. Cyclic electrowinning/precipitation (CEP) system for the removal of heavy metal mixtures from aqueous solutions.

    PubMed

    Grimshaw, Pengpeng; Calo, Joseph M; Hradil, George

    2011-11-15

    The description and operation of a novel cyclic electrowinning/precipitation (CEP) system for the simultaneous removal of mixtures of heavy metals from aqueous solutions are presented. CEP combines the advantages of electrowinning in a spouted particulate electrode (SPE) with that of chemical precipitation and redissolution, to remove heavy metals at low concentrations as solid metal deposits on particulate cathode particles without exporting toxic metal precipitate sludges from the process. The overall result is very large volume reduction of the heavy metal contaminants as a solid metal deposit on particles that can either be safely discarded as such, or further processed to recover particular metals. The performance of this system is demonstrated with data on the removal of mixtures of copper, nickel, and cadmium from aqueous solutions. PMID:22102792

  6. Can nutrients mask community responses to insecticide mixtures?

    PubMed

    Alexander, Alexa C; Luis, Ana T; Culp, Joseph M; Baird, Donald J; Cessna, Allan J

    2013-09-01

    The ecological effect of simultaneous exposure to two nutrient gradients, three insecticides and different predator intensities was investigated over a 3-week period in 80 outdoor, artificial streams using field-collected benthic invertebrates. The experimental design consisted of a 2 × 5 factorial structure with two nutrient levels (oligotrophic or mesotrophic) and five concentrations of the ternary insecticide mixture consisting of the insecticides (chlorpyrifos, dimethoate and imidacloprid). Equivalent toxic unit doses were summed to create a ternary insecticide dose (e.g., 0.1 + 0.1 + 0.1 = 0.3 TU) resulting in a range of ternary insecticide mixture toxicity (i.e., control groundwater, 0.3, 0.6, 0.9 and 1.2 TU). Two genera of insect predators, Gomphus spp. (Odonata) and Agnetina spp. (Plecoptera) were also added into each replicate stream, at densities and sizes comparable to those found at our collection site, to evaluate how the contribution of predators may change in nutrient limited (oligotrophic) versus amended (mesotrophic) systems. We describe a causal mechanism whereby the combined action of nutrients and insecticides reshaped aquatic community structure by interacting through multiple pathways. Specifically, mesotrophic conditions reduced the toxic effects of ternary insecticide mixtures for aquatic insects which, in some cases, appeared to increase abundance of aquatic insects. However, higher levels of insecticides in mesotrophic streams negated this effect and were even more toxic; for example, to aquatic insect grazers than the same insecticide doses in oligotrophic treatment levels. Effects of predators were only significant in oligotrophic streams. Evidence is provided as to how nutrient and contaminant interactions can greatly complicate the assessment of community level responses to insecticide mixtures due to direct and indirect effects of the resulting changes in the density of different genera and functional feeding groups within a

  7. Metal silicate mixtures - Spectral properties and applications to asteroid taxonomy

    NASA Technical Reports Server (NTRS)

    Cloutis, Edward A.; Smith, Dorian G. W.; Lambert, Richard St. J.; Gaffey, Michael J.

    1990-01-01

    The reflectance spectra of combinations of olivine, orthopyroxene, and iron meteorite metal are experimentally studied, and the obtained variations in spectral properties are used to constrain the physical and chemical properties of the assemblages. The presence of metal most noticeably affects band area ratios, peak-to-peak and peak-to-minimum reflectance ratios, and band widths. Band width and band areas are useful for determining metal abundance in olivine and metal and orthopyroxene and metal assemblages, respectively. Mafic silicate grain size variations are best determined using band depth criteria. Band centers are most useful for determining mafic silicate composition. An application of these parameters to the S-class asteroid Flora is presented.

  8. Effect of a metal mixture on cadmium accumulation in transplanted macrophytes

    SciTech Connect

    Stewart, A.R.

    1995-12-31

    The effect of a metal mixture (Cu, Zn, Pb and Ni) on Cd accumulation in the freshwater macrophyte Eriocaulon septangulare, was examined in a mesocosm experiment at the Experimental Lakes Area, northwestern, Ontario. Cd was added alone to treatment 1 and together with the metal mixture (at three increasing levels) to treatments 2, 3, and 4. Each treatment was represented by two mesocosms. Macrophytes were collected from the littoral region of lake 104, transported to nearby Roddy lake, and planted in plastic gardening trays containing exposed limnocorral sediments. The trays were lowered to the bottom of the limnocorrals and after 40 and 80 days the macrophytes were analyzed for metal content. The transplanted macrophytes accumulated Cd in both their shoots and roots. On day 40, Cd levels in the shoots of macrophytes exposed to the highest level of metal mixture were lower than in shoots from macrophytes exposed to cadmium alone, Between day 40 to day 80 Cd was lost from the shoots of macrophytes in all treatments. Cd levels in roots were higher in macrophytes exposed to the metal mixture on day 40 and significantly higher on day 80 compared to exposure to Cd alone. Elevated Cd levels in the roots of macrophytes exposed to the metal mixture reflected higher Cd levels in the water. The macrophyte Eriocaulon shows promise in environmental monitoring where test species are transplanted.

  9. An application of the biotic ligand model to predict the toxic effects of metal mixtures.

    PubMed

    Kamo, Masashi; Nagai, Takashi

    2008-07-01

    The rapidly developing biotic ligand model (BLM) allows us to predict the toxicity of heavy metals in water of various chemistries; however, the current BLM predicts the toxicity of a single metal and not the toxic effects of metal mixtures. The toxic mechanisms of heavy metals are not yet completely understood, but hypocalcemia is suggested to be the most likely toxic mechanism for some metals. The BLM, which predicts the toxicity of metals by the amount of metals binding to ligand, is modified to predict the toxicity by the proportion of nonmetal binding ligand that is available for calcium uptake under the assumption that the organisms die because of hypocalcemia when so few ligands are available for calcium uptake. Because the proportion can be computed when multiple metals are present, the toxic effects of metal mixtures can be predicted. Zinc, copper, and cadmium toxicity to rainbow trout (Oncorhynchus mykiss) are considered. All data are collected from the literature, and a meta-analysis using the modified version of the BLM is conducted. The present study found that the proportion of nonmetal binding ligand is a constant value for any test condition. The proportion is not influenced by water chemistry or by metal species. Using the nature of constant proportion, toxicities of metals are well estimated. In addition, the toxic effects of metal mixtures are the simple sum of the toxicities of each metal (additive effect) corresponding to the bioavailable form of the metals. In terms of total concentration of metals in water, however, nonadditive effects, such as antagonism and synergism, are possible. PMID:18260697

  10. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment.

    PubMed

    Wu, Xiangyang; Cobbina, Samuel J; Mao, Guanghua; Xu, Hai; Zhang, Zhen; Yang, Liuqing

    2016-05-01

    The rational for the study was to review the literature on the toxicity and corresponding mechanisms associated with lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), individually and as mixtures, in the environment. Heavy metals are ubiquitous and generally persist in the environment, enabling them to biomagnify in the food chain. Living systems most often interact with a cocktail of heavy metals in the environment. Heavy metal exposure to biological systems may lead to oxidation stress which may induce DNA damage, protein modification, lipid peroxidation, and others. In this review, the major mechanism associated with toxicities of individual metals was the generation of reactive oxygen species (ROS). Additionally, toxicities were expressed through depletion of glutathione and bonding to sulfhydryl groups of proteins. Interestingly, a metal like Pb becomes toxic to organisms through the depletion of antioxidants while Cd indirectly generates ROS by its ability to replace iron and copper. ROS generated through exposure to arsenic were associated with many modes of action, and heavy metal mixtures were found to have varied effects on organisms. Many models based on concentration addition (CA) and independent action (IA) have been introduced to help predict toxicities and mechanisms associated with metal mixtures. An integrated model which combines CA and IA was further proposed for evaluating toxicities of non-interactive mixtures. In cases where there are molecular interactions, the toxicogenomic approach was used to predict toxicities. The high-throughput toxicogenomics combines studies in genetics, genome-scale expression, cell and tissue expression, metabolite profiling, and bioinformatics. PMID:26965280

  11. Multiple Response Regression for Gaussian Mixture Models with Known Labels.

    PubMed

    Lee, Wonyul; Du, Ying; Sun, Wei; Hayes, D Neil; Liu, Yufeng

    2012-12-01

    Multiple response regression is a useful regression technique to model multiple response variables using the same set of predictor variables. Most existing methods for multiple response regression are designed for modeling homogeneous data. In many applications, however, one may have heterogeneous data where the samples are divided into multiple groups. Our motivating example is a cancer dataset where the samples belong to multiple cancer subtypes. In this paper, we consider modeling the data coming from a mixture of several Gaussian distributions with known group labels. A naive approach is to split the data into several groups according to the labels and model each group separately. Although it is simple, this approach ignores potential common structures across different groups. We propose new penalized methods to model all groups jointly in which the common and unique structures can be identified. The proposed methods estimate the regression coefficient matrix, as well as the conditional inverse covariance matrix of response variables. Asymptotic properties of the proposed methods are explored. Through numerical examples, we demonstrate that both estimation and prediction can be improved by modeling all groups jointly using the proposed methods. An application to a glioblastoma cancer dataset reveals some interesting common and unique gene relationships across different cancer subtypes. PMID:24416092

  12. Integrating multiple bioassays to detect and assess impacts of sublethal exposure to metal mixtures in an estuarine fish.

    PubMed

    Barbee, Nicole C; Ganio, Katherine; Swearer, Stephen E

    2014-07-01

    Estuaries are natural sinks for a wide range of urban, industrial and agricultural contaminants that accumulate at potentially toxic but non-lethal concentrations, yet we know relatively little about the long-term impacts of toxicants at these levels on aquatic organisms. In this study, we present an integrated, multi-pronged approach to detect and assess the impacts to estuarine fish of exposure to sublethal concentrations of metal mixtures. Our aims were to (1) examine the effects of sublethal metal exposure on the embryonic development of Galaxias maculatus, an estuarine spawning fish native to southeastern Australia, (2) determine whether sublethal exposure during development has knock-on effects on larval behaviour, and (3) establish whether a signature of metal exposure during embryogenesis can be detected in larval otoliths ("ear bones"). G. maculatus eggs are fertilised in water but develop aerially, in direct contact with estuarine sediments. We were thus also able to explore the relative importance of two exposure pathways, water and sediment. Embryos were exposed to two concentrations of a metal mixture containing Cu, Zn and Pb in water (during fertilisation) and on spiked sediments (during development), using a fully crossed experimental design. Overall, we found that exposure to the metal mixture reduced embryo survival and slowed embryonic development, resulting in poorer quality larvae that exhibited a reduced phototactic response. Differences in exposure to metals between treatment and control embryos were also permanently recorded in the developing otoliths. Combined these three approaches have the potential to be a powerful novel bioassessment tool as they provide a means of identifying a history of metal exposure during the embryonic period and linking it to suboptimal early growth and performance traits which could have long term fitness consequences. PMID:24794343

  13. Lead, arsenic and manganese metal mixture exposures: focus on biomarkers of effect

    PubMed Central

    Andrade, VL; Mateus, ML; Batoréu, MC; Aschner, M; Marreilha dos Santos, AP

    2015-01-01

    Summary The increasing exposure of human populations to excessive levels of metals continues to represent a matter of public health concern. Several biomarkers have been studied and proposed for the detection of adverse health effects induced by lead (Pb), arsenic (As) and manganese (Mn); however, these studies have relied on exposures to each single metal, which fails to replicate real-life exposure scenarios. These 3 metals are commonly detected in different environmental, occupational and food contexts and they share common neurotoxic effects, which are progressive and once clinically apparent may be irreversible. Thus, chronic exposure to low levels of a mixture of these metals represents an additive risk of toxicity. Building upon their shared mechanisms of toxicity, such as oxidative stress, interference with neurotransmitters and effects on hematopoietic system, we address putative biomarkers, which may be assist in assessing onset of neurological diseases associated with exposure to this metal mixture. PMID:25693681

  14. Ecotoxicity of mixtures of metals to the zebra mussel Dreissena polymorpha

    SciTech Connect

    Kraak, M.H.S.; Lavy, D.; Schoon, H.; Toussaint, M.; Peeters, W.H.M.; Straalen, N.M. . Dept. of Aquatic Ecotoxicology)

    1994-01-01

    The effects of equitoxic mixtures of CuCl[sub 2], ZnCl[sub 2], and CdCl[sub 2] on the filtration rate of the freshwater mussel Dreissena polymorpha were determined. The amounts of added metals were expressed in toxic units, and a range of toxic units was tested. Cu + Zn was less than concentration additive, Zn + Cd was concentration additive, and Cu + Cd was more than concentration additive in their effects on the filtration rate of Dreissena polymorpha. An equitoxic mixture of all three metals was concentration additive. The effects of a mixture could not be predicted from the effects of the single metals. The concentrations at which Cu and Cd contributed to the toxicity of a mixture of Cu + Zn + Cd were at or below the NOECs for these metals, determined in single-metal toxicity tests. At low but elevated Cu and Zn concentrations in water, no accumulation of these metals in the mussels took place; Cd, on the contrary, was accumulated at all Cd concentrations in the water.

  15. Predicting the response of olfactory sensory neurons to odor mixtures from single odor response

    NASA Astrophysics Data System (ADS)

    Marasco, Addolorata; de Paris, Alessandro; Migliore, Michele

    2016-04-01

    The response of olfactory receptor neurons to odor mixtures is not well understood. Here, using experimental constraints, we investigate the mathematical structure of the odor response space and its consequences. The analysis suggests that the odor response space is 3-dimensional, and predicts that the dose-response curve of an odor receptor can be obtained, in most cases, from three primary components with specific properties. This opens the way to an objective procedure to obtain specific olfactory receptor responses by manipulating mixtures in a mathematically predictable manner. This result is general and applies, independently of the number of odor components, to any olfactory sensory neuron type with a response curve that can be represented as a sigmoidal function of the odor concentration.

  16. Predicting the response of olfactory sensory neurons to odor mixtures from single odor response

    PubMed Central

    Marasco, Addolorata; De Paris, Alessandro; Migliore, Michele

    2016-01-01

    The response of olfactory receptor neurons to odor mixtures is not well understood. Here, using experimental constraints, we investigate the mathematical structure of the odor response space and its consequences. The analysis suggests that the odor response space is 3-dimensional, and predicts that the dose-response curve of an odor receptor can be obtained, in most cases, from three primary components with specific properties. This opens the way to an objective procedure to obtain specific olfactory receptor responses by manipulating mixtures in a mathematically predictable manner. This result is general and applies, independently of the number of odor components, to any olfactory sensory neuron type with a response curve that can be represented as a sigmoidal function of the odor concentration. PMID:27053070

  17. Elastic response and phase behavior in binary liquid crystal mixtures.

    PubMed

    Sidky, Hythem; Whitmer, Jonathan K

    2016-05-11

    Utilizing density-of-states simulations, we perform a full mapping of the phase behavior and elastic responses of binary liquid crystalline mixtures represented by the multicomponent Lebwohl-Lasher model. Our techniques are able to characterize the complete phase diagram, including nematic-nematic phase separation predicted by mean-field theories, but previously not observed in simulations. Mapping this phase diagram permits detailed study of elastic properties across the miscible nematic region. Importantly, we observe for the first time local phase separation and disordering driven by the application of small linear perturbations near the transition temperature and more significantly through nonlinear stresses. These findings are of key importance in systems of blended nematics which contain particulate inclusions, or are otherwise confined. PMID:27093188

  18. Removing Endotoxin from Metallic Biomaterials with Compressed Carbon Dioxide-Based Mixtures

    PubMed Central

    Tarafa, Pedro J.; Williams, Eve; Panvelker, Samir; Zhang, Jian; Matthews, Michael A.

    2010-01-01

    Bacterial endotoxins have strong affinity for metallic biomaterials because of surface energy effects. Conventional depyrogenation methods may not eradicate endotoxins and may compromise biological properties and functionality of metallic instruments and implants. We evaluated the solubilization and removal of E. coli endotoxin from smooth and porous titanium (Ti) surfaces and stainless steel lumens using compressed CO2-based mixtures having water and/or surfactant Ls-54. The CO2/water/Ls-54 ternary mixture in the liquid CO2 region (25 °C and 27.6 MPa) with strong mixing removed endotoxin below detection levels. This suggests that the ternary mixture penetrates and dissolves endotoxins from all the tested substrates. The successful removal of endotoxins from metallic biomaterials with compressed CO2 is a promising cleaning technology for biomaterials and reusable medical devices. PMID:21499532

  19. Attempts to initiate detonations in metal-sulphur mixtures

    NASA Astrophysics Data System (ADS)

    Lee, J. H. S.; Goroshin, S.; Yoshinaka, A.; Romano, M.; Jiang, J.; Hooton, I.; Zhang, F.

    2000-04-01

    The possibility of self-sustained solid-solid detonations (SSD) in Mn+S mixtures has been investigated. Charges 50 mm in diameter under different degrees of confinement were used. The initiation charges used include nitromethane, tetryl, and C-4. No self-sustained SSD were observed in the present study. Neither did the degree of confinement nor the type or weight of the initiation charge appear to make a significant difference in the results obtained. The shock and reaction front are initially coupled but decay rapidly. Decoupling occurs after about 25 mm of propagation when the shock has decayed to about 2.5 km/sec which corresponds to the estimated sound speed of the reactant. The lack of significant feedback of the chemical energy released to the shock via work done by the expansion of the solid products is probably the cause for failure to obtain SSD in Mn+S.

  20. Taste responses to binary mixtures of amino acids in the sea catfish, Arius felis.

    PubMed

    Kohbara, J; Caprio, J

    1996-02-01

    In vivo electrophysiological recordings in the sea catfish, Arius felis, showed that the magnitude of the integrated facial taste responses to binary mixtures of amino acids was predictable with knowledge obtained from previous cross-adaptation studies of the relative independence of the respective binding sites of the component stimuli. Each component from which equal aliquots were drawn to form the mixtures was adjusted in concentration to provide for approximately equal response magnitudes. The magnitude of the taste responses to binary mixtures whose component amino acids showed minimal cross-adaptation was significantly greater than that to binary mixtures whose components exhibited considerable cross-reactivity. There was no evidence for mixture suppression. The relative magnitude of the taste responses in the sea catfish to stimulus mixtures is similar to that previously reported for olfactory receptor responses in the freshwater channel catfish and chorda tympani taste responses in the hamster. PMID:8646491

  1. An optically trapped mixture of alkali-metal and metastable helium atoms

    NASA Astrophysics Data System (ADS)

    Flores, Adonis; Mishra, Hari Prasad; Vassen, Wim; Knoop, Steven

    2016-05-01

    Ultracold collisions between alkali-metal and metastable triplet helium (He*) atoms provide the opportunity to study Feshbach resonances in the presence of a strong loss channel, namely Penning ionization, which strongly depends on the internal spin-states of the atoms. Recently we have realized the first optically trapped alkali-metal-metastable helium mixture. To prepare the ultracold 87 Rb+4 He* mixture in a single beam optical dipole trap (ODT), we apply evaporative cooling in a strong quadrupole magnetic trap (QMT) for both species and subsequent transfer to the ODT via a hybrid trap. We will present lifetime measurements of different spin-state mixtures, testing the application of the universal loss model to this interesting multichannel collision system.

  2. [Measurement of Mole Ratio for Alkali Metal Mixture by Using Spectral Absorption Method].

    PubMed

    Zou, Sheng; Zhang, Hong; Chen, Yao; Chen, Xi-yuan

    2015-08-01

    The ratio of alkali metal mixture is one of the most important parameters in gauge head belonging to the ultra-sensitivity inertial measurement equipment, which is required to detect precisely. According to the feature that ratio of alkali metal is related to alkali metal vapor density, the theory of optical depth is used to detect the ratio of alkali metal in the present article. The result shows that the data got by the theory of optical depth compared with empirical formula differs at three orders of magnitude, which can't ensure the accuracy. By changing the data processing method, model between spectral absorption rate and temperature in cell is established. The temperature in alkali metal cell is calibrated by spectral absorption rate. The ratio of alkali metal atoms in the cell is analyzed by calculating the alkali density with empirical formula. The computational error is less than 10%. PMID:26672309

  3. Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea.

    PubMed

    Yu, Ran; Wu, Junkang; Liu, Meiting; Zhu, Guangcan; Chen, Lianghui; Chang, Yan; Lu, Huijie

    2016-06-01

    Although the widely used metal oxide nanoparticles (NPs) titanium dioxide NPs (n-TiO2), cerium dioxide NPs (n-CeO2), and zinc oxide NPs (n-ZnO) have been well known for their potential cytotoxicities to environmental organisms, their combined effects have seldom been investigated. In this study, the short-term binary effect of n-CeO2 and n-TiO2 or n-ZnO on a model ammonia oxidizing bacterium, Nitrosomonas europaea were evaluated based on the examinations of cells' physiological, metabolic, and transcriptional responses. The addition of n-TiO2 mitigated the negative effect of more toxic n-CeO2 and the binary toxicity (antagonistic toxicity) of n-TiO2 and n-CeO2 was generally lower than the single NPs induced one. While the n-CeO2/n-ZnO mixture exerted higher cytotoxicity (synergistic cytotoxicity) than that from single NPs. The increased addition of the less toxic n-CeO2 exaggerated the binary toxicity of n-CeO2/n-ZnO mixture although the solubility of n-ZnO was not significantly affected, which excluded the contribution of the dissolved Zn ions to the enhancement of the combined cytotoxicity. The cell membrane disturbances and NP internalizations were detected for all the NP impacted cultures and the electrostatic interactions among the two distinct NPs and the cells were expected to play a key role in mediating their direct contacts and the eventual binary nanotoxicity to the cells. PMID:27016814

  4. Nonlocal optical response in metallic nanostructures.

    PubMed

    Raza, Søren; Bozhevolnyi, Sergey I; Wubs, Martijn; Asger Mortensen, N

    2015-05-13

    This review provides a broad overview of the studies and effects of nonlocal response in metallic nanostructures. In particular, we thoroughly present the nonlocal hydrodynamic model and the recently introduced generalized nonlocal optical response (GNOR) model. The influence of nonlocal response on plasmonic excitations is studied in key metallic geometries, such as spheres and dimers, and we derive new consequences due to the GNOR model. Finally, we propose several trajectories for future work on nonlocal response, including experimental setups that may unveil further effects of nonlocal response. PMID:25893883

  5. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2001-01-31

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end we shall use an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. For the First Quarter of this three year project work has centered around recruiting a graduate student to take responsibility for execution of portions of the research, and modifying the furnace and supporting equipment to allow the combustion of coal/MMS mixtures. We have readied the analytical panel for measuring NO{sub x} and other gaseous pollutants. We expect initial experiments for data gathering for coal/MSS mixtures to commence in the next Quarter.

  6. RESPONSE OF PORTABLE VOC (VOLATILE ORGANIC COMPOUNDS) ANALYZERS TO CHEMICAL MIXTURES

    EPA Science Inventory

    The report gives the responses of two types of portable VOC analyzers (Century Systems OVA-108 and Bacharach TLV Sniffer), calibrated with methane and used to measure a variety of chemical vapor mixtures. Instrument response data for both binary and ternary mixtures of selected c...

  7. An NCME Instructional Module on Latent DIF Analysis Using Mixture Item Response Models

    ERIC Educational Resources Information Center

    Cho, Sun-Joo; Suh, Youngsuk; Lee, Woo-yeol

    2016-01-01

    The purpose of this ITEMS module is to provide an introduction to differential item functioning (DIF) analysis using mixture item response models. The mixture item response models for DIF analysis involve comparing item profiles across latent groups, instead of manifest groups. First, an overview of DIF analysis based on latent groups, called…

  8. A NONADDITITIVE TUMOR RESPONSE TO A MIXTURE OF DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Current default risk assessments for chemical mixtures assume additivity of carcinogenic effects, but this may not be consistent with the actual biological response. We used a rodent model of hereditary renal cancer to investigate the carcinogenic response of a mixture of drinkin...

  9. Heavy metal balances of an Italian soil as affected by sewage sludge and Bordeaux mixture applications

    SciTech Connect

    Moolenaar, S.W.; Beltrami, P.

    1998-07-01

    Applications of sewage sludge and Bordeaux mixture (Bm) (a mixture of copper sulfate and lime) add heavy metals to the soil. At an experimental farm in the Cremona district (Italy), the authors measured current heavy metal contents in soil and their removal via harvested products. They also measured heavy metal adsorption by soil from this farm. With these data, projections were made of the long-term development of heavy metal (Cd, Cu, and Zn) contents in soil, crop removal, and leaching at different application rates of sewage sludge and Bm. These projections were compared with existing quality standards of the European Union (EU) and Italy with regard to soil and groundwater. The calculations reveal that the permitted annual application rates of sewage sludge and Bm are likely to result in exceedance of groundwater and soil standards. Sewage sludge applications, complying with the Italian legal limits, may pose problems for Cd, Cu, and Zn within 30, 70, and 100 yr, respectively. Furthermore, severe Cu pollution of integrated and especially organic (Bm only) vineyards is unavoidable with the currently allowed application rates of Bm. The results suggest that the current Italian soil protection policy as well as the EU policy are not conducive of a sustainable heavy metal management in agroecosystems.

  10. Metal ions potentiate microglia responsiveness to endotoxin.

    PubMed

    Rachmawati, Dessy; Peferoen, Laura A N; Vogel, Daphne Y S; Alsalem, Inás W A; Amor, Sandra; Bontkes, Hetty J; von Blomberg, B Mary E; Scheper, Rik J; van Hoogstraten, Ingrid M W

    2016-02-15

    Oral metal exposure has been associated with diverse adverse reactions, including neurotoxicity. We showed previously that dentally applied metals activate dendritic cells (MoDC) via TLR4 (Ni, Co, Pd) and TLR3 (Au). It is still unknown whether the low levels of dental metals reaching the brain can trigger local innate cells or prime them to become more responsive. Here we tested whether dentally applied metals (Cr, Fe, Co, Ni, Cu, Zn, Au, Hg) activate primary human microglia in vitro and, as a model, monocytic THP-1-cells, in high non-toxic as well as near-physiological concentrations. In addition the effects of 'near-physiological' metal exposure on endotoxin (LPS) responsiveness of these cells were evaluated. IL-8 and IL-6 production after 24h was used as read out. In high, non-toxic concentrations all transition metals except Cr induced IL-8 and IL-6 production in microglia, with Ni and Co providing the strongest stimulation. When using near-physiological doses (up to 10× the normal plasma concentration), only Zn and Cu induced significant IL-8 production. Of note, the latter metals also markedly potentiated LPS responsiveness of microglia and THP-1 cells. In conclusion, transition metals activate microglia similar to MoDCs. In near-physiological concentrations Zn and Cu are the most effective mediators of innate immune activation. A clear synergism between innate responses to Zn/Cu and LPS was observed, shedding new light on the possible relation between oral metal exposure and neurotoxicity. PMID:26857501

  11. Electrostatic separator for micronized mixtures of metals and plastics originating from waste electric and electronic equipment

    NASA Astrophysics Data System (ADS)

    Messal, Sara; Corondan, Razvan; Chetan, Ionut; Ouiddir, Rabah; Medles, Karim; Dascalescu, Lucian

    2015-10-01

    In spite of their extensive use for processing mixtures of granules exceeding 1 mm in size, very few industrial electrostatic separators are capable of handling micronized metals and plastics originating from waste electric and electronic equipment. The aim of the present work is to validate the possibility of using a novel belt-type electrostatic separator for the selective sorting of such particulate mixtures, the dimensions of which are in the order of 0.1 mm. In this type of separator, the metal particles get charged by electrostatic induction in contact with the grounded metal belt electrode, while the plastics remain uncharged in the electric field and are collected separately. The experiments are performed with 2-g samples of a mixture composed in equal proportions (50% - 50%) of Aluminium and Acrylonitrile Butadiene Styrene (ABS) particles of average diameter ranging between 125 μm and 250 μm. They enabled the evaluation of the effects and the interaction of two control variables of the process: the angle of inclination of the roll-type electrode and the high voltage applied to it.

  12. Extractability and leachability of heavy metals in Technosols prepared from mixtures of unconsolidated wastes.

    PubMed

    Camps Arbestain, M; Madinabeitia, Z; Anza Hortalà, M; Macías-García, F; Virgel, S; Macías, F

    2008-12-01

    Mixtures of wastes were prepared to improve on the characteristics of the individual ingredients as Technosols, with special attention given to heavy metal extractability. An anaerobic digested sewage sludge and a CaO-treated aerobic sludge were used. A mixture of the two sludges (50:50 DW basis) was also prepared to provide a third type of sludge. The residues were mixed with other types of waste, such as fly ash, Linz-Donowitz slag, foundry sand, shot blasting machine scrap, fettling and barley straw. Extractability of Cu, Cr, Ni, and Zn by 0.01 M CaCl(2) extraction (Me(CACI(2)) was carried out, and leachability of these elements was estimated by acidification of an aqueous suspension of the mixtures with 0.5 N acetic acid (Me(acetic)). The total concentrations of the metals were also determined (Me(T)). The Me(CACI(2)/Me(T) ratios for Cu and Ni (means: 4.0% and 3.1%) were higher than those for Cr and Zn (means: 0.07% each). The mean Me(acetic)/Me(T) ratios followed the order Ni, Zn, Cu, and Cr (19.5%, 4.1%, 3.7%, and 0.09%, respectively). The results highlight the existence of complex interactions among organic matter solubility, pH and heavy metal extractability. PMID:18329263

  13. Interactive effects of waterborne metals in binary mixtures on short-term gill-metal binding and ion uptake in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Niyogi, Som; Nadella, Sunita R; Wood, Chris M

    2015-08-01

    Metal binding to fish gills forms the basis of the biotic ligand model (BLM) approach, which has emerged as a useful tool for conducting site-specific water quality assessments for metals. The current BLMs are designed to assess the toxicity of individual metals, and cannot account for the interactive effects of metal mixtures to aquatic organisms including fish. The present study was designed mainly to examine the interactive effects of waterborne metals (Cd, Zn, Cu, Ag, and Ni) in specific binary combinations on short-term (3h) gill-metal binding and essential ion (Ca(2+) and Na(+)) uptake (a physiological index of toxicity) in fish, using juvenile freshwater rainbow trout (Oncorhynchus mykiss) as the model species. We hypothesized that binary mixtures of metals that share a common mode of uptake and toxicity (e.g., Cd and Zn - Ca(2+) antagonists, Cu and Ag - Na(+) antagonists) would reduce the gill binding of each other via competitive interactions and induce less than additive effects on ion transport. In addition, the mixture of metals that have different modes of uptake and toxicity (e.g., Cd and Cu, or Cd and Ni) would not exhibit any interactive effects either on gill-metal binding or ion transport. We found that both Zn and Cu reduced gill-Cd binding and vice versa, however, Ni did not influence gill-Cd binding in fish. Surprisingly, Ag was found to stimulate gill-Cu binding especially at high exposure concentrations, whereas, Cu had no effect on gill-Ag binding. The inhibitory effect of Cd and Zn in mixture on branchial Ca(2+) uptake was significantly greater than that of Cd or Zn alone. Similarly, the inhibitory effect of Cu and Ag in mixture on branchial Na(+) uptake was significantly greater than that of Cu or Ag alone. The inhibitory effects of Cd and Zn mixture on Ca(2+) uptake as well as Cu and Ag mixture on Na(+) uptake were found to follow the principles of simple additivity. In contrast, no significant additive effect on either Ca(2+) or Na

  14. Relief Creation on Molybdenum Plates in Discharges Initiated by Gyrotron Radiation in Metal-Dielectric Powder Mixtures

    NASA Astrophysics Data System (ADS)

    Skvortsova, N. N.; Stepakhin, V. D.; Malakhov, D. V.; Sorokin, A. A.; Batanov, G. M.; Borzosekov, V. D.; Glyavin, M. Yu.; Kolik, L. V.; Konchekov, E. M.; Letunov, A. A.; Petrov, A. E.; Ryabikina, I. G.; Sarksyan, K. A.; Sokolov, A. S.; Smirnov, V. A.; Kharchev, N. K.

    2016-02-01

    We show the possibility of creating a metal microcrystalline relief (micro- and nanosized) on molybdenum plates in a plasma gas-phase discharge initiated by gyrotron radiation in molybdenum-dielectric powder mixtures.

  15. CHEMICAL INDUCTION OF TUMORS IN OYSTERS BY A MIXTURE OF AROMATIC AND CHLORINATED HYDROCARBONS, AMINES, AND METALS

    EPA Science Inventory

    Tumors were induced in eastern oysters (Crassotrea virginica) by a mixture f aromatic hydrocarbons, an aromatic amine, polychlori-nated biphenyls, chlorinated hydrocarbons, a nitrosoamine and heavy metals. idney and nteric tumors developed in oysters following exposure to a mixtu...

  16. Preliminary investigation of a technique to separate fission noble metals from fission product mixtures

    SciTech Connect

    Mellinger, G.B.; Jensen, G.A.

    1982-08-01

    A variation of the gold-ore fire assay technique was examined as a method for recovering Pd, Rh and Ru from fission products. The mixture of fission product oxides is combined with glass-forming chemicals, a metal oxide such as PbO (scavenging agent), and a reducing agent such as charcoal. When this mixture is melted, a metal button is formed which extracts the noble metals. The remainder cools to form a glass for nuclear waste storage. Recovery depended only on reduction of the scavenger oxide to metal. When such reduction was achieved, no difference in noble metal recovery efficiency was found among the scavengers studied (PbO, SnO, CuO, Bi/sub 2/O/sub 3/, Sb/sub 2/O/sub 3/). Not all reducing agents studied, however, were able to reduce all scavenger oxides to metal. Only graphite would reduce SnO and CuO and allow noble metal recovery. The scavenger oxides Sb/sub 2/O/sub 3/, Bi/sub 2/O/sub 3/, and PbO, however, were reduced by all of the reducing agents tested. Similar noble metal recovery was found with each. Lead oxide was found to be the most promising of the potential scavengers. It was reduced by all of the reducing agents tested, and its higher density may facilitate the separation. Use of lead oxide also appeared to have no deterimental effect on the glass quality. Charcoal was identified as the preferred reducing agent. As long as a separable metal phase was formed in the melt, noble metal recovery was not dependent on the amount of reducing agent and scavenger oxide. High glass viscosities inhibited separation of the molten scavenger, while low viscosities allowed volatile loss of RuO/sub 4/. A viscosity of approx. 20 poise at the processing temperature offered a good compromise between scavenger separation and Ru recovery. Glasses in which PbO was used as the scavenging agent were homogeneous in appearance. Resistance to leaching was close to that of certain waste glasses reported in the literature. 12 figures. 7 tables.

  17. Optical properties of silicon titanium oxide mixtures prepared by metallic mode reactive sputtering.

    PubMed

    Rademacher, Daniel; Bräuer, Günter; Fritz, Benjamin; Vergöhl, Michael

    2012-11-20

    In this paper different SiO(2)-TiO(2) mixtures are prepared by metallic mode reactive sputtering. The samples were sputtered from cylindrical targets in a sputter-up configuration using an additional plasma source for oxidization. The different ratios of SiO(2) and TiO(2) in the mixtures are prepared by a target sputtering power variation. Optical film properties of the mixtures such as refractive index, which is determined by ellipsometric measurements, and optical bandgap, which is measured by photometric (transmission) measurements, are investigated. The thin-film structure is investigated by x-ray diffraction analysis and the stress of the films is presented. It is shown that the metallic mode reactive sputtering in the present configuration is applicable to continuously tune optical and mechanical properties. Finally the sputtered mixed materials are compared with other optical standard materials such as Nb(2)O(5), Ta(2)O(5), HfO(2), and Al(2)O(3). PMID:23207316

  18. Investigation of antioxidant properties of metal ascorbates and their mixtures by voltammetry

    NASA Astrophysics Data System (ADS)

    Vtorushina, A. N.; Nikonova, E. D.

    2015-04-01

    The paper describes modern ways for selection of anti-radical substances. Molding of such components with a carbon-based material decreases the rate of its oxidative destruction. Addition of such a component to a carbon-based material decreases the rate of its oxidative destruction. The purpose of this study is to determine the antioxidant activity of ascorbates metals (Ca, Mg, Li, Co, Fe), used in the practice of medicine, as well as mixtures based on them together with well-known antioxidants. In this article we examine the effect of metals on the process of ascorbate oxygen electroreduction. From these ascorbates lithium and magnesium ascorbate showed the greatest activity toward cathode oxygen reduction process. Also mixtures with well-known examined antioxidants ascorbate (glucose, dihydroquercetin) were investigated at different concentrations of components. It is shown that the multicomponent mixtures exhibit lower activity than the individual drugs. Recommended the creation of drugs on the basis of ascorbate Mg and Li with not more than 3 number of components.

  19. Contributions of a compost-biochar mixture to the metal sorption capacity of a mine tailing.

    PubMed

    Forján, R; Asensio, V; Rodríguez-Vila, A; Covelo, E F

    2016-02-01

    One technique applied to restore degraded or contaminated soils is to use amendments made of different types of waste materials, which in turn may contain metals such as Cu, Pb and Zn. For this reason, it is important to determine the capacity of the soil to retain these materials, and to compare the sorption capacity between an amended soil and another unamended soil. The aim of this study was to determine the mobility and availability of these metals in the soil after applying the amendment, and how it affected the soil's sorption capacity. Sorption isotherms were compared with the empirical models of Langmuir and Freundlich to estimate the sorption capacity. The overall capacity of the soils to sorb Cu, Pb or Zn was evaluated as the slope Kr. The amendments used in this study were a mixture made of compost and biochar in different proportions (20, 40, 60, 100 %), which were applied to the mine tailing from a settling pond from a copper mine. The mine tailing that were amended with the mixture of compost and biochar had a higher sorption capacity than the mine tailing from the unamended pond, and their sorption isotherms had a greater affinity towards Cu, Pb and Zn than the mine tailing that was studied. Therefore, the results obtained show that adding a mixture of compost and biochar favours the retention of Cu, Pb and Zn in mine tailing. PMID:26432263

  20. Responses of protocerebral neurons in Manduca sexta to sex-pheromone mixtures

    PubMed Central

    Lei, Hong; Chiu, Hong-Yan; Hildebrand, John G.

    2013-01-01

    Male Manduca sexta moths are attracted to a mixture of two components of the female's sex pheromone at the natural concentration ratio. Deviation from this ratio results in reduced attraction. Projection neurons innervating prominent male-specific glomeruli in the male's antennal lobe produce maximal synchronized spiking activity in response to synthetic mixtures of the two components centering around the natural ratio, suggesting that behaviorally effective mixture ratios are encoded by synchronous neuronal activity. We investigated the physiological activity and morphology of downstream protocerebral neurons that responded to antennal stimulation with single pheromone components and their mixtures at various concentration ratios. Among the tested neurons, only a few gave stronger responses to the mixture at the natural ratio whereas most did not distinguish among the mixtures that were tested. We also found that the population response distinguished among the two pheromone components and their mixtures, prior to the peak population response. This observation is consistent with our previous finding that synchronous firing of antennal-lobe projection neurons reaches its maximum before the firing rate reaches its peak. Moreover, the response patterns of protocerebral neurons are diverse, suggesting that the representation of olfactory stimuli at the level of protocerebrum is complex. PMID:23974854

  1. Nonlinear optical response of metal-barrier-metal junctions

    NASA Technical Reports Server (NTRS)

    Fan, B.; Faris, S. M.; Gustafson, T. K.; Bridges, T. J.

    1977-01-01

    The optical response of metal-barrier-metal (MBM) junctions is discussed, with emphasis on the nonlinearity of response associated with reversal of polarity as optical intensity is increased. This nonlinear behavior can be used to measure correlation functions of optical pulses or to generate ultrashort electrical pulses. Expressions for the current flowing through the insulating barrier (junction), and for the rectification current, are given. Pulse signal and polarity of the electrical pulse evolves as the junction bias is varied about the null-signal bias. The apparatus used to obtain rectification pulse signals is described; the calculated evolution of the rectified pulse shape is found to correspond to that of pulse signals obtained experimentally. The generation of pulses six orders of magnitude smaller than a previously-obtained instrument-limited 1.6 nanosecond pulse has been observed.

  2. PCBS: CANCER DOSE-RESPONSE ASSESSMENT AND APPLICATION TO ENVIRONMENTAL MIXTURES (1996)

    EPA Science Inventory

    This report updates the cancer dose-response assessment for polychlorinated biphenyls (PCBs) and shows how information on toxicity, disposition, and environmental processes can be considered together to evaluate health risks from PCB mixtures in the environment. Processes that ch...

  3. Reductive dechlorination of chlorinated alkanes and alkenes by iron metal and metal mixtures

    SciTech Connect

    Orth, R.G.; McKenzie, D.E.

    1995-12-31

    Reductive dechlorination using zero valent metals such as iron has seen an increase in interest over the past few years with the extension of iron dechlorination to in-situ treatment of ground water using a process developed by Gillham and O`Hannes in 1994. Earlier applications included the use of metals for water treatment for the degradation of halogenated pesticides. This increased interest is demonstrated by the recent ACS symposium on zero valent metal dechlorination. The work that will be presented involves the reduction of selected chlorinated alkanes and alkenes beginning with chlorobutanes. The position of the chlorines on the carbon chain relative to each other was studied by determining the rates of the dechlorination processes. These studies were carried out in seated batch reactors so that loss of the chlorinated hydrocarbons was minimized and total carbon and chloride mass balances could be obtained. The goal of the studies was to understand the mechanism of the reaction that is believed to follow metal corrosion processes involving two electron transfer reactions.

  4. Simultaneous decontamination of cross-polluted soils with heavy metals and PCBs using a nano-metallic Ca/CaO dispersion mixture.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Sakita, Shogo; Simion, Cristian

    2014-01-01

    In the present work, we investigated the use of nano-metallic calcium (Ca) and calcium oxide (CaO) dispersion mixture for the simultaneous remediation of contaminated soils with both heavy metals (As, Cd, Cr, and Pb) and polychlorinated biphenyls (PCBs). Regardless of soil moisture content, nano-metallic Ca/CaO dispersion mixture achieved about 95-99% of heavy metal immobilization by a simple grinding process. During the same treatment, reasonable PCB hydrodechlorination efficiencies were obtained (up to 97%), though higher hydrodechlorination efficiency by preliminary drying of soil was observed. PMID:24723351

  5. The effects of high metal concentrations in soil-compost mixtures on soil enzymes.

    PubMed

    Warman, P R; Munroe, M D

    2010-10-01

    The study was undertaken to determine the impact of high-metal composts on the activities of four soil enzymes. High concentrations of metal salts (Cr, Cu, Ni or a Co-Mo-Pb combination) were added to feedstocks during the thermophilic stage of composting. These four metal-enriched composts and an unamended control compost were then mixed with soil collected from long-term agriculture plots under organic management or conventional management. The compost-soil mixtures were prepared at two rates (1:1 or 1:3 compost:soil, v/v) and incubated at 20 degrees C for three weeks. These 20 combinations plus the five composts and the two soils were added to pots and incubated for three weeks. Following incubation, soil enzyme activities (acid phosphatase, arysulfatase, dehydrogenase, phosphodiesterase) were measured using traditional assay procedures. Compared to the control, none of the high-metal composts inhibited soil enzyme activity. Notably, the Cu compost treatment produced significantly higher activity of all four enzymes in the soil compared to the control. Previous soil management influenced the activity of three enzymes, arysulfatase and dehydrogenase had greater activity in the organic soil while phosphatase activity was greater in the conventional soil. Increasing the proportion of compost in the pot had a positive effect on phosphodiesterase activity only. In conclusion, the high-metal compost treatments either enhanced or caused no adverse effects on soil enzyme activity. PMID:20803367

  6. Microgravity effects on electrodeposition of metals and metal-cermet mixtures

    NASA Technical Reports Server (NTRS)

    Maybee, George W.; Riley, Clyde; Coble, H. Dwain

    1987-01-01

    An experimental system, designed to investigate the potential advantages of electrodeposition in microgravity, is being developed by the McDonnell Douglas Astronautics Company-Huntsville Division and the University of Alabama in Huntsville. It is intended to fly as an Orbiter payload when NASA resumes STS operations. The system will provide power, thermal conditioning, command and control for the production of electrodeposits; system performance data will be recorded for post-flight analysis. Plated metal surfaces will be created using simple electrolytic cells with pure metal electrodes immersed in aqueous electrolytic solutions. Crystalline structure and other properties will be analyzed to identify differences between samples produced in flight and those obtained from ground-based operations.

  7. Uptake of iodide by a mixture of metallic copper and cupric compounds

    SciTech Connect

    Lefevre, G.; Alnot, M.; Ehrhardt, J.J.; Bessiere, J.

    1999-05-15

    Environmental contaminants harmful to the health of present and future generations involve nuclear fission products as iodine radioisotopes. {sup 129}I is potentially one of the more mobile products because of its long half-life and its tendency to go into solution as an anion that is not retarded with silicate minerals. Ability of copper/cupric compound mixtures to remove iodide from solution was investigated to predict sorption of radioactive iodine in the environment and to assess their use in a nuclear reprocessing method. Thermodynamic calculations were performed to study the stability of such mixtures in solution and to obtain equilibrium constants of Cu(0)/Cu(II)/I{sup {minus}} and Cu(0)/Cu(II)/Cl{sup {minus}} systems. Both calculations and experimental results showed that a Cu(0)/Cu{sub 3}(OH){sub 2}(CO{sub 3}){sub 2} (azurite) mixture selectively uptakes iodide ions (initial concentrations: 10{sup {minus}2} and 10{sup {minus}1} M) in the presence of 10{sup {minus}1} M chloride ions. Reaction of iodide with copper powder and azurite crystal or copper plate and azurite powder have also been investigated, leading to precipitation of CuI onto massive copper phase. The different solids were separately analyzed by XPS and MEB-EDX, giving some insight in the uptake mechanism. It is proposed that soluble copper released by the cupric compound is reduced at the surface of metallic copper, leading to a preferential precipitation of CuI on copper surface.

  8. Exposure to cadmium-phenanthrene mixtures elicits complex toxic responses in the freshwater tubificid oligochaete, Ilyodrilus templetoni.

    PubMed

    Gust, Kurt A; Fleeger, John W

    2006-07-01

    The joint toxicity of metal-hydrocarbon mixtures in sediments was investigated using cadmium (Cd) and phenanthrene (Phen) as model contaminants. Sediment bioassays were utilized to quantify effects of individual and combined contaminants in the bulk-deposit feeding oligochaete Ilyodrilus templetoni. Combined contaminants elicited antagonistic lethal effects and independent responses for feeding rate (measured as sediment ingestion). The 10-d LC(50) for Cd alone was 1375 mg kg(-1) (95% C.I. 1340-1412), whereas Phen elicited no mortality even when loaded to sediment saturation. The presence of Phen decreased Cd lethality, increasing the LC(50) of Cd by as much as 40%. Regression analyses indicated that Phen was nearly 10 times more potent than Cd in eliciting feeding rate reductions. Exposure to Cd-Phen mixtures resulted in feeding rate reductions equivalent to those caused by Phen alone. The marked reduction in sediment ingestion induced by the co-pollutant Phen reduced exposure to Cd via ingestion. We suggest that this Phen-induced reduction in Cd exposure decreased Cd bioaccumulation and subsequent lethality. More generally, we suggest that even if the toxicological effects among dissimilarly acting chemicals (including metals and hydrocarbons) are independent, contaminant mixtures may elicit unexpected interactive effects facilitated by modifying exposure. PMID:16465559

  9. Characterization of microwave-induced electric discharge phenomena in metal-solvent mixtures.

    PubMed

    Chen, Wen; Gutmann, Bernhard; Kappe, C Oliver

    2012-02-01

    Electric discharge phenomena in metal-solvent mixtures are investigated utilizing a high field density, sealed-vessel, single-mode 2.45 GHz microwave reactor with a built-in camera. Particular emphasis is placed on studying the discharges exhibited by different metals (Mg, Zn, Cu, Fe, Ni) of varying particle sizes and morphologies in organic solvents (e.g., benzene) at different electric field strengths. Discharge phenomena for diamagnetic and paramagnetic metals (Mg, Zn, Cu) depend strongly on the size of the used particles. With small particles, short-lived corona discharges are observed that do not lead to a complete breakdown. Under high microwave power conditions or with large particles, however, bright sparks and arcs are experienced, often accompanied by solvent decomposition and formation of considerable amounts of graphitized material. Small ferromagnetic Fe and Ni powders (<40 μm) are heated very rapidly in benzene suspensions and start to glow in the microwave field, whereas larger particles exhibit extremely strong discharges. Electric discharges were also observed when Cu metal or other conductive materials such as silicon carbide were exposed to the microwave field in the absence of a solvent in an argon or nitrogen atmosphere. PMID:24551491

  10. Glossopharyngeal taste responses of the channel catfish to binary mixtures of amino acids.

    PubMed

    Ogawa, K; Caprio, J

    2000-10-01

    This study examines the neural processing of binary mixtures in the glossopharyngeal (IX) taste system of the channel catfish, Ictalurus punctatus, and finds that the nature of the components of a mixture determines the intensity of the neural response to it. Taste buds in fish innervated by IX are located along the gill rakers of the first gill arch and rostral floor of the oral cavity, and function primarily in the consummatory phase of feeding behavior; however, few studies of IX taste responses have been reported in any species of teleost. Here, we report IX taste responses to eight different binary mixtures of amino acids whose components were adjusted to be approximately equipotent in electrophysiological recordings. Four binary (group I) mixtures whose components were indicated from prior electrophysiological cross-adaptation experiments to bind to independent receptor sites resulted in significantly larger (22% average increase) integrated IX taste activity than four other (group II) binary mixtures whose components were indicated to bind to the same or highly cross-reactive receptor sites. These results are similar to those observed previously from facial nerve recordings in channel catfish, and to olfactory and taste responses in other vertebrate and invertebrate species. The group I results help to explain behavioral observations that chemical mixtures of chemosensory stimuli are often more stimulatory than their individual components. PMID:11015321

  11. On the inflammatory response in metal-on-metal implants

    PubMed Central

    2014-01-01

    Background Metal-on-metal implants are a special form of hip endoprostheses that despite many advantages can entail serious complications due to release of wear particles from the implanted material. Metal wear particles presumably activate local host defence mechanisms, which causes a persistent inflammatory response with destruction of bone followed by a loosening of the implant. To better characterize this inflammatory response and to link inflammation to bone degradation, the local generation of proinflammatory and osteoclast-inducing cytokines was analysed, as was systemic T cell activation. Methods By quantitative RT-PCR, gene expression of cytokines and markers for T lymphocytes, monocytes/macrophages and osteoclasts, respectively, was analysed in tissue samples obtained intraoperatively during exchange surgery of the loosened implant. Peripheral T cells were characterized by cytofluorometry before surgery and 7 to 10 days thereafter. Results At sites of osteolysis, gene expression of cathepsin K, CD14 and CD3 was seen, indicating the generation of osteoclasts, and the presence of monocytes and of T cells, respectively. Also cytokines were highly expressed, including CXCL8, IL-1ß, CXCL2, MRP-14 and CXCL-10. The latter suggest T cell activation, a notion that could be confirmed by detecting a small, though conspicuous population of activated CD4+ cells in the peripheral blood T cells prior to surgery. Conclusion Our data support the concept that metallosis is the result of a local inflammatory response, which according to histomorphology and the composition of the cellular infiltrate classifies as an acute phase of a chronic inflammatory disease. The proinflammatory environment, particularly the generation of the osteoclast-inducing cytokines CXCL8 and IL1-ß, promotes bone resorption. Loss of bone results in implant loosening, which then causes the major symptoms of metallosis, pain and reduced range of motion. PMID:24650243

  12. Toxicity and bioavailability of heavy metal mixtures in natural and synthetic sediments

    SciTech Connect

    Frugis, M.; Clements, W.H.

    1994-12-31

    Toxicity tests were conducted to compare differences in bioavailability of a metal mixture (zinc, copper, cadmium and lead) in natural and synthetic sediments to Chironomus tentans and Ceriodaphnia dubia. Preliminary tests were conducted with sediment collected at five stations from the Arkansas River (Leadville, CO) and one from the La Cache Poudre River (Fort Collins, CO). After seven days of exposure, mortality on C. tentans in sediment from the most contaminated station (AR3) was significantly different from the reference station (PDR). Bioaccumulation in these insects showed significant correlation with abiotic factors: particle size, organic matter, total carbon and cation exchange capacity. During a second experiment, particle size and carbon contents of synthetic sediment were modified to reflect composition of natural sediment. Two types of artificial sediments were spiked with 0X, 0.085X, 0.175X and 0.35X of metal mixture measured in AR3. After ten days, mortality of C. tentans in the 0.35X and AR3 treatments were similar. In a final experiment, synthetic and natural sediments were spiked at 0X, 0.175X, 0.35X, and 0.70X. Again, mortality of contents in 0.35X and AR3 were not significantly different. A 48hrs-acute test conducted with C. dubia showed that interstitial water from AR3 and AR5 stations had higher toxicity than other stations. In addition, toxicity of interstitial water from synthetic sediment was greater than from spiked natural sediment or sediments collected from the Arkansas River. These results indicate that heavy metals are more bioavailable in synthetic sediments than in natural substrates.

  13. Solvatochromic probe response within ionic liquids and their equimolar mixtures with tetraethylene glycol.

    PubMed

    Rai, Rewa; Pandey, Siddharth

    2014-09-25

    Synergism in a probe response within a mixture hints at the presence of strong interactions involving the solvent constituents of the mixture and possibly the probe. Unusual and rare "hyperpolarity" resulting from the synergism in probe response exhibited by ionic liquid (IL) mixtures with glycol family solvents is investigated in detail for equimolar mixtures of tetraethylene glycol (TEG) with many structurally different ILs using several UV-vis absorbance and fluorescence solvatochromic probes. Thirteen different ILs, of the same cation 1-butyl-3-methylimidazolium and different anions, of the same anion bis(trifluoromethylsulfonyl)imide and different cations, and of C2 methyl-substituted imidazolium cations, are used to assess the structural dependence of the IL on synergism exhibited by (IL + TEG) mixture. Responses from UV-vis absorbance probes are used to obtain ET [dipolarity/polarizability and/or H-bond donating (HBD) acidity] and Kamlet-Taft parameters [π* (dipolarity/polarizability), α (HBD acidity), and β (HB accepting basicity)] within (IL + TEG) mixtures. The band I-to-band III fluorescence intensity ratio of dipolarity probe pyrene along with the lowest energy fluorescence band maxima of pyrene-1-carboxaldehyde (PyCHO, a probe for the permittivity of the medium), coumarin-153 and N,N-dimethyl-6-propionyl-2-naphthylamine PRODAN (neutral photoinduced charge-transfer fluorescence probes), and 6-p-toluidine-2-naphthalenesulfonic acid (TNS) and l-anilinonaphthalene-8-sulfonate (ANS) (ionic photoinduced charge-transfer fluorescence probes) are used to assess whether synergism is exhibited by (IL + TEG) equimolar mixtures. Probe responses within TEG equimolar mixtures with ILs are compared to those with common organic solvents. An attempt is made to establish a correlation between the synergism observed in the probe response within an (IL + TEG) mixture and the structural features of the cation and anion of the IL, such as acidity of the protons of the

  14. A Mixture Proportional Hazards Model with Random Effects for Response Times in Tests

    ERIC Educational Resources Information Center

    Ranger, Jochen; Kuhn, Jörg-Tobias

    2016-01-01

    In this article, a new model for test response times is proposed that combines latent class analysis and the proportional hazards model with random effects in a similar vein as the mixture factor model. The model assumes the existence of different latent classes. In each latent class, the response times are distributed according to a…

  15. Estimation of Item Response Models Using the EM Algorithm for Finite Mixtures.

    ERIC Educational Resources Information Center

    Woodruff, David J.; Hanson, Bradley A.

    This paper presents a detailed description of maximum parameter estimation for item response models using the general EM algorithm. In this paper the models are specified using a univariate discrete latent ability variable. When the latent ability variable is discrete the distribution of the observed item responses is a finite mixture, and the EM…

  16. On the shock response of cubic metals

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Gray, G. T.; Millett, J. C. F.

    2009-11-01

    The response of four cubic metals to shock loading is reviewed in order to understand the effects of microstructure on continuum response. Experiments are described that link defect generation and storage mechanisms at the mesoscale to observations in the bulk. Four materials were reviewed; these were fcc nickel, the ordered fcc intermetallic Ni3Al, the bcc metal tantalum, and two alloys based on the intermetallic phase TiAl; Ti-46.5Al-2Cr-2Nb and Ti-48Al-2Cr-2Nb-1B. The experiments described are in two groups: first, equation of state and shear strength measurements using Manganin stress gauges and, second, postshock microstructural examinations and measurement of changes in mechanical properties. The behaviors described are linked through the description of time dependent plasticity mechanisms to the final states achieved. Recovered targets displayed dislocation microstructures illustrating processes active during the shock-loading process. Reloading of previously shock-prestrained samples illustrated shock strengthening for the fcc metals Ni and Ni3Al while showing no such effect for bcc Ta and for the intermetallic TiAl. This difference in effective shock hardening has been related, on the one hand, to the fact that bcc metals have fewer available slip systems that can operate than fcc crystals and to the observation that the lower symmetry materials (Ta and TiAl) both possess high Peierls stress and thus have higher resistances to defect motion in the lattice under shock-loading conditions. These behaviors, compared between these four materials, illustrate the role of defect generation, transport, storage, and interaction in determining the response of materials to shock prestraining.

  17. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator.

    PubMed

    Li, Jia; Xu, Zhenming; Zhou, Yaohe

    2008-05-30

    Traditionally, the mixture metals from waste printed circuit board (PCB) were sent to the smelt factory to refine pure copper. Some valuable metals (aluminum, zinc and tin) with low content in PCB were lost during smelt. A new method which used roll-type electrostatic separator (RES) to recovery low content metals in waste PCB was presented in this study. The theoretic model which was established from computing electric field and the analysis of forces on the particles was used to write a program by MATLAB language. The program was design to simulate the process of separating mixture metal particles. Electrical, material and mechanical factors were analyzed to optimize the operating parameters of separator. The experiment results of separating copper and aluminum particles by RES had a good agreement with computer simulation results. The model could be used to simulate separating other metal (tin, zinc, etc.) particles during the process of recycling waste PCBs by RES. PMID:17981393

  18. Generalization of independent response model for toxic mixtures.

    PubMed

    Haas, C N; Kersten, S P; Wright, K; Frank, M J; Cidambi, K

    1997-02-01

    Interaction between toxic compounds has long been known to researchers. Attempts to model this interaction have been based on two basic paradigms--termed additivity and independence (1, 2). Previous models based on these assumptions focused on measuring the interaction between the compounds and then classifying the type of interaction as synergism, antagonism, additivity or independence (3, 4). The aim of this work is to present a generalization of the independent action hypothesis that is quantitatively capable of describing deviations regardless of the underlying single component dose response models. The mathematical framework of copulas is employed. This approach is then tested against data sets with both human health and ecological risk applications. PMID:9569938

  19. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2003-06-02

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process.

  20. Response Times to Gustatory-Olfactory Flavor Mixtures: Role of Congruence.

    PubMed

    Shepard, Timothy G; Veldhuizen, Maria G; Marks, Lawrence E

    2015-10-01

    A mixture of perceptually congruent gustatory and olfactory flavorants (sucrose and citral) was previously shown to be detected faster than predicted by a model of probability summation that assumes stochastically independent processing of the individual gustatory and olfactory signals. This outcome suggests substantial integration of the signals. Does substantial integration also characterize responses to mixtures of incongruent flavorants? Here, we report simple response times (RTs) to detect brief pulses of 3 possible flavorants: monosodium glutamate, MSG (gustatory: "umami" quality), citral (olfactory: citrus quality), and a mixture of MSG and citral (gustatory-olfactory). Each stimulus (and, on a fraction of trials, water) was presented orally through a computer-operated, automated flow system, and subjects were instructed to press a button as soon as they detected any of the 3 non-water stimuli. Unlike responses previously found to the congruent mixture of sucrose and citral, responses here to the incongruent mixture of MSG and citral took significantly longer (RTs were greater) and showed lower detection rates than the values predicted by probability summation. This outcome suggests that the integration of gustatory and olfactory flavor signals is less extensive when the component flavors are perceptually incongruent rather than congruent, perhaps because incongruent flavors are less familiar. PMID:26304508

  1. Investigating the Impact of Item Parameter Drift for Item Response Theory Models with Mixture Distributions

    PubMed Central

    Park, Yoon Soo; Lee, Young-Sun; Xing, Kuan

    2016-01-01

    This study investigates the impact of item parameter drift (IPD) on parameter and ability estimation when the underlying measurement model fits a mixture distribution, thereby violating the item invariance property of unidimensional item response theory (IRT) models. An empirical study was conducted to demonstrate the occurrence of both IPD and an underlying mixture distribution using real-world data. Twenty-one trended anchor items from the 1999, 2003, and 2007 administrations of Trends in International Mathematics and Science Study (TIMSS) were analyzed using unidimensional and mixture IRT models. TIMSS treats trended anchor items as invariant over testing administrations and uses pre-calibrated item parameters based on unidimensional IRT. However, empirical results showed evidence of two latent subgroups with IPD. Results also showed changes in the distribution of examinee ability between latent classes over the three administrations. A simulation study was conducted to examine the impact of IPD on the estimation of ability and item parameters, when data have underlying mixture distributions. Simulations used data generated from a mixture IRT model and estimated using unidimensional IRT. Results showed that data reflecting IPD using mixture IRT model led to IPD in the unidimensional IRT model. Changes in the distribution of examinee ability also affected item parameters. Moreover, drift with respect to item discrimination and distribution of examinee ability affected estimates of examinee ability. These findings demonstrate the need to caution and evaluate IPD using a mixture IRT framework to understand its effects on item parameters and examinee ability. PMID:26941699

  2. Investigating the Impact of Item Parameter Drift for Item Response Theory Models with Mixture Distributions.

    PubMed

    Park, Yoon Soo; Lee, Young-Sun; Xing, Kuan

    2016-01-01

    This study investigates the impact of item parameter drift (IPD) on parameter and ability estimation when the underlying measurement model fits a mixture distribution, thereby violating the item invariance property of unidimensional item response theory (IRT) models. An empirical study was conducted to demonstrate the occurrence of both IPD and an underlying mixture distribution using real-world data. Twenty-one trended anchor items from the 1999, 2003, and 2007 administrations of Trends in International Mathematics and Science Study (TIMSS) were analyzed using unidimensional and mixture IRT models. TIMSS treats trended anchor items as invariant over testing administrations and uses pre-calibrated item parameters based on unidimensional IRT. However, empirical results showed evidence of two latent subgroups with IPD. Results also showed changes in the distribution of examinee ability between latent classes over the three administrations. A simulation study was conducted to examine the impact of IPD on the estimation of ability and item parameters, when data have underlying mixture distributions. Simulations used data generated from a mixture IRT model and estimated using unidimensional IRT. Results showed that data reflecting IPD using mixture IRT model led to IPD in the unidimensional IRT model. Changes in the distribution of examinee ability also affected item parameters. Moreover, drift with respect to item discrimination and distribution of examinee ability affected estimates of examinee ability. These findings demonstrate the need to caution and evaluate IPD using a mixture IRT framework to understand its effects on item parameters and examinee ability. PMID:26941699

  3. Stimulus-responsive metal-organic frameworks.

    PubMed

    Nagarkar, Sanjog S; Desai, Aamod V; Ghosh, Sujit K

    2014-09-01

    Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future "smart" technology materials. Metal-organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host-guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus-responsive MOFs or so-called smart MOFs. In particular, the various stimuli used and the utility of stimulus-responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus-responsive smart MOFs and their applications are proposed from a personal perspective. PMID:24844581

  4. The mechanisms associated with the development of hypertension after exposure to lead, mercury species or their mixtures differs with the metal and the mixture ratio.

    PubMed

    Wildemann, Tanja M; Siciliano, Steven D; Weber, Lynn P

    2016-01-01

    Hypertension is considered to be the most important risk factor for the development of cardiovascular diseases. Beside life-style risk factors, exposure to lead and mercury species are increasingly discussed as potential risk factors. Although there are a few previous studies, the underlying mechanism by which exposure to lead and mercury disturb blood pressure regulation is not currently understood. Potential mechanisms are oxidative stress production, kidney damage and activation of the renin-angiotensin system (RAS), all of which can interact to cause dysregulation of blood pressure. Male rats (Wistar) were exposed to lead, inorganic mercury, methylmercury or two mixtures of all three metals for four weeks through the drinking water. The two mixture ratios were based on ratios of known reference values or environmental exposure from the literature. To investigate the potential mechanism of actions, blood pressure was measured after four weeks and compared to plasma nitrotyrosine or reduced/oxidized glutathione levels in liver as markers for oxidative stress. Plasma renin and angiotensin II levels were used as markers for RAS activation. Finally, kidney function and injury were assessed via urinary and plasma creatinine levels, creatinine clearance and urinary kidney-injury molecule (KIM-1). While exposure to lead by itself increased oxidative stress and kidney damage along with blood pressure, inorganic mercury did not affect blood pressure or any end-point examined. Conversely, methylmercury instead increased RAS activation along with blood pressure. Surprisingly, when administered as mixtures, lead no longer increased oxidative stress or altered kidney function. Moreover, the mixture based on an environmental ratio no longer had an effect on blood pressure, while the reference value ratio still retained an increase in blood pressure. Based on our results, the prominent mechanism of action associated with the development of hypertension seems to be oxidative

  5. In vivo responses of single olfactory receptor neurons of channel catfish to binary mixtures of amino acids.

    PubMed

    Kang, J; Caprio, J

    1997-01-01

    For the first time in any vertebrate, in vivo responses of single olfactory receptor neurons to odorant mixtures were studied quantitatively. Extracellular electrophysiological response of 54 single olfactory receptor neurons from 23 channel catfish, Ictalurus punctatus, to binary mixtures of amino acids and to their components were recorded simultaneously with the electroolfactogram (EOG). For 57% (73 of 128) of the tests, no significant change (N) from spontaneous activity occurred. Responses to the remaining 55 tests of binary mixtures were excitatory (E; 13%) or suppressive (S; 30%). No response type was associated with any specific mixture across the neurons sampled. Eighty-six percent of the responses of catfish olfactory receptor neurons to binary mixtures were classified similar to at least one of the component responses, a percentage comparable (i.e., 89%) with that observed for single olfactory bulb neurons in the same species to equivalent binary mixtures. The responses of single olfactory receptor neurons to component-similar binary mixtures (i.e., component responses were both E, both S, and both N, respectively) were generally (80% of 59 tests) classified similar to the responses to the components. For E+N and S+N binary mixtures, the N component often (66% of 58 tests) reduced or concealed (i.e., "masked") the excitatory and suppressive responses, respectively. For the majority (6 of 11 tests) of E + S binary mixtures, null activity resulted. Responses to the remaining five tests were either excitatory (n = 3) or suppressive (n = 2). PMID:9120550

  6. Enhanced heavy metal immobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture.

    PubMed

    Mallampati, Srinivasa Reddy; Mitoma, Yoshiharu; Okuda, Tetsuji; Sakita, Shogo; Kakeda, Mitsunori

    2012-10-01

    This study investigated the use of a nanometallic Ca and CaO dispersion mixture for the immobilization of heavy metals (As, Cd, Cr and Pb) in contaminated soil. Simple grinding achieved 85-90% heavy metal immobilization, but it can be enhanced further to 98-100% by addition of a nanometallic Ca/CaO dispersion mixture produced by grinding. Observations using SEM-EDS elemental maps and semi-quantitative analysis showed that the amounts of As, Cd, Cr, and Pb measurable on the soil particle surface decrease after nanometallic Ca/CaO treatment. The leachable heavy metal concentrations were reduced after nanometallic Ca/CaO treatment to concentrations lower than the Japan soil elution standard regulatory threshold: <0.01 mg L(-1) for As, Cd, and Pb; and 0.05 mg L(-1) for Cr. Effects of soil moisture and pH on heavy metal immobilization were not strongly influenced. The most probable mechanisms for the enhancement of heavy metal immobilization capacity with nanometallic Ca/CaO treatment might be due to adsorption and entrapment of heavy metals into newly formed aggregates, thereby prompting aggregation of soil particles and enclosure/binding with Ca/CaO-associated immobile salts. Results suggest that the nanometallic Ca/CaO mixture is suitable for use in immobilization of heavy-metal-contaminated soil under normal moisture conditions. PMID:22818089

  7. Pheromones as mixtures: geometric designs and response surface modeling for optimization of mating disruption of the citrus leafminer Phyllocnistis citrella

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pheromone blends composed of one or more components are mixtures. Mixtures present a unique problem for experiment design when response (e.g., insect attraction to a blend) is a function of proportionality of the blend's components. In mixtures, the ingredients must total to a constant value. Prop...

  8. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    NASA Astrophysics Data System (ADS)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (<100nm diameter) and ball-milled silicon powder (325 mesh). The increase in rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from <100 nm to ˜10 nm particles, the hydrogen production rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  9. PCBS: CANCER DOSE-RESPONSE ASSESSMENT AND APPLICATION TO ENVIRONMENTAL MIXTURES (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    A cancer dose-response assessment is developed for PCBS, considering toxicity, disposition, and environmental processes to evaluate human cancer risk. ow-dose linear models are applied to animal cancer studies of commercial mixtures to develop a range of potency estimates, then i...

  10. Thermoregulatory response to an organophosphate and carbamate insecticide mixture: testing the assumption of dose-additivity.

    PubMed

    Gordon, Christopher J; Herr, David W; Gennings, Chris; Graff, Jaimie E; McMurray, Matthew; Stork, LeAnna; Coffey, Todd; Hamm, Adam; Mack, Cina M

    2006-01-01

    Most toxicity data are based on studies using single compounds. This study assessed if there is an interaction between mixtures of the anticholinesterase insecticides chlorpyrifos (CHP) and carbaryl (CAR) using hypothermia and cholinesterase (ChE) inhibition as toxicological endpoints. Core temperature (T(c)) was continuously monitored by radiotelemetry in adult Long-Evans rats administered CHP at doses ranging from 0 to 50mg/kg and CAR doses of 0-150 mg/kg. The temperature index (TI), an integration of the change in T(c) over a 12h period, was quantified. Effects of mixtures of CHP and CAR in 2:1 and 1:1 ratios on the TI were examined and the data analyzed using a statistical model designed to assess significant departures from additivity for chemical mixtures. CHP and CAR elicited a marked hypothermia and dose-related decrease in the TI. The TI response to a 2:1 ratio of CHP:CAR was significantly less than that predicted by additivity. The TI response to a 1:1 ratio of CHP and CAR was not significantly different from the predicted additivity. Plasma and brain ChE activity were measured 4h after dosing with CHP, CAR, and mixtures in separate groups of rats. There was a dose-additive interaction for the inhibition of brain ChE for the 2:1 ratio, but an antagonistic effect for the 1:1 ratio. The 2:1 and 1:1 mixtures had an antagonistic interaction on plasma ChE. Overall, the departures from additivity for the physiological (i.e., temperature) and biochemical (i.e., ChE inhibition) endpoints for the 2:1 and 1:1 mixtures studies did not coincide as expected. An interaction between CHP and CAR appears to depend on the ratio of compounds in the mixture as well as the biological endpoint. PMID:16182429

  11. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  12. ACUTE TOXICITY OF FIVE SEDIMENT-ASSOCIATED METALS, INDIVIDUALLY AND IN A MIXTURE, TO THE ESTUARINE MEIOBENTHIC HARPACTICOID COPEPOD AMPHIASCUS TENUIREMIS. (R825279)

    EPA Science Inventory

    Abstract

    The acute effects of many individual, seawater-solubilized metals on meiobenthic copepods and nematodes are well known. In sediments, however, metals most often occur as mixtures, and it is not known whether such mixtures exhibit simple additive toxicity to me...

  13. Photochemical products in urban mixtures enhance inflammatory responses in lung cells.

    PubMed

    Sexton, Kenneth G; Jeffries, Harvey E; Jang, Myoseon; Kamens, Richard M; Doyle, Melanie; Voicu, Iuliana; Jaspers, Ilona

    2004-01-01

    Complex urban air mixtures that realistically mimic urban smog can be generated for investigating adverse health effects. "Smog chambers" have been used for over 30 yr to conduct experiments for developing and testing photochemical models that predict ambient ozone (O(3)) concentrations and aerosol chemistry. These chambers were used to generate photochemical and nonirradiated systems, which were interfaced with an in vitro exposure system to compare the inflammatory effects of complex air pollutant mixtures with and without sunlight-driven chemistry. These are preliminary experiments in a new project to study the health effects of particulate matter and associated gaseous copollutants. Briefly, two matched outdoor chambers capable of using real sunlight were utilized to generate two test atmospheres for simultaneous exposures to cultured lung cells. One chamber was used to produce a photochemically active system, which ran from sunrise to sunset, producing O(3) and the associated secondary products. A few hours after sunset, NO was added to titrate and remove completely the O(3), forming NO(2). In the second chamber, an equal amount of NO(2) and the same amount of the 55-component hydrocarbon mixture used to setup the photochemical system in the first side were injected. A549 cells, from an alveolar type II-like cell line grown on membranous support, were exposed to the photochemical mixture or the "original" NO(2)/hydrocarbon mixture for 5 h and analyzed for inflammatory response (IL-8 mRNA levels) 4 h postexposure. In addition, a variation of this experiment was conducted to compare the photochemical system producing O(3) and NO(2), with a simple mixture of only the O(3) and NO(2). Our data suggest that the photochemically altered mixtures that produced secondary products induced about two- to threefold more IL-8 mRNA than the mixture of NO(2) and hydrocarbons or O(3). These results indicate that secondary products generated through the photochemical reactions

  14. Tracking traces of transition metals present in concrete mixtures by inductively-coupled plasma mass spectrometry studies.

    PubMed

    Bassioni, Ghada; Pillay, Alvin E; El Kadi, Mirella; Fegali, Fadi; Fok, Sai Cheong; Stephen, Sasi

    2010-01-01

    Transition metals can have a significant impact in research related to the dosage optimization of superplasticizers. It is known that the presence of transition metals can influence such doses, and the application of a contemporary instrumental method to obtain the profiles of subsisting transition elements in concrete mixtures would be useful. In this work, inductively-coupled plasma mass spectrometry (ICP-MS) is investigated as a possible tool to track traces of transition metals in concrete mixtures. Depth profiling using ICP-MS on proofed and unproofed concrete shows the presence of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn at trace intensities in the bulk of the samples under investigation. The study demonstrates that the transition metals present in the concrete sample are largely a part of the cement composition and, to a minor degree, a result of exposure to the seawater after curing. The coated concrete samples have a metal distribution pattern similar to the uncoated samples, but slight differences in intensity bear testimony to the very low levels that originate from the exposure to seawater. While X-ray diffraction fails to detect these traces of metals, ICP-MS is successful in detecting ultra-trace intensities to parts per trillion. This method is not only a useful application to track traces of transition metals in concrete, but also provides information to estimate the pore size distribution in a given sample by very simple means. PMID:21173466

  15. Fitting a Mixture Item Response Theory Model to Personality Questionnaire Data: Characterizing Latent Classes and Investigating Possibilities for Improving Prediction

    ERIC Educational Resources Information Center

    Maij-de Meij, Annette M.; Kelderman, Henk; van der Flier, Henk

    2008-01-01

    Mixture item response theory (IRT) models aid the interpretation of response behavior on personality tests and may provide possibilities for improving prediction. Heterogeneity in the population is modeled by identifying homogeneous subgroups that conform to different measurement models. In this study, mixture IRT models were applied to the…

  16. Exchangeable Ions Are Responsible for the In Vitro Antibacterial Properties of Natural Clay Mixtures

    PubMed Central

    Otto, Caitlin C.; Haydel, Shelley E.

    2013-01-01

    We have identified a natural clay mixture that exhibits in vitro antibacterial activity against a broad spectrum of bacterial pathogens. We collected four samples from the same source and demonstrated through antibacterial susceptibility testing that these clay mixtures have markedly different antibacterial activity against Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). Here, we used X-ray diffraction (XRD) and inductively coupled plasma – optical emission spectroscopy (ICP-OES) and – mass spectrometry (ICP-MS) to characterize the mineralogical and chemical features of the four clay mixture samples. XRD analyses of the clay mixtures revealed minor mineralogical differences between the four samples. However, ICP analyses demonstrated that the concentrations of many elements, Fe, Co, Cu, Ni, and Zn, in particular, vary greatly across the four clay mixture leachates. Supplementation of a non-antibacterial leachate containing lower concentrations of Fe, Co, Ni, Cu, and Zn to final ion concentrations and a pH equivalent to that of the antibacterial leachate generated antibacterial activity against E. coli and MRSA, confirming the role of these ions in the antibacterial clay mixture leachates. Speciation modeling revealed increased concentrations of soluble Cu2+ and Fe2+ in the antibacterial leachates, compared to the non-antibacterial leachates, suggesting these ionic species specifically are modulating the antibacterial activity of the leachates. Finally, linear regression analyses comparing the log10 reduction in bacterial viability to the concentration of individual ion species revealed positive correlations with Zn2+ and Cu2+ and antibacterial activity, a negative correlation with Fe3+, and no correlation with pH. Together, these analyses further indicate that the ion concentration of specific species (Fe2+, Cu2+, and Zn2+) are responsible for antibacterial activity and that killing activity is not solely attributed to pH. PMID:23691149

  17. Expanding metal mixture toxicity models to natural stream and lake invertebrate communities

    USGS Publications Warehouse

    Balistrieri, Laurie S.; Mebane, Christopher A.; Schmidt, Travis S.; Keller, William (Bill)

    2015-01-01

    A modeling approach that was used to predict the toxicity of dissolved single and multiple metals to trout is extended to stream benthic macroinvertebrates, freshwater zooplankton, and Daphnia magna. The approach predicts the accumulation of toxicants (H, Al, Cd, Cu, Ni, Pb, and Zn) in organisms using 3 equilibrium accumulation models that define interactions between dissolved cations and biological receptors (biotic ligands). These models differ in the structure of the receptors and include a 2-site biotic ligand model, a bidentate biotic ligand or 2-pKa model, and a humic acid model. The predicted accumulation of toxicants is weighted using toxicant-specific coefficients and incorporated into a toxicity function called Tox, which is then related to observed mortality or invertebrate community richness using a logistic equation. All accumulation models provide reasonable fits to metal concentrations in tissue samples of stream invertebrates. Despite the good fits, distinct differences in the magnitude of toxicant accumulation and biotic ligand speciation exist among the models for a given solution composition. However, predicted biological responses are similar among the models because there are interdependencies among model parameters in the accumulation–Tox models. To illustrate potential applications of the approaches, the 3 accumulation–Tox models for natural stream invertebrates are used in Monte Carlo simulations to predict the probability of adverse impacts in catchments of differing geology in central Colorado (USA); to link geology, water chemistry, and biological response; and to demonstrate how this approach can be used to screen for potential risks associated with resource development.

  18. Faster Response for Memory-Metal Actuators

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F.

    1985-01-01

    Cooling accelerated by attaching Peltier junction. Electric current carries heat to or from junction between two dissimilar metals, direction of heat flow depending on direction of current and particular metals used. Direction of current is opposite to that of same two metals operating as thermocouple.

  19. Chemical and thermal stability of refrigerant-lubricant mixtures with metals

    SciTech Connect

    Huttenlocher, D.F.

    1992-07-10

    This report presents completed sealed tube stability test results for the following eight refrigerant/lubricant mixtures: R-22/mineral oil; R-124/alkylbenzene; R-134a/pentaerythritol (PE) ester (mixed acid); R- 134a/PE (branched acid); R-134a/ PE (100 cSt viscosity); R- 142b/alkylbenzene; R-143a/ PE (branched acid); R-152a/alkylbenzene. Partial results are shown for an additional eight refrigerant-lubricant mixtures. Though work is in progress, no data are available at this point in time for the five remaining test mixtures. Reported are: visual observations on aged sealed tubes, gas chromatographic analyses on the vapor phase contents of the tubes, chloride ion contents of HCFC containing mixtures or fluoride ion contents of HFC mixtures, and total acid number values and infrared analysis results for mixtures containing ester lubricants.

  20. Electro-olfactogram and multiunit olfactory receptor responses to complex mixtures of amino acids in the channel catfish, Ictalurus punctatus.

    PubMed

    Kang, J S; Caprio, J

    1991-10-01

    In vivo electrophysiological recordings from populations of olfactory receptor neurons in the channel catfish, Ictalurus punctatus, clearly showed that both electro-olfactogram and integrated neural responses of olfactory receptor cells to complex mixtures consisting of up to 10 different amino acids were predictable with knowledge of (a) the responses to the individual components in the mixture and (b) the relative independence of the respective receptor sites for the component stimuli. All amino acid stimuli used to form the various mixtures were initially adjusted in concentration to provide approximately equal response magnitudes. Olfactory receptor responses to both multimixtures and binary mixtures were recorded. Multimixtures were formed by mixing equal aliquots of 3-10 different amino acids. Binary mixtures were formed by mixing equal aliquots of two equally stimulatory solutions. Solution 1 contained either one to nine different neutral amino acids with long side-chains (LCNs) or one to five different neutral amino acids with short side-chains (SCNs). Solution 2, comprising the binary mixture, consisted of only a single stimulus, either a LCN, SCN, basic, or acidic amino acid. The increasing magnitude of the olfactory receptor responses to mixtures consisting of an increasing number of neutral amino acids indicated that multiple receptor site types with highly overlapping specificities exist to these compounds. For both binary mixtures and multimixtures composed of neutral and basic or neutral and acidic amino acids, the receptor responses were significantly enhanced compared with those mixtures consisting of an equal number of only neutral amino acids. These results demonstrate that receptor sites for the basic and acidic amino acids, respectively, are highly independent of those for the neutral amino acids, and suggest that a mechanism for synergism is the simultaneous activation of relatively independent receptor sites by the components in the mixture

  1. Heavy metals retention capacity of a non-conventional sorbent developed from a mixture of industrial and agricultural wastes.

    PubMed

    Agouborde, Lina; Navia, Rodrigo

    2009-08-15

    Zinc and copper removal from aqueous solutions using brine sediments (industrial residue), sawdust (agricultural residue) and the mixture of both materials has been researched through batch and column tests. Brine sediments were found to be mainly constituted by halite and calcite, while its main cations exchangeable were sodium, calcium, magnesium and potassium. In sawdust the main exchangeable cations detected were calcium, magnesium, sodium and potassium. FT-IR spectra of sawdust and brine sediment-sawdust mixture showed that brine sediments produced important changes in carboxylic, alcoholic and phenolic groups present in the sawdust. The maximum zinc adsorption capacity was found to be 4.85, 2.58 and 5.59 mg/g using an adsorbent/solution ratio of 1/40, for brine sediments, sawdust and the mixture, respectively. For copper, the maximum adsorption capacity was found to be 4.69, 2.31 and 4.33 mg/g, using adsorbent/solution ratios of 1/40, for brine sediments, sawdust and the mixture, respectively. Maximum copper adsorption capacity of the mixture, on the contrary to zinc adsorption, was lightly inferior to maximum adsorption capacity obtained in brine sediments. Adsorption isotherms data adjusted better to the Langmuir model. Additionally, columns reached the saturation point at 690 min for zinc and 360 min for copper. The main mechanism involved in the removal of both metals may be the ionic exchange between sodium and calcium ions present in brine sediments and H(+) present in functional groups of sawdust. The use of brine sediments, sawdust and their mixture, presents an interesting option both, for wastewater decontamination (as a possible non-conventional sorbent for the removal of heavy metals) and as a waste recycling option. PMID:19188023

  2. Ab initio interaction potentials and scattering lengths for ultracold mixtures of metastable helium and alkali-metal atoms

    NASA Astrophysics Data System (ADS)

    Kedziera, Dariusz; Mentel, Łukasz; Żuchowski, Piotr S.; Knoop, Steven

    2015-06-01

    We have obtained accurate ab initio +4Σ quartet potentials for the diatomic metastable triplet helium+alkali-metal (Li, Na, K, Rb) systems, using all-electron restricted open-shell coupled cluster singles and doubles with noniterative triples corrections CCSD(T) calculations and accurate calculations of the long-range C6 coefficients. These potentials provide accurate ab initio quartet scattering lengths, which for these many-electron systems is possible, because of the small reduced masses and shallow potentials that result in a small amount of bound states. Our results are relevant for ultracold metastable triplet helium+alkali-metal mixture experiments.

  3. Toxicity and bioaccumulation of a mixture of heavy metals in Chironomus tentans (Diptera: Chironomidae) in synthetic sediment

    SciTech Connect

    Harrahy, E.A.; Clements, W.H.

    1997-02-01

    This research investigated toxicity and bioaccumulation of a mixture of Cd, Cu, Pb, and Zn in Chironomus tentans in synthetic sediment, and compared predicted to measured steady-state bioaccumulation factors (BAFs). In a toxicity test, C. tentans were exposed to various dilutions of a base concentration (1.0 X) of a mixture of the four metals (5 {micro}g/g Cd. 10 {micro}g/g Cu. 70 {micro}g/g Pb, and 300 {micro}g/g Zn) in synthetic sediment. Mortality ranged from 17 to 100%. To measure bioaccumulation of the metals, C. tentans were exposed to 0.35 X the base concentration for a period of up to 14 d in two uptake tests. Bioaccumulation of all four metals increased over the 14-d uptake phases. Concentrations of metals in chironomids were significantly correlated with exposure time in the uptake phases. Only concentrations of copper approached background levels after 7 d depuration. Uptake rate coefficients and elimination rate constants were determined for each metal. Bioaccumulation factors were highest for Cd and lowest for Pb. With the exception of Pb, steady-state BAFs were within a factor of about two of those calculated using the first-order kinetic model. The high BAFs calculated may indicate greater bioavailability in synthetic sediment. Studies comparing toxicity and bioaccumulation of natural and synthetic sediments are necessary before the use of synthetic sediments is widely adopted.

  4. Shallow water acoustic response and platform motion modeling via a hierarchical Gaussian mixture model.

    PubMed

    Gendron, Paul J

    2016-04-01

    A hierarchical Gaussian mixture model is proposed to characterize shallow water acoustic response functions that are time-varying and sparse. The mixture model is based on the assumption that acoustic paths can be partitioned into two sets. The first is a relatively coherent set of arrivals that on average exhibit Doppler spreading about a mean Doppler and the remaining set is of multiple surface scattered paths that exhibit a spectrally flat Doppler. The hierarchy establishes constraints on the parameters of each of these Gaussian models such that coherent components of the response are both sparse and in the ensemble obey the Doppler spread profile. This is accomplished with a Bernoulli model that indicates the ensonification state of each element in the bi-frequency representation of the acoustic response function. Estimators of the time-varying acoustic response for the full duration of a broadband transmission are developed and employed to compensate for the shared time-varying dilation process among the coherent arrivals. The approach ameliorates response coherence degradation and can be employed to enhance coherent multi-path combining and is a useful alternative to time recursive estimation. The model is tested with acoustic communication recordings taken in shallow water at low signal-to-noise ratios. PMID:27106339

  5. A combined spectrophotometric-AAS method for the analysis of trace metal, EDTA, and metal-EDTA mixture solutions in adsorption modeling experiments.

    PubMed

    Güçlü, K; Hugül, M; Demirci-Cekiç, S; Reşat; Apak

    2000-10-01

    The adsorption of free- and bound-metal ions (metal complexes) as well as of ligands onto various hydrous oxide type sorbents have been extensively modelled using EDTA as the model ligand. This type of modelling uses metal ion-EDTA mixture solutions containing stoichiometrically equivalent or excessive amounts of either constituent. Consequently, for mixture solutions equilibrated with the sorbent, the aim was to develop a suitable method for determining either metal complex+free ligand (MY(2-)+H(2)Y(2-)) or metal complex+free metal (MY(2-)+M(2+)) in the aqueous filtrate, the metal M being lead or cadmium. The conventional method of analyzing such filtrates is exchanging different metal-EDTA complexes with Fe(NO(3))(3) followed by HPLC using UV detection. The developed method utilizes Vis- and AA-spectrometry widespread in common laboratories, eliminating the need for HPLC and UV techniques that require higher operational cost, expertise and contaminant-free media. The developed procedure is based on the following analyses for the possible constituents of equilibrated solution (with the sorbent). All EDTA (free or bound, as H(2)Y(2-) or MY(2-)) species are converted into FeY(-) by adding Fe(NO(3))(3), and heating at 80 degrees C for 1 h. All metal (free or bound, as M(2+) or MY(2-)) species are determined by AAS. All unbound (free) Fe(3+) species are determined by the thiocyanate spectrophotometric method at 480 nm. Then 'EDTA-bound iron (III)' is defined as added Fe minus colorimetrically (thiocyanate method) found Fe, and 'AAS-found metal' (lead or cadmium) corresponds to M(2+) and/or MY(2-), depending on the analyzed solution. If EDTA-bound Fe(III) is greater than AAS-found metal, then one has a (MY(2-)+H(2)Y(2-)) mixture where AAS-found metal is (MY(2-)), and free EDTA, i.e. (H(2)Y(2-)), is calculated from the difference. If EDTA-bound Fe(III) is smaller than AAS-found metal, then one has a (M(2+)+ MY(2-)) mixture where EDTA-bound Fe(III) is (MY(2-)), and the

  6. Response dynamics of bluff-body stabilized conical premixed turbulent flames with spatial mixture gradients

    SciTech Connect

    Chaudhuri, Swetaprovo; Cetegen, Baki M.

    2009-03-15

    Response of bluff-body stabilized conical turbulent premixed flames was experimentally studied for a range of excitation frequencies (10-400 Hz), mean flow velocities (5, 10 and 15 m/s) and three different spatial mixture distributions (uniform, inner and outer enrichment). Upstream excitation was provided by a loudspeaker producing velocity oscillation amplitudes of about 8% of the mean flow velocity. Flame response was detected by a photomultiplier observing the CH{sup *} emission from the flame. The studied turbulent flames exhibited transfer function characteristics of a low-pass filter with a cutoff Strouhal number between 0.08 and 0.12. The amplification factors at low frequencies ranged from 2 to 20 and generally increased for mean flow velocities from 5 to 15 m/s. The highest levels of amplification were found for the outer mixture enrichment followed in decreasing order by uniform and inner mixture gradient cases. The high levels of flame response for the outer enrichment case were attributed to the enhanced flame-vortex interaction in outer jet shear layer. At high excitation levels (u{sup '}/U{sub m}{approx}0.3) for U{sub m}=5 m/ s where non-linear flame response is expected, the flame exhibited a reduced amplitude response in the frequency range between 40 and 100 Hz for the uniform and outer equivalence ratio gradient cases and no discernible effect for the inner equivalence ratio gradient. In all cases, transfer function phase was found to vary linearly with excitation frequency. Finally, a relationship between the amplitude characteristics of the bluff-body wake transfer function and flame blowoff equivalence ratio was presented. (author)

  7. Gene expression responses in male fathead minnows exposed to binary mixtures of an estrogen and antiestrogen

    PubMed Central

    Garcia-Reyero, Natàlia; Kroll, Kevin J; Liu, Li; Orlando, Edward F; Watanabe, Karen H; Sepúlveda, María S; Villeneuve, Daniel L; Perkins, Edward J; Ankley, Gerald T; Denslow, Nancy D

    2009-01-01

    Background Aquatic organisms are continuously exposed to complex mixtures of chemicals, many of which can interfere with their endocrine system, resulting in impaired reproduction, development or survival, among others. In order to analyze the effects and mechanisms of action of estrogen/anti-estrogen mixtures, we exposed male fathead minnows (Pimephales promelas) for 48 hours via the water to 2, 5, 10, and 50 ng 17α-ethinylestradiol (EE2)/L, 100 ng ZM 189,154/L (a potent antiestrogen known to block activity of estrogen receptors) or mixtures of 5 or 50 ng EE2/L with 100 ng ZM 189,154/L. We analyzed gene expression changes in the gonad, as well as hormone and vitellogenin plasma levels. Results Steroidogenesis was down-regulated by EE2 as reflected by the reduced plasma levels of testosterone in the exposed fish and down-regulation of genes in the steroidogenic pathway. Microarray analysis of testis of fathead minnows treated with 5 ng EE2/L or with the mixture of 5 ng EE2/L and 100 ng ZM 189,154/L indicated that some of the genes whose expression was changed by EE2 were blocked by ZM 189,154, while others were either not blocked or enhanced by the mixture, generating two distinct expression patterns. Gene ontology and pathway analysis programs were used to determine categories of genes for each expression pattern. Conclusion Our results suggest that response to estrogens occurs via multiple mechanisms, including canonical binding to soluble estrogen receptors, membrane estrogen receptors, and other mechanisms that are not blocked by pure antiestrogens. PMID:19594897

  8. Physiological and transcriptional responses of Nitrosomonas europaea to TiO2 and ZnO nanoparticles and their mixtures.

    PubMed

    Yu, Ran; Wu, Junkang; Liu, Meiting; Chen, Lianghui; Zhu, Guangcan; Lu, Huijie

    2016-07-01

    The short-term combined effects of two most extensively used nanoparticles (NPs) TiO2 NPs (n-TiO2) and ZnO NPs (n-ZnO) versus their individual cytotoxicities on a model ammonia-oxidizing bacterium, Nitrosomonas europaea, were investigated at both physiological and transcriptional levels. n-ZnO exerted more serious impairment effects on cell morphology, cell density, membrane integrity, and ammonia monooxygenase activity than n-TiO2. However, the co-existing n-TiO2 displayed a dose-dependent mitigation effect on n-ZnO cytotoxicity. Consistently, the n-TiO2 and n-ZnO mixture-impacted global transcriptional expression profile, obtained with the whole-genome microarray technique, was more comparable to the n-TiO2-impacted one than that impacted by n-ZnO. The expressions of numerous genes associated with heavy metal scavenging, DNA repair, and oxidative stress response were less up-regulated under the binary impacts of NP mixture than n-ZnO. Moreover, only n-ZnO alone stimulated the up-regulations of heavy metal resistance genes, which further implied the capacity of co-existing n-TiO2 to alleviate n-ZnO cytotoxicity. In addition, the damage of cell membrane structures and the suppression of cell membrane biogenesis-related gene expressions under the influence of either individual NPs or their combinations strongly suggested that the interruption of cell membranes and the associated metabolic activities would probably be one of NPs' critical cytotoxicity mechanisms. PMID:26996914

  9. Expanding metal mixture toxicity models to natural stream and lake invertebrate communities.

    PubMed

    Balistrieri, Laurie S; Mebane, Christopher A; Schmidt, Travis S; Keller, Wendel Bill

    2015-04-01

    A modeling approach that was used to predict the toxicity of dissolved single and multiple metals to trout is extended to stream benthic macroinvertebrates, freshwater zooplankton, and Daphnia magna. The approach predicts the accumulation of toxicants (H, Al, Cd, Cu, Ni, Pb, and Zn) in organisms using 3 equilibrium accumulation models that define interactions between dissolved cations and biological receptors (biotic ligands). These models differ in the structure of the receptors and include a 2-site biotic ligand model, a bidentate biotic ligand or 2-pKa model, and a humic acid model. The predicted accumulation of toxicants is weighted using toxicant-specific coefficients and incorporated into a toxicity function called Tox, which is then related to observed mortality or invertebrate community richness using a logistic equation. All accumulation models provide reasonable fits to metal concentrations in tissue samples of stream invertebrates. Despite the good fits, distinct differences in the magnitude of toxicant accumulation and biotic ligand speciation exist among the models for a given solution composition. However, predicted biological responses are similar among the models because there are interdependencies among model parameters in the accumulation-Tox models. To illustrate potential applications of the approaches, the 3 accumulation-Tox models for natural stream invertebrates are used in Monte Carlo simulations to predict the probability of adverse impacts in catchments of differing geology in central Colorado (USA); to link geology, water chemistry, and biological response; and to demonstrate how this approach can be used to screen for potential risks associated with resource development. PMID:25477294

  10. THE CARCINOGENIC RESPONSE TO A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS (DBP) WAS LESS THAN ADDITIVE

    EPA Science Inventory

    THE CARCINOGENIC RESPONSE TO A MIXTURE OF DRINKING WATER DISINFECTION BY -PRODUCTS (DBP) W AS LESS THAN ADDITIVE.

    Current default risk assessments for chemical mixtures assume additivity of carcinogenic effects but this may under or over represent the actual biological res...

  11. Empirical evaluation of sufficient similarity in dose-response for environmental risk assessment of a mixture of 11 pyrethroids.

    EPA Science Inventory

    Chemical mixtures in the environment are often the result of a dynamic process. When dose-response data are available on random samples throughout the process, equivalence testing can be used to determine whether the mixtures are sufficiently similar based on a pre-specified biol...

  12. Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS.

    PubMed

    You, Mei-Li

    2016-01-01

    Cumene hydroperoxide (CHP) is widely used in chemical processes, mainly as an initiator for the polymerization of acrylonitrile-butadiene-styrene. It is a typical organic peroxide and an explosive substance. It is susceptible to thermal decomposition and is readily affected by contamination; moreover, it has high thermal sensitivity. The reactor tank, transit storage vessel, and pipeline used for manufacturing and transporting this substance are made of metal. Metal containers used in chemical processes can be damaged through aging, wear, erosion, and corrosion; furthermore, the containers might release metal ions. In a metal pipeline, CHP may cause incompatibility reactions because of catalyzed exothermic reactions. This paper discusses and elucidates the potential thermal hazard of a mixture of CHP and an incompatible material's metal ions. Differential scanning calorimetry (DSC) and thermal activity monitor III (TAM III) were employed to preliminarily explore and narrate the thermal hazard at the constant temperature environment. The substance was diluted and analyzed by using a gas chromatography spectrometer (GC) and gas chromatography/mass spectrometer (GC/MS) to determine the effect of thermal cracking and metal ions of CHP. The thermokinetic parameter values obtained from the experiments are discussed; the results can be used for designing an inherently safer process. As a result, the paper finds that the most hazards are in the reaction of CHP with Fe(2+). When the metal release is exothermic in advance, the system temperature increases, even leading to uncontrollable levels, and the process may slip out of control. PMID:27136518

  13. Perturbation theory of structure in classical liquid mixtures: Application to metallic systems near phase separation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Henderson, R. L.

    1974-01-01

    The partial structure factors of classical simple liquid mixtures near phase separation are dicussed. The theory is developed for particles interacting through pair potentials, and is thus appropriate both to insulating fluids, and also to metallic systems if these may be described by an effective ion-ion pair interaction. The motivation arose from consideration of metallic liquid mixtures, in which resistive anomalies have been observed near phase separation. A mean field theory correction appropriate to 3 pair potential for the effects of correlated motions in the reference fluid is studied. The work is cast in terms of functions which are closely related to the direct correlation functions of Ornstein and Zernike. The results are qualitatively in accord with physical expectations. Quantitative agreement with experiment seems to turn on the selection of the hard core reference potential in terms of the metallic effective pair potential. It is suggested that the present effective pair potentials are perhaps not properly used to calculate the metallic structure factors at long wavelength.

  14. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2001-08-01

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end work is progress using an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. For the Third Quarter of this project we present our data on trace metal partitioning obtained from combustion of MSS and Gas, MSS and Coal and Coal and Gas alone.

  15. Study of metal transfer in CO2 laser+GMAW-P hybrid welding using argon-helium mixtures

    NASA Astrophysics Data System (ADS)

    Zhang, Wang; Hua, Xueming; Liao, Wei; Li, Fang; Wang, Min

    2014-03-01

    The metal transfer in CO2 Laser+GMAW-P hybrid welding by using argon-helium mixtures was investigated and the effect of the laser on the mental transfer is discussed. A 650 nm laser, in conjunction with the shadow graph technique, is used to observe the metal transfer process. In order to analyze the heat input to the droplet and the droplet internal current line distribution. An optical emission spectroscopy system was employed to estimate default parameter and optimized plasma temperature, electron number densities distribution. The results indicate that the CO2 plasma plume have a significant impact to the electrode melting, droplet formation, detachment, impingement onto the workpiece and weld morphology. Since the current distribution direction flow changes to the keyhole, to obtain a metal transfer mode of one droplet per pulse, the welding parameters should be adjusted to a higher pulse time (TP) and a lower voltage.

  16. Accumulation and regulation effects from the metal mixture of Zn, Pb, and Cd in the tropical shrimp Penaeus vannamei.

    PubMed

    Núñez-Nogueira, Gabriel; Fernández-Bringas, Laura; Ordiano-Flores, Alfredo; Gómez-Ponce, Alejandro; de León-Hill, Claudia Ponce; González-Farías, Fernando

    2012-12-01

    Environmental metal pollution is one of the major problems faced by humankind. This type of pollution affects aquatic systems (estuaries, coastal lagoons, etc.), which are very dynamic systems, therefore making the study of the effects on the organisms that inhabit them an essential issue. In this study, the capacity of metal regulation by decapod crustacean Penaeus vannamei juveniles was determined. The effects of zinc, lead, and cadmium were tested individually and as a metal mixture exposure to determine possible synergism. The results showed that juvenile shrimps were capable of regulating zinc and lead, whereas cadmium was accumulated without any excretion, at least within the concentrations studied. It was also proved that under the estuarine conditions tested here, P. vannamei juveniles showed capacity to act as a bioindicator for cadmium. PMID:22945625

  17. EXPRESSION OF RAINBOW TROUT P450 MRNA IN RESPONSE TO MIXTURES OF B[A]P, CADMIUM, AND ESTRADIOL

    EPA Science Inventory

    A great deal of uncertainty exists regarding the response of biological indicators of exposure to mixtures of chemical stressors. Enzymatic transformation systems that are exposed to xenobiotic insult may interact unpredictably when more than one stressor is present. In particu...

  18. PROCEDURES FOR DERIVING EQUILIBRIUM PARTITIONING SEDIMENT BENCHMARKS (ESBS) FOR THE PROTECTION OF BENTHIC ORGANISMS: METALS MIXTURES (CADMIUM, COPPER, LEAD, NICKEL, SILVER, AND ZINC)

    EPA Science Inventory

    This equilibrium partitioning sediment benchmark (ESB) document describes procedures to derive concentrations of metal mixtures in sediment which are protective of the presence of benthic organisms. The equilibrium partitioning (EqP) approach was chosen because it accounts for t...

  19. Metal-binding peptides: Their role in responses to metal stress

    SciTech Connect

    Rauser, W.E. )

    1989-04-01

    Excess metals are one stress that plants may encounter. The metals Cd, Cu, Ni, and Zn are considered because of concern for their entry into the foodchain of animals and man. Studies of metal tolerant plants and cell cultures suggest three types of responses: exclusion of metal from protoplasts by binding to cell walls, differential membrane transport reducing metal exposure of enzymes, and intracellular chelation of metal in innocuous forms. One group of compounds involved in the latter response are metal-binding peptides designated phytochelatins. They are a family of small peptides composed of five kinds of amino acids, including 2 to 11 cysteines which provide thiols for selective binding of metal. Metals induce the synthesis of phytochelatins through unknown enzymes involving glutathione. In plant cell cultures the peptides bind about 90% of the intracellular Cd. In roots of young plants up to half of the metal is bound by phytochelatins. Intact plants probably use a combination of responses to deal with excess metals, phytochelatins may dominate in certain cases.

  20. Integrated photo-responsive metal oxide semiconductor circuit

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban D. (Inventor); Dargo, David R. (Inventor); Lyons, John C. (Inventor)

    1987-01-01

    An infrared photoresponsive element (RD) is monolithically integrated into a source follower circuit of a metal oxide semiconductor device by depositing a layer of a lead chalcogenide as a photoresistive element forming an ohmic bridge between two metallization strips serving as electrodes of the circuit. Voltage from the circuit varies in response to illumination of the layer by infrared radiation.

  1. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2003-01-31

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Previous research results have demonstrated that the inhalation of coal/MSS ash particles cause an increase in lung permeability than coal ash particles alone. Elemental analysis of the coal/MSS ash particles showed that Zn was more abundant in these ash particles than the ash particles of coal ash alone.

  2. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2001-05-04

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NO{sub x} concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end we shall use an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NO{sub x} and low NO{sub x} combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined.

  3. Shear and dielectric responses of propylene carbonate, tripropylene glycol, and a mixture of two secondary amides

    NASA Astrophysics Data System (ADS)

    Gainaru, Catalin; Hecksher, Tina; Olsen, Niels Boye; Böhmer, Roland; Dyre, Jeppe C.

    2012-08-01

    Propylene carbonate and a mixture of two secondary amides, N-methylformamide and N-ethylacetamide, are investigated by means of broadband dielectric and mechanical shear spectroscopy. The similarities between the rheological and the dielectric responses of these liquids and of the previously investigated tripropylene glycol are discussed within a simple approach that employs an electrical circuit for describing the frequency-dependent behavior of viscous materials. The circuit is equivalent to the Gemant-DiMarzio-Bishop model, but allows for a negative capacitive element. The circuit can be used to calculate the dielectric from the mechanical response and vice versa. Using a single parameter for a given system, good agreement between model calculations and experimental data is achieved for the entire relaxation spectra, including secondary relaxations and the Debye-like dielectric peak in the secondary amides. In addition, the predictions of the shoving model are confirmed for the investigated liquids.

  4. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2002-02-05

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NO{sub x} concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end work is progress using an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NO{sub x} and low NO{sub x} combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. For the Fifth Quarter of this project we focus on determining whether certain trace metals are associated with certain major species, such as calcium and iron. To this end we present data showing correlations between As, Se,and Sb and major species, such as Ca and Fe. Conversely, lack of correlation between trace metals and elements, such as aluminum can also be used to infer lack of chemical association.

  5. Toxicity Induced by a Metal Mixture (Cd, Pb and Zn) in the Yeast Pichia kudriavzevii: The Role of Oxidative Stress.

    PubMed

    Mesquita, Vanessa A; Silva, Cristina F; Soares, Eduardo V

    2016-05-01

    The present work aims to contribute for the elucidation of the role of oxidative stress in the toxicity associated with the exposure of Pichia kudriavzevii to multi-metals (Cd, Pb and Zn). Cells of the non-conventional yeast P. kudriavzevii exposed for 6 h to the action of multi-metals accumulated intracellular reactive oxygen species (ROS), evaluated through the oxidation of the probe 2',7'-dichlorodihydrofluorescein diacetate. A progressive loss of membrane integrity (monitored using propidium iodide) was observed in multi-metal-treated cells. The triggering of intracellular ROS accumulation preceded the loss of membrane integrity. These results suggest that the disruption of membrane integrity can be attributed to the oxidative stress. The exposure of yeast cells to single metal showed that, under the concentrations tested, Pb was the metal responsible for the induction of the oxidative stress. Yeast cells coexposed to an antioxidant (ascorbic acid) and multi-metals did not accumulate intracellular ROS, but loss proliferation capacity. Together, the data obtained indicated that intracellular ROS accumulation contributed to metal toxicity, namely for the disruption of membrane integrity of the yeast P. kudriavzevii. It was proposed that Pb toxicity (the metal responsible for the toxic symptoms under the conditions tested) result from the combination of an ionic mechanism and the intracellular ROS accumulation. PMID:26781618

  6. Chemical and thermal stability of refrigerant-lubricant mixtures with metals. Final report

    SciTech Connect

    Huttenlocher, D.F.

    1992-10-09

    This report presents the results of a sealed tube stability study on twenty-one refrigerant-lubricant mixtures selected from the following groupings: HFCs R-32, R-125, R-134, R-134a, R-143a, and R-152a with one or more lubricants selected from among three pentaerythritol esters and three polyalkylene glycols. All lubricants were carefully predried to 25 ppm or less moisture content. HCFCs R-22, R-123, R-124, and R-142b, as well as CFC R-11, with one or more lubricants selected from among two mineral oils and one alkylbenzene fluid. Bach test mixture was aged at three temperature levels.

  7. Chemical and thermal stability of refrigerant-lubricant mixtures with metals

    SciTech Connect

    Huttenlocher, D.F.

    1992-10-09

    This report presents the results of a sealed tube stability study on twenty-one refrigerant-lubricant mixtures selected from the following groupings: HFCs R-32, R-125, R-134, R-134a, R-143a, and R-152a with one or more lubricants selected from among three pentaerythritol esters and three polyalkylene glycols. All lubricants were carefully predried to 25 ppm or less moisture content. HCFCs R-22, R-123, R-124, and R-142b, as well as CFC R-11, with one or more lubricants selected from among two mineral oils and one alkylbenzene fluid. Bach test mixture was aged at three temperature levels.

  8. Molecular dynamics investigation of separation of hydrogen sulfide from acidic gas mixtures inside metal-doped graphite micropores.

    PubMed

    Huang, Pei-Hsing

    2015-09-21

    The separation of poisonous compounds from various process fluids has long been highly intractable, motivating the present study on the dynamic separation of H2S in acidic-gas-mixture-filled micropores. The molecular dynamics approach, coupled with the isothermal-isochoric ensemble, was used to model the molecular interactions and adsorption of H2S/CO2/CO/H2O mixtures inside metal-doped graphite slits. Due to the difference in the adsorption characteristics between the two distinct adsorbent materials, the metal dopant in the graphitic micropores leads to competitive adsorption, i.e. the Au and graphite walls compete to capture free adsorbates. The effects of competitive adsorption, coupled with changes in the gas temperature, concentration, constituent ratio and slit width on the constituent separation of mixtures were systematically studied. The molecule-wall binding energies calculated in this work (those of H2S, H2O and CO on Au walls and those of H2O, CO and CO2 on graphite walls) show good agreement with those obtained using density functional theory (DFT) and experimental results. The z-directional self-diffusivities (Dz) for adsorbates inside the slit ranged from 10(-9) to 10(-7) m(2) s(-1) as the temperature was increased from 10 to 500 K. The values are comparable with those for a typical microporous fluid (10(-8)-10(-9) m(2) s(-1) in a condensed phase and 10(-6)-10(-7) m(2) s(-1) in the gaseous state). The formation of H-bonding networks and hydrates of H2S is disadvantageous for the separation of mixtures. The results indicate that H2S can be efficiently separated from acidic gas mixtures onto the Au(111) surface by (i) reducing the mole fraction of H2S and H2O in the mixtures, (ii) raising the gas temperature to the high temperature limit (≥400 K), and (iii) lowering the slit width to below the threshold dimension (≤23.26 Å). PMID:26256825

  9. Calcium fluxes in juvenile tilapia, Oreochromis mossambicus, exposed to sublethal waterborne Cd, Cu or mixtures of these metals

    SciTech Connect

    Pelgrom, S.M.G.J.; Lock, R.A.C.; Balm, P.H.M.; Bonga, S.E.W.

    1997-04-01

    In juvenile tilapia the effects of waterborne Cu, Cd, and combinations of these metals on whole-body Ca fluxes were studied, using {sup 45}Ca as tracer. The maintenance of Ca homeostasis in fish is crucial throughout life but is especially important in young fish; Ca is also critical for growth. Single metal exposure had no effect on Ca fluxes after 6 d of exposure. In fish coexposed to 200 {micro}g Cu L{sup {minus}1} + 70 {micro}g Cd L{sup {minus}1} however, Ca influx was significantly decreased, whereas Ca efflux was not affected. As a result, the net flux was decreased. Because the effect on Ca fluxes observed in Cu/Cd-coexposed fish could not have been predicted from the effects of single metal exposures, this study underscores the impact of interactions between toxicants. Because natural freshwaters are commonly polluted by mixtures of metals, interactions between toxicants are important in risk assessment of heavy metals.

  10. Hydrotreating catalysts comprising a mixture of a sulfide of a promoter metal, amorphous sulfide of trivalent chromium and microcrystalline molybdenum or tungsten sulfide

    SciTech Connect

    Jacobson, A.J.; Ho, T.C.; Chianelli, R.R.; Steger, J.J.; Montagna, A.A.

    1989-04-25

    A process is described for preparing a catalyst comprising a mixture of (i) an amorphous sulfide of trivalent chromium, (ii) microcrystallites of a metal sulfide of a metal selected from the group consisting of Mo, W, and mixtures thereof, and (iii) a sulfide of at least one promoter metal selected from the group consisting of Ni, Co, Mn, Zn, Cu, mixtures thereof and mixtures thereof with Fe, the process comprising heating a precursor at a temperature of at least about 200/sup 0/C., in the presence of sulfur and under oxygen free conditions for a time sufficient to form the catalyst. The precursor comprises a mixture of (i) a hydrated oxide of trivalent chromium and (ii) a thiometallate salt of the general formula (ML)(Mo/sub y/W/sub 1-y/S/sub 4/) wherein M is one or more of the divalent promoter metals selected from the group consisting of Ni, Co, Mn, Zn, Cu, mixtures thereof and mixtures thereof with Fe, wherein Y is any value ranging from 0 to 1, L is one or more neutral, nitrogen-containing ligands, at least one of which is a chelating polydentate ligand.

  11. Development of Metal/Polymer Mixtures for Micro Powder Injection Moulding

    SciTech Connect

    Quinard, C.; Barriere, T.; Gelin, J. C.

    2007-04-07

    Important research tasks at ENSMM/LMA are concerned for the development of mixtures of Fine powders associated to polymer binders dedicated to the powder injection moulding (PIM) and to the powder injection micro-moulding ({mu}PIM) in accordance with many works already carried out with different feedstock suppliers dedicated to the macro-components.

  12. Development of Metal/Polymer Mixtures for Micro Powder Injection Moulding

    NASA Astrophysics Data System (ADS)

    Quinard, C.; Barriere, T.; Gelin, J. C.

    2007-04-01

    Important research tasks at ENSMM/LMA are concerned for the development of mixtures of Fine powders associated to polymer binders dedicated to the powder injection moulding (PIM) and to the powder injection micro-moulding (μPIM) in accordance with many works already carried out with different feedstock suppliers dedicated to the macro-components.

  13. TOXICITY EVALUATION OF A COMPLEX METAL MIXTURE TO THE SOFTSHELL CLAM 'MYA ARENARIA'

    EPA Science Inventory

    Adults of the softshell clam Mya arenaria were continuously subjected to a flowing raw seawater solution containing a mixture of salts of manganese, zinc, lead, nickel, copper, and cadmium. Final calculated concentrations, in micrograms per liter of the toxicant solution were 720...

  14. Investigation of paramagnetic response of metallic epoxies

    NASA Technical Reports Server (NTRS)

    Ash, R. L.; Chegini, H.

    1986-01-01

    The paramagnetic properties of epoxies which were impregnated with metal ions were examined as the primary task in this research. A major conclusion was that the quality control of the epoxies was insufficient to permit reliable evaluation. Subsequently, a new set of specimens is being prepared. As an additional task, a new method is investigated for estimating heats of combustion for saturated hydrocarbons. The results of that investigation have shown that the empirical approach is a promising method for on-line measurements.

  15. Efficient destruction of CF4 through in situ generation of alkali metals from heated alkali halide reducing mixtures.

    PubMed

    Lee, Myung Churl; Choi, Wonyong

    2002-03-15

    Perfluorocarbons (PFCs) are the most potent green house gases that are very recalcitrant at destruction. An effective way of converting PFCs using hot solid reagents into safe products has been recently introduced. By investigating the thermal reductive destruction of tetrafluoromethane (CF4) we provided new insight and more physicochemical consideration on this novel process. The complete destruction of CF4was successfully achieved by flowing the gas through a heated reagent bed (400-950 degrees C) that contained powder mixtures of alkali halides, CaO, and Si. The silicon acted as a reducing agent of alkali halides for the in-situ production of alkali metals, and the calcium oxide played the role of a halide ion acceptor. The absence of any single component in this ternary mixture drastically reduced the destruction efficiency of CF4. The CF4 destruction efficiencies with the solid reagent containing the alkali halide, MX, increased in the order of Li approximately Na < K < Cs for alkali cations and I < Br < Cl < F for halide anions. This trend agreed with the endothermicity of the alkali metal generation reaction: the higher the endothermicity, the lower the destruction efficiency. Alkali metal generation was indirectly detected by monitoring H2 production from its reaction with water. The production of alkali metals increased with NaF, KF, and CsF in this order. The CsF/CaO/Si system exhibited the complete destruction of CF4 at as low as 600 degrees C. The solid product analysis by X-ray diffraction (XRD) showed the formation of CaF2 and the depletion of Si with black carbon particles formed in the solid reagent residue. No CO/CO2 and toxic HF and SiF4 formation were detected in the exhaust gas. PMID:11944694

  16. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  17. Screening Metal-Organic Frameworks by Analysis of Transient Breakthrough of Gas Mixtures in a Fixed Bed Adsorber

    SciTech Connect

    Krishna, Rajamani; Long, Jeffrey R.

    2011-07-07

    Metal–organic frameworks (MOFs) offer considerable potential for separating a variety of mixtures that are important in applications such as CO₂ capture and H₂ purification. In view of the vast number of MOFs that have been synthesized, there is a need for a reliable procedure for comparing screening and ranking MOFs with regard to their anticipated performance in pressure swing adsorption (PSA) units. For this purpose, the most commonly used metrics are the adsorption selectivity and the working capacity. Here, we suggest an additional metric for comparing MOFs that is based on the analysis of the transient response of an adsorber to a step input of a gaseous mixture. For a chosen purity of the gaseous mixture exiting from the adsorber, a dimensionless breakthrough time τ{sub break} can be defined and determined; this metric determines the frequency of required regeneration and influences the productivity of a PSA unit. The values of τ{sub break} are dictated both by selectivity and by capacity metrics .By performing transient adsorber calculations for separation of CO₂/H₂, CO₂/CH₄, CH₄/H₂, and CO₂/CH₄/H₂ mixtures, we compare the values of τbreak to highlight some important advantages of MOFs over conventionally used adsorbents such as zeolite NaX. For a given separation duty, such comparisons provide a more realistic ranking of MOFs than afforded by either selectivity or capacity metrics alone. We conclude that breakthrough calculations can provide an essential tool for screening MOFs.

  18. Controlling optical response of metallic nanostructure

    SciTech Connect

    Grigorenko, Ilya

    2008-01-01

    In this talk I am going to discuss the direct and inverse problems in nanoplasmonics in classical, and in particular quantum regimes of excitations. The inverse problem in nanoplasmonics is aimed to control the eigenspectrum, excitations,and other physical properties of nanosized quantum systems via controlling their size, shape, and structural composition. Using a combination of modern modeling techniques and optimization procedures, one can succeed to solve the inverse problem, namely, to find a nanostructure which has the desired functionality, or to find optimal control field in the presence of known nanostructured metallic surface.

  19. Exposure to Mixtures of Metals and Neurodevelopmental Outcomes: A Multidisciplinary Review Using an Adverse Outcome Pathway Framework.

    PubMed

    von Stackelberg, Katherine; Guzy, Elizabeth; Chu, Tian; Claus Henn, Birgit

    2015-06-01

    Current risk assessment guidance calls for an individual chemical-by-chemical approach that fails to capture potential interactive effects of exposure to environmental mixtures and genetic variability. We conducted a review of the literature on relationships between prenatal and early life exposure to mixtures of lead (Pb), arsenic (As), cadmium (Cd), and manganese (Mn) with neurodevelopmental outcomes. We then used an adverse outcome pathway (AOP) framework to integrate lines of evidence from multiple disciplines based on evolving guidance developed by the Organization for Economic Cooperation and Development (OECD). Toxicological evidence suggests a greater than additive effect of combined exposures to As-Pb-Cd and to Mn with any other metal, and several epidemiologic studies also suggest synergistic effects from binary combinations of Pb-As, Pb-Cd, and Pb-Mn. The exposure levels reported in these epidemiologic studies largely fall at the high-end (e.g., 95th percentile) of biomonitoring data from the National Health and Nutrition Examination Survey (NHANES), suggesting a small but significant potential for high-end exposures. This review integrates multiple data sources using an AOP framework and provides an initial application of the OECD guidance in the context of potential neurodevelopmental toxicity of several metals, recognizing the evolving nature of regulatory interpretation and acceptance. PMID:26096925

  20. THE CARCINOGENIC RESPONSE OF TSC2 MUTANT LONG EVANS (EKER) RATS TO A MIXTURE OF DRINKING WATER DISINFECTION BY-PRODUCTS WAS LESS THAN ADDITIVE

    EPA Science Inventory

    Cancer risk assessment methods for chemical mixtures in drinking water are not well defined. Current default risk assessments for chemical mixtures assume additivity of carcinogenic effects but this may not represent the actual biological response. A rodent model of hereditary ...

  1. Direct determination of metallic elements in crude oils and petroleum products by GF-AAS using a two solvent mixture

    SciTech Connect

    Platteau, O.

    1994-12-31

    The very low detection limits attainable for element determinations by graphite furnace atomic absorption spectrometry (GF-AAS) is of particular interest to directly analyze metallic elements in materials difficult to handle, for which sample preparation procedures are troublesome and time-consuming. Crude oils and their by-products known as {open_quote}black products{close_quote} are this type of materials. Both the wet and dry ashing procedures, currently applied to obtain an aqueous solution containing the elements of interest, are lengthy and have a high probability for sample contamination by the addition of reagents and sample handling. The simple dilution with an adequate solvent is by far a better alternative but, the results obtained by some authors show a significant dependence on the matrix. Also, in these determinations organometallic compounds soluble in the selected solvent must be used as standards, these materials are expensive, many are unstable and their similarity to a typical organic matrix is highly questionable. As an alternative to these procedures, a two solvent mixture have been tested which allows the use of aqueous inorganic solutions of standards to perform the elements determinations by GF-AAS. The mixture is composed of 2,6-dimethyl-4-heptanone (DEBK) and isopropanol (ISOPOH). It has been established that a mixture of DIBK/lSOPOH (1+4) can tolerate up to 30% of water by volume. Determinations of V and Ni by GF-AAS in samples of crude oil dissolved in the mentioned solvents mixture and those prepared by dry ashing as well as by X-ray fluorescence analysis, show good recoveries for the proposed method. The results for Ni were acceptable only after the addition of a solution of 1500 ppm Pd 10% (m/V) or dodecylbenzene sulfonic acid (DRSA) as matrix modifiers to the sample (1+4, V/V) in the graphite furnace.

  2. Zero inflation in ordinal data: Incorporating susceptibility to response through the use of a mixture model

    PubMed Central

    Kelley, Mary E.; Anderson, Stewart J.

    2008-01-01

    Summary The aim of the paper is to produce a methodology that will allow users of ordinal scale data to more accurately model the distribution of ordinal outcomes in which some subjects are susceptible to exhibiting the response and some are not (i.e., the dependent variable exhibits zero inflation). This situation occurs with ordinal scales in which there is an anchor that represents the absence of the symptom or activity, such as “none”, “never” or “normal”, and is particularly common when measuring abnormal behavior, symptoms, and side effects. Due to the unusually large number of zeros, traditional statistical tests of association can be non-informative. We propose a mixture model for ordinal data with a built-in probability of non-response that allows modeling of the range (e.g., severity) of the scale, while simultaneously modeling the presence/absence of the symptom. Simulations show that the model is well behaved and a likelihood ratio test can be used to choose between the zero-inflated and the traditional proportional odds model. The model, however, does have minor restrictions on the nature of the covariates that must be satisfied in order for the model to be identifiable. The method is particularly relevant for public health research such as large epidemiological surveys where more careful documentation of the reasons for response may be difficult. PMID:18351711

  3. Deformation Response and Life of Metallic Composites

    NASA Technical Reports Server (NTRS)

    Lissenden, Cliff J.

    2005-01-01

    The project was initially funded for one year (for $100,764) to investigate the potential of particulate reinforced metals for aeropropulsion applications and to generate fatigue results that quantify the mean stress effect for a titanium alloy matrix material (TIMETAL 21S). The project was continued for a second year (for $85,000) to more closely investigate cyclic deformation, especially ratcheting, of the titanium alloy matrix at elevated temperature. Equipment was purchased (for $19,000) to make the experimental program feasible; this equipment included an extensometer calibrator and a multi-channel signal conditioning amplifier. The project was continued for a third year ($50,000) to conduct cyclic relaxation experiments aimed at validating the elastic-viscoelastic-viscoplastic model that NASA GRC had developed for the titanium alloy. Finally, a one-year no cost extension was granted to enable continued analysis of the experimental results and model comparisons.

  4. Characterization and Modeling Analysis for Metal-Semiconductor-Metal GaAs Diodes with Pd/SiO2 Mixture Electrode

    PubMed Central

    Tan, Shih-Wei; Lai, Shih-Wen

    2012-01-01

    Characterization and modeling of metal-semiconductor-metal (MSM) GaAs diodes using to evaporate SiO2 and Pd simultaneously as a mixture electrode (called M-MSM diodes) compared with similar to evaporate Pd as the electrode (called Pd-MSM diodes) were reported. The barrier height (φb) and the Richardson constant (A*) were carried out for the thermionic-emission process to describe well the current transport for Pd-MSM diodes in the consideration of the carrier over the metal-semiconductor barrier. In addition, in the consideration of the carrier over both the metal-semiconductor barrier and the insulator-semiconductor barrier simultaneously, thus the thermionic-emission process can be used to describe well the current transport for M-MSM diodes. Furthermore, in the higher applied voltage, the carrier recombination will be taken into discussion. Besides, a composite-current (CC) model is developed to evidence the concepts. Our calculated results are in good agreement with the experimental ones. PMID:23226352

  5. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt

    2002-02-05

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NO{sub x} concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. To this end work is progress using an existing 17kW downflow laboratory combustor, available with coal and sludge feed capabilities. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NO{sub x} and low NO{sub x} combustion conditions will be investigated (unstaged and staged combustion). The proposed work uses existing analytical and experimental facilities and draws on 20 years of research on NO{sub x} and fine particles that has been funded by DOE in this laboratory. Four barrels of dried sewage sludge are currently in the laboratory. Insofar as possible pertinent mechanisms will be elucidated. Tradeoffs between CO{sub 2} control, NO{sub x} control, and inorganic fine particle and toxic metal emissions will be determined. Progress in the Sixth Quarter (January 1, 2002 through March 31, 2002) was slow because of slagging problems in the combustor. These required the combustor to be rebuilt, a job that is not yet complete. A paper describing our results heretofore has been accepted by the Journal Environmental Science and Technology.

  6. Community responses of aquatic insects to heavy metals

    SciTech Connect

    Clements, W.H.; Cherry, D.S.; Cairns, J.

    1987-07-01

    Community level toxicity tests were conducted in outdoor experimental streams to examine the responses of aquatic insects to heavy metals. Introduced substrates (plastic trays filled with small cobble) were colonized at several locations in a river impacted by heavy metals. After 30 d, 4delta trays from an upstream control site were transferred to 12 outdoor experimental streams. Each stream was randomly assigned to one of three treatments: control, low metals, and high metals. Two trays were removed from each stream after 4 and 10 d exposure. Community structure on these trays was compared to field data collected from control and impacted sites. Macroinvertebrate density and number of taxa were reduced in both treated streams and at impacted field sites. Owing to differences in relative sensitivity to metals, the percent composition of dominant taxa also varied among treatments.

  7. Latent energy storage with salt and metal mixtures for solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Konstantinou, K. S.

    1988-01-01

    This paper examines three design alternatives for the development of a solar dynamic heat receiver as applied to power systems operating in low earth orbit. These include a base line design used for comparison in ongoing NASA studies, a system incorporating a salt energy storage system with the salt dispersed within a metal mesh and a hybrid system incorporating both a molten salt and molten metal for energy storage. Based on a typical low earth orbit condition, designs are developed and compared to determine the effect of resultant conductivity, heat capacity and heat of fusion on system size, weight, temperature gradients, cycle turbine inlet temperature and material utilization.

  8. Thermoelastic response of thin metal films and their adjacent materials

    SciTech Connect

    Kang, S.; Yoon, Y.; Kim, J.; Kim, W.

    2013-01-14

    A pulsed laser beam applied to a thin metal film is capable of launching an acoustic wave due to thermal expansion. Heat transfer from the thin metal film to adjacent materials can also induce thermal expansion; thus, the properties of these adjacent materials (as well as the thin metal film) should be considered for a complete description of the thermoelastic response. Here, we show that adjacent materials with a small specific heat and large thermal expansion coefficient can generate an enhanced acoustic wave and we demonstrate a three-fold increase in the peak pressure of the generated acoustic wave on substitution of parylene for polydimethylsiloxane.

  9. A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures.

    PubMed

    Rodríguez-Lugo, Rafael E; Trincado, Mónica; Vogt, Matthias; Tewes, Friederike; Santiso-Quinones, Gustavo; Grützmacher, Hansjörg

    2013-04-01

    The development of an efficient catalytic process that mimics the enzymatic function of alcohol dehydrogenase is critical for using biomass alcohols for both the production of H2 as a chemical energy carrier and fine chemicals under waste-free conditions. Dehydrogenation of alcohol-water mixtures into their corresponding acids with molecular hydrogen as the sole by-product from the reaction can be catalysed by a ruthenium complex with a chelating bis(olefin) diazadiene ligand. This complex, [K(dme)2][Ru(H)(trop2dad)], stores up to two equivalents of hydrogen intramolecularly, and catalyses the production of H2 from alcohols in the presence of water and a base under homogeneous conditions. The conversion of a MeOH-H2O mixture proceeds selectively to CO2/H2 gas formation under neutral conditions, thereby allowing the use of the entire hydrogen content (12% by weight). Isolation and characterization of the ruthenium complexes from these reactions suggested a mechanistic scenario in which the trop2dad ligand behaves as a chemically 'non-innocent' co-operative ligand. PMID:23511424

  10. A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures

    NASA Astrophysics Data System (ADS)

    Rodríguez-Lugo, Rafael E.; Trincado, Mónica; Vogt, Matthias; Tewes, Friederike; Santiso-Quinones, Gustavo; Grützmacher, Hansjörg

    2013-04-01

    The development of an efficient catalytic process that mimics the enzymatic function of alcohol dehydrogenase is critical for using biomass alcohols for both the production of H2 as a chemical energy carrier and fine chemicals under waste-free conditions. Dehydrogenation of alcohol-water mixtures into their corresponding acids with molecular hydrogen as the sole by-product from the reaction can be catalysed by a ruthenium complex with a chelating bis(olefin) diazadiene ligand. This complex, [K(dme)2][Ru(H)(trop2dad)], stores up to two equivalents of hydrogen intramolecularly, and catalyses the production of H2 from alcohols in the presence of water and a base under homogeneous conditions. The conversion of a MeOH-H2O mixture proceeds selectively to CO2/H2 gas formation under neutral conditions, thereby allowing the use of the entire hydrogen content (12% by weight). Isolation and characterization of the ruthenium complexes from these reactions suggested a mechanistic scenario in which the trop2dad ligand behaves as a chemically ‘non-innocent’ co-operative ligand.

  11. Determination of metallic iron in a mixture of lime, calcium sulphide and pyrrhotite.

    PubMed

    Sastri, V S

    A method is described for the determination of metallic iron in a complex matrix consisting of calcium oxide, calcium sulphide, carbon and pyrrhotite. The procedure consists of leaching the sample with 5% ammonium chloride solution (10% sucrose solution in some cases) followed by treatment with mercury(II) chloride solution and titration with dichromate solution. PMID:18962353

  12. Histogram-based classification with Gaussian mixture modeling for GBM tumor treatment response using ADC map

    NASA Astrophysics Data System (ADS)

    Huo, Jing; Kim, Hyun J.; Pope, Whitney B.; Okada, Kazunori; Alger, Jeffery R.; Wang, Yang; Goldin, Jonathan G.; Brown, Matthew S.

    2009-02-01

    This study applied a Gaussian Mixture Model (GMM) to apparent diffusion coefficient (ADC) histograms to evaluate glioblastoma multiforme (GBM) tumor treatment response using diffusion weighted (DW) MR images. ADC mapping, calculated from DW images, has been shown to reveal changes in the tumor's microenvironment preceding morphologic tumor changes. In this study, we investigated the effectiveness of features that represent changes from pre- and post-treatment tumor ADC histograms to detect treatment response. The main contribution of this work is to model the ADC histogram as the composition of two components, fitted by GMM with expectation maximization (EM) algorithm. For both pre- and post-treatment scans taken 5-7 weeks apart, we obtained the tumor ADC histogram, calculated the two-component features, as well as the other standard histogram-based features, and applied supervised learning for classification. We evaluated our approach with data from 85 patients with GBM under chemotherapy, in which 33 responded and 52 did not respond based on tumor size reduction. We compared AdaBoost and random forests classification algorithms, using ten-fold cross validation, resulting in a best accuracy of 69.41%.

  13. Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb).

    PubMed

    Tipping, Edward; Lofts, Stephen

    2015-04-01

    The Windermere humic aqueous model using the toxicity function (WHAM-FTOX ) describes cation toxicity to aquatic organisms in terms of 1) accumulation by the organism of metabolically active protons and metals at reversible binding sites, and 2) differing toxic potencies of the bound cations. Cation accumulation (νi , in mol g(-1) ) is estimated through calculations with the WHAM chemical speciation model by assuming that organism binding sites can be represented by those of humic acid. Toxicity coefficients (αi ) are combined with νi to obtain the variable FTOX (= Σ αi νi ) which, between lower and upper thresholds (FTOX,LT , FTOX,UT ), is linearly related to toxic effect. Values of αi , FTOX,LT , and FTOX,LT are obtained by fitting toxicity data. Reasonable fits (72% of variance in toxic effect explained overall) were obtained for 4 large metal mixture acute toxicity experiments involving daphnids (Cu, Zn, Cd), lettuce (Cu, Zn, Ag), and trout (Zn, Cd, Pb). Strong nonadditive effects, most apparent in results for tests involving Cd, could be explained approximately by purely chemical competition for metal accumulation. Tentative interpretation of parameter values obtained from these and other experimental data suggests the following order of bound cation toxicity: H < Al < (Cu Zn Pb UO2 ) < (Cd Ag). Another trend is a strong increase in Cd toxicity relative to that of Zn as organism complexity increases (from bacteria to fish). PMID:25318827

  14. Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.

    PubMed

    Tanong, Kulchaya; Coudert, Lucie; Mercier, Guy; Blais, Jean-Francois

    2016-10-01

    Spent batteries contain hazardous materials, including numerous metals (cadmium, lead, nickel, zinc, etc.) that are present at high concentrations. Therefore, proper treatment of these wastes is necessary to prevent their harmful effects on human health and the environment. Current recycling processes are mainly applied to treat each type of spent battery separately. In this laboratory study, a hydrometallurgical process has been developed to simultaneously and efficiently solubilize metals from spent batteries. Among the various chemical leaching agents tested, sulfuric acid was found to be the most efficient and cheapest reagent. A Box-Behnken design was used to identify the influence of several parameters (acid concentration, solid/liquid ratio, retention time and number of leaching steps) on the removal of metals from spent batteries. According to the results, the solid/liquid ratio and acid concentration seemed to be the main parameters influencing the solubilization of zinc, manganese, nickel, cadmium and cobalt from spent batteries. According to the results, the highest metal leaching removals were obtained under the optimal leaching conditions (pulp density = 180 g/L (w/v), [H2SO4] = 1 M, number of leaching step = 3 and leaching time = 30 min). Under such optimum conditions, the removal yields obtained were estimated to be 65% for Mn, 99.9% for Cd, 100% for Zn, 74% for Co and 68% for Ni. Further studies will be performed to improve the solubilization of Mn and to selectively recover the metals. PMID:27318877

  15. Electronic temperature effects on the optical response of metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Faramarzi, Sh.

    2006-09-01

    At the present work we study the optical properties of spherical nanometals by Lindhard's quantum theory for the electron gas and then there is a theoretical study aiming at understanding the role of the electronic temperature on the optical response of simple metal clusters as the nanoparticles. The electronic temperature dependence of the optical response of simple metal clusters is investigated by many different quantum mechanical theories. The longitudinal and transverse dielectric functions are the most important quantities of a quantum many- electron system which are calculated at the present work.

  16. Environmental concentrations of agricultural-use pesticide mixtures evoke primary and secondary stress responses in rainbow trout.

    PubMed

    Tierney, Keith B; Williams, Jessica L; Gledhill, Melissa; Sekela, Mark A; Kennedy, Christopher J

    2011-11-01

    The present study sought to determine whether environmentally realistic mixtures of agriculturally important pesticides are stressful to fish. Juvenile rainbow trout were exposed for 96 h to concentrations of a pesticide mixture found in a waterway that is the focus of salmon restoration efforts (Nicomekl River, BC, Canada). This mixture contained organochlorine, organophosphorus, phenylurea, and triazine classes of pesticides. Fish given a realistic mixture exposure (total concentration, 1.01 µg/L) had increased plasma cortisol concentration, packed red cell volume, hematocrit (Hct), as well as decreased white cell volume, leukocrit (Lct). Similar changes in Hct and Lct were apparent after exposure to a lower concentration (0.186 µg/L). Interestingly, no changes in plasma cortisol concentration, Hct, or Lct were noted after exposure to a higher concentration (13.9 µg/L). This suggests that the exposure likely impaired the mechanisms enabling the stress response. Across all exposures, plasma glucose concentration was related to plasma cortisol concentration, not to pesticide mixture concentration. This suggests that a secondary stress response may be more related to variability in individual primary stress response than to differences in pesticide exposure concentrations. In summary, the present study indicates that salmon living in agrichemical-contaminated waterways may be experiencing stress, and this may pose a threat to their survival. PMID:21898556

  17. Solubility of metal oxides in molten equimolar KBr-NaBr mixture at 973 K

    NASA Astrophysics Data System (ADS)

    Cherginets, V. L.; Rebrova, T. P.; Naumenko, V. A.

    2014-09-01

    Solubility products (p K s,MO, molality) are measured by potentiometric titration with a Pt(O2)|ZrO2(Y2O3) oxygen electrode in the molten KBr-NaBr equimolar mixture at 973 K for the following oxides: CaO (5.00 ± 0.3), MnO (7.85 ± 0.3), NiO (9.72 ± 0.04), PbO (5.20 ± 0.3), and SrO (3.81 ± 0.3). The correlation between p K s,MeO and the polarization of the corresponding cations by Goldschmidt is obtained.

  18. Adsorption of mixtures of nutrients and heavy metals in simulated urban stormwater by different filter materials.

    PubMed

    Reddy, Krishna R; Xie, Tao; Dastgheibi, Sara

    2014-01-01

    In recent years, several best management practices have been developed for the removal of different types of pollutants from stormwater runoff that lead to effective stormwater management. Filter materials that remove a wide range of contaminants have great potential for extensive use in filtration systems. In this study, four filter materials (calcite, zeolite, sand, and iron filings) were investigated for their adsorption and efficiency in the removal of nutrients and heavy metals when they exist individually versus when they co-exist. Laboratory batch experiments were conducted separately under individual and mixed contaminants conditions at different initial concentrations. Adsorption capacities varied under the individual and mixed contaminant conditions due to different removal mechanisms. Most filter materials showed lower removal efficiency under mixed contaminant conditions. In general, iron filings were found effective in the removal of nutrients and heavy metals simultaneously to the maximum levels. Freundlich and Langmuir isotherms were used to model the batch adsorption results and the former better fitted the experimental results. Overall, the results indicate that the filter materials used in this study have the potential to be effective media for the treatment of nutrients and heavy metals commonly found in urban stormwater runoff. PMID:24410683

  19. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    DOE PAGESBeta

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that canmore » determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.« less

  20. Metal hydride differential scanning calorimetry as an approach to compositional determination of mixtures of hydrogen isotopologues and helium

    SciTech Connect

    Robinson, David B.; Luo, Weifang; Cai, Trevor Y.; Stewart, Kenneth D.

    2015-09-26

    Gaseous mixtures of diatomic hydrogen isotopologues and helium are often encountered in the nuclear energy industry and in analytical chemistry. Compositions of stored mixtures can vary due to interactions with storage and handling materials. When tritium is present, it decays to form ions and helium-3, both of which can lead to further compositional variation. Monitoring of composition is typically achieved by mass spectrometry, a method that is bulky and energy-intensive. Mass spectrometers disperse sample material through vacuum pumps, which is especially troublesome if tritium is present. Moreover, our ultimate goal is to create a compact, fast, low-power sensor that can determine composition with minimal gas consumption and waste generation, as a complement to mass spectrometry that can be instantiated more widely. We propose calorimetry of metal hydrides as an approach to this, due to the strong isotope effect on gas absorption, and demonstrate the sensitivity of measured heat flow to atomic composition of the gas. Peak shifts are discernible when mole fractions change by at least 1%. A mass flow restriction results in a unique dependence of the measurement on helium concentration. We present a mathematical model as a first step toward prediction of the peak shapes and positions. The model includes a useful method to compute estimates of phase diagrams for palladium in the presence of arbitrary mixtures of hydrogen isotopologues. As a result, we expect that this approach can be used to deduce unknown atomic compositions from measured calorimetric data over a useful range of partial pressures of each component.

  1. Raman analysis of complex pigment mixtures in 20th century metal knight shields of the Order of the Elephant.

    PubMed

    Lauridsen, Clara Bratt; Sanyova, Jana; Simonsen, Kim Pilkjær

    2015-11-01

    The pigment composition of six painted metal knight shields of the Order of the Elephant dating from the second half of the 20th century belonging to the Danish royal collection were studied using Raman microscopy. By focusing a 785 nm laser with a 50× objective on particles in paint cross sections, it was possible to identify the following 20 compounds: hematite, goethite, chrome red/orange, chrome yellow, zinc chrome yellow, carbon black, toluidine red PR3, chlorinated para red PR4, dinitroaniline orange PO5, phthalocyanine blue PB15, indanthrone blue PB60, ultramarine, Prussian blue, lead white, anatase, rutile, calcium carbonate, barium sulphate, gypsum and dolomite. The components were frequently present in complex pigment mixtures. Additional information was obtained by elemental analysis with scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) to identify cobalt blue, zinc white and cadmium red, as well as to indicate the presence of zinc white in some pigment mixtures. The study allowed a comparison between the industrially applied preparation layers and the artistic paint layers applied by the heraldic painter. Differences in the choice of paint and pigment types were observed on the earliest knight shields, demonstrating a general delay of industrial materials into artist paints. PMID:26023056

  2. FINE PARTICAL AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    SciTech Connect

    Jost O.L. Wendt; Wayne S. Seames; Art Fernandez

    2003-09-21

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and pulverized coal. The objective was to determine potential tradeoffs between CO{sub 2} mitigation through using a CO{sub 2} neutral fuel, such as municipal sewage sludge, and the emergence of other potential problems such as the emission of toxic fly ash particles. The work led to new insight into mechanisms governing the partitioning of major and trace metals from the combustion of sewage sludge, and mixtures of coal and sewage sludge. The research also showed that the co-combustion of coal and sewage sludge emitted fine particulate matter that might potentially cause greater lung injury than that from the combustion of either coal alone or municipal sewage sludge alone. The reason appeared to be that the toxicity measured required the presence of large amounts of both zinc and sulfur in particles that were inhaled. MSS provided the zinc while coal provided the sulfur. Additional research showed that the toxic effects could most likely be engineered out of the process, through the introduction of kaolinite sorbent downstream of the combustion zone, or removing the sulfur from the fuel. These results are consequences of applying ''Health Effects Engineering'' to this issue. Health Effects Engineering is a new discipline arising out of this work, and is derived from using a collaboration of combustion engineers and toxicologists to mitigate the potentially bad health effects from combustion of this biomass fuel.

  3. A rechargeable lithium metal battery operating at intermediate temperatures using molten alkali bis(trifluoromethylsulfonyl)amide mixture as an electrolyte

    NASA Astrophysics Data System (ADS)

    Watarai, Atsushi; Kubota, Keigo; Yamagata, Masaki; Goto, Takuya; Nohira, Toshiyuki; Hagiwara, Rika; Ui, Koichi; Kumagai, Naoaki

    The physicochemical properties of molten alkali bis(trifluoromethylsulfonyl)amide, MTFSI (M = Li, K, Cs), mixture (x LiTFSI = 0.20, x KTFSI = 0.10, x CsTFSI = 0.70) were studied to develop a new rechargeable lithium battery operating at intermediate temperature (100-180 °C). The viscosity and ionic conductivity of this melt at 150 °C are 87.2 cP and 14.2 mS cm -1, respectively. The cyclic voltammetry revealed that the electrochemical window at 150 °C is as wide as 5.0 V, and that the electrochemical deposition/dissolution of lithium metal occurs at the cathode limit. A Li/MTFSI (M = Li, K, Cs)/LiFePO 4 cell showed an excellent cycle performance at a constant current rate of C/10 at 150 °C; 95% of the initial discharge capacity was maintained after 50 cycles. Except for the initial few cycles, the coulombic efficiencies were approximately 100% for all the cycles, indicating the stabilities of the molten MTFSI mixture and all the electrode materials.

  4. Optical responses of a metal with sub-nm gaps.

    PubMed

    Park, Sang Jun; Kim, Tae Yun; Park, Cheol-Hwan; Kim, Dai-Sik

    2016-01-01

    If the size of a metallic structure is reduced to be comparable to or even smaller than the typical quantum-mechanical lengths such as the Fermi wavelength or Thomas-Fermi wavelength, the electronic structure and optical responses are modulated by quantum effects. Here, we calculate the optical responses of a metal with sub-nm gaps using the eigenstates obtained from an effective-mass quantum theory. According to our simulation, the dielectric responses can be significantly modified by tuning the inter-gap distances. Remarkably, sub-nm gaps occupying a 0.3% volumetric fraction can elongate the penetration depth by an order of magnitude in the terahertz regime. We find that the detailed dependences of electron-photon interaction matrix elements on the involved electronic wavefunctions play an important role in the optical responses. The results draw our attention to these recently fabricated systems. PMID:26964884

  5. Optical responses of a metal with sub-nm gaps

    PubMed Central

    Park, Sang Jun; Kim, Tae Yun; Park, Cheol-Hwan; Kim, Dai-Sik

    2016-01-01

    If the size of a metallic structure is reduced to be comparable to or even smaller than the typical quantum-mechanical lengths such as the Fermi wavelength or Thomas-Fermi wavelength, the electronic structure and optical responses are modulated by quantum effects. Here, we calculate the optical responses of a metal with sub-nm gaps using the eigenstates obtained from an effective-mass quantum theory. According to our simulation, the dielectric responses can be significantly modified by tuning the inter-gap distances. Remarkably, sub-nm gaps occupying a 0.3% volumetric fraction can elongate the penetration depth by an order of magnitude in the terahertz regime. We find that the detailed dependences of electron-photon interaction matrix elements on the involved electronic wavefunctions play an important role in the optical responses. The results draw our attention to these recently fabricated systems. PMID:26964884

  6. Calculation of K{sub {infinity}} for homogeneous {sup 235}U metal mixtures: Will the real K{sub {infinity}} please stand up?

    SciTech Connect

    Jordan, W.C.; Petrie, L.M.; Wright, R.Q.; Parks, C.V.

    1997-06-01

    This paper very briefly analyzes a journal article about calculating k{sub {infinity}} for metals mixed with uranium 235, and compares the article results with other calculation methods. The article suggested that continuous energy cross sections gave more accurate results than groupwise cross sections. The mixtures described in the article were dry, fast systems with several unusual characteristics; however, the majority of multigroup libraries used for analysis were developed for well moderated thermal systems. The results of calculations performed using several different codes and cross sections for three uranium/metal mixtures are presented in this paper. 1 tab.

  7. Heavy Metal Stress and Some Mechanisms of Plant Defense Response

    PubMed Central

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants. PMID:25688377

  8. Heavy metal stress and some mechanisms of plant defense response.

    PubMed

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants. PMID:25688377

  9. Perinatal and Childhood Exposure to Cadmium, Manganese, and Metal Mixtures and Effects on Cognition and Behavior: A Review of Recent Literature

    PubMed Central

    Sanders, Alison P.; Henn, Birgit Claus; Wright, Robert O.

    2015-01-01

    Lead (Pb) and mercury (Hg) neurotoxicity is well established. In recent years, a growing body of evidence suggests that environmental exposure to other metals including arsenic (As), cadmium (Cd), manganese (Mn), and their mixtures also pose public health threats. In this paper we summarize the recent literature examining the relationship of prenatal and childhood environmental metal exposures with cognitive and behavioral outcomes in children. We conducted a literature search to identify epidemiologic studies that examined the relationship of Cd, Mn, and metal mixtures with children’s neurodevelopmental/cognitive and behavioral outcomes. We restricted the search to peer-reviewed studies published in English between January 2009 and March 2015. We identified a total of 31 articles of which 16, 17, and 16 studies examined the effects of Cd, Mn, or metal mixtures, respectively. Based on our review, there is suggestive evidence that prenatal/childhood Cd exposure may be associated with poorer cognition, but additional research is clearly needed. We found little evidence of behavioral effects of early life Cd exposure, and no studies found a significant relationship with attention deficit hyperactivity disorder. Studies of early life Mn exposure consistently reported negative impacts on both cognition and behavior. There is also growing evidence that co-exposure to multiple metals can result in increased neurotoxicity compared to single metal exposures, in particular during early life. Few studies have evaluated behavioral effects related to metal co-exposures. PMID:26231505

  10. Perinatal and Childhood Exposure to Cadmium, Manganese, and Metal Mixtures and Effects on Cognition and Behavior: A Review of Recent Literature.

    PubMed

    Sanders, Alison P; Claus Henn, Birgit; Wright, Robert O

    2015-09-01

    Lead (Pb) and mercury (Hg) neurotoxicity is well established. In recent years, a growing body of evidence suggests that environmental exposure to other metals including arsenic (As), cadmium (Cd), and manganese (Mn) and their mixtures also poses public health threats. In this paper, we summarize the recent literature examining the relationship of prenatal and childhood environmental metal exposures with cognitive and behavioral outcomes in children. We conducted a literature search to identify epidemiologic studies that examined the relationship of Cd, Mn, and metal mixtures with children's neurodevelopmental/cognitive and behavioral outcomes. We restricted the search to peer-reviewed studies published in English between January 2009 and March 2015. We identified a total of 31 articles of which 16, 17, and 16 studies examined the effects of Cd, Mn, or metal mixtures, respectively. Based on our review, there is suggestive evidence that prenatal/childhood Cd exposure may be associated with poorer cognition, but additional research is clearly needed. We found little evidence of behavioral effects of early life Cd exposure, and no studies found a significant relationship with attention deficit hyperactivity disorder. Studies of early life Mn exposure consistently reported negative impacts on both cognition and behavior. There is also growing evidence that co-exposure to multiple metals can result in increased neurotoxicity compared to single-metal exposure, in particular during early life. Few studies have evaluated behavioral effects related to metal co-exposure. PMID:26231505

  11. Electrochemical response of metal complexes in homogeneous solution under photoirradiation

    PubMed Central

    Fukatsu, Arisa; Kondo, Mio; Okamura, Masaya; Yoshida, Masaki; Masaoka, Shigeyuki

    2014-01-01

    The electrochemical detection of metal complexes in the photoexcited state is important for understanding photoinduced electron transfer (PET) processes, which play a central role in photo-energy conversion systems. In general, however, the redox potentials of excited states have been indirectly estimated by a combination of spectroscopic properties and ground-state redox potentials. To establish a simple method for directly determining the redox potentials of the photoexcited states of metal complexes, electrochemical measurements under several conditions were performed. The electrochemical response was largely influenced not only by the generation of photoexcited molecules but also by the convection induced by photoirradiation, even when the global temperature of the sample solution was unchanged. The suppression of these unfavourable electrochemical responses was successfully achieved by adopting well-established electrochemical techniques. Furthermore, as an initial demonstration, the photoexcited state of a Ru-based metal complex was directly detected, and its redox potential was determined using a thin layer electrochemical method. PMID:24937471

  12. Mixture Item Response Theory-MIMIC Model: Simultaneous Estimation of Differential Item Functioning for Manifest Groups and Latent Classes

    ERIC Educational Resources Information Center

    Bilir, Mustafa Kuzey

    2009-01-01

    This study uses a new psychometric model (mixture item response theory-MIMIC model) that simultaneously estimates differential item functioning (DIF) across manifest groups and latent classes. Current DIF detection methods investigate DIF from only one side, either across manifest groups (e.g., gender, ethnicity, etc.), or across latent classes…

  13. ABOVE- AND BELOWGROUND RESPONSES OF C3-C4 SPECIES MIXTURES TO ELEVATED CO2 AND SOIL WATER AVAILABILITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the influences of CO2 [Control, ~370 umol-1; 200 umol mol-1 above ambient applied by free-air CO2 enrichment (FACE)] and soil water (Wet, Dry) on above- and below-ground responses of C3 (cotton, Gossypium hirsutum) and C4 (sorghum bicolor) plants in monocultures and two density mixtures...

  14. Supercapacitors Based on Metal Electrodes Prepared from Nanoparticle Mixtures at Room Temperature

    SciTech Connect

    Nakanishi, Hideyuki; Grzybowski, Bartosz A.

    2010-01-01

    Films comprising Au and Ag nanoparticles are transformed into porous metal electrodes by desorption of weak organic ligands followed by wet chemical etching of silver. Thus prepared electrodes provide the basis for supercapacitors whose specific capacitances approach 70 F/g. Cyclic voltammetry measurement yield “rectangular” I-V curves even at high scan rates, indicating that the supercapacitors have low internal resistance. Owing to this property, the supercapacitors have a high power density ~12 kW/kg, comparable with that of the state-of-the-art carbon-based devices. The entire assembly protocol does not require high-temperature processing or the use of organic binders.

  15. Public health response to metallic mercury spills in Kansas.

    PubMed

    Monroe, C T; Pezzino, G; Knoche, L L; Henning, L; Belt, P

    1999-11-01

    Local and state public health officials are called on to respond to environmental public health hazards just as they historically have been called on to respond to communicable disease outbreaks. Recent experience with metallic mercury spills in Kansas suggests that neither the legal authority nor the scientific knowledgebase is as well developed for response to environmental hazards as for communicable disease threats. PMID:10662059

  16. Transcriptomic responses of European flounder (Platichthys flesus) liver to a brominated flame retardant mixture.

    PubMed

    Williams, Tim D; Diab, Amer M; Gubbins, Matt; Collins, Catherine; Matejusova, Iveta; Kerr, Rose; Chipman, James K; Kuiper, Raoul; Vethaak, A Dick; George, Stephen G

    2013-10-15

    Male European flounder (Platichthys flesus) were exposed to a technical mixture of brominated diphenyl ethers (PDBEs, DE-71, Pentamix) that had been purified to remove contaminating dioxins. Controls were exposed to carrier solvent alone. Fish were exposed to decadally increasing concentrations of Pentamix via both sediment and spiked food. The GENIPOL P. flesus cDNA microarray, differentially expressed gene profiling (DEG) and quantitative PCR were employed to detect hepatic transcriptional differences between exposed fish and controls. Gene transcriptional changes were more sensitive to Pentamix exposure than biomarkers measured previously. Pentamix exposure induced transcripts coding for enzymes of xenobiotic metabolism (CYP1A, aldo-keto reductases) and elicited endocrine disruption (vitellogenin and thyroid hormone receptor alpha), with effects on CYP1A and VTG occurring at the highest exposure. Ontology analysis clearly showed dose-responsive changes indicative of oxidative stress, induction of mitochondrial dysfunction, and apoptosis. We conclude that exposure to PBDEs in both sediment and food has a significant adverse effect on a broad range of crucial biochemical processes in the livers of this widely distributed estuarine fish species, the flounder. PMID:23948077

  17. Exposure of humans to a volatile organic mixture. 3. Inflammatory response

    SciTech Connect

    Koren, H.S.; Graham, D.E.; Devlin, R.B.

    1992-01-01

    A set of symptoms has been described during the past two decades that has been called the sick building syndrome. These symptoms include eye, nose, and throat irritation; headache; mental fatigue; and respiratory distress. It is likely that the volatile organic compounds (VOCs) present in synthetic materials used in homes and office buildings contribute to these symptoms. However, there have been very few studies in which humans have been exposed to known amounts of VOCs under carefully controlled conditions. In the study, 14 subjects were exposed to a mixture of VOCs (25 mg/sq meter total hydrocarbon) that is representative of what is found in new homes and office buildings. Because irritations of the nose and throat are symptoms often associated with the upper respiratory tract and may result from an inflammatory response in the upper airways, the authors used nasal lavage to monitor neutrophil (PMN) influx into the nasal passages following exposure to VOCs. There were statistically significant increases in PMNs, both immediately after a 4-h exposure to VOCs and 18 h later.

  18. Improvement in Detection of Differential Item Functioning Using a Mixture Item Response Theory Model.

    PubMed

    Maij-de Meij, Annette M; Kelderman, Henk; van der Flier, Henk

    2010-11-30

    Usually, methods for detection of differential item functioning (DIF) compare the functioning of items across manifest groups. However, the manifest groups with respect to which the items function differentially may not necessarily coincide with the true source of the bias. It is expected that DIF detection under a model that includes a latent DIF variable is more sensitive to this source of bias. In a simulation study, it is shown that a mixture item response theory model, which includes a latent grouping variable, performs better in identifying DIF items than DIF detection methods using manifest variables only. The difference between manifest and latent DIF detection increases as the correlation between the manifest variable and the true source of the DIF becomes smaller. Different sample sizes, relative group sizes, and significance levels are studied. Finally, an empirical example demonstrates the detection of heterogeneity in a minority sample using a latent grouping variable. Manifest and latent DIF detection methods are applied to a Vocabulary test of the General Aptitude Test Battery (GATB). PMID:26760725

  19. Finite Mixture Dynamic Regression Modeling of Panel Data with Implications for Dynamic Response Analysis

    ERIC Educational Resources Information Center

    Kaplan, David

    2005-01-01

    This article considers the problem of estimating dynamic linear regression models when the data are generated from finite mixture probability density function where the mixture components are characterized by different dynamic regression model parameters. Specifically, conventional linear models assume that the data are generated by a single…

  20. Micro-scale simulation of dynamic compaction of oxide and metal powder mixture

    NASA Astrophysics Data System (ADS)

    Kamegai, M.; Walton, Otis R.; Taylor, A. G.

    1989-10-01

    Many features of the dynamic compaction of powders are potentially favorable for use in processing high T(sub c) oxide superconductors. Conventional sintering methods tend to produce unwanted impurities, voids, and oxygen-deficient grain boundaries and have, thus, failed to form bulk oxide superconductors with high critical current. One proposed approach for a dynamic process is to compress a mixture of high purity single crystallite particles and fine silver particles. Computer modeling of dynamic compaction has thus far been limited to bulk simulation of the process by continuum mechanics codes. Results of compaction experiments are not reliably predicted with such techniques because the micro-scale dynamics of powder compaction are only modeled by phenomenological approximation. A micro-scale simulation technique was developed and applied to computer models similar to those of molecular dynamics, which were originally designed to simulate the flow behavior of inelastic, frictional particles. In this method, the oxide grain is represented by a nearly elastic sphere while an individual silver grain is modeled by an aggregate of effective inelastic-frictional particles bound by a prescribed interparticle force. The first 2-D simulation results for a simple configuration (a single aggregate silver grain crushed between two nearly elastic ceramic spheres) are compared with the continuum calculations for the same configuration. This micro-scale simulation technique can be extended to study an assembly of dissimilar grains in 3-D space.

  1. Properties of silicon dioxide layers with embedded metal nanocrystals produced by oxidation of Si:Me mixture

    PubMed Central

    2011-01-01

    A two-dimensional layers of metal (Me) nanocrystals embedded in SiO2 were produced by pulsed laser deposition of uniformly mixed Si:Me film followed by its furnace oxidation and rapid thermal annealing. The kinetics of the film oxidation and the structural properties of the prepared samples were investigated by Rutherford backscattering spectrometry, and transmission electron microscopy, respectively. The electrical properties of the selected SiO2:Me nanocomposite films were evaluated by measuring C-V and I-V characteristics on a metal-oxide-semiconductor stack. It is found that Me segregation induced by Si:Me mixture oxidation results in the formation of a high density of Me and silicide nanocrystals in thin film SiO2 matrix. Strong evidence of oxidation temperature as well as impurity type effect on the charge storage in crystalline Me-nanodot layer is demonstrated by the hysteresis behavior of the high-frequency C-V curves. PMID:21711632

  2. Application of solvent engineering to optimize lipase-catalyzed 1,3-diglyacylcerols by mixture response surface methodology.

    PubMed

    Liao, Hui-Fen; Tsai, Wei-Chuan; Chang, Shu-Wei; Shieh, Chwen-Jen

    2003-11-01

    1,3-Diacylglycerol (DAG) has been introduced in Japan as a cooking oil under the trade name of Econa to reduce body fat accumulation. Solvent engineering was applied to determine the optimum solvent mixtures for the lipase-catalyzed synthesis of 1,3-DAG by mixture response surface methodology. n-Hexane was required to maintain the lipase activity and the product selectivity could be adjusted by changing the hydrophobicity of reaction medium. The optimum yield (approximately 40%) of 1,3-DAG synthesis was obtained with n-hexane/octane (1:1, v/v). PMID:14677712

  3. Nonspecific bronchial responsiveness assessed in vitro following acute inhalation exposure to ozone and ozone/sulfuric acid mixtures

    SciTech Connect

    El-Fawal, H.A.N.; McGovern, T.; Schlesinger, R.B.

    1995-01-01

    Air pollution may play some role in the recent increase in severity and prevalence of asthma, but the specific chemical components with the ambient pollutant mix that may be responsible have not been delineated. Since ambient exposures involve mixtures, it is essential to examine airway responses to realistic pollutant mixtures. This study examined the ability of single (3-h) inhalation exposures to ozone and to mixtures of ozone plus sulfuric acid to induce nonspecific airway hyperresponsiveness in healthy rabbits. Airway responsiveness was assessed using an in vitro assay involving administration of increasing doses of acetylcholine to bronchial rings obtained from animals exposed to 0.1-0.6 ppm ozone or to mixtures of ozone and 50-125 {mu}g/m{sup 3} sulfuric acid aerosol; results were compared to those reported previously for sulfuric acid alone. Bronchial hyperresponsiveness in healthy animals and suggest that interaction with sulfuric acid may reduce the effectiveness of both pollutants. 31 refs., 3 figs., 3 tabs.

  4. Hydrotreating process employing catalysts comprising a supported mixture of a sulfide of a promoter metal, trivalent chromium and molybdenum or tungsten

    SciTech Connect

    Ho, T.C.; Young, A.R. II; Chianelli, R.R.; Jacobson, A.J.

    1986-05-27

    A process is described for improving the oxidation stability of a nitrogen and sulfur containing lube oil feed which comprises contacting the feed at an elevated temperature of at least about 150/sup 0/C and in the presence of hydrogen with a catalyst comprising a support mixture of a sulfide of (i) trivalent chromium, (ii) Mo, W or mixture thereof and (iii) at least one promoter metal selected from the group consisting of Ni, Co, Mn, Cu, Zn and mixture thereof and mixture thereof with Fe. The catalyst has been prepared by compositing a pre-selected quantity of inorganic refractory oxide support material with (a) a hydrated oxide of trivalent chromium and (b) one or more catalyst precursor salts containing a thiometalate anion of Mo, W or mixture thereof and a cation containing at least one of the promoter metals wherein the promoter metal in the cation is divalent and is chelated by at least one neutral, nitrogen-containing polydenate ligand and heating the composite at elevated temperature, in the presence of sulfur or sulfur bearing compound and under oxygen-free conditions for a time sufficient to form the catalyst, the contacting of the feed with the catalyst occurring for a time sufficient to improve the oxidation stability of the oil.

  5. Progress in evaluating the corrosion of candidate HLW container metals in irradiated air-steam mixtures

    SciTech Connect

    Reed, D.T.; Van Konynenburg, R.A.

    1991-10-01

    The Yucca Mountain Site Characterization Project is evaluating Yucca Mountain in Nye County, Nevada, as a site for a potential high-level nuclear waste repository. Lawrence Livermore National Laboratory is concerned with the development and performance modeling of waste packages for the potential repository. Argonne National Laboratory has performed experimental studies in support of the waste package effort. This effort is currently guided by the Waste Package Plan, which calls for a systems engineering approach to waste package development. Part of this approach involves formulating an approved set of selection criteria to choose the materials to be used in fabricating the waste packages. Technical issues related to the performance of metals in the air/water vapor environment expected in the potential Yucca Mountain repository are discussed. Preliminary experiments, focused on the atmospheric corrosion of copper-based materials, are summarized. These experiments were performed over a broad range of conditions: temperatures between 90 and 150{degrees}C; relative humidities of 0, 15, 40, and 100%; and gamma dose rates between 0.01 and 0.3 Mrad/hr. In irradiated moist air, copper-based materials form cooper oxides and nitrate phases depending on the dose rate, humidity and temperature. The rates of general corrosion increase with temperature, humidity, and dose rate. Chemical intermediates formed by radiolysis of moist air have been clearly associated with observed corrosion. No significant corrosion was observed for Alloy 825. 13 refs., 3 tabs.

  6. Vapors and Droplets Mixture Deposition of Metallic Coatings by Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Bolot, R.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-04-01

    In recent years, the very low pressure plasma-spraying (VLPPS) process has been intensely developed and implemented to manufacture thin, dense and finely structured ceramic coatings for various applications, such as Y2O3 for diffusion barriers, among other examples. This paper aims at presenting developments carried out on metallic coatings. Aluminum was chosen as a demonstrative material due to its "moderate" vaporization enthalpy (i.e., 38.23 KJ cm-3) compared to the one of copper (i.e., 55.33 KJ cm-3), cobalt (i.e., 75.03 KJ cm-3), or even tantalum (i.e., 87.18 KJ cm-3). The objective of this work is primarily to better understand the behavior of a solid precursor injected into the plasma jet leading to the formation of vapors and to better control the factors affecting the coating structure. Nearly dense aluminum coatings were successfully deposited by VLPPS at 100 Pa with an intermediate power plasma torch (i.e., Sulzer Metco F4 type gun with maximum power of 45 kW). Optical emission spectroscopy (OES) was implemented to study and analyze the vapor behavior into the plasma jet. Simplified CFD modeling allowed better understanding of some of the thermo-physical mechanisms. The effect of powder-size distribution, substrate temperature and spray distance were studied. The phase composition and microstructural features of the coatings were characterized by XRD and SEM. Moreover, Vickers microhardness measurements were implemented.

  7. Gene Expression Responses in Male Fathead Minnows Exposed to Binary Mixtures of an Estrogen and Antiestrogen

    EPA Science Inventory

    Aquatic organisms are continuously exposed to complex mixtures of chemicals, many of which can interfere with their endocrine system, resulting in impaired reproduction, development or survival, among others. In order to analyze the effects and mechanisms of action of estrogen...

  8. Understanding the biological responses of nanostructured metals and surfaces

    NASA Astrophysics Data System (ADS)

    Lowe, Terry C.; Reiss, Rebecca A.

    2014-08-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science.

  9. Biochemical responses and metals levels in Ruditapes decussatus after exposure to treated municipal effluents.

    PubMed

    Kamel, Naouel; Jebali, Jamel; Banni, Mohamed; Ben Khedher, Sana; Chouba, Lassaad; Boussetta, Hamadi

    2012-08-01

    This study assessed the responses of biochemical biomarkers and metals levels in Ruditapes decussatus exposed to the increasing concentrations of treated municipal effluents (TME) discharged into the Tunisian coastal area. Clams were exposed to 0%, 1%, 3% and 10% for 7 and 14 day and the following biochemical responses were measured: (1) catalase activity and lipid peroxidation levels (TBARS) as oxidative stress biomarkers, (2) gluthathione S-transferase (GST) activity as a phase II conjugation enzyme; (3) cholinesterase activity (ChE) as biomarker of neurotoxicity, and (4) metallothioneins as a proteins highly induced by heavy metals. A significant uptake of Cu, Cd and Zn in digestive gland and serious biochemical alterations were observed. Thus, exposure of clams to croissant concentration of TME have the potential to increase the oxidative stress biomarkers (TBARS, CAT activity) and MT levels; and decrease ChE activity in both gills and digestive gland. Current experimental results suggest that CAT, GST, ChE activities and MT and TBARs levels in gills and digestive gland of clam R. decussatus are sensitive and suitable responses for assessing the effects of anthropogenic contaminants on the aquatic ecosystems, particularly effluent complex mixtures. PMID:22664226

  10. Sharp and asymmetric transmission response in metal-dielectric-metal plasmonic waveguides containing Kerr nonlinear media.

    PubMed

    Zhong, Zhi-Jian; Xu, Yi; Lan, Sheng; Dai, Qiao-Feng; Wu, Li-Jun

    2010-01-01

    Based on the excitation of surface plasmon polaritons (SPPs), we analytically and numerically investigate the transmission response in metal-dielectric-metal (MDM) plasmonic waveguides with a side coupled nanocavity (SCNC). By filling the nanocavity with a Kerr nonlinear medium, the position of the resonant dip in the transmission spectrum can be tuned by the incident light intensity. The oscillation of a Fabry-Perot nanocavity formed by incorporating a finite length of the same Kerr nonlinear media into the MDM waveguide acts as a background for the transmission response of the system and induces a sharp and asymmetric response line shape. As a result, the wavelength shift required for the plasmonic device to be switched from the maximum to the minimum transmission can be reduced by half in a structure less than 400 nm long. Such an effect may be potentially applied to constructing SPP-based all-optical switching with low power threshold at nanoscale. PMID:20173825

  11. Electro-olfactogram and multiunit olfactory receptor responses to binary and trinary mixtures of amino acids in the channel catfish, Ictalurus punctatus.

    PubMed

    Caprio, J; Dudek, J; Robinson, J J

    1989-02-01

    In vivo electrophysiological recordings from populations of olfactory receptor neurons in the channel catfish, Ictalurus punctatus, clearly showed that responses to binary and trinary mixtures of amino acids were predictable with knowledge obtained from previous cross-adaptation studies of the relative independence of the respective binding sites of the component stimuli. All component stimuli, from which equal aliquots were drawn to form the mixtures, were adjusted in concentration to provide for approximately equal response magnitudes. The magnitude of the response to a mixture whose component amino acids showed significant cross-reactivity was equivalent to the response to any single component used to form that mixture. A mixture whose component amino acids showed minimal cross-adaptation produced a significantly larger relative response than a mixture whose components exhibited considerable cross-reactivity. This larger response approached the sum of the responses to the individual component amino acids tested at the resulting concentrations in the mixture, even though olfactory receptor dose-response functions for amino acids in this species are characterized by extreme sensory compression (i.e., successive concentration increments produce progressively smaller physiological responses). Thus, the present study indicates that the response to sensory stimulation of olfactory receptor sites is more enhanced by the activation of different receptor site types than by stimulus interaction at a single site type. PMID:2703818

  12. Stratification effects on laminar premixed-flame response to mixture perturbations

    NASA Astrophysics Data System (ADS)

    Casey, Tiernan; Chen, Jyh-Yuan

    2015-11-01

    While complete mixing on the molecular level is desirable for ensuring that combustion processes are limited by chemical kinetics rather than mass transport, it is often the case that practical devices operate with some degree of unmixedness. As such, phenomena such as ignition or flame propagation will inevitably occur in regions that exhibit mixture or thermal non-uniformity. Here we present unsteady simulations of laminar premixed flames in the low-Mach limit subject to mixture perturbations of varying wavelength and amplitude, and qualify their effect on the flame behavior. When flames experience variations in mixture the transport processes in the flame zone vary with time and the flame behavior can depend on the burned gas history. Also, the possibility of extending flames beyond their flammability limits so as to maximize the overall mass of fuel burned is explored by exploiting these unsteady effects.

  13. Deterioration of yttria-stabilized zirconia by boron carbide alone or mixed with metallic or oxidized Fe, Cr, Zr mixtures

    NASA Astrophysics Data System (ADS)

    De Bremaecker, A.; Ayrault, L.; Clément, B.

    2014-08-01

    In the frame of severe accident conditions (PHEBUS FPT3 test), different experiments were carried out on the interactions of 20% yttria-stabilized zirconia (YSZ) and 20% ceria-stab zirconia with boron carbide or its oxidation products (B2O3): either tests under steam between 1230° and 1700 °C with B4C alone or B4C mixed with metals, either tests under Ar with boron oxide present in a mixture of iron and chromium oxides. In all cases an interaction was observed with formation of intergranular yttrium borate. At 1700 °C boron oxide is able to “pump out” the Y stabiliser from the YSZ grains but also some trace elements (Ca and Al) and to form a eutectic containing YBO3 and yttrium calcium oxy-borate (YCOB). At the same time a substantial swelling (“bloating”) of the zirconia happens, qualitatively similar to the foaming of irradiated fuel in contact with a Zr-melt. In all samples the lowering of the Y (or Ce)-content in the YSZ grains is so sharp that in the interaction layers zirconia is no longer stabilized. This is important when YSZ is envisaged as simulant of UO2 or as inert matrix for Am-transmutation.

  14. Dose-response relationship of an environmental mixture of pyrethroids following an acute oral administration in the rat

    EPA Science Inventory

    Dose-response relationship of an environmental mixture of pyrethroids following an acute oral administration in the rat M.F. Hughes1, D.G. Ross1, J.M. Starr1, E.J. Scollon1,2, M.J. Wolansky1,3, K.M. Crofton1, M.J. DeVito1,4 1U.S. EPA, ORD, Research Triangle Park, NC, 2U.S. EPA,...

  15. Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells.

    PubMed

    Osman, Deenah; Piergentili, Cecilia; Chen, Junjun; Chakrabarti, Buddhapriya; Foster, Andrew W; Lurie-Luke, Elena; Huggins, Thomas G; Robinson, Nigel J

    2015-08-01

    FrmR from Salmonella enterica serovar typhimurium (a CsoR/RcnR-like transcriptional de-repressor) is shown to repress the frmRA operator-promoter, and repression is alleviated by formaldehyde but not manganese, iron, cobalt, nickel, copper, or Zn(II) within cells. In contrast, repression by a mutant FrmRE64H (which gains an RcnR metal ligand) is alleviated by cobalt and Zn(II). Unexpectedly, FrmR was found to already bind Co(II), Zn(II), and Cu(I), and moreover metals, as well as formaldehyde, trigger an allosteric response that weakens DNA affinity. However, the sensory metal sites of the cells' endogenous metal sensors (RcnR, ZntR, Zur, and CueR) are all tighter than FrmR for their cognate metals. Furthermore, the endogenous metal sensors are shown to out-compete FrmR. The metal-sensing FrmRE64H mutant has tighter metal affinities than FrmR by approximately 1 order of magnitude. Gain of cobalt sensing by FrmRE64H remains enigmatic because the cobalt affinity of FrmRE64H is substantially weaker than that of the endogenous cobalt sensor. Cobalt sensing requires glutathione, which may assist cobalt access, conferring a kinetic advantage. For Zn(II), the metal affinity of FrmRE64H approaches the metal affinities of cognate Zn(II) sensors. Counter-intuitively, the allosteric coupling free energy for Zn(II) is smaller in metal-sensing FrmRE64H compared with nonsensing FrmR. By determining the copies of FrmR and FrmRE64H tetramers per cell, then estimating promoter occupancy as a function of intracellular Zn(II) concentration, we show how a modest tightening of Zn(II) affinity, plus weakened DNA affinity of the apoprotein, conspires to make the relative properties of FrmRE64H (compared with ZntR and Zur) sufficient to sense Zn(II) inside cells. PMID:26109070

  16. Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells*

    PubMed Central

    Osman, Deenah; Piergentili, Cecilia; Chen, Junjun; Chakrabarti, Buddhapriya; Foster, Andrew W.; Lurie-Luke, Elena; Huggins, Thomas G.; Robinson, Nigel J.

    2015-01-01

    FrmR from Salmonella enterica serovar typhimurium (a CsoR/RcnR-like transcriptional de-repressor) is shown to repress the frmRA operator-promoter, and repression is alleviated by formaldehyde but not manganese, iron, cobalt, nickel, copper, or Zn(II) within cells. In contrast, repression by a mutant FrmRE64H (which gains an RcnR metal ligand) is alleviated by cobalt and Zn(II). Unexpectedly, FrmR was found to already bind Co(II), Zn(II), and Cu(I), and moreover metals, as well as formaldehyde, trigger an allosteric response that weakens DNA affinity. However, the sensory metal sites of the cells' endogenous metal sensors (RcnR, ZntR, Zur, and CueR) are all tighter than FrmR for their cognate metals. Furthermore, the endogenous metal sensors are shown to out-compete FrmR. The metal-sensing FrmRE64H mutant has tighter metal affinities than FrmR by approximately 1 order of magnitude. Gain of cobalt sensing by FrmRE64H remains enigmatic because the cobalt affinity of FrmRE64H is substantially weaker than that of the endogenous cobalt sensor. Cobalt sensing requires glutathione, which may assist cobalt access, conferring a kinetic advantage. For Zn(II), the metal affinity of FrmRE64H approaches the metal affinities of cognate Zn(II) sensors. Counter-intuitively, the allosteric coupling free energy for Zn(II) is smaller in metal-sensing FrmRE64H compared with nonsensing FrmR. By determining the copies of FrmR and FrmRE64H tetramers per cell, then estimating promoter occupancy as a function of intracellular Zn(II) concentration, we show how a modest tightening of Zn(II) affinity, plus weakened DNA affinity of the apoprotein, conspires to make the relative properties of FrmRE64H (compared with ZntR and Zur) sufficient to sense Zn(II) inside cells. PMID:26109070

  17. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake.

    PubMed

    Vogel-Mikus, Katarina; Pongrac, Paula; Kump, Peter; Necemer, Marijan; Regvar, Marjana

    2006-01-01

    Plants of the Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen (Brassicaceae) inoculated or not with indigenous arbuscular mycorrhizal (AM) fungal mixture were grown in a highly Cd, Zn and Pb contaminated substrate in order to evaluate the functionality of symbiosis and assess the possible impact of AM colonisation on heavy metal uptake and tolerance. The results suggest AM development in the metal hyperaccumulating T. praecox is favoured at elevated nutrient demands, e.g. during the reproductive period. AM colonisation parameters positively correlated with total soil Cd and Pb. Colonised plants showed significantly improved nutrient and a decreased Cd and Zn uptake as revealed by TRXRF, thus confirming the functionality of the symbiosis. Reduced heavy metal uptake, especially at higher soil metal contents, indicates a changed metal tolerance strategy in colonised T. praecox plants. This is to our knowledge the first report on AM colonisation of the Zn, Cd and Pb hyperaccumulator T. praecox in a greenhouse experiment. PMID:15998561

  18. Corrosion response of nuclear reactor materials to mixtures of decontamination reagents

    SciTech Connect

    Speranzini, R.A.; Burchart, P.A.; Kanhai, K.A.

    1988-01-01

    An experimental study of the corrosiveness of mixtures of citric acid, oxalic acid and EDTA to nuclear reactor materials was undertaken. Specimens of type 304 stainless steel (SS), type 410 SS,c carbon steel (CS) 1018 and A508, and heat treated alloy 600 were suspended in recirculating mixtures of two or more of citric acid, oxalic acid and EDTA at temperatures of 90{sup 0}C or 117{sup 0}C for 22 h. The results suggest that removal of oxalic acid from decontamination solutions should lower the corrosivity of the solutions to nuclear reactor materials, particularly 304 SS and 410 SS.

  19. Corrosion response of nuclear reactor materials to mixtures of decontamination reagents

    SciTech Connect

    Speranzini, R.A.; Burchart, P.A.; Kanhai, K.A.

    1989-02-01

    An experimental study of the corrosiveness of mixtures of citric acid, oxalic acid, and EDTA to nuclear reactor materials was undertaken. Specimens of type 304 stainless steel (SS), type 410 SS, carbon steel (CS) 1018 and A508, and heat-treated alloy 600 were suspended in recirculating mixtures of two or more combinations of citric acid, oxalic acid, and EDTA at temperatures of 90 C or 117 C for 22 hours. The results suggest that removal of oxalic acid from decontamination solutions should lower the corrosiveness of the solutions to nuclear reactor materials, particularly types 304 SS and 410 SS.

  20. Response of a salt marsh microbial community to metal contamination

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.

    2013-09-01

    Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation

  1. Application of biotic ligand and toxicokinetic-toxicodynamic modeling to predict the accumulation and toxicity of metal mixtures to zebrafish larvae.

    PubMed

    Gao, Yongfei; Feng, Jianfeng; Han, Feng; Zhu, Lin

    2016-06-01

    Predicting the accumulation and toxicity of mixtures of metals to aquatic organisms is a key challenge in ecotoxicological studies. In this study, the accumulation and toxicity of mixed essential (Cu) and nonessential (Cd and Pb) metals in zebrafish larvae exposed to a binary mixture of these elements at environmentally relevant concentrations were predicted using a refined toxicokinetic (TK)-toxicodynamic (TD) model aided with biotic ligand model (BLM) and toxic equivalent factor (TEF) approach. Competitive inhibition and non-competitive interaction/inhibition were observed in bio-uptake. Both Pb and Cd behaved as competitive inhibitors of Cu uptake at high Cu concentrations (>0.1 μM). By contrast, Cu uptake was independent of Cd or Pb when the Cu concentrations were below 10(-7) M. Furthermore, low concentrations of Cu had an adiaphorous effect on Cd or Pb uptake. Cd uptake was inhibited by Pb, and the Pb uptake rates consistently decreased in the presence of Cd. The accumulation processes of Cd-Pb, Cu-Cd, and Cu-Pb were accurately predicted by the BLM-aided TK models. The traditional TD model could successfully predict the toxicity of Cd-Pb mixtures, but not those of Cu-Cd or Cu-Pb mixtures. The revised TD model, which considered the possible different killing rates (Kk) above or below the threshold, offered better prediction for the toxicity of Cu-Cd or Cu-Pb mixtures. The overall findings may be of key significance in understanding and predicting metal uptake, accumulation, and toxicity in binary or multiple metal exposure scenarios. PMID:26874871

  2. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    PubMed

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward. PMID:21112151

  3. Multiple Responses of Gram-Positive and Gram-Negative Bacteria to Mixture of Hydrocarbons

    PubMed Central

    Marilena Lăzăroaie, Mihaela

    2010-01-01

    Most of our knowledge about pollutants and the way they are biodegraded in the environment has previously been shaped by laboratory studies using hydrocarbon-degrading bacterial strains isolated from polluted sites. In present study Gram-positive (Mycobacterium sp. IBBPo1, Oerskovia sp. IBBPo2, Corynebacterium sp. IBBPo3) and Gram-negative (Chryseomonas sp. IBBPo7, Pseudomonas sp. IBBPo10, Burkholderia sp. IBBPo12) bacteria, isolated from oily sludge, were found to be able to tolerate pure and mixture of saturated hydrocarbons, as well as pure and mixture of monoaromatic and polyaromatic hydrocarbons. Isolated Gram-negative bacteria were more tolerant to mixture of saturated (n-hexane, n-hexadecane, cyclohexane), monoaromatic (benzene, toluene, ethylbenzene) and polyaromatic (naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons than Gram-positive bacteria. There were observed cellular and molecular modifications induced by mixture of saturated, monoaromatic and polyaromatic hydrocarbons to Gram-positive and Gram-negative bacteria. These modifications differ from one strain to another and even for the same bacterial strain, according to the nature of hydrophobic substrate. PMID:24031541

  4. PHOTOCHEMICAL PRODUCTS IN URBAN MIXTURES ENHANCE INFLAMMATORY RESPONSES IN LUNG CELLS

    EPA Science Inventory

    Complex urban air mixtures that realistically mimic urban smog can be generated for investigating adverse health effects. "Smog chambers" have been used for over 30 yr to conduct experiments for developing and testing photochemical models that predict ambient ozone (O(3)) concent...

  5. Responses of phytoplankton and Hyalella azteca to agrichemical mixtures in a constructed wetland mesocosms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We assessed the capability of a constructed wetland to mitigate toxicity of a variety of possible mixtures such as nutrients only (N, P), pesticides only (atrazine, S-metolachlor, permethrin), and nutrients+pesticides on phytoplankton chlorophyll a, 48 h aqueous Hyalella azteca survival, and 10 d se...

  6. APPROXIMATION OF MULTIFLUID MIXTURE RESPONSE FOR SIMULATION OF SHARP AND DIFFUSE MATERIAL INTERFACES ON AN EULERIAN GRID

    SciTech Connect

    Lomov, I; Liu, B

    2005-09-29

    Multimaterial Eulerian and Arbitrary Lagragian-Eulerian (ALE) codes usually use volume fractions of materials to track individual components in mixed cells. Material advection usually is calculated either by interface capturing, where a high-order van Leer-like slope reconstruction technique is applied, or interface tracking, where a normal reconstruction technique is applied. The former approach is more appropriate for gas-like substances, and the latter is ideal for solids and liquids, since it does not smear out material interfaces. A wide range of problems involves both diffuse and sharp interfaces between substances and demands a combination of these techniques. It is possible to treat all substances that can diffuse into each other as a single material and only keep mass fractions of the individual components of the mixture. The material response can be determined based on the assumption of pressure and temperature equilibrium between components of the mixture. Unfortunately, it is extremely difficult to solve the corresponding system of equations. In order to avoid these problems one can introduce an effective gamma and employ the ideal gas approximation to calculate mixture response. This method provides reliable results, is able to compute strong shock waves, and deals with complex equations of state. Results from a number of simulations using this scheme are presented.

  7. Chemical and thermal stability of refrigerant-lubricant mixtures with metals. Quarterly report, 1 April 1992--30 June 1992

    SciTech Connect

    Huttenlocher, D.F.

    1992-07-10

    This report presents completed sealed tube stability test results for the following eight refrigerant/lubricant mixtures: R-22/mineral oil; R-124/alkylbenzene; R-134a/pentaerythritol (PE) ester (mixed acid); R- 134a/PE (branched acid); R-134a/ PE (100 cSt viscosity); R- 142b/alkylbenzene; R-143a/ PE (branched acid); R-152a/alkylbenzene. Partial results are shown for an additional eight refrigerant-lubricant mixtures. Though work is in progress, no data are available at this point in time for the five remaining test mixtures. Reported are: visual observations on aged sealed tubes, gas chromatographic analyses on the vapor phase contents of the tubes, chloride ion contents of HCFC containing mixtures or fluoride ion contents of HFC mixtures, and total acid number values and infrared analysis results for mixtures containing ester lubricants.

  8. Treatment of electronic waste to recover metal values using thermal plasma coupled with acid leaching - A response surface modeling approach

    SciTech Connect

    Rath, Swagat S.; Nayak, Pradeep; Mukherjee, P.S.; Roy Chaudhury, G.; Mishra, B.K.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Sentences/phrases were modified. Black-Right-Pointing-Pointer Necessary discussions for different figures were included. Black-Right-Pointing-Pointer More discussion have been included on the flue gas analysis. Black-Right-Pointing-Pointer Queries to both the reviewers have been given. - Abstract: The global crisis of the hazardous electronic waste (E-waste) is on the rise due to increasing usage and disposal of electronic devices. A process was developed to treat E-waste in an environmentally benign process. The process consisted of thermal plasma treatment followed by recovery of metal values through mineral acid leaching. In the thermal process, the E-waste was melted to recover the metal values as a metallic mixture. The metallic mixture was subjected to acid leaching in presence of depolarizer. The leached liquor mainly contained copper as the other elements like Al and Fe were mostly in alloy form as per the XRD and phase diagram studies. Response surface model was used to optimize the conditions for leaching. More than 90% leaching efficiency at room temperature was observed for Cu, Ni and Co with HCl as the solvent, whereas Fe and Al showed less than 40% efficiency.

  9. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana.

    PubMed

    Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke

    2014-02-01

    Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. PMID:24184547

  10. Reducing the deactivation of Ni-metal during the catalytic partial oxidation of a surrogate diesel fuel mixture

    SciTech Connect

    Haynes, Daniel J.; Campos, Andrew; Smith, Mark W.; Berry, David A.; Shekhawat, Dushyant; Spivey, James J.

    2010-09-01

    Ni catalysts are active and selective for the conversion of hydrocarbon into synthesis gas. However, conventional supported Ni catalysts rapidly deactivate at the high temperatures required for partial oxidation of diesel fuel by sintering and metal vaporization, as well as by carbon deposition and sulfur poisoning. Thus, to reduce deactivation Ni (3 wt%) was substituted into the structures of Ba-hexaaluminate (BNHA) and La–Sr–Zr pyrochlore (LSZN), and their activity was compared to a supported Ni/Al2O3 for the catalytic partial oxidation (CPOX) of a surrogate diesel fuel. Characterization by XRD showed a single phase β-alumina for the hexaaluminate, while LSZN had a pyrochlore structure with a defect SrZrO3 perovskite phase. Temperature programmed reduction experiments confirmed Ni was reducible in all catalysts. XANES results confirmed that Ni atoms were substituted into the hexaaluminate and pyrochlore structures, as spectra for each catalyst showed different coordination environments for Ni compared to a NiO standard. During CPOX activity tests (T = 900 °C and WHSV = 50,000 scc/gcat/h), the LSZN pyrochlore produced stable H2 and CO yields in the presence of 5 wt% 1-methylnaphthalene and 50 ppmw dibenzothiophene/n-tetradecane for 2 h, while both Ni/Al2O3 and BNHA catalysts were irreversibly deactivated by this mixture over the same time. Finally, activity loss was strongly linked to carbon formation.

  11. Mixture-amount design and response surface modeling to assess the effects of flavonoids and phenolic acids on developmental performance of Anastrepha ludens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mixture-amount experimental design and response surface modeling were used to study the effects of three flavonoids and two phenolic acids, alone or in mixtures, in an artificial larval diet on the development and survival of Mexican fruit fly (Anastrepha ludens [Loew]). Pupal weight, percentage o...

  12. The effect of low-temperature transformation of mixtures of sewage sludge and plant materials on content, leachability and toxicity of heavy metals.

    PubMed

    Gondek, Krzysztof; Baran, Agnieszka; Kopeć, Michał

    2014-12-01

    The aim of the study was to determine the influence of the process of low-temperature transformation and the addition of plant material to sewage sludge diversifying the content of mobile forms of heavy metals and their ecotoxicity. The experimental design included: sewage sludge+rape straw, sewage sludge+wheat straw, sewage sludge+sawdust, sewage sludge+bark and sewage sludge with no addition. The mixtures were subjected to thermal transformation in a chamber furnace, under conditions without air. The procedure consisted of two stages: the first stage (130°C for 40 min) focused on drying the material, whereas in the second stage (200°C for 30 min) proper thermal transformation of materials took place. Thermal transformation of the materials, caused an increase in total contents of heavy metals in comparison to the material before transformation. From among elements, the cadmium content changed the most in materials after thermal transformation. As a result of thermal transformation, the content of water soluble form of the heavy metals decreased significantly in all the prepared mixtures. Low toxicity of the extracts from materials for Vibrio fischeri and Lepidium sativum was found in the research, regardless of transformation process. L. sativum showed higher sensitivity to heavy metals occurring in the studied extracts from materials than V. fischeri, evidence of which are the positive significant correlations between the content of metals and the inhibition of root growth of L. sativum. PMID:25433992

  13. Evaluating Whole Chemical Mixtures and Sufficient Similarity

    EPA Science Inventory

    This powerpoint presentation supports apresentation describing dose-response assessment for complex chemical mixtures including deriving reference doses for mixtures evaluating sufficient similarity among chemical mixtures.

  14. Smart responsive microcapsules capable of recognizing heavy metal ions.

    PubMed

    Pi, Shuo-Wei; Ju, Xiao-Jie; Wu, Han-Guang; Xie, Rui; Chu, Liang-Yin

    2010-09-15

    Smart responsive microcapsules capable of recognizing heavy metal ions are successfully prepared with oil-in-water-in-oil double emulsions as templates for polymerization in this study. The microcapsules are featured with thin poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) membranes, and they can selectively recognize special heavy metal ions such as barium(II) or lead(II) ions very well due to the "host-guest" complexation between the BCAm receptors and barium(II) or lead(II) ions. The stable BCAm/Ba(2+) or BCAm/Pb(2+) complexes in the P(NIPAM-co-BCAm) membrane cause a positive shift of the volume phase transition temperature of the crosslinked P(NIPAM-co-BCAm) hydrogel to a higher temperature, and the repulsion among the charged BCAm/Ba(2+) or BCAm/Pb(2+) complexes and the osmotic pressure within the P(NIPAM-co-BCAm) membranes result in the swelling of microcapsules. Induced by recognizing barium(II) or lead(II) ions, the prepared microcapsules with P(NIPAM-co-BCAm) membranes exhibit isothermal and significant swelling not only in outer and inner diameters but also in the membrane thickness. The proposed microcapsules in this study are highly attractive for developing smart sensors and/or carriers for detection and/or elimination of heavy metal ions. PMID:20656104

  15. Cell responses to metallic nanostructure arrays with complex geometries.

    PubMed

    Jahed, Zeinab; Molladavoodi, Sara; Seo, Brandon B; Gorbet, Maud; Tsui, Ting Y; Mofrad, Mohammad R K

    2014-11-01

    Metallic nanopillar/nanowires are emerging as promising platforms for biological applications, as they allow for the direct characterization and regulation of cell function. Herein we study the response of cells to a versatile nanopillar platform. Nanopillar arrays of various shape, size, and spacing and different nanopillar-substrate interfacial strengths were fabricated and interfaced with fibroblasts and several unique cell-nanopillar interactions were observed using high resolution scanning electron microscopy. Nanopillar penetration, engulfment, tilting, lift off and membrane thinning, were observed by manipulating nanopillar material, size, shape and spacing. These unique cell responses to various nanostructures can be employed for a wide range of applications including the design of highly sensitive nano-electrodes for single-cell probing. PMID:25123921

  16. Vacuum Violet Photo-Response of AlGaN-Based Metal-Semiconductor-Metal Photodetectors

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Lu, Hai; Chen, Dun-Jun; Ren, Fang-Fang; Zhang, Rong; Zheng, You-Dou; Li, Liang

    2013-11-01

    Al0.5Ga0.5 N-based metal-semiconductor-metal photodetectors (PDs) with a large device area of 5 × 5 mm2 are fabricated on a sapphire substrate, which are tested for vacuum ultraviolet light detection by using a synchrotron radiation source. The PD exhibits low dark current of less than 1 pA under 30 V bias and a spectral cutoff around 260 nm, corresponding to the energy bandgap of Al0.5Ga0.5N. A peak photo-responsivity of 14.68 mA/W at 250 nm with a rejection ratio (250/360 nm) of more than four orders of magnitude is obtained under 30 V bias. For wavelength less than 170 nm, the photoresponsivity of the PD is found to increase as wavelength decreases, which is likely caused by the enhanced photoemission effect.

  17. Immunosuppression of the trimellitic anhydride-induced th2 response by novel nonanatural products mixture in mice.

    PubMed

    Bae, Min-Jung; Shin, Hee Soon; Shon, Dong-Hwa

    2013-01-01

    Many natural dietary products prevent or cure allergic inflammation; however, the ability of mixtures of these natural medicinals to suppress allergic skin inflammation is unknown. We examined the inhibitory effects of nonanatural products mixture (NPM-9), which provides immunoregulatory activation, on Th2-mediated skin allergic inflammation. Oral administration of NPM-9 in mice reduced ear thickness and specific IgE production in trimellitic anhydride- (TMA-)induced contact hypersensitivity (CHS). NPM-9 also suppressed IL-4 and IL-1β production in splenocytes but prevented only TMA-induced IL-1β production in inflamed ears. To characterize the mechanism of this effect, we examined NPM-9 immunosuppression on an OVA-induced Th2 allergic state. Oral administration of NPM-9 inhibited Th2-mediated serum IgE overproduction. NPM-9 also downregulated the polarized Th2 response, whereas it upregulated Th1 response in splenocytes. These data suggest that NPM-9 may be a useful therapeutic agent for allergic inflammatory diseases through its suppression of the Th2-mediated allergic response. PMID:24348718

  18. The Challenge of Peat Substitution in Organic Seedling Production: Optimization of Growing Media Formulation through Mixture Design and Response Surface Analysis

    PubMed Central

    Ceglie, Francesco Giovanni; Bustamante, Maria Angeles; Ben Amara, Mouna; Tittarelli, Fabio

    2015-01-01

    Peat replacement is an increasing demand in containerized and transplant production, due to the environmental constraints associated to peat use. However, despite the wide information concerning the use of alternative materials as substrates, it is very complex to establish the best materials and mixtures. This work evaluates the use of mixture design and surface response methodology in a peat substitution experiment using two alternative materials (green compost and palm fibre trunk waste) for transplant production of tomato (Lycopersicon esculentum Mill.); melon, (Cucumis melo L.); and lettuce (Lactuca sativa L.) in organic farming conditions. In general, the substrates showed suitable properties for their use in seedling production, showing the best plant response the mixture of 20% green compost, 39% palm fibre and 31% peat. The mixture design and applied response surface methodology has shown to be an useful approach to optimize substrate formulations in peat substitution experiments to standardize plant responses. PMID:26070163

  19. Investigation of simultaneous biosorption of copper(II) and chromium(VI) on dried Chlorella vulgaris from binary metal mixtures: Application of multicomponent adsorption isotherms

    SciTech Connect

    Aksu, Z.; Acikel, U.; Kutsal, T.

    1999-02-01

    Although the biosorption of single metal ions to various kinds of microorganisms has been extensively studied and the adsorption isotherms have been developed for only the single metal ion situation, very little attention has been given to the bioremoval and expression of adsorption isotherms of multimetal ions systems. In this study the simultaneous biosorption of copper(II) and chromium(VI) to Chlorella vulgaris from a binary metal mixture was studied and compared with the single metal ion situation in a batch stirred system. The effects of pH and single- and dual-metal ion concentrations on the equilibrium uptakes were investigated. In previous studies the optimum biosorption pH had been determined as 4.0 for copper(II) and as 2.0 for chromium(VI). Multimetal ion biosorption studies were performed at these two pH values. It was observed that the equilibrium uptakes of copper(II) or chromium(VI) ions were changed due to the biosorption pH and the presence of other metal ions. Adsorption isotherms were developed for both single- and dual-metal ions systems at these two pH values, and expressed by the mono- and multicomponent Langmuir and Freundlich adsorption models. Model parameters were estimated by nonlinear regression. It was seen that the adsorption equilibrium data fitted very well to the competitive Freundlich model in the concentration ranges studied.

  20. Cerebrolysin, a mixture of neurotrophic factors induces marked neuroprotection in spinal cord injury following intoxication of engineered nanoparticles from metals.

    PubMed

    Menon, Preeti Kumaran; Muresanu, Dafin Fior; Sharma, Aruna; Mössler, Herbert; Sharma, Hari Shanker

    2012-02-01

    Spinal cord injury (SCI) is the world's most disastrous disease for which there is no effective treatment till today. Several studies suggest that nanoparticles could adversely influence the pathology of SCI and thereby alter the efficacy of many neuroprotective agents. Thus, there is an urgent need to find suitable therapeutic agents that could minimize cord pathology following trauma upon nanoparticle intoxication. Our laboratory has been engaged for the last 7 years in finding suitable therapeutic strategies that could equally reduce cord pathology in normal and in nanoparticle-treated animal models of SCI. We observed that engineered nanoparticles from metals e.g., aluminum (Al), silver (Ag) and copper (Cu) (50-60 nm) when administered in rats daily for 7 days (50 mg/kg, i.p.) resulted in exacerbation of cord pathology after trauma that correlated well with breakdown of the blood-spinal cord barrier (BSCB) to serum proteins. The entry of plasma proteins into the cord leads to edema formation and neuronal damage. Thus, future drugs should be designed in such a way to be effective even when the SCI is influenced by nanoparticles. Previous research suggests that a suitable combination of neurotrophic factors could induce marked neuroprotection in SCI in normal animals. Thus, we examined the effects of a new drug; cerebrolysin that is a mixture of different neurotrophic factors e.g., brain-derived neurotrophic factor (BDNF), glial cell line derived neurotrophic factor (GDNF), nerve growth factor (NGF), ciliary neurotrophic factor (CNTF) and other peptide fragments to treat normal or nanoparticle-treated rats after SCI. Our observations showed that cerebrolysin (2.5 ml/kg, i.v.) before SCI resulted in good neuroprotection in normal animals, whereas nanoparticle-treated rats required a higher dose of the drug (5.0 ml/kg, i.v.) to induce comparable neuroprotection in the cord after SCI. Cerebrolysin also reduced spinal cord water content, leakage of plasma proteins

  1. Modelling the response of a vibrating-element density meter in a two-phase mixture

    NASA Astrophysics Data System (ADS)

    Billingham, John

    1997-06-01

    A vibrating-element density meter is a mechanical oscillator with known properties, for example a tuning fork or a simple rod, driven to vibrate at a known frequency. The oscillator is immersed in a fluid and the resonant frequency measured. The density of the fluid can then be inferred. We consider an idealized meter immersed in two-phase flows of various types, and investigate whether a simple single-phase interpretation allows us to deduce the density of the mixture. We find that, when the density contrast between the two fluids is not great, the simple interpretation gives good results, for example in oil/water flows. However, when the density contrast is significant, for example in gas/liquid flows, the simple interpretation is highly inaccurate.

  2. Material response from Mach 0.3 burner rig combustion of a coal-oil mixture

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Calfo, F. D.; Kohl, F. J.

    1981-01-01

    Wedge shaped specimens were exposed to the combustion gases of a Mach 0.3 burner rig fueled with a mixture of 40 weight percent micron size coal particles dispersed in No. 2 fuel oil. Exposure temperature was about 900 C and the test duration was about 44 one hour cycles. The alloys tested were the nickel base superalloys, IN-100, U-700 and IN-792, and the cobalt base superalloy, Mar-M509. The deposits on the specimens were analyzed and the extent of corrosion/erosion was measured. The chemical compositions of the deposits were compared with the predictions from an equilibrium thermodynamic analysis. The experimental results were in very good agreement with the predictions.

  3. Optical Response of Metal Nanoantennas to Femtosecond Pulses

    NASA Astrophysics Data System (ADS)

    Biswas, Sushmita; Heberle, Albert

    2007-03-01

    Nanoscale metal antennas are promising devices for focusing light down to dimensions much smaller than the wavelength of light. This focusing can lead to strong optical enhancement of the response of single molecules or quantum dots placed in the antenna gap, as well as strong nonlinearities. The optical response of such antenna, however, is not well understood yet. Here, we will present results of our investigations of the linear and nonlinear optical response of silver nanoscale bowtie antennas to excitation with near-infrared pulses from a femtosecond Ti:sapphire laser. The antennas were fabricated with electron beam lithography and a lift-of process on glass substrates and semiconductor materials. They have lengths of a few hundred nanometers and gaps between 10 and 100 nanometers. We will discuss polarization dependence of the excitation sensitivity, second harmonic generation and other nonlinear effects. References: [1] P. Muhlschlegel et al., Science ,1607(2005). [2] J.N. Farahani et al., Phys. Rev. Lett. 95,017402(2005).

  4. In vitro expression of hard metal dust (WC-Co)--responsive genes in human peripheral blood mononucleated cells.

    PubMed

    Lombaert, Noömi; Lison, Dominique; Van Hummelen, Paul; Kirsch-Volders, Micheline

    2008-03-01

    Hard metals consist of tungsten carbide (WC) and metallic cobalt (Co) particles and are important industrial materials produced for their extreme hardness and high wear resistance properties. While occupational exposure to metallic Co alone is apparently not associated with an increased risk of cancer, the WC-Co particle mixture was shown to be carcinogenic in exposed workers. The in vitro mutagenic/apoptogenic potential of WC-Co in human peripheral blood mononucleated cells was previously demonstrated by us. This study aimed at obtaining a broader view of the pathways responsible for WC-Co induced carcinogenicity, and in particular genotoxicity and apoptosis. We analyzed the profile of gene expression induced in vitro by WC-Co versus control (24 h treatment) in human PBMC and monocytes using microarrays. The most significantly up-regulated pathways for WC-Co treated PBMC were apoptosis and stress/defense response; the most down-regulated was immune response. For WC-Co treated monocytes the most significantly up- and down-regulated pathways were nucleosome/chromatin assembly and immune response respectively. Quantitative RT-PCR data for a selection of the most strongly modulated genes (HMOX1, HSPA1A, HSPA1L, BNIP3, BNIP3L, ADORA2B, MT3, PLA2G7, TNFAIP6), and some additionally chosen apoptosis related genes (BCL2, BAX, FAS, FASL, TNFalpha), confirmed the microarray data after WC-Co exposure and demonstrated limited differences between the Co-containing compounds. Overall, this study provides the first analysis of gene expression induced by the WC-Co mixture showing a large profile of gene modulation and giving a preliminary indication for a hypoxia mimicking environment induced by WC-Co exposure. PMID:18078969

  5. In vitro expression of hard metal dust (WC-Co) - responsive genes in human peripheral blood mononucleated cells

    SciTech Connect

    Lombaert, Nooemi Lison, Dominique; Van Hummelen, Paul; Kirsch-Volders, Micheline

    2008-03-01

    Hard metals consist of tungsten carbide (WC) and metallic cobalt (Co) particles and are important industrial materials produced for their extreme hardness and high wear resistance properties. While occupational exposure to metallic Co alone is apparently not associated with an increased risk of cancer, the WC-Co particle mixture was shown to be carcinogenic in exposed workers. The in vitro mutagenic/apoptogenic potential of WC-Co in human peripheral blood mononucleated cells was previously demonstrated by us. This study aimed at obtaining a broader view of the pathways responsible for WC-Co induced carcinogenicity, and in particular genotoxicity and apoptosis. We analyzed the profile of gene expression induced in vitro by WC-Co versus control (24 h treatment) in human PBMC and monocytes using microarrays. The most significantly up-regulated pathways for WC-Co treated PBMC were apoptosis and stress/defense response; the most down-regulated was immune response. For WC-Co treated monocytes the most significantly up- and down-regulated pathways were nucleosome/chromatin assembly and immune response respectively. Quantitative RT-PCR data for a selection of the most strongly modulated genes (HMOX1, HSPA1A, HSPA1L, BNIP3, BNIP3L, ADORA2B, MT3, PLA2G7, TNFAIP6), and some additionally chosen apoptosis related genes (BCL2, BAX, FAS, FASL, TNF{alpha}), confirmed the microarray data after WC-Co exposure and demonstrated limited differences between the Co-containing compounds. Overall, this study provides the first analysis of gene expression induced by the WC-Co mixture showing a large profile of gene modulation and giving a preliminary indication for a hypoxia mimicking environment induced by WC-Co exposure.

  6. Macromolecular Response of Individual Algal Cells to Nutrient and Atrazine Mixtures within Biofilms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollutant effects on biofilm physiology are difficult to assess due to differential susceptibility of species and difficulty separating individual species for analysis. Also,measuring whole assemblage responses such as metabolism can mask species-specific responses, as some species may decrease and ...

  7. Modeling the Mixture of IRT and Pattern Responses by a Modified HYBRID Model.

    ERIC Educational Resources Information Center

    Yamamoto, Kentaro; Everson, Howard T.

    This study demonstrates the utility of a HYBRID psychometric model, which incorporates both item response theoretic and latent class models, for detecting test speededness. The model isolates where in a sequence of test items examinee response patterns shift from one providing reasonable estimates of ability to those best characterized by a random…

  8. Plasmonic response in nanoporous metal: dependence on network topology

    NASA Astrophysics Data System (ADS)

    Galí, Marc A.; Tai, Matthew C.; Arnold, Matthew D.; Cortie, Michael B.; Gentle, Angus R.; Smith, Geoffrey B.

    2015-12-01

    The optical and electrical responses of open, nanoscale, metal networks are of interest in a variety of technologies including transparent conducting electrodes, charge storage, and surfaces with controlled spectral selectivity. The properties of such nanoporous structures depend on the shape and extent of individual voids and the associated hyper-dimensional connectivity and density of the metal filaments. Unfortunately, a quantitative understanding of this dependence is at present only poorly developed. Here we address this problem using numerical simulations applied to a systematically designed series of prototypical sponges. The sponges are produced by a Monte Carlo simulation of the dealloying of Ag-Al alloys containing from 60% to 85% Al. The result is a series of Ag sponges of realistic morphology. The optical properties of the sponges are then calculated by the discrete dipole approximation and the results used to construct an 'effective medium' model for each sponge. We show how the resulting effective medium can be correlated with the associated morphological characteristics of each target and how the optical properties are primarily controlled by the density of the sponge and its state of percolation.

  9. Dynamic Control of Optical Response in Layered Metal Chalcogenide Nanoplates.

    PubMed

    Liu, Yanping; Tom, Kyle; Wang, Xi; Huang, Chunming; Yuan, Hongtao; Ding, Hong; Ko, Changhyun; Suh, Joonki; Pan, Lawrence; Persson, Kristin A; Yao, Jie

    2016-01-13

    Tunable optical transitions in ultrathin layered 2-dimensional (2D) materials unveil the electronic structures of materials and provide exciting prospects for potential applications in optics and photonics. Here, we present our realization of dynamic optical modulation of layered metal chalcogenide nanoplates using ionic liquid (IL) gating over a wide spectral range. The IL gating significantly increased the tuning range of the Fermi level and, as a result, substantially altered the optical transitions in the nanoplates. Using heavily n-doped Bi2Se3 nanoplates, we substantially modulated the light transmission through the ultrathin layer. A tunable, high-transmission spectral window in the visible to near-infrared region has been observed due to simultaneous shifts of both the plasma edge and absorption edge of the material. On the other hand, optical response of multilayer MoSe2 flakes gated by IL has shown enhanced transmission in both positive and negative biases, which is consistent with their ambipolar electrical behavior. The electrically controlled optical property tuning in metal chalcogenide material systems provides new opportunities for potential applications, such as wide spectral range optical modulators, optical filters, and electrically controlled smart windows with extremely low material consumption. PMID:26599063

  10. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Mirzadeh, F.; Pindera, Marek-Jerzy; Herakovich, Carl T.

    1990-01-01

    Elements of the analytical/experimental program to characterize the response of silicon carbide titanium (SCS-6/Ti-15-3) composite tubes under biaxial loading are outlined. The analytical program comprises prediction of initial yielding and subsequent inelastic response of unidirectional and angle-ply silicon carbide titanium tubes using a combined micromechanics approach and laminate analysis. The micromechanics approach is based on the method of cells model and has the capability of generating the effective thermomechanical response of metal matrix composites in the linear and inelastic region in the presence of temperature and time-dependent properties of the individual constituents and imperfect bonding on the initial yield surfaces and inelastic response of (0) and (+ or - 45)sub s SCS-6/Ti-15-3 laminates loaded by different combinations of stresses. The generated analytical predictions will be compared with the experimental results. The experimental program comprises generation of initial yield surfaces, subsequent stress-strain curves and determination of failure loads of the SCS-6/Ti-15-3 tubes under selected loading conditions. The results of the analytical investigation are employed to define the actual loading paths for the experimental program. A brief overview of the experimental methodology is given. This includes the test capabilities of the Composite Mechanics Laboratory at the University of Virginia, the SCS-6/Ti-15-3 composite tubes secured from McDonnell Douglas Corporation, a text fixture specifically developed for combined axial-torsional loading, and the MTS combined axial-torsion loader that will be employed in the actual testing.

  11. Induction of several acute-phase protein genes by heavy metals: A new class of metal-responsive genes

    SciTech Connect

    Yiangou, Minas; Ge, Xin; Carter, K.C.; Papaconstantinou, J. Shriners Burns Institute, Galveston, TX )

    1991-04-16

    Acute-phase reactants, metallothioneins, and heat-shock proteins are the products of three families of genes that respond to glucocorticoids and cytokines. Metallothioneins and heat-shock proteins, however, are also stimulated by heavy metals whereas very little is known about the effect of heavy metals on acute-phase-reactant genes. The authors have studied the effect of heavy metals (Hg, Cd, Pb, Cu, Ni, and Zn) and Mg on the acute-phase reactants {alpha}{sub 1}-acid glycoprotein, C-reactive protein, {alpha}{sub 1}-antitrypsin and {alpha}{sub 1}-antichymotrypsin. {alpha}{sub 1}-Acid glycoprotein and C-reactive protein mRNA levels were increased severalfold in livers of heavy-metal-treated Balb/c mice. The strongest induction was mediated by Hg, followed in order of response by Cd > Pb > Cu > Ni > Zn > Mg. None of the metals affected the mRNA levels of albumin, {alpha}{sub 1}-antitrypsin, and {alpha}{sub 1}-antichymotrypsin. Furthermore, failure to repress albumin, a negative acute-phase reactant, indicated that the induction of these genes was not due to a metal-mediated inflammatory response. The metals also induced {alpha}{sub 1}-acid glycoprotein and C-reactive protein in adrenalectomized animals, indicating that induction by the heavy metals is not mediated by the glucocorticoid induction pathway. Sequence analysis has revealed a region of homology to metal-responsive elements in the {alpha}{sub 1}-acid glycoprotein and C-reactive protein promoters. The studies indicate that the induction of {alpha}{sub 1}-acid glycoprotein and C-reactive protein by heavy metals may be regulated by these metal-responsive elements at the level of transcription.

  12. Engineering cellular response using nanopatterned bulk metallic glass.

    PubMed

    Padmanabhan, Jagannath; Kinser, Emily R; Stalter, Mark A; Duncan-Lewis, Christopher; Balestrini, Jenna L; Sawyer, Andrew J; Schroers, Jan; Kyriakides, Themis R

    2014-05-27

    Nanopatterning of biomaterials is rapidly emerging as a tool to engineer cell function. Bulk metallic glasses (BMGs), a class of biocompatible materials, are uniquely suited to study nanopattern-cell interactions as they allow for versatile fabrication of nanopatterns through thermoplastic forming. Work presented here employs nanopatterned BMG substrates to explore detection of nanopattern feature sizes by various cell types, including cells that are associated with foreign body response, pathology, and tissue repair. Fibroblasts decreased in cell area as the nanopattern feature size increased, and fibroblasts could detect nanopatterns as small as 55 nm in size. Macrophages failed to detect nanopatterns of 150 nm or smaller in size, but responded to a feature size of 200 nm, resulting in larger and more elongated cell morphology. Endothelial cells responded to nanopatterns of 100 nm or larger in size by a significant decrease in cell size and elongation. On the basis of these observations, nondimensional analysis was employed to correlate cellular morphology and substrate nanotopography. Analysis of the molecular pathways that induce cytoskeletal remodeling, in conjunction with quantifying cell traction forces with nanoscale precision using a unique FIB-SEM technique, enabled the characterization of underlying biomechanical cues. Nanopatterns altered serum protein adsorption and effective substrate stiffness, leading to changes in focal adhesion density and compromised activation of Rho-A GTPase in fibroblasts. As a consequence, cells displayed restricted cell spreading and decreased collagen production. These observations suggest that topography on the nanoscale can be designed to engineer cellular responses to biomaterials. PMID:24724817

  13. Engineering Cellular Response Using Nanopatterned Bulk Metallic Glass

    PubMed Central

    2015-01-01

    Nanopatterning of biomaterials is rapidly emerging as a tool to engineer cell function. Bulk metallic glasses (BMGs), a class of biocompatible materials, are uniquely suited to study nanopattern–cell interactions as they allow for versatile fabrication of nanopatterns through thermoplastic forming. Work presented here employs nanopatterned BMG substrates to explore detection of nanopattern feature sizes by various cell types, including cells that are associated with foreign body response, pathology, and tissue repair. Fibroblasts decreased in cell area as the nanopattern feature size increased, and fibroblasts could detect nanopatterns as small as 55 nm in size. Macrophages failed to detect nanopatterns of 150 nm or smaller in size, but responded to a feature size of 200 nm, resulting in larger and more elongated cell morphology. Endothelial cells responded to nanopatterns of 100 nm or larger in size by a significant decrease in cell size and elongation. On the basis of these observations, nondimensional analysis was employed to correlate cellular morphology and substrate nanotopography. Analysis of the molecular pathways that induce cytoskeletal remodeling, in conjunction with quantifying cell traction forces with nanoscale precision using a unique FIB-SEM technique, enabled the characterization of underlying biomechanical cues. Nanopatterns altered serum protein adsorption and effective substrate stiffness, leading to changes in focal adhesion density and compromised activation of Rho-A GTPase in fibroblasts. As a consequence, cells displayed restricted cell spreading and decreased collagen production. These observations suggest that topography on the nanoscale can be designed to engineer cellular responses to biomaterials. PMID:24724817

  14. Responsive metal/polymer nanocomposites via photothermal effect

    NASA Astrophysics Data System (ADS)

    Seyhan, Merve; Rende, Deniz; Huang, Liping; Malta, Seyda; Ozisik, Rahmi; Baysal, Nihat

    2013-03-01

    Metal nanoparticles can efficiently generate heat when exposed to electromagnetic radiation. The amount of heat generated and the temperature increase depends on the number of nanoparticles and their shape. In the current work, gold nanoparticles (AuNPs) were used as heat sources within polyethylene oxide (600,000 g/mol) via the photothermal effect. AuNPs were synthesized through Frens method, and were characterized using TEM. A laser source with a wavelength of 532 nm was used to heat AuNPs. Raman spectroscopy data showed that irradiation of AuNPs led to increasing temperature profiles in the vicinity of AuNPs, which is a result of the surface plasmon resonance. This property of AuNPs would enable the control of viscoelastic response of the polymer by altering crystallinity and temperature of the polymer matrix, thereby, providing responsive materials. This work is partially supported by NSF CMMI-1200270 and DUE-1003574. MS was supported by TUBITAK 2214 grant. NB was supported by TUBITAK 2219 grant.

  15. A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.

    PubMed

    Sun, Zhi; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y

    2015-07-01

    In recent years, recovery of metals from electronic waste within the European Union has become increasingly important due to potential supply risk of strategic raw material and environmental concerns. Electronic waste, especially a mixture of end-of-life electronic products from a variety of sources, is of inherently high complexity in composition, phase, and physiochemical properties. In this research, a closed-loop hydrometallurgical process was developed to recover valuable metals, i.e., copper and precious metals, from an industrially processed information and communication technology waste. A two-stage leaching design of this process was adopted in order to selectively extract copper and enrich precious metals. It was found that the recovery efficiency and extraction selectivity of copper both reached more than 95% by using ammonia-based leaching solutions. A new electrodeposition process has been proven feasible with 90% current efficiency during copper recovery, and the copper purity can reach 99.8 wt %. The residue from the first-stage leaching was screened into coarse and fine fractions. The coarse fraction was returned to be releached for further copper recovery. The fine fraction was treated in the second-stage leaching using sulfuric acid to further concentrate precious metals, which could achieve a 100% increase in their concentrations in the residue with negligible loss into the leaching solution. By a combination of different leaching steps and proper physical separation of light materials, this process can achieve closed-loop recycling of the waste with significant efficiency. PMID:26061274

  16. Responses of the European flounder (Platichthys flesus) to a mixture of PAHs and PCBs in experimental conditions.

    PubMed

    Dupuy, Célie; Galland, Claire; Devaux, Alain; Bony, Sylvie; Loizeau, Véronique; Danion, Morgane; Pichereau, Vianney; Fournier, Michel; Laroche, Jean

    2014-12-01

    A multibiomarker approach was developed to evaluate the juvenile European flounder responses to a complex mixture of 9 polycyclic aromatic hydrocarbons (PAHs) and 12 polychlorinated biphenyls (PCBs). Exposure was performed through contaminated food pellets displaying: (1) PAH and PCB levels similar to those detected in the heavily polluted Seine estuary, respectively in sediments and in flatfish and (2) ten times these concentrations. Several biomarkers of the immune system (e.g., lysozyme concentration and gene expression of complement component C3 and TNF-receptor), DNA damage (e.g., Comet assay), energetic metabolism (e.g., activity of cytochrome C oxidase), detoxification process (e.g., cytochrome P450 1A1 expression level: CYP1A1; betaine homocysteine methyl transferase expression level: BHMT) were investigated after 14 and 29 days of contamination, followed by a 14-days recovery period. After 29 days of contamination, the detoxification activity (CYP1A1 expression level) was positively correlated with DNA damages; the increase of the BHMT expression level could also be related to the detoxification process. Furthermore, after the recovery period, some biomarkers were still upregulated (i.e., CYP1A1 and BHMT expression levels). The immune system was significantly modulated by the chemical stress at the two concentration levels, and the lysozyme appeared to be the most sensitive marker of the mixture impact. PMID:24504773

  17. Effect of microemulsions on transdermal delivery of citalopram: optimization studies using mixture design and response surface methodology

    PubMed Central

    Huang, Chi-Te; Tsai, Ming-Jun; Lin, Yu-Hsuan; Fu, Yaw-Sya; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu

    2013-01-01

    The aim of this study was to evaluate the potential of microemulsions as a drug vehicle for transdermal delivery of citalopram. A computerized statistical technique of response surface methodology with mixture design was used to investigate and optimize the influence of the formulation compositions including a mixture of Brij 30/Brij 35 surfactants (at a ratio of 4:1, 20%–30%), isopropyl alcohol (20%–30%), and distilled water (40%–50%) on the properties of the drug-loaded microemulsions, including permeation rate (flux) and lag time. When microemulsions were used as a vehicle, the drug permeation rate increased significantly and the lag time shortened significantly when compared with the aqueous control of 40% isopropyl alcohol solution containing 3% citalopram, demonstrating that microemulsions are a promising vehicle for transdermal application. With regard to the pharmacokinetic parameters of citalopram, the flux required for the transdermal delivery system was about 1280 μg per hour. The microemulsions loaded with citalopram 3% and 10% showed respective flux rates of 179.6 μg/cm2 and 513.8 μg/cm2 per hour, indicating that the study formulation could provide effective therapeutic concentrations over a practical application area. The animal study showed that the optimized formulation (F15) containing 3% citalopram with an application area of 3.46 cm2 is able to reach a minimum effective therapeutic concentration with no erythematous reaction. PMID:23919086

  18. The Quantitative Resolution of a Mixture of Group II Metal Ions by Thermometric Titration with EDTA. An Analytical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; Popham, Ronald E.

    1983-01-01

    Presents an experiment in thermometric titration used in an analytic chemistry-chemical instrumentation course, consisting of two titrations, one a mixture of calcium and magnesium, the other of calcium, magnesium, and barium ions. Provides equipment and solutions list/specifications, graphs, and discussion of results. (JM)

  19. Subtleties of human exposure and response to chemical mixtures from spills.

    PubMed

    Phetxumphou, Katherine; Dietrich, Andrea M; Shanaiah, Narasimhamurthy; Smiley, Elizabeth; Gallagher, Daniel L

    2016-07-01

    Worldwide, chemical spills degrade drinking water quality and threaten human health through ingestion and inhalation. Spills are often mixtures of chemicals; thus, understanding the interaction of chemical and biological properties of the major and minor components is critical to assessing human exposure. The crude (4-methylcyclohexyl)methanol (MCHM) spill provides an opportunity to assess such subtleties. This research determined the relative amounts, volatilization, and biological odor properties of minor components cis- and trans-methyl-4-methylcyclohexanecarboxylate (MMCHC) isomers and major components cis- and trans-4-MCHM, then compared properties and human exposure differences among them. (1)H nuclear magnetic resonance and chromatography revealed that the minor MMCHC isomers were about 1% of the major MCHM isomers. At typical showering temperature of 40 °C, Henry's law constants were 1.50 × 10(-2) and 2.23 × 10(-2) for cis- and trans-MMCHC, respectively, which is 20-50 fold higher than for 4-MCHM isomers. The odor thresholds were 1.83 and 0.02 ppb-v air for cis- and trans-MMCHC, which were both described as predominantly sweet. These data are compared to the higher 120 ppb-v air and 0.06 ppb-v odor thresholds for cis- and trans-4-MCHM, for which the trans-isomer had a dominant licorice descriptor. Application of a shower model demonstrated that while MMCHC isomers are only about 1% of the MCHM isomers, during showering, the MMCHC isomers are 13.8% by volume (16.3% by mass) because of their higher volatility. Trans-4-MCHM contributed about 82% of the odor because of higher volatility and lower odor threshold, trans-MMCHC, which represents 0.3% of the mass, contributed 18% of the odor. This study, with its unique human sensory component to assess exposure, reaffirmed that hazard assessment must not be based solely on relative concentration, but also consider the chemical fate, transport, and biological properties to determine the actual levels of

  20. BEHAVIOR AND IDENTIFICATION OF TOXIC METALS IN COMPLEX MIXTURES: EXAMPLES FROM EFFLUENT AND SEDIMENT PORE WATER TOXICITY IDENTIFICATION EVALUATIONS

    EPA Science Inventory

    Toxicity caused by heavy metals in environmental samples can be assessed by performing a suite of toxicity identificationevaluation (TIE) methods. he behavior of metals during TIEs can vary greatly according to sample matrix. ome approaches and precautions in using TIE to identif...

  1. Response of selected plant and insect species to simulated SRM exhaust mixtures and to exhaust components from SRM fuels

    NASA Technical Reports Server (NTRS)

    Heck, W. W.

    1980-01-01

    The possible biologic effects of exhaust products from solid rocket motor (SRM) burns associated with the space shuttle are examined. The major components of the exhaust that might have an adverse effect on vegetation, HCl and Al2O3 are studied. Dose response curves for native and cultivated plants and selected insects exposed to simulated exhaust and component chemicals from SRM exhaust are presented. A system for dispensing and monitoring component chemicals of SRM exhaust (HCl and Al2O3) and a system for exposing test plants to simulated SRM exhaust (controlled fuel burns) are described. The effects of HCl, Al2O3, and mixtures of the two on the honeybee, the corn earworm, and the common lacewing and the effects of simulated exhaust on the honeybee are discussed.

  2. UTILIZATION OF A RESPONSE-SURFACE TECHNIQUE IN THE STUDY OF PLANT RESPONSES TO OZONE AND SULFUR DIOXIDE MIXTURES

    EPA Science Inventory

    A second order rotatable design was used to obtain polynomial equations describing the effects of combinations of sulfur dioxide (SO2) and ozone (O3) on foliar injury and plant growth. The response surfaces derived from these equations were displayed as contour or isometric (3-di...

  3. Magnetic response measurements of mesoscopic superconducting and normal metal rings

    NASA Astrophysics Data System (ADS)

    Bluhm, Hendrik

    The main part of this thesis reports three experiments on the magnetic response of mesoscopic superconducting and normal metal rings using a scanning SQUID microscope. The first experiment explores the magnetic response and fluxoid transitions of superconducting, mesoscopic bilayer aluminum rings in the presence of two coupled order parameters arising from the layered structure. For intermediate couplings, metastable states that have different phase winding numbers around the ring in each of the two order parameters were observed. Larger coupling locks the relative phase, so that the two order parameters are only manifest in the temperature dependence of the response. With increasing proximitization, this signature gradually disappears. The data can be described with a two-order-parameter Ginzburg-Landau theory. The second experiment concentrates on fluxoid transitions in similar, but single-layer rings. Near the critical temperature, the transitions, which are induced by applying a flux to the ring, only admit a single fluxoid at a time. At lower temperatures, several fluxoids enter or leave at once, and the final state approaches the ground state. Currently available theoretical frameworks cannot quantitatively explain the data. Heating and quasiparticle diffusion are likely important for a quantitative understanding of this experiment, which could provide a model system for studying the nonlinear dynamics of superconductors far from equilibrium. The third and most important scanning SQUID study concerns 33 individual mesoscopic gold rings. All measured rings show a paramagnetic linear susceptibility and a poorly understood anomaly around zero field, both of which are likely due to unpaired defect spins. The response of sufficiently small rings also has a component that is periodic in the flux through the ring, with a period close to h/e. Its amplitude varies in sign and magnitude from ring to ring, and its typical value and temperature dependence agree with

  4. Metal mixtures in urban and rural populations in the US: The Multi-Ethnic Study of Atherosclerosis and the Strong Heart Study☆

    PubMed Central

    Pang, Yuanjie; Peng, Roger D.; Jones, Miranda R.; Francesconi, Kevin A.; Goessler, Walter; Howard, Barbara V.; Umans, Jason G.; Best, Lyle G.; Guallar, Eliseo; Post, Wendy S.; Kaufman, Joel D.; Vaidya, Dhananjay; Navas-Acien, Ana

    2016-01-01

    Background Natural and anthropogenic sources of metal exposure differ for urban and rural residents. We searched to identify patterns of metal mixtures which could suggest common environmental sources and/or metabolic pathways of different urinary metals, and compared metal-mixtures in two population-based studies from urban/sub-urban and rural/town areas in the US: the Multi-Ethnic Study of Atherosclerosis (MESA) and the Strong Heart Study (SHS). Methods We studied a random sample of 308 White, Black, Chinese-American, and Hispanic participants in MESA (2000–2002) and 277 American Indian participants in SHS (1998–2003). We used principal component analysis (PCA), cluster analysis (CA), and linear discriminant analysis (LDA) to evaluate nine urinary metals (antimony [Sb], arsenic [As], cadmium [Cd], lead [Pb], molybdenum [Mo], selenium [Se], tungsten [W], uranium [U] and zinc [Zn]). For arsenic, we used the sum of inorganic and methylated species (∑As). Results All nine urinary metals were higher in SHS compared to MESA participants. PCA and CA revealed the same patterns in SHS, suggesting 4 distinct principal components (PC) or clusters (∑As-U-W, Pb-Sb, Cd-Zn, Mo-Se). In MESA, CA showed 2 large clusters (∑As-Mo-Sb-U-W, Cd-Pb-Se-Zn), while PCA showed 4 PCs (Sb-U-W, Pb-Se-Zn, Cd-Mo, ∑As). LDA indicated that ∑As, U, W, and Zn were the most discriminant variables distinguishing MESA and SHS participants. Conclusions In SHS, the ∑As-U-W cluster and PC might reflect groundwater contamination in rural areas, and the Cd-Zn cluster and PC could reflect common sources from meat products or metabolic interactions. Among the metals assayed, ∑As, U, W and Zn differed the most between MESA and SHS, possibly reflecting disproportionate exposure from drinking water and perhaps food in rural Native communities compared to urban communities around the US. PMID:26945432

  5. Utilization of a Response-Surface Technique in the Study of Plant Responses to Ozone and Sulfur Dioxide Mixtures 1

    PubMed Central

    Ormrod, Douglas P.; Tingey, David T.; Gumpertz, Marcia L.; Olszyk, David M.

    1984-01-01

    A second order rotatable design was used to obtain polynomial equations describing the effects of combinations of sulfur dioxide (SO2) and ozone (O3) on foliar injury and plant growth. The response surfaces derived from these equations were displayed as contour or isometric (3-dimensional) plots. The contour plots aided in the interpretation of the pollutant interactions and were judged easier to use than the isometric plots. Plants of `Grand Rapids' lettuce (Lactuca sativa L.), `Cherry Belle' radish (Raphanus sativus L.), and `Alsweet' pea (Pisum sativum L.) were grown in a controlled environment chamber and exposed to seven combinations of SO2 and O3. Injury was evaluated based on visible chlorosis and necrosis and growth was evaluated as leaf area and dry weight. Covariate measurements were used to increase precision. Radish and pea had greater injury, in general, that did lettuce; all three species were sensitive to O3, and pea was most sensitive and radish least sensitive to SO2. Leaf injury responses were relatively more affected by the pollutants than were plant growth responses in radish and pea but not in lettuce. In radish, hypocotyl growth was more sensitive to the pollutants than was leaf growth. PMID:16663598

  6. Acute toxicity of binary and ternary mixtures of Cd, Cu, and Zn to Daphnia magna.

    PubMed

    Meyer, Joseph S; Ranville, James F; Pontasch, Mandee; Gorsuch, Joseph W; Adams, William J

    2015-04-01

    Standard static-exposure acute lethality tests were conducted with Daphnia magna neonates exposed to binary or ternary mixtures of Cd, Cu, and Zn in moderately hard reconstituted water that contained 3 mg dissolved organic carbon/L added as Suwannee River fulvic acid. These experiments were conducted to test for additive toxicity (i.e., the response to the mixture can be predicted by combining the responses obtained in single-metal toxicity tests) or nonadditive toxicity (i.e., the response is less than or greater than additive). Based on total metal concentrations (>90% dissolved) the toxicity of the tested metal mixtures could be categorized into all 3 possible additivity categories: less-than-additive toxicity (e.g., Cd-Zn and Cd-Cu-Zn mixtures and Cd-Cu mixtures when Cu was titrated into Cd-containing waters), additive toxicity (e.g., some Cu-Zn mixtures), or more-than-additive toxicity (some Cu-Zn mixtures and Cd-Cu mixtures when Cd was titrated into Cu-containing waters). Exposing the organisms to a range of sublethal to supralethal concentrations of the titrated metal was especially helpful in identifying nonadditive interactions. Geochemical processes (e.g., metal-metal competition for binding to dissolved organic matter and/or the biotic ligand, and possibly supersaturation of exposure waters with the metals in some high-concentration exposures) can explain much of the observed metal-metal interactions. Therefore, bioavailability models that incorporate those geochemical (and possibly some physiological) processes might be able to predict metal mixture toxicity accurately. PMID:25336231

  7. [Physiological responses of tubificidae to heavy metal chromium stress].

    PubMed

    Lou, Ju-Qing; Yang, Dong-Ye; Cao, Yong-Qing; Sun, Pei-De; Zheng, Ping

    2014-11-01

    Tubificidae is now used in the wastewater treatment systems to successfully minimize the sludge production, which has been proved an effective, economical and sustainable technology. But the excess sludge inevitably contains a variety of heavy metals, especially the sludge from industrial wastewater treatment plant. In order to apply tubificidae to these systems, Chromium was selected as pollutant object and the physiological responses of tubificidae to Chromium were studied in this paper. Acute toxicity was analyzed and Median lethal concentrations (LC50) were determined over 96 h periods for Cr. Results indicated that 24 h LC50 and 96 h LC50 were 7.94 mg x L(-1) and 0.49 mg x L(-1), respectively. The duration f tubificidae in Cr solution decreased with increasing Cr concentration. Under the Cr stress, a highest respiration rate was obtained when the concentration of Cr(VI), temperature, pH and DO was 2.50 mg x L(-1), 26 degrees C, 6.0 and 6.0 mg x L(-1), respectively. The order of these factors was the concerntration of Cr(VI), temperature, DO and pH. The respiration experiments demonstrated that low concentration (< 2.50 mg x L(-1)) of Cr could promote the respiration rate of tubificidaes. On the other hand, when the concentration of Cr was 8.00 mg x L(-1), it could remarkably inhibit the respiratory rates of tubificidae. PMID:25639096

  8. Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology

    SciTech Connect

    Sun, Z.H.I.; Xiao, Y.; Sietsma, J.; Agterhuis, H.; Visser, G.; Yang, Y.

    2015-01-15

    Highlights: • New characterisation methodology has been established to understand an industrially processed ICT waste. • Particle size distribution, composition, thermal–chemical behaviour and occurrence of metals were considered. • The characterisation provides direct guidelines for values recovery from the waste. - Abstract: Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process.

  9. A preliminary study for removal of heavy metals from acidic synthetic wastewater by using pressmud-rice husk mixtures

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Ee, C. J.; Baharudin, N. S.

    2016-06-01

    The study was carried out to evaluate the effect of combining pressmud and rice husk in the removal efficiencies of heavy metals in acidic synthetic wastewater. The ratios of pressmud to rice husk were varied at different percentages of weight ratio (0%, 20%, 40%, 60% 80% and 100%) and removal of heavy metals concentrations was observed. The result showed that the removal efficiency was increased with the addition of pressmud by up to almost 100%. Pressmud alone was able to remove 95% to 100% of heavy metals while rice husk alone managed to remove only 10% to 20% of heavy metals. The study also demonstrated that pressmud behaved as a natural acid neutralizer. Hence, the initial pH of the synthetically prepared acidic wastewater which was below 2 also was increased to pH ranging from 6 to 8.

  10. Development of Metal/Polymer Mixtures Dedicated to Macro and Micro powder Injection Moulding : Experiments and Simulations

    SciTech Connect

    Quinard, C.; Barriere, T.; Gelin, J. C.; Song, J. P.; Cheng, Z. Q.; Liu, B. S.

    2007-05-17

    Important research tasks at ENSMM/LMA are concerned for the development of mixtures of fine powders associated to polymer binders dedicated to the powder injection moulding (PIM) and to the powder injection micro-moulding ({mu}PIM) in accordance with many works already carried out with different feedstock suppliers dedicated to the macro-components. These research tasks are completed with the simulations of injection and sintering for solid state diffusion for to validate the mumerical models.

  11. Development of Metal/Polymer Mixtures Dedicated to Macro and Micro powder Injection Moulding : Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Quinard, C.; Barrière, T.; Gelin, J. C.; Song, J. P.; Cheng, Z. Q.; Liu, B. S.

    2007-05-01

    Important research tasks at ENSMM/LMA are concerned for the development of mixtures of fine powders associated to polymer binders dedicated to the powder injection moulding (PIM) and to the powder injection micro-moulding (μPIM) in accordance with many works already carried out with different feedstock suppliers dedicated to the macro-components. These research tasks are completed with the simulations of injection and sintering for solid state diffusion for to validate the mumerical models.

  12. Hydrogen generation from Al-NiCl2/NaBH4 mixture affected by lanthanum metal.

    PubMed

    Sun, Wen Qiang; Fan, Mei-Qiang; Fei, Yong; Pan, Hua; Wang, Liang Liang; Yao, Jun

    2012-01-01

    The effect of La on Al/NaBH(4) hydrolysis was elaborated in the present paper. Hydrogen generation amount increases but hydrogen generation rate decreases with La content increasing. There is an optimized composition that Al-15 wt% La-5 wt% NiCl(2)/NaBH(4) mixture (Al-15 wt% La-5 wt% NiCl(2)/NaBH(4) weight ratio, 1 : 3) has 126 mL g(-1 )min(-1) maximum hydrogen generation rate and 1764 mL g(-1) hydrogen generation amount within 60 min. The efficiency is 88%. Combined with NiCl(2), La has great effect on NaBH(4) hydrolysis but has little effect on Al hydrolysis. Increasing La content is helpful to decrease the particle size of Al-La-NiCl(2) in the milling process, which induces that the hydrolysis byproduct Ni(2)B is highly distributed into Al(OH)(3) and the catalytic reactivity of Ni(2)B/Al(OH)(3) is increased therefore. But hydrolysis byproduct La(OH)(3) deposits on Al surface and leads to some side effect. The Al-La-NiCl(2)/NaBH(4) mixture has good stability in low temperature and its hydrolytic performance can be improved with increasing global temperature. Therefore, the mixture has good safety and can be applied as on board hydrogen generation material. PMID:22619596

  13. Hydrogen Generation from Al-NiCl2/NaBH4 Mixture Affected by Lanthanum Metal

    PubMed Central

    Qiang Sun, Wen; Fan, Mei-Qiang; Fei, Yong; Pan, Hua; Wang, Liang Liang; Yao, Jun

    2012-01-01

    The effect of La on Al/NaBH4 hydrolysis was elaborated in the present paper. Hydrogen generation amount increases but hydrogen generation rate decreases with La content increasing. There is an optimized composition that Al-15 wt% La-5 wt% NiCl2/NaBH4 mixture (Al-15 wt% La-5 wt% NiCl2/NaBH4 weight ratio, 1 : 3) has 126 mL g−1 min−1 maximum hydrogen generation rate and 1764 mL g−1 hydrogen generation amount within 60 min. The efficiency is 88%. Combined with NiCl2, La has great effect on NaBH4 hydrolysis but has little effect on Al hydrolysis. Increasing La content is helpful to decrease the particle size of Al-La-NiCl2 in the milling process, which induces that the hydrolysis byproduct Ni2B is highly distributed into Al(OH)3 and the catalytic reactivity of Ni2B/Al(OH)3 is increased therefore. But hydrolysis byproduct La(OH)3 deposits on Al surface and leads to some side effect. The Al-La-NiCl2/NaBH4 mixture has good stability in low temperature and its hydrolytic performance can be improved with increasing global temperature. Therefore, the mixture has good safety and can be applied as on board hydrogen generation material. PMID:22619596

  14. Influence of Conductivity and Dielectric Constant of Water–Dioxane Mixtures on the Electrical Response of SiNW-Based FETs

    PubMed Central

    Mescher, Marleen; Brinkman, Aldo G.M.; Bosma, Duco; Klootwijk, Johan H.; Sudhölter, Ernst J.R.; de Smet, Louis C.P.M.

    2014-01-01

    In this study, we report on the electrical response of top-down, p-type silicon nanowire field-effect transistors exposed to water and mixtures of water and dioxane. First, the capacitive coupling of the back gate and the liquid gate via an Ag/AgCl electrode were compared in water. It was found that for liquid gating smaller potentials are needed to obtain similar responses of the nanowire compared to back gating. In the case of back gating, the applied potential couples through the buried oxide layer, indicating that the associated capacitance dominates all other capacitances involved during this mode of operation. Next, the devices were exposed to mixtures of water and dioxane to study the effect of these mixtures on the device characteristics, including the threshold voltage (VT). The VT dependency on the mixture composition was found to be related to the decreased dissociation of the surface silanol groups and the conductivity of the mixture used. This latter was confirmed by experiments with constant conductivity and varying water–dioxane mixtures. PMID:24481233

  15. Assessment of a mussel as a metal bioindicator of coastal contamination: relationships between metal bioaccumulation and multiple biomarker responses.

    PubMed

    Chandurvelan, Rathishri; Marsden, Islay D; Glover, Chris N; Gaw, Sally

    2015-04-01

    This is the first study to use a multiple biomarker approach on the green-lipped mussel, Perna canaliculus to test its feasibility as a bioindicator of coastal metal contamination in New Zealand (NZ). Mussels were collected from six low intertidal sites varying in terms of anthropogenic impacts, within two regions (West Coast and Nelson) of the South Island of NZ. Trace elements, including arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn), were measured in the gills, digestive gland, foot and mantle, and in the surface sediments from where mussels were collected. Metal levels in the sediment were relatively low and there was only one site (Mapua, Nelson) where a metal (Ni) exceeded the Australian and New Zealand Interim Sediment Quality Guideline values. Metal levels in the digestive gland were generally higher than those from the other tissues. A variety of biomarkers were assessed to ascertain mussel health. Clearance rate, a physiological endpoint, correlated with metal level in the tissues, and along with scope for growth, was reduced in the most contaminated site. Metallothionein-like protein content and catalase activity in the digestive gland, and catalase activity and lipid peroxidation in the gill, were also correlated to metal accumulation. Although there were few regional differences, the sampling sites were clearly distinguishable based on the metal contamination profiles and biomarker responses. P. canaliculus appears to be a useful bioindicator species for coastal habitats subject to metal contamination. In this study tissue and whole organism responses provided insight into the biological stress responses of mussels to metal contaminants, indicating that such measurements could be a useful addition to biomonitoring programmes in NZ. PMID:25596351

  16. Eutectic Mixture of Local Anesthesia Cream Can Reduce Both the Radial Pain and Sympathetic Response During Transradial Coronary Angiography

    PubMed Central

    Youn, Young Jin; Kim, Woo-Taek; Lee, Jun-Won; Ahn, Sung-Gyun; Ahn, Min-Soo; Kim, Jang-Young; Yoo, Byung-Su; Lee, Seung-Hwan; Choe, Kyung-Hoon

    2011-01-01

    Background and Objectives adial artery spasm is one of the most common complications of transradial coronary angiography (TRA): the radial artery is prone to cathecholamine-induced contraction and radial pain during TRA could increase the sympathetic tone. The object of this study was to evaluate whether the eutectic mixture of local anesthesia (EMLA) cream, in addition to lidocaine infiltration, could reduce the sympathetic response by reducing radial pain during TRA. Subjects and Methods Seventy-six patients were randomized 1 : 1 to either EMLA or control groups. Radial pain was measured by the visual analogue scale (VAS) and the verbal rating scale (VRS-4). Sympathetic response, including systolic (SBP) and diastolic blood pressure (DBP), pulse rate (PR), stroke volume (SV) and total peripheral resistance (TPR), was measured by photoplethysmography. Results Radial pain measured during lidocaine infiltration was significantly lower in the EMLA group (VAS: 3.1 vs. 4.0, p=0.04; VRS-4: 2.0 vs. 2.2, p=0.03) and the sympathetic response was significantly blunted in the EMLA group from baseline to lidocaine infiltration (ΔSBP, mm Hg: 5 vs. 13, p<0.01; ΔDBP, mm Hg: 2 vs. 7, p=0.03; ΔPR, beat/min: 2 vs. 8, p<0.01, ΔSV, mL: 3 vs. 21, p<0.01; ΔTPR, mm Hg · L/min: 1.0 vs. 5.9, p<0.01). Conclusion In patients undergoing TRA, the EMLA cream, in addition to lidocaine infiltration, effectively reduces the radial pain and thereby the sympathetic response, during lidocaine infiltration. PMID:22259603

  17. A multivariate assessment of innate immune-related gene expressions due to exposure to low concentration individual and mixtures of four kinds of heavy metals on zebrafish (Danio rerio) embryos.

    PubMed

    Cobbina, Samuel Jerry; Xu, Hai; Zhao, Ting; Mao, Guanghua; Zhou, Zhaoxiang; Wu, Xueshan; Liu, Hongyang; Zou, Yanmin; Wu, Xiangyang; Yang, Liuqing

    2015-12-01

    Concerns over the potential health effects of mixtures of low concentration heavy metals on living organisms keep growing by the day. However, the toxicity of low concentration metal mixtures on the immune system of fish species has rarely been investigated. In this study, the zebrafish model was employed to investigate the effect on innate immune and antioxidant-related gene expressions, on exposure to environmentally relevant concentrations of individual and mixtures of Pb (0.01 mg/L), Hg (0.001 mg/L), As (0.01 mg/L) and Cd (0.005 mg/L). Messenger-RNA (mRNA) levels of IL1β, TNF-α, IFNγ, Mx, Lyz, C3B and CXCL-Clc which are closely associated with the innate immune system were affected after exposing zebrafish embryos to metals for 120 h post fertilization (hpf). Individual and mixtures of metals exhibited different potentials to modulate innate-immune gene transcription. IL1β genes were significantly up regulated on exposure to Pb + As (2.01-fold) and inhibited on exposure to Pb + Hg + Cd (0.13-fold). TNF-α was significantly inhibited on exposure to As (0.40-fold) and Pb + As (0.32-fold) compared to control. Metal mixtures generally up regulated IFNγ compared to individual metals. Additionally, antioxidant genes were affected, as CAT and GPx gene expressions generally increased, whiles Mn-SOD and Zn/Cu-SOD reduced. Multivariate analysis showed that exposure to individual metals greatly influenced modulation of innate immune genes; whiles metal mixtures influenced antioxidant gene expressions. This suggests that beside oxidative stress, there may be other pathways influencing gene expressions of innate immune and antioxidant-related genes. Low concentration heavy metals also affect expression of development-related (wnt8a and vegf) genes. Altogether, the results of this study clearly demonstrate that low concentration individual and mixtures of metals in aquatic systems will greatly influence the immune system. It is indicative that mechanisms associated with

  18. Numerical Modeling of Particle-Fluid Mixtures in a Subglacial Setting: Granular Deformation and Hydrological Flow Response

    NASA Astrophysics Data System (ADS)

    Damsgaard, A.; Egholm, D. L.; Piotrowski, J. A.; Tulaczyk, S. M.; Larsen, N. K.

    2014-12-01

    The coupled mechanical response of ice, water and sediment may control the flow of warm-based glaciers residing on deformable sediment. This is most clearly expressed by the fast flowing ice streams in Greenland and Antarctica, where low levels of basal friction are thought to support the high flow rates. These ice streams are of particular interest since they are large constituents of the polar ice sheet mass balance. The study of these ice streams and their future impact on the ice sheets necessitates a deeper understanding of their basal dynamics, including the rheology of water-saturated sediment. We present the methodology and first results of a coupled numerical model for computational experiments on granular-fluid mixtures under dynamic conditions similar to those in subglacial settings. The granular phase is simulated on a per-particle basis by the soft body discrete element method. The fluid phase is handled as a continuum by solving the incompressible Navier-Stokes equations. The particle and fluid phases are coupled by mass conservation and momentum exchanges. The hydraulic diffusivity and permeability is compared to previous laboratory studies on tills. We demonstrate how the onset and halt of granular deformation is an efficient mechanism to create fluid pressure fluctuations due to local porosity changes. These pressure anomalies are driving transient hydraulic flows, and they influence directly the rheology of granular-fluid mixtures. Our results highlight the nonlinear nature of water saturated granular deformation, and demonstrate how the mechanical behaviour of granular materials may include both brittle and viscous components depending on the rates of deformation and the hydrological properties.

  19. Cytotoxicity of binary mixtures of human pharmaceuticals in a fish cell line: approaches for non-monotonic concentration-response relationships.

    PubMed

    Bain, Peter A; Kumar, Anupama

    2014-08-01

    Predicting the effects of mixtures of environmental micropollutants is a priority research area. In this study, the cytotoxicity of ten pharmaceuticals to the rainbow trout cell line RTG-2 was determined using the neutral red uptake assay. Fluoxetine (FL), propranolol (PPN), and diclofenac (DCF) were selected for further study as binary mixtures. Biphasic concentration-response relationships were observed in cells exposed to FL and PPN. In the case of PPN, microscopic examination revealed lysosomal swelling indicative of direct uptake and accumulation of the compound. Three equations describing non-monotonic concentration-response relationships were evaluated and one was found to consistently provide more accurate estimates of the median and 10% effect concentrations compared with a sigmoidal concentration-response model. Predictive modeling of the effects of binary mixtures of FL, PPN, and DCF was undertaken using an implementation of the concentration addition (CA) conceptual model incorporating non-monotonic concentration-response relationships. The cytotoxicity of the all three binary combinations could be adequately predicted using CA, suggesting that the toxic mode of action in RTG-2 cells is unrelated to the therapeutic mode of action of these compounds. The approach presented here is widely applicable to the study of mixture toxicity in cases where non-monotonic concentration-response relationships are observed. PMID:24582036

  20. Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology.

    PubMed

    Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Visser, G; Yang, Y

    2015-01-01

    Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process. PMID:25445262

  1. Accumulation of metals in selected macrophytes grown in mixture of drain water and tannery effluent and their phytoremediation potential.

    PubMed

    Kumar, Narendra; Bauddh, Kuldeep; Dwivedi, Neetu; Barman, S C; Singh, D P

    2012-09-01

    Phytoremediation is an emerging, ecofriendly and economically feasible technique for the restoration of heavy metals contaminated environment. In the present investigation, five native macrophytes growing naturally in a drain receiving tannery effluent viz Bacopa monnieri, Eichhornia crassipes, Hydrilla verticillata, Ipomoea aquatica and Marsilea minuta were evaluated for their heavy metal (Cr, Cu, Ni and Pb) accumulation potential in field conditions at Unnao, U.P., India. The results showed that metal accumulation by these macrophytes differed among species and tissue parts. The concentration of Cr, Cu, Ni and Pb in the root tissues were estimated in the range 3.38-45.59,1.01-16.85,1.81-4.43 and 1.02-4.24 microg g(-1) d.wt., whereas the corresponding shoot values were 8.79-48.81, 1.01-8.67, 0.84-2.89 and 1.02-2.84 for Cr, Cu, Ni and Pb respectively. Among the studied plants the translocation factor (TF) ranged between 1.07-2.60, 0.75-3.83, 1.44-2.57 and 0.49-3.76 for Cr, Cu, Ni and Pb, respectively. The highest metal TF was found in M. minuta (2.60, 3.83 and 2.57) for Cr, Cu and Ni respectively, whereas Pb was best translocated (3.76) by B. monnieri. Roots and shoots of the studied macrophytes showed a value of greater than 1 for metal enrichment coefficient. Findings suggest that E. crassipes can be used for phytoremediation of Cu and Ni whereas M. minuta and H. verticillata can be applied for the removal of Cr and Pb respectively from the contaminated water bodies. PMID:23734460

  2. High-speed response time of LC mixtures containing fluoro-isothiocyanato liquid crystal compounds for LCD monitor and TV applications

    NASA Astrophysics Data System (ADS)

    Kim, Yong B.; Huh, Il K.

    2002-05-01

    A most important parameter for TV application of LCD is a fast switching time for displaying of moving image. To achieve the requirement of faster switching times, the novel LC single materials with large dielectric anisotropies (16~20), high clearing temperatures (195.5 ~ 237.4 degree(s)C), broad nematic ranges (up to 169.9 degree(s)C) and high birefringence (0.220 ~ 0.254) were developed. KUR-series LC mixtures blended these single materials have significantly higher clearing temperatures and dielectric anisotropy values compared with conventional LC mixture. Especially, clearing temperatures of them are 10~30 degree(s)C higher than their host mixture. These LC mixtures showing about 10ms of high-speed response time in TV/Monitor of TFT LCD, which are shorter enough to be addressed in one frame time of 60Hz (16.7ms). The threshold voltage Vth was low enough to operate at a driving voltage of 5V. The VHR values were found to high enough for TFT-LCD in wide temperature range. Our novel LC mixtures are suitable materials for inclusion in LC mixtures for TV application of TN-LCD.

  3. Mixture-amount design and response surface modeling to assess the effects of flavonoids and phenolic acids on developmental performance of Anastrepha ludens.

    PubMed

    Pascacio-Villafán, Carlos; Lapointe, Stephen; Williams, Trevor; Sivinski, John; Niedz, Randall; Aluja, Martín

    2014-03-01

    Host plant resistance to insect attack and expansion of insect pests to novel hosts may to be modulated by phenolic compounds in host plants. Many studies have evaluated the role of phenolics in host plant resistance and the effect of phenolics on herbivore performance, but few studies have tested the joint effect of several compounds. Here, we used mixture-amount experimental design and response surface modeling to study the effects of a variety of phenolic compounds on the development and survival of Mexican fruit fly (Anastrepha ludens [Loew]), a notorious polyphagous pest of fruit crops that is likely to expand its distribution range under climate change scenarios. (+)- Catechin, phloridzin, rutin, chlorogenic acid, and p-coumaric acid were added individually or in mixtures at different concentrations to a laboratory diet used to rear individuals of A. ludens. No effect was observed with any mixture or concentration on percent pupation, pupal weight, adult emergence, or survival from neonate larvae to adults. Larval weight, larval and pupal developmental time, and the prevalence of adult deformities were affected by particular mixtures and concentrations of the compounds tested. We suggest that some combinations/concentrations of phenolic compounds could contribute to the management of A. ludens. We also highlight the importance of testing mixtures of plant secondary compounds when exploring their effects upon insect herbivore performance, and we show that mixture-amount design is a useful tool for this type of experiments. PMID:24619732

  4. In vitro suppression of thymocyte apoptosis by metal-rich complex environmental mixtures: potential role of zinc and cadmium excess.

    PubMed

    Chukhlovi, A B; Tokalov, S V; Yagunov, A S; Westendorf, J; Reincke, H; Karbe, L

    2001-12-17

    Excessive amounts of heavy metals (e.g. Zn, Cu, Mn, Cr) are accumulated in river bottom sediments (RBS), being available to humans and animals along food chains. Increased exposure of mammals to certain metals (Cr, Cu) induces immunosuppresion, due to DNA damage and decreased survival of lymphoid cells. By contrast, excess of Zn and Cd causes inhibition of apoptosis thus suggesting increased survival of genetically mutated cells and higher cancer risks in exposed populations. Rat thymic lymphocytes represent a well-established model for apoptosis testing. The primary goal of our study was to assess the degree of apoptosis modulation with a number of RBS extracts differing in their metal contents. A series of freshly deposited RBS was collected at nine sampling stations along the Elbe River. All sediments were rich in Fe, Mn and Zn. The contents of Cu, Cr, Ni, Cd, Hg, Pb and As were much lower and interrelated. The short-term cytotoxicity of aqueous sediment extracts was assessed, using the following criteria: total cell counts; incidence of apoptosis and necrosis (morphological detection by fluorescent microscopy); and nuclear chromatin decay (by DNA flow cytometry). RBS extracts produced both apoptosis and necrosis of thymocytes. High contents of zinc and other heavy metals in the samples correlated with decreased thymocyte apoptosis (r= -0.543 to -0.608, P <0.01). The rates of thymocyte damage showed a distinct dependence on the time and region of sampling. Apoptosis modulation was also tested with pure salts of Mn(II), Zn(II), Cu(II), Cr(III) and Cd(II), at the test concentrations of 1, 10 and 100 microM. Cu(II) and Cr(III) proved to induce marked dose-related apoptosis, whereas Zn(II) ions caused significant suppression of apoptosis. These effects were similar to those trends observed with metal-rich sediments. In the present study. DNA flow cytometry proved to be a less sensitive index of cell death than morphological assay of apoptosis and/or necrosis. In

  5. Effect of dietary supplementation with a formulated nutrient mixture together with whey-based protein on immune response of young and old mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aging is associated with dysregulation of the immune response. Nutrient supplementation has been shown to help maintain a healthy immune system during aging. In this study we fed young (4-5 mo) and old (23-24 mo) C57BL/6 mice, a diet supplemented with a formulated nutrient mixture and whey proteins ...

  6. Biosynthesis of metal-binding polypeptides and their precursors in response to cadmium in Datura innoxia

    SciTech Connect

    Jackson, P.J.; Delhaize, E.; Kuske, C.R.

    1991-01-01

    Metal-tolerant Datura innoxia cells synthesize large amounts of a class of metal-binding polypeptides, poly({gamma}-glutamylcysteinyl) glycines (({gamma}-EC){sub n}G, n=2-5), when exposed to Cd. These polypeptides have a high affinity for Cd (2) and certain other metal ions and are thought to play a role in metal tolerance in higher plants. ({gamma}-EC){sub n}G is biosynthetically derived from glutathione. Therefore, the response of Datura cells to Cd must include an increase in production of glutathione and its precursors, since cells rapidly accumulate very high concentrations of these metal-binding polypeptides. The biosynthesis of ({gamma}-EC){sub n}Gs, glutathione, and cysteine in response to Cd exposure is described. The physiological significance of the synthesis of these polypeptides and their precursors and its relevance to Cd tolerance and metal homeostasis are discussed. 34 refs., 6 figs., 1 tab.

  7. Effects of Monotypic and Binary Mixtures of Metal Oxide Nanoparticles on Microbial Growth in Sandy Soil Collected from Artificial Recharge Sites

    PubMed Central

    Ko, Kyung-Seok; Ha, Kyoochul; Kong, In Chul

    2015-01-01

    The potential effects of monotypic and binary metal oxide nanoparticles (NPs, ZnO, NiO, Co3O4 and TiO2) on microbial growth were evaluated in sandy soil collected from artificial recharge sites. Microbial growth was assessed based on adenosine triphosphate (ATP) content, dehydrogenase activity (DHA), and viable cell counts (VCC). Microbial growth based on ATP content and VCC showed considerable differences depending on NP type and concentration, whereas DHA did not significantly change. In general, ZnO NPs showed the strongest effect on microbial growth in all measurements, showing an EC50 value of 10.9 mg/L for ATP content. The ranking (EC50) of NPs based on their effect on microbial growth assessed by ATP content and VCC was ZnO > Co3O4 > NiO > TiO2. Upon exposure to binary NP mixtures, synergistic and additive modes of action were observed for ATP content and VCC, respectively. The ranges of observed (P(O)) and expected (P(E)) activity were 83%–92% and 78%–82% of the control (p-value 0.0010) based on ATP content and 78%–95% and 72%–94% of the control (p-value 0.8813) based on VCC under the tested conditions, respectively. The results indicate that the effects of NP mixtures on microbial growth in the sandy soil matrix were as great, or greater, than those of single NPs. Therefore, understanding the effects of single NPs and NP mixtures is essential for proper ecological risk assessment. Additionally, these findings demonstrate that the evaluation of NP effects may be profoundly influenced by the method of microbial growth measurement. PMID:26610489

  8. Effects of Monotypic and Binary Mixtures of Metal Oxide Nanoparticles on Microbial Growth in Sandy Soil Collected from Artificial Recharge Sites.

    PubMed

    Ko, Kyung-Seok; Ha, Kyoochul; Kong, In Chul

    2015-01-01

    The potential effects of monotypic and binary metal oxide nanoparticles (NPs, ZnO, NiO, Co₃O₄ and TiO₂) on microbial growth were evaluated in sandy soil collected from artificial recharge sites. Microbial growth was assessed based on adenosine triphosphate (ATP) content, dehydrogenase activity (DHA), and viable cell counts (VCC). Microbial growth based on ATP content and VCC showed considerable differences depending on NP type and concentration, whereas DHA did not significantly change. In general, ZnO NPs showed the strongest effect on microbial growth in all measurements, showing an EC50 value of 10.9 mg/L for ATP content. The ranking (EC50) of NPs based on their effect on microbial growth assessed by ATP content and VCC was ZnO > Co₃O₄ > NiO > TiO₂. Upon exposure to binary NP mixtures, synergistic and additive modes of action were observed for ATP content and VCC, respectively. The ranges of observed (P(O)) and expected (P(E)) activity were 83%-92% and 78%-82% of the control (p-value 0.0010) based on ATP content and 78%-95% and 72%-94% of the control (p-value 0.8813) based on VCC under the tested conditions, respectively. The results indicate that the effects of NP mixtures on microbial growth in the sandy soil matrix were as great, or greater, than those of single NPs. Therefore, understanding the effects of single NPs and NP mixtures is essential for proper ecological risk assessment. Additionally, these findings demonstrate that the evaluation of NP effects may be profoundly influenced by the method of microbial growth measurement. PMID:26610489

  9. Metal-insulator transition characteristics of vanadium dioxide thin films synthesized by ultrasonic nebulized spray pyrolysis of an aqueous combustion mixture

    NASA Astrophysics Data System (ADS)

    Bharathi, R.; Naorem, Rameshwari; Umarji, A. M.

    2015-08-01

    We report the synthesis of high quality vanadium dioxide (VO2) thin films by a novel spray pyrolysis technique, namely ultrasonic nebulized spray pyrolysis of aqueous combustion mixture (UNSPACM). This simple and cost effective two step process involves synthesis of a V2O5 film on an LaAlO3 substrate followed by a controlled reduction to form single phase VO2. The formation of M1 phase (P21/c) is confirmed by Raman spectroscopic studies. A thermally activated metal-insulator transition (MIT) was observed at 61 ^\\circ C, where the resistivity changes by four orders of magnitude. Activation energies for the low conduction phase and the high conduction phase were obtained from temperature variable resistance measurements. The infrared spectra also show a dramatic change in reflectance from 13% to over 90% in the wavelength range of 7-15 μ m. This indicates the suitability of the films for optical switching applications at infrared frequencies.

  10. Toxicological responses in SW mice exposed to inhaled pyrolysates of polymer/tobacco mixtures and blended tobacco.

    PubMed

    Werley, Michael S; Lee, K Monika; Lemus-Olalde, Ranulfo

    2009-12-01

    Modern cigarette manufacturing is highly automated and produces millions of cigarettes per day. The potential for small inclusions of non-cigarette materials such as wood, cardboard packaging, plastic, and other materials exists as a result of bulk handling and high-speed processing of tobacco. Many non-tobacco inclusions such as wood, paper, and cardboard would be expected to yield similar pyrolysis products as a burning cigarette. The aircraft industry has developed an extensive literature on the pyrolysis products of plastics, however, that have been reported to yield toxic by-products upon burning, by-products that have been lethal in animals and humans upon acute exposure under some exposure conditions. Some of these smoke constituents have also been reported in cigarette smoke. Five synthetic polymers, nylon 6, acrylonitrile-butadiene-styrene (ABS), nylon 12, nylon 6,6, and acrylonitrile-butadiene (AB), and the natural polymer wool were evaluated by adding them to tobacco at a 3, 10, and 30% inclusion level and then pyrolyzing the mixture. The validated smoke generation and exposure system have been described previously. We used the DIN 53-436 tube furnace and nose-only exposure chamber in combination to conduct exposures in Swiss-Webster mice. Potentially useful biological endpoints for predicting hazards in humans included sensory irritation and pulmonary irritation, respiratory function, clinical signs, body weights, bronchoalveolar lavage (BAL) fluid analysis, carboxyhemoglogin, blood cyanide concentrations, and histopathology of the respiratory tract. Chemical analysis of selected smoke constituents in the test atmosphere was also performed in order to compare the toxicological responses with exposure to the test atmospheres. Under the conditions of these studies, biological responses considered relevant and useful for prediction of effects in humans were found for sensory irritation, body weights, BAL fluid analysis, and histopathology of the nose

  11. New studies of optical pumping, spin resonances, and spin exchange in mixtures of inert gases and alkali-metal vapors

    NASA Astrophysics Data System (ADS)

    Jau, Yuan-Yu

    In this thesis, we present new studies of alkali-hyperfine resonances, new optical pumping of alkali-metal atoms, and the new measurements of binary spin-exchange cross-section between alkali-metal atoms and xenon atoms. We report a large light narrowing effect of the hyperfine end-resonance signals, which was predicted from our theory and observed in our experiments. By increasing the intensity of the circularly polarized pumping beam, alkali-metal atoms are optically pumped into a state of static polarization, and trapped into the hyperfine end-state. Spin exchange between alkali-metal atoms has minimal effect on the end-resonance of the highly spin-polarized atoms. This new result will possibly benefit the design of atomic clocks and magnetometer. We also studied the pressure dependence of the atomic-clock resonance linewidth and pointed out that the linewidth was overestimated by people in the community of atomic clock. Next, we present a series study of coherent population trapping (CPT), which is a promising technique with the same or better performance compared to the traditional microwave spectroscopy. For miniature atomic clocks, CPT method is thought to be particularly advantages. From our studies, we invented a new optical-pumping method, push-pull optical pumping, which can pump atoms into nearly pure 0-0 superposition state, the superposition state of the two ground-state hyperfine sublevels with azimuthal quantum number m = 0. We believe this new invention will bring a big advantage to CPT frequency standards, the quantum state preparation for cold atoms or hot vapor, etc. We also investigated the pressure dependence of CPT excitation and the line shape of the CPT resonance theoretically and experimentally. These two properties are important for CPT applications. A theoretical study of "photon cost" of optical pumping is also presented. Finally, we switch our attention to the problem of spin exchange between alkali-metal atoms and xenon gas. This

  12. Brassinosteroids and Response of Plants to Heavy Metals Action.

    PubMed

    Rajewska, Iwona; Talarek, Marta; Bajguz, Andrzej

    2016-01-01

    Brassinosteroids (BRs) are a widespread group of plant hormones. These phytohormones play a crucial role in the regulation of growth and development of various plant species, and they demonstrate high biological activity. BRs are considered to demonstrate protective activity in the plants exposed to various stresses. Due to rapid industrialization and urbanization, heavy metals have become one of the most important plant stressors. In plants, accumulation of heavy metals beyond the critical levels leads to oxidative stress. However, BRs may inhibit the degradation of lipids, resulted from the overproduction of reactive oxygen species under stress conditions, and increase the activity of antioxidants. They also have the ability to promote phytochelatins synthesis. PMID:27242833

  13. Brassinosteroids and Response of Plants to Heavy Metals Action

    PubMed Central

    Rajewska, Iwona; Talarek, Marta; Bajguz, Andrzej

    2016-01-01

    Brassinosteroids (BRs) are a widespread group of plant hormones. These phytohormones play a crucial role in the regulation of growth and development of various plant species, and they demonstrate high biological activity. BRs are considered to demonstrate protective activity in the plants exposed to various stresses. Due to rapid industrialization and urbanization, heavy metals have become one of the most important plant stressors. In plants, accumulation of heavy metals beyond the critical levels leads to oxidative stress. However, BRs may inhibit the degradation of lipids, resulted from the overproduction of reactive oxygen species under stress conditions, and increase the activity of antioxidants. They also have the ability to promote phytochelatins synthesis. PMID:27242833

  14. Modes of metal toxicity and impaired branchial ionoregulation in rainbow trout exposed to mixtures of Pb and Cd in soft water.

    PubMed

    Birceanu, Oana; Chowdhury, M Jasim; Gillis, Patricia L; McGeer, James C; Wood, Chris M; Wilkie, Michael P

    2008-09-29

    Models such as the Biotic Ligand Model (BLM) predict how natural organic matter (NOM) and competing ions (e.g., Ca(2+), H(+) and Na(+)) affect metal bioavailability and toxicity in aquatic organisms. However, such models focus upon individual metals, not metal mixtures. This study determined whether Pb and Cd interact at the gill of rainbow trout (Oncorhynchus mykiss) when trout were exposed to environmentally relevant concentrations of these metals (Cd<100 nmol L(-1); Pb<500 nmol L(-1)) in soft (<100 micromol Ca(2+)L(-1)), moderately acidic (pH 6.0) water. The 96-h LC50 for Pb was 482 nmol L(-1), indicating that Pb was one-order of magnitude more toxic in soft, acidic water than in harder, circumneutral pH waters. The LC50 for Cd alone was also low, 6.7 nmol L(-1). Surprisingly, fish acclimated to soft water had multiple populations of Pb-gill and Cd-gill binding sites. A low capacity, high affinity population of Pb-gill binding sites had a B(max) of 18.2 nmol g(-1) wet weight (ww) and apparent K(Pb-gill)=7.05, but a second low affinity population could not be saturated up to free Pb concentrations approaching 4000 nmol L(-1). Two populations of Cd-gill binding sites were characterized: a high affinity, low capacity population with an apparent K(Cd-gill)=7.33 and B(max)=1.73 nmol g(-1) ww, and a low affinity, high capacity population with an apparent K(Cd-gill)=5.86, and B(max)=13.7 nmol g(-1) ww. At low concentrations, Cd plus Pb accumulation was less than additive because Cd out-competed Pb for gill binding sites, which were likely apical Ca(2+)-channels. While disturbances to Ca(2+) influx were caused by Cd alone, Pb alone had no effect. However, Pb exacerbated Cd-induced disturbances to Ca(2+) influx demonstrating that, although Pb- plus Cd-gill binding was less than additive due to competition, the effects (ionic disturbances) were more than additive (synergistic). Pb was also likely binding to intracellular targets, such as branchial carbonic anhydrase

  15. Fano response induced by the interference between localized plasmons and interface reflections in metal-insulator-metal waveguide structure

    NASA Astrophysics Data System (ADS)

    Li, Hong-Ju; Wang, Ling-Ling; Zhai, Xiang

    2016-06-01

    The original Fano response induced by the interference between the localized plasmons and interface-reflected surface plasmon polaritons in a single metal-insulator-metal waveguide with two parallel separated metal strips is predicted theoretically through the coupled mode theory combined with the Fano function. The prominent asymmetric line shape resulting from the coupling between the discrete dipole resonance formed between metal strips and an interface-reflected-induced continuum is confirmed by the performed numerical simulations. The novel Fano spectrum is tuned easily by varying the length and coupling distance of metal strips. By introducing another separated metal strip, the outstanding double Fano behavior is obtained, and the corresponding underlying physics is illustrated. In particular, based on the performed refractive index sensing spectra, the high sensitivity of 855 nm/RIU and figure of merit up to 30 are achieved via the double Fano resonance. Undoubtedly, such ingenious structure may benefit the fabrications of nano-integrated plasmonic devices for optical switching and sensing.

  16. Relationship between metal toxicity to subcellular systems and the carcinogenic response.

    PubMed Central

    Squibb, K S; Fowler, B A

    1981-01-01

    The effects of metals on subcellular organelle functions have been reviewed in relation to carcinogenesis. Perturbations of the normal uptake and metabolism of carcinogens can arise through changes in microsomal enzyme activities, membrane permeabilities, and cell turnover. Metal effects on heme-dependent oxidative functions are well documented and are primarily manifested by increased heme degradation rates (microsomal heme oxygenase activity), decreased heme production (mitochondrial and cytosolic heme biosynthetic enzymes) and, in the case of a few metals, through nuclear effects of metals on the induction of microsomal enzymes. Many metals are accumulated by lysosomes, but known effects of metals on the function of these organelles in sequestering and storing organic compounds are few. Studies of changes in plasma or mitochondrial membrane permeabilities by metals have centered mainly on the susceptibility of membrane ATPase activities to metal ion alteration and on the involvement of metals in lipid peroxidation and free radical formation. Knowledge of the effects of metals on subcellular organelle functions should aid in the understanding of the mechanisms by which metal ions may play a role in the carcinogenic response. PMID:7023932

  17. Microbial community potentially responsible for acid and metal release from an Ostrobothnian acid sulfate soil

    PubMed Central

    Wu, Xiaofen; Lim Wong, Zhen; Sten, Pekka; Engblom, Sten; Österholm, Peter; Dopson, Mark; Nakatsu, Cindy

    2013-01-01

    Soils containing an approximately equal mixture of metastable iron sulfides and pyrite occur in the boreal Ostrobothnian coastal region of Finland, termed ‘potential acid sulfate soil materials’. If the iron sulfides are exposed to air, oxidation reactions result in acid and metal release to the environment that can cause severe damage. Despite that acidophilic microorganisms catalyze acid and metal release from sulfide minerals, the microbiology of acid sulfate soil (ASS) materials has been neglected. The molecular phylogeny of a depth profile through the plough and oxidized ASS layers identified several known acidophilic microorganisms and environmental clones previously identified from acid- and metal-contaminated environments. In addition, several of the 16S rRNA gene sequences were more similar to sequences previously identified from cold environments. Leaching of the metastable iron sulfides and pyrite with an ASS microbial enrichment culture incubated at low pH accelerated metal release, suggesting microorganisms capable of catalyzing metal sulfide oxidation were present. The 16S rRNA gene analysis showed the presence of species similar to Acidocella sp. and other clones identified from acid mine environments. These data support that acid and metal release from ASSs was catalyzed by indigenous microorganisms adapted to low pH. PMID:23369102

  18. Boosting Responsivity of Organic-Metal Oxynitride Hybrid Heterointerface Phototransistor.

    PubMed

    Rim, You Seung; Ok, Kyung-Chul; Yang, Yang Michael; Chen, Huajun; Bae, Sang-Hoon; Wang, Chen; Huang, Yu; Park, Jin-Seong; Yang, Yang

    2016-06-15

    Amorphous metal oxides are attractive materials for various sensor applications, because of high electrical performance and easy processing. However, low absorption coefficient, slow photoresponse, and persistent photoconductivity of amorphous metal oxide films from the origin of deep-level defects are obstacles to their use as photonic applications. Here, we demonstrate ultrahigh photoresponsivity of organic-inorganic hybrid phototransistors featuring bulk heterojunction polymers and low-bandgap zinc oxynitride. Spontaneous formation of ultrathin zinc oxide on the surface of zinc oxynitride films could make an effective band-alignment for electron transfer from the dissociation of excitons in the bulk heterojunction, while holes were blocked by the deep highest occupied molecular orbital level of zinc oxide. These hybrid structure-based phototransistors are ultrasensitive to broad-bandwidth photons in ultraviolet to near-infrared regions. The detectivity and a linear dynamic range exceeded 10(12) Jones and 122.3 dB, respectively. PMID:27193237

  19. Optical response of alkali metal atoms confined in nanoporous glass

    SciTech Connect

    Burchianti, A; Marinelli, C; Mariotti, E; Bogi, A; Marmugi, L; Giomi, S; Maccari, M; Veronesi, S; Moi, L

    2014-03-28

    We study the influence of optical radiation on adsorption and desorption processes of alkali metal atoms confined in nanoporous glass matrices. Exposure of the sample to near-IR or visible light changes the atomic distribution inside the glass nanopores, forcing the entire system to evolve towards a different state. This effect, due to both atomic photodesorption and confinement, causes the growth and evaporation of metastable nanoparticles. It is shown that, by a proper choice of light characteristics and pore size, these processes can be controlled and tailored, thus opening new perspectives for fabrication of nanostructured surfaces. (nanoobjects)

  20. Co3(HCOO)6 microporous metal-organic framework membrane for separation of CO2/CH4 mixtures.

    PubMed

    Zou, Xiaoqin; Zhang, Feng; Thomas, Sebastien; Zhu, Guangshan; Valtchev, Valentin; Mintova, Svetlana

    2011-10-17

    Continuous metal-organic framework-type Co(3)(HCOO)(6) intergrown films with a one-dimensional zigzag channel system and pore aperture of 5.5 Å are prepared by secondary growth on preseeded macroporous glass-frit disks and silicon wafers. The adsorption behavior of CO(2) or CH(4) single gases on the Co(3)(HCOO)(6) membrane is investigated by in situ IR spectroscopy. It is shown that the isosteric heats of adsorption for CO(2) (17.7 kJ mol(-1)) and CH(4) (14.4 kJ mol(-1)) do not vary with increasing amount of adsorbed gases. The higher value of isosteric heat for CO(2) is an indication of the stronger interaction between the CO(2) and the Co(3)(HCOO)(6) membrane. The Co(3)(HCOO)(6) membrane is studied by binary gas permeation of CO(2) and CH(4) at different temperatures (0, 25, and 60 °C). The membrane has CO(2)/CH(4) selectivity with a separation factor higher than 10, which is due to the unique structure and molecular sieving effect. Upon increasing the temperature from 0 to 60 °C, the preferred permeance of CO(2) over CH(4) is increased from 1.70×10(-6) to 2.09×10(-6) mol m(-2) s(-1) Pa(-1), while the separation factor for CO(2)/CH(4) shows a corresponding decrease from 15.95 to 10.37. The effective pore size of the Co(3)(HCOO)(6) material combined with the pore shape do not allow the two molecules to pass simultaneously, and once the CO(2) molecules are diffused in the micropores, the CH(4) is blocked. The supported Co(3)(HCOO)(6) membrane retains high mechanical stability after a number of thermal cycles. PMID:21922579

  1. In vivo response of heme-oxygenase-1 to metal ions released from metal-on-metal hip prostheses.

    PubMed

    Beraudi, Alina; Bianconi, Eva; Catalani, Simona; Canaider, Silvia; De Pasquale, Dalila; Apostoli, Pietro; Bordini, Barbara; Stea, Susanna; Toni, Aldo; Facchin, Federica

    2016-07-01

    Metal ion release and accumulation is considered to be a factor responsible for the high failure rates of metal-on-metal (MoM) hip implants. Numerous studies have associated the presence of these ions, besides other factors, including a hypoxia‑like response and changes in pH due to metal corrosion leading to the induction of the oxidative stress response. The aim of the present study was to verify whether, in patients with a MoM hip prosthesis, mRNA and protein expression of HMOX‑1 was modulated by the presence of metal ions and whether patients without prostheses exhibit a different expression pattern of this enzyme. The study was conducted on 22 matched pairs of patients with and without prostheses, for a total of 44 samples. Ion dosage was determined using inductively coupled plasma mass spectrometry equipped with dynamic cell reaction. HMOX‑1 gene expression was quantified by reverse transcription-quantitative polymerase chain reaction and HMOX‑1 protein expression was analyzed using an enzyme-linked immunosorbent assay. The results demonstrated that although there were significant differences in the metallic ion concentrations amongst the two groups of patients, there was no correlation between circulating levels of cobalt (Co) and chromium (Cr), and HMOX‑1 gene and protein expression. Additionally, there was no significant difference in the protein expression levels of HMOX‑1 between the two groups. In conclusion, it was demonstrated that circulating Co and Cr ions released by articular prosthetics do not induce an increase in HMOX‑1 mRNA and protein expression at least 3.5 years after the implant insertion. The present study suggests that involvement of HMOX‑1 may be excluded from future studies and suggests that other antioxidant enzymes, including superoxide dismutase, glutathione peroxidase and reductase should be investigated. PMID:27176599

  2. METALert - an emergency response system for China for heavy metals in the environment

    NASA Astrophysics Data System (ADS)

    Joris, Ingeborg; Seuntjens, Piet; Dams, Jef; Desmet, Nele; Van Looy, Stijn; Raymaekers, Jens; Decorte, Lieve; Raben, Ingrid; Thijssen, Chris; Zhang, Hongzhen; Dong, Jingqi; Zhang, Qianwen

    2016-04-01

    The rapid industrialisation and economic growth of China has resulted in a mirrored increase of environmental issues and threats, which make the updating of the current environmental emergency response protocols very important. Heavy metal pollution accidents with high environmental risks are happening more frequently than ever in recent years. Despite efforts made by the authorites in respect to the formulation of sound policy, efficient technical methods and regulations for dealing with appropriate responses to emergency environmental incidents related to heavy metal pollution are still lacking. METALert is a generic Emergency Response System (ERS) for accidental pollution incidents caused by key heavy metal related industries in China and developed to support China in achieving its environmental targets. The METALert tool is based on environmental models for forecasting, simulation and visualisation of dispersion of heavy metal pollution in water, air and soil. The tool contains a generic database with scenarios for accidental release of metals in typical accidents related to the five key heavy metal industries in China. The tool can calculate the impact of an accident in water, air and soil and is evaluated and demonstrated for a river basin in the Chenzhou area, an important heavy metal mining area in China. The setup of the tool, the background models and the application in Chenzhou will be presented.

  3. Metal Dealing at the Origin of the Chordata Phylum: The Metallothionein System and Metal Overload Response in Amphioxus

    PubMed Central

    Capdevila, Mercè; Palacios, Òscar; Atrian, Sílvia

    2012-01-01

    Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response to cadmium and copper overload. Two MT genes (BfMT1 and BfMT2) have been identified in a contiguous region of the genome, as well as several ARE (antioxidant response element) and MRE (metal response element) located upstream the transcribed region. Their corresponding cDNAs exhibit identical sequence in the two lancelet species (B. floridae and B. lanceolatum), BfMT2 cDNA resulting from an alternative splicing event. BfMT1 is a polyvalent metal binding peptide that coordinates any of the studied metal ions (Zn, Cd or Cu) rendering complexes stable enough to last in physiological environments, which is fully concordant with the constitutive expression of its gene, and therefore, with a metal homeostasis housekeeping role. On the contrary, BfMT2 exhibits a clear ability to coordinate Cd(II) ions, while it is absolutely unable to fold into stable Cu (I) complexes, even as mixed species. This identifies it as an essential detoxification agent, which is consequently only induced in emergency situations. The cephalochordate MTs are not directly related to vertebrate MTs, neither by gene structure, protein similarity nor metal-binding behavior of the encoded peptides. The closest relative is the echinoderm MT, which confirm proposed phylogenetic relationships between these two groups. The current findings support the existence in most organisms of two types of MTs as for their metal binding preferences, devoted to different biological functions: multivalent MTs for housekeeping roles, and specialized MTs that evolve either as Cd

  4. Metal dealing at the origin of the Chordata phylum: the metallothionein system and metal overload response in amphioxus.

    PubMed

    Guirola, Maria; Pérez-Rafael, Sílvia; Capdevila, Mercè; Palacios, Oscar; Atrian, Sílvia

    2012-01-01

    Non-vertebrate chordates, specifically amphioxus, are considered of the utmost interest for gaining insight into the evolutionary trends, i.e. differentiation and specialization, of gene/protein systems. In this work, MTs (metallothioneins), the most important metal binding proteins, are characterized for the first time in the cephalochordate subphylum at both gene and protein level, together with the main features defining the amphioxus response to cadmium and copper overload. Two MT genes (BfMT1 and BfMT2) have been identified in a contiguous region of the genome, as well as several ARE (antioxidant response element) and MRE (metal response element) located upstream the transcribed region. Their corresponding cDNAs exhibit identical sequence in the two lancelet species (B. floridae and B. lanceolatum), BfMT2 cDNA resulting from an alternative splicing event. BfMT1 is a polyvalent metal binding peptide that coordinates any of the studied metal ions (Zn, Cd or Cu) rendering complexes stable enough to last in physiological environments, which is fully concordant with the constitutive expression of its gene, and therefore, with a metal homeostasis housekeeping role. On the contrary, BfMT2 exhibits a clear ability to coordinate Cd(II) ions, while it is absolutely unable to fold into stable Cu (I) complexes, even as mixed species. This identifies it as an essential detoxification agent, which is consequently only induced in emergency situations. The cephalochordate MTs are not directly related to vertebrate MTs, neither by gene structure, protein similarity nor metal-binding behavior of the encoded peptides. The closest relative is the echinoderm MT, which confirm proposed phylogenetic relationships between these two groups. The current findings support the existence in most organisms of two types of MTs as for their metal binding preferences, devoted to different biological functions: multivalent MTs for housekeeping roles, and specialized MTs that evolve either as Cd

  5. Oxidative stress and reduced responsiveness of challenged circulating leukocytes following pulmonary instillation of metal-rich particulate matter in rats.

    PubMed

    Erdely, Aaron; Antonini, James M; Young, Shih-Houng; Kashon, Michael L; Gu, Ja K; Hulderman, Tracy; Salmen, Rebecca; Meighan, Terence; Roberts, Jenny R; Zeidler-Erdely, Patti C

    2014-01-01

    Welding fume is an exposure that consists of a mixture of metal-rich particulate matter with gases (ozone, carbon monoxide) and/or vapors (VOCs). Data suggests that welders are immune compromised. Given the inability of pulmonary leukocytes to properly respond to a secondary infection in animal models, the question arose whether the dysfunction persisted systemically. Our aim was to evaluate the circulating leukocyte population in terms of cellular activation, presence of oxidative stress, and functionality after a secondary challenge, following welding fume exposure. Rats were intratracheally instilled (ITI) with PBS or 2 mg of welding fume collected from a stainless steel weld. Rats were sacrificed 4 and 24 h post-exposure and whole blood was collected. Whole blood was used for cellular differential counts, RNA isolation with subsequent microarray and Ingenuity Pathway Analysis, and secondary stimulation with LPS utilizing TruCulture technology. In addition, mononuclear cells were isolated 24 h post-exposure to measure oxidative stress by flow cytometry and confocal microscopy. Welding fume exposure had rapid effects on the circulating leukocyte population as identified by relative mRNA expression changes. Instillation of welding fume reduced inflammatory protein production of circulating leukocytes when challenged with the secondary stimulus LPS. The effects were not related to transcription, but were observed in conjunction with oxidative stress. These findings support previous studies of an inadequate pulmonary immune response following a metal-rich exposure and extend those findings showing leukocyte dysfunction occurs systemically. PMID:25123171

  6. Oxidative stress and reduced responsiveness of challenged circulating leukocytes following pulmonary instillation of metal-rich particulate matter in rats

    PubMed Central

    2014-01-01

    Welding fume is an exposure that consists of a mixture of metal-rich particulate matter with gases (ozone, carbon monoxide) and/or vapors (VOCs). Data suggests that welders are immune compromised. Given the inability of pulmonary leukocytes to properly respond to a secondary infection in animal models, the question arose whether the dysfunction persisted systemically. Our aim was to evaluate the circulating leukocyte population in terms of cellular activation, presence of oxidative stress, and functionality after a secondary challenge, following welding fume exposure. Rats were intratracheally instilled (ITI) with PBS or 2 mg of welding fume collected from a stainless steel weld. Rats were sacrificed 4 and 24 h post-exposure and whole blood was collected. Whole blood was used for cellular differential counts, RNA isolation with subsequent microarray and Ingenuity Pathway Analysis, and secondary stimulation with LPS utilizing TruCulture technology. In addition, mononuclear cells were isolated 24 h post-exposure to measure oxidative stress by flow cytometry and confocal microscopy. Welding fume exposure had rapid effects on the circulating leukocyte population as identified by relative mRNA expression changes. Instillation of welding fume reduced inflammatory protein production of circulating leukocytes when challenged with the secondary stimulus LPS. The effects were not related to transcription, but were observed in conjunction with oxidative stress. These findings support previous studies of an inadequate pulmonary immune response following a metal-rich exposure and extend those findings showing leukocyte dysfunction occurs systemically. PMID:25123171

  7. Effects of low-dose exposure to pesticide mixture on physiological responses of the Pacific oyster, Crassostrea gigas.

    PubMed

    Geret, F; Burgeot, T; Haure, J; Gagnaire, B; Renault, T; Communal, P Y; Samain, J F

    2013-12-01

    This study investigated the effects on the physiology of Pacific oyster, Crassostrea gigas, of a mixture of pesticides containing 0.8 μg L(-1) alachlor, 0.6 μg L(-1) metolachlor, 0.7 μg L(-1) atrazine, 0.6 μg L(-1) terbuthylazine, 0.5 μg L(-1) diuron, 0.6 μg L(-1) fosetyl aluminum, 0.05 μg L(-1) carbaryl, and 0.7 μg L(-1) glyphosate for a total concentration of 4.55 μg L(-1) . The total nominal concentration of pesticides mixture corresponds to the pesticide concentrations in the shellfish culture area of the Marennes-Oleron basin. Two varieties of C. gigas were selected on the foreshore, based on their characteristics in terms of resistance to summer mortality, to assess the effects of the pesticide mixture after 7 days of exposure under controlled conditions. The early effects of the mixture were assessed using enzyme biomarkers of nitrogen metabolism (GS, glutamine synthetase), detoxification metabolism (GST, glutathione S-transferase), and oxidative stress (CAT, catalase). Sublethal effects on hemocyte parameters (phagocytosis and esterase activity) and DNA damages (DNA adducts) were also measured. Changes in metabolic activities were characterized by increases in GS, GST, and CAT levels on the first day of exposure for the "resistant" oysters and after 3-7 days of exposure for the "susceptible" oysters. The formation of DNA adducts was detected after 7 days of exposure. The percentage of hemocyte esterase-positive cells was reduced in the resistant oysters, as was the hemocyte phagocytic capacity in both oyster varieties after 7 days of exposure to the pesticide mixture. This study highlights the need to consider the low doses and the mixture of pesticides to evaluate the effects of these molecules on organisms. PMID:22012874

  8. Hessian Fly (Diptera: Cecidomyiidae) Mortality in Export Bale Compressors and Response to a Hydrogen Phosphide and Carbon Dioxide Gas Mixture.

    PubMed

    Yokoyama, Victoria Y; Cambron, Sue E; Muhareb, Jeannette

    2015-02-01

    Hessian fly, Mayetiola destructor (Say), puparial mortality was evaluated in three modern hay compressors that produce compressed standard and large-size bales for export to Asia-Pacific countries. Pressure on bales ranged from 93.4 to 139.4 kg/cm2, causing 90.0-99.9% mortality of 10,891-23,164 puparia. Puparial response to a cylinderized hydrogen phosphide (1.8-2%) and carbon dioxide (97.8-98%) gas mixture was evaluated as a potential quarantine treatment using 2-4 d-exposures to low, medium, and high doses of 0.73-0.86, 1.05-1.26, and 1.39-1.56 mg/liter, and temperatures of 5.87±1.14, 9.84±0.05, 16.14±0.14, and 20.35±0.11°C. Accumulative concentration multiplied by time products (mg h/liter) at all fumigation temperatures for low, medium, and high fumigant doses were 34.9-37.7, 52.2-54.3, and 67.9-73.1 for 2 d; 52.7-60.6, 77.9-89.2, and 102.1-110.7 for 3 d; and 69.9-82.0, 99.4-118.2, and 132.3-146.8 for 4 d, respectively. An increase in mortality was significantly related to an increase in fumigation duration at 5, 10, and 15°C, and an increase in fumigant dose at 10 and 15°C. Puparial mortality ranged from 97.2 to 100% at all doses and durations at 20°C with no survivors at the highest dose for 3 d and the mid- and highest dose for 4 d. Bale compression is currently used in the first phase of a multiple quarantine treatment to control potential Hessian fly contaminants in exported hay. The novel fumigant may have application as a single quarantine treatment for noncompressed, standard exported bales. PMID:26470109

  9. Metallic nanoparticles arranged in a Helical geometry: route towards strong and broadband chiro-optical response

    NASA Astrophysics Data System (ADS)

    Nair, Greshma; Singh, Johnson Haobijam; Venkatapathi, Murugesan; Ghosh, Ambarish

    2014-02-01

    Recent advances in nanotechnology have paved ways to various techniques for designing and fabricating novel nanostructures incorporating noble metal nanoparticles, for a wide range of applications. The interaction of light with metal nanoparticles (NPs) can generate strongly localized electromagnetic fields (Localized Surface Plasmon Resonance, LSPR) at certain wavelengths of the incident beam. In assemblies or structures where the nanoparticles are placed in close proximity, the plasmons of individual metallic NPs can be strongly coupled to each other via Coulomb interactions. By arranging the metallic NPs in a chiral (e.g. helical) geometry, it is possible to induce collective excitations, which lead to differential optical response of the structures to right- and left circularly polarized light (e.g. Circular Dichroism - CD). Earlier reports in this field include novel techniques of synthesizing metallic nanoparticles on biological helical templates made from DNA, proteins etc. In the present work, we have developed new ways of fabricating chiral complexes made of metallic NPs, which demonstrate a very strong chiro-optical response in the visible region of the electromagnetic spectrum. Using DDA (Discrete Dipole Approximation) simulations, we theoretically studied the conditions responsible for large and broadband chiro-optical response. This system may be used for various applications, for example those related to polarization control of visible light, sensing of proteins and other chiral bio-molecules, and many more.

  10. Response of soil bacterial community to metal nanoparticles in biosolids.

    PubMed

    Shah, Vishal; Jones, Jamilee; Dickman, Jenifer; Greenman, Steven

    2014-06-15

    The increasing use of engineered nanoparticles (NPs) in industrial and household applications will very likely lead to the increased release of such materials into the public sewer systems. During the wastewater treatment process, some fraction of NPs would always be concentrated in the biosolids. When biosolids is applied on the agricultural land, NPs are introduced into the soil matrix. In the current study we investigate the influence of five different metal nanoparticles present in biosolids on soil microbial community as a function of time. Results indicate that ZnO and Zero Valent Cu NPs were not toxic to soil bacterial community. Biosolids mixed with Ag NPs and TiO2 (both anatase and rutile phase) in contrast changed the bacterial richness and composition in wavering pattern as a function of time. Based on the observations made in the study, we suggest caution when interpreting the toxicity of NPs based on single time point study. PMID:24801897

  11. Caging Metal Ions with Visible Light-Responsive Nanopolymersomes

    PubMed Central

    2015-01-01

    Polymersomes are bilayer vesicles that self-assemble from amphiphilic diblock copolymers, and provide an attractive system for the delivery of biological and nonbiological molecules due to their environmental compatibility, mechanical stability, synthetic tunability, large aqueous core, and hyperthick hydrophobic membrane. Herein, we report a nanoscale photoresponsive polymersome system featuring a meso-to-meso ethyne-bridged bis[(porphinato)zinc] (PZn2) fluorophore hydrophobic membrane solute and dextran in the aqueous core. Upon 488 nm irradiation in solution or in microinjected zebrafish embryos, the polymersomes underwent deformation, as monitored by a characteristic red-shifted PZn2 emission spectrum and confirmed by cryo-TEM. The versatility of this system was demonstrated through the encapsulation and photorelease of a fluorophore (FITC), as well as two different metal ions, Zn2+ and Ca2+. PMID:25518002

  12. Community response patterns: evaluating benthic invertebrate composition in metal-polluted streams.

    PubMed

    Pollard, A I; Yuan, L

    2006-04-01

    Human activities are modifying the condition and character of ecosystems at a rapid rate. Because of these rapid changes, questions concerning how ecosystems and their assemblages respond to anthropogenic stressors have been of general interest. Accurate prediction of assemblage composition in ecosystems with anthropogenic degradation requires that we assess both how assemblages respond to stressors and the generality of the responses. We ask whether assemblage composition among stream sites becomes more similar after exposure to a common stressor. Using data from biological monitoring programs in the southern Rocky Mountain ecoregion of Colorado and in West Virginia, we compare benthic invertebrate similarity and assemblage composition among sites having different levels (background, low, medium, and high) of heavy-metal pollution. Invertebrate assemblages were most similar within the background metal category, and similarity was progressively lower in low, medium, and high metal categories. An analysis of the frequency of occurrence of genera within metal categories reveals taxonomic shifts that conform to expectations based on metal tolerance of benthic invertebrates. However, different metal-tolerant genera were found at different metal-impacted sites, suggesting that local abiotic and biotic processes may influence the identity of the metal-tolerant genera that become established in polluted sites. Low community similarity in the medium and high-metal categories suggests that accurate prediction of assemblage composition at impacted sites may be challenging. PMID:16711051

  13. Responses of Hyalella azteca to a Pesticide-Nutrient Mixture in Vegetated and Non-vegetated Wetland Mesocosms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic vegetation has been shown to improve water quality by trapping and processing contaminants such as pesticides, nutrients and sediments. Currently there is little information regarding effects of pesticide and nutrient mixtures on aquatic biota in these systems and the influence aquatic vege...

  14. Planarians in toxicology. Responses of asexual Dugesia dorotocephala to selected metals

    SciTech Connect

    Kapu, M.M.; Schaeffer, D.J. )

    1991-08-01

    The planarian Dugesia dorotocephala is a freshwater invertebrate found in unpolluted flowing surface waters. Planarians have a sensitive nervous system with synapses and true brain and evidence these in a variety of social and response behaviors. The inclusion of planarians in a screening battery would provide improved sensitivity in detecting toxicity because planarians commonly respond to lower levels of contamination than do other species. Numerous toxicity test have been conducted to determine the acute and chronic effects of toxicants to provide data necessary for the development of water quality criteria. The appropriateness of Illinois water quality standards for metals was investigated using a 1-hr behavioral test based on the responses of the planarian D. dorotocephala. One possible difficulty with water quality standards for metals is that the standard for each metal is usually established without regard to the effects of other metals present in the receiving water.

  15. Dynamic response time of a metal foam magneto-rheological damper

    NASA Astrophysics Data System (ADS)

    Yan, Yao X.; Hui, Liu X.; M, Yu; J, Fu; Dong, Liao H.

    2013-02-01

    Magneto-rheological (MR) dampers are a promising type of semi-active control device for various dynamic systems. Recently, low-cost MR dampers without any sealing structure have been required. Motivated by the desire to overcome the need for the costly dynamic seals of conventional MR dampers, a new type of metal foam MR damper is proposed in this study and the dynamic response performance is also investigated. The metal foam is firmly adhered to a working cylinder to store the unexcited MR fluids. In the action of a magnetic field, MR fluids will be extracted from the metal foam and fill up the shear gap to produce the MR effect. Three time parameters related to response time are introduced to further describe the dynamic response process. The results show that, due to the period required for extracting the MR fluids out from the metal foam, the time to produce the damper force of the metal foam MR damper is longer than for conventional fluid-filled MR dampers. The response time of the metal foam MR damper will change with different currents and shear rates. Given a constant shear rate, in a small range of currents (0-1.5 A), the response time decreases rapidly as the operating current increases; however, there is a slower change rate in larger ranges. To evaluate the effect of shear rate on response time, shear rates ranging from 2 to 10 s-1 are tested, and the results demonstrate that with increasing shear rates the response time decreases.

  16. Topology-induced, strongly diamagnetic response of hollow structured metals at broadband microwave frequencies

    NASA Astrophysics Data System (ADS)

    Anwar, Shahzad; Li, Sucheng; Li, Shuo; Duan, Qian; Lu, Weixin; Hou, Bo

    2015-11-01

    Fractal is a type of exotic geometrical shape. By employing the H-fractal and the effective medium view, we show a broadband, strongly diamagnetic response, μ r eff ~0, arising from the structured metallic plate with hollow fractal apertures and without loading high-permittivity dielectrics. In particular, such ~0 permeability is induced by the inherent topology of the fractal aperture and is hardly achieved among other metallodielectric structures with low volumetric ratio of metal. As a demonstration, we present a design of structured metal of 64 % hollowness, which gives rise to a close-to-zero effective permeability with relative bandwidth 175 %.

  17. Activation of gene expression by metal-responsive signal transduction pathways.

    PubMed Central

    Adams, Timothy K; Saydam, Nurten; Steiner, Florian; Schaffner, Walter; Freedman, Jonathan H

    2002-01-01

    Metallothioneins are small, cysteine-rich, metal-binding proteins that play important roles in maintaining intracellular metal homeostasis and in transition metal detoxification. MTF-1 (metal transcription factor-1) plays a central role in regulating the metal-inducible, transcriptional activation of metallothionein. Here we report that the phosphorylation of MTF-1 plays a critical role in the activation of MTF-1/metal-responsive element-mediated transcription. Inhibitor studies indicate that signal transduction cascades, including those mediated by protein kinase C, tyrosine kinase, and casein kinase II, are essential for zinc- and cadmium-inducible transcription. In addition, calcium signaling is also involved in regulating transcription. In contrast, cAMP-dependent protein kinase may not be directly involved in the metal response. Contrary to what has been reported for other transcription factors, the inhibition of transcriptional activation does not impair the binding of MTF-1 to DNA, suggesting that phosphorylation is not regulating DNA binding. Elevated phosphorylation of MTF-1 is observed under conditions of protein kinase C inhibition, suggesting that dephosphorylation of this transcription factor mediates its activation. PMID:12426137

  18. Responses of mixtures of polyhalogenated aromatic compounds or single compounds in the CALUX-assay a novel species-specific bioassay for Ah-receptor active compounds

    SciTech Connect

    Murk, A.J.; Aarts, J.M.M.J.G.; Jonas, A.; Brouwer, A.; Denison, M.S.

    1995-12-31

    Polyhalogenated aromatic hydrocarbons (PHAHs) elicit a number of common toxic responses, including reproductive toxicity, teratogenicity, impairment of immune responses, alterations in vitamin A and thyroid hormone metabolism and carcinogenesis. The toxic effects however are highly dependent on the animal species used, The most toxic PHAHs are approximate isostereomeres of 2,3,7,8 tetrachlorinated dibenzo-p-dioxin (TCDD) and share a common mechanism of action mediated by the aryl hydrocarbon receptor (AhR). Based on the common receptor mediated mechanism, the toxic equivalency factor concept was developed, in which the potency of each individual congener is expressed relative to TCDD, thus allowing hazard and risk assessment for mixtures of PHAHs. A number of recombinant cell lines were developed, including hepalclc7 mouse and H4IIE rat hepatoma cell lines, with AhR-mediated firefly (Photinus pyralis) luciferase gene expression. The response in this so-called CALUX (chemical activated luciferase expression) assay is additive for polychlorinated dibenzofurans (PCDFs) and PCDDS, but for polychlorinated biphenyls (PCBs) both synergistic and antagonistic interactions have been demonstrated, which are partially species-dependent. Also some structurally related compounds, like polybrominated diphenyl ether, pentachlorinated phenol, benzo(a)pyrene, pyrene, tetrachlorobenzyltoluene (Ugilec 141) and mixtures of polychlorinated terphenyls have been tested in the CALUX assay. The responses of these compounds were sometimes agonistic, but also antagonistic and synergistic effects on the TCDO response were observed.

  19. Foliar responses of five plant species to ozone and a sulphur dioxide/ozone mixture after a sulphur dioxide pre-exposure

    NASA Astrophysics Data System (ADS)

    Hofstra, G.; Beckerson, D. W.

    Plants that were pretreated with 0.15 ppm SO 2 for either 2 or 3 d before an intermittent O 3 or SO 2/O 3 exposure exhibited differences in per cent visible foliar injury that often varied significantly from plants that received no SO 2 pretreatment. Differences that were observed could not be explained on the basis of leaf diffusive resistance alone. The SO 2 pretreatment for 2 d caused a decrease in visible O 3 injury in white bean, an increase in visible O 3 injury in cucumber and radish, and had no effect on soybean and tomato. The same pretreatment caused an increase in visible injury from the SO 2/O 3 mixture in white bean, a decrease in visible injury for cucumber and tomato, and had no effect on soybean and radish. However, these same trends did not occur when the SO 2 pretreatment was increased to 3 d. Pretreatment with sub-acute levels of SO 2 can significantly alter a plant's response to O 3 or a mixture of SO 2/O 3, the change in response being sensitive to the pretreatment SO 2 dosage. The nature of the visible injury symptoms from O 3 or the pollutant mixture were not altered for any of the plant species regardless of the length of time of the SO 2 pretreatment and, generally, the onset of visible injury was not greatly altered.

  20. Metal-responsive promoter DNA compaction by the ferric uptake regulator.

    PubMed

    Roncarati, Davide; Pelliciari, Simone; Doniselli, Nicola; Maggi, Stefano; Vannini, Andrea; Valzania, Luca; Mazzei, Luca; Zambelli, Barbara; Rivetti, Claudio; Danielli, Alberto

    2016-01-01

    Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential arsRS acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the arsR transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying H. pylori metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation. PMID:27558202

  1. Metal-responsive promoter DNA compaction by the ferric uptake regulator

    PubMed Central

    Roncarati, Davide; Pelliciari, Simone; Doniselli, Nicola; Maggi, Stefano; Vannini, Andrea; Valzania, Luca; Mazzei, Luca; Zambelli, Barbara; Rivetti, Claudio; Danielli, Alberto

    2016-01-01

    Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential arsRS acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the arsR transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying H. pylori metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation. PMID:27558202

  2. Fibroblast Response to Lanthanoid Metal Ion Stimulation: Potential Contribution to Fibrotic Tissue Injury

    PubMed Central

    Jenkins, William; Perone, Patricia; Walker, Kyle; Bhagavathula, Narasimharao; Aslam, Muhammad Nadeem; DaSilva, Marissa; Dame, Michael K.; Varani, James

    2011-01-01

    The purpose of this study was to compare each of the 14 naturally occurring lanthanoid metal ions for ability to stimulate pro-fibrotic responses in human dermal fibroblasts. When fibroblasts were exposed to individual lanthanoids over the concentration range of 1–100 μM, increased proliferation was observed with each of the agents as compared with control cells that were already proliferating rapidly in a growth factor-enriched culture medium. Dose-response differences were observed among the individual metal ions. Matrix metalloproteinase-1 (MMP-1) and tissue inhibitor of metalloproteinase-1 levels were also increased in response to lanthanoid exposure but type I procollagen production was not. A dose–response relationship between induction of proliferation and increased MMP-1 was observed. Non-lanthanoid transition metal ions (aluminum, copper, cobalt, iron, magnesium, manganese, nickel, and zinc) were examined in the same assays; there was little stimulation with any of these metals. When epidermal keratinocytes were examined in place of dermal fibroblasts, there was no growth stimulation with any of the lanthanoids. Several of the lanthanoid metals inhibited keratinocyte proliferation at higher concentrations (50–100 μM). PMID:21484406

  3. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Mirzadeh, F.; Pindera, M.-J.; Herakovich, C. T.

    1991-01-01

    Theoretical predictions and experimental results were obtained for inelastic response of unidirectional and angle ply composite tubes subjected to axial and torsional loading. The composite material consist of silicon carbide fibers in a titanium alloy matrix. This material is known to be susceptible to fiber matrix interfacial damage. A method to distinguish between matrix yielding and fiber matrix interfacial damage is suggested. Biaxial tests were conducted on the two different layup configurations using an MTS Axial/Torsional load frame with a PC based data acquisition system. The experimentally determined elastic moduli of the SiC/Ti system are compared with those predicted by a micromechanics model. The test results indicate that fiber matrix interfacial damage occurs at relatively low load levels and is a local phenomenon. The micromechanics model used is the method of cells originally proposed by Aboudi. Finite element models using the ABACUS finite element program were used to study end effects and fixture specimen interactions. The results to date have shown good correlation between theory and experiment for response prior to damage initiation.

  4. Reduced operating voltage and grey-to-grey response time in a vertically aligned liquid crystal display using a mixture of two polyimide alignment materials

    NASA Astrophysics Data System (ADS)

    Lee, Ji-Hoon; Choi, Young Eun; Lee, Jun Hee; Lee, Byeong Hoon; Song, Won Il; Jeong, Kwang-Un; Lee, Gi-Dong; Lee, Seung Hee

    2013-12-01

    We proposed a method to reduce the operating voltage and the grey-to-grey switching time of a vertically aligned liquid crystal display using a mixture of planar and vertical polyimide alignment materials. The surface anchoring energy of the two-polyimide mixture was smaller than that of the pure vertical polyimide and consequently, liquid crystal molecules were easily switched to a planar state with an electric field, resulting in a greater maximum retardation than that of the pure polyimide at the same applied voltage. Rising time was also significantly reduced due to the suppressed optical bouncing effect in the mixed planar polyimide, and the decaying time showed negligible change. With the proposed approach, we can reduce the cell gap to obtain half-wave retardation allowing for faster response time while keeping a low operating voltage.

  5. Analysis of nonlinear dynamic response for delaminated fiber-metal laminated beam under unsteady temperature field

    NASA Astrophysics Data System (ADS)

    Fu, Yiming; Chen, Yang; Zhong, Jun

    2014-10-01

    The nonlinear dynamic response problems of fiber-metal laminated beams with delamination are studied in this paper. Basing on the Timoshenko beam theory, and considering geometric nonlinearity, transverse shear deformation, temperature effect and contact effect, the nonlinear governing equations of motion for fiber-metal laminated beams under unsteady temperature field are established, which are solved by the differential quadrature method, Nermark-β method and iterative method. In numerical examples, the effects of delamination length, delamination depth, temperature field, geometric nonlinearity and transverse shear deformation on the nonlinear dynamic response of the glass reinforced aluminum laminated beam with delamination are discussed in details.

  6. Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea.

    PubMed

    Mackey, Katherine R M; Buck, Kristen N; Casey, John R; Cid, Abigail; Lomas, Michael W; Sohrin, Yoshiki; Paytan, Adina

    2012-01-01

    This study investigated the impact of atmospheric metal deposition on natural phytoplankton communities at open-ocean and coastal sites in the Sargasso Sea during the spring bloom. Locally collected aerosols with different metal contents were added to natural phytoplankton assemblages from each site, and changes in nitrate, dissolved metal concentration, and phytoplankton abundance and carbon content were monitored. Addition of aerosol doubled the concentrations of cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), and nickel (Ni) in the incubation water. Over the 3-day experiments, greater drawdown of dissolved metals occurred in the open ocean water, whereas little metal drawdown occurred in the coastal water. Two populations of picoeukaryotic algae and Synechococcus grew in response to aerosol additions in both experiments. Particulate organic carbon increased and was most sensitive to changes in picoeukaryote abundance. Phytoplankton community composition differed depending on the chemistry of the aerosol added. Enrichment with aerosol that had higher metal content led to a 10-fold increase in Synechococcus abundance in the oceanic experiment but not in the coastal experiment. Enrichment of aerosol-derived Co, Mn, and Ni were particularly enhanced in the oceanic experiment, suggesting the Synechococcus population may have been fertilized by these aerosol metals. Cu-binding ligand concentrations were in excess of dissolved Cu in both experiments, and increased with aerosol additions. Bioavailable free hydrated Cu(2+) concentrations were below toxicity thresholds throughout both experiments. These experiments show (1) atmospheric deposition contributes biologically important metals to seawater, (2) these metals are consumed over time scales commensurate with cell growth, and (3) growth responses can differ between distinct Synechococcus or eukaryotic algal populations despite their relatively close geographic proximity and taxonomic similarity

  7. Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea

    PubMed Central

    Mackey, Katherine R. M.; Buck, Kristen N.; Casey, John R.; Cid, Abigail; Lomas, Michael W.; Sohrin, Yoshiki; Paytan, Adina

    2012-01-01

    This study investigated the impact of atmospheric metal deposition on natural phytoplankton communities at open-ocean and coastal sites in the Sargasso Sea during the spring bloom. Locally collected aerosols with different metal contents were added to natural phytoplankton assemblages from each site, and changes in nitrate, dissolved metal concentration, and phytoplankton abundance and carbon content were monitored. Addition of aerosol doubled the concentrations of cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), and nickel (Ni) in the incubation water. Over the 3-day experiments, greater drawdown of dissolved metals occurred in the open ocean water, whereas little metal drawdown occurred in the coastal water. Two populations of picoeukaryotic algae and Synechococcus grew in response to aerosol additions in both experiments. Particulate organic carbon increased and was most sensitive to changes in picoeukaryote abundance. Phytoplankton community composition differed depending on the chemistry of the aerosol added. Enrichment with aerosol that had higher metal content led to a 10-fold increase in Synechococcus abundance in the oceanic experiment but not in the coastal experiment. Enrichment of aerosol-derived Co, Mn, and Ni were particularly enhanced in the oceanic experiment, suggesting the Synechococcus population may have been fertilized by these aerosol metals. Cu-binding ligand concentrations were in excess of dissolved Cu in both experiments, and increased with aerosol additions. Bioavailable free hydrated Cu2+ concentrations were below toxicity thresholds throughout both experiments. These experiments show (1) atmospheric deposition contributes biologically important metals to seawater, (2) these metals are consumed over time scales commensurate with cell growth, and (3) growth responses can differ between distinct Synechococcus or eukaryotic algal populations despite their relatively close geographic proximity and taxonomic similarity. PMID

  8. Phenotypic plasticity in Scenedesmus incrassatulus (Chlorophyceae) in response to heavy metals stress.

    PubMed

    Peña-Castro, Julián Mario; Martínez-Jerónimo, Fernando; Esparza-García, Fernando; Cañizares-Villanueva, Rosa Olivia

    2004-12-01

    The microalgae genus Scenedesmus is commonly found in freshwater bodies, wastewater facilities and water polluted with heavy metals. Phenotypic plasticity in Scenedesmus has been documented in response to a wide variety of conditions; however, heavy metals have not been comprehensively documented as phenotypic plasticity inducers. In this study, we report the phenotypic plasticity of Scenedesmus incrassatulus (a non-spiny, four-cell coenobium forming species) in response to EC(50) value of copper, cadmium and hexavalent chromium. S. incrassatulus was grown in batch cultures in the presence of each metal. Chlorophyll-a content, cell size, parameters derived from the schematic energy-flux model for photosystem II, and morphotype expressions were recorded. Divalent cation metals induced unicellular forms, and hexavalent chromium produced out-of-shape coenobia corresponding to various stages of autospore formation. The changes induced by divalent metals were interpreted as phenotypic plasticity, because they were always associated to population doublings and were reversible when toxicant pressure was removed (only for Cu). Copper was the best inductor of unicellular forms and also affected significantly all the photosynthetic parameters measured. The developed morphotypes could confer ecological advantages to S. incrassatulus in metal stressed environments. PMID:15519408

  9. Aeroelastic response of metallic and composite propfan models in yawed flow

    NASA Technical Reports Server (NTRS)

    Kaza, Krishna Rao V.; Williams, Marc H.; Mehmed, Oral; Nerayanan, G. V.

    1988-01-01

    An analytical investigation of aeroelastic response of metallic and composite propfan models in yawed flow was performed. The analytical model is based on the normal modes of a rotating blade and the three dimensional unsteady lifting surface aerodynamic theory including blade mistuning. The calculated blade stresses or strains are compared with published wind tunnel data on two metallic and three composite propfan wind tunnel models. The comparison shows a good agreement between theory and experiment. Additional parametric results indicate that blade response is very sensitive to the blade stiffness and also to blade frequency and mode shape mistuning. From these findings, it is concluded that both frequency and mode shape mistuning should be included in aeroelastic response analysis. Furthermore, both calculated and measured strains show that combined blade frequency and mode shape mistuning has beneficial effects on response due to yawed flow.

  10. Phytoremediation of heavy metals by Alternanthera bettzickiana: Growth and physiological response.

    PubMed

    Tauqeer, Hafiz Muhammad; Ali, Shafaqat; Rizwan, Muhammad; Ali, Qasim; Saeed, Rashid; Iftikhar, Usman; Ahmad, Rehan; Farid, Mujahid; Abbasi, Ghulam Hassan

    2016-04-01

    The present study was aimed to evaluate the morphological, physiological and biochemical responses of Alternanthera Bettzickiana (Regel) G. Nicholson plant subjected to different levels of cadmium (Cd) and lead (Pb) (0, 0.5, 1.0 and 2.0 mM) stress. A. bettzickiana was able to accumulate Cd and Pb in different plant parts and total uptake of both metals was higher in shoots than roots. Plant growth, biomass and photosynthetic pigments increased with increasing metal concentrations, up to 1.0 mM, in soil and then decreased with higher metal levels. The activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) increased under lower metal levels (0.5 and 1.0 mM) while decreased at higher metal levels (2.0 mM). Leaf and root electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents decreased at lower metal levels (≤1.0 mM) while increased at higher levels. The present study clearly signifies the potential of A. bettzickiana plant towards Cd and Pb tolerance and accumulation especially at lower metal levels. PMID:26748375

  11. Effects of a mixture of two insecticides in freshwater microcosms: I. Fate of chlorpyrifos and lindane and responses of macroinvertebrates.

    PubMed

    Cuppen, Jan G M; Crum, Steven J H; Van den Heuvel, Harry H; Smidt, Rob A; Van den Brink, Paul J

    2002-06-01

    Effects of chronic application of a mixture of the insecticides chlorpyrifos and lindane were studied in indoor freshwater microcosms. The exposure concentrations (based on 0, 0.005, 0.01, 0.05, 0.1 and 0.5 times the LC50 of the most sensitive standard test organism for each compound) were kept at a constant level for four weeks. The calculated mean concentrations for chlorpyrifos were found to be almost at their corresponding nominal level during the treatment period. The mean calculated lindane concentrations, however, were found to be 15-40% higher than intended. In the post treatment period both insecticides dissipated fast (t 1/2: chlorpyrifos 9 days, lindane 22 days) from the water phase. The concentrations of the mixture at the highest treatment level corresponded to 0.53 toxic units (TU) for Daphnia magna and 0.61 TU for the most sensitive fish. The decomposition of Populus leaves in litter bags was significantly lower at the three highest insecticide concentrations. The macroinvertebrate community was seriously affected at the three highest treatment levels, with Crustacea and the Chironomidae Corynoneura proving to be the most sensitive groups. Gastropoda and Oligochaeta were relatively insensitive and some taxa (e.g. Valvata piscinalis, juvenile Physa fontinalis, Nemertea and Stylaria lacustris) increased in numbers. The observed effects could be explained from the individual toxicity of the insecticides to the invertebrates, and did not indicate synergistic effects. A second paper (Van den Brink et al., 2002) addresses the effects on other endpoints, as well as the overall risk assessment of the insecticide mixture. PMID:12092751

  12. A DOSE-RESPONSE STUDY OF THE TOXICITY OF A MIXTURE OF 7N-METHYL CARBAMATE PESTICIDES IN ADULT, MALE RATS.

    EPA Science Inventory

    There is scarce knowledge regarding the toxicity of pesticide mixtures, especially mixtures of the anticholinesterase N-methyl carbamates. A mixture study was conducted using 7 N-methyl carbamates (carbaryl, carbofuran, formetanate HCl, methiocarb, methomyl, oxamyl, and propoxur...

  13. Use of pruned computational neural networks for processing the response of oscillating chemical reactions with a view to analyzing nonlinear multicomponent mixtures.

    PubMed

    Hervás, C; Toledo, R; Silva, M

    2001-01-01

    The suitability of pruned computational neural networks (CNNs) for resolving nonlinear multicomponent systems involving synergistic effects by use of oscillating chemical reaction-based methods implemented using the analyte pulse perturbation technique is demonstrated. The CNN input data used for this purpose are estimates provided by the Levenberg-Marquardt method in the form of a three-parameter Gaussian curve associated with the singular profile obtained when the oscillating system is perturbed by an analyte mixture. The performance of the proposed method was assessed by applying it to the resolution of mixtures of pyrogallol and gallic acid based on their perturbating effect on a classical oscillating chemical system, viz. the Belousov-Zhabotinskyi reaction. A straightforward network topology (3:3:2, with 18 connections after pruning) allowed the resolution of mixtures of the two analytes in concentration ratios from 1:7 to 6:2 with a standard error of prediction for the testing set of 4.01 and 8.98% for pyrogallol and gallic acid, respectively. The reduced dimensions of the selected CNN architecture allowed a mathematical transformation of the input vector into the output one that can be easily implemented via software. Finally, the suitability of response surface analysis as an alternative to CNNs was also tested. The results were poor (relative errors were high), which confirms that properly selected pruned CNNs are effective tools for solving the analytical problem addressed in this work. PMID:11500128

  14. Long-term environmental exposure to metals (Cu, Cd, Pb, Zn) activates the immune cell stress response in the common European sea star (Asterias rubens).

    PubMed

    Matranga, V; Pinsino, A; Randazzo, D; Giallongo, A; Dubois, P

    2012-05-01

    The common sea star Asterias rubens represents a key-species of the North-Eastern Atlantic macro benthic community. The cells of their immune system, known as coelomocytes, are the first line of defence against environmental hazards. Here, we report the results of investigations on the immune cells response of sea stars exposed to marine environmental pollution for long periods. We show that levels of the heat shock cognate protein 70 (HSC70) in coelomocytes from A. rubens, which were collected during a field study in the Sǿrfjord (North Sea, SW coast of Norway) along a contamination gradient, are directly associated with the long-term accumulation of Cd, Cu heavy metals exclusively in the tegument. Conversely, Pb and Zn accumulation in the tegument did not relate to HSC70 levels and none of the metals were found accumulated in the pyloric coeca. In addition the coelomocytes from A. rubens, collected in high and low metal impacted stations were examined by a proteomic approach using two-dimensional electrophoresis (2DE). By comparison of the proteomic maps, we observed that 31 protein spots differed in their relative abundance, indicating a gene expression response to the metal mixture exposure. All together, our results confirm that the echinoderm immune cells are a suitable model for the assessment of long-term exposure to environmental pollution, moreover that the increased level of HSC70 can be considered a signal of an acquired tolerance within a large spectrum of protein profile changes occurring in response to metal contamination. PMID:22000270

  15. Transcriptional response of yellow perch to changes in ambient metal concentrations-A reciprocal field transplantation experiment.

    PubMed

    Bougas, Bérénice; Normandeau, Eric; Grasset, Julie; Defo, Michel A; Campbell, Peter G C; Couture, Patrice; Bernatchez, Louis

    2016-04-01

    Recent local adaptation to pollution has been evidenced in several organisms inhabiting environments heavily contaminated by metals. Nevertheless, the molecular mechanisms underlying adaptation to high metal concentrations are poorly understood, especially in fishes. Yellow perch (Perca flavescens) populations from lakes in the mining area of Rouyn-Noranda (QC, Canada) have been faced with metal contamination for about 90 years. Here, we examine gene transcription patterns of fish reciprocally transplanted between a reference and a metal-contaminated lake and also fish caged in their native lake. After four weeks, 111 genes were differentially transcribed in metal-naïve fish transferred to the metal-contaminated lake, revealing a plastic response to metal exposure. Genes involved in the citric cycle and beta-oxidation pathways were under-transcribed, suggesting a potential strategy to mitigate the effects of metal stress by reducing energy turnover. However, metal-contaminated fish transplanted to the reference lake did not show any transcriptomic response, indicating a reduced plastic response capability to sudden reduction in metal concentrations. Moreover, the transcription of other genes, especially ones involved in energy metabolism, was affected by caging. Overall, our results highlight environmental stress response mechanisms in yellow perch at the transcriptomic level and support a rapid adaptive response to metal exposure through genetic assimilation. PMID:26867186

  16. Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture.

    PubMed

    Mofeed, Jelan; Mosleh, Yahia Y

    2013-09-01

    Laboratory studies were conducted to determine the effects of different concentrations of fenhexamid and atrazine (25, 50 and 100 µg L(-1)) on growth and oxidative stress on Scenedesmus obliquus (microalgae) after exposure for 24, 48, and 96 h. In addition, residues of fenhexamid and atrazine were determined in the culture medium after 96 h; 52%, 44% and 43% of fenhexamid remained in the medium for the lowest, middle and highest concentrations, respectively. Atrazine concentration decreased significantly in the medium with time. The reduction was faster with the lowest concentration (-53%), than in the highest concentration (-46%), while it was intermediate with 50 µg L(-1) (-47%). The antioxidative enzyme activities were used as biomarkers to evaluate the toxic effects of fenhexamid and atrazine on the microalgae. Enzymatic activities were measured in the presence of each compound alone after 24, 48 and 96 h and also in mixture after 24h exposure. The results showed that fenhexamid and atrazine induced antioxidative enzyme activities (GST, CAT and GR) at different concentrations. Catalase activities (CAT) in both pesticides treated-algae were significantly increased. Additionally, an increase in gulathione-S-transferase (GST) was observed in algae after 24, 48 and 96 h of exposure to both fenhexamid and atrazine. Antioxidative enzymes in fenhexamid and atrazine mixture treatment showed an antagonistic interaction after 24h of exposure in algae. PMID:23796667

  17. Postprandial glucose and insulin responses to rolled oats ingested raw, cooked or as a mixture with raisins in normal subjects and type 2 diabetic patients.

    PubMed

    Rasmussen, O; Winther, E; Hermansen, K

    1989-01-01

    Cooking and processing of food may account for differences in blood glucose and insulin responses to food with similar contents of carbohydrate, fat, and protein. The present study was carried out to see if short-term cooking of rolled oats caused an increase in blood glucose. Furthermore, we wanted to see if dried fruit could substitute for some of the starch without deterioration of the postprandial blood glucose response. We therefore compared the blood glucose and insulin responses to three isocaloric, carbohydrate equivalent meals in 11 normal subjects and 9 Type 2 diabetic patients. Meals composed either of raw rolled oats, oatmeal porridge or a mixture of raw rolled oats with raisins were served. In normal subjects, the three meals produced similar glucose (75 +/- 22, 51 +/- 16 and 71 +/- 23 (+/- SE) mmol l-1 180 min, respectively) and insulin response curves (3160 +/- 507, 2985 +/- 632 and 2775 +/- 398 mU l-1 180 min, respectively). Type 2 diabetic patients also showed similar postprandial blood glucose (515 +/- 95, 531 +/- 83 and 409 +/- 46 mmol l-1 180 min, respectively) and insulin (5121 +/- 850, 6434 +/- 927 and 6021 +/- 974 mU l-1 180 min, respectively) responses to the three meals. Thus short-term cooking of rolled oats has no deleterious effect on blood glucose and insulin responses, and substitution of 25% of the starch meal with simple sugars (raisins) did not affect the blood glucose or insulin responses. PMID:2524340

  18. Quantitative proteomics of heavy metal stress responses in Sydney rock oysters.

    PubMed

    Muralidharan, Sridevi; Thompson, Emma; Raftos, David; Birch, Gavin; Haynes, Paul A

    2012-03-01

    Currently, there are few predictive biomarkers in key biomonitoring species, such as oysters, that can detect heavy metal pollution in coastal waterways. Several attributes make oysters superior to other organisms for positive biomonitoring of heavy metal pollution. In particular, they are filter feeders with a high capacity for bioaccumulation. In this study, we used two proteomics approaches, namely label-free shotgun proteomics based on SDS-PAGE gel separation and gas phase fractionation, to investigate the heavy metal stress responses of Sydney rock oysters. Protein samples were prepared from haemolymph of oysters exposed to 100 μg/L of PbCl(2), CuCl(2), or ZnCl(2) for 4 days in closed aquaria. Peptides were identified using a Bivalvia protein sequence database, due to the unavailability of a complete oyster genome sequence. Statistical analysis revealed 56 potential biomarker proteins, as well as several protein biosynthetic pathways to be greatly impacted by metal stress. These have the potential to be incorporated into bioassays for prevention and monitoring of heavy metal pollution in Australian oyster beds. The study confirms that proteomic analysis of biomonitoring species is a promising approach for assessing the effects of environmental pollution, and our experiments have provided insights into the molecular mechanisms underlying oyster stress responses. PMID:22539440

  19. Contribution of proteomic studies towards understanding plant heavy metal stress response

    PubMed Central

    Hossain, Zahed; Komatsu, Setsuko

    2013-01-01

    Modulation of plant proteome composition is an inevitable process to cope with the environmental challenges including heavy metal (HM) stress. Soil and water contaminated with hazardous metals not only cause permanent and irreversible health problems, but also result substantial reduction in crop yields. In course of time, plants have evolved complex mechanisms to regulate the uptake, mobilization, and intracellular concentration of metal ions to alleviate the stress damages. Since, the functional translated portion of the genome plays an essential role in plant stress response, proteomic studies provide us a finer picture of protein networks and metabolic pathways primarily involved in cellular detoxification and tolerance mechanism. In the present review, an attempt is made to present the state of the art of recent development in proteomic techniques and significant contributions made so far for better understanding the complex mechanism of plant metal stress acclimation. Role of metal stress-related proteins involved in antioxidant defense system and primary metabolism is critically reviewed to get a bird’s-eye view on the different strategies of plants to detoxify HMs. In addition to the advantages and disadvantages of different proteomic methodologies, future applications of proteome study of subcellular organelles are also discussed to get the new insights into the plant cell response to HMs. PMID:23355841

  20. Thickness dependence of surface plasmon resonance sensor response for metal ion detection

    NASA Astrophysics Data System (ADS)

    Jung, Seung-A.; Lee, Taek-Sung; Kim, Won Mok; Lee, Kyeong-Seok; Jeong, Doo Seok; Lee, Wook Seong; Kim, Inho

    2013-08-01

    Surface plasmon resonance (SPR) sensor is one of the most viable technologies for portable and highly sensitive sensing in clinical and environmental applications. A lot of research on SPR sensors based on plasticized polyvinyl chloride (PVC) sensing layers for detection of various metal ions has been well reported, but a study on their correlation between sensing layer thickness and sensor response has been rarely done. The purpose of this study is to investigate thickness dependence of sensing layers on the response time and the sensitivity of SPR sensors based on plasticized PVC. Calcium ionophore was incorporated in the sensing layers for calcium ion detection. Our experimental results showed that thicker sensing layers exhibited higher sensitivity and wider detection range but longer response time. We discussed metal ion diffusion in plasticized sensing layers by correlating numerical calculations with experimental ones in order to understand temporal response of our SPR sensor. The response time also relied on the flow rate of calcium ion solutions, indicating that metal ion diffusion in bulk media is one of the limiting factors.

  1. High tunability of the SERS response with a metal-multiferroic composite

    SciTech Connect

    Xu, Xiaoying; Zhang, Zhenyu; Gu, Baohua; Shen, Jian; Xu, Xiaoshan; Ivanov, Ilia N; Abu Hatab, Nahla A; Hsueh, Chun-Hway; Yin, Lifeng; Cheng, Zhaohua; Zhang, Xiangqun; Seal, Katyayani

    2011-01-01

    We demonstrate active control of the plasmonic response from Au nanostructures by the use of a novel multiferroic substrate LuFe2O4 (LFO) to tune the surface enhanced Raman scattering (SERS) response in real time. From both experiments and numerical simulations based on the finite-difference time-domain method, a threshold field is observed, above which the optical response of the metal nanostructure can be strongly altered through changes in the dielectric properties of LFO. This offers the potential of optimizing the SERS detection sensitivity in real-time as well as the unique functionality of detecting multiple species of Raman active molecules with the same template.

  2. Physiological responses of switchgrass (Panicum virgatum L.) to organic and inorganic amended heavy-metal contaminated chat tailings

    SciTech Connect

    Youngman, A.L.

    1997-12-31

    Study plots established at the Galena subsite of the Cherokee County Superfund Site in Southeastern Kansas by the US Bureau of Mines in 1990 were examined during the summer of 1996 to determine whether physiological criteria could be used to determine suitability of switchgrass for remediation of heavy-metal contaminated substrates. Switchgrass was chosen because it was the most frequently encountered species on these plots. Treatment plots included a treatment control, an organic residue treatment of 89.6 Mg Ha{sup {minus}1} composted cattle manure, and two inorganic fertilizer treatments recommended for either native grass or grass/legume mixtures. Plant response variables were photosynthetic rate, leaf conductance to water vapor, internal concentration of carbon dioxide in leaves, foliar transpiration rate, leaf water-use-efficiency, predawn leaf xylem water potential, and midday leaf xylem water potential. Predawn and midday xylem water potentials were higher for grass/legume inorganic treatment than for the other inorganic treatments. Leaf conductances were lower for organically treated plots than those plots not organically amended and both photosynthesis and transpiration were lower for organically treated plots. Leaf conductances and transpiration were higher for grass/legume treated plots than for plots lacking inorganic treatment. Water-use-efficiency was higher for native grass inorganically treated plots than for other inorganic treatments.

  3. Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, September 1--November 30, 1993

    SciTech Connect

    Darmody, R.G.; Dunker, R.E.; Dreher, G.B.; Roy, W.R.; Steel, J.D.

    1994-03-01

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful, this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the first quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected and dried the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample appears to have a higher pyrite content than the other.

  4. CRACK GROWTH RESPONSE OF ALLOY 152 AND 52 WELD METALS IN SIMULATED PWR PRIMARY WATER

    SciTech Connect

    Toloczko, Mychailo B.; Bruemmer, Stephen M.

    2009-12-01

    The crack growth response of alloy 152 and 52 weld metals has been measured in simulated PWR primary water at both high (325-350 C) and low (50 C) temperatures. Tests were performed on samples machined from alloy 152 or 52 mockup welds. Propagation rates under cycle + hold and constant K conditions at high temperatures show stable, but extremely low SCC growth rates. The most significant intergranular cracking occurred during cycling at 50 C, particularly for the alloy 152 weld metal at high stress intensity.

  5. Response Characteristics of Bisphenols on a Metal-Organic Framework-Based Tyrosinase Nanosensor.

    PubMed

    Lu, Xianbo; Wang, Xue; Wu, Lidong; Wu, Lingxia; Dhanjai; Fu, Lei; Gao, Yuan; Chen, Jiping

    2016-06-29

    Bisphenols (BPs), which have more than ten kinds of structural analogues, are emerging as the most important endocrine disrupting chemicals that adversely affect human health and aquatic life. A tyrosinase nanosensor based on metal-organic frameworks (MOFs) and chitosan was developed to investigate the electrochemical response characteristics and mechanisms of nine kinds of BPs for the first time. The developed tyrosinase nanosensor showed a sensitive response to bisphenol A, bisphenol F, bisphenol E, bisphenol B, and bisphenol Z, and the responsive sensitivities were highly dependent on their respective log Kow values. However, the nanosensor showed no response to bisphenol S (BPS), bisphenol AP (BPAP), bisphenol AF (BPAF), or tetrabromobisphenol A, although BPS, BPAP, and BPAF have structures similar to those of the responsive BPs. The obtained results reveal that the electrochemical response of different BPs is affected not only by the molecular structure, especially the available ortho positions of phenolic hydroxyl groups, but also by the substituent group properties (electron acceptor or electron donor) on the bisphenol framework. The electronic cloud distribution of the phenolic hydroxyl groups, which is affected by the substituent group, determines whether the available ortho positions of phenolic hydroxyl groups can be oxidized by the tyrosinase biosensor. These response mechanisms are very significant as they can be used for predicting the response characteristics of many BPs and their various derivatives and metabolites on biosensors. The unexpected anti-interference ability of the biosensor to nine heavy metal ions was also discovered and discussed. The MOF-chitosan nanocomposite proves to be a promising sensing platform for the construction of diverse biosensors for selective detection of targets even in the presence of a high concentration of heavy metal ions. PMID:27281291

  6. Inhibition, no-effect or enhancement of immune responses following injection of mixtures of immunogenic and non-immunogenic synthetic polypeptides

    PubMed Central

    Ben-Efraim, S.; Liacopoulos, P.

    1967-01-01

    The phenomenon of antigenic competition has been investigated by the use of synthetic compounds and guinea-pigs of inbred strain 2 as experimental animals. The effect of addition to the immunizing mixture of immunogenic and non-immunogenic synthetic compounds has been studied. Antigenic competition has been demonstrated between the synthetic antigen 252,p(Tyr,Glu,Lys) and DNP-p(Lys) or 28,pdlAla-p(Tyr,Glu)--pLys. The non-immunogenic compounds 251,p(dTyr,dGlu,dLys), 33,pTyr-pdlAla--pLys, and p(Tyr) have been found respectively to inhibit, enhance, or not affect the immune response to 252,p(Tyr,Glu,Lys). Two weak antigens, namely 509,p(Tyr,Glu,)-pdlAla--pLys and p(Lys) also enhanced the response to 252,p(Tyr,Glu,Lys). Possible explanations for these findings are discussed. PMID:6022088

  7. Studies on the optimum conditions using acid-washed zero-valent iron/aluminum mixtures in permeable reactive barriers for the removal of different heavy metal ions from wastewater.

    PubMed

    Han, Weijiang; Fu, Fenglian; Cheng, Zihang; Tang, Bing; Wu, Shijiao

    2016-01-25

    The method of permeable reactive barriers (PRBs) is considered as one of the most practicable approaches in treating heavy metals contaminated surface and groundwater. The mixture of acid-washed zero-valent iron (ZVI) and zero-valent aluminum (ZVAl) as reactive medium in PRBs to treat heavy metal wastewater containing Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+) was investigated. The performance of column filled with the mixture of acid-washed ZVI and ZVAl was much better than the column filled with ZVI or ZVAl alone. At initial pH 5.4 and flow rates of 1.0 mL/min, the time that the removal efficiencies of Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+) were all above 99.5% can keep about 300 h using 80 g/40 g acid-washed ZVI/ZVAl when treating wastewater containing each heavy metal ions (Cr(VI), Cd(2+), Ni(2+), Cu(2+), and Zn(2+)) concentration of 20.0 mg/L. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize ZVI/ZVAl before and after reaction and the reaction mechanism of the heavy metal ions with ZVI/ZVAl was discussed. PMID:26521089

  8. Differential response of marine organisms to certain metal and agrichemical pollutants

    SciTech Connect

    Lee, H.H.; Xu, C.H.

    1984-10-01

    Oocyte maturation of the starfish, fertilization and embryogenesis of sea urchins, and the development of amphioxus and brine shrimps were used to assay the effects of several common metals and agrichemicals frequently found in marine environments. While brine shrimp embryos were tolerant to metals and agrichemicals used here, sea urchins and amphioxus showed a differential response to the common metal pollutants. Starfish oocyte maturation process was affected by agrichemicals. The results show that no one single organism, or its embryonic form, or a particular stage of development, can be used as the indicator for a particular pollutant. However, the use of lower forms of marine organisms can be useful collectively for environmental investigations and the management of waste disposal.

  9. Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic

    SciTech Connect

    Wang Gensheng Fowler, Bruce A.

    2008-11-15

    Human exposure to environmental chemicals is most correctly characterized as exposure to mixtures of these agents. The metals/metalloids, lead (Pb), cadmium (Cd), and arsenic (As), are among the leading toxic agents detected in the environment. Exposure to these elements, particularly at chronic low dose levels, is still a major public health concern. Concurrent exposure to Pb, Cd, or As may produce additive or synergistic interactions or even new effects that are not seen in single component exposures. Evaluating these interactions on a mechanistic basis is essential for risk assessment and management of metal/metalloid mixtures. This paper will review a number of individual studies that addressed interactions of these metals/metalloids in both experimental and human exposure studies with particular emphasis on biomarkers. In general, co-exposure to metal/metalloid mixtures produced more severe effects at both relatively high dose and low dose levels in a biomarker-specific manner. These effects were found to be mediated by dose, duration of exposure and genetic factors. While traditional endpoints, such as morphological changes and biochemical parameters for target organ toxicity, were effective measures for evaluating the toxicity of high dose metal/metalloid mixtures, biomarkers for oxidative stress, altered heme biosynthesis parameters, and stress proteins showed clear responses in evaluating toxicity of low dose metal/metalloid mixtures. Metallothionein, heat shock proteins, and glutathione are involved in regulating interactive effects of metal/metalloid mixtures at low dose levels. These findings suggest that further studies on interactions of these metal/metalloid mixtures utilizing biomarker endpoints are highly warranted.

  10. Composite metal membrane

    DOEpatents

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  11. Composite metal membrane

    DOEpatents

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  12. Development and validation of a multi-site model for adsorption of metals by mixtures of minerals: 1, Overview and preliminary results

    SciTech Connect

    Siegel, M.D. ); Tripathi, V.S. ); Rao, M.G. ); Ward, D.B. )

    1992-01-01

    The possibility of formulating and validating a multi-site, multi- solute model for prediction of contaminant transport in groundwaters is being evaluated through experiments with simple analog systems. These systems consist of mixtures of well-characterized synthetic and natural materials in which the effects of sorption by ion exchange and amphoteric sites are isolated. Initial results are reported for studies of lead sorption by mixtures of goethite and montmorillonite, and Ni-Sr and Pb-Sr ion exchange by montmorillonite. The results of studies of simple clay-oxide mixtures indicate that the pH-dependent sorption behavior of Ni by mixtures of minerals containing amphoteric sites can be predicted from the properties of the component minerals.

  13. Development and validation of a multi-site model for adsorption of metals by mixtures of minerals: 1, Overview and preliminary results

    SciTech Connect

    Siegel, M.D.; Tripathi, V.S.; Rao, M.G.; Ward, D.B.

    1992-04-01

    The possibility of formulating and validating a multi-site, multi- solute model for prediction of contaminant transport in groundwaters is being evaluated through experiments with simple analog systems. These systems consist of mixtures of well-characterized synthetic and natural materials in which the effects of sorption by ion exchange and amphoteric sites are isolated. Initial results are reported for studies of lead sorption by mixtures of goethite and montmorillonite, and Ni-Sr and Pb-Sr ion exchange by montmorillonite. The results of studies of simple clay-oxide mixtures indicate that the pH-dependent sorption behavior of Ni by mixtures of minerals containing amphoteric sites can be predicted from the properties of the component minerals.

  14. Plant response to FBC waste-coal slurry solid mixtures. [Quarterly] technical report, December 1--February 28, 1994

    SciTech Connect

    Darmody, R.G.; Dunker, R.E.; Dreher, G.B.; Roy, W.R.; Steel, J.D.

    1994-06-01

    The goal of this project is to test the feasibility of stabilizing coal slurry solids (CSS) wastes by directly seeding plants into the waste. This is not done conventionally because the waste can generate toxic amounts of sulfuric acid. Our approach is to neutralize the potential acidity by mixing fluidized bed combustion (FBC) waste into the slurry. If successful this approach would both help dispose of FBC wastes while providing a more economical slurry stabilization technique. The project involves growing forage plants in CSS-FBC mixtures in the greenhouse. This is the second quarter of the project. We have designed the experiment, secured greenhouse space, purchased the seeds, collected, dried, and are analyzing the FBC and CSS samples. The samples represent a typical range of properties. We retrieved two FBC and two CSS samples. One CSS sample had a relatively high CaCO{sub 3} content relative to the pyrite content and will require no FBC to neutralize the potential acidity. The other CSS sample will require from 4.2 to 2.7% FBC material to neutralize its potential acidity.

  15. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination

    PubMed Central

    Yin, Huaqun; Niu, Jiaojiao; Ren, Youhua; Cong, Jing; Zhang, Xiaoxia; Fan, Fenliang; Xiao, Yunhua; Zhang, Xian; Deng, Jie; Xie, Ming; He, Zhili; Zhou, Jizhong; Liang, Yili; Liu, Xueduan

    2015-01-01

    Response of biological communities to environmental stresses is a critical issue in ecology, but how microbial communities shift across heavy metal gradients remain unclear. To explore the microbial response to heavy metal contamination (e.g., Cr, Mn, Zn), the composition, structure and functional potential of sedimentary microbial community were investigated by sequencing of 16S rRNA gene amplicons and a functional gene microarray. Analysis of 16S rRNA sequences revealed that the composition and structure of sedimentary microbial communities changed significantly across a gradient of heavy metal contamination, and the relative abundances were higher for Firmicutes, Chloroflexi and Crenarchaeota, but lower for Proteobacteria and Actinobacteria in highly contaminated samples. Also, molecular ecological network analysis of sequencing data indicated that their possible interactions might be enhanced in highly contaminated communities. Correspondently, key functional genes involved in metal homeostasis (e.g., chrR, metC, merB), carbon metabolism, and organic remediation showed a higher abundance in highly contaminated samples, indicating that bacterial communities in contaminated areas may modulate their energy consumption and organic remediation ability. This study indicated that the sedimentary indigenous microbial community may shift the composition and structure as well as function priority and interaction network to increase their adaptability and/or resistance to environmental contamination. PMID:26391875

  16. An integrated insight into the response of sedimentary microbial communities to heavy metal contamination.

    PubMed

    Yin, Huaqun; Niu, Jiaojiao; Ren, Youhua; Cong, Jing; Zhang, Xiaoxia; Fan, Fenliang; Xiao, Yunhua; Zhang, Xian; Deng, Jie; Xie, Ming; He, Zhili; Zhou, Jizhong; Liang, Yili; Liu, Xueduan

    2015-01-01

    Response of biological communities to environmental stresses is a critical issue in ecology, but how microbial communities shift across heavy metal gradients remain unclear. To explore the microbial response to heavy metal contamination (e.g., Cr, Mn, Zn), the composition, structure and functional potential of sedimentary microbial community were investigated by sequencing of 16S rRNA gene amplicons and a functional gene microarray. Analysis of 16S rRNA sequences revealed that the composition and structure of sedimentary microbial communities changed significantly across a gradient of heavy metal contamination, and the relative abundances were higher for Firmicutes, Chloroflexi and Crenarchaeota, but lower for Proteobacteria and Actinobacteria in highly contaminated samples. Also, molecular ecological network analysis of sequencing data indicated that their possible interactions might be enhanced in highly contaminated communities. Correspondently, key functional genes involved in metal homeostasis (e.g., chrR, metC, merB), carbon metabolism, and organic remediation showed a higher abundance in highly contaminated samples, indicating that bacterial communities in contaminated areas may modulate their energy consumption and organic remediation ability. This study indicated that the sedimentary indigenous microbial community may shift the composition and structure as well as function priority and interaction network to increase their adaptability and/or resistance to environmental contamination. PMID:26391875

  17. Early and late response of Nematostella vectensis transcriptome to heavy metals.

    PubMed

    Elran, Ron; Raam, Maayan; Kraus, Roey; Brekhman, Vera; Sher, Noa; Plaschkes, Inbar; Chalifa-Caspi, Vered; Lotan, Tamar

    2014-10-01

    Environmental contamination from heavy metals poses a global concern for the marine environment, as heavy metals are passed up the food chain and persist in the environment long after the pollution source is contained. Cnidarians play an important role in shaping marine ecosystems, but environmental pollution profoundly affects their vitality. Among the cnidarians, the sea anemone Nematostella vectensis is an advantageous model for addressing questions in molecular ecology and toxicology as it tolerates extreme environments and its genome has been published. Here, we employed a transcriptome-wide RNA-Seq approach to analyse N. vectensis molecular defence mechanisms against four heavy metals: Hg, Cu, Cd and Zn. Altogether, more than 4800 transcripts showed significant changes in gene expression. Hg had the greatest impact on up-regulating transcripts, followed by Cu, Zn and Cd. We identified, for the first time in Cnidaria, co-up-regulation of immediate-early transcription factors such as Egr1, AP1 and NF-κB. Time-course analysis of these genes revealed their early expression as rapidly as one hour after exposure to heavy metals, suggesting that they may complement or substitute for the roles of the metal-mediating Mtf1 transcription factor. We further characterized the regulation of a large array of stress-response gene families, including Hsp, ABC, CYP members and phytochelatin synthase, that may regulate synthesis of the metal-binding phytochelatins instead of the metallothioneins that are absent from Cnidaria genome. This study provides mechanistic insight into heavy metal toxicity in N. vectensis and sheds light on ancestral stress adaptations. PMID:25145541

  18. Responses of rat lungs following inhalation of beryllium metal particles to achieve relatively low lung burdens

    SciTech Connect

    Finch, G.L.; Haley, P.J.; Hoover, M.D.; Cuddihy, R.G.

    1991-01-01

    Potential health effects resulting from the accidental exposure of people to beryllium metal are of concern. To investigate the effects of relatively low levels of beryllium metal on lung clearance, we simultaneously exposed rats to beryllium metal and radioactive tracer particles. Exposure to beryllium metal aerosol to achieve estimated lung burdens of 9 or 52 {mu}g significantly retarded clearance up to 365 days after exposure compared to controls, whereas lung burdens of 1.5 or 2 {mu}g had no significant effect on clearance. Groups of rats were sacrificed at 8, 16, 40, 90, 210 and 365 days after exposure for bronchoalveolar lavage. The total numbers of cells, incidence of neutrophils, the levels of total protein, and the enzymes lactate dehydrogenase and {beta}-glucuronidase were generally elevated in lavage fluids from groups of rats that also had impaired lung clearance. This study serves to further define the levels of beryllium metal required to retard lung clearance and induce accompanying pathological responses in the lungs of rats. 11 refs., 5 figs., 1 tab.

  19. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    PubMed

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P < 0.05), which suggested that magnetic parameters of urban park leaves could be used as a proxy for atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic. PMID:27011970

  20. Genomic and proteomic profiling of responses to toxic metals in human lung cells.

    PubMed Central

    Andrew, Angeline S; Warren, Amy J; Barchowsky, Aaron; Temple, Kaili A; Klei, Linda; Soucy, Nicole V; O'Hara, Kimberley A; Hamilton, Joshua W

    2003-01-01

    Examining global effects of toxic metals on gene expression can be useful for elucidating patterns of biological response, discovering underlying mechanisms of toxicity, and identifying candidate metal-specific genetic markers of exposure and response. Using a 1,200 gene nylon array, we examined changes in gene expression following low-dose, acute exposures of cadmium, chromium, arsenic, nickel, or mitomycin C (MMC) in BEAS-2B human bronchial epithelial cells. Total RNA was isolated from cells exposed to 3 M Cd(II) (as cadmium chloride), 10 M Cr(VI) (as sodium dichromate), 3 g/cm2 Ni(II) (as nickel subsulfide), 5 M or 50 M As(III) (as sodium arsenite), or 1 M MMC for 4 hr. Expression changes were verified at the protein level for several genes. Only a small subset of genes was differentially expressed in response to each agent: Cd, Cr, Ni, As (5 M), As (50 M), and MMC each differentially altered the expression of 25, 44, 31, 110, 65, and 16 individual genes, respectively. Few genes were commonly expressed among the various treatments. Only one gene was altered in response to all four metals (hsp90), and no gene overlapped among all five treatments. We also compared low-dose (5 M, noncytotoxic) and high-dose (50 M, cytotoxic) arsenic treatments, which surprisingly, affected expression of almost completely nonoverlapping subsets of genes, suggesting a threshold switch from a survival-based biological response at low doses to a death response at high doses. PMID:12760830

  1. The Response of Dark Septate Endophytes (DSE) to Heavy Metals in Pure Culture

    PubMed Central

    Ban, Yihui; Tang, Ming; Chen, Hui; Xu, Zhouying; Zhang, Haihan; Yang, Yurong

    2012-01-01

    Dark septate endophytes (DSE) occur widely in association with plants exposed to heavy metal stress. However, little is known about the response of DSE exposed to heavy metals. In this study, five DSE were isolated from the roots of Astragalus adsurgens Pall. seedlings growing on lead-zinc mine tailings in China. Based on morphological characteristics and DNA sequence analyses, the isolates were identified as Gaeumannomyces cylindrosporus, Paraphoma chrysanthemicola, Phialophora mustea, Exophiala salmonis, and Cladosporium cladosporioides. G. cylindrosporus was selected to explore responses to Pb stress. Scanning electron microscopic observations of G. cylindrosporus grown on solid medium revealed curling of hyphae and formation of hyphal coils in response to Pb. In contrast, in liquid medium, hyphae became thick and swollen with an increase in Pb (II) concentration. We interpret that these changes are related to the variation in cell wall components. We also demonstrated that fungal melanin content increased with the addition of Pb(II). Melanin, as an important component in the cell wall, is known to be an essential antioxidant responsible for decreasing heavy metal toxicity. We also measured the total soluble protein content and glutathione (GSH) concentrations in G. cylindrosporus and found that they initially increased and then decreased with the increase of Pb(II) concentrations. The antioxidant enzyme activities were also examined, and the results showed that superoxide dismutase (SOD) activity was significantly positively correlated with Pb(II) concentrations (r = 0.957, P<0.001). Collectively, our observations indicate that the intracellular antioxidant systems, especially fungal melanin, play an important role in abating the hazards of heavy metals. PMID:23118914

  2. Nonlinear response of metal nanoparticles: Double plasmon excitation and electron transfer.

    PubMed

    Gao, Shiwu

    2015-06-21

    We investigate the dynamical response of a metal nanoparticle and the electron transfer to a molecule near its surface using time-dependent density functional theory. In addition to the linear response of the Mie resonance, double plasmon excitations and a low-frequency charge transfer band emerge and become prominent at high laser intensities. Both modes are nonlinear processes, which are derived from the re-excitation and decay of the primary plasmon mode, respectively. Our results shed light on the localised characters of the plasmon-molecule coupling and hot electron distributions. These findings have general implications to photoinduced phenomena in nanosystems. PMID:26093567

  3. Nonlinear response of metal nanoparticles: Double plasmon excitation and electron transfer

    NASA Astrophysics Data System (ADS)

    Gao, Shiwu

    2015-06-01

    We investigate the dynamical response of a metal nanoparticle and the electron transfer to a molecule near its surface using time-dependent density functional theory. In addition to the linear response of the Mie resonance, double plasmon excitations and a low-frequency charge transfer band emerge and become prominent at high laser intensities. Both modes are nonlinear processes, which are derived from the re-excitation and decay of the primary plasmon mode, respectively. Our results shed light on the localised characters of the plasmon-molecule coupling and hot electron distributions. These findings have general implications to photoinduced phenomena in nanosystems.

  4. Influence of fiber architecture on the elastic an d inelastic response of metal matrix composites

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Pindera, Marek-Jerzy; Wilt, Thomas E.

    1995-01-01

    This three part paper focuses on the effect of fiber architecture (i.e., shape and distribution) on the elastic and inelastic response of metal matrix composites. The first part provides an annotative survey of the literature, presented as a historical perspective, dealing with the effects of fiber shape and distribution on the response of advanced polymeric matrix and metal matrix composites. Previous investigations dealing with both continuously and discontinuously reinforced composites are included. A summary of the state-of-the-art will assist in defining new directions in this quickly reviving area of research. The second part outlines a recently developed analytical micromechanics model that is particularly well suited for studying the influence of these effects on the response of metal matrix composites. This micromechanics model, referred to as the generalized method of cells (GMC), is capable of predicting the overall, inelastic behavior of unidirectional, multi-phased composites given the properties of the constituents. In particular, the model is sufficiently general to predict the response of unidirectional composites reinforced by either continuous or discontinuous fibers with different inclusion shapes and spatial arrangements in the presence of either perfect or imperfect interfaces and/or interfacial layers. Recent developments regarding this promising model, as well as directions for future enhancements of the model's predictive capability, are included. Finally, the third pan provides qualitative results generated using GMC for a representative titanium matix composite system, SCS-6/TlMETAL 21S. Results are presented that correctly demonstrate the relative effects of fiber arrangement and shape on the longitudinal and transverse stress-strain and creep response, with both strong and weak fiber/matrix interfacial bonds. The fiber arrangements include square, square diagonal, hexagonal and rectangular periodic arrays, as well as a random array. The

  5. Nonlinear response of metal nanoparticles: Double plasmon excitation and electron transfer

    SciTech Connect

    Gao, Shiwu

    2015-06-21

    We investigate the dynamical response of a metal nanoparticle and the electron transfer to a molecule near its surface using time-dependent density functional theory. In addition to the linear response of the Mie resonance, double plasmon excitations and a low-frequency charge transfer band emerge and become prominent at high laser intensities. Both modes are nonlinear processes, which are derived from the re-excitation and decay of the primary plasmon mode, respectively. Our results shed light on the localised characters of the plasmon-molecule coupling and hot electron distributions. These findings have general implications to photoinduced phenomena in nanosystems.

  6. Quantification of size effects in the magnetoelectric response of metallic glass/PVDF laminates

    NASA Astrophysics Data System (ADS)

    Lasheras, A.; Gutiérrez, J.; Barandiarán, J. M.

    2016-05-01

    Metallic glass/polyvinylidene fluoride three-layered magnetoelectric laminated composites have been studied. Size effects in the magnetoelectric response arisen both from the reduction of the length of the laminate and from the increase of the operating frequency have been quantified for the lengths ranging from 3 cm down to 0.5 cm. It has been concluded that the decrease in this magnetoelectric response arises mainly from the demagnetizing effects, with reductions of 86% for the longest laminate that increase up to 99% for the shortest one. From these values, an intrinsic magnetoelectric coefficient of 325 V/cm Oe has been obtained.

  7. The influence of peak shock stress on the quasi-static reload response of HCP metals

    SciTech Connect

    Cerreta, E. K.; Gray, G. T. III; Trujillo, C. P.; Brown, D. W.; Tome, C. N.

    2007-12-12

    Textured, high-purity hafnium has been shock loaded at 5 and 11 GPa, below the pressure reported for the {alpha}{open_square}{omega} phase transformation, 23 GPa. The specimens were 'soft caught' for post-shock characterization. Substructure of the shocked materials was investigated through transmission electron microscopy and texture evolution due to shock loading was probed with neutron diffraction. The deformation behavior of as-annealed hafnium under quasi-static conditions was compared to its response following shock prestraining. Reload response was correlated to defect generation and storage due to shock loading and compared with observations in other HCP metals such as Ti and Zr.

  8. Physical response of backfill materials to mineralogical changes in a basalt environment. [Sand-clay mixture containing 25% bentonite

    SciTech Connect

    Couture, R.A.; Seitz, M.G.

    1983-01-01

    Backfill materials surrounding waste canisters in a high-level nuclear waste repository are capable of ensuring very slow flow of groundwater past the canisters, and thereby increase the safety of the repository. However, in the design of a repository it will be necessary to allow for possible changes in the backfill. In this experimental program, changes in permeability, swelling behavior, and plastic behavior of the backfill at the temperatures, pressures, and radiation levels expected in a repository are investigated. The emphasis is on investigation of relevant phenomena and evaluation of experimental procedures for use in licensing procedures. The permeability of a slightly compacted sand-clay mixture containing 25% bentonite, with a dry bulk density of 1.59 g/cm/sup 3/, was determined to be 0.9 x 10/sup -18/ m/sup 2/ in liquid water at 25 and 200/sup 0/C, respectively. This is sufficiently low to demonstrate the potential effectiveness of proposed materials. In practice, fractures in the host rock may form short circuits around the backfill, so an even lower flow rate is probable. However, alteration by any of several mechanisms is expected to change the properties of the backfill. Crushed basalt plus bentonite is a leading candidate backfill for a basalt repository. Experiments show that basalt reacts with groundwater vapor or with liquid groundwater producing smectites, zeolites, silica, and other products that may be either beneficial or detrimental to the long-term performance of the backfill. Concentration of groundwater salts in the backfill by evaporation would cause immediate, but possibly reversible, reduction of the swelling abaility of bentonite. Moreover, under some circumstances, gamma radiolysis of moist air in the backfill could produce up to 0.5 mole of nitric acid or ammonia per liter of pore space. 27 references, 7 figures, 4 tables.

  9. Effect of condensed tannins supplementation through leaf meal mixture on voluntary feed intake, immune response and worm burden in Haemonchus contortus infected sheep.

    PubMed

    Pathak, A K; Dutta, Narayan; Banerjee, P S; Goswami, T K; Sharma, K

    2016-03-01

    The study was carried out to assess the effect of condensed tannins (CT) supplementation through leaf meal mixture (LMM) on feed intake, humoral [Immunoglobulin G (IgG)], cell mediated immune response (CMI) and faecal egg counts in Haemonchus contortus infected sheep. Eighteen sheep were randomly divided into three groups (negative control-NC, infected control-C and Infected treatment-T) of six animals in each group in a completely randomized block design for a period of 90 days. Twelve H. contortus infected adult sheep were allocated into two equal groups C and T, supplemented with 0 and 1.5 % of CT, respectively. Six non-infected sheep of similar age and body weight of NC group were included in this study to compare their immune response with H. contortus C and CT supplemented T groups. Intake of dry matter and organic matter (g day(-1) and % live weight) was statistically similar (P < 0.05) among the three groups. The anti-Haemonchus IgG and CMI response was higher in T group as compared to C group. The mean faecal egg counts was significantly (P < 0.001) higher in C group as compared to T group. It may be concluded that dietary supplementation of CT (1.5 %) through LMM improved humoral and CMI immune response and decreased worm load in H. contortus infected sheep. PMID:27065606

  10. Innate immune responses and efficacy of using mushroom beta-glucan mixture (MBG) on orange-spotted grouper, Epinephelus coioides, aquaculture.

    PubMed

    Chang, Ching-Sheng; Huang, Shih-Ling; Chen, Sherwin; Chen, Shiu-Nan

    2013-07-01

    This study attempts to describe the effects of innate immunity responses and field application of mushroom beta-glucan mixture (MBG) in cultured orange-sported grouper, Epinephelus coioides. Chemical analysis for MBG showed that the mixture contains 34.06% of macro-molecular polymers with bio-active linkage such as 3-; 3,4- and 4,6-glucopyranosyl and 6-linked galactopyranosyl residues. Study performed on the innate immunity showed that oral ingestion of MBG at 1.0 g and 2.0 g per kilogram of feed levels may significantly enhance the lysozyme activity, alternative complement activity, phagocytic activity and respiration burst of the experimental groupers. Observation on the experimental challenge of pathogen showed that uses of MBG at 0.1% and 0.2% levels in feed might significantly enhance the protection of grouper against Vibrio alginolyticus. Field trials performed on short and long-term culture showed that feeding of diet containing 0.1% or 0.2% of MBG may significantly enhance the survival of cultured groupers up to 16% when compared with those obtained from controls. PMID:23603237

  11. Investigation of the soluble metals in tissue as biological response pattern to environmental pollutants (Gammarus fossarum example).

    PubMed

    Filipović Marijić, Vlatka; Dragun, Zrinka; Sertić Perić, Mirela; Matoničkin Kepčija, Renata; Gulin, Vesna; Velki, Mirna; Ečimović, Sandra; Hackenberger, Branimir K; Erk, Marijana

    2016-07-01

    In the present study, Gammarus fossarum was used to investigate the bioaccumulation and toxic effects of aquatic pollutants in the real environmental conditions. The novelty of the study is the evaluation of soluble tissue metal concentrations in gammarids as indicators in early assessment of metal exposure. In the Sutla River, industrially/rurally/agriculturally influenced catchment in North-Western Croatia, physico-chemical water properties pointed to disturbed ecological status, which was reflected on population scale as more than 50 times lower gammarid density compared to the reference location, Črnomerec Stream. Significantly higher levels of soluble toxic metals (Al, As, Cd, Pb, Sb, Sn, Sr) were observed in gammarids from the Sutla River compared to the reference site and reflected the data on higher total dissolved metal levels in the river water at that site. The soluble metal estimates were supplemented with the common multibiomarker approach, which showed significant biological responses for decreased acetylcholinesterase activity and increased total soluble protein concentrations, confirming stressed environmental conditions for biota in the Sutla River. Biomarker of metal exposure, metallothionein, was not induced and therefore, toxic effect of metals was not confirmed on molecular level. Comparable between-site pattern of soluble toxic metals in gammarids and total dissolved metal levels in water suggests that prior to biomarker response and observed toxic impact, soluble metals in tissue might be used as early warning signs of metal impact in the aquatic environment and improve the assessment of water quality. PMID:27060638

  12. Uncertainty in Mixtures and Cumulative Risk Assessment

    EPA Science Inventory

    Humans and environmental species are rarely exposed to single chemicals. These chemicals typically affect multiple tissues through multiple modes of action, which may depend on the dose. Mixtures risk assessment may employ dose response information from the mixture of interest,...

  13. Transcriptional Regulation of the Beta-Synuclein 5′-Promoter Metal Response Element by Metal Transcription Factor-1

    PubMed Central

    McHugh, Patrick C.; Wright, Josephine A.; Brown, David R.

    2011-01-01

    The progression of many human neurodegenerative disorders is associated with an accumulation of alpha-synuclein. Alpha-synuclein belongs to the homologous synuclein family, which includes beta-synuclein. It has been proposed that beta-synuclein may be a natural regulator of alpha-synuclein. Therefore controlling beta-synuclein expression may control the accumulation of alpha-synuclein and ultimately prevent disease progression. The regulation of synucleins is poorly understood. We investigated the transcriptional regulation of beta-synuclein, with the aim of identifying molecules that differentially control beta-synuclein expression levels. To investigate transcriptional regulation of beta-synuclein, we used reporter gene assays and bioinformatics. We identified a region −1.1/−0.6 kb upstream of the beta-synuclein translational start site to be a key regulatory region of beta-synuclein 5′-promoter activity in human dopaminergic cells (SH-SY5Y). Within this key promoter region we identified a metal response element pertaining to a putative Metal Transcription Factor-1 (MTF-1) binding site. We demonstrated that MTF-1 binds to this 5′-promoter region using EMSA analysis. Moreover, we showed that MTF-1 differentially regulates beta-synuclein promoter binding site, as well as beta-synuclein mRNA and protein expression. This effect of MTF-1 on expression was found to be specific to beta-synuclein when compared to alpha-synuclein. Understanding the regulation of synucleins and how they interact may point to molecular targets that could be manipulated for therapeutic benefit. In this study we showed that MTF-1 differentially controls the expression of beta-synuclein when compared to its homolog alpha-synuclein. This could potentially provide a novel targets or pathways for therapeutic intervention and/or treatment of synucleinopathies. PMID:21386983

  14. Response of selected plant and insect species to simulated solid rocket exhaust mixtures and to exhaust components from solid rocket fuels

    NASA Technical Reports Server (NTRS)

    Heck, W. W.; Knott, W. M.; Stahel, E. P.; Ambrose, J. T.; Mccrimmon, J. N.; Engle, M.; Romanow, L. A.; Sawyer, A. G.; Tyson, J. D.

    1980-01-01

    The effects of solid rocket fuel (SRF) exhaust on selected plant and and insect species in the Merritt Island, Florida area was investigated in order to determine if the exhaust clouds generated by shuttle launches would adversely affect the native, plants of the Merritt Island Wildlife Refuge, the citrus production, or the beekeeping industry of the island. Conditions were simulated in greenhouse exposure chambers and field chambers constructed to model the ideal continuous stirred tank reactor. A plant exposure system was developed for dispensing and monitoring the two major chemicals in SRF exhaust, HCl and Al203, and for dispensing and monitoring SRF exhaust (controlled fuel burns). Plants native to Merritt Island, Florida were grown and used as test species. Dose-response relationships were determined for short term exposure of selected plant species to HCl, Al203, and mixtures of the two to SRF exhaust.

  15. Expiratory flow limitation and the response to breathing a helium-oxygen gas mixture in a canine model of pulmonary emphysema.

    PubMed Central

    Mink, S N

    1984-01-01

    The pathophysiology of reduced maximum expiratory flow in a canine model of pulmonary emphysema was studied, and the results interpreted in terms of the wave-speed theory of flow limitation. According to this theory, maximum expiratory flow is related both to the cross-sectional area and compliance at an airway site where a critical gas velocity is first reached ("choke-point") and to gas density. Pulmonary emphysema was produced by the repeated instillations of the enzyme papain into the airways of six dogs. In five control dogs, a saline solution was instilled. During forced vital capacity deflation, in an open-chest preparation, maximum expiratory flow, choke-point locations, and the response to breathing an 80:20 helium/oxygen gas mixture were determined at multiple lung volumes. To locate choke-points, a pressure measuring device was positioned in the airway to measure lateral and end-on intrabronchial pressures, from which the relevant wave-speed parameters were obtained. In general, the reduced maximum expiratory flow in emphysema can be explained by diminished lung elastic recoil pressure and by altered bronchial pressure-area behavior, which results in a more peripheral location of choke-points that have smaller cross-sectional areas than controls. With respect to the density dependence of maximum expiratory flow, this response did not differ from control values in four dogs with emphysema in which frictional pressure losses upstream from choke-points did not differ on the two gas mixtures. In two dogs with emphysema, however, upstream frictional pressure losses were greater on helium/oxygen than on air, which resulted in a smaller cross-sectional area on helium/oxygen; hence density dependence decreased. PMID:6715539

  16. Prediction of the response of metal matrix composite laminates under multiaxial loading

    SciTech Connect

    Subramanian, S.; Soni, S.R.; Foringer, M.A.

    1995-12-31

    In this paper, a simple micromechanics model is proposed to predict the response of metal matrix composites under multiaxial loading. The model includes the effects of residual thermal stresses, interphasial yielding and matrix plasticity. In this work, the concentric cylinders model (CCM) developed by Pagano and Tandon has been modified to include effects that are commonly observed in metal matrix composites (MMC). The matrix region is divided into five layers, and the stresses are determined in each of these layers and the fiber and interphase regions using the CCM. Interfacial debonding is modeled using a cylindrical interphase region and evaluating the yielding behavior of this region under thermo-mechanical loading. The nonlinear response of the MMC is predicted by considering progressive yielding of the various matrix layers. An iterative scheme is used to predict the onset and progression of plasticity in each matrix region. At any applied external load (strain), the volume averaged stresses are estimated in each of the constituent region. Results indicate that the predicted response of unidirectional and multidirectional laminates under thermo-mechanical loading agree well with experimental data. The onset of interfacial debonding and plasticity is predicted well by the model for SCS6/Ti 15-3 composites. In addition, the predicted response of SCS6/Ti 15-3 composites at room and elevated temperatures agree well with the experimental data.

  17. Anisotropic surface roughness enhances the bending response of ionic polymer-metal composite (IPMC) artificial muscles

    NASA Astrophysics Data System (ADS)

    Stoimenov, Boyko L.; Rossiter, Jonathan M.; Mukai, Toshiharu

    2007-01-01

    Demands from the fields of bio-medical engineering and biologically-inspired robotics motivate a growing interest in actuators with properties similar to biological muscle, including ionic polymer-metal composites (IPMC), the focus of this study. IPMC actuators consist of an ion-conductive polymer membrane, coated with thin metal electrodes on both sides and bend when voltage is applied. Some of the advantages of IPMC actuators are their softness, lack of moving parts, easy miniaturization, light weight and low actuation voltage. When used in bio-mimetic robotic applications, such as a snake-like swimming robot, locomotion speed can be improved by increasing the bending amplitude. However, it cannot be improved much by increasing the driving voltage, because of water electrolysis. To enhance the bending response of IPMCs we created a "preferred" bending direction by anisotropic surface modification. Introduction of anisotropic roughness with grooves across the length of the actuator improved the bending response by a factor of 2.1. Artificially introduced cracks on the electrodes in direction, in which natural cracks form by bending, improved bending response by a factor of 1.6. Anisotropic surface modification is an effective method to enhance the bending response of IPMC actuators and does not compromise their rigidity under loads perpendicular to the bending plane.

  18. Numerical simulation of atomic nitrogen formation in plasma of glow discharge in nitrogen-argon mixture

    NASA Astrophysics Data System (ADS)

    Khomich, V. A.; Ryabtsev, A. V.; Didyk, E. G.; Zhovtyansky, V. A.; Nazarenko, V. G.

    2010-10-01

    We consider the problem of determining the content of atomic nitrogen as an active component responsible for the efficiency of metal surface modification in plasma of stationary low-pressure glow discharge in nitrogen-argon mixture (widely used in this technology). The influence of the gas mixture composition on the rate constant of molecular nitrogen dissociation, which determines the atomic nitrogen production, has been calculated, The parameters of plasma have been experimentally determined using the method of double probes. The electron energy distribution function is found by numerically integrating the Boltzmann equation in a two-term approximation for the molecular nitrogen-argon mixture.

  19. Optical response and gas sequestration properties of metal cluster supported graphene nanoflakes.

    PubMed

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2016-07-28

    The possibility of obtaining metal cluster (M3O(+), M = Li, Na, K) supported pristine, B-doped and BN-doped graphene nanoflakes (GR, BGR and BNGR, respectively) has been investigated by carrying out density functional theory (DFT) based calculations. Thermochemical analysis reveals the good stability of M3O(+)@GR/BGR/BNGR moieties. The dynamic stability of M3O(+)@GR/BGR/BNGR moieties is confirmed through an atom-centered density matrix propagation simulation at 298 K up to 500 fs. Orbital and electrostatic interactions play pivotal roles in stabilizing the metal-cluster supported graphene nanoflakes. The metal clusters lower the Fermi levels of the host nanoflakes and enable them to exhibit reasonably good optical response properties such as polarizability and static first hyperpolarizability. In particular, Na3O(+)/K3O(+)@BGR complexes exhibit very large first hyperpolarizability values at the static field limit. All the M3O(+)@BGR/BNGR moieties demonstrate broadband optical absorption encompassing the ultraviolet, visible as well as infrared domains. The metal-cluster supported graphene nanoflakes, in general, can sequestrate polar molecules, viz. CO, NO and CH3OH, in a thermodynamically more favorable way than GR, BGR and BNGR. In the adsorbed state, the CO, NO and CH3OH molecules, in general, attain an 'active' state as compared to their free counterparts. PMID:27346831

  20. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals

    NASA Astrophysics Data System (ADS)

    Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A.; Atwater, Harry A.

    2016-08-01

    Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments.

  1. Extraordinary Separation of Acetylene-Containing Mixtures with Microporous Metal-Organic Frameworks with Open O Donor Sites and Tunable Robustness through Control of the Helical Chain Secondary Building Units.

    PubMed

    Yao, Zizhu; Zhang, Zhangjing; Liu, Lizhen; Li, Ziyin; Zhou, Wei; Zhao, Yunfeng; Han, Yu; Chen, Banglin; Krishna, Rajamani; Xiang, Shengchang

    2016-04-11

    Acetylene separation is a very important but challenging industrial separation task. Here, through the solvothermal reaction of CuI and 5-triazole isophthalic acid in different solvents, two metal-organic frameworks (MOFs, FJU-21 and FJU-22) with open O donor sites and controllable robustness have been obtained for acetylene separation. They contain the same paddle-wheel {Cu2 (COO2 )4 } nodes and metal-ligand connection modes, but with different helical chains as secondary building units (SBUs), leading to different structural robustness for the MOFs. FJU-21 and FJU-22 are the first examples in which the MOFs' robustness is controlled by adjusting the helical chain SBUs. Good robustness gives the activated FJU-22 a, which has higher surface area and gas uptakes than the flexible FJU-21 a. Importantly, FJU-22 a shows extraordinary separation of acetylene mixtures under ambient conditions. The separation capacity of FJU-22 a for 50:50 C2 H2 /CO2 mixtures is about twice that of the high-capacity HOF-3, and its actual separation selectivity for C2 H2 /C2 H4 mixtures containing 1 % acetylene is the highest among reported porous materials. Based on first-principles calculations, the extraordinary separation performance of C2 H2 for FJU-22 a was attributed to hydrogen-bonding interactions between the C2 H2 molecules with the open O donors on the wall, which provide better recognition ability for C2 H2 than other functional sites, including open metal sites and amino groups. PMID:26934040

  2. Colorimetric Fluorescent Nanosensor Based on Hexamethylene Diisocyanate for Fluorescent Responses and Adsorption of Heavy Metal Ions.

    PubMed

    Xu, Yaohui; Zhou, Yang; Li, Ruixing

    2016-03-01

    An inorganic-organic hybrid material based on magnetic Fe3O4@SiO2 nanoparticles was synthesized for fluorescent responses and removal of heavy metal ions, in which superparamagnetic Fe3O4@SiO2 nanoparticles were firstly prepared and modified with hexamethylene diisocyanate (HDI) instead of 3-isocyanatopropyltriethoxysilane (IPTES) as the organic coupling agent, and then a rhodamine derivative with spirolactam structure (Rho-en) was conjugated on the HDI functionalized Fe3O4@SiO2 nanoparticles through isocyanate groups. Both of functionalized Fe3O4@SiO2 nanoparticles based on IPTES and HDI were characterized by FT-IR and XPS, and the results indicated that HDI was a good alternative as chemical bridge for surface modification on the surface of Fe3O4@SiO2 nanoparticles. The inorganic-organic hybrid composites synthesized based HDI showed naked-eye color changes and fluorescent responses towards Zn2+, Cd2+, Mn2+, Pb2+, Hg2+ and Fe3+, which could serve as the available proofs for the qualitative analysis. Moreover, the as-obtained composites not only had excellent adsorption capability for Pb2+ and Hg2+, but also showed strong magnetic sensitivity, which could help to the removal and separation of functionalized magnetic nanocomposites after capturing the heavy metal ions. In addition, the plausible interaction mode of functionalized Fe3O4@SiO2 nanoparticles with heavy metal ions was discussed. PMID:27455720

  3. Integrated biomarker responses of an estuarine invertebrate to high abiotic stress and decreased metal contamination.

    PubMed

    Rodrigues, Aurélie Pinto; Oliva-Teles, Teresa; Mesquita, Sofia Raquel; Delerue-Matos, Cristina; Guimarães, Laura

    2014-10-01

    An integrated chemical-biological effects monitoring was performed in 2010 and 2012 in two NW Iberian estuaries under different anthropogenic pressure. One is low impacted and the other is contaminated by metals. The aim was to verify the usefulness of a multibiomarker approach, using Carcinus maenas as bioindicator species, to reflect diminishing environmental contamination and improved health status under abiotic variation. Sampling sites were assessed for metal levels in sediments and C. maenas, water abiotic factors and biomarkers (neurotoxicity, energy metabolism, biotransformation, anti-oxidant defences, oxidative damage). High inter-annual and seasonal abiotic variation was observed. Metal levels in sediments and crab tissues were markedly higher in 2010 than in 2012 in the contaminated estuary. Biomarkers indicated differences between the study sites and seasons and an improvement of effects measured in C. maenas from the polluted estuary in 2012. Integrated Biomarker Response (IBR) index depicted sites with higher stress levels whereas Principal Component Analysis (PCA) showed associations between biomarker responses and environmental variables. The multibiomarker approach and integrated assessments proved to be useful to the early diagnosis of remediation measures in impacted sites. PMID:25314018

  4. Evaluation of the wear properties of a metal-on-metal total joint replacement system and in vitro macrophage response to resultant wear particles

    NASA Astrophysics Data System (ADS)

    St. John, Kenneth Raymond

    The wear of the polyethylene in total joint prostheses has been a source of morbidity and early device failure which has been extensively reported in the last ten to twelve years. While research continues to attempt to reduce the wear of polyethylene joint bearing surfaces by modifications in polymer processing, there is a renewed interest in the use of metal-on-metal bearing couples for hip replacement devices. This study investigated the in vitro wear resistance of two cobalt/chromium/molybdenum alloys, which differed primarily in the carbon content, as potential alloys for use in such a metal-on-metal hip bearing couple. The results showed that the alloy with the higher (0.25%) carbon content was more wear resistant and this alloy was chosen for testing in a hip simulator system which modeled the loads and motions which might be exerted on a clinically implanted hip replacement. Comparison of the results of metal-on-polyethylene specimens to metal-on-metal specimens showed that the volumetric wear of the metal-on-polyethylene bearing couple over 5,000,000 cycles was 110--180 times as great as that for the metal bearing couple. Polyethylene and metal particles retrieved from either pin-on-disk testing lubricant or hip simulator testing lubricant were cleaned and examined for consistency with the particles reported by other laboratories for particles from periprosthetic tissues and found to be similar. The particles were then added to macrophage (J774a) cell cultures and the release of Prostaglandin E2, Interleukin-6, and Tumor Necrosis Factor alpha measured for each experiment in response to the particles. The cell mediators released by the cells was found to correlate with the dosage of particles and the chemical identity of the particles. Most of the cellular response to the polyethylene particles seemed to be as a result of phagocytosis of the particles while most of the response to metal particles seemed to be related to cytotoxicity of the particles. Based

  5. In vitro biocompatibility response of Ti-Zr-Si thin film metallic glasses

    NASA Astrophysics Data System (ADS)

    Ke, J. L.; Huang, C. H.; Chen, Y. H.; Tsai, W. Y.; Wei, T. Y.; Huang, J. C.

    2014-12-01

    In this study, the bio-electrochemical response of the Ti-Zr-Si thin film metallic glasses (TFMGs) in simulated body fluid with different contents of titanium is measured via potentiostat. According to the results of bio-corrosion potential and current, as well as the polarization resistance, it is concluded that the Ti66Zr25Si9 TFMGs possess the highest bio-electrochemical resistance. With increasing content of titanium, the corrosion resistance becomes progressively higher. The passive current results reveal that amorphous alloys can form a more protective and denser passive film on the metallic glass surface than the crystalline materials. In addition, the mechanical performance of the Ti-Zr-Si TFMGs is better than the crystalline counterparts. As a result, the Ti-based TFMGs are considered to be potential materials for bio-coating applications.

  6. Spirulina-Templated Metal Microcoils with Controlled Helical Structures for THz Electromagnetic Responses

    PubMed Central

    Kamata, Kaori; Piao, Zhenzi; Suzuki, Soichiro; Fujimori, Takahiro; Tajiri, Wataru; Nagai, Keiji; Iyoda, Tomokazu; Yamada, Atsushi; Hayakawa, Toshiaki; Ishiwara, Mitsuteru; Horaguchi, Satoshi; Belay, Amha; Tanaka, Takuo; Takano, Keisuke; Hangyo, Masanori

    2014-01-01

    Microstructures in nature are ultrafine and ordered in biological roles, which have attracted material scientists. Spirulina forms three-dimensional helical microstructure, one of remarkable features in nature beyond our current processing technology such as lithography in terms of mass-productivity and structural multiplicity. Spirulina varies its diameter, helical pitch, and/or length against growing environment. This unique helix is suggestive of a tiny electromagnetic coil, if composed of electro-conductive metal, which brought us main concept of this work. Here, we describe the biotemplating process onto Spirulina surface to fabricate metal microcoils. Structural parameters of the microcoil can be controlled by the cultivation conditions of Spirulina template and also purely one-handed microcoil can be fabricated. A microcoil dispersion sheet exhibited optically active response attributed to structural resonance in terahertz-wave region. PMID:24815190

  7. Spirulina-Templated Metal Microcoils with Controlled Helical Structures for THz Electromagnetic Responses

    NASA Astrophysics Data System (ADS)

    Kamata, Kaori; Piao, Zhenzi; Suzuki, Soichiro; Fujimori, Takahiro; Tajiri, Wataru; Nagai, Keiji; Iyoda, Tomokazu; Yamada, Atsushi; Hayakawa, Toshiaki; Ishiwara, Mitsuteru; Horaguchi, Satoshi; Belay, Amha; Tanaka, Takuo; Takano, Keisuke; Hangyo, Masanori

    2014-05-01

    Microstructures in nature are ultrafine and ordered in biological roles, which have attracted material scientists. Spirulina forms three-dimensional helical microstructure, one of remarkable features in nature beyond our current processing technology such as lithography in terms of mass-productivity and structural multiplicity. Spirulina varies its diameter, helical pitch, and/or length against growing environment. This unique helix is suggestive of a tiny electromagnetic coil, if composed of electro-conductive metal, which brought us main concept of this work. Here, we describe the biotemplating process onto Spirulina surface to fabricate metal microcoils. Structural parameters of the microcoil can be controlled by the cultivation conditions of Spirulina template and also purely one-handed microcoil can be fabricated. A microcoil dispersion sheet exhibited optically active response attributed to structural resonance in terahertz-wave region.

  8. Optimization of polyphenol extraction from red grape pomace using aqueous glycerol/tartaric acid mixtures and response surface methodology.

    PubMed

    Makris, Dimitris P; Passalidi, Vassiliki; Kallithraka, Stamatina; Mourtzinos, Ioannis

    2016-01-01

    Grape pomace is a food industry waste containing a high burden of antioxidant polyphenols and several methodologies have been developed for their efficient extraction. However, a sustainable and environmentally friendly process should involve recovery means composed of benign, non-toxic solvents, such as tartaric acid and glycerol, which are natural food constituents. In this line, this study examined the extraction of polyphenols using aqueous tartaric acid/glycerol solutions. The aim was to assess the role of acid and glycerol concentration in the extraction yield, employing a Box-Behnken experimental design and response surface methodology. The results showed that solutions containing only glycerol (20%, w/v) are more suitable for retrieving polyphenols, flavonoids, and pigments from grape pomace, while tartaric acid exerted a negative effect in this regard, when tested at concentrations up to 2% (w/v). PMID:25806718

  9. Application of a generalized linear mixed model to analyze mixture toxicity: survival of brown trout affected by copper and zinc.

    PubMed

    Iwasaki, Yuichi; Brinkman, Stephen F

    2015-04-01

    Increased concerns about the toxicity of chemical mixtures have led to greater emphasis on analyzing the interactions among the mixture components based on observed effects. The authors applied a generalized linear mixed model (GLMM) to analyze survival of brown trout (Salmo trutta) acutely exposed to metal mixtures that contained copper and zinc. Compared with dominant conventional approaches based on an assumption of concentration addition and the concentration of a chemical that causes x% effect (ECx), the GLMM approach has 2 major advantages. First, binary response variables such as survival can be modeled without any transformations, and thus sample size can be taken into consideration. Second, the importance of the chemical interaction can be tested in a simple statistical manner. Through this application, the authors investigated whether the estimated concentration of the 2 metals binding to humic acid, which is assumed to be a proxy of nonspecific biotic ligand sites, provided a better prediction of survival effects than dissolved and free-ion concentrations of metals. The results suggest that the estimated concentration of metals binding to humic acid is a better predictor of survival effects, and thus the metal competition at the ligands could be an important mechanism responsible for effects of metal mixtures. Application of the GLMM (and the generalized linear model) presents an alternative or complementary approach to analyzing mixture toxicity. PMID:25524054

  10. Behavioral avoidance: Possible mechanism for explaining abundance and distribution of trout species in a metal-impacted river

    USGS Publications Warehouse

    Hansen, J.A.; Woodward, D.F.; Little, E.E.; DeLonay, A.J.; Bergman, H.L.

    1999-01-01

    Behavioral avoidance of metal mixtures by rainbow trout (Oncorhynchus mykiss) was determined in the laboratory under water quality conditions that simulated the upper Clark Fork River, Montana, USA. A metal mixture with a fixed ratio of observed ambient metal concentrations (12 mg/L Cu: 1.1 ??g/L Cd:3.2 ??g/L Pb:50 ??g/L Zn) was used to determine avoidance in a countercurrent avoidance chamber. Rainbow trout avoided all metal concentrations tested from 10 to 1,000% of the simulated ambient metal mixture. The behavioral response of rainbow trout to the metal mixture was more sensitive than the response of brown trout (Salmo trutta) previously reported from the same laboratory under the same experimental conditions. Additionally, rainbow trout that were acclimated to the simulated ambient metal mixture for 45 d preferred clean water and avoided higher metal concentrations. Therefore, our laboratory experiments on the behavioral avoidance responses of rainbow trout, as well as previously reported experiments on brown trout, show that both species will avoid typical metal concentrations observed on the Clark Fork River. And the greater sensitivity of rainbow trout to the metal mixture may explain, in part, why rainbow trout populations appear to be more severely affected, compared to brown trout populations; in the upper Clark Fork River.

  11. Behavioral avoidance: Possible mechanism for explaining abundance and distribution of trout species in a metal-impacted river

    SciTech Connect

    Hansen, J.A.; Bergman, H.L.; Woodward, D.F.; Little, E.E.; DeLonay, A.J.

    1999-02-01

    Behavioral avoidance of metal mixtures by rainbow trout (Oncorhynchus mykiss) was determined in the laboratory under water quality conditions that simulated the upper Clark Fork River, Montana, USA. A metal mixture with a fixed ratio of observed ambient metal concentrations (12 {micro}g/L Cu:1.1 {micro}g/L Cd:3.2 {micro}g/L Pb:50 {micro}g/L Zn) was used to determine avoidance in a countercurrent avoidance chamber. Rainbow trout avoided all metal concentrations tested from 10 to 1,000% of the simulated ambient metal mixture. The behavioral response of rainbow trout to the metal mixture was more sensitive than the response of brown trout (Salmo trutta) previously reported from the same laboratory under the same experimental conditions. Additionally, rainbow trout that were acclimated to the simulated ambient metal mixture for 45 d preferred clean water and avoided higher metal concentrations. Therefore, laboratory experiments on the behavioral avoidance responses of rainbow trout, as well as previously reported experiments on brown trout, show that both species will avoid typical metal concentrations observed on the Clark Fork River. And the greater sensitivity of rainbow trout to the metal mixture may explain, in part, why rainbow trout populations appear to be more severely affected, compared to brown trout populations, in the upper Clark Fork River.

  12. Propensity to metal accumulation and oxidative stress responses of two benthic species (Cerastoderma edule and Nephtys hombergii): are tolerance processes limiting their responsiveness?

    PubMed

    Marques, Ana; Piló, David; Araújo, Olinda; Pereira, Fábio; Guilherme, Sofia; Carvalho, Susana; Santos, Maria Ana; Pacheco, Mário; Pereira, Patrícia

    2016-05-01

    The chronic exposure of benthic organisms to metals in sediments can lead to the development of tolerance mechanisms, thus diminishing their responsiveness. This study aims to evaluate the accumulation profiles of V, Cr, Co, Ni, As, Cd, Pb and Hg and antioxidant system responses of two benthic organisms (Cerastoderma edule, Bivalvia; Nephtys hombergii, Polychaeta). This approach will provide clarifications about the ability of each species to signalise metal contamination. Organisms of both species were collected at the Tagus estuary, in two sites with distinct contamination degrees (ALC, slightly contaminated; BAR, highly contaminated). Accordingly, C. edule accumulated higher concentrations of As, Pb and Hg at BAR compared to ALC. However, antioxidant responses of C. edule were almost unaltered at BAR and no peroxidative damage occurred, suggesting adjustment mechanisms to the presence of metals. In contrast, N. hombergii showed a minor propensity to metal accumulation, only signalising spatial differences for As and Pb and accumulating lower concentrations of metals than C. edule. The differences in metal accumulation observed between species might be due to their distinctive foraging behaviour and/or the ability of N. hombergii to minimise the metal uptake. Despite that, the accumulation of As and Pb was on the basis of the polychaete antioxidant defences inhibition at BAR, including CAT, SOD, GR and GPx. The integrated biomarker response index (IBRv2) confirmed that N. hombergii was more affected by metal exposure than C. edule. In the light of current findings, in field-based studies, the information of C. edule as a bioindicator should be complemented by that provided by another benthic species, since tolerance mechanisms to metals can hinder a correct diagnosis of sediment contamination and of the system's health. Overall, the present study contributed to improve the lack of fundamental knowledge of two widespread and common estuarine species, providing

  13. Effects of defined mixtures of persistent organic pollutants (POPs) on multiple cellular responses in the human hepatocarcinoma cell line, HepG2, using high content analysis screening.

    PubMed

    Wilson, Jodie; Berntsen, Hanne Friis; Zimmer, Karin Elisabeth; Frizzell, Caroline; Verhaegen, Steven; Ropstad, Erik; Connolly, Lisa

    2016-03-01

    Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POPs were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds, chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p'-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2h and 48h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC+Br mixture in comparison to the effects of the individual mixtures. No significant effects were detected in the Br+Cl, PFC+Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment. PMID:26772051

  14. A rigorous two-dimensional model for the stripline ferromagnetic resonance response of metallic ferromagnetic films

    SciTech Connect

    Lin, Z.; Kostylev, M.

    2015-02-07

    In this work, we constructed a two-dimensional numerical model for calculation of the stripline ferromagnetic resonance (FMR) response of metallic ferromagnetic films. We also conducted numerical calculations by using this software. The calculations demonstrated that the eddy current contribution to the FMR response decreases with a decrease in the stripline width. The most important manifestations of the conductivity (eddy current) effect are excitation of the higher-order standing spin waves across the film thickness in the materials for which the standing spin wave peaks would be absent in cavity FMR measurements and strong dependence of the off-resonance series conductance of the stripline on the stripline width. Whereas the contribution of the eddy currents to the stripline FMR response can be very significant, because wide striplines (100 μm+) are conventionally used for the FMR measurements, it is negligible in the case of excitation of spin waves, just because very narrow stripline transducers (0.5–5 μm wide) are required in order to excite spin waves in metallic ferromagnetic films in a noticeable frequency/applied field range.

  15. Prospective Study of Metal Fume-Induced Responses of Global Gene Expression Profiling in Whole Blood

    PubMed Central

    Wang, Zhaoxi; Neuberg, Donna; Su, Li; Kim, Jee Young; Chen, Jiu-Chiuan; Christiani, David C.

    2008-01-01

    Metal particulate inhalation causes pulmonary and cardiovascular diseases. Our previous results showed that systemic responses to short-term occupational welding-fume exposure could be assessed by microarray analyses in whole-blood total RNA sampled before and after exposure. To expand our understanding of the duration of particulate-induced gene expression changes, we conducted a study using a similar population 1 yr after the original study and extended our observations in the postexposure period. We recruited 15 individuals with welding fume exposure and 7 nonexposed individuals. Thirteen of the 22 individuals (9 in exposed group and 4 in nonexposed group) had been monitored in the previous study. Whole-blood total RNA was analyzed at 3 time points, including baseline, immediately following exposure (approximately 5 h after baseline), and 24 h after baseline, using cDNA microarray technology. We replicated the patterns of Gene Ontology (GO) terms associated with response to stimulus, cell death, phosphorus metabolism, localization, and regulation of biological processes significantly enriched with altered genes in the nonsmoking exposed group. Most of the identified genes had opposite expression changes between the exposure and postexposure periods in nonsmoking welders. In addition, we found dose-dependent patterns that were affected by smoking status. In conclusion, short-term occupational exposure to metal particulates causes systemic responses in the peripheral blood. Furthermore, the acute particulate-induced effects on gene expression profiling were transient in nonsmoking welders, with most effects diminishing within 19 h following exposure. PMID:18951227

  16. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.

    PubMed

    Schützendübel, Andres; Polle, Andrea

    2002-05-01

    cadmium results in unspecific necrosis. Plants in certain mycorrhizal associations are less sensitive to cadmium stress than non-mycorrhizal plants. Data about antioxidative systems in mycorrhizal fungi in pure culture and in symbiosis are scarce. The present results indicate that mycorrhization stimulated the phenolic defence system in the Paxillus-Pinus mycorrhizal symbiosis. Cadmium-induced changes in mycorrhizal roots were absent or smaller than those in non-mycorrhizal roots. These observations suggest that although changes in rhizospheric conditions were perceived by the root part of the symbiosis, the typical Cd-induced stress responses of phenolics were buffered. It is not known whether mycorrhization protected roots from Cd-induced injury by preventing access of cadmium to sensitive extra- or intracellular sites, or by excreted or intrinsic metal-chelators, or by other defence systems. It is possible that mycorrhizal fungi provide protection via GSH since higher concentrations of this thiol were found in pure cultures of the fungi than in bare roots. The development of stress-tolerant plant-mycorrhizal associations may be a promising new strategy for phytoremediation and soil amelioration measures. PMID:11997381

  17. Ultrabroadband chirped pulse second-harmonic spectroscopy: measuring the frequency-dependent second-order response of different metal films.

    PubMed

    Metzger, Bernd; Gui, Lili; Giessen, Harald

    2014-09-15

    We introduce a spectroscopic method for measuring the frequency-dependent second-order response using ultrabroadband strongly chirped laser pulses. The dispersion suppresses nonlinear frequency mixing, hence the second-order response of a material can be unambiguously retrieved. We demonstrate this method by measuring the frequency-dependent second-harmonic (SH) response of the metals gold, aluminium, silver, and copper in the wavelength range of about 900-1150 nm and compare the results to classical SH spectroscopy. The SH spectra indicate that interband transitions in the metals influence the overall nonlinear optical response. PMID:26466254

  18. Mixture design and multivariate analysis in mixture research.

    PubMed Central

    Eide, I; Johnsen, H G

    1998-01-01

    Mixture design has been used to identify possible interactions between mutagens in a mixture. In this paper the use of mixture design in multidimensional isobolographic studies is introduced. Mutagenicity of individual nitro-polycyclic aromatic hydrocarbons (PAH) was evaluated is an organic extract of diesel exhaust particles (DEPs). The particles were extracted with dichloromethane (DCM). After replacing DCM with dimethyl sulfoxide, the extract was spiked with three individual nitro-PAH: 1-nitropyrene, 2-nitrofluorene, and 1,8-dinitropyrene. The nitro-PAH were added separately and in various combinations to the extract to determine the effects of each variable and to identify possible interactions between the individual nitro-PAH and between the nitro-PAH and the extract. The composition of the mixtures was determined by mixture design (linear axial normal) with four variables (the DEP extract and the three nitro-PAH, giving 8 different mixtures plus a triplicate centerpoint, i.e., a total of 11. The design supports a model with linear and interaction (product) terms. Two different approaches were used: traditional mixture design within a well-defined range on the linear part of the dose-response curves and an isobolographic mixture design with equipotent doses of each variable. The mixtures were tested for mutagenicity in the Ames assay using the TA98 strain of Salmonella typhimurium. The data were analyzed with projections to latent structures (PLS). The three individual nitro-PAH and the DEP extract acted additively in the Ames test. The use of mixture design either within a well-defined range of the linear part on the dose-response curve or with equipotent doses saves experiments and reduces the possibility of false interaction terms in situations with dose additivity or response additivity. Images Figure 1 Figure 2 PMID:9860895

  19. Mixture design and multivariate analysis in mixture research.

    PubMed

    Eide, I; Johnsen, H G

    1998-12-01

    Mixture design has been used to identify possible interactions between mutagens in a mixture. In this paper the use of mixture design in multidimensional isobolographic studies is introduced. Mutagenicity of individual nitro-polycyclic aromatic hydrocarbons (PAH) was evaluated is an organic extract of diesel exhaust particles (DEPs). The particles were extracted with dichloromethane (DCM). After replacing DCM with dimethyl sulfoxide, the extract was spiked with three individual nitro-PAH: 1-nitropyrene, 2-nitrofluorene, and 1,8-dinitropyrene. The nitro-PAH were added separately and in various combinations to the extract to determine the effects of each variable and to identify possible interactions between the individual nitro-PAH and between the nitro-PAH and the extract. The composition of the mixtures was determined by mixture design (linear axial normal) with four variables (the DEP extract and the three nitro-PAH, giving 8 different mixtures plus a triplicate centerpoint, i.e., a total of 11. The design supports a model with linear and interaction (product) terms. Two different approaches were used: traditional mixture design within a well-defined range on the linear part of the dose-response curves and an isobolographic mixture design with equipotent doses of each variable. The mixtures were tested for mutagenicity in the Ames assay using the TA98 strain of Salmonella typhimurium. The data were analyzed with projections to latent structures (PLS). The three individual nitro-PAH and the DEP extract acted additively in the Ames test. The use of mixture design either within a well-defined range of the linear part on the dose-response curve or with equipotent doses saves experiments and reduces the possibility of false interaction terms in situations with dose additivity or response additivity. PMID:9860895

  20. Metal ion, light, and redox responsive interaction of vesicles by a supramolecular switch.

    PubMed

    Samanta, Avik; Ravoo, Bart Jan

    2014-04-22

    Chemical, photochemical and electrical stimuli are versatile possibilities to exert external control on self-assembled materials. Here, a trifunctional molecule that switches between an "adhesive" and a "non-adhesive" state in response to metal ions, or light, or oxidation is presented. To this end, an azobenzene-ferrocene conjugate with a flexible N,N'-bis(3-aminopropyl)ethylenediamine spacer was designed as a multistimuli-responsive guest molecule that can form inclusion complexes with β-cyclodextrin. In the absence of any stimulus the guest molecule induces reversible aggregation of host vesicles composed of amphiphilic β-cyclodextrin due to the formation of intervesicular inclusion complexes. In this case, the guest molecule operates as a noncovalent cross-linker for the host vesicles. In response to any of three external stimuli (metal ions, UV irradiation, or oxidation), the conformation of the guest molecule changes and its affinity for the host vesicles is strongly reduced, which results in the dissociation of intervesicular complexes. Upon elimination or reversal of the stimuli (sequestration of metal ion, visible irradiation, or reduction) the affinity of the guest molecules for the host vesicles is restored. The reversible cross-linking and aggregation of the cyclodextrin vesicles in dilute aqueous solution was confirmed by isothermal titration calorimetry (ITC), optical density measurements at 600 nm (OD600 ), dynamic light scattering (DLS), ζ-potential measurements and cyclic voltammetry (CV). To the best of our knowledge, a dynamic supramolecular system based on a molecular switch that responds orthogonally to three different stimuli is unprecedented. PMID:24643990

  1. Toxic responses of medaka, d-rR strain, to polychlorinated naphthalene mixtures after embryonic exposure by in ovo nanoinjection: A partial life- cycle assessment

    USGS Publications Warehouse

    Villalobos, Sergio A.; Papoulias, D.M.; Meadows, J.; Blankenship, Alan L.; Pastva, Stephanie D.; Kannan, K.; Hinton, D.E.; Tillitt, D.E.; Giesy, J.P.

    2000-01-01

    Polychlorinated naphthalenes (PCNs) are organic compounds with some chemical properties and uses similar to polychlorinated biphenyls. Polychlorinated naphthalenes have been detected in biota from certain aquatic environments. The toxicities of several PCN technical mixtures (Halowax) to medaka (Oryzias latipes) were determined by use of an embryo nanoinjection method. Medaka eggs (early gastrula) were injected with 0.5 nl of triolein (vehicle control) or 0.5 nl of four to five graded doses (0.3-30 ng/egg) of Halowax 1014, Halowax 1013, or Halowax 1051 in triolein. Following exposure, embryos developed, and fry were reared to sexual maturity (4 months), at which time they were euthanized. Responses were evaluated as early life stage (ELS) and early adult life stage (EALS) assessments. For ELS, lethality and sublethal alterations in embryos and larvae (<16 d old), such as craniofacial, cardiovascular, and myoskeletal deformities and abnormal or delayed hatch, were monitored for the first 9 d, and a dose severity index was computed. The EALS assessment examined the survival of 16-d-old larvae until early adulthood (123 ?? 3 d old), including gonadosomatic index (GSI) and morphometry. Halowax 1014 was found to be the most toxic mixture (LD50 4.2 ng/egg), whereas Halowax 1013 and 1051 were significantly less toxic (LD50s could not be determined). The gonadosomatic index of females was significantly less in fish dosed with Halowax 1014 or 1051. The LD50 for medaka embryos nanoinjected with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is about 0.75 pg/egg. Thus, Halowax 1014 was 5,585-fold less potent than TCDD. For Halowax 1014, ELS assessments accurately predicted the results of EALS assessments.

  2. A porphyrin-based metal-organic framework as a pH-responsive drug carrier

    NASA Astrophysics Data System (ADS)

    Lin, Wenxin; Hu, Quan; Jiang, Ke; Yang, Yanyu; Yang, Yu; Cui, Yuanjing; Qian, Guodong

    2016-05-01

    A low cytotoxic porphyrin-based metal-organic framework (MOF) PCN-221, which exhibited high PC12 cell viability via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) assay, was selected as an oral drug carrier. Methotrexate (MTX) was chosen as the model drug molecule which was absorbed into inner pores and channels of MOFs by diffusion. PCN-221 showed high drug loading and sustained release behavior under physiological environment without "burst effect". The controlled pH-responsive release of drugs by PCN-221 revealed its promising application in oral drug delivery.

  3. Trajectories of Microbial Community Function in Response to Accelerated Remediation of Subsurface Metal Contaminants

    SciTech Connect

    Firestone, Mary

    2015-01-14

    Objectives of proposed research were to; Determine if the trajectories of microbial community composition and function following organic carbon amendment can be related to, and predicted by, key environmental determinants; Assess the relative importance of the characteristics of the indigenous microbial community, sediment, groundwater, and concentration of organic carbon amendment as the major determinants of microbial community functional response and bioremediation capacity; and Provide a fundamental understanding of the microbial community ecology underlying subsurface metal remediation requisite to successful application of accelerated remediation and long-term stewardship of DOE-IFC sites.

  4. The Professional Context as a Predictor for Response Distortion in the Adaption-Innovation Inventory--An Investigation Using Mixture Distribution Item Response Theory Models

    ERIC Educational Resources Information Center

    Fischer, Sebastian; Freund, Philipp Alexander

    2014-01-01

    The Adaption-Innovation Inventory (AII), originally developed by Kirton (1976), is a widely used self-report instrument for measuring problem-solving styles at work. The present study investigates how scores on the AII are affected by different response styles. Data are collected from a combined sample (N = 738) of students, employees, and…

  5. Pulmonary function responses of young and older adults to mixtures of O sub 3 , NO sub 2 and PAN

    SciTech Connect

    Drechsler-Parks, D.M.; Bedi, J.F.; Horvath, S.M. )

    1989-05-01

    The pulmonary function of 32 nonsmokers (eight men and eight women, 18-26 years of age; eight men and eight women, 51-76 years of age) was measured before and after two-hour exposures to (1) filtered air (FA), (2) 0.45 ppm ozone (O3), (3) 0.13 ppm peroxyacetyl nitrate + 0.45 ppm O3 (PAN/O3), (4) 0.60 ppm nitrogen dioxide + 0.45 ppm O3 (NO2/O3), and (5) 0.13 ppm PAN + 0.60 ppm NO2 + 0.45 ppm O3 (PAN/NO2/O3). Subjects alternated 20-minute periods of rest and exercise (ventilation = 25 L/min). Forced vital capacity (FVC) was measured pre-exposure and five-minutes after each exercise period. Forced expiratory volume in one sec (FEV1.0) and forced expiratory flow between 25 and 75 percent of FVC (FEF25-75%) were calculated from the FVC tests. Data were analyzed by 4-factor analysis of variance (sex, age, time period, exposure). The responses of men and women were similar. FA exposure induced no effects. The young subjects' decrements in FVC, FEV1.0 and FEF25-75% became significant (P less than 0.01) after the second exercise period of the O3, NO2/O3 and PAN/NO2/O3 exposures, while the PAN/O3 decrements were significant (P less than 0.01) after the first exercise period. Although PAN/O3 induced significant decrements earlier than the other conditions including O3, the mean pre- to post-exposure decrements for the four conditions including O3 were similar. In contrast, the older subjects had smaller and fewer significant decrements in pulmonary functions. They had significant mean decrements in FVC following the third exercise period of the NO2/O3 and PAN/NO2/O3 exposures, in FEV1.0 after the third exercise period of the PAN/O3 and NO2/O3 exposures, and in FEF 25-75% beginning after the second exercise period of the NO2/O3 exposure.

  6. Detection and aggregation of the antitumoral drug parietin in ethanol/water mixture and on plasmonic metal nanoparticles studied by surface-enhanced optical spectroscopy: Effect of pH and ethanol concentration.

    PubMed

    Lopez-Tobar, Eduardo; Verebova, Valeria; Blascakova, Ludmila; Jancura, Daniel; Fabriciova, Gabriela; Sanchez-Cortes, Santiago

    2016-04-15

    In the present paper, we have investigated the effect of ethanol in aqueous media, the pH and the presence of Ag nanoparticles (NPs) on the aggregation processes of the antitumoral anthraquinone parietin in aqueous media and on the metal surface. UV-visible absorption, fluorescence and Raman spectra of parietin were used for such purpose. The present study provides information about the deprotonation and molecular aggregation processes occurring in parietin under different environments: ethanol/water mixture and when adsorbed onto Ag nanoparticles. The effect of ethanol on the optical properties of parietin in alcohol-water mixtures was also investigated at different ethanol concentrations with the time. For the case of the adsorption and organization of parietin molecules on the surface of Ag NPs, special attention was paid to the use of surface-enhanced optical techniques, SEF (surface-enhanced fluorescence) and SERS (surface-enhanced Raman scattering), for the characterization of the parietin aggregates and the ionization of the molecule on the surface. In particular, we have studied the variation of the SEF signal with the pH, which depends on the molecular organization of the molecule on the surface. Furthermore, a detailed analysis of the SERS spectra at different pH was accomplished and the main Raman bands of the protonated, mono-deprotonated and di-deprotonated parietin were identified. Finally, the second ionization pK of parietin on metal NPs was deduced from the SERS spectra. PMID:26836455

  7. Detection and aggregation of the antitumoral drug parietin in ethanol/water mixture and on plasmonic metal nanoparticles studied by surface-enhanced optical spectroscopy: Effect of pH and ethanol concentration

    NASA Astrophysics Data System (ADS)

    Lopez-Tobar, Eduardo; Verebova, Valeria; Blascakova, Ludmila; Jancura, Daniel; Fabriciova, Gabriela; Sanchez-Cortes, Santiago

    2016-04-01

    In the present paper, we have investigated the effect of ethanol in aqueous media, the pH and the presence of Ag nanoparticles (NPs) on the aggregation processes of the antitumoral anthraquinone parietin in aqueous media and on the metal surface. UV-visible absorption, fluorescence and Raman spectra of parietin were used for such purpose. The present study provides information about the deprotonation and molecular aggregation processes occurring in parietin under different environments: ethanol/water mixture and when adsorbed onto Ag nanoparticles. The effect of ethanol on the optical properties of parietin in alcohol-water mixtures was also investigated at different ethanol concentrations with the time. For the case of the adsorption and organization of parietin molecules on the surface of Ag NPs, special attention was paid to the use of surface-enhanced optical techniques, SEF (surface-enhanced fluorescence) and SERS (surface-enhanced Raman scattering), for the characterization of the parietin aggregates and the ionization of the molecule on the surface. In particular, we have studied the variation of the SEF signal with the pH, which depends on the molecular organization of the molecule on the surface. Furthermore, a detailed analysis of the SERS spectra at different pH was accomplished and the main Raman bands of the protonated, mono-deprotonated and di-deprotonated parietin were identified. Finally, the second ionization pK of parietin on metal NPs was deduced from the SERS spectra.

  8. Multi-trophic level response to extreme metal contamination from gold mining in a subarctic lake.

    PubMed

    Thienpont, Joshua R; Korosi, Jennifer B; Hargan, Kathryn E; Williams, Trisha; Eickmeyer, David C; Kimpe, Linda E; Palmer, Michael J; Smol, John P; Blais, Jules M

    2016-08-17

    Giant Mine, located in the city of Yellowknife (Northwest Territories, Canada), is a dramatic example of subarctic legacy contamination from mining activities, with remediation costs projected to exceed $1 billion. Operational between 1948 and 2004, gold extraction at Giant Mine released large quantities of arsenic and metals from the roasting of arsenopyrite ore. We examined the long-term ecological effects of roaster emissions on Pocket Lake, a small lake at the edge of the Giant Mine lease boundary, using a spectrum of palaeoenvironmental approaches. A dated sedimentary profile tracked striking increases (approx. 1700%) in arsenic concentrations coeval with the initiation of Giant Mine operations. Large increases in mercury, antimony and lead also occurred. Synchronous changes in biological indicator assemblages from multiple aquatic trophic levels, in both benthic and pelagic habitats, indicate dramatic ecological responses to extreme metal(loid) contamination. At the peak of contamination, all Cladocera, a keystone group of primary consumers, as well as all planktonic diatoms, were functionally lost from the sediment record. No biological recovery has been inferred, despite the fact that the bulk of metal(loid) emissions occurred more than 50 years ago, and the cessation of all ore-roasting activities in Yellowknife in 1999. PMID:27534958

  9. Biochemical responses of the shore crab (Carcinus maenas) in a eutrophic and metal-contaminated coastal system (Obidos lagoon, Portugal).

    PubMed

    Pereira, Patrícia; de Pablo, Hilda; Dulce Subida, Maria; Vale, Carlos; Pacheco, Mário

    2009-07-01

    A eutrophic and metal-contaminated coastal system (Obidos lagoon, Portugal) was monitored combining water/sediment quality parameters and Carcinus maenas biomarkers (accumulated metals, oxidative stress and biotransformation responses). Two confined branches (Barrosa and Bom-Sucesso) were surveyed and compared with a reference area. Both crab genders from Barrosa exhibited activation of hepatopancreas CAT, GPx and GST, pointing out this area as the major impacted in the lagoon. Females captured at Barrosa were more vulnerable to peroxidative damage while only males showed decreased EROD activity, reinforcing gender specificities. In general, responses were not directly attributed to metals in hepatopancreas, as supported by Principal Component Analysis (PCA). However, higher metals (Ni, Cu, Cd) and nutrients levels registered in Barrosa water were associated with the observed oxidative stress responses by PCA. Despite the difficulty to establish cause-effect relationships due to the co-occurrence of various stressors and their interactions, the adopted integrated monitoring strategy appears to be promising. PMID:19187961

  10. Enhanced nonlinear optical response of an endohedral metallofullerene through metal-to-cage charge transfer

    NASA Astrophysics Data System (ADS)

    Heflin, J. R.; Marciu, D.; Figura, C.; Wang, S.; Burbank, P.; Stevenson, S.; Dorn, H. C.

    1998-06-01

    A new mechanism for increasing the third-order nonlinear optical susceptibility, χ(3), is described for endohedral metallofullerenes. A two to three orders of magnitude increase in the nonlinear response is reported for degenerate four-wave mixing experiments conducted with solutions of Er2@C82 (isomer III) relative to empty-cage fullerenes. A value of -8.7×10-32esu is found for the molecular susceptibility, γxyyx, of Er2@C82 compared to previously reported values of γxxxx=3×10-34 esu and γxyyx=4×10-35 esu for C60. The results confirm the importance of the metal-to-cage charge-transfer mechanism for enhancing the nonlinear optical response in endohedral metallofullerenes.

  11. Ph responsive capsules containing composite coatings for corrosion inhibition in metal alloys

    NASA Astrophysics Data System (ADS)

    Kashi, Kiran Bhat

    Hexavalent chromes have been used as effective corrosion inhibitors due to their high inhibitor efficiency and low cost for the protection of several metal alloys. However, owing to their toxicity federal legislations restrict the use and distribution of these highly toxic materials. The need for an environmentally friendly yet effective alternative to the chrome based corrosion inhibitors has led to the investigation of rare earth metals as potential candidates. Cerium is one such rare earth metal that has received considerable attention as an alternative to hexavalent chromes. However, the high water solubility of some of the cerium salts makes it difficult for the incorporation of such salts in coatings. In this work, pH responsive microcapsules containing cerium salts were synthesized using an internally phase separated emulsion polymerization technique. Core shell microcapsule consisting of a water core containing dissolved cerium salts were synthesized. The synthesized capsules were characterized using characterization techniques such as Fourier Transform Infrared (FTIR) spectroscopy, UV-vis spectroscopy, Dynamic Mechanical Analysis (DMA), Thermo-Gravimetric Analysis (TGA), and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The structure and morphology of the capsules were studied using electron microscopy techniques. The synthesized capsules were dispersed in 2K epoxy coatings and applied on aluminum alloy 2024 T-3 and cold rolled steel substrates. These coatings were exposed to salt spray (ASTM B117) and electrochemically evaluated using electrochemical impedance spectroscopy (EIS), potentio-dynamic(PD) polarization, cyclic voltammetry(CV), open circuit potential(OCP) measurements. Localized corrosion assessment was also performed on the coated metal alloys using Scanning electrochemical microscopy (SECM) to understand the mechanism of corrosion inhibition using cerium encapsulated microcapsules.

  12. Transcriptomic Analysis of Cadmium Stress Response in the Heavy Metal Hyperaccumulator Sedum alfredii Hance

    PubMed Central

    Yang, Xiaoe; Liu, Jian-Xiang

    2013-01-01

    The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-trimmed raw sequences and the assembly of 57,162 transcript contigs in S. alfredii Hance (HE) shoots by the combination of Roche 454 and Illumina/Solexa deep sequencing technologies. We also have functionally annotated the transcriptome and analyzed the transcriptome changes upon Cd hyperaccumulation in S. alfredii Hance (HE) shoots. There are 110 contigs and 123 contigs that were up-regulated (Fold Change ≧2.0) and down-regulated (Fold Change ≦0.5) by chronic Cd treatment in S. alfredii Hance (HE) at q-value cutoff of 0.005, respectively. Quantitative RT-PCR was employed to compare gene expression patterns between S. alfredii Hance (HE) and non-hyperaccumulating ecotype (NHE). Our results demonstrated that several genes involved in cell wall modification, metal translocation and remobilization were more induced or constitutively expressed at higher levels in HE shoots than that in NHE shoots in response to Cd exposure. Together, our study provides large-scale expressed sequence information and genome-wide transcriptome profiling of Cd responses in S. alfredii Hance (HE) shoots. PMID:23755133

  13. Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance.

    PubMed

    Gao, Jun; Sun, Ling; Yang, Xiaoe; Liu, Jian-Xiang

    2014-01-01

    The Sedum alfredii Hance hyperaccumulating ecotype (HE) has the ability to hyperaccumulate cadmium (Cd), as well as zinc (Zn) and lead (Pb) in above-ground tissues. Although many physiological studies have been conducted with these plants, the molecular mechanisms underlying their hyper-tolerance to heavy metals are largely unknown. Here we report on the generation of 9.4 gigabases of adaptor-trimmed raw sequences and the assembly of 57,162 transcript contigs in S. alfredii Hance (HE) shoots by the combination of Roche 454 and Illumina/Solexa deep sequencing technologies. We also have functionally annotated the transcriptome and analyzed the transcriptome changes upon Cd hyperaccumulation in S. alfredii Hance (HE) shoots. There are 110 contigs and 123 contigs that were up-regulated (Fold Change ≥ 2.0) and down-regulated (Fold Change metal translocation and remobilization were more induced or constitutively expressed at higher levels in HE shoots than that in NHE shoots in response to Cd exposure. Together, our study provides large-scale expressed sequence information and genome-wide transcriptome profiling of Cd responses in S. alfredii Hance (HE) shoots. PMID:23755133

  14. Responsive nanoporous metals: recoverable modulations on strength and shape by watering.

    PubMed

    Ye, Xing-Long; Liu, Ling-Zhi; Jin, Hai-Jun

    2016-08-12

    Many biological materials can readily modulate their mechanical properties and shape by interacting with water in the surrounding environment, which is essential to their high performance in application. In contrast, typical inorganic materials (such as the metals) cannot change their strength and shape without involving thermal/mechanical treatments. By introducing nano-scale porous structure and exploiting a simple physical concept-the water-capillarity in nanopores, here we report that a 'dead' metal can be transformed into a 'smart' material with water-responsive properties. We demonstrate that the apparent strength, volume and shape of nanoporous Au and Au(Pt) can be modulated in situ, dramatically and recoverably, in response to water-dipping and partial-drying. The amplitude of strength-modulation reaches 20 MPa, which is nearly 50% of the yield strength at initial state. This approach also leads to reversible length change up to 1.3% in nanoporous Au and a large reversible bending motion of a bi-layer strip with tip displacement of ∼20 mm, which may be used for actuation. This method is simple and effective, occurring in situ under ambient conditions and requiring no external power, analogous to biological materials. The findings may open up novel applications in many areas such as micro-robotics and bio-medical devices. PMID:27347850

  15. Solvent Effects on the Dynamic Polarizability and Raman Response of Molecule-Metal Oxide Hybrid Clusters.

    PubMed

    Orozco-Gonzalez, Yoelvis; Tarakeshwar, Pilarisetty; Canuto, Sylvio; Mujica, Vladimiro

    2016-08-18

    Currently, there is considerable interest in the properties of semiconducting metal oxide nanoparticle substrates because of their utility in surface-enhanced Raman scattering, dye-sensitized solar cells, and photocatalysis. While the enhancement of Raman activities of molecules adsorbed on these nanoparticles is due to a large increase in the polarizability, because of charge transfer from the molecule to the semiconducting nanoparticle, little is known about the factors responsible for modulating the polarizability, particularly the influence of the solvent. Consequently, we have carried out Monte Carlo simulations of several hybrids to study the solvent effect on the dynamic polarizabilities and electronic spectra. Our results indicate that the presence of the solvent induces a shift and an increase in the polarization response that is dependent on the identity of the hybrid. The observed enhancement can be attributed to both the resonant character of the excitation and the participation of the solvent in the charge redistribution. The methodology employed in this work could be very valuable in both identifying and developing metal oxides as novel molecular sensors. PMID:27145884

  16. Thermoelastic response of metal matrix composites with large-diameter fibers subjected to thermal gradients

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1993-01-01

    A new micromechanical theory is presented for the response of heterogeneous metal matrix composites subjected to thermal gradients. In contrast to existing micromechanical theories that utilize classical homogenization schemes in the course of calculating microscopic and macroscopic field quantities, in the present approach the actual microstructural details are explicitly coupled with the macrostructure of the composite. Examples are offered that illustrate limitations of the classical homogenization approach in predicting the response of thin-walled metal matrix composites with large-diameter fibers when subjected to thermal gradients. These examples include composites with a finite number of fibers in the thickness direction that may be uniformly or nonuniformly spaced, thus admitting so-called functionally gradient composites. The results illustrate that the classical approach of decoupling micromechanical and macromechanical analyses in the presence of a finite number of large-diameter fibers, finite dimensions of the composite, and temperature gradient may produce excessively conservative estimates for macroscopic field quantities, while both underestimating and overestimating the local fluctuations of the microscopic quantities in different regions of the composite. Also demonstrated is the usefulness of the present approach in generating favorable stress distributions in the presence of thermal gradients by appropriately tailoring the internal microstructure details of the composite.

  17. Responsive nanoporous metals: recoverable modulations on strength and shape by watering

    NASA Astrophysics Data System (ADS)

    Ye, Xing-Long; Liu, Ling-Zhi; Jin, Hai-Jun

    2016-08-01

    Many biological materials can readily modulate their mechanical properties and shape by interacting with water in the surrounding environment, which is essential to their high performance in application. In contrast, typical inorganic materials (such as the metals) cannot change their strength and shape without involving thermal/mechanical treatments. By introducing nano-scale porous structure and exploiting a simple physical concept—the water-capillarity in nanopores, here we report that a ‘dead’ metal can be transformed into a ‘smart’ material with water-responsive properties. We demonstrate that the apparent strength, volume and shape of nanoporous Au and Au(Pt) can be modulated in situ, dramatically and recoverably, in response to water-dipping and partial-drying. The amplitude of strength-modulation reaches 20 MPa, which is nearly 50% of the yield strength at initial state. This approach also leads to reversible length change up to 1.3% in nanoporous Au and a large reversible bending motion of a bi-layer strip with tip displacement of ∼20 mm, which may be used for actuation. This method is simple and effective, occurring in situ under ambient conditions and requiring no external power, analogous to biological materials. The findings may open up novel applications in many areas such as micro-robotics and bio-medical devices.

  18. Bioleaching mechanism of heavy metals in the mixture of contaminated soil and slag by using indigenous Penicillium chrysogenum strain F1.

    PubMed

    Deng, Xinhui; Chai, Liyuan; Yang, Zhihui; Tang, Chongjian; Wang, Yangyang; Shi, Yan

    2013-03-15

    The ability and bioleaching mechanism of heavy metals by Penicillium chrysogenum in soils contaminated with smelting slag were examined in this study. Batch experiments were performed to investigate the growth kinetics of P. chrysogenum, organic acids production and to compare the removal efficiencies of heavy metals between bioleaching with P. chrysogenum and chemical organic acids. The results showed that the bioleaching had higher removals than chemical leaching, and the removal percentages of Cd, Cu, Pb, Zn, Mn and Cr reached up to 74%, 59%, 24%, 55%, 57% and 25%, respectively. Removal efficiencies of heavy metals (15.41 mg/50 mL) by bioleaching were higher than chemical leaching with 0.5% of citric acid (15.15 mg/50 mL), oxalic acid (8.46 mg/50 mL), malic acid (11.35 mg/50 mL) and succinic acid (10.85 mg/50 mL). The results of transmission electron microscope (TEM) showed that no damage was obviously observed on the surface of the living cell except for thinner cell wall, discontinuous plasma membrane, compartmentalized lumen and concentrated cytoplasm during bioleaching process. The activity of extracellular glucose oxidase (GOD) produced by P. chrysogenum is influenced severely by the multi-heavy metal ions. The result implied that P. chrysogenum can be used to remove heavy metals from polluted soil and smeltery slag. PMID:23352906

  19. Analysis of aromaticity in planar metal systems using the linear response kernel.

    PubMed

    Fias, Stijn; Boisdenghien, Zino; Stuyver, Thijs; Audiffred, Martha; Merino, Gabriel; Geerlings, Paul; de Proft, Frank

    2013-04-25

    The linear response kernel is used to gain insight into the aromatic behavior of the less classical metal aromatic E4(2-) and CE4(2-) (E = Al, Ga) clusters. The effect of the systematic replacement of the aluminum atoms in Al4(2-) and CAl4(2-) by germanium atoms is studied using, Al3Ge-, Al2Ge2, AlGe3+, Ge4(2+), CAl3Ge-, CAl2Ge2, CAlGe3+, and CGe4(2+). The results are compared with the values of the delocalization index (δ(1,3)) and nucleus independent chemical shifts (NICS(zz)). Unintegrated plots of the linear response, computed for the first time on molecules, are used to analyze the delocalization in these clusters. All aromaticity indices studied, the linear response, δ(1,3), and NICS(zz), predict that the systems with a central carbon are less aromatic than the systems without a central carbon atom. Also, the linear response is more pronounced in the σ-electron density than in the π-density, pointing out that the systems are mainly σ-aromatic. PMID:23534921

  20. Structurally Well-Defined Sigmoidal Gold Clusters: Probing the Correlation between Metal Atom Arrangement and Chiroptical Response.

    PubMed

    He, Xin; Wang, Yuechao; Jiang, Hong; Zhao, Liang

    2016-05-01

    Asymmetric arrangement of metal atoms is crucial for understanding the chirality origin of chiral metal nanoclusters and facilitating the design and development of new chiral catalysts and chiroptical devices. Here, we describe the construction of four asymmetric gold and gold-silver clusters by chirality transfer from diimido ligands. The acquired metal clusters show strong circular dichroism (CD) response with large anisotropy factors of up to 6 × 10(-3), larger than the values of most reported chiral gold nanoclusters. Regardless of the same absolute configuration of the applied three diimido ligands, sigmoidal and reverse-sigmoidal arrangements of gold atoms both can be achieved, which resultantly produce an opposite Cotton effect within a specific absorption range. On the basis of the detailed structural characterization via X-ray crystallography and contrast experiments, the chirality contribution of the imido ligand, the asymmetrically arranged metal cluster, and the chiral arrangement of aromatic rings of phosphine ligands have been qualitatively evaluated. Time-dependent DFT calculations reveal that the chiroptical property of the acquired metal clusters is mainly influenced by the asymmetrically arranged metal atoms. Correlation of asymmetric arrangements of metal atoms in clusters with their chiroptical response provides a viable means of fabricating a designable chiral surface of metal nanoclusters and opens a broader prospect for chiral cluster application. PMID:27070415

  1. Colloidal stability and thermo-responsive properties of iron oxide nanoparticles coated with polymers: advantages of Pluronic® F68-PEG mixture

    NASA Astrophysics Data System (ADS)

    Chiper, Manuela; Hervé Aubert, Katel; Augé, Amélie; Fouquenet, Jean-François; Soucé, Martin; Chourpa, Igor

    2013-10-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are recognized to be an attractive platform for developing novel drug delivery approaches and thus several types of functionalized magnetic nanocarriers based on SPIONs have been synthesized and studied. The coating of the metal oxide surface was achieved in a one-pot synthesis with biocompatible polyethylene glycol (PEG) and thermo-responsive modified Pluronic® F68. The resulting thermo-responsive magnetic nanocarriers can incorporate water insoluble drugs into their hydrophobic compartment and later release them in a temperature dependent manner. Here we report novel magnetic nanocarriers with significant improvements regarding the colloidal stability and critical temperature obtained by mixing various molar ratios of hydrophilic PEG with thermo-responsive Pluronic® F68 bearing different end group functionalities. Various methods have been employed to characterize the magnetic nanocarriers, such as photon correlation spectroscopy (DLS), atomic absorption, FT-IR spectroscopy, and surface-enhanced Raman scattering. The transition temperature that determines changes in the conformation of the block copolymer chain was studied by DLS as a function of temperature. Moreover, the drug loading properties of SPION-(F68-OMe)-(F68-FA) and SPION-PEG-F68-FA were analyzed with a hydrophobic fluorescent dye, DID oil. The behavior of the encapsulated DID into the nanocarrier shell was studied as a function of temperature via fluorescence spectroscopy. These results offer original insights into the enhanced colloidal stability and thermo-sensitive properties of the novel synthesized magnetic nanocarriers.

  2. Colloidal stability and thermo-responsive properties of iron oxide nanoparticles coated with polymers: advantages of Pluronic® F68-PEG mixture.

    PubMed

    Chiper, Manuela; Hervé Aubert, Katel; Augé, Amélie; Fouquenet, Jean-François; Soucé, Martin; Chourpa, Igor

    2013-10-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are recognized to be an attractive platform for developing novel drug delivery approaches and thus several types of functionalized magnetic nanocarriers based on SPIONs have been synthesized and studied. The coating of the metal oxide surface was achieved in a one-pot synthesis with biocompatible polyethylene glycol (PEG) and thermo-responsive modified Pluronic® F68. The resulting thermo-responsive magnetic nanocarriers can incorporate water insoluble drugs into their hydrophobic compartment and later release them in a temperature dependent manner. Here we report novel magnetic nanocarriers with significant improvements regarding the colloidal stability and critical temperature obtained by mixing various molar ratios of hydrophilic PEG with thermo-responsive Pluronic® F68 bearing different end group functionalities. Various methods have been employed to characterize the magnetic nanocarriers, such as photon correlation spectroscopy (DLS), atomic absorption, FT-IR spectroscopy, and surface-enhanced Raman scattering. The transition temperature that determines changes in the conformation of the block copolymer chain was studied by DLS as a function of temperature. Moreover, the drug loading properties of SPION-(F68-OMe)-(F68-FA) and SPION-PEG-F68-FA were analyzed with a hydrophobic fluorescent dye, DID oil. The behavior of the encapsulated DID into the nanocarrier shell was studied as a function of temperature via fluorescence spectroscopy. These results offer original insights into the enhanced colloidal stability and thermo-sensitive properties of the novel synthesized magnetic nanocarriers. PMID:24013614

  3. Relative Spectral Mixture Analysis for monitoring natural hazards that impact vegetation cover: the importance of the nonphotosynthetic fraction in understanding landscape response to drought, fire, and hurricane damage

    NASA Astrophysics Data System (ADS)

    Okin, G. S.

    2007-12-01

    Remote sensing provides a unique ability to monitor natural hazards that impact vegetation hydrologically. Here, the use of a new multitemporal remote sensing technique that employs free, coarse multispectral remote sensing data is demonstrated in monitoring short- and long-term drought, fire occurrence and recovery, and damage to hurricane-related mangrove ecosystems and subsequent recovery of these systems. The new technique, relative spectral mixture analysis (RSMA), provides information about the nonphotosynthetic fraction (nonphotosynthetic vegetation plus litter) of ground cover in addition to the green vegetation fraction. In some cases, RSMA even provides an improved ability to monitor changes in the green fraction compared to traditional vegetation indices or standard remote sensing products. In arid and semiarid regions, the nonphotosynthetic fraction can vary on an annual basis significantly more than the green fraction and is thus perfectly suited for monitoring drought in these regions. Mortality of evergreen trees due to long-term drought also shows up strongly in the nonphotosynthetic fraction as green vegetation is replaced by dry needles and bare trunks. The response of the nonphotosynthetic fraction to fire is significantly different from that of drought because of the combustion of nonphotosynthetic material. Finally, damage to mangrove ecosystems from hurricane damage, and their subsequent recovery, is readily observable in both the green and nonphotosynthetic fractions as estimated by RSMA.

  4. Studies of metal/gallium nitride gas sensors: Sensing response, morphology and sensing applications

    NASA Astrophysics Data System (ADS)

    Duan, Barrett Kai-Bong

    Reliable gas sensors with excellent sensitivity and robustness are important for the development of advanced technological applications while ensuring a safe environment in both industrial and household security. The chemically and mechanically robust gallium nitride (GaN) is a promising semiconductor for these important applications, especially for use at high temperatures and in extreme environments. When a metal is in contact with a semiconductor surface, a space charge region and Schottky barrier are formed on the semiconductor side. In this thesis, the sensing response of Pt and GaN to gaseous H2 and CO and the dependence of the response on Pt and GaN surface morphologies are explored. The sensing opportunities are expanded when GaN is decorated with Ag and the structure is used for small molecule analysis using surface enhanced Raman scattering (SERS). Combining the high surface area of nanoporous GaN with Pt nanoparticles deposited by electroless chemical deposition, the sensing performance of the well-known H-mediated Schottky barrier based on the Pt/GaN sensor is studied. The H2 sensing performance of, as defined by the limit of detection (LOD), Pt-decorated porous GaN measured by AC four-point probe resistance measurements is more than an order of magnitude better than planar GaN sensors based on the same Pt/GaN Schottky barrier height concept. The potential utility of high surface area porous GaN was realized by decorating the confined nanopores with metal (Pt), thus increasing the surface area available for sensing and lowering the LOD. Pt/GaN structures can also be used to detect CO at high temperature. The CO sensing response is also dependent on the Pt morphology. For continuous films, CO signal increases as the thickness of the metal film decreases. In discontinuous Pt films, increasing Pt surface area also increases the CO signal when the Pt/GaN interfacial area remains constant. A model is proposed, in which the influence of the adsorbed CO on Pt

  5. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites

    PubMed Central

    Khanolkar, Gauri R.; Rauls, Michael B.; Kelly, James P.; Graeve, Olivia A.; Hodge, Andrea M.; Eliasson, Veronica

    2016-01-01

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding. PMID:26932846

  6. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites

    NASA Astrophysics Data System (ADS)

    Khanolkar, Gauri R.; Rauls, Michael B.; Kelly, James P.; Graeve, Olivia A.; Hodge, Andrea M.; Eliasson, Veronica

    2016-03-01

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.

  7. Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites.

    PubMed

    Khanolkar, Gauri R; Rauls, Michael B; Kelly, James P; Graeve, Olivia A; Hodge, Andrea M; Eliasson, Veronica

    2016-01-01

    The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding. PMID:26932846

  8. Metal dusting of nickel-containing alloys

    SciTech Connect

    Baker, B.A.; Smith, G.D.

    1998-12-31

    Metal dusting is a catastrophic form of carburization which leads to pitting and grooves as the affected metal disintegrates into a mixture of powdery carbon, metallic particles, and possibly oxides and carbides. This high temperature carburization mode is not yet well understood and while relatively infrequent, can be economically disastrous when it does occur in large and complex chemical and petrochemical process streams. References in the literature show that all classes of heat resistant alloys are prone to metal dusting, given the necessary and specific environmental conditions. These same references describe the environments that plague nickel-containing alloys and are used as the basis for postulation on the probable corrosion mechanisms responsible for metal dusting. Using alloy 800 and other nickel-containing alloys and metal dusting atmospheres, an effort is made to examine the steps in the metal dusting process and the temperature ranges over which metal dusting occurs.

  9. Toxicity of a hazardous chemical mixture in the planarian, Dugesia dorotocephala

    SciTech Connect

    Ramsdell, H.S.; Matthews, C.M.

    1995-12-31

    The responses of the planarian, Dugesia dorotocephala to toxic chemical mixtures representative of water contaminants associated with hazardous waste sites have been studied in laboratory experiments. These free-living flatworms are readily maintained under laboratory conditions and are a useful invertebrate model for toxicology studies. Their widespread occurrence also makes them potentially useful for environmental studies. Mature asexual Dugesia dorotocephala were exposed for 14 days to mixtures of seven contaminants frequently detected in water at hazardous waste sites. The complete 1X mixture contained both metals (As, 3.1 ppm; Cr, 0.7 ppm; Pb, 3.7 ppm) and organics (chloroform, 1.5 ppm; benzene, 5.0 ppm; phenol, 3.4 ppm; trichloroethylene, 3.8 ppm). Groups of planaria were treated with the complete mixture at 0.1X, 1X and 10X concentrations. Additional groups were exposed to the metals-only or organics-only submixtures, also at 0.1X, 1X and 10X concentrations. Treatment solutions were renewed daily. Suppression of fissioning was observed in all of the 1X and 10X treatment groups. Significant mortality occurred only in the 10X complete and 1 0X metals-only treatments. It appears that the toxic effects of the complete mixture are primarily associated with the metal components.

  10. Performance, egg quality, and immune response of laying hens fed diets supplemented with mannan-oligosaccharide or an essential oil mixture under moderate and hot environmental conditions.

    PubMed

    Bozkurt, M; Küçükyilmaz, K; Catli, A U; Cinar, M; Bintas, E; Cöven, F

    2012-06-01

    In total, 432 thirty-six-week-old laying hens were fed a basal diet supplemented with mannan-oligosaccharide (MOS) or an essential oil mixture (EOM) from 36 to 51 wk of age. Hens were divided into 3 equal groups replicated 6 times with 24 hens per replicate. No significant difference was observed among the dietary treatments in terms of performance indices. Different from the dietary manipulation, high environmental temperatures negatively influenced all of the laying performance traits except the feed conversion ratio in association with the diminished feed consumption. The MOS, and particularly the EOM, tended to alleviate the deleterious effect of heat stress on BW gain. Mortality was higher in MOS-fed hens than with other treatments. A supplementation diet with MOS or EOM provided increments in eggshell weight (P < 0.01). Relative albumen weight was significantly decreased (P < 0.05) in response to EOM or MOS supplementation; however, this was not the case in the yolk weight rate. The MOS decreased albumen height and Haugh unit (P < 0.05). High environmental temperatures hampered entire egg quality characteristics except for the eggshell breaking strength and egg yolk weight. These results indicated that heat stress adversely affected both productive performance and egg quality. As for the results of this study, neither MOS nor EOM was efficacious in improving efficiency of egg production and stimulating humoral immune response in laying hens reared under moderate and hot climatic conditions. However, the ameliorative effect exerted by MOS and EOM on eggshell characteristics is conclusive. PMID:22582296

  11. Characterization of cadmium- and lead-phytochelatin complexes formed in a marine microalga in response to metal exposure.

    PubMed

    Scarano, Gioacchino; Morelli, Elisabetta

    2002-06-01

    Phytochelatins (PCn) are thiol-containing peptides with general structure (gamma-Glu-Cys)n-Gly enzymatically synthesized by plants and algae in response to metal exposure. They are involved in the cellular detoxification mechanism for their capability to form stable metal-phytochelatin complexes. The speciation of Cd and Pb complexes with phytochelatins has been studied in laboratory cultures of the marine diatom Phaeodactylum tricornutum. An approach based on size-exclusion chromatography (SEC) with off-line detection of phytochelatins, by reverse-phase HPLC, and metal ion, by atomic absorption spectrometry, has been used. The formation of Cd- and Pb-PCn complexes with n-value from 3 to 6 was demonstrated. The metal-PCn complexes formed with Cd appear to be different from those formed with Pb for the number of molecules of peptide involved in the complex and for the amount of the metal ion bound. The chromatographic behaviour of metal-PCn complexes is consistent with Pb-PCn complexes in which only a molecule of peptide binds the metal ion, and with Cd-PCn complexes containing two or more molecules of peptide. The metal/peptide molar ratio in Cd-PCn complexes was higher that in Pb-PCn complexes. The formation of Cd- or Pb-PC2 complexes was not demonstrated, probably for a dissociation during the cellular extract preparation. The effectiveness of phytochelatins in the detoxification of these two metal ions in this alga is discussed. PMID:12046922

  12. Separation and Identification of a Mixture of Group 6 Transition-Metal Carbonyl Compounds Using GC-MS in the General Chemistry Curriculum

    ERIC Educational Resources Information Center

    Fong, Lawrence K.

    2004-01-01

    Students in the general chemistry course are advised to scrutinize data obtained by gas chromatograph (GC) for segregation, and mass spectroscopy (MS) for recognizing combination of group 6 transition-metal carbonyl compounds. The GC-MS method arouses students' interest, as it can be applied to real-world situations, such as the routine…

  13. Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects.

    PubMed

    Scheibener, S A; Richardi, V S; Buchwalter, D B

    2016-02-01

    The importance of insects in freshwater ecosystems has led to their extensive use in ecological monitoring programs. As freshwater systems are increasingly challenged by salinization and metal contamination, it is important to understand fundamental aspects of aquatic insect physiology (e.g., osmoregulatory processes) that contribute to insect responses to these stressors. Here we compared the uptake dynamics of Na as NaCl, NaHCO3 and Na2SO4 in the caddisfly Hydropsyche betteni across a range of Na concentrations (0.06-15.22 mM) encompassing the vast majority of North American freshwater ecosystems. Sulfate as the major anion resulted in decreased Na uptake rates relative to the chloride and bicarbonate salts. A comparison of Na (as NaHCO3) turnover rates in the caddisfly Hydropsyche sparna and the mayfly Maccaffertium sp. revealed different patterns in the 2 species. Both species appeared to tightly regulate their whole body sodium concentrations (at ∼47±1.8 μmol/g wet wt) across a range of Na concentrations (0.06-15.22 mM) over 7 days. However, at the highest Na concentration (15.22 mM), Na uptake rates in H. sparna (419.1 μM Na g(-1) hr(-1) wet wt) appeared close to saturation while Na uptake rates in Maccaffertium sp. were considerably faster (715 g μM Na g(-1) hr(-1) wet wt) and appeared to not be close to saturation. Na efflux studies in H. sparna revealed that loss rates are commensurate with uptake rates and are responsive to changes in water Na concentrations. A comparison of Na uptake rates (at 0.57 mM Na) across 9 species representing 4 major orders (Ephemeroptera, Plecoptera, Trichoptera and Diptera) demonstrated profound physiological differences across species after accounting for the influence of body weight. Faster Na uptake rates were associated with species described as being sensitive to salinization in field studies. The metals silver (Ag) and copper (Cu), known to be antagonistic to Na uptake in other aquatic taxa did not generally

  14. Leaf responsiveness of Populus tremula and Salix viminalis to soil contaminated with heavy metals and acidic rainwater.

    PubMed

    Hermle, Sandra; Vollenweider, Pierre; Günthardt-Goerg, Madeleine S; McQuattie, Carolyn J; Matyssek, Rainer

    2007-11-01

    Fast-growing trees such as Salix viminalis L. and Populus tremula L. are well suited to phytoremediate heavy metal contaminated soils. However, information on tree performance, particularly leaf function, under conditions of heavy metal contamination is scarce. We used yearly coppiced saplings of S. viminalis and P. tremula growing in model ecosytems to test four hypotheses: (1) heavy metal contamination impairs photosynthesis by injuring leaf structure; (2) the effects of heavy metal contamination are enhanced by acidified rainwater and low soil pH; (3) heavy metal contamination increases dark respiration and, thus, repair processes; and (4) heavy metal contamination is tolerated and remediated better by S. viminalis than by P. tremula. We investigated heavy metal accumulation, tissue injury and gas exchange in leaves of plants subjected to controlled soil contamination with heavy metal dust. Additional treatments included acidic and calcareous natural forest subsoils in combination with irrigation with rainwater at pH 5.5 or 3.5. In both provenances of P. tremula that were studied, but not in S. viminalis, heavy metal treatment reduced photosynthesis and transpiration by varying amounts, except in the hot and dry summer of 2003, but had no effect on dark respiration. At light saturation, net CO(2) uptake and water-use efficiency were reduced by heavy metal contamination, whereas the CO(2) concentration in the leaf intercellular air space was increased. Rainwater pH and subsoil pH only slightly modified the effects of the heavy metal treatment on P. tremula. Gas exchange responses of P. tremula to heavy metals were attributed to leaf structural and ultrastructural changes resulting from hypersensitive-response-like processes and accelerated mesophyll cell senescence and necroses in the lower epidermis, especially along the transport pathways of heavy metals in the leaf lamina. Overall, the effects of heavy metals on P. tremula corroborated Hypothesis 1, but

  15. The use of in situ and stream microcosm experiments to assess population- and community-level responses to metals.

    PubMed

    Clark, Jeffrey L; Clements, William H

    2006-09-01

    We conducted field and stream microcosm experiments to assess population-level (density, size distribution) and community-level (species richness metrics, multivariate analysis of community composition) responses of macroinvertebrates to heavy metals in the Arkansas River, a mining-polluted stream in Colorado, USA. Experiments were conducted in spring and summer to coincide with early and late developmental stages (i.e., instars) of the mayfly Rhithrogena hageni. Results of field experiments showed significant mortality at metal-contaminated sites during summer when mayfly populations were dominated by small, early instars (mean dry wt = 0.13 mg). In contrast, no significant mortality was observed in spring when organisms were larger (mean dry wt = 1.78 mg). Multivariate analyses based on abundance of dominant taxa clearly separated reference and metal-impacted stations in summer experiments but showed little separation in spring. We observed no significant effects of metals on species richness, number of mayfly species, or EPT (species richness of Ephemeroptera, Plecoptera, and Trichoptera) in.either field experiment. Using stream microcosms, we established concentration-response relationships between heavy metals and R. hageni density, species richness, mayfly richness, and EPT. Density of R. hageni was generally more sensitive to metals than measures of species richness, and summer populations of R. hageni were more sensitive to metals than spring populations. Because the presence of large, relatively tolerant individuals in spring coincided with periods of higher metal concentrations, R. hageni was protected from toxic effects in this system. We conclude that phenology and developmental stage are important factors influencing responses of some aquatic macroinvertebrates to metals. Thus, timing bioassessments to coincide with the presence of these sensitive life stages can improve our ability to detect subtle contaminant effects. PMID:16986784

  16. Single Exposure to near Roadway Particulate Matter Leads to Confined Inflammatory and Defense Responses: Possible Role of Metals.

    PubMed

    Pardo, Michal; Shafer, Martin M; Rudich, Assaf; Schauer, James J; Rudich, Yinon

    2015-07-21

    Inhalation of traffic-associated atmospheric particulate matter (PM2.5) is recognized as a significant health risk. In this study, we focused on a single ("subclinical response") exposure to water-soluble extracts from PM collected at a roadside site in a major European city to elucidate potential components that drive pulmonary inflammatory, oxidative, and defense mechanisms and their systemic impacts. Intratracheal instillation (IT) of the aqueous extracts induced a 24 h inflammatory response characterized by increased broncho-alveolar lavage fluid (BALF) cells and cytokines (IL-6 and TNF-α), increased reactive oxygen species production, but insignificant lipids and proteins oxidation adducts in mouse lungs. This local response was largely self-resolved by 48 h, suggesting that it could represent a subclinical response to everyday-level exposure. Removal of soluble metals by chelation markedly diminished the pulmonary PM-mediated response. An artificial metal solution (MS) recapitulated the PM extract response. The self-resolving nature of the response is associated with activating defense mechanisms (increased levels of catalase and glutathione peroxidase expression), observed with both PM extract and MS. In conclusion, metals present in PM collected near roadways are largely responsible for the observed transient local pulmonary inflammation and oxidative stress. Simultaneous activation of the antioxidant defense response may protect against oxidative damage. PMID:26121492

  17. An Investigation of High-Cycle Fatigue Models for Metallic Structures Exhibiting Snap-Through Response

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.; Sweitzer, Karl A.

    2007-01-01

    A study is undertaken to develop a methodology for determining the suitability of various high-cycle fatigue models for metallic structures subjected to combined thermal-acoustic loadings. Two features of this problem differentiate it from the fatigue of structures subject to acoustic loading alone. Potentially large mean stresses associated with the thermally pre- and post-buckled states require models capable of handling those conditions. Snap-through motion between multiple post-buckled equilibrium positions introduces very high alternating stress. The thermal-acoustic time history response of a clamped aluminum beam structure with geometric and material nonlinearities is determined via numerical simulation. A cumulative damage model is employed using a rainflow cycle counting scheme and fatigue estimates are made for 2024-T3 aluminum using various non-zero mean fatigue models, including Walker, Morrow, Morrow with true fracture strength, and MMPDS. A baseline zero-mean model is additionally considered. It is shown that for this material, the Walker model produces the most conservative fatigue estimates when the stress response has a tensile mean introduced by geometric nonlinearity, but remains in the linear elastic range. However, when the loading level is sufficiently high to produce plasticity, the response becomes more fully reversed and the baseline, Morrow, and Morrow with true fracture strength models produce the most conservative fatigue estimates.

  18. Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to polychlorobiphenyls and metals.

    PubMed

    Faria, Melissa; Carrasco, Luis; Diez, Sergi; Riva, Maria Carmen; Bayona, Josep Maria; Barata, Carlos

    2009-04-01

    Contaminant related changes in behavioral, phase I and II metabolizing enzymes and pro-oxidant/antioxidant processes in the freshwater mussels Dreissena polymorpha exposed to metals and PCBs were assessed. Behavioral and biochemical responses including filtering rates, key phase I, II and antioxidant enzymes and levels of metallothioneins, glutathione, lipid peroxidation and DNA strand breaks were determined in digestive glands of mussels after being exposed to sublethal levels of mercury chloride, methyl mercury, cadmium and Aroclor 1260 during 5 days. In 7 out of 12 responses analyzed, mussels showed significant differences across treatments. Unusual properties of measured ethoxyresorufin-O-deethylase (EROD) activities indicated that mussels lack an inducible CYP1A enzymatic activity. Despite of using similar exposure levels, inorganic and organic mercury showed different biomarker patterns of response with methyl mercury being more bio-available and unable to induce metallothionein proteins. Mussels exposed to Cd presented higher levels of metallothioneins and an enhanced metabolism of glutathione, whereas those exposed to Aroclor showed their antioxidant glutathione peroxidase related enzyme activities inhibited. Although there was evidence for increased lipid peroxidation under exposure to inorganic and organic mercury, only mussels exposed to Aroclor had significant greater levels than those in controls. PMID:18723121

  19. Spatially resolved shock response at dry metallic multi-material interfaces

    NASA Astrophysics Data System (ADS)

    Collinson, Mark A.; Chapman, David J.; Eakins, Daniel E.

    2014-05-01

    The high strain-rate behaviour of multi-component systems is often dominated by mediation at material interfaces. The extent to which a materials microstructure influences dynamic friction and relative sliding response remains an area of active study. Initial results from a study on the behaviour of dry metallic interfaces under the passage of a controlled loading wave are presented. Held in close contact along a single planar interface, oblique shock waves were generated along the boundary by direct copper flyer impact at velocities in the range 250 ms-1 - 300 ms-1. Both the 100 mm and 13 mm bore gas guns located at Imperial College London were utilised for this purpose. A line-imaging velocity interferometer system for any reflector (VISAR) system was used to directly record the velocity profile across the contact interface, providing a measure of any spatially dependent response while photon doppler velocimetry (PDV) was used to determine the far field response. Comparisons of these results against current generation hydrocode models are presented, with significant deviations from the computationally predicted results identified in the peak shock state immediately following shock breakout.

  20. An integrated model describing the toxic responses of Daphnia magna to pulsed exposures of three metals.

    PubMed

    Hoang, Tham C; Tomasso, Joseph R; Klaine, Stephen J

    2007-01-01

    Some toxicology research in which toxicant exposures are continual (pulsed) rather than continuous have been reported. A number of toxicity models have been developed for pulsed and continuous exposures. Most of these models were developed based on one- or two-compartment, first-order toxicokinetics and were calibrated with organic compounds. In the present study, the relationship between mortality (after 21 d) of Daphnia magna in response to pulsed and continuous exposures to Cu, Zn, and Se was used to develop a model that integrated the effects of single and multiple pulsed metal exposures based on first-order uptake and depuration kinetics. Mortality was a function of exposure concentration, duration, and recovery time between exposures. The model was successfully validated using an independent data set. It is applicable to risk assessment and, potentially, may be incorporated with other models (e.g., the biotic ligand model) to predict the toxicity of pulsed metal exposures under a range of environmental conditions. PMID:17269470

  1. Temperature responsive hydrogel magnetic nanocomposites for hyperthermia and metal extraction applications

    NASA Astrophysics Data System (ADS)

    Reddy, N. Narayana; Ravindra, S.; Reddy, N. Madhava; Rajinikanth, V.; Raju, K. Mohana; Vallabhapurapu, Vijaya Srinivasu

    2015-11-01

    The present work deals with the development of temperature and magnetic responsive hydrogel networks based on poly (N-isopropylacrylamide)/acrylamido propane sulfonic acid. The hydrogel matrices are synthesized by polymerizing N-isopropylacrylamide (NIPAM) monomer in the presence of acrylamido propane sulphonicacid (AMPS) using a cross-linker (N,N-methylenebisacrylamide, MBA) and redox initiating system [ammonium persulphate (APS)/tetramethylethylenediamine (TMEDA)]. The magnetic nanoparticles are generated throughout the hydrogel networks using in situ method by incorporating iron ions and subsequent treatment with ammonia. A series of hydrogel-magnetic nanocomposites (HGMNC) are developed by varying AMPS composition. The synthesized hydrogel magnetic nanocomposites (HGMNC) are characterized by using Fourier Transform Infrared (FTIR) Spectroscopy, X-ray diffraction (XRD), Thermal Analyses and Electron Microscopy analysis (Scanning and Transmission Electron Microscope). The metal extraction capacities of the prepared hydrogel (HG) and hydrogel magnetic nanocomposites (HGMNC) were studied at different temperatures. The results suggest that HGMNCs have higher extraction capacity compared to HG and HG loaded iron ions. This data also reveals that the extraction of metals by hydrogel magnetic nanocomposites (HGMNCs) is higher at higher temperatures than room temperature. The prepared HGMNCs are also subjected to hyperthermia (cancer therapy) studies.

  2. Co-sputtered metal and polymer nanocomposite films and their electrical responses for gas sensing application

    NASA Astrophysics Data System (ADS)

    Rujisamphan, Nopporn; Murray, Roy E.; Deng, Fei; Supasai, Thidarat

    2016-04-01

    Titanium and polytetrafluoroethylene (Ti-PTFE) nanocomposite thin films were successfully fabricated on glass substrates using a combination of dc and rf magnetron sputtering. When the Ti-PTFE composites were prepared at below the percolation threshold i.e. 27% metal volume filling (F), Ti clusters with the average sizes of 7 ± 2 nm were found. As the Ti content was increased above the percolation threshold (F = 62%), the connecting regions of Ti were formed within the polymer matrix and the electrical property changed rapidly from insulator-like to metal-like properties. The Ti-PTFE composites prepared near the percolation threshold showed the electrical response to different volatile organic compounds (VOCs). The sensitivity significantly depended upon the VOCs concentrations. These composites devices showed the presence of distinct chemical bonds of Csbnd C, Csbnd CF, Csbnd F and CF2 and TiF in TiO2 on the surface as investigated by X-ray photoelectron spectroscopy (XPS) while the surface morphology, characterized by atomic force microscopy (AFM) presented the root mean square (RMS) surface roughness of 13.3 nm. Cross-section transmission electron microscopy (TEM) images of the device revealed Ti clusters dispersed in PTFE matrix with particle sizes varied between 10 nm and 30 nm.

  3. Strains and photovoltaic response in Ta-sputtered Si metal-insulator-semiconductor solar cells

    NASA Astrophysics Data System (ADS)

    Lalevic, B.; Murty, K.; Ito, T.; Kalman, Z. H.; Weissmann, S.

    1981-07-01

    Deformation by bending of Si or Si-SiO2 wafers is achieved by sputter deposition of tantalum films. Strains induced at Si-SiO2 interface and in Ta films are investigated using a combination of X-ray diffraction, electron diffraction, and transmission electron microscopy. Thin Ta film deposits are found to have predominantly a fcc structure, while thicker films have the normal bcc structure with certain admixture of fcc. Film strains generated by the coexistence of the polymorph structure are accommodated by formation of misfit dislocations at the film-Si substrate interface. The effect of the induced stress on the electronic parameters characterizing the Si-SiO2 interface is studied in the metal-oxide-semiconductor structure, and for the effect on photovoltaic response a metal-insulator-semiconductor solar cell configuration is used. Large changes with increasing stress are observed in the values of recombination time, capture cross section, and diffusion length and in sharply decreased conversion efficiency, fill factor, open-circuit voltage, and short-circuit current.

  4. Characterizing and modeling electrical response to light for metal-based EUV photoresists

    NASA Astrophysics Data System (ADS)

    Pret, Alessandro V.; Kocsis, Mike; De Simone, Danilo; Vandenberghe, Geert; Stowers, Jason; Giglia, Angelo; de Schepper, Peter; Mani, Antonio; Biafore, John J.

    2016-03-01

    Metal-based photoresists are appealing for use in EUV lithography due to their improved etch resistance and absorption compared with organic resists, and due to their resolving power demonstrated with 13.53 nm exposures using synchrotron light. Recently imec has started a new project to study novel photoresists for EUV lithography, with particular attention to metal containing materials, in order to explore alternative approaches that may offer superior characteristics in photoresist imaging and etching performance compared with more mature chemically amplified resists. In order to model these novel resists it is mandatory to understand both the optical properties and the electronic response to photon absorption. As in previous experiments on organic materials, some of the optical properties can be determined by merging analysis from high-energy electron scattering models (e.g. CXRO website), X-ray absorption spectroscopy, and DUV spectroscopic ellipsometry. Dispersion curves can be used to calculate the electronic inelastic and elastic mean-free paths; convolved with the expected spectrum at wafer level it is possible to estimate the electron yield and the secondary electron blur of the photoresist. These material properties can be used to modify the physical models currently used to simulate organic photoresist performance in computational lithography software.

  5. Thin film metal thermistors with microsecond time response for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, Nicholas; Williamson, David; Jardine, Andrew

    2013-06-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in PMMA. However, their results disagree strongly above 2 GPa shock pressure. Here we present an improved fabrication technique, to examine this outstanding issue. We make use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. If the change in resistance of a thin metal thermistor gauge is measured during a shock experiment of known pressure, the temperature can be calculated directly. The time response is limited by the time taken for the gauge to reach thermal equilibrium with the medium in which it is embedded. Gold gauges of thickness up to 200 nm have been produced by evaporation, and fully embedded in PMMA. These reach thermal equilibrium with the host material in under 1 μs, allowing temperature measurement within the duration of a plate impact experiment.

  6. Steps toward thin film metal thermistors with microsecond time response for shock temperature measurements of polymers

    NASA Astrophysics Data System (ADS)

    Taylor, N. E.; Williamson, D. M.; Jardine, A. P.

    2014-05-01

    Equations of state can be used to predict the relationship between pressure, volume and temperature. However, in shock physics, they are usually only constrained by experimental observations of pressure and volume. Direct observation of temperature in a shock is therefore valuable in constraining equations of state. Bloomquist and Sheffield (1980, 1981) and Rosenberg and Partom (1984) have attempted such observations in poly(methyl methacrylate) (PMMA). However, their results disagree strongly above 2GPa shock pressure. Here we present an improved fabrication technique, to examine this outstanding issue. We make use of the fact that the electrical resistivity of most metals is a known function of both pressure and temperature. If the change in resistance of a thin metal thermistor gauge is measured during a shock experiment of known pressure, the temperature can be calculated directly. The time response is limited by the time taken for the gauge to reach thermal equilibrium with the medium in which it is embedded. Gold gauges of thickness up to 200 nm have been produced by thermal evaporation, and fully embedded in PMMA. These reach thermal equilibrium with the host material in under 1 us, allowing temperature measurement within the duration of a plate impact experiment.

  7. Growth responses of crop and weed species to heavy metals in pot and field experiments.

    PubMed

    Farrag, Karam; Senesi, Nicola; Nigro, Franco; Petrozza, Angelo; Palma, Achille; Shaarawi, Samar; Brunetti, Gennaro

    2012-09-01

    Greenhouse and field studies were performed to examine the growth responses and possible phytoremediation capacity towards heavy metals of several Brassicaceae (Brassica alba, Brassica carinata, Brassica napus and Brassica nigra) and Poaceae (durum wheat and barley). Soils used featured total concentrations of Cr, Cu, Pb and Zn largely exceeding the maximum levels permitted by the Italian laws. Different organic amendments were tested such as a compost and the plant growth-promoting rhizobacterium Bacillus licheniformis. In the greenhouse experiment, plant length, leaf area index and shoots dry matter were evaluated periodically for the Brassicaceae examined. Whereas plant length, grains production, weight of 1,000 seeds, ear fertility and tiller density were determined under field conditions at the end of the crop cycle for wheat and barley. In general, the species tested appeared to be tolerant to high heavy metal concentrations in soil, and slightly significant differences were found for all parameters considered. A marked growth increase was shown to occur for Brassicaceae cultivated on compost- and bacillus-amended contaminated soils, with respect to non-amended contaminated soils. With some exception, higher growth parameters were measured for wheat and barley plants cropped from contaminated soils in comparison to non-contaminated soils. Further, bacillus amendment enhanced the length of wheat and barley plants in both non-contaminated and contaminated soils, while different effects were observed for the other parameters evaluated. PMID:22573098

  8. Examining the effects of metal mining mixtures on fathead minnow (Pimephales promelas) using field-based multi-trophic artificial streams.

    PubMed

    Rozon-Ramilo, Lisa D; Dubé, Monique G; Rickwood, Carrie J; Niyogi, Som

    2011-09-01

    This study illustrates the use of a mesocosm approach for assessing the independent effects of three treated metal mine effluents (MME) discharging into a common receiving environment and regulated under the same regulation. A field-based, multi-trophic artificial stream study was conducted in August 2008 to assess the effects of three metal mining effluents on fathead minnow (Pimephales promelas) in a 21-day reproduction bioassay. The nature of the approach allowed for assessment of both dietary and waterborne exposure pathways. Elements (e.g. Se, Co, Cl, Cu, Fe) were analyzed in several media (water, sediments) and tissues (biofilm, Chironomus dilutus, female fathead minnow (FHM) body, ovary, liver, gills). Significant increases in metal and micronutrient concentrations were observed in the water and biofilm tissues in all MME treatments [20% surface water effluent (SWE), 30% mine water effluent (MWE), and 45% process water effluent (PWE)], compared to reference. However, copper was the only element to significantly increase in the sediments when exposed to PWE. Co and Ni increased significantly in C. dilutus tissues in SWE (1.4- and 1.5-fold, respectively), Cu and Se also increased in chironomid tissues in PWE (5.2- and 3.3-fold, respectively); however, no significant increases in metals or micronutrients occurred in chironomid tissues when exposed to MWE compared to reference. There were no significant increases in metal concentrations in female FHM tissues (body, liver, gonads, gills) in any of the treatments suggesting that metals were either not bioavailable, lost from the females via the eggs, or naturally regulated through homeostatic mechanisms. Cumulative number of eggs per female per day increased significantly (∼127%) after exposure to SWE and decreased significantly (∼33%) after exposure to PWE when compared to reference. Mean total number of days to hatch was reduced in PWE compared to reference. This study shows the importance of isolating

  9. Dielectric response of metal/SrTiO{sub 3}/two-dimensional electron liquid heterostructures

    SciTech Connect

    Mikheev, Evgeny; Raghavan, Santosh; Stemmer, Susanne

    2015-08-17

    Maximizing the effective dielectric constant of the gate dielectric stack is important for electrostatically controlling high carrier densities inherent to strongly correlated materials. SrTiO{sub 3} is uniquely suited for this purpose, given its extremely high dielectric constant, which can reach 10{sup 4}. Here, we present a systematic study of the thickness dependence of the dielectric response and leakage of SrTiO{sub 3} that is incorporated into a vertical structure on a high-carrier-density two-dimensional electron liquid (2DEL). A simple model can be used to interpret the data. The results show a need for improved interface control in the design of metal/SrTiO{sub 3}/2DEL devices.

  10. Time-series investigation of anomalous thermocouple responses in a liquid-metal-cooled reactor

    SciTech Connect

    Gross, K.C.; Planchon, H.P.; Poloncsik, J.

    1988-03-24

    A study was undertaken using SAS software to investigate the origin of anomalous temperature measurements recorded by thermocouples (TCs) in an instrumented fuel assembly in a liquid-metal-cooled nuclear reactor. SAS macros that implement univariate and bivariate spectral decomposition techniques were employed to analyze data recorded during a series of experiments conducted at full reactor power. For each experiment, data from physical sensors in the tests assembly were digitized at a sampling rate of 2/s and recorded on magnetic tapes for subsequent interactive processing with CMS SAS. Results from spectral and cross-correlation analyses led to the identification of a flow rate-dependent electromotive force (EMF) phenomenon as the origin of the anomalous TC readings. Knowledge of the physical mechanism responsible for the discrepant TC signals enabled us to device and justify a simple correction factor to be applied to future readings.

  11. Survey of the response of standard limited streamer tubes over the complete range of three-component gas mixtures of isobutane, CO/sub 2/, argon

    SciTech Connect

    Calcaterra, A.; De Sangro, R.; De Simone, P.; Burrows, P.; Cartwright, S.L.; Gonzalez, S.; Lath, A.; Schneekloth, U.; Williams, D.C.; Yamartino, J.M.

    1989-07-01

    We present the results of a systematic study of three-component gas mixtures containing argon, isobutane, and carbon dioxide. The study used production-type chambers from the SLD Warm Iron Calorimeter (WIC), instrumented with standard pleastic streamert tubes, and triggered by cosmic-ray muons. Pulse height spectra are presented as a function of high voltage, over a wide range of mixtures of these three gases. Various features and similarities observed throughout this three-dimensional mixture space are important clues to understanding the underlying physics of discharge mechanisms in wire detectors. 15 refs., 17 figs.

  12. Dermatotoxicity of cutting fluid mixtures:in vitro and in vivo studies.

    PubMed

    Monteiro-Riviere, Nancy A; Inman, Alfred O; Barlow, Beth M; Baynes, Ronald E

    2006-01-01

    Cutting fluids are widely used in the metal-machining industry to lubricate and reduce heat generation when metals are cut by a metal-cutting tool. These cutting fluids have caused occupational irritant contact dermatitis (OICD), and many of the additives used in these cutting fluid mixtures are thought to be responsible for OICD in workers. The purpose of this study was to assess single or various combinations of these additives in initiating the OICD response following an acute 8-hour exposure in porcine skin in vivo and in vitro using the isolated perfused porcine skin flap (IPPSF) and human epidermal keratinocytes (HEK). Pigs (n = 4) were exposed to 5% mineral oil (MO) or 5% polyethylene glycol (PEG) aqueous mixtures containing various combinations of 2% triazine (TRI), 5% triethanolamine (TEA), 5% linear alkylbenzene sulfonate (LAS), or 5% sulfurized ricinoleic acid (SRA). Erythema and edema were evaluated and skin biopsies for histopathology were obtained at 4 and 8 hours. IPPSFs (n = 4) were exposed to control MO or PEG mixtures and complete MO or PEG mixtures, and perfusate samples were collected hourly to determine interleukin- (IL-) 8 release. The only significant (p < 0.05) mixture effects observed in IPPSFs were with SRA + MO that caused an increase in IL-8 release after 1 or 2 hours' exposure. In vivo exposure to TRI alone appeared to increase erythema, edema, and dermal inflammation compared to the other additives, while SRA alone was least likely to initiate a dermal inflammatory response. In 2-component mixture exposures, the presence of TRI appeared to increase the dermal inflammatory response at 4 and 8 hours especially with the PEG mixtures. In the 3- and 4-component mixtures, MO mixtures are more likely to incite an inflammatory response than PEG mixtures. TRI exhibited the highest toxicity toward HEK, which correlates well to the in vivo irritation and morphology results. In summary, these preliminary studies suggest that the biocide, TRI, is

  13. Photovoltaic response in pristine WSe{sub 2} layers modulated by metal-induced surface-charge-transfer doping

    SciTech Connect

    Wi, Sungjin; Chen, Mikai; Li, Da; Nam, Hongsuk; Meyhofer, Edgar; Liang, Xiaogan

    2015-08-10

    We obtained photovoltaic response in pristine multilayer WSe{sub 2} by sandwiching WSe{sub 2} between top and bottom metals. In this structure, the work-function difference between the top metal and WSe{sub 2} plays a critical role in generating built-in potentials and photovoltaic responses. Our devices with Zn as top metal exhibit photo-conversion efficiencies up to 6.7% under 532 nm illumination and external quantum efficiencies in the range of 40%–83% for visible light. This work provides a method for generating photovoltaic responses in layered semiconductors without detrimental doping or exquisite heterostructures, and also advances the physics for modulating the band structures of such emerging semiconductors.

  14. Conductivity and stability towards lithium metal of lithium triflate (LiSO 3CF 3) and lithium bistrifluorosulfonylimide (Li(SO 2CF 3)N) in amines and their mixtures with ammonia

    NASA Astrophysics Data System (ADS)

    Fahys, Bernard; Akturk, Necmettin; Herlem, Michel

    The solvates based on combinations of lithium salts with ammonia (called liquid ammoniates) form highly conductive and low cost electrolytes. The generalizing of this fact is possible with amines. Like ammoniates, their solvates possess properties which can widely vary with the composition, the nature of the amine and the anion. Mixtures of NH 3, amine(s) and lithium salt(s) were also investigated. These properties include the glass-transition temperature, the conductivity, the vapour pressure and the corrosion rate of lithium. The conductivity can be as high as 1 × 10 -2 Ω -1 cm -1 at 60 °C. The lithium stability depends on the anion and on the nature of the amines: with n-propylamine and isopropylamine charged with lithium triflate (only 1.5 M) lithium metal is very stable even at +70 °C during several months.

  15. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows. PMID:24871934

  16. HangAmDan-B, an Ethnomedicinal Herbal Mixture, Suppresses Inflammatory Responses by Inhibiting Syk/NF-κB and JNK/ATF-2 Pathways

    PubMed Central

    Yu, Tao; Moh, Sang Hyun; Kim, Sang-Bom; Yang, Yanyan; Kim, Eunji; Lee, Yeon-Weol; Cho, Chong-Kwan; Kim, Kyung-Hee; Yoo, Byong Chul

    2013-01-01

    Abstract HangAmDan-B (HAD-B) is a powdered mixture of eight ethnopharmacologically characterized folk medicines that is prescribed for solid masses and cancers in Korea. In view of the finding that macrophage-mediated inflammation is a pathophysiologically important phenomenon, we investigated whether HAD-B modulates inflammatory responses and explored the associated molecular mechanisms. The immunomodulatory activity of HAD-B in toll-like receptor-activated macrophages induced by lipopolysaccharide (LPS) was assessed by measuring nitric oxide (NO) and prostaglandin E2 (PGE2) levels. To identify the specific transcription factors (such as nuclear factor [NF]–κB and signaling enzymes) targeted by HAD-B, biochemical approaches, including kinase assays and immunoblot analysis, were additionally employed. HAD-B suppressed the production of PGE2 and NO in LPS-activated macrophages in a dose-dependent manner. Furthermore, the extract ameliorated HCl/EtOH-induced gastritis symptoms. Moreover, HAD-B significantly inhibited LPS-induced mRNA expression of inducible NO synthase and cyclooxygenase (COX)-2. Interestingly, marked inhibition of NF-κB and activating transcription factor was observed in the presence of HAD-B. Data from direct kinase assays and immunoblot analysis showed that HAD-B suppresses activation of the upstream signaling cascade involving spleen tyrosine kinase, Src, p38, c-Jun N-terminal kinase, and transforming growth factor β–activated kinase 1. Finally, kaempferol, but not quercetin or resveratrol was identified as a bioactive compound in HAD-B. Therefore, our results suggest that HAD-B possesses anti-inflammatory activity that contributes to its anticancer property. PMID:23256447

  17. Reproductive responses of male fathead minnows exposed to wastewater treatment plant effluent, effluent treated with XAD8 resin, and an environmentally relevant mixture of alkylphenol compounds

    USGS Publications Warehouse

    Barber, L.B.; Lee, K.E.; Swackhamer, D.L.; Schoenfuss, H.L.

    2007-01-01

    On-site, continuous-flow experiments were conducted during August and October 2002 at a major metropolitan wastewater treatment plant (WWTP) to determine if effluent exposure induced endocrine disruption as manifested in the reproductive competence of sexually mature male fathead minnows (Pimephales promelas). The fathead minnows were exposed in parallel experiments to WWTP effluent and WWTP effluent treated with XAD8 macroreticular resin to remove the hydrophobic-neutral fraction which contained steroidal hormones, alkylphenolethoxylates (APEs), and other potential endocrine disrupting compounds (EDCs). The effluent composition varied on a temporal scale and the continuous-flow experiments captured the range of chemical variability that occurred during normal WWTP operations. Exposure to WWTP effluent resulted in vitellogenin induction in male fathead minnows, with greater response in October than in August. Concentrations of ammonia, APEs, 17??-estradiol, and other EDCs also were greater in October than in August, reflecting a change in effluent composition. In the October experiment, XAD8 treatment significantly reduced vitellogenin induction in the male fathead minnows relative to the untreated effluent, whereas in August, XAD8 treatment had little effect. During both experiments, XAD8 treatment removed greater than 90% of the APEs. Exposure of fish to a mixture of APEs similar in composition and concentration to the WWTP effluent, but prepared in groundwater and conducted at a separate facility, elicited vitellogenin induction during both experiments. There was a positive relation between vitellogenin induction and hepatosomatic index (HSI), but not gonadosomatic index (GSI), secondary sexual characteristics index (SSCI), or reproductive competency. In contrast to expectations, the GSI and SSCI increased in males exposed to WWTP effluent compared to groundwater controls. The GSI, SSCI, and reproductive competency were positively affected by XAD8 treatment of

  18. Reproductive responses of male fathead minnows exposed to wastewater treatment plant effluent, effluent treated with XAD8 resin, and an environmentally relevant mixture of alkylphenol compounds.

    PubMed

    Barber, Larry B; Lee, Kathy E; Swackhamer, Deborah L; Schoenfuss, Heiko L

    2007-04-20

    On-site, continuous-flow experiments were conducted during August and October 2002 at a major metropolitan wastewater treatment plant (WWTP) to determine if effluent exposure induced endocrine disruption as manifested in the reproductive competence of sexually mature male fathead minnows (Pimephales promelas). The fathead minnows were exposed in parallel experiments to WWTP effluent and WWTP effluent treated with XAD8 macroreticular resin to remove the hydrophobic-neutral fraction which contained steroidal hormones, alkylphenolethoxylates (APEs), and other potential endocrine disrupting compounds (EDCs). The effluent composition varied on a temporal scale and the continuous-flow experiments captured the range of chemical variability that occurred during normal WWTP operations. Exposure to WWTP effluent resulted in vitellogenin induction in male fathead minnows, with greater response in October than in August. Concentrations of ammonia, APEs, 17beta-estradiol, and other EDCs also were greater in October than in August, reflecting a change in effluent composition. In the October experiment, XAD8 treatment significantly reduced vitellogenin induction in the male fathead minnows relative to the untreated effluent, whereas in August, XAD8 treatment had little effect. During both experiments, XAD8 treatment removed greater than 90% of the APEs. Exposure of fish to a mixture of APEs similar in composition and concentration to the WWTP effluent, but prepared in groundwater and conducted at a separate facility, elicited vitellogenin induction during both experiments. There was a positive relation between vitellogenin induction and hepatosomatic index (HSI), but not gonadosomatic index (GSI), secondary sexual characteristics index (SSCI), or reproductive competency. In contrast to expectations, the GSI and SSCI increased in males exposed to WWTP effluent compared to groundwater controls. The GSI, SSCI, and reproductive competency were positively affected by XAD8 treatment of

  19. Physiological response to a metal-contaminated invertebrate diet in zebrafish: importance of metal speciation and regulation of metal transport pathways.

    PubMed

    Boyle, David; Hogstrand, Christer; Bury, Nicolas R

    2011-09-01

    Dietary metal uptake in fish is determined by metal bioavailability in prey and the metal requirements of the fish. In this study zebrafish were fed the intertidal polychaete worm Nereis diversicolor (3% wet weight day(-1)) collected from Ag, Cd and Cu-impacted Restronguet Creek (RC) or a reference site, Blackwater estuary (BW), for 21 days. On days 0, 7, 14 and 21 fish were fed a single meal of RC or BW N. diversicolor labeled with (110m)Ag or (109)Cd for measurements of metal assimilation efficiency (AE). Zebrafish intestines were also taken for mRNA expression analysis of copper transporter 1 (ctr1), divalent metal transporter 1 (dmt1) and metallothionein 2 (mt2). No significant difference was observed in the AE of (109)Cd in metal naïve fish at day 0 between RC and BW worms, 11.8±2.1 and 15.3±2.8%, respectively. However, AE of (110m)Ag was significantly greater in fish fed worms from BW compared to RC, 5±1.2% and 1.6±0.5%, respectively at day 0. Fractionation analysis of radiolabeled metal partitioned in N. diversicolor from RC revealed a greater proportion of Ag (40±1.1%) in a fraction containing protein and organelle bound metal, associated with high trophic availability, compared to BW polychaetes (24±2.5%). Lower AE of (110m)Ag from RC polychaetes is therefore unlikely due to speciation of (110m)Ag in N. diversicolor from RC, but to the high concentration of Cu, a potential Ag antagonist. Exposure to RC polychaetes significantly increased the AE of (110m)Ag (6.2±1%), but not (109)Cd, from RC worms, after 21 days. AE of (110m)Ag and (109)Cd was unaffected by pre-exposure to BW. Elevated concentration of intestinal Cu and increased expression of ctr1, dmt1 and mt2 after 14 days exposure in fish fed worms from RC suggest altered Cu handling strategy of these fish which may increase AE of Ag via shared Ag and Cu transport pathways. These data suggest metal exposure history of invertebrates may affect metal bioavailability to fish, and fish may alter

  20. Influence of metal electrodes on the response of humidity sensors coated with mesoporous silica

    NASA Astrophysics Data System (ADS)

    Bearzotti, Andrea

    2008-01-01

    Interesting effects of different metal electrodes on the behaviour of mesoporous based humidity sensors have been observed and studied by chemical characterization and electric measurements. The devices were prepared on passivated silicon slices utilizing an interdigitated structure as contacts. For comparison, the response of a device implemented on an alumina substrate has been reported. A block copolymer Pluronic F-127 has been used as the organic template and has been partially removed from the films by thermal calcination. A thin film mesoporous membrane has been deposited by dip-coating on the substrates in a sol-gel solution containing non-ionic block copolymers. Silica mesostructured films have been produced using an evaporation induced self-assembling process. The films were calcined at 150 °C to obtain the best performances in terms of stability, hysteresis and reproducibility of the response. The performance of the sensor has been found to be dependent on the film preparation method, the used electrodes and the substrate when exposed to different contents of relative humidity. Electrical characterization was performed under vacuum and dark conditions to investigate the properties of the materials in the absence of interfering chemicals, while the sensory properties were obtained in a controlled environment.

  1. Mechanical response of metals under dynamic loading off the principal Hugoniot and isentrope

    NASA Astrophysics Data System (ADS)

    Seagle, Christopher

    2015-06-01

    Controlled dynamic loading of materials on phase-space paths off the principal Hugoniot and isentrope provide a stringent test of equation of state models in regions not typically experimentally constrained. Maturation of hardware design and pulse-shaping capabilities for shock-ramp experiments at Sandia's Z Machine have been exploited to test the mechanical response of a wide range of metals on ramp compression initiated from a well-defined Hugoniot state. A range of 1-8 km/s impact velocities are possible before initiating a ramp wave in a test sample. Capabilities and challenges of this type of experiment will be presented along with recent data on platinum, tin, cerium, and tantalum. Results of these experiments will be discussed in relation to existing equation of state data and models, and the future outlook for experimental constraints on material response on controlled off-principal loading paths. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Photovoltaic Response from Multilayered Transition Metal Dichalcogenides p-n Junctions

    NASA Astrophysics Data System (ADS)

    Memaran, Shahriar; Pradhan, Nihar; Lu, Zhengguang; Rhodes, Daniel; Ludwig, Jonathan; Zhou, Qiong; Ogunsolu, Omotola; Ajayan, Pulickel; Smirnov, Dmitry; Fernandez-Dominguez, Antonio; Garcia-Vidal, Francisco; Balicas, Luis

    Transition metal dichalcogenides (TMDs) are layered semiconductors with indirect band gaps comparable to Si. These compounds can be grown in large area, while their gap(s) can be tuned by changing their chemical composition or by applying a gate voltage. The experimental evidence collected so far points toward a strong interaction with light, which contrasts with the small photovoltaic efficiencies η <= 1 % extracted from bulk crystals or exfoliated monolayers. Here, we evaluate the potential of these compounds by studying the photovoltaic response of electrostatically generated p-n junctions composed of approximately 10 atomic layers of MoSe2 stacked onto the dielectric h-BN. In addition to ideal diode-like response, we find that these junctions can yield, under AM-1.5 illumination, photovoltaic efficiencies η exceeding 14%, with fill factors of ~ 70 % . Given the available strategies for increasing η such as gap tuning, improving the quality of the electrical contacts, or the fabrication of tandem cells, our study suggests a remarkable potential for photovoltaic applications based on TMDs.

  3. Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading

    PubMed Central

    Yang, Shu; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances. PMID:25126606

  4. Pronounced Photovoltaic Response from Multilayered Transition-Metal Dichalcogenides PN-Junctions.

    PubMed

    Memaran, Shahriar; Pradhan, Nihar R; Lu, Zhengguang; Rhodes, Daniel; Ludwig, Jonathan; Zhou, Qiong; Ogunsolu, Omotola; Ajayan, Pulickel M; Smirnov, Dmitry; Fernández-Domínguez, Antonio I; García-Vidal, Francisco J; Balicas, Luis

    2015-11-11

    Transition metal dichalcogenides (TMDs) are layered semiconductors with indirect band gaps comparable to Si. These compounds can be grown in large area, while their gap(s) can be tuned by changing their chemical composition or by applying a gate voltage. The experimental evidence collected so far points toward a strong interaction with light, which contrasts with the small photovoltaic efficiencies η ≤ 1% extracted from bulk crystals or exfoliated monolayers. Here, we evaluate the potential of these compounds by studying the photovoltaic response of electrostatically generated PN-junctions composed of approximately 10 atomic layers of MoSe2 stacked onto the dielectric h-BN. In addition to ideal diode-like response, we find that these junctions can yield, under AM-1.5 illumination, photovoltaic efficiencies η exceeding 14%, with fill factors of ~70%. Given the available strategies for increasing η such as gap tuning, improving the quality of the electrical contacts, or the fabrication of tandem cells, our study suggests a remarkable potential for photovoltaic applications based on TMDs. PMID:26513598

  5. Response of Pt-based Bulk Metallic Glass to Shock Wave Compression

    NASA Astrophysics Data System (ADS)

    Lalone, B. M.; Gupta, Y. M.

    2009-06-01

    Plate impact experiments were performed on platinum based bulk metallic glass (BMG) samples having a nominal composition of Pt57.5Cu14.7Ni5.3P22.5, a material previously reported to support large plastic strains under quasi-static, uniaxial stress loading (J. Schroers, and W. L. Johnson, Phys. Rev. Lett. 93, 255506 (2004)). In the present shock wave experiments, peak longitudinal stresses ranged from 9-30 GPa. Piezoelectric pins and a velocity interferometer were used to measure shock velocities and particle velocity histories. A clear two-wave structure was observed in the particle velocity histories indicating an elastic-plastic response. The elastic wave amplitude was dependent on peak stress and sample thickness, with values ranging from 8.6 - 14.2 GPa. Measured wave profiles were converted to stress-density compression, and a nonlinear elastic model was fit to the measured elastic response. Unlike the quasi-static, uniaxial stress data on the same alloy, the shock wave, uniaxial strain results show a loss of strength above the elastic limit. Reasons for this strength loss are discussed. Work supported by the DOE.

  6. Electroactive polymeric sensors in hand prostheses: bending response of an ionic polymer metal composite.

    PubMed

    Biddiss, Elaine; Chau, Tom

    2006-07-01

    In stark contrast to the inspiring functionality of the natural hand, limitations of current upper limb prostheses stemming from marginal feedback control, challenges of mechanical design, and lack of sensory capacity, are well-established. This paper provides a critical review of current sensory systems and the potential of a selection of electroactive polymers for sensory applications in hand prostheses. Candidate electroactive polymers are reviewed in terms of their relevant advantages and disadvantages, together with their current implementation in related applications. Empirical analysis of one of the most novel electroactive polymers, ionic polymer metal composites (IPMC), was conducted to demonstrate its potential for prosthetic applications. With linear responses within the operating range typical of hand prostheses, bending angles, and bending rates were accurately measured with 4.4+/-2.5 and 4.8+/-3.5% error, respectively, using the IPMC sensors. With these comparable error rates to traditional resistive bend sensors and a wide range of sensitivities and responses, electroactive polymers offer a promising alternative to more traditional sensory approaches. Their potential role in prosthetics is further heightened by their flexible and formable structure, and their ability to act as both sensors and actuators. PMID:16260170

  7. Dynamic response and optimal design of curved metallic sandwich panels under blast loading.

    PubMed

    Qi, Chang; Yang, Shu; Yang, Li-Jun; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a "soft" outer face and a "hard" inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances. PMID:25126606

  8. Algal photosynthetic responses to toxic metals and herbicides assessed by chlorophyll a fluorescence.

    PubMed

    Kumar, K Suresh; Dahms, Hans-Uwe; Lee, Jae-Seong; Kim, Hyung Chul; Lee, Won Chan; Shin, Kyung-Hoon

    2014-06-01

    Chlorophyll a fluorescence is established as a rapid, non-intrusive technique to monitor photosynthetic performance of plants and algae, as well as to analyze their protective responses. Apart from its utility in determining the physiological status of photosynthesizers in the natural environment, chlorophyll a fluorescence-based methods are applied in ecophysiological and toxicological studies to examine the effect of environmental changes and pollutants on plants and algae (microalgae and seaweeds). Pollutants or environmental changes cause alteration of the photosynthetic capacity which could be evaluated by fluorescence kinetics. Hence, evaluating key fluorescence parameters and assessing photosynthetic performances would provide an insight regarding the probable causes of changes in photosynthetic performances. This technique quintessentially provides non-invasive determination of changes in the photosynthetic apparatus prior to the appearance of visible damage. It is reliable, economically feasible, time-saving, highly sensitive, versatile, accurate, non-invasive and portable; thereby comprising an excellent alternative for detecting pollution. The present review demonstrates the applicability of chlorophyll a fluorescence in determining photochemical responses of algae exposed to environmental toxicants (such as toxic metals and herbicides). PMID:24632123

  9. The response of metal-oxide-semiconductor devices irradiated at high temperatures

    NASA Astrophysics Data System (ADS)

    Schwank, James R.; Sexton, Fred W.; Fleetwood, Daniel M.; Rodgers, M. S.; Hughes, Kenneth L.

    To study the combined effects of high temperature and radiation on metal-oxide-semiconductor (MOS) integrated circuits (ICs), we have performed a series of experiments to characterize the response of MOS 16k static random access memories (SRAMs) irradiated at temperatures from 298 to 398 K. The irradiations were performed at dose rates approaching those of a spacebased nuclear reactor (approx. = 0.03 rad/s). Over the temperature range investigated, the failure dose of 16k SRAMs was found to decrease with increasing temperature due to complex interactions between radiation and temperature. Neither the failure mechanism nor the failure dose could be predicted from separate or independent measurements of room-temperature irradiation data and IC response preirradiation as a function of temperature. These results show that over the temperature range 298 to 398 K one cannot depend on elevated temperatures to extend the lifetime of ICs in a radiation environment. Extensive qualification tests must be performed if ICs on a space nuclear power platform are to exposed to high radiation levels in this temperature range. At temperatures much higher than 400 K, however, defect annealing can significantly increase the radiation tolerance of MOS circuits.

  10. The response of metal-oxide-semiconductor devices irradiated at high temperatures

    NASA Astrophysics Data System (ADS)

    Schwank, James R.; Sexton, Fred W.; Fleetwood, Daniel M.; Rodgers, M. Steven; Hughes, Kenneth L.

    To study the combined effects of high temperature and radiation on metal-oxide-semiconductor (MOS) integrated circuits (ICs), we have performed a series of experiments to characterize the response of MOS 16k static random access memories (SRAMs) irradiated at temperatures from 298 to 398 K. The irradiations were performed at dose rates approaching those of a spacebased nuclear reactor (approx. = 0.03 rad/s). Over the temperature range investigated, the failure dose of 16k SRAMs was found to decrease with increasing temperature due to complex interactions between radiation and temperature. Neither the failure mechanism nor the failure dose could be predicted from separate or independent measurements of room-temperature irradiation data and IC response preirradiation as a function of temperature. These results show that over the temperature range 298 to 398 K one cannot depend on elevated temperatures to extend the lifetime of ICs in a radiation environment. Extensive qualification tests must be performed if ICs on a space nuclear power platform are to be exposed to high radiation levels in this temperature range. At temperatures much higher than 400 K, however, defect annealing can significantly increase the radiation tolerance of MOS circuits.

  11. Superconductor precursor mixtures made by precipitation method

    DOEpatents

    Bunker, Bruce C.; Lamppa, Diana L.; Voigt, James A.

    1989-01-01

    Method and apparatus for preparing highly pure homogeneous precursor powder mixtures for metal oxide superconductive ceramics. The mixes are prepared by instantaneous precipitation from stoichiometric solutions of metal salts such as nitrates at controlled pH's within the 9 to 12 range, by addition of solutions of non-complexing pyrolyzable cations, such as alkyammonium and carbonate ions.

  12. Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria

    SciTech Connect

    Zhou, Jizhong; He, Zhili

    2010-02-28

    Project Title: Deduction and Analysis of the Interacting Stress Response Pathways of Metal/Radionuclide-reducing Bacteria DOE Grant Number: DE-FG02-06ER64205 Principal Investigator: Jizhong (Joe) Zhou (University of Oklahoma) Key members: Zhili He, Aifen Zhou, Christopher Hemme, Joy Van Nostrand, Ye Deng, and Qichao Tu Collaborators: Terry Hazen, Judy Wall, Adam Arkin, Matthew Fields, Aindrila Mukhopadhyay, and David Stahl Summary Three major objectives have been conducted in the Zhou group at the University of Oklahoma (OU): (i) understanding of gene function, regulation, network and evolution of Desulfovibrio vugaris Hildenborough in response to environmental stresses, (ii) development of metagenomics technologies for microbial community analysis, and (iii) functional characterization of microbial communities with metagenomic approaches. In the past a few years, we characterized four CRP/FNR regulators, sequenced ancestor and evolved D. vulgaris strains, and functionally analyzed those mutated genes identified in salt-adapted strains. Also, a new version of GeoChip 4.0 has been developed, which also includes stress response genes (StressChip), and a random matrix theory-based conceptual framework for identifying functional molecular ecological networks has been developed with the high throughput functional gene array hybridization data as well as pyrosequencing data from 16S rRNA genes. In addition, GeoChip and sequencing technologies as well as network analysis approaches have been used to analyze microbial communities from different habitats. Those studies provide a comprehensive understanding of gene function, regulation, network, and evolution in D. vulgaris, and microbial community diversity, composition and structure as well as their linkages with environmental factors and ecosystem functioning, which has resulted in more than 60 publications.

  13. Responses of a macroinvertebrate community from a pristine, southern British Columbia, Canada, stream to metals in experimental mesocosms

    SciTech Connect

    Richardson, J.S.; Kiffney, P.M.

    2000-03-01

    Metal contamination is one of the most widespread impacts on surface waters. Experimental flumes receiving water and aquatic invertebrates from an undisturbed, forested stream were used to determine the impact of metals in a low-conductivity stream. The experimental flumes were exposed to a gradient of doses maintaining a constant ratio of metals (1995: Cu, Zn, Mn, and Pb; 1996: Cu and Zn) for 6 d. Benthos and emigration were sampled from each of the 16 troughs. The overall densities of benthos declined, but not significantly, as the dose of metals increased. On the basis of the slopes of the concentration-response curve, Baetis, Ameletus, and Paraleptophlebia were the most sensitive taxa present. Other taxa (e.g., Nemouridae and Oligochaeta) were mildly affected by high metal concentrations. Chironomidae showed no significant decrease in densities with increasing dose. Chironomids made up >80% of the benthos and is the primary reason for no significant dose effect on overall densities. No treatment effect was observed on either algal standing crop or bacterial respiration rates. The invertebrate genera most affected by exposure to metals in this study were also absent or rare in nearby urban streams with high metal concentrations.

  14. Manipulating electromagnetic responses of metal wires at the deep subwavelength scale via both near- and far-field couplings

    SciTech Connect

    Tan, Wei; Sun, Yong; Chen, Hong; Wang, Zhi-Guo

    2014-03-03

    A hybrid coupling model containing both near- and far-field couplings is developed for radiating two-resonator structures. We demonstrate that the near- and far-field couplings make distinguished contributions to electromagnetic responses. Compared to the classical electromagnetically induced transparency configurations, the presence of far-field coupling provides more flexibility in tuning lineshapes. Planar metamaterials composed of metal wires are designed based on this model, and various electromagnetic responses are experimentally observed.

  15. Defining an additivity framework for mixture research in inducible whole-cell biosensors

    NASA Astrophysics Data System (ADS)

    Martin-Betancor, K.; Ritz, C.; Fernández-Piñas, F.; Leganés, F.; Rodea-Palomares, I.

    2015-11-01

    A novel additivity framework for mixture effect modelling in the context of whole cell inducible biosensors has been mathematically developed and implemented in R. The proposed method is a multivariate extension of the effective dose (EDp) concept. Specifically, the extension accounts for differential maximal effects among analytes and response inhibition beyond the maximum permissive concentrations. This allows a multivariate extension of Loewe additivity, enabling direct application in a biphasic dose-response framework. The proposed additivity definition was validated, and its applicability illustrated by studying the response of the cyanobacterial biosensor Synechococcus elongatus PCC 7942 pBG2120 to binary mixtures of Zn, Cu, Cd, Ag, Co and Hg. The novel method allowed by the first time to model complete dose-response profiles of an inducible whole cell biosensor to mixtures. In addition, the approach also allowed identification and quantification of departures from additivity (interactions) among analytes. The biosensor was found to respond in a near additive way to heavy metal mixtures except when Hg, Co and Ag were present, in which case strong interactions occurred. The method is a useful contribution for the whole cell biosensors discipline and related areas allowing to perform appropriate assessment of mixture effects in non-monotonic dose-response frameworks

  16. Defining an additivity framework for mixture research in inducible whole-cell biosensors.

    PubMed

    Martin-Betancor, K; Ritz, C; Fernández-Piñas, F; Leganés, F; Rodea-Palomares, I

    2015-01-01

    A novel additivity framework for mixture effect modelling in the context of whole cell inducible biosensors has been mathematically developed and implemented in R. The proposed method is a multivariate extension of the effective dose (EDp) concept. Specifically, the extension accounts for differential maximal effects among analytes and response inhibition beyond the maximum permissive concentrations. This allows a multivariate extension of Loewe additivity, enabling direct application in a biphasic dose-response framework. The proposed additivity definition was validated, and its applicability illustrated by studying the response of the cyanobacterial biosensor Synechococcus elongatus PCC 7942 pBG2120 to binary mixtures of Zn, Cu, Cd, Ag, Co and Hg. The novel method allowed by the first time to model complete dose-response profiles of an inducible whole cell biosensor to mixtures. In addition, the approach also allowed identification and quantification of departures from additivity (interactions) among analytes. The biosensor was found to respond in a near additive way to heavy metal mixtures except when Hg, Co and Ag were present, in which case strong interactions occurred. The method is a useful contribution for the whole cell biosensors discipline and related areas allowing to perform appropriate assessment of mixture effects in non-monotonic dose-response frameworks. PMID:26606975

  17. Defining an additivity framework for mixture research in inducible whole-cell biosensors

    PubMed Central

    Martin-Betancor, K.; Ritz, C.; Fernández-Piñas, F.; Leganés, F.; Rodea-Palomares, I.

    2015-01-01

    A novel additivity framework for mixture effect modelling in the context of whole cell inducible biosensors has been mathematically developed and implemented in R. The proposed method is a multivariate extension of the effective dose (EDp) concept. Specifically, the extension accounts for differential maximal effects among analytes and response inhibition beyond the maximum permissive concentrations. This allows a multivariate extension of Loewe additivity, enabling direct application in a biphasic dose-response framework. The proposed additivity definition was validated, and its applicability illustrated by studying the response of the cyanobacterial biosensor Synechococcus elongatus PCC 7942 pBG2120 to binary mixtures of Zn, Cu, Cd, Ag, Co and Hg. The novel method allowed by the first time to model complete dose-response profiles of an inducible whole cell biosensor to mixtures. In addition, the approach also allowed identification and quantification of departures from additivity (interactions) among analytes. The biosensor was found to respond in a near additive way to heavy metal mixtures except when Hg, Co and Ag were present, in which case strong interactions occurred. The method is a useful contribution for the whole cell biosensors discipline and related areas allowing to perform appropriate assessment of mixture effects in non-monotonic dose-response frameworks PMID:26606975

  18. Heavy metal mediated innate immune responses of the Indian green frog, Euphlyctis hexadactylus (Anura: Ranidae): Cellular profiles and associated Th1 skewed cytokine response.

    PubMed

    Jayawardena, Uthpala A; Ratnasooriya, Wanigasekara D; Wickramasinghe, Deepthi D; Udagama, Preethi V

    2016-10-01

    Immune cell and cytokine profiles in relation to metal exposure though much studied in mammals has not been adequately investigated in amphibians, due mainly to lack of suitable reagents for cytokine profiling in non-model species. However, interspecies cross reactivity of cytokines permitted us to assay levels of IFNγ, TNFα, IL6 and IL10in a common anuran, the Indian green frog (Euphlyctis hexadactylus), exposed to heavy metals (Cd, Cr, Cu, Zn and Pb, at ~5ppm each) under field and laboratory settings in Sri Lanka. Enumeration of immune cells in blood and melanomacrophages in the liver, assay of serum and hepatic cytokines, and Th1/Th2 cytokine polarisation were investigated. Immune cell counts indicated overall immunosuppression with decreasing total WBC and splenocyte counts while neutrophil/lymphocyte ratio increased with metal exposure, indicating metal mediated stress. Serum IL6 levels of metal exposed frogs reported the highest (~9360pg/mL) of all cytokines tested. Significantly elevated IFNγ production (P<0.05) was evident in heavy metal exposed frogs. Th1/Th2 cytokine ratio in both serum and liver tissue homogenates was Th1 skewed due to significantly higher production of pro-inflammatory cytokines, IFNγ in serum and TNFα in the liver (P<0.01).Metal mediated aggregations of melanomacrophages in the liver were positively and significantly (P<0.05) correlated with the hepatic expression of TNFα, IL6 and IL10 activity. Overall, Th1 skewed response may well be due to oxidative stress mediated nuclear factor κ-light chain enhancer of activated B cells (NFκB) which enhances the transcription of pro-inflammatory cytokines. Xenobiotic stress has recently imposed an unprecedented level of threat to wildlife, particularly to sensitive species such as amphibians. Therefore, understanding the interactions between physiological stress and related immune responses is fundamental to conserve these environmental sentinels in the face of emerging eco

  19. Assessment of biotic response to heavy metal contamination in Avicennia marina mangrove ecosystems in Sydney Estuary, Australia.

    PubMed

    Nath, Bibhash; Chaudhuri, Punarbasu; Birch, Gavin

    2014-09-01

    Mangrove forests act as a natural filter of land-derived wastewaters along industrialized tropical and sub-tropical coastlines and assist in maintaining a healthy living condition for marine ecosystems. Currently, these intertidal communities are under serious threat from heavy metal contamination induced by human activity associated with rapid urbanization and industrialization. Studies on the biotic responses of these plants to heavy metal contamination are of great significance in estuary management and maintaining coastal ecosystem health. The main objective of the present investigation was to assess the biotic response in Avicennia marina ecosystems to heavy metal contamination through the determination of metal concentrations in leaves, fine nutritive roots and underlying sediments collected in fifteen locations across Sydney Estuary (Australia). Metal concentrations (especially Cu, Pb and Zn) in the underlying sediments of A. marina were enriched to a level (based on Interim Sediment Quality Guidelines) at which adverse biological effects to flora could occasionally occur. Metals accumulated in fine nutritive roots greater than underlying sediments, however, only minor translocation of these metals to A. marina leaves was observed (mean translocation factors, TFs, for all elements <0.13, except for Mn). Translocation factors of essential elements (i.e., common plant micro-nutrients, Cu, Ni, Mn and Zn) were greater than non-essential elements (As, Cd, Co, Cr and Pb), suggesting that A. marina mangroves of this estuary selectively excluded non-essential elements, while regulating essential elements and limiting toxicity to plants. This study supports the notion that A. marina mangroves act as a phytostabilizer in this highly modified estuary thereby protecting the aquatic ecosystem from point or non-point sources of heavy metal contamination. PMID:25011126

  20. EFFECTS OF FLUCTUATING, SUBLETHAL APPLICATIONS OF HEAVY METAL SOLUTIONS UPON THE GILL VENTILATION RESPONSE OF BLUEGILLS (LEPOMIS MACROCHIRUS)

    EPA Science Inventory

    The ventilatory response of the bluegill to fluctuating, sublethal amounts of heavy metals was investigated. Non-contact submerged, stainless steel electrodes were used to detect the weak electrical potentials that are produced when fish ventilate their gills. These signals were ...

  1. Defect-Induced Optoelectronic Response in Single-layer Group-VI Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Chow, Philippe K.

    The ever-evolving symbiosis between mankind and nanoelectronics-driven technology pushes the limits of its constituent materials, largely due to the dominance of undesirable hetero-interfacial physiochemical behavior at the few-nanometer length scale, which dominates over bulk material characteristics. Driven by such instabilities, research into two-dimensional (2D) van der Waals-layered materials (e.g. graphene, transition metal dichalcogenides (TMDCs), boron nitride), which have characteristically inert surface chemistry, has virtually exploded over the past few years. The discovery of an indirect- to direct-gap conversion in semiconducting group-VI TMDCs (e.g. MoS2) upon thinning to a single atomic layer provided the critical link between metallic and insulating 2D materials. While proof-of-concept demonstrations of single-layer TMDC-based devices for visible-range photodetection, light-emission and solar energy conversion have showed promising results, the exciting qualities are downplayed by poorly-understood defectinduced photocarrier traps, limiting the best-achieved external quantum efficiencies to approximately ~1%. This thesis explores the behavior of defects in atomically-thin TMDC layers in response to optical stimuli using a combination of steady-state photoluminescence, reflectance and Raman spectroscopy at room-temperature. By systematically varying the defect density using plasma-irradiation techniques, an unprecedented room-temperature defect-induced monolayer PL feature was discovered. High-resolution transmission electron microscopy correlated the defect-induced PL with plasma-generation of sulfur vacancy defects while reflectance measurements indicate defect-induced sub-bandgap light absorption. Excitation intensity-dependent PL measurements and exciton rate modeling further help elucidate the origin of the defect-induced PL response and highlights the role of non-radiative recombination on exciton conversion processes. The results in this

  2. Heavy metals: confounding factors in the response of New Zealand freshwater fish assemblages to natural and anthropogenic acidity.

    PubMed

    Greig, Hamish S; Niyogi, Dev K; Hogsden, Kristy L; Jellyman, Phillip G; Harding, Jon S

    2010-07-15

    Acidification of freshwaters is a global phenomenon, occurring both through natural leaching of organic acids and through human activities from industrial emissions and mining. The West Coast of the South Island, New Zealand, has both naturally acidic and acid mine drainage (AMD) streams enabling us to investigate the response of fish communities to a gradient of acidity in the presence and absence of additional stressors such as elevated concentrations of heavy metals. We surveyed a total of 42 streams ranging from highly acidic (pH 3.1) and high in heavy metals (10 mg L(-)(1) Fe; 38 mg L(-)(1) Al) to circum-neutral (pH 8.1) and low in metals (0.02 mg L(-)(1) Fe; 0.05 mg L(-)(1) Al). Marked differences in pH and metal tolerances were observed among the 15 species that we recorded. Five Galaxias species, Anguilla dieffenbachii and Anguillaaustralis were found in more acidic waters (pH<5), while bluegill bullies (Gobiomorphus hubbsi) and torrentfish (Cheimarrichthys fosteri) were least tolerant of low pH (minimum pH 6.2 and 5.5, respectively). Surprisingly, the strongest physicochemical predictor of fish diversity, density and biomass was dissolved metal concentrations (Fe, Al, Zn, Mn and Ni) rather than pH. No fish were detected in streams with dissolved metal concentrations >2.7 mg L(-)(1) and nine taxa were only found in streams with metal concentrations <1 mg L(-)(1). The importance of heavy metals as critical drivers of fish communities has not been previously reported in New Zealand, although the mechanism of the metal effects warrants further study. Our findings indicate that any remediation of AMD streams which seeks to enable fish recolonisation should aim to improve water quality by raising pH above approximately 4.5 and reducing concentrations of dissolved Al an