Science.gov

Sample records for metal organic chemical

  1. Chemical, thermal and mechanical stabilities of metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Howarth, Ashlee J.; Liu, Yangyang; Li, Peng; Li, Zhanyong; Wang, Timothy C.; Hupp, Joseph T.; Farha, Omar K.

    2016-03-01

    The construction of thousands of well-defined, porous, metal-organic framework (MOF) structures, spanning a broad range of topologies and an even broader range of pore sizes and chemical functionalities, has fuelled the exploration of many applications. Accompanying this applied focus has been a recognition of the need to engender MOFs with mechanical, thermal and/or chemical stability. Chemical stability in acidic, basic and neutral aqueous solutions is important. Advances over recent years have made it possible to design MOFs that possess different combinations of mechanical, thermal and chemical stability. Here, we review these advances and the associated design principles and synthesis strategies. We focus on how these advances may render MOFs effective as heterogeneous catalysts, both in chemically harsh condensed phases and in thermally challenging conditions relevant to gas-phase reactions. Finally, we briefly discuss future directions of study for the production of highly stable MOFs.

  2. Destruction of chemical warfare agents using metal-organic frameworks.

    PubMed

    Mondloch, Joseph E; Katz, Michael J; Isley, William C; Ghosh, Pritha; Liao, Peilin; Bury, Wojciech; Wagner, George W; Hall, Morgan G; DeCoste, Jared B; Peterson, Gregory W; Snurr, Randall Q; Cramer, Christopher J; Hupp, Joseph T; Farha, Omar K

    2015-05-01

    Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic Zr(IV) ions as the active sites and to their superb accessibility as a defining element of their efficacy. PMID:25774952

  3. Destruction of chemical warfare agents using metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Mondloch, Joseph E.; Katz, Michael J.; Isley, William C., III; Ghosh, Pritha; Liao, Peilin; Bury, Wojciech; Wagner, George W.; Hall, Morgan G.; Decoste, Jared B.; Peterson, Gregory W.; Snurr, Randall Q.; Cramer, Christopher J.; Hupp, Joseph T.; Farha, Omar K.

    2015-05-01

    Chemical warfare agents containing phosphonate ester bonds are among the most toxic chemicals known to mankind. Recent global military events, such as the conflict and disarmament in Syria, have brought into focus the need to find effective strategies for the rapid destruction of these banned chemicals. Solutions are needed for immediate personal protection (for example, the filtration and catalytic destruction of airborne versions of agents), bulk destruction of chemical weapon stockpiles, protection (via coating) of clothing, equipment and buildings, and containment of agent spills. Solid heterogeneous materials such as modified activated carbon or metal oxides exhibit many desirable characteristics for the destruction of chemical warfare agents. However, low sorptive capacities, low effective active site loadings, deactivation of the active site, slow degradation kinetics, and/or a lack of tailorability offer significant room for improvement in these materials. Here, we report a carefully chosen metal-organic framework (MOF) material featuring high porosity and exceptional chemical stability that is extraordinarily effective for the degradation of nerve agents and their simulants. Experimental and computational evidence points to Lewis-acidic ZrIV ions as the active sites and to their superb accessibility as a defining element of their efficacy.

  4. Natural and active chemical remediation of toxic metals, organics, and radionuclides in the aquatic environment

    SciTech Connect

    McPherson, G.; Pintauro, P.; O`Connor, S.

    1996-05-02

    This project focuses on the chemical aspects of remediation, with the underlying theme that chemical remediation does occur naturally. Included are studies on the fate of heavy metal and organic contaminants discharged into aquatic environments; accurate assay metal contaminants partitioned into soils, water and tissue; development of novel polymeric membranes and microporous solids for the entrapment of heavy metals; and the development of hybrid chemo-enzymatic oxidative schemes for aromatics decontamination. 49 refs.

  5. QUANTITATIVE ASSESSMENT OF THE EFFECTS OF METALS ON MICROBIAL DEGRADATION OF ORGANIC CHEMICALS

    EPA Science Inventory

    Biodegradation inhibition of a benchmark chemical, 2,4-dichloro-phenoxyacetic acid methyl ester (2,4-DME), was used to quantify the inhibitory effects of heavy metals on aerobic microbial degradation rates of organic chemicals. his procedure used lake sediments and aufwuchs (floa...

  6. Si doping of metal-organic chemical vapor deposition grown gallium nitride using ditertiarybutyl silane metal-organic source

    NASA Astrophysics Data System (ADS)

    Fong, W. K.; Leung, K. K.; Surya, C.

    2007-01-01

    Liquid Si ditertiarybutyl silane (DTBSi) metal-organic source was used as the Si dopant source for the growth of n-type GaN by metal-organic chemical vapor deposition (MOCVD) for the first time to replace the conventional gaseous Si sources like silane SiH 4 [K. Pakula, R. Bozek, J.M. Baranowski, J. Jasinski, Z. Liliental-Weber, J. Crystal Growth 267 (2004) 1] and disilane Si 2H 6 [L.B. Rowland, K. Doverspike, D.K. Gaskill, Appl. Phys. Lett. 66 (1995) 1495]. Electrical, structural, optical, and surface properties of the samples doped by DTBSi as well as an undoped control sample are determined by Hall, high resolution X-ray diffraction (HRXRD), photoluminescence (PL), and atomic force microscopy (AFM) measurements respectively. A constant doping efficiency for GaN is obtained with carrier concentration up to 10 18 cm -3. The typical HRXRD full-width at half-maximum values of symmetric (0 0 2) and asymmetric (1 0 2) planes are 284 and 482 arcsec, respectively. The near band edge PL intensity is found to be increased proportional to the doping concentration. Dark spot density is also determined from AFM measurement.

  7. High index of refraction films for dielectric mirrors prepared by metal-organic chemical vapor deposition

    SciTech Connect

    Brusasco, R.M.

    1989-01-01

    A wide variety of metal oxides with high index of refraction can be prepared by Metal-Organic Chemical Vapor Deposition. We present some recent optical and laser damage results on oxide films prepared by MOCVD which could be used in a multilayer structure for highly reflecting (HR) dielectric mirror applications. The method of preparation affects both optical properties and laser damage threshold. 10 refs., 8 figs., 4 tabs.

  8. GaN Stress Evolution During Metal-Organic Chemical Vapor Deposition

    SciTech Connect

    Amano, H.; Chason, E.; Figiel, J.; Floro, J.A.; Han, J.; Hearne, S.; Hunter, J.; Tsong, I.

    1998-10-14

    The evolution of stress in gallium nitride films on sapphire has been measured in real- time during metal organic chemical vapor deposition. In spite of the 161%0 compressive lattice mismatch of GaN to sapphire, we find that GaN consistently grows in tension at 1050"C. Furthermore, in-situ stress monitoring indicates that there is no measurable relaxation of the tensile growth stress during annealing or thermal cycling.

  9. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  10. Life cycle cost study for coated conductor manufacture by metal organic chemical vapor deposition

    SciTech Connect

    Chapman, J.N.

    1999-07-13

    The purpose of this report is to calculate the cost of producing high temperature superconducting wire by the Metal Organic Chemical Vapor Deposition (MOCVD) process. The technology status is reviewed from the literature and a plant conceptual design is assumed for the cost calculation. The critical issues discussed are the high cost of the metal organic precursors, the material utilization efficiency and the capability of the final product as measured by the critical current density achieved. Capital, operating and material costs are estimated and summed as the basis for calculating the cost per unit length of wire. Sensitivity analyses of key assumptions are examined to determine their effects on the final wire cost. Additionally, the cost of wire on the basis of cost per kiloampere per meter is calculated for operation at lower temperatures than the liquid nitrogen boiling temperature. It is concluded that this process should not be ruled out on the basis of high cost of precursors alone.

  11. Pulsed supersonic molecular beam for characterization of chemically active metal-organic complexes at surfaces

    NASA Astrophysics Data System (ADS)

    Lear, Amanda M.

    Metal-organic coordination networks (MOCNs) at surfaces consist of a complex of organic ligands bound to an atomic metal center. The MOCNs, when chosen appropriately, can form highly-ordered arrays at surfaces. Ultra-high vacuum surface studies allow control of surface composition and provide 2D growth restrictions, which lead to under-coordinated metal centers. These systems provide an opportunity to tailor the chemical function of the metal centers due to the steric restrictions imposed by the surface. Tuning the adsorption/desorption energy at a metal center and developing a cooperative environment for catalysis are the key scientific questions that motivate the construction of a molecular beam surface analysis system. Characterization of the created systems can be performed utilizing a pulsed supersonic molecular beam (PSMB) in unison with a quadrupole mass spectrometer. A PSMB allows for the highly controlled delivery of reactants with well-defined energy to a given platform making it possible to elucidate detailed chemical tuning information. In this thesis, a summary of prior theoretical molecular beam derivations is provided. Design considerations and an overview of the construction procedure for the current molecular beam apparatus, including initial characterization experiments, are presented. By impinging an Ar beam on a Ag(111) surface, the location of the specular angle (˜65°) and rough sample perimeter coordinates were determined. Additionally, surface analysis experiments, mainly Auger Electron Spectroscopy (AES), were performed to investigate the oxidation of epitaxial graphene on the SiC(0001) surface utilizing an oxygen cracking method. The AES experiments are described in detail and highlight the challenges that were faced when several different graphene samples were used for the oxygen adsorption/desorption experiments.

  12. Method of making AlInSb by metal-organic chemical vapor deposition

    DOEpatents

    Biefeld, Robert M.; Allerman, Andrew A.; Baucom, Kevin C.

    2000-01-01

    A method for producing aluminum-indium-antimony materials by metal-organic chemical vapor deposition (MOCVD). This invention provides a method of producing Al.sub.X In.sub.1-x Sb crystalline materials by MOCVD wherein an Al source material, an In source material and an Sb source material are supplied as a gas to a heated substrate in a chamber, said Al source material, In source material, and Sb source material decomposing at least partially below 525.degree. C. to produce Al.sub.x In.sub.1-x Sb crystalline materials wherein x is greater than 0.002 and less than one.

  13. Peptide-Metal Organic Framework Swimmers that Direct the Motion toward Chemical Targets.

    PubMed

    Ikezoe, Yasuhiro; Fang, Justin; Wasik, Tomasz L; Shi, Menglu; Uemura, Takashi; Kitagawa, Susumu; Matsui, Hiroshi

    2015-06-10

    Highly efficient and robust chemical motors are expected for the application in microbots that can selectively swim toward targets and accomplish their tasks in sensing, labeling, and delivering. However, one of major issues for such development is that current artificial swimmers have difficulty controlling their directional motion toward targets like bacterial chemotaxis. To program synthetic motors with sensing capability for the target-directed motion, we need to develop swimmers whose motions are sensitive to chemical gradients in environments. Here we create a new intelligent biochemical swimmer by integrating metal organic frameworks (MOFs) and peptides that can sense toxic heavy metals in solution and swim toward the targets. With the aid of Pb-binding enzymes, the peptide-MOF motor can directionally swim toward PbSe quantum dots (QD) by sensing pH gradient and eventually complete the motion as the swimmer reaches the highest gradient point at the target position in solution. This type of technology could be evolved to miniaturize chemical robotic systems that sense target chemicals and swim toward target locations. PMID:26010172

  14. [Toxicology of chemical substances (metals and organic solvents): management as an occupational physician].

    PubMed

    Ueno, Susumu

    2013-10-01

    Even in Japan, there was a time when cases of occupational poisoning had frequently occurred, which led to the enactment of the Industrial Safety and Health Act in 1972. Currently, the use of only a part of chemical substances utilized in the workplace is regulated according to their designated hazardous level, but there are many other substances whose toxicities have not been elucidated. Risk assessment is now required of entrepreneurs in all categories of industry by the recently-revised Industrial Safety and Health Act. This article will focus on the toxicology of metals and organic solvents, and it will discuss how occupational physicians should manage chemicals, including the ones whose toxicities have not been clarified. PMID:24107340

  15. Cobalt(I) Olefin Complexes: Precursors for Metal-Organic Chemical Vapor Deposition of High Purity Cobalt Metal Thin Films.

    PubMed

    Hamilton, Jeff A; Pugh, Thomas; Johnson, Andrew L; Kingsley, Andrew J; Richards, Stephen P

    2016-07-18

    We report the synthesis and characterization of a family of organometallic cobalt(I) metal precursors based around cyclopentadienyl and diene ligands. The molecular structures of the complexes cyclopentadienyl-cobalt(I) diolefin complexes are described, as determined by single-crystal X-ray diffraction analysis. Thermogravimetric analysis and thermal stability studies of the complexes highlighted the isoprene, dimethyl butadiene, and cyclohexadiene derivatives [(C5H5)Co(η(4)-CH2CHC(Me)CH2)] (1), [(C5H5)Co(η(4)-CH2C(Me)C(Me)CH2)] (2), and [(C5H5)Co(η(4)-C6H8)] (4) as possible cobalt metal organic chemical vapor deposition (MOCVD) precursors. Atmospheric pressure MOCVD was employed using precursor 1, to synthesize thin films of metallic cobalt on silicon substrates under an atmosphere (760 torr) of hydrogen (H2). Analysis of the thin films deposited at substrate temperatures of 325, 350, 375, and 400 °C, respectively, by scanning electron microscopy and atomic force microscopy reveal temperature-dependent growth features. Films grown at these temperatures are continuous, pinhole-free, and can be seen to be composed of hexagonal particles clearly visible in the electron micrograph. Powder X-ray diffraction and X-ray photoelectron spectroscopy all show the films to be highly crystalline, high-purity metallic cobalt. Raman spectroscopy was unable to detect the presence of cobalt silicides at the substrate/thin film interface. PMID:27348614

  16. Computational Investigations of Potential Energy Function Development for Metal--Organic Framework Simulations, Metal Carbenes, and Chemical Warfare Agents

    NASA Astrophysics Data System (ADS)

    Cioce, Christian R.

    Metal-Organic Frameworks (MOFs) are three-dimensional porous nanomaterials with a variety of applications, including catalysis, gas storage and separation, and sustainable energy. Their potential as air filtration systems is of interest for designer carbon capture materials. The chemical constituents (i.e. organic ligands) can be functionalized to create rationally designed CO2 sequestration platforms, for example. Hardware and software alike at the bleeding edge of supercomputing are utilized for designing first principles-based molecular models for the simulation of gas sorption in these frameworks. The classical potentials developed herein are named PHAST --- Potentials with High Accuracy, Speed, and Transferability, and thus are designed via a "bottom-up" approach. Specifically, models for N2 and CH4 are constructed and presented. Extensive verification and validation leads to insights and range of applicability. Through this experience, the PHAST models are improved upon further to be more applicable in heterogeneous environments. Given this, the models are applied to reproducing high level ab initio energies for gas sorption trajectories of helium atoms in a variety of rare-gas clusters, the geometries of which being representative of sorption-like environments commonly encountered in a porous nanomaterial. This work seeks to push forward the state of classical and first principles materials modeling. Additionally, the characterization of a new type of tunable radical metal---carbene is presented. Here, a cobalt(II)---porphyrin complex, [Co(Por)], was investigated to understand its role as an effective catalyst in stereoselective cyclopropanation of a diazoacetate reagent. Density functional theory along with natural bond order analysis and charge decomposition analysis gave insight into the electronics of the catalytic intermediate. The bonding pattern unveiled a new class of radical metal---carbene complex, with a doublet cobalt into which a triplet carbene

  17. Controlling nucleation of monolayer WSe2 during metal-organic chemical vapor deposition growth

    NASA Astrophysics Data System (ADS)

    Eichfeld, Sarah M.; Oliveros Colon, Víctor; Nie, Yifan; Cho, Kyeongjae; Robinson, Joshua A.

    2016-06-01

    Tungsten diselenide (WSe2) is a semiconducting, two-dimensional (2D) material that has gained interest in the device community recently due to its electronic properties. The synthesis of atomically thin WSe2, however, is still in its infancy. In this work we elucidate the requirements for large selenium/tungsten precursor ratios and explain the effect of nucleation temperature on the synthesis of WSe2 via metal-organic chemical vapor deposition (MOCVD). The introduction of a nucleation-step prior to growth demonstrates that increasing nucleation temperature leads to a transition from a Volmer–Weber to Frank–van der Merwe growth mode. Additionally, the nucleation step prior to growth leads to an improvement of WSe2 layer coverage on the substrate. Finally, we note that the development of this two-step technique may allow for improved control and quality of 2D layers grown via CVD and MOCVD processes.

  18. III-nitride quantum cascade detector grown by metal organic chemical vapor deposition

    SciTech Connect

    Song, Yu Huang, Tzu-Yung; Badami, Pranav; Gmachl, Claire; Bhat, Rajaram; Zah, Chung-En

    2014-11-03

    Quantum cascade (QC) detectors in the GaN/Al{sub x}Ga{sub 1−x}N material system grown by metal organic chemical vapor deposition are designed, fabricated, and characterized. Only two material compositions, i.e., GaN as wells and Al{sub 0.5}Ga{sub 0.5}N as barriers are used in the active layers. The QC detectors operates around 4 μm, with a peak responsivity of up to ∼100 μA/W and a detectivity of up to 10{sup 8} Jones at the background limited infrared performance temperature around 140 K.

  19. Metal-organic chemical vapor deposition of aluminum oxide thin films via pyrolysis of dimethylaluminum isopropoxide

    SciTech Connect

    Schmidt, Benjamin W.; Sweet, William J. III; Rogers, Bridget R.; Bierschenk, Eric J.; Gren, Cameron K.; Hanusa, Timothy P.

    2010-03-15

    Metal-organic chemical vapor deposited aluminum oxide films were produced via pyrolysis of dimethylaluminum isopropoxide in a high vacuum reaction chamber in the 417-659 deg. C temperature range. Deposited films contained aluminum, oxygen, and carbon, and the carbon-to-aluminum ratio increased with increased deposition temperature. Aluminum-carbon bonding was observed in films deposited at 659 deg. C by x-ray photoelectron spectroscopy, but not in films deposited at 417 deg. C. The apparent activation energy in the surface reaction controlled regime was 91 kJ/mol. The O/Al and C/Al ratios in the deposited films were greater and less than, respectively, the ratios predicted by the stoichiometry of the precursor. Flux analysis of the deposition process suggested that the observed film stoichiometries could be explained by the participation of oxygen-containing background gases present in the reactor at its base pressure.

  20. Chromophore-immobilized luminescent metal-organic frameworks as potential lighting phosphors and chemical sensors.

    PubMed

    Wang, Fangming; Liu, Wei; Teat, Simon J; Xu, Feng; Wang, Hao; Wang, Xinlong; An, Litao; Li, Jing

    2016-08-11

    An organic chromophore H4tcbpe-F was synthesized and immobilized into metal-organic frameworks along with two bipyridine derivatives as co-ligands to generate two strongly luminescent materials [Zn2(tcbpe-F)(4,4'-bpy)·xDMA] (1) and [Zn2(tcbpe-F)(bpee)·xDMA] (2) [4,4'-bpy = 4,4'-bipyridine, bpee = 4,4'-bipyridyl-ethylene, tcbpe-F = 4',4''',4''''',4'''''''-(ethene-1,1,2,2-tetrayl)tetrakis(3-fluoro-[1,1'-biphenyl]-4-carboxylic acid), DMA = N,N-dimethylacetamide]. Compounds 1 and 2 are isoreticular and feature a 2-fold interpenetrated three-dimensional porous structure. Both compounds give green-yellow emission under blue light excitation. Compound 1 has a high internal quantum yield of ∼51% when excited at 455 nm and shows selective luminescence signal change (e.g. emission energy and/or intensity) towards different solvents, including both aromatic and nonaromatic volatile organic species. These properties make it potentially useful as a lighting phosphor and a chemical sensor. PMID:27465685

  1. Research Update: Mechanical properties of metal-organic frameworks - Influence of structure and chemical bonding

    NASA Astrophysics Data System (ADS)

    Li, Wei; Henke, Sebastian; Cheetham, Anthony K.

    2014-12-01

    Metal-organic frameworks (MOFs), a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  2. UTAB: A COMPUTER DATABASE ON RESIDUES OF XENOBIOTIC ORGANIC CHEMICALS AND HEAVY METALS IN PLANTS

    EPA Science Inventory

    UTAB can be used to estimate the accumulation of chemicals in vegetation and their subsequent movement through the food chain. he UTAB Database contains information concerned with the uptake/accumulation, translocation, adhesion, and biotransformation of both xenobiotic organic c...

  3. Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Cao, Helin; Venkatasubramanian, Rama; Liu, Chang; Pierce, Jonathan; Yang, Haoran; Zahid Hasan, M.; Wu, Yue; Chen, Yong P.

    2012-10-01

    Topological insulator (TI) materials such as Bi2Te3 and Bi2Se3 have attracted strong recent interests. Large scale, high quality TI thin films are important for developing TI-based device applications. In this work, structural and electronic properties of Bi2Te3 thin films deposited by metal organic chemical vapor deposition (MOCVD) on GaAs (001) substrates were characterized via x-ray diffraction (XRD), Raman spectroscopy, angle-resolved photoemission spectroscopy (ARPES), and electronic transport measurements. The characteristic topological surface states with a single Dirac cone have been clearly revealed in the electronic band structure measured by ARPES, confirming the TI nature of the MOCVD Bi2Te3 films. Resistivity and Hall effect measurements have demonstrated relatively high bulk carrier mobility of ˜350 cm2/Vs at 300 K and ˜7400 cm2/Vs at 15 K. We have also measured the Seebeck coefficient of the films. Our demonstration of high quality topological insulator films grown by a simple and scalable method is of interests for both fundamental research and practical applications of thermoelectric and TI materials.

  4. Opportunities and challenges in GaN metal organic chemical vapor deposition for electron devices

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koh; Yamaoka, Yuya; Ubukata, Akinori; Arimura, Tadanobu; Piao, Guanxi; Yano, Yoshiki; Tokunaga, Hiroki; Tabuchi, Toshiya

    2016-05-01

    The current situation and next challenge in GaN metal organic chemical vapor deposition (MOCVD) for electron devices of both GaN on Si and GaN on GaN are presented. We have examined the possibility of increasing the growth rate of GaN on 200-mm-diameter Si by using a multiwafer production MOCVD machine, in which the vapor phase parasitic reaction is well controlled. The impact of a high-growth-rate strained-layer-superlattice (SLS) buffer layer is presented in terms of material properties. An SLS growth rate of as high as 3.46 µm/h, which was 73% higher than the current optimum, was demonstrated. As a result, comparable material properties were obtained. Next, a typical result of GaN doped with Si of 1 × 1016 cm‑3 grown at the growth rate of 3.7 µm/h is shown. For high-voltage application, we need a thick high-purity GaN drift layer with a low carbon concentration, of less than 1016 cm‑3. It is shown that achieving a high growth rate by precise control of the vapor phase reaction is still challenge in GaN MOCVD.

  5. Stress-induced chemical detection using flexible metal-organic frameworks.

    PubMed

    Allendorf, Mark D; Houk, Ronald J T; Andruszkiewicz, Leanne; Talin, A Alec; Pikarsky, Joel; Choudhury, Arnab; Gall, Kenneth A; Hesketh, Peter J

    2008-11-01

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N2 or O2. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO2. Finally, we report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. PMID:18841964

  6. Growth of Indium Gallium Nitride Nanorings via Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Zaidi, Zohair

    III-Nitride nanostructures have been an active area of research recently due to their ability to tune their optoelectronic properties. Thus far work has been done on InGaN quantum dots, nanowires, nanopillars, amongst other structures, but this research reports the creation of a new type of InGaN nanostructure, nanorings. Hexagonal InGaN nanorings were formed using Metal Organic Chemical Vapor Deposition through droplet epitaxy. The nanorings were thoroughly analyzed using x-ray diffraction, photoluminescence, electron microscopy, electron diffraction, and atomic force microscopy. Nanorings with high indium incorporation were achieved with indium content up to 50% that was then controlled using the growth time, temperature, In/Ga ratio and III/N ratio. The analysis showed that the nanoring shape is able to incorporate more indium than other nanostructures, due to the relaxing mechanism involved in the formation of the nanoring. The ideal conditions were determined to be growth of 30 second droplets with a growth time of 1 minute 30 seconds at 770 C to achieve the most well developed rings with the highest indium concentration.

  7. Improving source efficiency for aluminum nitride grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Foronda, Humberto M.; Laurent, Matthew A.; Yonkee, Benjanim; Keller, Stacia; DenBaars, Steven P.; Speck, James S.

    2016-08-01

    Parasitic pre-reactions are known to play a role in the growth of aluminum nitride (AlN) via metal organic chemical vapor deposition, where they can deplete precursor molecules before reaching the substrate, leading to poor growth efficiency. Studies have shown that reducing the growth pressure and growth temperature results in improved growth efficiency of AlN; however, superior crystal quality and reduced impurity incorporation are generally best obtained when growing at high temperatures. This study shows that, with proper alkyl source dilution, parasitic pre-reactions can be suppressed while maintaining high growth temperatures. The results show an 18× increase in growth rate and efficiency of AlN films: from 0.04 μm h‑1 to 0.73 μm h‑1, and 26 μm mol‑1 to 502 μm mol‑1, respectively; under constant TMAl flow and a small change in total gas flow. This results in 6.8% of Al atoms from the injected TMAl being utilized for AlN layer growth for this reactor configuration. This is better than the standard GaN growth, where 6.0% of the Ga atoms injected from TMGa are utilized for GaN growth.

  8. Stress-induced chemical detection using flexible metal-organic frameworks.

    SciTech Connect

    Allendorf, Mark D.; Hesketh, Peter J.; Gall, Kenneth A.; Choudhury, A.; Pikarsky, J.; Andruszkiewicz, Leanne; Houk, Ronald J. T.; Talin, Albert Alec

    2009-09-01

    In this work we demonstrate the concept of stress-induced chemical detection using metal-organic frameworks (MOFs) by integrating a thin film of the MOF HKUST-1 with a microcantilever surface. The results show that the energy of molecular adsorption, which causes slight distortions in the MOF crystal structure, can be efficiently converted to mechanical energy to create a highly responsive, reversible, and selective sensor. This sensor responds to water, methanol, and ethanol vapors, but yields no response to either N{sub 2} or O{sub 2}. The magnitude of the signal, which is measured by a built-in piezoresistor, is correlated with the concentration and can be fitted to a Langmuir isotherm. Furthermore, we show that the hydration state of the MOF layer can be used to impart selectivity to CO{sub 2}. We also report the first use of surface-enhanced Raman spectroscopy to characterize the structure of a MOF film. We conclude that the synthetic versatility of these nanoporous materials holds great promise for creating recognition chemistries to enable selective detection of a wide range of analytes. A force field model is described that successfully predicts changes in MOF properties and the uptake of gases. This model is used to predict adsorption isotherms for a number of representative compounds, including explosives, nerve agents, volatile organic compounds, and polyaromatic hydrocarbons. The results show that, as a result of relatively large heats of adsorption (> 20 kcal mol{sup -1}) in most cases, we expect an onset of adsorption by MOF as low as 10{sup -6} kPa, suggesting the potential to detect compounds such as RDX at levels as low as 10 ppb at atmospheric pressure.

  9. Alumina coating on dense tungsten powder by fluidized bed metal organic chemical vapour deposition.

    PubMed

    Rodriguez, Philippe; Caussat, Brigitte; Ablitzer, Carine; Iltis, Xavière; Brothier, Meryl

    2011-09-01

    In order to study the feasibility of coating very dense powders by alumina using Fluidized Bed Metal Organic Chemical Vapour Deposition (FB-MOCVD), experiments were performed on a commercial tungsten powder, 75 microm in median volume diameter and 19,300 kg/m3 in grain density. The first part of the work was dedicated to the experimental study of the tungsten powder fluidization using argon as carrier gas at room temperature and at 400 degrees C. Due to the very high density of the tungsten powder, leading to low initial fixed bed heights and low bed expansions, different weights of powder were tested in order to reach satisfactory temperature profiles along the fluidized bed. Then, using argon as a fluidized bed former and aluminium acetylacetonate Al(C5O2H7)3 as a single source precursor, alumina thin films were deposited on tungsten particles at a low temperature range (e.g., 370-420 degrees C) by FB-MOCVD. The influence of the weight of powder, bed temperature and run duration was studied. Characterizations of the obtained samples were performed by various techniques including scanning electron microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (EDS) analyses, Field Emission Gun SEM (FEG-SEM) and Fourier Transform InfraRed (FT-IR) spectroscopy. The different analyses indicated that tungsten particles were uniformly coated by a continuous alumina thin film. The thickness of the film ranged between 25 and 80 nm, depending on the coating conditions. The alumina thin films were amorphous and contained carbon contamination. This latter may correspond to the adsorption of species resulting from incomplete decomposition of the precursor at so low deposition temperature. PMID:22097534

  10. Growth of Mg-doped InN by Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Khan, N.; Nepal, N.; Lin, J. Y.; Jiang, H. X.

    2007-03-01

    InN with an energy gap of ˜ 0.7 eV, has recently attracted extensive attention due to its potential applications in semiconductor devices such as light emitting diodes, lasers, and high efficiency solar cells. However the ability to grow both p-type and n-type InN is essential to realize these devices. All as grown unintentionally doped InN are n-type. The tendency of native defects in InN to form donors manifests itself severely at surfaces where high levels of electron accumulation are observed. The highly n-type conductive layer at the surface of InN films creates difficulties in the demonstration of p-type InN. Nevertheless it is important to investigate the optical and structural properties of Mg-doped InN. We report here on the growth of Mg-doped InN epilayers by metal organic chemical vapor deposition. Photoluminescence (PL) was employed to study the effects of different growth conditions of Mg-doped InN. PL studies revealed that in addition to emission peak at ˜ 0.82 eV in undoped InN layers, Mg-doped InN layers exhibit an emission peak at ˜ 0.75 eV. The peak at ˜ 0.75eV for Mg-doped InN could be related to defects generated by Mg doping in InN. Various other measurements such as Hall effect measurement, X-ray diffraction and atomic force microscopy were carried out to provide further understanding.

  11. Atomic MoS2 monolayers synthesized from a metal-organic complex by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Liu, Lina; Qiu, Hailong; Wang, Jingyi; Xu, Guanchen; Jiao, Liying

    2016-02-01

    The controllable synthesis of MoS2 monolayers is the key challenge for their practical applications. Here we report the chemical vapor deposition (CVD) growth of single layered MoS2 by utilizing a bifunctional precursor. This precursor is a metal-organic complex which supplies both Mo sources and organic seeding promoters for the efficient CVD growth of MoS2 monolayers. The successful growth of high quality MoS2 flakes indicates that the rational design of bifunctional precursors will open up a new way for the controllable CVD growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs).The controllable synthesis of MoS2 monolayers is the key challenge for their practical applications. Here we report the chemical vapor deposition (CVD) growth of single layered MoS2 by utilizing a bifunctional precursor. This precursor is a metal-organic complex which supplies both Mo sources and organic seeding promoters for the efficient CVD growth of MoS2 monolayers. The successful growth of high quality MoS2 flakes indicates that the rational design of bifunctional precursors will open up a new way for the controllable CVD growth of two-dimensional (2D) transition metal dichalcogenides (TMDCs). Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09089j

  12. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    NASA Technical Reports Server (NTRS)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  13. Chemical pretreatment of olive oil mill wastewater using a metal-organic framework catalyst.

    PubMed

    De Rosa, Salvatore; Giordano, Girolamo; Granato, Teresa; Katovic, Andrea; Siciliano, Alessio; Tripicchio, Francesco

    2005-10-19

    Olive oil mill wastewaters (OOMW) are not suited for direct biological treatment because of their nonbiodegradable and phytotoxic compound (such as polyphenols) content. Advanced technologies for treatment of OOMW consider mainly the use of solid catalysts in processes that can be operated at room conditions. A system based on combined actions of catalytic oxidations and microbial technologies was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process is one of the new emerging oxidation processes particularly attractive for the pretreatment of highly polluted OOMW containing polyphenols that are not suited for classical treatments. In this work, the biodegradability of OOMW was evaluated before and after treating the wastewater samples by the WHPCO process using a metal-organic framework (MOF) as a catalyst. This material, containing Cu and prepared with benzene-1,3,5-tricarboxylic acid (BTC), is a robust metal-organic polymer with a microporous structure that is reminiscent of the topology of zeolite frameworks. PMID:16218680

  14. Chemical reactions of metal powders with organic and inorganic liquids during ball milling

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1975-01-01

    Chromium and/or nickel powders were milled in metal chlorides and in organic liquids representative of various functional groups. The powders always reacted with the liquid and became contaminated with elements from them. The milled powders had specific surface areas ranging from 0.14 to 37 sq m/g, and the total contamination with elements from the milling liquid ranged from 0.01 to 56 weight percent. Compounds resulting from substitution, addition, or elimination reactions formed in or from the milling liquid.

  15. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    NASA Astrophysics Data System (ADS)

    Mohan, Arun Ram

    Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor

  16. Groundwater and organic chemicals

    SciTech Connect

    Dawson, H.E.

    1995-12-01

    Groundwater is a major source of drinking water for many communities. Unfortunately, organic chemicals such as dry cleaning fluids, solvent, fuels, and pesticides have contaminated groundwater in many areas, rendering the groundwater useless as a drinking water resource. In many cases, the groundwater cannot be cleaned up with current technologies, particularly if the groundwater has been contaminated with immiscible (low solubility) organic liquids. In this talk, I will describe the path I have followed from geologist to geochemist and finally to environmental engineer. As a geologist, I studied the chemistry of rock metamorphosis. As a geochemist, I explored for gold and other metals. Now as an environmental engineer, I investigate the behavior of organic liquids in the subsurface. While these fields all appear very different, in reality I have always focused on the interaction of rocks or sediments with the fluids with which they come in contact.

  17. Organic semiconductor/gold interface interactions: from physisorption on planar surfaces to chemical reactions with metal nanoparticles.

    PubMed

    Ligorio, Giovanni; Nardi, Marco Vittorio; Christodoulou, Christos; Koch, Norbert

    2015-08-24

    The interaction of gold nanoparticles (AuNPs) with prototypical organic semiconductors used in optoelectronics, namely, tris(8-hydroxyquinoline)aluminium (Alq3 ) and 4,4-bis[N-(1-naphthyl)-N-phenylamino]diphenyl (α-NPD), is investigated in situ by X-ray photoelectron spectroscopy (XPS). These AuNPs-on-molecule experiments are compared with the reversed molecule-on-Au cases. The molecules-on-Au systems show only weak interactions, and the evolution of the XP spectra is dominated by final-state effects. In contrast, in the AuNPs-on-molecules cases, both initial-state effects and final-state effects occur. Spectral features arising for both molecules and metal indicate charge transfer and the formation of organometallic complexes (initial-state effects). The energy shift in the metal emission underlines the size-induced nanometric nature of the molecule/Au interaction (final-state effects). Consequently, the chemical interaction between metals and organic semiconductors likely depends strongly on the deposition sequence in general. PMID:26137864

  18. Production of strontium sulfide coatings by metal organic chemical vapor deposition

    SciTech Connect

    Moss, T.S.; Dye, R.C.; Tuenge, R.T.

    1998-11-01

    This work was focused on the MOCVD of the cerium-doped strontium sulfide (SrS:Ce) phosphor for use in thin film electroluminescent displays (TFELs). Following previous research on a small scale reactor, a feasibility scale-up using a commercially available reactor enlarged the size of the deposition area to a 4`` diameter wafer or a 2`` by 2`` glass slide. Films were deposited from the reaction of Sr(thd){sub 2}, Ce(thd){sub 4}, and H{sub 2}S at 450{degrees}C and 5 torr. This system employed a liquid delivery system for the accurate and repeatable delivery of the metal organic reagents. The deposition from this reactor was shown to be crystalline-as-deposited SrS with a (200) orientation, possibly a result of the thin nature of the coating and the involvement of (200) grains in the initial nucleation process. The wafers showed good uniformity, but had some thickness variation near the outer radius of the wafer resulting from the addition of H{sub 2}S from the outer edge. There were eighteen total deposition experiments, of which nine were characterized for EL performance. The highest brightness observed was 5 fL.. The samples were exceedingly thin as a result of the fifteen fold increase in the surface area between the deposition reactors. Increasing the sample thickness to 7,000{angstrom} or higher will dramatically increase the brightness of the emission.

  19. Organic polymer-metal nano-composites for opto-electronic sensing of chemicals in agriculture

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey S.; Czarick, Michael; Fairchild, Brian D.; Liang, Yi; Kukhtareva, Tatiana; Curley, Michael J.

    2013-03-01

    Recent research findings led the team to conclude that a long lasting and inexpensive colorimetric sensor for monitoring ammonia emission from manure in confined animal feeding operations could eventually become feasible. The sensor uses robust method of opto-electronic spectroscopic measurement of the reversible change of the color of a sensitive nano-composite reagent film in response to ammonia. The film is made of a metal (gold, platinum, or palladium) nano-colloid in a polymer matrix with an ammonia-sensitive indicator dye additive. The response of the indicator dye (increase of the optical absorption in the region 550 to 650 nm) is enhanced by the nano-particles (~10 nm in size) in two ways: (a) concentration of the optical field near the nano-particle due to the plasmon resonance; and (b) catalytic acceleration of the chemical reaction of deprotonization of the indicator dye in the presence of ammonia and water vapor. This enhancement helps to make a miniature and rugged sensing element without compromising its sensitivity of less than 1 ppm for the range 0 to 100 ppm. The sensor underwent field tests in commercial broiler farms in Georgia, Alabama, and Arkansas and was compared against a commercial photoacoustic gas analyzer. The sensor output correlated well with the data from the photoacoustic analyzer (correlation coefficient not less than 0.9 and the linear regression slope after calibration close to 1.0) for several weeks of continuous operation. The sources of errors were analyzed and the conclusions on the necessary improvements and the potential use of the proposed device were made.

  20. Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals

    PubMed Central

    Park, Jung Hyo; Choi, Kyung Min; Lee, Dong Ki; Moon, Byeong Cheul; Shin, Sang Rim; Song, Min-Kyu; Kang, Jeung Ku

    2016-01-01

    Lithium polysulphides generated during discharge in the cathode of a lithium-sulphur redox cell are important, but their dissolution into the electrolyte from the cathode during each redox cycle leads to a shortened cycle life. Herein, we use in situ spectroelectrochemical measurements to demonstrate that sp2 nitrogen atoms in the organic linkers of nanocrystalline metal-organic framework-867 (nMOF-867) are able to encapsulate lithium polysulphides inside the microcages of nMOF-867, thus helping to prevent their dissolution into the electrolyte during discharge/charge cycles. This encapsulation mechanism of lithiated/delithiated polysulphides was further confirmed by observations of shifted FTIR spectra for the C = N and C-N bonds, the XPS spectra for the Li-N bonds from nMOF-867, and a visualization method, demonstrating that nMOF-867 prevents lithium polysulphides from being dissolved in the electrolyte. Indeed, a cathode fabricated using nMOF-867 exhibited excellent capacity retention over a long cycle life of 500 discharge/charge cycles, with a capacity loss of approximately 0.027% per cycle from a discharge capacity of 788 mAh/g at a high current rate of 835 mA/g. PMID:27149405

  1. Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals.

    PubMed

    Park, Jung Hyo; Choi, Kyung Min; Lee, Dong Ki; Moon, Byeong Cheul; Shin, Sang Rim; Song, Min-Kyu; Kang, Jeung Ku

    2016-01-01

    Lithium polysulphides generated during discharge in the cathode of a lithium-sulphur redox cell are important, but their dissolution into the electrolyte from the cathode during each redox cycle leads to a shortened cycle life. Herein, we use in situ spectroelectrochemical measurements to demonstrate that sp(2) nitrogen atoms in the organic linkers of nanocrystalline metal-organic framework-867 (nMOF-867) are able to encapsulate lithium polysulphides inside the microcages of nMOF-867, thus helping to prevent their dissolution into the electrolyte during discharge/charge cycles. This encapsulation mechanism of lithiated/delithiated polysulphides was further confirmed by observations of shifted FTIR spectra for the C = N and C-N bonds, the XPS spectra for the Li-N bonds from nMOF-867, and a visualization method, demonstrating that nMOF-867 prevents lithium polysulphides from being dissolved in the electrolyte. Indeed, a cathode fabricated using nMOF-867 exhibited excellent capacity retention over a long cycle life of 500 discharge/charge cycles, with a capacity loss of approximately 0.027% per cycle from a discharge capacity of 788 mAh/g at a high current rate of 835 mA/g. PMID:27149405

  2. Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals

    NASA Astrophysics Data System (ADS)

    Park, Jung Hyo; Choi, Kyung Min; Lee, Dong Ki; Moon, Byeong Cheul; Shin, Sang Rim; Song, Min-Kyu; Kang, Jeung Ku

    2016-05-01

    Lithium polysulphides generated during discharge in the cathode of a lithium-sulphur redox cell are important, but their dissolution into the electrolyte from the cathode during each redox cycle leads to a shortened cycle life. Herein, we use in situ spectroelectrochemical measurements to demonstrate that sp2 nitrogen atoms in the organic linkers of nanocrystalline metal-organic framework-867 (nMOF-867) are able to encapsulate lithium polysulphides inside the microcages of nMOF-867, thus helping to prevent their dissolution into the electrolyte during discharge/charge cycles. This encapsulation mechanism of lithiated/delithiated polysulphides was further confirmed by observations of shifted FTIR spectra for the C = N and C-N bonds, the XPS spectra for the Li-N bonds from nMOF-867, and a visualization method, demonstrating that nMOF-867 prevents lithium polysulphides from being dissolved in the electrolyte. Indeed, a cathode fabricated using nMOF-867 exhibited excellent capacity retention over a long cycle life of 500 discharge/charge cycles, with a capacity loss of approximately 0.027% per cycle from a discharge capacity of 788 mAh/g at a high current rate of 835 mA/g.

  3. Catalytic hydrothermal conversion of carboxymethyl cellulose to value-added chemicals over metal-organic framework MIL-53(Al).

    PubMed

    Zi, Guoli; Yan, Zhiying; Wang, Yangxia; Chen, Yongjuan; Guo, Yunlong; Yuan, Fagui; Gao, Wenyu; Wang, Yanmei; Wang, Jiaqiang

    2015-01-22

    Catalytic hydrolysis of biomass over solid catalysts can be one of the most efficient pathways for a future sustainable society dependent on cellulose biomass. In this work metal-organic framework MIL-53(Al) without any functionalization was directly employed as an efficient heterogeneous catalyst for the hydrolysis of carboxymethyl cellulose (CMC) to 5-hydroxymethyl-furaldehyde (5-HMF) in aqueous phase. A 5-HMF molar yield of 40.3% and total reducing sugar (TRS) molar yield of 54.2% were obtained with water as single solvent at 473 K for 4 h. The catalyst could be reused three times without losing activity to a greater extent. With the remarkable advantages such as the use of water as single solvent and MIL-53(Al) as a novel heterogeneous green catalyst, the work provides a new platform for the production of value added chemicals and liquid fuels from biomass. PMID:25439879

  4. Gallium nitride nanowires and microwires with exceptional length grown by metal organic chemical vapor deposition via titanium film

    NASA Astrophysics Data System (ADS)

    Rozhavskaya, M. M.; Lundin, W. V.; Lundina, E. Yu.; Davydov, V. Yu.; Troshkov, S. I.; Vasilyev, A. A.; Brunkov, P. N.; Baklanov, A. V.; Tsatsulnikov, A. F.; Dubrovskii, V. G.

    2015-01-01

    We present a new approach for synthesis of GaN nanowires and microwires by metal organic chemical vapor deposition via a thin titanium film evaporated onto sapphire substrate prior to growth. Titanium etches a two-dimensional GaN layer deposited at the initial stage and GaN nanowires subsequently emerge at the boundaries of the etched grains. These wires grow at an exceptional elongation rate of 18 μm/min and extend radially at a rate of 0.14 μm/min. The GaN layer between the wires grows at a rate of 0.1 μm/min. High material quality of these structures is confirmed by micro-photoluminescence spectroscopy. We investigate the initial nucleation stage, the time evolution of the wire length and diameter, the length and diameter distributions and speculate about a mechanism that yields the observed growth behavior.

  5. Dual-Function Metal-Organic Framework as a Versatile Catalyst for Detoxifying Chemical Warfare Agent Simulants.

    PubMed

    Liu, Yangyang; Moon, Su-Young; Hupp, Joseph T; Farha, Omar K

    2015-12-22

    The nanocrystals of a porphyrin-based zirconium(IV) metal-organic framework (MOF) are used as a dual-function catalyst for the simultaneous detoxification of two chemical warfare agent simulants at room temperature. Simulants of nerve agent (such as GD, VX) and mustard gas, dimethyl 4-nitrophenyl phosphate and 2-chloroethyl ethyl sulfide, have been hydrolyzed and oxidized, respectively, to nontoxic products via a pair of pathways catalyzed by the same MOF. Phosphotriesterase-like activity of the Zr6-containing node combined with photoactivity of the porphyrin linker gives rise to a versatile MOF catalyst. In addition, bringing the MOF crystals down to the nanoregime leads to acceleration of the catalysis. PMID:26482030

  6. A computational study of the effect of the metal organic framework environment on the release of chemically stored nitric oxide.

    PubMed

    Li, Tanping; Taylor-Edinbyrd, Kiara; Kumar, Revati

    2015-09-28

    The use of copper based metal organic frameworks as a vehicle for the storage and delivery of chemically stored nitric oxide has been proposed based on recent experiments [J. Am. Chem. Soc., 2012, 134, 3330-3333]. In these experiments copper based metal organic frameworks (MOFs) suspended in ethanol catalytically convert chemically stored nitric oxide (in the S-nitrosothiol or RSNO form) to free nitric oxide at a slow and sustained rate, as compared to a quick release in a solution of ethanol containing free copper ions. In order to gain insight on the effect of the MOF environment on the catalytic activity, a combination of electronic structure calculations on representative clusters and classical simulations using a force-field (partly parameterized on the above calculations) is used to study a simple RSNO species, S-nitrosomethane (CH3SNO) as well as the biologically compatible S-nitrosocysteine, both in the MOF and free copper solution. The free energy profiles of bringing the RSNO species to the catalytic centers have been compared and related to the different solvation environments of the copper catalyst in the complex solvated MOF and in free copper solution. Surprisingly, in the case of the simple CH3SNO moiety as well as the S-nitrosocysteine case, the free energy profile of bringing the first RSNO from the center of one of the pores to the catalytic site in the pore is very similar to the free solution case. On the other hand, bringing a second RSNO molecule to the same catalytic site or to the adjacent catalytic copper site show relatively higher barriers. These studies help shed light on the sustained nitric oxide release in the MOF environment. PMID:26292051

  7. High mobility single-crystalline-like GaAs thin films on inexpensive flexible metal substrates by metal-organic chemical vapor deposition

    SciTech Connect

    Dutta, P. Rathi, M.; Gao, Y.; Yao, Y.; Selvamanickam, V.; Zheng, N.; Ahrenkiel, P.; Martinez, J.

    2014-09-01

    We demonstrate heteroepitaxial growth of single-crystalline-like n and p-type doped GaAs thin films on inexpensive, flexible, and light-weight metal foils by metal-organic chemical vapor deposition. Single-crystalline-like Ge thin film on biaxially textured templates made by ion beam assisted deposition on metal foil served as the epitaxy enabling substrate for GaAs growth. The GaAs films exhibited strong (004) preferred orientation, sharp in-plane texture, low grain misorientation, strong photoluminescence, and a defect density of ∼10{sup 7 }cm{sup −2}. Furthermore, the GaAs films exhibited hole and electron mobilities as high as 66 and 300 cm{sup 2}/V-s, respectively. High mobility single-crystalline-like GaAs thin films on inexpensive metal substrates can pave the path for roll-to-roll manufacturing of flexible III-V solar cells for the mainstream photovoltaics market.

  8. The interplay between interface structure, energy level alignment and chemical bonding strength at organic-metal interfaces.

    PubMed

    Willenbockel, M; Lüftner, D; Stadtmüller, B; Koller, G; Kumpf, C; Soubatch, S; Puschnig, P; Ramsey, M G; Tautz, F S

    2015-01-21

    What do energy level alignments at metal-organic interfaces reveal about the metal-molecule bonding strength? Is it permissible to take vertical adsorption heights as indicators of bonding strengths? In this paper we analyse 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on the three canonical low index Ag surfaces to provide exemplary answers to these questions. Specifically, we employ angular resolved photoemission spectroscopy for a systematic study of the energy level alignments of the two uppermost frontier states in ordered monolayer phases of PTCDA. Data are analysed using the orbital tomography approach. This allows the unambiguous identification of the orbital character of these states, and also the discrimination between inequivalent species. Combining this experimental information with DFT calculations and the generic Newns-Anderson chemisorption model, we analyse the alignments of highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) with respect to the vacuum levels of bare and molecule-covered surfaces. This reveals clear differences between the two frontier states. In particular, on all surfaces the LUMO is subject to considerable bond stabilization through the interaction between the molecular π-electron system and the metal, as a consequence of which it also becomes occupied. Moreover, we observe a larger bond stabilization for the more open surfaces. Most importantly, our analysis shows that both the orbital binding energies of the LUMO and the overall adsorption heights of the molecule are linked to the strength of the chemical interaction between the molecular π-electron system and the metal, in the sense that stronger bonding leads to shorter adsorption heights and larger orbital binding energies. PMID:25475998

  9. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOEpatents

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  10. Fabrication of Novel Active Resistor Using Selective Metal Organic Chemical Vapor Deposition (MOCVD) for Monolithic Integration

    NASA Astrophysics Data System (ADS)

    Lee, Young-Jae; Kwon, Young-Se

    2001-02-01

    Using selective epitaxial growth, we fabricated an active resistor in the floated electron channel field effect transistor(FECFET) structure. Compared to the active resistor in the metal semiconductor FET(MESFET) structure, it has large sheet resistance, depending on the number of stripes and etching time. For two SiO2 stripes, it is 600 Ω{\\slash}w=50 μm and for twenty SiO2 stripes, its sheet resistance can reach 6000 Ω{\\slash}{\\Box}. Under light illumination, its current increases nonlinearly with the input light power like two-terminal FET without a gate.

  11. Growth mechanism of Co:TiO2 thin film deposited by metal organic chemical vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Saripudin, A.; Arifin, P.

    2016-04-01

    In this research, we investigated the growth mechanism of cobalt-doped titanium dioxide (Co:TiO2) films. Thi Co:TiO2 thin films were grown on the n-type silicon substrate. The films were grown by metal organic chemical vapor deposition method. The growth temperature was varied of 325°C – 450°C. The films were characterized by SEM. Using Arheniu’s equation, it is known that the activation energy value of film growth is positive in the range of temperature of 325°C – 400°C and negative in the range of temperature of 400°C – 450°C. These results show that the decomposition rate in the range of temperature of 325°C – 400°C is due to diffusion phase of precursor gas. On the other hand, the decomposition rate decreased in the range of temperature of 400°C – 450°C because the precursor gas decreased, and the surface chemical reaction was high.

  12. Isoreticular zirconium-based metal-organic frameworks: discovering mechanical trends and elastic anomalies controlling chemical structure stability.

    PubMed

    Ryder, Matthew R; Civalleri, Bartolomeo; Tan, Jin-Chong

    2016-03-23

    Understanding the mechanical properties of metal-organic frameworks (MOFs) is crucial not only to yield robust practical applications, but also to advance fundamental research underpinning the flexibility of a myriad of open-framework chemical compounds. Herein we present one of the most comprehensive structural analyses yet on MOF-mechanics: elucidating the complex elastic response of an isoreticular series of topical Zr-based MOFs, explaining all the important mechanical properties, and identifying major trends arising from systematic organic linker exchange. Ab initio density functional theory (DFT) was employed to establish the single-crystal elastic constants of the nanoporous MIL-140(A-D) structures, generating a complete 3-D representation of the principal mechanical properties, encompassing the Young's modulus, shear modulus, linear compressibility and Poisson's ratio. Of particular interest, we discovered significantly high values of both positive and negative linear compressibility and Poisson's ratio, whose framework molecular mechanisms responsible for such elastic anomalies have been fully revealed. In addition to pinpointing large elastic anisotropy and unusual physical properties, we analyzed the bulk modulus of isoreticular Zr-MOF compounds to understand the framework structural resistance against the hydrostatic pressure, and determined the averaged mechanical behaviour of bulk (polycrystalline) MOF materials important for the design of emergent applications. PMID:26972778

  13. Modified dislocation filter method: toward growth of GaAs on Si by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hu, Haiyang; Wang, Jun; He, Yunrui; Liu, Kai; Liu, Yuanyuan; Wang, Qi; Duan, Xiaofeng; Huang, Yongqing; Ren, Xiaomin

    2016-06-01

    In this paper, metamorphic growth of GaAs on (001) oriented Si substrate, with a combination method of applying dislocation filter layer (DFL) and three-step growth process, was conducted by metal organic chemical vapor deposition. The effectiveness of the multiple InAs/GaAs self-organized quantum dot (QD) layers acting as a dislocation filter was researched in detail. And the growth conditions of the InAs QDs were optimized by theoretical calculations and experiments. A 2-μm-thick buffer layer was grown on the Si substrate with the three-step growth method according to the optimized growth conditions. Then, a 114-nm-thick DFL and a 1-μm-thick GaAs epilayer were grown. The results we obtained demonstrated that the DFL can effectively bend dislocation direction via the strain field around the QDs. The optimal structure of the DFL is composed of three-layer InAs QDs with a growth time of 55 s. The method could reduce the etch pit density from about 3 × 106 cm-2 to 9 × 105 cm-2 and improve the crystalline quality of the GaAs epilayers on Si.

  14. A model for the growth of cdte by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Nemirovsky, Y.; Goren, D.; Ruzin, A.

    1991-10-01

    A kinetic model for the metalorganic chemical vapor deposition (MOCVD) growth of CdTe over a wide temperature range is presented. The model yields the growth rate as a function of the gas-phase concentrations of the constituents. The model is corroborated with experimental results obtained by the MOCVD growth of CdTe at 380° C. The major features of the model are the observed two-step surface-controlled pyrolysis and surface saturation, leading initially to a growth rate that increases with the square root of the concentrations of the reacting species and subsequently to a decrease of the growth rate as the concentrations increase. At even higher concentrations, an additional increase of growth rate is observed and modeled.

  15. A Chemical Route to Activation of Open Metal Sites in the Copper-Based Metal-Organic Framework Materials HKUST-1 and Cu-MOF-2.

    PubMed

    Kim, Hong Ki; Yun, Won Seok; Kim, Min-Bum; Kim, Jeung Yoon; Bae, Youn-Sang; Lee, JaeDong; Jeong, Nak Cheon

    2015-08-12

    Open coordination sites (OCSs) in metal-organic frameworks (MOFs) often function as key factors in the potential applications of MOFs, such as gas separation, gas sorption, and catalysis. For these applications, the activation process to remove the solvent molecules coordinated at the OCSs is an essential step that must be performed prior to use of the MOFs. To date, the thermal method performed by applying heat and vacuum has been the only method for such activation. In this report, we demonstrate that methylene chloride (MC) itself can perform the activation role: this process can serve as an alternative "chemical route" for the activation that does not require applying heat. To the best of our knowledge, no previous study has demonstrated this function of MC, although MC has been popularly used in the pretreatment step prior to the thermal activation process. On the basis of a Raman study, we propose a plausible mechanism for the chemical activation, in which the function of MC is possibly due to its coordination with the Cu(2+) center and subsequent spontaneous decoordination. Using HKUST-1 film, we further demonstrate that this chemical activation route is highly suitable for activating large-area MOF films. PMID:26197386

  16. AN ASSESSMENT OF THE DATA QUALITY FOR NHEXAS--PART I: EXPOSURE TO METALS AND VOLATILE ORGANIC CHEMICALS IN REGION 5

    EPA Science Inventory

    A National Human Exposure Assessment Survey (NHEXAS) was performed in U.S. Environmental Protection Agency (U.S. EPA) Region V, providing population-based exposure distribution data for metals and volatile organic chemicals (VOCs) in personal, indoor, and outdoor air, drinking ...

  17. A comparative study of blue, green and yellow light emitting diode structures grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ramaiah, Kodigala Subba; Su, Y. K.; Chang, S. J.; Chen, C. H.

    2006-02-01

    The blue, green and yellow light emitting diode (LED) structures have been fabricated by metal organic chemical vapor deposition (MOCVD), and characterized by using different techniques, in order to understand the mechanism between these LEDs. Atomic force microscopy (AFM) analysis revealed that the surface roughness value and density of etch pits were different in the blue, green and yellow LEDs. The threading, misfit dislocations, interfacial dislocations, nano-pipe-like structures and quantum dot-like structures, which determine quality of the structures, were observed by transmission electron microscope (TEM) in the LED structures. The reasons for their formation in the layers are now elucidated. The indium composition, period width such as well and barrier widths were determined by simulating experimental high resolution X-ray diffraction (HRXRD) spectra. The In composition obtained by HRXRD and photoluminescence (PL) measurements for the same LED structure was not one and the same due to several reasons. In fact, the InGaN quantum well emission peaks at 2.667 and 2.544 eV of the blue and green LEDs, respectively showed S-shaped character shift, whereas the quantum well peak at 2.219 eV of yellow LEDs did not show any shift in the PL spectra with decreasing temperature. The blue, green and yellow LEDs showed different activation energies.

  18. Preparation of Hydrophobic Metal-Organic Frameworks via Plasma Enhanced Chemical Vapor Deposition of Perfluoroalkanes for the Removal of Ammonia

    PubMed Central

    DeCoste, Jared B.; Peterson, Gregory W.

    2013-01-01

    Plasma enhanced chemical vapor deposition (PECVD) of perfluoroalkanes has long been studied for tuning the wetting properties of surfaces. For high surface area microporous materials, such as metal-organic frameworks (MOFs), unique challenges present themselves for PECVD treatments. Herein the protocol for development of a MOF that was previously unstable to humid conditions is presented. The protocol describes the synthesis of Cu-BTC (also known as HKUST-1), the treatment of Cu-BTC with PECVD of perfluoroalkanes, the aging of materials under humid conditions, and the subsequent ammonia microbreakthrough experiments on milligram quantities of microporous materials. Cu-BTC has an extremely high surface area (~1,800 m2/g) when compared to most materials or surfaces that have been previously treated by PECVD methods. Parameters such as chamber pressure and treatment time are extremely important to ensure the perfluoroalkane plasma penetrates to and reacts with the inner MOF surfaces. Furthermore, the protocol for ammonia microbreakthrough experiments set forth here can be utilized for a variety of test gases and microporous materials. PMID:24145623

  19. Characteristics of Cobalt Films Deposited by Metal Organic Chemical Vapor Deposition Method Using Dicobalt Hexacarbonyl tert-Butylacetylene

    NASA Astrophysics Data System (ADS)

    Lee, Keunwoo; Park, Taeyong; Lee, Jaesang; Kim, Jinwoo; Kim, Jeongtae; Kwak, Nohjung; Yeom, Seungjin; Jeon, Hyeongtag

    2008-07-01

    Cobalt films were deposited by metal organic chemical vapor deposition (MOCVD) using C12H10O6(Co)2 (dicobalt hexacarbonyl tert-butylacetylene, CCTBA) as the Co precursor and H2 reactant gas. The impurity content of the Co films was monitored as a function of the partial pressure of H2 reactant gas. The carbon and oxygen content of as-deposited Co films greatly decrease with the increase of H2 partial pressure, and at H2 partial pressure of 10 Torr and a substrate temperature of 150 °C were 2.8 at. % and less than 1 at. %, respectively. As the H2 partial pressure increased, carbon and oxygen content decreased markedly. Excellent conformality of Co film over 80% was achieved on a patterned wafer with aspect ratio of 15:1, 0.12 µm wide and 1.8 µm deep. The phase transition was analyzed with X-ray diffraction (XRD) depending on RTA temperature. CoSi was observed at 500 °C annealing, and was transformed to CoSi2 at 600 °C annealing. In addition, Auger electron spectroscopy (AES) data showed a 1:2 atomic ratio of Co:Si in the CoSi2 layer.

  20. Parameters influencing interfacial morphology in GaAs/Ge superlattices grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jia, Roger; Fitzgerald, Eugene A.

    2016-02-01

    We investigated the epitaxy and morphology of GaAs/Ge superlattices grown by metal organic chemical vapor deposition (MOCVD) under a range of conditions. The surfaces of Ge layers deposited on GaAs at 650 °C and 100 Torr are observed to be rough in cross-sectional transmission electron microscopy. When either the temperature is lowered to 500 °C or the pressure is increased to 250 Torr, the surface of the first deposited Ge layer is observed to be smooth. This behavior suggests that Ge roughening is a thermodynamically favorable process that can be kinetically limited with appropriate growth conditions. At 500 °C, GaAs islands on Ge do not completely coalesce into one film. This may result from poor surface coverage; the short depositions would not be sufficient to coarsen and completely coalesce the islands. At 650 °C, growth on offcut substrates did not suppress antiphase boundaries, likely due to the unique conditions for GaAs/Ge superlattice growth. A wide-range of two- and three- dimensional nanostructures are formed and should allow insight in structure-property correlations in semiconducting thermoelectric materials.

  1. Decomposition Process of Alane and Gallane Compounds in Metal-Organic Chemical Vapor Deposition Studied by Surface Photo-Absorption

    NASA Astrophysics Data System (ADS)

    Yamauchi, Yoshiharu; Kobayashi, Naoki

    1992-09-01

    We used surface photo-absorption (SPA) to study trimethylamine alane (TMAA) and dimethylamine gallane (DMAG) decomposition processes on a substrate surface in metal-organic chemical vapor deposition. The decomposition onset temperatures of these group III hydride sources correspond to the substrate temperature at which the SPA reflectivity starts to increase during the supply of the group III source onto a group V stabilized surface. It was found that TMAA and DMAG start to decompose at about 150°C on an As-stabilized surface, which is much lower than the decomposition onsets of trialkyl Al and Ga compounds. Low temperature photoluminescence spectra exhibit dominant excitionic emissions for GaAs layers grown by DMAG at substrate temperatures above 400°C, indicating that carbon incorporation and the crystal quality deterioration due to incomplete decomposition on surface is much suppressed by using DMAG. A comparison of AlGaAs photoluminescence between layers by TMAA/triethylgallium and triethylaluminum/triethylgallium shows that the band-to-carbon acceptor transition is greatly reduced by using TMAA. TMAA and DMAG were verified to be promising group III sources for low-temperature and high-purity growth with low-carbon incorporation.

  2. InAs/GaSb core-shell nanowires grown on Si substrates by metal-organic chemical vapor deposition.

    PubMed

    Ji, Xianghai; Yang, Xiaoguang; Du, Wenna; Pan, Huayong; Luo, Shuai; Ji, Haiming; Xu, H Q; Yang, Tao

    2016-07-01

    We report the growth of InAs/GaSb core-shell heterostructure nanowires with smooth sidewalls on Si substrates using metal-organic chemical vapor deposition with no assistance from foreign catalysts. Sb adatoms were observed to strongly influence the morphology of the GaSb shell. In particular, Ga droplets form on the nanowire tips when a relatively low TMSb flow rate is used, whereas the droplets are missing and the radial growth of the GaSb is enhanced due to a reduction in the diffusion length of the Ga adatoms when the TMSb flow rate is increased. Moreover, transmission electron microscopy measurements revealed that the GaSb shell coherently grew on the InAs core. The results obtained here show that the InAs/GaSb core-shell nanowires grown using the Si platform have strong potential in the fabrication of future nanometer-scale devices and in the study of fundamental quantum physics. PMID:27232079

  3. Properties of shallow donors in ZnMgO epilayers grown by metal organic chemical vapor deposition

    SciTech Connect

    Zhao, Q. X.; Liu, X. J.; Holtz, P. O.

    2014-11-14

    High quality Zn{sub 1−x}Mg{sub x}O epilayers have been grown by means of metal organic chemical vapor deposition technique on top of ZnO templates. The grown samples were investigated by x-ray photoelectron spectroscopy and photoluminescence. The magnesium (Mg) concentration was varied between 0% and 3% in order to study the properties of shallow donors. The free and donor bound excitons could be observed simultaneously in our high quality Zn{sub 1−x}Mg{sub x}O epilayers in the photoluminescence spectra. The results indicate that both built-in strain and Mg-concentration influence the donor exciton binding energy. It clearly shows that the donor exciton binding energy decreases with increasing Mg-concentration and with increasing built-in strain. Furthermore, the results indicate that the donor bound exciton transition energy increases with decreasing strength of the built-in strain if the Mg-concentration is kept the same in the Zn{sub 1−x}Mg{sub x}O epilayers.

  4. Effective, Facile, and Selective Hydrolysis of the Chemical Warfare Agent VX Using Zr6-Based Metal-Organic Frameworks.

    PubMed

    Moon, Su-Young; Wagner, George W; Mondloch, Joseph E; Peterson, Gregory W; DeCoste, Jared B; Hupp, Joseph T; Farha, Omar K

    2015-11-16

    The nerve agent VX is among the most toxic chemicals known to mankind, and robust solutions are needed to rapidly and selectively deactivate it. Herein, we demonstrate that three Zr6-based metal-organic frameworks (MOFs), namely, UiO-67, UiO-67-NH2, and UiO-67-N(Me)2, are selective and highly active catalysts for the hydrolysis of VX. Utilizing UiO-67, UiO-67-NH2, and UiO-67-N(Me)2 in a pH 10 buffered solution of N-ethylmorpholine, selective hydrolysis of the P-S bond in VX was observed. In addition, UiO-67-N(Me)2 was found to catalyze VX hydrolysis with an initial half-life of 1.8 min. This half-life is nearly 3 orders of magnitude shorter than that of the only other MOF tested to date for hydrolysis of VX and rivals the activity of the best nonenzymatic materials. Hydrolysis utilizing Zr-based MOFs is also selective and facile in the absence of pH 10 buffer (just water) and for the destruction of the toxic byproduct EA-2192. PMID:26505999

  5. Characterizations of arsenic-doped zinc oxide films produced by atmospheric metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Weng, Li-Wei; Uen, Wu-Yih; Lan, Shan-Ming; Liao, Sen-Mao; Yang, Tsun-Neng; Wu, Chih-Hung; Hong, Hwe-Fen; Ma, Wei-Yang; Shen, Chin-Chang

    2013-07-01

    p-type ZnO films were prepared by atmospheric metal-organic chemical vapor deposition technique using arsine (AsH3) as the doping source. The electrical and optical properties of arsenic-doped ZnO (ZnO:As) films fabricated at 450-600 °C with various AsH3 flow rates ranging from 8 to 21.34 μmol/min were analyzed and compared. Hall measurements indicate that stable p-type ZnO films with hole concentrations varying from 7.2 × 1015 to 5.8 × 1018 cm-3 could be obtained. Besides, low temperature (17 K) photoluminescence spectra of all ZnO:As films also demonstrate the dominance of the line related to the neutral acceptor-bound exciton. Moreover, the elemental identity and chemical bonding information for ZnO:As films were examined by X-ray photoelectron spectroscopy. Based on the results obtained, the effects of doping conditions on the mechanism responsible for the p-type conduction were studied. Conclusively, a simple technique to fabricate good-quality p-type ZnO films has been recognized in this work. Depositing the film at 550 °C with an AsH3 flow rate of 13.72 μmol/min is appropriate for producing hole concentrations on the order of 1017 cm-3 for it. Ultimately, by increasing the AsH3 flow rate to 21.34 μmol/min for doping and depositing the film at 600 °C, ZnO:As films with a hole concentration over 5 × 1018 cm-3 together with a mobility of 1.93 cm2V-1 s-1 and a resistivity of 0.494 ohm-cm can be achieved.

  6. Organic chemical evolution

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1981-01-01

    The course of organic chemical evolution preceding the emergence of life on earth is discussed based on evidence of processes occurring in interstellar space, the solar system and the primitive earth. Following a brief review of the equilibrium condensation model for the origin and evolution of the solar system, consideration is given to the nature and organic chemistry of interstellar clouds, comets, Jupiter, meteorites, Venus and Mars, and the prebiotic earth. Major issues to be resolved in the study of organic chemical evolution on earth are identified regarding condensation and accretion in the solar nebula, early geological evolution, the origin and evolution of the atmosphere, organic production rates, organic-inorganic interactions, environmental fluctuations, phase separation and molecular selectivity.

  7. InAsSb/InPSb Strained-Layer Superlattice Growth Using Metal-Organic Chemical Vapor Deposition

    SciTech Connect

    Biefeld, R.M.; Kurtz, S.R.; Phillips, J.D.

    1999-08-09

    The authors report on the metal-organic chemical vapor deposition (MOCVD) of strained layer superlattices (SLSs) of InAsSb/InPSb as well as mid-infrared optically pumped lasers grown using a high speed rotating disk-reactor (RDR). The devices contain AlAsSb cladding layers and strained, type I, InAsSb/InPSb active regions. By changing the layer thickness and composition of InAsSb/InPSb SLSs, they have prepared structures with low temperature (< 20 K) photoluminescence wavelengths ranging from 3.4 to 4.8 {micro}m. They find a variation in bandgap of 0.272 to 0.324 eV for layer thicknesses of 9.0 to 18.2 nm. From these data they have estimated a valence band offset for the InAsSb/InPSb interface of about 400 meV. The optical properties of the superlattices revealed an anomalous low energy transition that can be assigned to an antimony rich interfacial layer in the superlattice. An InAsSb/InPSb SLS, laser was grown on an InAs substrate with AlAs{sub 0.16}Sb{sub 0.84} cladding layers. A lasing threshold and spectrally narrowed laser emission were seen from 80 through 200 K, the maximum temperature where lasing occurred. The temperature dependence of the SLS laser threshold is described by a characteristic temperature, T{sub 0} = 72 K, from 80 to 200 K.

  8. Influence of initial growth stages on AlN epilayers grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Balaji, M.; Ramesh, R.; Arivazhagan, P.; Jayasakthi, M.; Loganathan, R.; Prabakaran, K.; Suresh, S.; Lourdudoss, S.; Baskar, K.

    2015-03-01

    AlN layers of thickness of about 2 μm have been grown with AlN nucleation layers (NLs) on (001) sapphire substrates using metal organic chemical vapor deposition. Increasing the AlN-NL deposition temperature from 850 to 1250 °C has been found to have significant effect on the surface morphology and the structural quality of the AlN layers. The surface morphology of the AlN-NLs and the AlN layers has been assessed using atomic force microscopy (AFM). The AFM images of the AlN-NLs reveal the coalescence pattern of NLs. AFM images of the AlN layers and the in-situ reflectance measurement disclose the surface morphology and the growth pattern of the AlN layers, respectively. Smooth surface with macro-steps and terrace features has been achieved for the AlN layer grown on the NL deposited at 950 °C. The structural quality of AlN layers has been studied by high resolution X-ray diffraction and Raman spectroscopy. The screw dislocation density from (002) reflection and the average edge dislocation density from (102), (302) and (100) reflections of the AlN layer on NL deposited at 950 °C are estimated to be 9×107 cm-2 and 4.4×109 cm-2, respectively. Lateral correlation length (L) is calculated from the (114) reciprocal space mapping of the AlN layers and correlated with the edge dislocation density of the AlN layers. Raman E2 (high) phonon mode indicates compressive strain in the AlN layers grown on the NLs deposited at various temperatures. From this work, it has been inferred that the uniform coalescence of the nucleation islands and the complete coverage of AlN-NL determine the surface morphology and the structural quality of the subsequently grown AlN layers.

  9. Growth of high Mg content wurtzite MgZnO epitaxial films via pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Alema, Fikadu; Ledyaev, Oleg; Miller, Ross; Beletsky, Valeria; Osinsky, Andrei; Schoenfeld, Winston V.

    2016-02-01

    We report on the growth of high Mg content, high quality, wurtzite MgxZn1-xO (MgZnO) epitaxial films using a pulsed metal organic chemical vapor deposition (PMOCVD) method. Series of MgZnO films with variable Mg concentration were deposited on bare and AlN coated sapphire substrates. The band gap of the films estimated using UV-visible transmission spectra ranges from 3.24 eV to 4.49 eV, corresponding to fraction of Mg between x=0.0 and x=0.51, as determined by Rutherford backscattering spectroscopy. The cathodoluminescence (CL) measurement has shown a blue-shift in the peak position of MgZnO with an increasing Mg content. No multi-absorption edges and CL band splitting were observed, suggesting the absence of phase segregation in the as grown films. The crystal structure and phase purity of the films were also confirmed by XRD analysis. Hall effect measurement in van der Pauw configuration was employed to evaluate the electrical properties of the films. With a rise in Mg incorporation into the ZnO lattice, the films became very resistive, consistent with the widening of the band gap. The AFM measurement on the films has shown a decreasing surface roughness with an Mg content. To the best of our knowledge, the current result shows the highest Mg content (x=0.51), high quality, wurtzite MgZnO epitaxial film ever grown by MOCVD. The high Mg incorporation without phase separation is believed to be due to the non-equilibrium behavior of the PMOCVD in which the kinetic processes dominate the thermodynamic one.

  10. Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage.

    PubMed

    Gu, Xiaojun; Lu, Zhang-Hui; Jiang, Hai-Long; Akita, Tomoki; Xu, Qiang

    2011-08-10

    Bimetallic Au-Pd nanoparticles (NPs) were successfully immobilized in the metal-organic frameworks (MOFs) MIL-101 and ethylenediamine (ED)-grafted MIL-101 (ED-MIL-101) using a simple liquid impregnation method. The resulting composites, Au-Pd/MIL-101 and Au-Pd/ED-MIL-101, represent the first highly active MOF-immobilized metal catalysts for the complete conversion of formic acid to high-quality hydrogen at a convenient temperature for chemical hydrogen storage. Au-Pd NPs with strong bimetallic synergistic effects have a much higher catalytic activity and a higher tolerance with respect to CO poisoning than monometallic Au and Pd counterparts. PMID:21761819

  11. Effect of long anneals on the densities of threading dislocations in GaN films grown by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, Z. T.; Xu, K.; Guo, L. P.; Yang, Z. J.; Su, Y. Y.; Yang, X. L.; Pan, Y. B.; Shen, B.; Zhang, H.; Zhang, G. Y.

    2006-09-01

    Effect of long anneals on densities of different types of threading dislocations (TDs) in GaN films grown onto sapphire substrate by metal-organic chemical vapor deposition was investigated by high-resolution X-ray diffraction. The results showed that the densities of both types of TDs changed obviously but oppositely, and residual stress in the GaN films was relaxed by generating edge-type TDs instead of screw-type TDs. The results obtained from chemical etching experiments and grazing-incidence X-ray diffraction (GIXRD) also supported the proposed defect structure evolution.

  12. a Study of Volatile Precursors for the Growth of Cadmium Sulphide and Cadmium Selenide by Metal Organic Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Beer, Michael P.

    Available from UMI in association with The British Library. The wide-band-gap semiconductors, cadmium sulphide and cadmium selenide, may be grown by Metal Organic Chemical Vapour Deposition (MOCVD). This method typically involves the reaction of gaseous streams of Me_2 Cd and H_2Y (Y = S, Se) over a heated substrate (usually gallium arsenide) on which the desired compound is grown as an epitaxial layer. Unfortunately, the precursors start to react in the cold zone of the reactor, that is before they reach the heated substrate. This problem is known as prereaction. The problem of prereaction is partially reduced by the use of adducts of dimethyl cadmium in place of the free dialkyl compound although the mechanism by which such adducts block prereaction is unknown. Accordingly, a study of adducts of dimethyl cadmium was undertaken with a view to determining their properties in all phases. The adduct of Me_2Cd with 2,2^ '-bipyridyl was found to be monomeric in the solid state while that with 1,4-dioxane, a volatile compound used for prereaction reduction, was found to be polymeric. A study of adducts in the gas phase using mass spectrometry and gas phase Fourier transform infrared spectroscopy gave no evidence to suggest there is any gas phase association between 1,4-dioxane and dimethyl cadmium. With the 2,2 ^'-bipyridyl adduct some evidence for partial retention of coordinate bonds upon sublimation was obtained. The solid adduct of Me _2Cd with N,N,N^' ,N^'-tetramethylethylenediamine (TMEDA) was prepared as it was hoped that the flexibility of the aliphatic Lewis base would permit the formation of an adduct containing strong co-ordinate bonds which would remain intact upon sublimation. Using gas phase electron diffraction, the structure of the adduct of Me_2Cd and TMEDA was determined. It was shown to exist in the gas phase purely as the associated monomeric species. The adduct was then employed for the growth of CdS and CdSe in an industrial MOCVD apparatus. The

  13. The effect of pressure and growth temperature on the characteristics of polycrystalline In2Se3 films in metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yu, Seong Man; Yoo, Jin Hyoung; Patole, Shashikant P.; Lee, Jong Hak; Yoo, Ji-Beom

    2012-06-01

    This study examined the effect of the growth parameters on the characteristics of polycrystalline In2Se3 (IS) films using metal organic chemical vapor deposition. Trimethylindium and ditertiarybutylselenide metal organic compounds were used as the indium and selenium sources to deposit the IS films on soda lime glass. The effect of the growth pressure was examined from 10 to 80 torr. The effect of the growth temperature was studied in the range, 300°C to 500°C. Scanning electron microscopy and high resolution x-ray diffraction was used to analyze the morphological and structural properties of the deposited films. Optical absorption was used to examine the optical properties and band gap of the deposited IS films. The details of the analysis are presented.

  14. Crystal Engineering of an nbo Topology Metal-Organic Framework for Chemical Fixation of CO₂ under Ambient Conditions

    SciTech Connect

    Gao, Wen-Yang; Chen, Yao; Niu, Youhong; Williams, Kia; Cash, Lindsay; Perez, Pastor J.; Wojtas, Lukasz; Cai, Jianfeng; Chen, Yu-Sheng; Ma, Shengqian

    2015-02-20

    Crystal engineering of the nbo metal–organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu₂(Cu-tactmb)(H₂O)₃(NO₃)₂]. This MOF demonstrates high catalytic activity for the chemical fixation of CO₂ into cyclic carbonates at room temperature under 1 atm pressure.

  15. Composition dependence of microwave properties of Y-Ba-Cu-O thin films grown by metal-organic chemical-vapor deposition

    NASA Astrophysics Data System (ADS)

    Waffenschmidt, E.; Sjamsudin, G.; Musolf, J.; Arndt, F.; He, X.; Heuken, M.; Heime, K.

    1995-01-01

    Thin film of Y-Ba-Cu-O of different compostition were grown on MgO and LaAlO3 substrates by metal-organic chemical-vapor deposition. Using a microwave cavity resonator, their microwave surface resistance at 24.5 GHz was measured at a temperature of 77.5 K. It varies from less than 3 mOmega to more than 50 mOmega depending on the composition of the films. The lowest surface resistances could be obtained with samples having a composition close to the ideal stoichiometry 1:2:3 but with a slight excess of copper and yttrium.

  16. In situ synchrotron x-ray studies of strain and composition evolution during metal-organic chemical vapor deposition of InGaN.

    SciTech Connect

    Richard, M.-I.; Highland, M. J.; Fister, T. T.; Munkholm, A.; Mei, J.; Streiffer, S. K.; Thompson, C.; Fuoss, P. H.; Stephenson, G. B.; Univ. Paul Cezanne; Philips Lumileds Lighting Co.; Northern Illinois Univ.; Faculte des Sciences de St. Jerome

    2010-01-01

    Composition and strain inhomogeneities strongly affect the optoelectronic properties of InGaN but their origin has been unclear. Here we report real-time x-ray reciprocal space mapping that reveals the development of strain and composition distributions during metal-organic chemical vapor deposition of In{sub x}Ga{sub 1-x}N on GaN. Strong, correlated inhomogeneities of the strain state and In fraction x arise during growth in a manner consistent with models for instabilities driven by strain relaxation.

  17. Structural properties of Al-rich AlInN grown on c-plane GaN substrate by metal-organic chemical vapor deposition

    PubMed Central

    2014-01-01

    The attractive prospect for AlInN/GaN-based devices for high electron mobility transistors with advanced structure relies on high-quality AlInN epilayer. In this work, we demonstrate the growth of high-quality Al-rich AlInN films deposited on c-plane GaN substrate by metal-organic chemical vapor deposition. X-ray diffraction, scanning electron microscopy, and scanning transmission electron microscopy show that the films lattice-matched with GaN can have a very smooth surface with good crystallinity and uniform distribution of Al and In in AlInN. PMID:25489282

  18. Influence of vicinal sapphire substrate on the properties of N-polar GaN films grown by metal-organic chemical vapor deposition

    SciTech Connect

    Lin, Zhiyu; Zhang, Jincheng Xu, Shengrui; Chen, Zhibin; Yang, Shuangyong; Tian, Kun; Hao, Yue; Su, Xujun; Shi, Xuefang

    2014-08-25

    The influence of vicinal sapphire substrates on the growth of N-polar GaN films by metal-organic chemical vapor deposition is investigated. Smooth GaN films without hexagonal surface feature are obtained on vicinal substrate. Transmission electron microscope results reveal that basal-plane stacking faults are formed in GaN on vicinal substrate, leading to a reduction in threading dislocation density. Furthermore, it has been found that there is a weaker yellow luminescence in GaN on vicinal substrate than that on (0001) substrate, which might be explained by the different trends of the carbon impurity incorporation.

  19. The optimization of interfaces in InAsSb/InGaAs strained-layer superlattices grown by metal-organic chemical vapor deposition

    SciTech Connect

    Biefeld, R.M.; Baucom, K.C.; Kurtz, S.R.

    1993-12-31

    We have prepared InAsSb/InGaAs strained-layer superlattice (SLS) semiconductors by metal-organic chemical vapor deposition (MOCVD) under a variety of conditions. Presence of an InGaAsSb interface layer is indicated by x-ray diffraction patterns. Optimized growth conditions involved the use of low pressure, short purge times, and no reactant flow during the purges. MOCVD was used to prepare an optically pumped, single heterostructure InAsSb/InGaAs SLS/InPSb laser which emitted at 3.9 {mu}m with a maximum operating temperature of approximately 100 K.

  20. Recycling of metal-organic chemical vapor deposition waste of GaN based power device and LED industry by acidic leaching: Process optimization and kinetics study

    NASA Astrophysics Data System (ADS)

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon; Park, Jeung-Jin

    2015-05-01

    Recovery of metal values from GaN, a metal-organic chemical vapor deposition (MOCVD) waste of GaN based power device and LED industry is investigated by acidic leaching. Leaching kinetics of gallium rich MOCVD waste is studied and the process is optimized. The gallium rich waste MOCVD dust is characterized by XRD and ICP-AES analysis followed by aqua regia digestion. Different mineral acids are used to find out the best lixiviant for selective leaching of the gallium and indium. Concentrated HCl is relatively better lixiviant having reasonably faster kinetic and better leaching efficiency. Various leaching process parameters like effect of acidity, pulp density, temperature and concentration of catalyst on the leaching efficiency of gallium and indium are investigated. Reasonably, 4 M HCl, a pulp density of 50 g/L, 100 °C and stirring rate of 400 rpm are the effective optimum condition for quantitative leaching of gallium and indium.

  1. Flexible metal-organic frameworks.

    PubMed

    Schneemann, A; Bon, V; Schwedler, I; Senkovska, I; Kaskel, S; Fischer, R A

    2014-08-21

    Advances in flexible and functional metal-organic frameworks (MOFs), also called soft porous crystals, are reviewed by covering the literature of the five years period 2009-2013 with reference to the early pertinent work since the late 1990s. Flexible MOFs combine the crystalline order of the underlying coordination network with cooperative structural transformability. These materials can respond to physical and chemical stimuli of various kinds in a tunable fashion by molecular design, which does not exist for other known solid-state materials. Among the fascinating properties are so-called breathing and swelling phenomena as a function of host-guest interactions. Phase transitions are triggered by guest adsorption/desorption, photochemical, thermal, and mechanical stimuli. Other important flexible properties of MOFs, such as linker rotation and sub-net sliding, which are not necessarily accompanied by crystallographic phase transitions, are briefly mentioned as well. Emphasis is given on reviewing the recent progress in application of in situ characterization techniques and the results of theoretical approaches to characterize and understand the breathing mechanisms and phase transitions. The flexible MOF systems, which are discussed, are categorized by the type of metal-nodes involved and how their coordination chemistry with the linker molecules controls the framework dynamics. Aspects of tailoring the flexible and responsive properties by the mixed component solid-solution concept are included, and as well examples of possible applications of flexible metal-organic frameworks for separation, catalysis, sensing, and biomedicine. PMID:24875583

  2. Growth of TiO2 anti-reflection layer on textured Si (100) wafer substrate by metal-organic chemical vapor deposition method.

    PubMed

    Nam, Sang-Hun; Choi, Jin-Woo; Cho, Sang-Jin; Kimt, Keun Soo; Boo, Jin-Hyo

    2011-08-01

    Recently anti-reflective films (AR) have been intensely studied. Particularly for textured silicon solar cells, the AR films can further reduce the reflection of the incident light through trapping the incident light into the cells. In this work, TiO2 anti-reflection films have been grown on the textured Si (100) substrate which is processed in two steps, and the films are deposited using metal-organic chemical vapor deposition (MOCVD) with a precursor of titanium tetra-isopropoxide (TTIP). The effect of the substrate texture and the growth conditions of TiO2 films on the reflectance has been investigated. Pyramid size of textured silicon had approximately 2-9 microm. A well-textured silicon surface can lower the reflectance to 10%. For more reduced reflection, TiO2 anti-reflection films on the textured silicon were deposited at 600 degrees C using titanium tetra-isopropoxide (TTIP) as a precursor by metal-organic chemical vapor deposition (MOCVD), and the deposited TiO2 layers were then treated by annealing for 2 h in air at 600 and 1000 degrees C, respectively. In this process, the treated samples by annealing showed anatase and rutile phases, respectively. The thickness of TiO2 films was about 75 +/- 5 nm. The reflectance at specific wavelength can be reduced to 3% in optimum layer. PMID:22103185

  3. Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ya-Chao, Zhang; Xiao-Wei, Zhou; Sheng-Rui, Xu; Da-Zheng, Chen; Zhi-Zhe, Wang; Xing, Wang; Jin-Feng, Zhang; Jin-Cheng, Zhang; Yue, Hao

    2016-01-01

    Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 × 1013 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cm2/V·s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61306017, 61334002, 61474086, and 11435010) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61306017).

  4. Single-step fabrication of nanolamellar structured oxide ceramic coatings by metal-organic chemical vapor deposition.

    PubMed

    Eils, Nadine K; Mechnich, Peter; Keune, Hartmut; Wahl, Georg; Klages, Claus-Peter

    2011-09-01

    Oxide ceramic coatings in the system Y2O3-Al2O3-ZrO2 were fabricated in laboratory scale by using a MOCVD unit. A hot wall reactor was used along with different precursor feeding systems. Most experiments were carried out by using powder flash evaporation including a screw feeder for precursor powder delivery. For comparison, further samples were fabricated by using band flash evaporation and continuous evaporation from a crucible. Oxygen was used in all cases as reactant gas. Aluminium-tris-2,4-pentanedione (Al(acac)3), yttrium-tris-2,2,6,6-tetramethyl-3,5-heptanedione (Y(thd)3) and zirconium-tetrakis-2,2,6,6-tetramethyl-3,5-heptanedione (Zr(thd)4) were applied as metal-organic precursors because of their similar vaporization behaviour under the given conditions. The coating stoichiometry was varied from pure alumina to complex ternary compositions in the system Y2O3-Al2O3-ZrO2. Both kinds of ternary coatings fabricated by using flash evaporation methods show a nanolamellar microstructure in the as deposited state. Heat treating experiments at 1200 degrees C for up to 5 days enhance the lamellar character of the coating deposited by using powder flash evaporation. The lamellar microstructure is due to alternating YSZ enriched layers and YAG enriched layers in this state. However, the coating fabricated by using band flash evaporation shows a dense interpenetrating network of YSZ and YAG after heat treating instead of a lamellar microstructure observed in the as deposited state. PMID:22097592

  5. Low trap states in in situ SiN{sub x}/AlN/GaN metal-insulator-semiconductor structures grown by metal-organic chemical vapor deposition

    SciTech Connect

    Lu, Xing; Ma, Jun; Jiang, Huaxing; Liu, Chao; Lau, Kei May

    2014-09-08

    We report the use of SiN{sub x} grown in situ by metal-organic chemical vapor deposition as the gate dielectric for AlN/GaN metal-insulator-semiconductor (MIS) structures. Two kinds of trap states with different time constants were identified and characterized. In particular, the SiN{sub x}/AlN interface exhibits remarkably low trap state densities in the range of 10{sup 11}–10{sup 12 }cm{sup −2}eV{sup −1}. Transmission electron microscopy and X-ray photoelectron spectroscopy analyses revealed that the in situ SiN{sub x} layer can provide excellent passivation without causing chemical degradation to the AlN surface. These results imply the great potential of in situ SiN{sub x} as an effective gate dielectric for AlN/GaN MIS devices.

  6. Amorphous metal-organic frameworks.

    PubMed

    Bennett, Thomas D; Cheetham, Anthony K

    2014-05-20

    Crystalline metal-organic frameworks (MOFs) are porous frameworks comprising an infinite array of metal nodes connected by organic linkers. The number of novel MOF structures reported per year is now in excess of 6000, despite significant increases in the complexity of both component units and molecular networks. Their regularly repeating structures give rise to chemically variable porous architectures, which have been studied extensively due to their sorption and separation potential. More recently, catalytic applications have been proposed that make use of their chemical tunability, while reports of negative linear compressibility and negative thermal expansion have further expanded interest in the field. Amorphous metal-organic frameworks (aMOFs) retain the basic building blocks and connectivity of their crystalline counterparts, though they lack any long-range periodic order. Aperiodic arrangements of atoms result in their X-ray diffraction patterns being dominated by broad "humps" caused by diffuse scattering and thus they are largely indistinguishable from one another. Amorphous MOFs offer many exciting opportunities for practical application, either as novel functional materials themselves or facilitating other processes, though the domain is largely unexplored (total aMOF reported structures amounting to under 30). Specifically, the use of crystalline MOFs to detect harmful guest species before subsequent stress-induced collapse and guest immobilization is of considerable interest, while functional luminescent and optically active glass-like materials may also be prepared in this manner. The ion transporting capacity of crystalline MOFs might be improved during partial structural collapse, while there are possibilities of preparing superstrong glasses and hybrid liquids during thermal amorphization. The tuning of release times of MOF drug delivery vehicles by partial structural collapse may be possible, and aMOFs are often more mechanically robust than

  7. Organic Superconductor, Made without Metals.

    ERIC Educational Resources Information Center

    Science News, 1980

    1980-01-01

    The discovery of a superconducting organic compound is reported. The compound, (TMTSF)-2, has no metal in its composition, and the author believes that it is the precursor of a family of superconducting organics. (Author/SA)

  8. Thermal annealing effect on material characterizations of β-Ga2O3 epilayer grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Huang, Chiung-Yi; Horng, Ray-Hua; Wuu, Dong-Sing; Tu, Li-Wei; Kao, Hsiang-Shun

    2013-01-01

    In this work, a single-crystalline β-Ga2O3 epilayer was grown on (0001) sapphire at low temperature by low-pressure metal organic chemical vapor deposition. The optimized parameters for the chamber pressure, oxygen flow, and growth temperature were 15 Torr, 200 sccm, and 500 °C, respectively. The β-Ga2O3 epilayer was fabricated as a metal-semiconductor-metal solar-blind deep ultraviolet photodetector. Due to the gallium oxide grown at low temperature, the as-grown β-Ga2O3 epilayer was annealed at 800 °C in atmosphere or in a nitrogen environment. The effects of defects of the β-Ga2O3 epilayer before and after N2 annealing were studied using x-ray diffraction system, cathodoluminescence at differential temperature, and Hall measurement. The β-Ga2O3 epilayer that was N2 annealed for 15 min presented better photodetector performance than the as-grown β-Ga2O3 epilayer. The annealed epilayer exhibited a dark current of 1.6 × 10-13 A under 5 V bias.

  9. Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Someya, T.; Arakawa, Y.

    1998-12-01

    Quarter-wave reflectors consisting of sets of GaN and Al0.34Ga0.66N layers have been grown on sapphire substrates by atmospheric-pressure metal organic chemical vapor deposition. A periodic structure with flat interfaces was observed by high-resolution scanning electron microscopy. X-ray diffraction measurements were performed to characterize the structures, from which the Al content x in the AlxGa1-xN layers was determined to be 0.34. No cracks could be seen on the surface of the reflectors by optical microscopy. The measured peak reflectivity at 390 nm increases with the number of pairs and reaches as high as 96±2% in the 35-pair reflector.

  10. Structural and optical properties of InAs/InAsSb superlattices grown by metal organic chemical vapor deposition for mid-wavelength infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Ning, Zhen-Dong; Liu, Shu-Man; Luo, Shuai; Ren, Fei; Wang, Feng-Jiao; Yang, Tao; Liu, Feng-Qi; Wang, Zhan-Guo; Zhao, Lian-Cheng

    2016-04-01

    InAs/InAsSb superlattices were grown on (0 0 1) GaSb substrates by metal organic chemical vapor deposition for potential applications as mid-infrared optoelectronic devices. X-ray diffraction, transmission electron microscopy, photoluminescence emission and spectral photoconductivity were used to characterize the grown structures. Generally, photoluminescence emission measurements of InAs/InAsSb superlattices were performed over the temperature range from 11 K to 300 K. The Varshni and Bose-Einstein parameters were determined. Low-temperature photoluminescence measurements showed peaks at 3-5 μm, while photoconductance results showed strong spectral response up to room temperature, when the photoresponse onset was extended to 5.5 μm. The photoluminescence emission band covers the CO2 absorption peak making it suitable for application in CO2 detection.

  11. In situ and real-time characterization of metal-organic chemical vapor deposition growth by high resolution x-ray diffraction

    SciTech Connect

    Kharchenko, A.; Lischka, K.; Schmidegg, K.; Sitter, H.; Bethke, J.; Woitok, J.

    2005-03-01

    We present an x-ray diffractometer for the analysis of epitaxial layers during (in situ) metal-organic chemical vapor deposition (MOCVD). Our diffractometer has a conventional x-ray source, does not need a goniometer stage, and is not sensitive to precise adjustment of the samples before measurement. It allows us to perform measurements within a few seconds even from rotating and wobbling samples. The first results of laboratory tests performed with our x-ray diffraction system show that it is well suited for in situ and real-time monitoring of the MOCVD growth process. We were able to measure the growth rate of a cubic GaN layer and the intensity and peak position of Bragg reflections of the growing layer in less than 20 s only.

  12. Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP

    NASA Astrophysics Data System (ADS)

    Mohandas, Reshma A.; Freeman, Joshua R.; Rosamond, Mark C.; Hatem, Osama; Chowdhury, Siddhant; Ponnampalam, Lalitha; Fice, Martyn; Seeds, Alwyn J.; Cannard, Paul J.; Robertson, Michael J.; Moodie, David G.; Cunningham, John E.; Davies, A. Giles; Linfield, Edmund H.; Dean, Paul

    2016-04-01

    We demonstrate the generation of continuous wave terahertz (THz) frequency radiation from photomixers fabricated on both Fe-doped InGaAs and Fe-doped InGaAsP, grown by metal-organic chemical vapor deposition. The photomixers were excited using a pair of distributed Bragg reflector lasers with emission around 1550 nm, and THz radiation was emitted over a bandwidth of greater than 2.4 THz. Two InGaAs and four InGaAsP wafers with different Fe doping concentrations were investigated, with the InGaAs material found to outperform the InGaAsP in terms of emitted THz power. The dependencies of the emitted power on the photomixer applied bias, incident laser power, and material doping level were also studied.

  13. The growth of n-type GaSb by metal-organic chemical vapor deposition : effects of two-band conduction on carrier concentrations and donor activation.

    SciTech Connect

    Cederberg, Jeffrey George; Biefeld, Robert Malcolm

    2003-06-01

    n-type GaSb has been prepared by metal-organic chemical vapour deposition with tellurium donors using diethyltelluride as the dopant precursor. The maximum carrier concentration achieved was 1.7 x 10{sup 18} cm{sup -3}, as measured by van der Pauw-Hall effect measurements, for an atomic tellurium concentration of 1.8 x 10{sup 19} cm{sup -3}. The apparent low activation of tellurium donors is explained by a model that considers the effect of electrons occupying both the {Lambda} and L bands in GaSb due to the small energy difference between the {Lambda} and L conduction band minima. The model also accounts for the apparent increase in the carrier concentration determined by van der Pauw-Hall effect measurements at cryogenic temperatures.

  14. The growth of mid-infrared emitting InAsSb/InAsP strained-layer superlattices using metal-organic chemical vapor deposition

    SciTech Connect

    Biefeld, R.M.; Allerman, A.A.; Kurtz, S.R.; Burkhart, J.H.

    1997-10-01

    We describe the metal-organic chemical vapor deposition os InAsSb/InAsP strained-layer superlattice (SLS) active regions for use in mid-infrared emitters. These SLSs were grown at 500 {degrees}C, and 200 torr in a horizontal quartz reactor using trimethylindium, triethylantimony, AsH{sub 3}, and PH{sub 3}. By changing the layer thickness and composition we have prepared structures with low temperature ({le}20K) photoluminescence wavelengths ranging from 3.2 to 5.0 {mu}m. Excellent performance was observed for an SLS light emitting diode (LED) and both optically pumped and electrically injected SLS layers. An InAsSb/InAsP SLS injection laser emitted at 3.3 {mu}m at 80 K with peak power of 100 mW.

  15. Preparation of AlAsSb and mid-infrared (3-5 {mu}m) lasers by metal-organic chemical vapor deposition

    SciTech Connect

    Allerman, A.A.; Biefeld, R.M.; Kurtz, S.R.

    1996-12-31

    Mid-infrared (3-5 {mu}m) infrared lasers and LEDs are being developed for use in chemical sensor systems. As-rich, InAsSb heterostructures display unique electronic properties that are beneficial to the performance of these midwave infrared emitters. The authors have grown AlAs{sub 1{minus}x}Sb{sub x} epitaxial layers by metal-organic chemical vapor deposition using trimethylamine (TMAA) or ethyldimethylamine alane (EDMAA), triethylantimony (TESb) and arsine. They examined the growth of AlAs{sub 1{minus}x}Sb{sub x} using temperatures of 500 to 600 {degrees}C, pressures of 70 to 630 torr, V/III ratios of 1-27, and growth rates of 0.3 to 2.7 {mu}m/hour in a horizontal quartz reactor. The semi-metal properties of a p-GaAsSb/n-InAs heterojunction are utilized as a source for injection of electrons into the active region of lasers. A regrowth technique has been used to fabricate gain-guided lasers using AlAs{sub 1{minus}x}Sb{sub x} for optical confinement with either a strained InAsSb/InAs multi-quantum well (MQW) or an InAsSb/InAsP strained layer superlattice (SLS) as the active region. Under pulsed injection, the InAsSb/InAs MQW laser operated up to 210K with an emission wavelength of 3.8-3.9 {mu}m. Under pulsed optical pumping, the InAsSb/InAsP SLS operated to 240K with an emission wavelength of 3.5-3.7 {mu}m. LED emission has been observed with both active regions in both p-n junction and semi-metal injection structures.

  16. Organic Chemicals: Angels or Goblins?

    ERIC Educational Resources Information Center

    Ferguson, Lloyd N.

    1978-01-01

    Discusses some of the controversial organic chemical substances such as DDT, Red Dye No. 2, DES, Tris, Laetrile, cyclamate, and saccharin. Concludes that the use of some has to be considered on a benefit/risk ratio. (GA)

  17. CHEMICAL STABILIZATION OF MIXED ORGANIC AND METAL COMPOUNDS - EPA SITE PROGRAM DEMONSTRATION OF THE SILICATE TECHNOLOGY CORPORATION PROCESS

    EPA Science Inventory

    In November 1990, the Silicate Technology Corporation's (STC) proprietary process for treating soil contaminated with toxic semi-volatile organic and inorganic contaminants was evaluated in a Superfund Innovative Technology Evaluation (SITE) field demonstration at the Selma Press...

  18. CHEMICAL STABILIZATION OF MIXED ORGANIC AND METAL COMPOUNDS - EPA SITE PROGRAM DEMONSTRATION OF THE SILICATE TECHNOLOGY CORPORATION PROCESS

    EPA Science Inventory

    In November 1990, the Silicate Technology Corporation`s (STC) proprietary process for treating soil contaminated with toxic semivolatile organic and inorganic contaminants was evaluated in a Superfund Innovative Technology Evaluation (SITE) field demonstration at the Selma Pressu...

  19. Nitride passivation reduces interfacial traps in atomic-layer-deposited Al2O3/GaAs (001) metal-oxide-semiconductor capacitors using atmospheric metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Aoki, T.; Fukuhara, N.; Osada, T.; Sazawa, H.; Hata, M.; Inoue, T.

    2014-07-01

    Using an atmospheric metal-organic chemical vapor deposition system, we passivated GaAs with AlN prior to atomic layer deposition of Al2O3. This AlN passivation incorporated nitrogen at the Al2O3/GaAs interface, improving the capacitance-voltage (C-V) characteristics of the resultant metal-oxide-semiconductor capacitors (MOSCAPs). The C-V curves of these devices showed a remarkable reduction in the frequency dispersion of the accumulation capacitance. Using the conductance method at various temperatures, we extracted the interfacial density of states (Dit). The Dit was reduced over the entire GaAs band gap. In particular, these devices exhibited Dit around the midgap of less than 4 × 1012 cm-2eV-1, showing that AlN passivation effectively reduced interfacial traps in the MOS structure.

  20. Ultraviolet photoconductive devices with an n-GaN nanorod-graphene hybrid structure synthesized by metal-organic chemical vapor deposition

    PubMed Central

    Kang, San; Mandal, Arjun; Chu, Jae Hwan; Park, Ji-Hyeon; Kwon, Soon-Yong; Lee, Cheul-Ro

    2015-01-01

    The superior photoconductive behavior of a simple, cost-effective n-GaN nanorod (NR)-graphene hybrid device structure is demonstrated for the first time. The proposed hybrid structure was synthesized on a Si (111) substrate using the high-quality graphene transfer method and the relatively low-temperature metal-organic chemical vapor deposition (MOCVD) process with a high V/III ratio to protect the graphene layer from thermal damage during the growth of n-GaN nanorods. Defect-free n-GaN NRs were grown on a highly ordered graphene monolayer on Si without forming any metal-catalyst or droplet seeds. The prominent existence of the undamaged monolayer graphene even after the growth of highly dense n-GaN NRs, as determined using Raman spectroscopy and high-resolution transmission electron microscopy (HR-TEM), facilitated the excellent transport of the generated charge carriers through the photoconductive channel. The highly matched n-GaN NR-graphene hybrid structure exhibited enhancement in the photocurrent along with increased sensitivity and photoresponsivity, which were attributed to the extremely low carrier trap density in the photoconductive channel. PMID:26028318

  1. Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices

    NASA Astrophysics Data System (ADS)

    Cipro, R.; Baron, T.; Martin, M.; Moeyaert, J.; David, S.; Gorbenko, V.; Bassani, F.; Bogumilowicz, Y.; Barnes, J. P.; Rochat, N.; Loup, V.; Vizioz, C.; Allouti, N.; Chauvin, N.; Bao, X. Y.; Ye, Z.; Pin, J. B.; Sanchez, E.

    2014-06-01

    Metal organic chemical vapor deposition of GaAs, InGaAs, and AlGaAs on nominal 300 mm Si(100) at temperatures below 550 °C was studied using the selective aspect ratio trapping method. We clearly show that growing directly GaAs on a flat Si surface in a SiO2 cavity with an aspect ratio as low as 1.3 is efficient to completely annihilate the anti-phase boundary domains. InGaAs quantum wells were grown on a GaAs buffer and exhibit room temperature micro-photoluminescence. Cathodoluminescence reveals the presence of dark spots which could be associated with the presence of emerging dislocation in a direction parallel to the cavity. The InGaAs layers obtained with no antiphase boundaries are perfect candidates for being integrated as channels in n-type metal oxide semiconductor field effect transistor (MOSFET), while the low temperatures used allow the co-integration of p-type MOSFET.

  2. Self-assembled growth of inclined GaN nanorods on (10-10) m-plane sapphire using metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chae, Sooryong; Lee, Kyuseung; Jang, Jongjin; Min, Daehong; Kim, Jaehwan; Nam, Okhyun

    2015-01-01

    We report the self-assembled growth of inclined and highly ordered GaN nanorods on (10-10) m-plane sapphire by metal-organic chemical vapor deposition, without metal catalyst. To determine the growth mechanism we performed a systematic study of the effect of the SiH4 flow, V/III ratio, growth temperature and growth time on growth behavior, demonstrating that optimized parameters were required for the growth of nanorods with high aspect ratios. High resolution X-ray diffraction showed that the nanorods were inclined at an angle of 58.4° with respect to the substrate normal and followed a well-defined epitaxial relationship with respect to the on-axis plane of the nanorods, the (11-22) semipolar plane, and the (10-10) m-plane sapphire. Finally cathodoluminescence showed that the near band edge emission of the Si-doped nanorod was asymmetric and broad owing to the band filling effect resulting from high carrier concentration, compared to the undoped GaN.

  3. Role of metal oxides in chemical evolution

    NASA Astrophysics Data System (ADS)

    Kamaluddin

    2013-06-01

    Steps of chemical evolution have been designated as formation of biomonomers followed by their polymerization and then to modify in an organized structure leading to the formation of first living cell. Formation of small molecules like amino acids, organic bases, sugar etc. could have occurred in the reducing atmosphere of the primitive Earth. Polymerization of these small molecules could have required some catalyst. In addition to clay, role of metal ions and metal complexes as prebiotic catalyst in the synthesis and polymerization of biomonomers cannot be ruled out. Metal oxides are important constituents of Earth crust and that of other planets. These oxides might have adsorbed organic molecules and catalyzed the condensation processes, which may have led to the formation of first living cell. Different studies were performed in order to investigate the role of metal oxides (especially oxides of iron and manganese) in chemical evolution. Iron oxides (goethite, akaganeite and hematite) as well as manganese oxides (MnO, Mn2O3, Mn3O4 and MnO2) were synthesized and their characterization was done using IR, powder XRD, FE-SEM and TEM. Role of above oxides was studied in the adsorption of ribose nucleotides, formation of nucleobases from formamide and oligomerization of amino acids. Above oxides of iron and manganese were found to have good adsorption affinity towards ribose nucleotides, high catalytic activity in the formation of several nucleobases from formamide and oligomerization of glycine and alanine. Characterization of products was performed using UV, IR, HPLC and ESI-MS techniques. Presence of hematite-water system on Mars has been suggested to be a positive indicator in the chemical evolution on Mars.

  4. Metal-organic frameworks for photocatalysis.

    PubMed

    Li, Ying; Xu, Hua; Ouyang, Shuxin; Ye, Jinhua

    2016-03-01

    Photocatalysis is a promising technology to convert solar energy into chemical energy. Recently, metal-organic frameworks (MOFs) have emerged as novel photocatalysts owing to their inherent structural characteristics of a large surface area and a well-ordered porous structure. Most importantly, via modulation of the organic linker/metal clusters or incorporation with metal/complex catalysts, not only the reactant adsorption and light absorption but also the charge separation and reactant activation will be largely promoted, leading to superior photocatalytic performance. In this article, we will first introduce the photophysical/chemical properties of MOFs; then various strategies of modification of MOFs towards better photocatalytic activity will be presented; finally, we will address the challenge and further perspective in MOF-based photocatalysis. PMID:26535907

  5. Epitaxial growth of CdTe thin film on cube-textured Ni by metal-organic chemical vapor deposition

    SciTech Connect

    GIARE, C; RAO, S; RILEY, M; CHEN, L; Goyal, Amit; BHAT, I; LU, T; WANG, G

    2012-01-01

    CdTe thin film has been grown by metalorganic chemical vapor deposition (MOCVD) on Ni(100) substrate. Using x-ray pole figure measurements we observed the epitaxial relationship of {111}CdTe// {001}Ni with [110]CdTe//[010]Ni and [112] CdTe//[100]Ni. The 12 diffraction peaks in the (111) pole figure of CdTe film and their relative positions with respect to the four peak positions in the (111) pole figure of Ni substrate are consistent with four equivalent orientational domains of CdTe with three to four superlattice match of about 0.7% in the [110] direction of CdTe and the [010] direction of Ni. The electron backscattered diffraction (EBSD) images show that the CdTe domains are 30 degrees orientated from each other.

  6. High-quality InP epitaxial layers grown by metal-organic chemical vapor deposition using tertiarybutylphosphine (TBP) source

    NASA Astrophysics Data System (ADS)

    Kuan, H.; Su, Yan-Kuin; Tzou, W. J.

    1994-10-01

    One organophosphrous compound, tertiarybutylphosphine has been investigated for their possible use as precursors in the metalorganic chemical vapor deposition (MOCVD). This material is less pyrophoric and less toxic than phosphine, the compound has used to grow epitaxial layers of InP on semi-insulating InP substrate using trimethylindium (TMIn) in a flowing hydrogen ambient. High quality InP epilayer have been successfully grown and specular surface was obtained at growth temperature 600 degree(s)C and x-ray was used to measure the lattice mismatch (Delta) a/a. The highest quality InP epilayer, which was grown at a V/III ratio of 60 and a growth pressure of 250 Torr, the highest n-type electron Hall mobility were 4500 cm2/Vs with the electron concentration of 3.4 X 1015 cm-3 at 300 K and 18260 cm2/Vs with the electron concentration of 2.8 X 1015 cm-3 at 77 K. The low temperature (10 K) photoluminescence optical properties measurements show intense near bandgap emission with a full width half maximum (FWHM) is about 8 meV.

  7. Organic metal neutron detector

    DOEpatents

    Butler, M.A.; Ginley, D.S.

    1984-11-21

    A device for detection of neutrons comprises: as an active neutron sensing element, a conductive organic polymer having an electrical conductivity and a cross-section for said neutrons whereby a detectable change in said conductivity is caused by impingement of said neutrons on the conductive organic polymer which is responsive to a property of said polymer which is altered by impingement of said neutrons on the polymer; and means for associating a change in said alterable property with the presence of neutrons at the location of said device.

  8. Control of metamorphic buffer structure and device performance of InxGa1-xAs epitaxial layers fabricated by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Nguyen, H. Q.; Yu, H. W.; Luc, Q. H.; Tang, Y. Z.; Phan, V. T. H.; Hsu, C. H.; Chang, E. Y.; Tseng, Y. C.

    2014-12-01

    Using a step-graded (SG) buffer structure via metal-organic chemical vapor deposition, we demonstrate a high suitability of In0.5Ga0.5As epitaxial layers on a GaAs substrate for electronic device application. Taking advantage of the technique’s precise control, we were able to increase the number of SG layers to achieve a fairly low dislocation density (˜106 cm-2), while keeping each individual SG layer slightly exceeding the critical thickness (˜80 nm) for strain relaxation. This met the demanded but contradictory requirements, and even offered excellent scalability by lowering the whole buffer structure down to 2.3 μm. This scalability overwhelmingly excels the forefront studies. The effects of the SG misfit strain on the crystal quality and surface morphology of In0.5Ga0.5As epitaxial layers were carefully investigated, and were correlated to threading dislocation (TD) blocking mechanisms. From microstructural analyses, TDs can be blocked effectively through self-annihilation reactions, or hindered randomly by misfit dislocation mechanisms. Growth conditions for avoiding phase separation were also explored and identified. The buffer-improved, high-quality In0.5Ga0.5As epitaxial layers enabled a high-performance, metal-oxide-semiconductor capacitor on a GaAs substrate. The devices displayed remarkable capacitance-voltage responses with small frequency dispersion. A promising interface trap density of 3 × 1012 eV-1 cm-2 in a conductance test was also obtained. These electrical performances are competitive to those using lattice-coherent but pricey InGaAs/InP systems.

  9. Organic metal neutron detector

    DOEpatents

    Butler, Michael A.; Ginley, David S.

    1987-01-01

    A device for detecting neutrons comprises a layer of conductive polymer sandwiched between electrodes, which may be covered on each face with a neutron transmissive insulating material layer. Conventional electrodes are used for a non-imaging integrating total neutron fluence-measuring embodiment, while wire grids are used in an imaging version of the device. The change in conductivity of the polymer after exposure to a neutron flux is determined in either case to provide the desired data. Alternatively, the exposed conductive polymer layer may be treated with a chemical reagent which selectively binds to the sites altered by neutrons to produce an image of the flux detected.

  10. XPS analysis by exclusion of a-carbon layer on silicon carbide nanowires by a gold catalyst-supported metal-organic chemical vapor deposition method.

    PubMed

    Nam, Sang-Hun; Kim, Myoung-Hwa; Hyun, Jae-Sung; Kim, Young Dok; Boo, Jin-Hyo

    2010-04-01

    Silicon carbide (SiC) nano-structures would be favorable for application in high temperature, high power, and high frequency nanoelectronic devices. In this study, we have deposited cubic-SiC nanowires on Au-deposited Si(001) substrates using 1,3-disilabutane as a single molecular precursor through a metal-organic chemical vapor deposition (MOCVD) method. The general deposition pressure and temperature were 3.0 x 10(-6) Torr and 1000 degrees C respectively, with the deposition carried out for 1 h. Au played an important role as a catalyst in growing the SiC nanowires. SiC nanowires were grown using a gold catalyst, with amorphous carbon surrounding the final SiC nanowire. Thus, the first step involved removal of the remaining SiO2, followed by slicing of the amorphous carbon into thin layers using a heating method. Finally, the thinly sliced amorphous carbon is perfectly removed using an Ar sputtering method. As a result, this method may provide more field emission properties for the SiC nanowires that are normally inhibited by the amorphous carbon layer. Therefore, exclusion of the amorphous carbon layer is expected to improve the overall emission properties of SiC nanowires. PMID:20355494

  11. Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition.

    PubMed

    Park, Jeung Hun; Pozuelo, Marta; Setiawan, Bunga P D; Chung, Choong-Heui

    2016-12-01

    We report the growth of vertical <111>-oriented InAs x P1-x (0.11 ≤ x ≤ 0.27) nanowires via metal-organic chemical vapor deposition in the presence of indium droplets as catalysts on InP(111)B substrates at 375 °C. Trimethylindium, tertiarybutylphosphine, and tertiarybutylarsine are used as the precursors, corresponding to P/In and As/In molar ratios of 29 and 0.01, respectively. The as-grown nanowire growth morphologies, crystallinity, composition, and optical characteristics are determined using a combination of scanning and transmission electron microscopies, electron diffraction, and X-ray photoelectron, energy dispersive X-ray, and Raman spectroscopies. We find that the InAs x P1-x nanowires are tapered with narrow tops, wider bases, and In-rich In-As alloy tips, characteristic of vapor-liquid-solid process. The wires exhibit a mixture of zinc blende and wurtzite crystal structures and a high density of structural defects such as stacking faults and twins. Our results suggest that the incorporation of As into InP wires decreases with increasing substrate temperature. The Raman spectra obtained from the In(As)P nanowires reveal a red-shift and lower intensity of longitudinal optical mode relative to both InP nanowires and InP(111)B bulk, due to the incorporation of As into the InP matrix. PMID:27094822

  12. Self-Catalyzed Growth and Characterization of In(As)P Nanowires on InP(111)B Using Metal-Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Park, Jeung Hun; Pozuelo, Marta; Setiawan, Bunga P. D.; Chung, Choong-Heui

    2016-04-01

    We report the growth of vertical <111>-oriented InAs x P1- x (0.11 ≤ x ≤ 0.27) nanowires via metal-organic chemical vapor deposition in the presence of indium droplets as catalysts on InP(111)B substrates at 375 °C. Trimethylindium, tertiarybutylphosphine, and tertiarybutylarsine are used as the precursors, corresponding to P/In and As/In molar ratios of 29 and 0.01, respectively. The as-grown nanowire growth morphologies, crystallinity, composition, and optical characteristics are determined using a combination of scanning and transmission electron microscopies, electron diffraction, and X-ray photoelectron, energy dispersive X-ray, and Raman spectroscopies. We find that the InAs x P1- x nanowires are tapered with narrow tops, wider bases, and In-rich In-As alloy tips, characteristic of vapor-liquid-solid process. The wires exhibit a mixture of zinc blende and wurtzite crystal structures and a high density of structural defects such as stacking faults and twins. Our results suggest that the incorporation of As into InP wires decreases with increasing substrate temperature. The Raman spectra obtained from the In(As)P nanowires reveal a red-shift and lower intensity of longitudinal optical mode relative to both InP nanowires and InP(111)B bulk, due to the incorporation of As into the InP matrix.

  13. Effects of growth temperature on the properties of InGaN channel heterostructures grown by pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yachao; Zhou, Xiaowei; Xu, Shengrui; Wang, Zhizhe; Chen, Zhibin; Zhang, Jinfeng; Zhang, Jincheng; Hao, Yue

    2015-12-01

    Pulsed metal organic chemical vapor deposition (P-MOCVD) is introduced into the growth of high quality InGaN channel heterostructures. The effects of InGaN channel growth temperature on the structural and transport properties of the heterostructures are investigated in detail. High resolution x-ray diffraction (HRXRD) and Photoluminescence (PL) spectra indicate that the quality of InGaN channel strongly depends on the growth temperature. Meanwhile, the atomic force microscopy (AFM) results show that the interface morphology between the InGaN channel and the barrier layer also relies on the growth temperature. Since the variation of material properties of InGaN channel has a significant influence on the electrical properties of InAlN/InGaN heterostructures, the optimal transport properties can be achieved by adjusting the growth temperature. A very high two dimension electron gas (2DEG) density of 1.92 × 1013 cm-2 and Hall electron mobility of 1025 cm2/(Vṡs) at room temperature are obtained at the optimal growth temperature around 740 °C. The excellent transport properties in our work indicate that the heterostructure with InGaN channel is a promising candidate for the microwave power devices, and the results in this paper will be instructive for further study of the InGaN channel heterostructures.

  14. A Transmission Electron Microscopy Observation of Dislocations in GaN Grown on (0001) Sapphire by Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Yao; Yang, Jer-Ren

    2008-10-01

    A transmission electron microscopy (TEM) observation of dislocations in GaN grown on (0001) sapphire by metal organic chemical vapor deposition (MOCVD) was carried out in this study. The GaN film was rotated 30° around the c-axis in the growth plane against the substrate. The finding of this research, according to TEM analysis, is that about 3% (or less) of the threading dislocations are pure screw (b = <0001 >) and 20% are pure edge (b = 1/3 <1120 >). The remaining threading dislocations, about 77%, are mixed-type dislocations; that is the major dislocation type in the GaN epitaxial layer grown on (0001) sapphire is the mixed type. In addition, to further understand the dislocation configuration on the interface of GaN/sapphire, a plane-view TEM sample of the GaN/sapphire interface was prepared. The plane-view TEM image of the GaN/sapphire interface reveals an extremely high density of kink dislocations lying on the interface, with a dislocation density of about 8×109 cm-2, involving high strain and stress. A comparison of the 8×109 cm-2 dislocation density with another plane-view TEM image (6×108 cm-2) near the GaN free surface revealed that approximately 7.5% of the dislocations lying on the substrate coalesce into threading dislocations generated from the interface to the GaN surface.

  15. Thermal stability of an InAlN/GaN heterostructure grown on silicon by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Watanabe, Arata; Freedsman, Joseph J.; Urayama, Yuya; Christy, Dennis; Egawa, Takashi

    2015-12-01

    The thermal stabilities of metal-organic chemical vapor deposition-grown lattice-matched InAlN/GaN/Si heterostructures have been reported by using slower and faster growth rates for the InAlN barrier layer in particular. The temperature-dependent surface and two-dimensional electron gas (2-DEG) properties of these heterostructures were investigated by means of atomic force microscopy, photoluminescence excitation spectroscopy, and electrical characterization. Even at the annealing temperature of 850 °C, the InAlN layer grown with a slower growth rate exhibited a smooth surface morphology that resulted in excellent 2-DEG properties for the InAlN/GaN heterostructure. As a result, maximum values for the drain current density (IDS,max) and transconductance (gm,max) of 1.5 A/mm and 346 mS/mm, respectively, were achieved for the high-electron-mobility transistor (HEMT) fabricated on this heterostructure. The InAlN layer grown with a faster growth rate, however, exhibited degradation of the surface morphology at an annealing temperature of 850 °C, which caused compositional in-homogeneities and impacted the 2-DEG properties of the InAlN/GaN heterostructure. Additionally, an HEMT fabricated on this heterostructure yielded lower IDS,max and gm,max values of 1 A/mm and 210 mS/mm, respectively.

  16. Hexagonal phase-pure wide band gap ɛ-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xia, Xiaochuan; Chen, Yuanpeng; Feng, Qiuju; Liang, Hongwei; Tao, Pengcheng; Xu, Mengxiang; Du, Guotong

    2016-05-01

    In this paper, hexagonal structure phase-pure wide-band gap ɛ-Ga2O3 films were grown by metal organic chemical vapor deposition on 6H-SiC substrates. The ɛ-Ga2O3 films with good crystal quality were verified by high-resolution X-ray diffraction. The out-of-plane epitaxial relationship between ɛ-Ga2O3 films and 6H-SiC substrates is confirmed to be ɛ-Ga2O3 (0001)//6H-SiC (0001), and the in-plane epitaxial relationship is also confirmed to be ɛ-Ga2O3 ⟨ 11 2 ¯ 0 ⟩//6H-SiC ⟨ 11 2 ¯ 0 ⟩. The SEM and AFM images show that the ɛ-Ga2O3 films are uniform and flat. The ɛ-Ga2O3 films are thermally stable up to approximately 800 °C and begin to transform into β-phase Ga2O3 at 850 °C. Then, they are completely converted to β-Ga2O3 films under 900 °C. The high-quality ɛ-Ga2O3 films with hexagonal structure have potential application in the optoelectronic field.

  17. The Growth of InAsSb/InAs/InPSb/InAs Mid-Infrared Emitters by Metal-Organic Chemical Vapor Deposition

    SciTech Connect

    BIEFELD,ROBERT M.; PHILLIPS,J.D.; KURTZ,STEVEN R.

    1999-12-08

    We report on the metal-organic chemical vapor deposition (MOCVD) of strained layer superlattices (SLSs) of InAsSb/InAs/InPSb/InAs as well as mid-infrared optically pumped lasers grown using a high speed rotating disk react,or (RDR). The devices contain AIAsSb cladding layers and strained, type I, InAsSb/InAs/InPSb/InAs strained layer superlattice (SLS) active regions. By changing the layer thickness and composition of the SLS, we have prepared structures with low temperature (<20K) photoluminescence wavelengths ranging from 3.4 to 4.8 pm. The optical properties of the InAsSb/InPSb superlattices revealed an anomalous low energy transition that can be assigned to an antimony-rich, interfacial layer in the superlattice. This low energy transition can be eliminated by introducing a 1.0 nm InAs layer between the InAsSb and InPSb layers in the superlattice. An InAsSb/InAs/lnPSbflnAs SLS laser was grown on an InAs substrate with AlAs{sub 0.16}Sb{sub 0.84} cladding layers. A lasing threshold and spectrally narrowed laser emission were seen from 80 through 250 K, the maximum temperature where lasing occurred. The temperature dependence of the SLS laser threshold is described by a characteristic temperature, T{sub 0} = 39 K, from 80 to 200 K.

  18. Ultrathin barrier AlN/GaN high electron mobility transistors grown at a dramatically reduced growth temperature by pulsed metal organic chemical vapor deposition

    SciTech Connect

    Xue, JunShuai Zhang, JinCheng Hao, Yue

    2015-07-27

    Ultrathin-barrier AlN/GaN heterostructures were grown on sapphire substrates by pulsed metal organic chemical vapor deposition (PMOCVD) using indium as a surfactant at a dramatically reduced growth temperature of 830 °C. Upon optimization of growth parameters, an electron mobility of 1398 cm{sup 2}/V s together with a two-dimensional-electron-gas density of 1.3 × 10{sup 13 }cm{sup −2} was obtained for a 4 nm thick AlN barrier. The grown structures featured well-ordered parallel atomic steps with a root-mean-square roughness of 0.15 nm in a 5 × 5 μm{sup 2} area revealed by atomic-force-microscopic image. Finally, the potential of such structures for device application was demonstrated by fabricating and testing under dc operation AlN/GaN high-electron-mobility transistors. These results indicate that this low temperature PMOCVD growth technique is promising for the fabrication of GaN-based electronic devices.

  19. High-Quality InAsSb Nanowires Grown by Catalyst-Free Selective-Area Metal-Organic Chemical Vapor Deposition.

    PubMed

    Farrell, Alan C; Lee, Wook-Jae; Senanayake, Pradeep; Haddad, Michael A; Prikhodko, Sergey V; Huffaker, Diana L

    2015-10-14

    We report on the first demonstration of InAs1-xSbx nanowires grown by catalyst-free selective-area metal-organic chemical vapor deposition (SA-MOCVD). Antimony composition as high as 15 % is achieved, with strong photoluminescence at all compositions. The quality of the material is assessed by comparing the photoluminescence (PL) peak full-width at half-max (fwhm) of the nanowires to that of epitaxially grown InAsSb thin films on InAs. We find that the fwhm of the nanowires is only a few meV broader than epitaxial films, and a similar trend of relatively constant fwhm for increasing antimony composition is observed. Furthermore, the PL peak energy shows a strong dependence on temperature, suggesting wave-vector conserving transitions are responsible for the observed PL in spite of lattice mismatched growth on InAs substrate. This study shows that high-quality InAsSb nanowires can be grown by SA-MOCVD on lattice mismatched substrate, resulting in material suitable for infrared detectors and high-performance nanoelectronic devices. PMID:26422559

  20. The growth of InAsSb/InGaAs strained-layer superlattices by metal-organic chemical vapor deposition

    SciTech Connect

    Biefeld, R.M.; Baucom, K.C.; Kurtz, S.R.; Follstaedt, D.M.

    1993-12-31

    We have grown InAs{sub l-x}Sb{sub x}/In{sub 1-y}Ga{sub y}As strained-layer superlattice (SLS) semiconductors lattice matched to InAs using a variety of conditions by metal-organic chemical vapor deposition. The V/III ratio was varied from 2.5 to 10 at 475 C, at pressures of 200 to 660 torr and growth rates of 3 {minus} 5 {angstrom}/s and layer thicknesses ranging from 55 to 152 {angstrom}. Composition of InAsSb ternary can be predicted from the input gas molar flow rates using a thermodynamic model. At lower temperatures, the thermodynamic model must be modified to take account of the incomplete decomposition of arsine and trimethylantimony. Diodes have been prepared using Zn as the p-type dopant and undoped SLS as the n-type material. The diode was found to emit at 3.56 {mu}m. These layers have been characterized by optical microscopy, SIMS, x-ray diffraction, and transmission electron diffraction. The optical properties of these SLS`s were determined by infrared photoluminescence and absorption measurements.

  1. Effects of growth temperature on the properties of InGaN channel heterostructures grown by pulsed metal organic chemical vapor deposition

    SciTech Connect

    Zhang, Yachao; Zhou, Xiaowei; Xu, Shengrui; Wang, Zhizhe; Chen, Zhibin; Zhang, Jinfeng; Zhang, Jincheng E-mail: xd-zhangyachao@163.com; Hao, Yue E-mail: xd-zhangyachao@163.com

    2015-12-15

    Pulsed metal organic chemical vapor deposition (P-MOCVD) is introduced into the growth of high quality InGaN channel heterostructures. The effects of InGaN channel growth temperature on the structural and transport properties of the heterostructures are investigated in detail. High resolution x-ray diffraction (HRXRD) and Photoluminescence (PL) spectra indicate that the quality of InGaN channel strongly depends on the growth temperature. Meanwhile, the atomic force microscopy (AFM) results show that the interface morphology between the InGaN channel and the barrier layer also relies on the growth temperature. Since the variation of material properties of InGaN channel has a significant influence on the electrical properties of InAlN/InGaN heterostructures, the optimal transport properties can be achieved by adjusting the growth temperature. A very high two dimension electron gas (2DEG) density of 1.92 × 10{sup 13} cm{sup −2} and Hall electron mobility of 1025 cm{sup 2}/(V⋅s) at room temperature are obtained at the optimal growth temperature around 740 °C. The excellent transport properties in our work indicate that the heterostructure with InGaN channel is a promising candidate for the microwave power devices, and the results in this paper will be instructive for further study of the InGaN channel heterostructures.

  2. Fabrication of 160-nm T-gate metamorphic AlInAs/GaInAs HEMTs on GaAs substrates by metal organic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Li, Hai-Ou; Huang, Wei; Tang Chak, Wah; Deng, Xiao-Fang; Lau Kei, May

    2011-06-01

    The fabrication and performance of 160-nm gate-length metamorphic AlInAs/GaInAs high electron mobility transistors (mHEMTs) grown on GaAs substrate by metal organic chemical vapour deposition (MOCVD) are reported. By using a novel combined optical and e-beam photolithography technology, submicron mHEMTs devices have been achieved. The devices exhibit good DC and RF performance. The maximum current density was 817 mA/mm and the maximum transconductance was 828 mS/mm. The non-alloyed Ohmic contact resistance Rc was as low as 0.02 Ω-mm. The unity current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) were 146 GHz and 189 GHz, respectively. This device has the highest fT yet reported for a 160-nm gate-length HEMTs grown by MOCVD. The output conductance is 28.9 mS/mm, which results in a large voltage gain of 28.6. Also, an input capacitance to gate-drain feedback capacitance ratio, Cgs/Cgd, of 4.3 is obtained in the device.

  3. Demonstration of InAlN/AlGaN high electron mobility transistors with an enhanced breakdown voltage by pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Xue, JunShuai; Zhang, JinCheng; Hao, Yue

    2016-01-01

    In this work, InAlN/AlGaN heterostructures employing wider bandgap AlGaN instead of conventional GaN channel were grown on sapphire substrate by pulsed metal organic chemical vapor deposition, where the nominal Al composition in InAlN barrier and AlGaN channel were chosen to be 83% and 5%, respectively, to achieve close lattice-matched condition. An electron mobility of 511 cm2/V s along with a sheet carrier density of 1.88 × 1013 cm-2 were revealed in the prepared heterostructures, both of which were lower compared with lattice-matched InAlN/GaN due to increased intrinsic alloy disorder scattering resulting from AlGaN channel and compressively piezoelectric polarization in barrier, respectively. While the high electron mobility transistor (HEMT) processed on these structures not only exhibited a sufficiently high drain output current density of 854 mA/mm but also demonstrated a significantly enhanced breakdown voltage of 87 V, which is twice higher than that of reported InAlN/GaN HEMT with the same device dimension, potential characteristics for high-voltage operation of GaN-based electronic devices.

  4. Phosphor-free white-light emitters using in-situ GaN nanostructures grown by metal organic chemical vapor deposition

    PubMed Central

    Min, Daehong; Park, Donghwy; Jang, Jongjin; Lee, Kyuseung; Nam, Okhyun

    2015-01-01

    Realization of phosphor-free white-light emitters is becoming an important milestone on the road to achieve high quality and reliability in high-power white-light-emitting diodes (LEDs). However, most of reported methods have not been applied to practical use because of their difficulties and complexity. In this study we demonstrated a novel and practical growth method for phosphor-free white-light emitters without any external processing, using only in-situ high-density GaN nanostructures that were formed by overgrowth on a silicon nitride (SiNx) interlayer deposited by metal organic chemical vapor deposition. The nano-sized facets produced variations in the InGaN thickness and the indium concentration when an InGaN/GaN double heterostructure was monolithically grown on them, leading to white-color light emission. It is important to note that the in-situ SiNx interlayer not only facilitated the GaN nano-facet structure, but also blocked the propagation of dislocations. PMID:26626890

  5. Growth and characterization of well-aligned densely-packed rutile TiO(2) nanocrystals on sapphire substrates via metal-organic chemical vapor deposition.

    PubMed

    Chen, C A; Chen, Y M; Korotcov, A; Huang, Y S; Tsai, D S; Tiong, K K

    2008-02-20

    Well-aligned densely-packed rutile TiO(2) nanocrystals (NCs) have been grown on sapphire (SA) (100) and (012) substrates via metal-organic chemical vapor deposition (MOCVD), using titanium-tetraisopropoxide (TTIP, Ti(OC(3)H(7))(4)) as a source reagent. The surface morphology as well as structural and spectroscopic properties of the as-deposited NCs were characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffractometry (SAED), x-ray diffraction (XRD) and micro-Raman spectroscopy. FESEM micrographs reveal that vertically aligned NCs were grown on SA(100), whereas the NCs on the SA(012) were grown with a tilt angle of ∼33° from the normal to substrates. TEM and SAED measurements showed that the TiO(2) NCs on SA(100) with square cross section have their long axis directed along the [001] direction. The XRD results reveal TiO(2) NCs with either (002) orientation on SA(100) substrate or (101) orientation on SA(012) substrate. A strong substrate effect on the alignment of the growth of TiO(2) NCs has been demonstrated and the probable mechanism for the formation of these NCs has been discussed. PMID:21817648

  6. Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrates via metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, C. A.; Chen, Y. M.; Korotcov, A.; Huang, Y. S.; Tsai, D. S.; Tiong, K. K.

    2008-02-01

    Well-aligned densely-packed rutile TiO2 nanocrystals (NCs) have been grown on sapphire (SA) (100) and (012) substrates via metal-organic chemical vapor deposition (MOCVD), using titanium-tetraisopropoxide (TTIP, Ti(OC3H7)4) as a source reagent. The surface morphology as well as structural and spectroscopic properties of the as-deposited NCs were characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffractometry (SAED), x-ray diffraction (XRD) and micro-Raman spectroscopy. FESEM micrographs reveal that vertically aligned NCs were grown on SA(100), whereas the NCs on the SA(012) were grown with a tilt angle of ~33° from the normal to substrates. TEM and SAED measurements showed that the TiO2 NCs on SA(100) with square cross section have their long axis directed along the [001] direction. The XRD results reveal TiO2 NCs with either (002) orientation on SA(100) substrate or (101) orientation on SA(012) substrate. A strong substrate effect on the alignment of the growth of TiO2 NCs has been demonstrated and the probable mechanism for the formation of these NCs has been discussed.

  7. InGaAs/InP Avalanche Photodiode for Single Photon Detection with Zinc Diffusion Process Using Metal Organic Chemical Vapor Deposition.

    PubMed

    Lee, In Joon; Lee, Min Soo; Kim, Min Su; Jun, Dong-Hwan; Jeong, Hae Yong; Kim, Sangin; Han, Sang-wook; Moon, Sung

    2016-05-01

    In this paper, we describe a design, simulation, and fabrication of an InGaAs/InP single photon avalanche photodiode (SPAD), which requires a much higher gain, compared to APD's for conventional optical communications. To achieve a higher gain, an efficient multiplication width control is essential because it significantly affects the overall performance including not only gain but also noise characteristics. Normally, the multiplication layer width is controlled by the Zinc diffusion process. For the reliable and controllable diffusion process, we used metal organic chemical vapor deposition (MOCVD). The controllability of the proposed diffusion process is proved by the diffusion depth measurement of the fabricated devices which show the proportional dependence on the square root of the diffusion time. As a result, we successfully implemented the SPAD that exhibits a high gain enough to detect single photons and a very low dark current level of about 0.1 nA with 0.95 breakdown voltage. The single photon detection efficiency of 15% was measured at the 100 kHz gate pulse rate and the temperature of 230 K. PMID:27483891

  8. Phosphor-free white-light emitters using in-situ GaN nanostructures grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Min, Daehong; Park, Donghwy; Jang, Jongjin; Lee, Kyuseung; Nam, Okhyun

    2015-12-01

    Realization of phosphor-free white-light emitters is becoming an important milestone on the road to achieve high quality and reliability in high-power white-light-emitting diodes (LEDs). However, most of reported methods have not been applied to practical use because of their difficulties and complexity. In this study we demonstrated a novel and practical growth method for phosphor-free white-light emitters without any external processing, using only in-situ high-density GaN nanostructures that were formed by overgrowth on a silicon nitride (SiNx) interlayer deposited by metal organic chemical vapor deposition. The nano-sized facets produced variations in the InGaN thickness and the indium concentration when an InGaN/GaN double heterostructure was monolithically grown on them, leading to white-color light emission. It is important to note that the in-situ SiNx interlayer not only facilitated the GaN nano-facet structure, but also blocked the propagation of dislocations.

  9. High-crystalline GaSb epitaxial films grown on GaAs(001) substrates by low-pressure metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Lian-Kai; Liu, Ren-Jun; Lü, You; Yang, Hao-Yu; Li, Guo-Xing; Zhang, Yuan-Tao; Zhang, Bao-Lin

    2015-01-01

    Orthogonal experiments of GaSb films growth on GaAs(001) substrates have been designed and performed by using a low-pressure metal-organic chemical vapor deposition (LP-MOCVD) system. The crystallinities and microstructures of the produced films were comparatively analyzed to achieve the optimum growth parameters. It was demonstrated that the optimized GaSb thin film has a narrow full width at half maximum (358 arc sec) of the (004) ω-rocking curve, and a smooth surface with a low root-mean-square roughness of about 6 nm, which is typical in the case of the heteroepitaxial single-crystal films. In addition, we studied the effects of layer thickness of GaSb thin film on the density of dislocations by Raman spectra. It is believed that our research can provide valuable information for the fabrication of high-crystalline GaSb films and can promote the integration probability of mid-infrared devices fabricated on mainstream performance electronic devices. Project supported by the National Natural Science Foundation of China (Grant No. 61076010) and the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun, China (Grant No. 12ZX68).

  10. Self-assembled growth and structural analysis of inclined GaN nanorods on nanoimprinted m-sapphire using catalyst-free metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin; Min, Daehong; Kim, Jaehwan; Nam, Okhyun

    2016-04-01

    In this study, self-assembled inclined (1-10-3)-oriented GaN nanorods (NRs) were grown on nanoimprinted (10-10) m-sapphire substrates using catalyst-free metal-organic chemical vapor deposition. According to X-ray phi-scans, the inclined GaN NRs were tilted at an angle of ˜57.5° to the [10-10]sapp direction. Specifically, the GaN NRs grew in a single inclined direction to the [11-20]sapp. Uni-directionally inclined NRs were formed through the one-sided (10-11)-faceted growth of the interfacial a-GaN plane layer. It was confirmed that a thin layer of a-GaN was formed on r-facet nanogrooves of the m-sapphire substrate by nitridation. The interfacial a-GaN nucleation affected both the inclined angle and the growth direction of the inclined GaN NRs. Using X-ray diffraction and selective area electron diffraction, the epitaxial relationship between the inclined (1-10-3) GaN NRs and interfacial a-GaN layer on m-sapphire substrates was systematically investigated. Moreover, the inclined GaN NRs were observed to be mostly free of stacking fault-related defects using high-resolution transmission electron microscopy.

  11. Chemical and structural stability of zirconium-based metal-organic frameworks with large three-dimensional pores by linker engineering.

    PubMed

    Kalidindi, Suresh B; Nayak, Sanjit; Briggs, Michael E; Jansat, Susanna; Katsoulidis, Alexandros P; Miller, Gary J; Warren, John E; Antypov, Dmytro; Corà, Furio; Slater, Ben; Prestly, Mark R; Martí-Gastaldo, Carlos; Rosseinsky, Matthew J

    2015-01-01

    The synthesis of metal-organic frameworks with large three-dimensional channels that are permanently porous and chemically stable offers new opportunities in areas such as catalysis and separation. Two linkers (L1=4,4',4'',4'''-([1,1'-biphenyl]-3,3',5,5'-tetrayltetrakis(ethyne-2,1-diyl)) tetrabenzoic acid, L2=4,4',4'',4'''-(pyrene-1,3,6,8-tetrayltetrakis(ethyne-2,1-diyl))tetrabenzoic acid) were used that have equivalent connectivity and dimensions but quite distinct torsional flexibility. With these, a solid solution material, [Zr6 O4 (OH)4 (L1)2.6 (L2)0.4 ]⋅(solvent)x , was formed that has three-dimensional crystalline permanent porosity with a surface area of over 4000 m(2)  g(-1) that persists after immersion in water. These properties are not accessible for the isostructural phases made from the separate single linkers. PMID:25521699

  12. Structural and optical analyses of AlxGa1-xN thin films grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kucukgok, Bahadir; Lu, Na; Ferguson, Ian T.; Wang, Shu Chang; Zhang, Xiong; Feng, Zhe Chuan

    2015-02-01

    A series of AlxGa1-xN thin films with x = 0.20-0.60 were grown by metal organic chemical vapor deposition (MOCVD) on sapphire (0001) substrate using AlN buffer layer. High resolution X-ray diffraction (HRXRD) was performed for (0002), (0004), and (0006) reflections to investigate the threading dislocation density in variation with Al composition by X-ray analysis technique; Williamson-Hall (WH) plot. A symmetric high resolution 2θ-ω scans exhibit high crystal quality for all the AlGaN samples. A room temperature deep ultraviolet (DUV) photoluminescence (PL) spectroscopy (excitation at 248 nm) has also been employed to investigate the effect of various Al compositions on crystal structure of the thin film layers. It was observed that the band edge transition peak energy blueshifts from 3.87 eV for x = 0.23 to 4.55 eV for x = 0.47. In addition to the band edge transition, each spectrum also shows deep impurity transitions.

  13. Low-temperature growth and characterization of single crystalline ZnO nanorod arrays using a catalyst-free inductively coupled plasma-metal organic chemical vapor deposition.

    PubMed

    Jeong, Sang-Hun; Lee, Chang-Bae; Moon, Won-Jin; Song, Ho-Jun

    2008-10-01

    Vertically aligned ZnO nanorod arrays have been synthesized on c-plane sapphires at a low temperature of 400 degrees C using catalyst-free inductively coupled plasma (ICP) metal organic chemical vapor deposition (MOCVD) technique by varying the ICP powers. Diameters of the ZnO nanorods changed from 200 nm to 400 nm as the ICP power increased from 200 to 400 Watt. TEM and XRD investigations indicated that the ZnO nanorod arrays grown at ICP powers above 200 Watt had a homogeneous in-plane alignment and single crystalline nature. PL study at room temperature (RT) and 6 K confirmed that the ZnO nanorod arrays in the present study are of high optical quality as well as good crystalline quality, showing only exciton-related emission peaks without any trace of defect-related deep level emissions in visible range. The blueshift of exciton emission peak in RTPL spectra was also found as rod diameter decreased and it is deduced that this shift in emission energy may be due to the surface resonance effect resulted from the increased surface-to-volume ratio, based on the observation and behavior of the surface exciton (SX) emission in the high-resolution 6 K PL spectra. PMID:19198399

  14. A chemical assessment of the suitability of allyl- iso-propyltelluride as a Te precursor for metal organic vapour phase epitaxy

    NASA Astrophysics Data System (ADS)

    Hails, Janet E.; Cole-Hamilton, David J.; Stevenson, John; Bell, William; Foster, Douglas F.; Ellis, David

    2001-04-01

    The chemical studies, which led to the testing of allyl- iso-propyltelluride (allylTePr i) as a Te precursor in metal organic vapour phase epitaxy are presented. The pyrolysis in hydrogen of allylTePr i gave products including 1,5-hexadiene, propane and propene. Co-pyrolysis of dimethylcadmium (Me 2Cd) and allylTePr i gave the hydrocarbons expected from the pyrolysis of the individual precursors plus additional hydrocarbons including 2-methylpropane and 1-butene. Plots of percentage decomposition versus temperature, which proved extremely useful in determining the likely growth temperatures for both CdTe and HgTe, showed that allylTePr i is less stable than both Pr 2iTe (di- iso-propyltelluride) and Me 2Cd. The possible role of Hg in the growth of CdTe is also discussed. The chemistry of allylTePr i is well suited for use as an efficient precursor for epitaxial growth of tellurium containing semiconductors since there is very little formation of other organotellurium compounds on pyrolysis.

  15. Metal-doped organic foam

    DOEpatents

    Rinde, James A.

    1982-01-01

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  16. Electrical characterization of alpha radiation-induced defects in p-GaAs grown by metal-organic chemical-vapor deposition

    SciTech Connect

    Naz, Nazir A.; Qurashi, Umar S.; Iqbal, M. Zafar

    2007-03-15

    Investigations of the alpha particle irradiation-induced defects in low-pressure metal-organic chemical-vapor deposition grown p-GaAs have been carried out. By employing deep-level transient spectroscopy, at least seven radiation-induced deep-level defects have been observed in the lower half of the band gap in the temperature range of 12-475 K. Double-correlation deep-level transient spectroscopy measurements show three prominent levels: two known radiation-induced levels namely, H{alpha}1 and H{alpha}5, and one inadvertent center HSA, present before irradiation, to exhibit a significant dependence of thermal emission rate on the junction electric field. For H{alpha}1 and HSA the field-enhanced emission data are well fitted with a Poole-Frenkel model, using a three-dimensional square-well potential with radius r=3.2 and 1.43 nm, respectively. The field effect for H{alpha}5 has been explained by a square-well potential in combination with a phonon-assisted tunneling process. Detailed data on the carrier capture cross section for all three levels have been obtained. The hole capture cross section for the levels H{alpha}1 and H{alpha}5 are found to be temperature independent, while for HSA, the hole capture data show a dependence on temperature. The dependence of hole capture cross section of HSA on temperature has been explained in terms of multiphonon capture mechanism, yielding a capture barrier of 0.13 eV and {sigma}({infinity})=1.5x10{sup -14} cm{sup 2}. These analyses lead us to conclude that the levels H{alpha}1 and HSA are associated with a charged center, while the level H{alpha}5 is most likely a substitutional defect in GaAs.

  17. Parameters study on the growth of GaAs nanowires on indium tin oxide by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wu, Dan; Tang, Xiaohong; Wang, Kai; Olivier, Aurelien; Li, Xianqiang

    2016-03-01

    After successful demonstration of GaAs nanowire (NW) epitaxial growth on indium tin oxide (ITO) by metal organic chemical vapor deposition, we systematically investigate the effect of growth parameters' effect on the GaAs NW, including temperature, precursor molar flow rates, growth time, and Au catalyst size. 40 nm induced GaAs NWs are observed with zinc-blende structure. Based on vapor-liquid-solid mechanism, a kinetic model is used to deepen our understanding of the incorporation of growth species and the role of various growth parameters in tuning the GaAs NW growth rate. Thermally activated behavior has been investigated by variation of growth temperature. Activation energies of 40 nm Au catalyst induced NWs are calculated at different trimethylgallium (TMGa) molar flow rates about 65 kJ/mol. The GaAs NWs growth rates increase with TMGa molar flow rates whereas the growth rates are almost independent of growth time. Due to Gibbs-Thomson effect, the GaAs NW growth rates increase with Au nanoparticle size at different temperatures. Critical radius is calculated as 2.14 nm at the growth condition of 430 °C and 1.36 μmol/s TMGa flow rate. It is also proved experimentally that Au nanoparticle below the critical radius such as 2 nm cannot initiate the growth of NWs on ITO. This theoretical and experimental growth parameters investigation enables great controllability over GaAs NWs grown on transparent conductive substrate where the methodology can be expanded to other III-V material NWs and is critical for potential hybrid solar cell application.

  18. Thermal stability of an InAlN/GaN heterostructure grown on silicon by metal-organic chemical vapor deposition

    SciTech Connect

    Watanabe, Arata Freedsman, Joseph J.; Urayama, Yuya; Christy, Dennis; Egawa, Takashi

    2015-12-21

    The thermal stabilities of metal-organic chemical vapor deposition-grown lattice-matched InAlN/GaN/Si heterostructures have been reported by using slower and faster growth rates for the InAlN barrier layer in particular. The temperature-dependent surface and two-dimensional electron gas (2-DEG) properties of these heterostructures were investigated by means of atomic force microscopy, photoluminescence excitation spectroscopy, and electrical characterization. Even at the annealing temperature of 850 °C, the InAlN layer grown with a slower growth rate exhibited a smooth surface morphology that resulted in excellent 2-DEG properties for the InAlN/GaN heterostructure. As a result, maximum values for the drain current density (I{sub DS,max}) and transconductance (g{sub m,max}) of 1.5 A/mm and 346 mS/mm, respectively, were achieved for the high-electron-mobility transistor (HEMT) fabricated on this heterostructure. The InAlN layer grown with a faster growth rate, however, exhibited degradation of the surface morphology at an annealing temperature of 850 °C, which caused compositional in-homogeneities and impacted the 2-DEG properties of the InAlN/GaN heterostructure. Additionally, an HEMT fabricated on this heterostructure yielded lower I{sub DS,max} and g{sub m,max} values of 1 A/mm and 210 mS/mm, respectively.

  19. Performance of metal-organic framework MIL-101 after surfactant modification in the extraction of endocrine disrupting chemicals from environmental water samples.

    PubMed

    Huang, Zhenzhen; Lee, Hian Kee

    2015-10-01

    The research presented in this paper explored the modification and application of a metal-organic framework, MIL-101, with nonionic surfactant-Triton X-114 in dispersive solid-phase extraction for the preconcentration of four endocrine disrupting chemicals (estrone, 17α-ethynylestradiol, estriol and diethylstilbestrol) from environmental water samples. Triton X-114 molecules could be adsorbed by the hydrophobic surface of the MIL-101 crystals, and thus improved the dispersibility of MIL-101 in aqueous solution by serving as a hydrophilic coating. Cloud point phase separation from Triton X-114 accelerated the separation of extracts from the aqueous matrix. The proposed method combines the favorable attributes of strong adsorption capacity resulting from the porous structure of MIL-101 and self-assembly of Triton X-114 molecules. Post-extraction derivatization using N-methyl-N-(trimethylsilyl)trifluoroacetamide was employed to facilitate the quantitative determination of the extracts by gas chromatography-mass spectrometry. The main factors affecting the preparation of modified MIL-101, and extraction of the analytes, such as the amount of surfactant, the ultrasonic and vortex durations, solution pH and desorption conditions, were investigated in detail. Under the optimized conditions, the present method yielded low limits of detection (0.006-0.023 ng/mL), good linearity from 0.09 to 45 ng/mL (coefficients of determination higher than 0.9980) and acceptable precision (relative standard deviations of 2.2-13%). The surface modified MIL-101 was demonstrated to be effective for the extraction of the selected estrogens from aqueous samples, giving rise to markedly improved extraction performance compared to the unmodified MIL-101. PMID:26078172

  20. Nanodots and microwires of ZrO2 grown on LaAlO3 by photo-assisted metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Feng, Guo; Xin-Sheng, Wang; Shi-Wei, Zhuang; Guo-Xing, Li; Bao-Lin, Zhang; Pen-Chu, Chou

    2016-02-01

    ZrO2 nanodots are successfully prepared on LaAlO3 (LAO) (100) substrates by photo-assisted metal-organic chemical vapor deposition (MOCVD). It is indicated that the sizes and densities of ZrO2 nanodots are controllable by modulating the growth temperature, oxygen partial pressure, and growth time. Meanwhile, the microwires are observed on the surfaces of substrates. It is found that there is an obvious competitive relationship between the nanodots and the microwires. In a growth temperature range from 500 °C to 660 °C, the microwires turn longest and widest at 600 °C, but in contrast, the nanodots grow into the smallest diameter at 600 °C. This phenomenon could be illustrated by the energy barrier, decomposition rate of Zr(tmhd)4, and mobility of atoms. In addition, growth time or oxygen partial pressure also affects the competitive relationship between the nanodots and the microwires. With increasing oxygen partial pressure from 451 Pa to 752 Pa, the microwires gradually grow larger while the nanodots become smaller. To further achieve the controllable growth, the coarsening effect of ZrO2 is modified by varying the growth time, and the experimental results show that the coarsening effect of microwires is higher than that of nanodots by increasing the growth time to quickly minimize ZrO2 energy density. Project supported by the National Natural Science Foundation of China (Grant No. 51002063) and the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun City, China (Grant No. 12ZX68).

  1. In-situ wafer bowing measurements of GaN grown on Si (111) substrate by reflectivity mapping in metal organic chemical vapor deposition system

    NASA Astrophysics Data System (ADS)

    Yang, Yi-Bin; Liu, Ming-Gang; Chen, Wei-Jie; Han, Xiao-Biao; Chen, Jie; Lin, Xiu-Qi; Lin, Jia-Li; Luo, Hui; Liao, Qiang; Zang, Wen-Jie; Chen, Yin-Song; Qiu, Yun-Ling; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun

    2015-09-01

    In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2″ Thomas Swan close coupled showerhead metal organic chemical vapor deposition (MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses (tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, GaN grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded AlGaN buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant No. 2011CB301903), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2014KF17).

  2. Inclined angle-controlled growth of GaN nanorods on m-sapphire by metal organic chemical vapor deposition without a catalyst

    NASA Astrophysics Data System (ADS)

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin; Min, Daehong; Kim, Jaehwan; Eom, Daeyong; Yoo, Yang-Seok; Cho, Yong-Hoon; Nam, Okhyun

    2015-08-01

    In this study, we have intentionally grown novel types of (11-22)- and (1-10-3)-oriented3 and self-assembled inclined GaN nanorods (NRs) on (10-10) m-sapphire substrates using metal organic chemical vapor deposition without catalysts and ex situ patterning. Nitridation of the m-sapphire surface was observed to be crucial to the inclined angle as well as the growth direction of the GaN NRs. Polarity-selective KOH etching confirmed that both (11-22) and (1-10-3) GaN NRs are nitrogen-polar. Using pole figure measurements and selective area electron diffraction patterns, the epitaxial relationship between the inclined (11-22) and (1-10-3) GaN NRs and m-sapphire substrates was systematically demonstrated. Furthermore, it was verified that the GaN NRs were single-crystalline wurtzite structures. We observed that stacking fault-related defects were generated during the initial growth stage using high-resolution transmission electron microscopy. The blue-shift of the near band edge (NBE) peak in the inclined angle-controlled GaN NRs can be explained by a band filling effect through carrier saturation of the conduction band, resulting from a high Si-doping concentration; in addition, the decay time of NBE emission in (11-22)- and (1-10-3)-oriented NRs was much shorter than that of stacking fault-related emission. These results suggest that defect-free inclined GaN NRs can be grown on m-sapphire without ex situ treatment.

  3. Inclined angle-controlled growth of GaN nanorods on m-sapphire by metal organic chemical vapor deposition without a catalyst.

    PubMed

    Lee, Kyuseung; Chae, Sooryong; Jang, Jongjin; Min, Daehong; Kim, Jaehwan; Eom, Daeyong; Yoo, Yang-Seok; Cho, Yong-Hoon; Nam, Okhyun

    2015-08-21

    In this study, we have intentionally grown novel types of (11-22)- and (1-10-3)-oriented(3) and self-assembled inclined GaN nanorods (NRs) on (10-10) m-sapphire substrates using metal organic chemical vapor deposition without catalysts and ex situ patterning. Nitridation of the m-sapphire surface was observed to be crucial to the inclined angle as well as the growth direction of the GaN NRs. Polarity-selective KOH etching confirmed that both (11-22) and (1-10-3) GaN NRs are nitrogen-polar. Using pole figure measurements and selective area electron diffraction patterns, the epitaxial relationship between the inclined (11-22) and (1-10-3) GaN NRs and m-sapphire substrates was systematically demonstrated. Furthermore, it was verified that the GaN NRs were single-crystalline wurtzite structures. We observed that stacking fault-related defects were generated during the initial growth stage using high-resolution transmission electron microscopy. The blue-shift of the near band edge (NBE) peak in the inclined angle-controlled GaN NRs can be explained by a band filling effect through carrier saturation of the conduction band, resulting from a high Si-doping concentration; in addition, the decay time of NBE emission in (11-22)- and (1-10-3)-oriented NRs was much shorter than that of stacking fault-related emission. These results suggest that defect-free inclined GaN NRs can be grown on m-sapphire without ex situ treatment. PMID:26222432

  4. Nitride passivation reduces interfacial traps in atomic-layer-deposited Al{sub 2}O{sub 3}/GaAs (001) metal-oxide-semiconductor capacitors using atmospheric metal-organic chemical vapor deposition

    SciTech Connect

    Aoki, T. Fukuhara, N.; Osada, T.; Sazawa, H.; Hata, M.; Inoue, T.

    2014-07-21

    Using an atmospheric metal-organic chemical vapor deposition system, we passivated GaAs with AlN prior to atomic layer deposition of Al{sub 2}O{sub 3}. This AlN passivation incorporated nitrogen at the Al{sub 2}O{sub 3}/GaAs interface, improving the capacitance-voltage (C–V) characteristics of the resultant metal-oxide-semiconductor capacitors (MOSCAPs). The C–V curves of these devices showed a remarkable reduction in the frequency dispersion of the accumulation capacitance. Using the conductance method at various temperatures, we extracted the interfacial density of states (D{sub it}). The D{sub it} was reduced over the entire GaAs band gap. In particular, these devices exhibited D{sub it} around the midgap of less than 4 × 10{sup 12} cm{sup −2}eV{sup −1}, showing that AlN passivation effectively reduced interfacial traps in the MOS structure.

  5. Heavy metals in Antarctic organisms

    SciTech Connect

    Moreno, J.E.A. de; Moreno, V.J.; Gerpe, M.S.; Vodopivez, C.

    1997-02-01

    To evaluate levels of essential (zinc and copper) and non-essential (mercury and cadmium) heavy metals, 34 species of organisms from different areas close to the Antarctic Peninsula were analysed. These included algae, filter-feeders, omnivorous invertebrates and vertebrates. Mercury was not detected, while cadmium was found in the majority of organisms analysed (detection limit was 0.05 ppm for both metals). The highest cadmium concentration was observed in the starfish Odontaster validus. Anthozoans, sipunculids and nudibranchs showed maximum levels of zinc, while the highest copper level was found in the gastropod Trophon brevispira. Mercury and cadmium levels in fishes were below the detection limit. Concentrations of essential and non-essential metals in birds were highest in liver followed by muscle and eggs. Cadmium and mercury levels in muscle of southern elephant seals were above the detection limit, whereas in Antarctic fur seals they were below it. The objective of the study was to gather baseline information for metals in Antarctic Ocean biota that may be needed to detect, measure and monitor future environmental changes. 46 refs., 7 figs., 8 tabs.

  6. Reclaiming metals and organics from industrial wastewaters

    SciTech Connect

    Kilambi, S.

    1996-08-01

    The liquid membrane transport process is an emerging new technology where specific material species are transported selectively and rapidly across a liquid membrane. Supported liquid membranes (SLMs) can be used in metal ion separations, gas transfer, volatile organic compounds (VOCs) removal, solvent extraction, biotechnology and reverse osmosis (RO)/ultrafiltration (UF). Although SLMs were invented in the early 1970s, the bulk of experimental studies involving SLMs for metal removal have been carried out in the last 10 years. Some of these experimental studies included work that surveyed the liquid membrane applications in general, including those for metal ion removal; discussed the theoretical and experimental aspects of general, facilitated transport systems; reviewed the work being carried out at Argonne National Laboratory on separation of metal species by SLMs and also the development of /simple equations to describe the metal ions transport by SLMs; and presented the basic principles involved in applying SLM transport processes for recovery and separation of metals from aqueous solutions that include passive and active transport, aqueous and membrane diffusion and chemical reactions. This article will describe the economic feasibility for using an SLM for recovery of nickel and chromium from plating rise waters and compare the economics with alternate technologies.

  7. Chemical sensing and imaging with metallic nanorods.

    PubMed

    Murphy, Catherine J; Gole, Anand M; Hunyadi, Simona E; Stone, John W; Sisco, Patrick N; Alkilany, Alaaldin; Kinard, Brian E; Hankins, Patrick

    2008-02-01

    In this Feature Article, we examine recent advances in chemical analyte detection and optical imaging applications using gold and silver nanoparticles, with a primary focus on our own work. Noble metal nanoparticles have exciting physical and chemical properties that are entirely different from the bulk. For chemical sensing and imaging, the optical properties of metallic nanoparticles provide a wide range of opportunities, all of which ultimately arise from the collective oscillations of conduction band electrons ("plasmons") in response to external electromagnetic radiation. Nanorods have multiple plasmon bands compared to nanospheres. We identify four optical sensing and imaging modalities for metallic nanoparticles: (1) aggregation-dependent shifts in plasmon frequency; (2) local refractive index-dependent shifts in plasmon frequency; (3) inelastic (surface-enhanced Raman) light scattering; and (4) elastic (Rayleigh) light scattering. The surface chemistry of the nanoparticles must be tunable to create chemical specificity, and is a key requirement for successful sensing and imaging platforms. PMID:18209787

  8. Method of stripping metals from organic solvents

    DOEpatents

    Todd, Terry A.; Law, Jack D.; Herbst, R. Scott; Romanovskiy, Valeriy N.; Smirnov, Igor V.; Babain, Vasily A.; Esimantovski, Vyatcheslav M.

    2009-02-24

    A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.

  9. Thermodynamics of metal-organic frameworks

    SciTech Connect

    Wu, Di; Navrotsky, Alexandra

    2015-03-15

    Although there have been extensive studies over the past decade in the synthesis and application of metal-organic frameworks (MOFs), investigation of their thermodynamic stability and of the energetics of guest–host interactions has been much more limited. This review summarizes recent progress in experimental (calorimetric) determination of the thermodynamics of MOF materials. The enthalpies of MOFs relative to dense phase assemblages suggest only modest metastability, with a general increase of enthalpy with increasing molar volume, which becomes less pronounced at higher porosity. The energy landscape of nanoporous materials (inorganic and hybrid) consists of a pair of parallel patterns within a fairly narrow range of metastability of 5–30 kJ per mole of tetrahedra in zeolites and mesoporous silicas or per mole of metal in MOFs. Thus strong thermodynamic instability does not seem to limit framework formation. There are strong interactions within the chemisorption range for small molecule–MOF interactions with defined chemical binding at the metal centers or other specific locations. Coexistence of surface binding and confinement can lead to much stronger guest–host interactions. - Graphical abstract: Energy landscape of inorganic and hybrid porous materials. - Highlights: • Thermochemical data on various MOF structures were experimentally determined. • MOFs are moderately unstable relative to their dense phase assemblage. • Overall energetic landscape of porous materials was revealed. • Guest–host interactions in MOFs were evaluated directly using calorimetry. • Confinement effect and defined chemical binding lead to strong interactions.

  10. An Electrically Switchable Metal-Organic Framework

    PubMed Central

    Fernandez, Carlos A.; Martin, Paul C.; Schaef, Todd; Bowden, Mark E.; Thallapally, Praveen K.; Dang, Liem; Xu, Wu; Chen, Xilin; McGrail, B. Peter

    2014-01-01

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication. PMID:25135307

  11. An Electrically Switchable Metal-Organic Framework

    SciTech Connect

    Fernandez, Carlos A.; Martin, Paul F.; Schaef, Herbert T.; Bowden, Mark E.; Thallapally, Praveen K.; Dang, Liem X.; Xu, Wu; Chen, Xilin; McGrail, B. Peter

    2014-08-19

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ 5 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

  12. An Electrically Switchable Metal-Organic Framework

    SciTech Connect

    Fernandez, CA; Martin, PC; Schaef, T; Bowden, ME; Thallapally, PK; Dang, L; Xu, W; Chen, XL; McGrail, BP

    2014-08-19

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

  13. An Electrically Switchable Metal-Organic Framework

    NASA Astrophysics Data System (ADS)

    Fernandez, Carlos A.; Martin, Paul C.; Schaef, Todd; Bowden, Mark E.; Thallapally, Praveen K.; Dang, Liem; Xu, Wu; Chen, Xilin; McGrail, B. Peter

    2014-08-01

    Crystalline metal organic framework (MOF) materials containing interconnected porosity can be chemically modified to promote stimulus-driven (light, magnetic or electric fields) structural transformations that can be used in a number of devices. Innovative research strategies are now focused on understanding the role of chemical bond manipulation to reversibly alter the free volume in such structures of critical importance for electro-catalysis, molecular electronics, energy storage technologies, sensor devices and smart membranes. In this letter, we study the mechanism for which an electrically switchable MOF composed of Cu(TCNQ) (TCNQ = 7,7,8,8-tetracyanoquinodimethane) transitions from a high-resistance state to a conducting state in a reversible fashion by an applied potential. The actual mechanism for this reversible electrical switching is still not understood even though a number of reports are available describing the application of electric-field-induced switching of Cu(TCNQ) in device fabrication.

  14. New pathways for organic synthesis. Practical applications of transition metals

    SciTech Connect

    Colquhoun, H.M.; Holton, J.; Thompson, D.J.; Twigg, M.V.

    1984-01-01

    This book contains a considerable number of transition-metal-based procedures that have genuine applications in synthesis, and which are arranged according to the nature of the organic product or synthetic transformation being carried out. The objective is to provide those engaged in the preparation of pharmaceuticals, natural products, herbicides, dyestuffs, and other organic chemicals with a practical guide to the application of transition metals in organic synthesis. Topics considered include the formation of carbon-carbon bonds, the formation of carbocyclic compounds, the formation of heterocyclic compounds, the isomerization of alkenes, the direct introduction and removal of carbonyl groups, reduction, oxidation, and preparing and handling transition metal catalysts.

  15. Gas adsorption on metal-organic frameworks

    DOEpatents

    Willis, Richard R.; Low, John J. , Faheem, Syed A.; Benin, Annabelle I.; Snurr, Randall Q.; Yazaydin, Ahmet Ozgur

    2012-07-24

    The present invention involves the use of certain metal organic frameworks that have been treated with water or another metal titrant in the storage of carbon dioxide. The capacity of these frameworks is significantly increased through this treatment.

  16. Chemical resistance guide for metals and alloys

    SciTech Connect

    1998-12-31

    This guide contains data for 29,000 combinations of corrodents vs. metals, metal alloys, and carbon. Features and specifications include: (1) 963 liquid or dry chemicals, gases, lubricants, household fluids, foods, atmospheres, and other environments are covered; (2) 70 chemical trade names are covered; (3) 500 synonyms of covered chemicals, gases, etc. are indexed to page numbers; (4) corrodents are listed in alphabetical order; (5) data are presented in symbolic format (A, B, C, NR); (6) where known chemical resistance varies with concentration and temperature, data are presented in descending order of concentration and temperature; (7) mechanical, physical, and electrical properties data for each metal are provided; (8) a flex thumb index is provided at the right-hand margin of the right-hand pages to facilitate quick access to the desired data; (9) an electromotive or galvanic series list covering 120 metals, alloys, and carbon is included; (10) machinability ratings for most metals, including some specific S.F.M. rates, is included; (11) creep or stress relaxation rates at various levels of stress, temperature, and time are included; and (12) printed on semigloss, 70 pound, plastic-coated bond paper that last through years of reference.

  17. Investigation of metal hydride nanoparticles templated in metal organic frameworks.

    SciTech Connect

    Jacobs, Benjamin W.; Herberg, Julie L.; Highley, Aaron M.; Grossman, Jeffrey; Wagner, Lucas; Bhakta, Raghu; Peaslee, D.; Allendorf, Mark D.; Liu, X.; Behrens, Richard, Jr.; Majzoub, Eric H.

    2010-11-01

    Hydrogen is proposed as an ideal carrier for storage, transport, and conversion of energy. However, its storage is a key problem in the development of hydrogen economy. Metal hydrides hold promise in effectively storing hydrogen. For this reason, metal hydrides have been the focus of intensive research. The chemical bonds in light metal hydrides are predominantly covalent, polar covalent or ionic. These bonds are often strong, resulting in high thermodynamic stability and low equilibrium hydrogen pressures. In addition, the directionality of the covalent/ionic bonds in these systems leads to large activation barriers for atomic motion, resulting in slow hydrogen sorption kinetics and limited reversibility. One method for enhancing reaction kinetics is to reduce the size of the metal hydrides to nano scale. This method exploits the short diffusion distances and constrained environment that exist in nanoscale hydride materials. In order to reduce the particle size of metal hydrides, mechanical ball milling is widely used. However, microscopic mechanisms responsible for the changes in kinetics resulting from ball milling are still being investigated. The objective of this work is to use metal organic frameworks (MOFs) as templates for the synthesis of nano-scale NaAlH4 particles, to measure the H2 desorption kinetics and thermodynamics, and to determine quantitative differences from corresponding bulk properties. Metal-organic frameworks (MOFs) offer an attractive alternative to traditional scaffolds because their ordered crystalline lattice provides a highly controlled and understandable environment. The present work demonstrates that MOFs are stable hosts for metal hydrides and their reactive precursors and that they can be used as templates to form metal hydride nanoclusters on the scale of their pores (1-2 nm). We find that using the MOF HKUST-1 as template, NaAlH4 nanoclusters as small as 8 formula units can be synthesized inside the pores. A detailed picture of

  18. Photochemical deterioration of the organic/metal contacts in organic optoelectronic devices

    SciTech Connect

    Wang Qi; Williams, Graeme; Aziz, Hany; Tsui Ting

    2012-09-15

    We study the effect of exposure to light on a wide range of organic/metal contacts that are commonly used in organic optoelectronic devices and found that irradiation by light in the visible and UV range results in a gradual deterioration in their electrical properties. This photo-induced contact degradation reduces both charge injection (i.e., from the metal to the organic layer) and charge extraction (i.e., from the organic layer to the metal). X-ray photoelectron spectroscopy (XPS) measurements reveal detectable changes in the interface characteristics after irradiation, indicating that the photo-degradation is chemical in nature. Changes in XPS characteristics after irradiation suggests a possible reduction in bonds associated with organic-metal complexes. Measurements of interfacial adhesion strength using the four-point flexure technique reveal a decrease in organic/metal adhesion in irradiated samples, consistent with a decrease in metal-organic bond density. The results shed the light on a new material degradation mechanism that appears to have a wide presence in organic/metal interfaces in general, and which likely plays a key role in limiting the stability of various organic optoelectronic devices such as organic light emitting devices, organic solar cells, and organic photo-detectors.

  19. ATMOSPHERIC MEASUREMENTS OF SELECTED HAZARDOUS ORGANIC CHEMICALS

    EPA Science Inventory

    Methods were developed for the accurate analysis of an expanded list of hazardous organic chemicals in the ambient air. On-site analysis using an instrumented mobile laboratory was performed for a total of 44 organic chemicals. Twenty of these are suspected mutagens or carcinogen...

  20. SAMPLING FOR ORGANIC CHEMICALS IN AIR

    EPA Science Inventory

    Organic chemicals by far account for the majority of pollutants found in air. ore than 90% of the 75,000 chemicals listed in EPA's Toxic Substances Control Act Chemical Substance Inventory and 88% of the 189 Hazardous Air Pollutants (HAPS) named in the Clean Air Act Amendments of...

  1. "EFFECT OF NON-TARGET ORGANICS ON ORGANIC CHEMICAL TRANSPORT."

    EPA Science Inventory

    NRMRL/IO BOOK NRMRL-CIN-1363 Enfield*, C.G., Lien*, B.K., and Wood*, A.L. "Effect of Non-Target Organics on Organic Chemical Transport." Published in: Humic Substances and Chemical Contaminants, Chapter 23, C.E. Clapp, M.H.B. Hayes, et al (Ed.), Madison, WI: So...

  2. Stimulus-responsive metal-organic frameworks.

    PubMed

    Nagarkar, Sanjog S; Desai, Aamod V; Ghosh, Sujit K

    2014-09-01

    Materials that can recognize the changes in their local environment and respond by altering their inherent physical and/or chemical properties are strong candidates for future "smart" technology materials. Metal-organic frameworks (MOFs) have attracted a great deal of attention in recent years owing to their designable architecture, host-guest chemistry, and softness as porous materials. Despite this fact, studies on the tuning of the properties of MOFs by external stimuli are still rare. This review highlights the recent developments in the field of stimulus-responsive MOFs or so-called smart MOFs. In particular, the various stimuli used and the utility of stimulus-responsive smart MOFs for various applications such as gas storage and separation, sensing, clean energy, catalysis, molecular motors, and biomedical applications are highlighted by using representative examples. Future directions in the developments of stimulus-responsive smart MOFs and their applications are proposed from a personal perspective. PMID:24844581

  3. Adsorption of organic chemicals in soils.

    PubMed Central

    Calvet, R

    1989-01-01

    This paper presents a review on adsorption of organic chemicals on soils sediments and their constituents. The first part of this review deals with adsorption from gas and liquid phases and gives a discussion on the physical meaning of the shape of adsorption isotherms. Results show that no general rules can be proposed to describe univocally the relation between the shape of isotherms and the nature of adsorbate-adsorbent system. Kinetics of adsorption is discussed through the description of various models. Theoretical developments exist both for the thermodynamics and the kinetics of adsorption, but there is a strong need for experimental results. Possible adsorption mechanisms are ion exchange, interaction with metallic cations, hydrogen bonds, charge transfers, and London-van der Waals dispersion forces/hydrophobic effect. However, direct proofs of a given mechanism are rare. Several factors influence adsorption behavior. Electronic structure of adsorbed molecules, properties of adsorbents, and characteristics of the liquid phase are discussed in relation to adsorption. Such properties as water solubility, organic carbon content of adsorbing materials, and the composition of the liquid phase are particularly important. Evaluation of adsorption can be obtained through either laboratory measurements or use of several correlations. Adsorption measurements must be interpreted, taking into account treatment of adsorbent materials, experimental conditions, and secondary phenomena such as degradations. Correlations between adsorption coefficients and water-octanol partition coefficient or water solubility are numerous. They may be useful tools for prediction purposes. Relations with transport, bioavailability, and degradation are described. PMID:2695323

  4. Chemical segregation in metallic glass nanowires

    SciTech Connect

    Zhang, Qi; Li, Mo; Li, Qi-Kai

    2014-11-21

    Nanowires made of metallic glass have been actively pursued recently due to the superb and unique properties over those of the crystalline materials. The amorphous nanowires are synthesized either at high temperature or via mechanical disruption using focused ion beam. These processes have potential to cause significant changes in structure and chemical concentration, as well as formation of defect or imperfection, but little is known to date about the possibilities and mechanisms. Here, we report chemical segregation to surfaces and its mechanisms in metallic glass nanowires made of binary Cu and Zr elements from molecular dynamics simulation. Strong concentration deviation are found in the nanowires under the conditions similar to these in experiment via focused ion beam processing, hot imprinting, and casting by rapid cooling from liquid state. Our analysis indicates that non-uniform internal stress distribution is a major cause for the chemical segregation, especially at low temperatures. Extension is discussed for this observation to multicomponent metallic glass nanowires as well as the potential applications and side effects of the composition modulation. The finding also points to the possibility of the mechanical-chemical process that may occur in different settings such as fracture, cavitation, and foams where strong internal stress is present in small length scales.

  5. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-01

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. PMID:26094059

  6. COSOLVENCY AND SOPRTION OF HYDROPHOBIC ORGANIC CHEMICALS

    EPA Science Inventory

    Sorption of hydrophobic organic chemicals (HOCs) by two soils was measured from mixed solvents containing water plus completely miscible organic solvents (CMOSs) and partially miscible organic solvents (PMOSs). The utility of the log-linear cosolvency model for predicting HOC sor...

  7. Benchmarking density functional theory predictions of framework structures and properties in a chemically diverse test set of metal-organic frameworks

    SciTech Connect

    Nazarian, Dalar; Ganesh, P.; Sholl, David S.

    2015-09-30

    We compiled a test set of chemically and topologically diverse Metal–Organic Frameworks (MOFs) with high accuracy experimentally derived crystallographic structure data. The test set was used to benchmark the performance of Density Functional Theory (DFT) functionals (M06L, PBE, PW91, PBE-D2, PBE-D3, and vdW-DF2) for predicting lattice parameters, unit cell volume, bonded parameters and pore descriptors. On average PBE-D2, PBE-D3, and vdW-DF2 predict more accurate structures, but all functionals predicted pore diameters within 0.5 Å of the experimental diameter for every MOF in the test set. The test set was also used to assess the variance in performance of DFT functionals for elastic properties and atomic partial charges. The DFT predicted elastic properties such as minimum shear modulus and Young's modulus can differ by an average of 3 and 9 GPa for rigid MOFs such as those in the test set. Moreover, we calculated the partial charges by vdW-DF2 deviate the most from other functionals while there is no significant difference between the partial charges calculated by M06L, PBE, PW91, PBE-D2 and PBE-D3 for the MOFs in the test set. We find that while there are differences in the magnitude of the properties predicted by the various functionals, these discrepancies are small compared to the accuracy necessary for most practical applications.

  8. Chemical vapor deposition of group IIIB metals

    DOEpatents

    Erbil, A.

    1989-11-21

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula given in the patent where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula 1 is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula 1 and a heat decomposable tellurium compound under nonoxidizing conditions.

  9. Chemical vapor deposition of group IIIB metals

    DOEpatents

    Erbil, Ahmet

    1989-01-01

    Coatings of Group IIIB metals and compounds thereof are formed by chemical vapor deposition, in which a heat decomposable organometallic compound of the formula (I) ##STR1## where M is a Group IIIB metal, such as lanthanum or yttrium and R is a lower alkyl or alkenyl radical containing from 2 to about 6 carbon atoms, with a heated substrate which is above the decomposition temperature of the organometallic compound. The pure metal is obtained when the compound of the formula I is the sole heat decomposable compound present and deposition is carried out under nonoxidizing conditions. Intermetallic compounds such as lanthanum telluride can be deposited from a lanthanum compound of formula I and a heat decomposable tellurium compound under nonoxidizing conditions.

  10. Metal-loaded organic scintillators for neutrino physics

    NASA Astrophysics Data System (ADS)

    Buck, Christian; Yeh, Minfang

    2016-09-01

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.

  11. A metal-organic framework-derived bifunctional oxygen electrocatalyst

    NASA Astrophysics Data System (ADS)

    Xia, Bao Yu; Yan, Ya; Li, Nan; Wu, Hao Bin; Lou, Xiong Wen (David); Wang, Xin

    2016-01-01

    Oxygen electrocatalysis is of great importance for many energy storage and conversion technologies, including fuel cells, metal-air batteries and water electrolysis. Replacing noble metal-based electrocatalysts with highly efficient and inexpensive non-noble metal-based oxygen electrocatalysts is critical for the practical applications of these technologies. Here we report a general approach for the synthesis of hollow frameworks of nitrogen-doped carbon nanotubes derived from metal-organic frameworks, which exhibit higher electrocatalytic activity and stability for oxygen reduction and evolution than commercial Pt/C electrocatalysts. The remarkable electrochemical properties are mainly attributed to the synergistic effect from chemical compositions and the robust hollow structure composed of interconnected crystalline nitrogen-doped carbon nanotubes. The presented strategy for controlled design and synthesis of metal-organic framework-derived functional nanomaterials offers prospects in developing highly active electrocatalysts in electrochemical energy devices.

  12. Chemical enhancement of metallized zinc anode performance

    SciTech Connect

    Bennett, J.

    1998-12-31

    Galvanic current delivered to reinforced concrete by a metallized zinc anode was studied relative to the humidity of its environment and periodic direct wetting. Current decreased quickly at low humidity to values unlikely to meet accepted cathodic protection criteria, but could be easily restored by direct wetting of the anode. Thirteen chemicals were screened for their ability to enhance galvanic current. Such chemicals, when applied to the exterior surface of the anode, are easily transported by capillary action to the anode-concrete interface where they serve to maintain the interface conductive and the zinc electrochemically active. The most effective chemicals were potassium and lithium bromide, acetate, chloride and nitrate, which increased galvanic current by a factor of 2--15, depending on relative humidity and chloride contamination of the concrete. This new technique is expected to greatly expand the number of concrete structures which can be protected by simple galvanic cathodic protection, The use of lithium-based chemicals together with metallized zinc anode is also proposed for mitigation of existing problems due to ASR. In this case, lithium which prevents or inhibits expansion due to ASR can be readily injected into the concrete. A new process, electrochemical maintenance of concrete (EMC), is also proposed to benefit reinforced concrete structures suffering from chloride-induced corrosion.

  13. Benchmarking density functional theory predictions of framework structures and properties in a chemically diverse test set of metal-organic frameworks

    DOE PAGESBeta

    Nazarian, Dalar; Ganesh, P.; Sholl, David S.

    2015-09-30

    We compiled a test set of chemically and topologically diverse Metal–Organic Frameworks (MOFs) with high accuracy experimentally derived crystallographic structure data. The test set was used to benchmark the performance of Density Functional Theory (DFT) functionals (M06L, PBE, PW91, PBE-D2, PBE-D3, and vdW-DF2) for predicting lattice parameters, unit cell volume, bonded parameters and pore descriptors. On average PBE-D2, PBE-D3, and vdW-DF2 predict more accurate structures, but all functionals predicted pore diameters within 0.5 Å of the experimental diameter for every MOF in the test set. The test set was also used to assess the variance in performance of DFT functionalsmore » for elastic properties and atomic partial charges. The DFT predicted elastic properties such as minimum shear modulus and Young's modulus can differ by an average of 3 and 9 GPa for rigid MOFs such as those in the test set. Moreover, we calculated the partial charges by vdW-DF2 deviate the most from other functionals while there is no significant difference between the partial charges calculated by M06L, PBE, PW91, PBE-D2 and PBE-D3 for the MOFs in the test set. We find that while there are differences in the magnitude of the properties predicted by the various functionals, these discrepancies are small compared to the accuracy necessary for most practical applications.« less

  14. Thermodynamics of Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Hughes, James Thomas

    Metal-Organic Frameworks (MOF) are crystalline nanoporous lattices constructed from the combination of cation and multi-dentate organic molecules. MOFs can display both chemical and thermal robustness while having large surface areas and pore volumes. In addition the modular composition of MOFs allows a degree of design and control of MOF structures. These unique physical properties have attracted wide interest and position MOFs to make meaningful contributions towards many applications, such as adsorption, catalysis, separation, and sensing. Despite the extensive investigative work over the last decade on MOF materials, the initial synthesis is still done by trial and error. Of the identified structures some MOFs are robust while others are fragile. It is unclear what role thermodynamics plays in the formation energies of MOFs and guest molecules interactions within the pores. Better understanding of thermochemical properties of MOFs is critical if MOF synthesis is to obtain true predictive design. To address these questions aqueous solution calorimetry was performed on ten different frameworks in both the as-synthesized and activated state. To understand the structural energetics of MOFs, the heat of formation from dense states (metal oxide and protonated organic linkers) to the open MOF framework was measured. Chapter 2 discusses the new aqueous calorimetry methodology developed to measure the enthalpy of solution for hybrid materials. Chapters 3, 4 and 5 detail the enthalpies of formation from their dense states of the frameworks: (MOF-5, ZIF-zni, ZIF-1, ZIF-3, ZIF-4, ZIF-7, ZIF-8, ZIF-9 and Cu-HKUST-1). These chapters also compare the MOF heat of formation energetics to those of zeolites, zeotypes and mesoporous silica materials. Finding that MOFs are metastable with respect to their dense states (metal oxide and protonated organic), following the current destabilization trend of the main group porous materials. The thermochemical effect of solvent on the MOF

  15. Selected chemical parameters in the blood and metals in the organs of the Nile crocodile, Crocodylus Niloticus, in the Kruger National Park.

    PubMed

    Swanepoel, D; Boomker, J; Kriek, N P

    2000-06-01

    Healthy and sick crocodiles of varying sizes were examined from the Olifants River in the central part of the Kruger National Park, the Sabi River in the southern part and the Shingwedzi River in the northern region. Blood was collected for the determination of certain parameters and samples of fat, muscle, kidney and liver tissue were collected and analyzed for their heavy metal content. The results of the blood analyses are within the range recorded in the literature, but the metal analyses were inconclusive as similar data are not available for comparison. The results of the metal analyses are presented here for use as baseline and reference data. PMID:11028751

  16. Valorization of GaN based metal-organic chemical vapor deposition dust a semiconductor power device industry waste through mechanochemical oxidation and leaching: A sustainable green process

    SciTech Connect

    Swain, Basudev; Mishra, Chinmayee; Lee, Chan Gi; Park, Kyung-Soo; Lee, Kun-Jae

    2015-07-15

    Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga{sub 0.97}N{sub 0.9}O{sub 0.09} is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga{sub 0.97}N{sub 0.9}O{sub 0.09} of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4 M HCl, 100 °C and pulp density of 100 kg/m{sup 3,} respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition. - Highlights: • Waste MOCVD dust is treated through mechanochemical leaching. • GaN is hardly leached, and converted to NaGaO{sub 2} through ball milling and annealing. • Process for gallium recovery from waste MOCVD dust has been developed. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} is revealed. • Solid-state chemistry involved in this process is reported.

  17. Magnetism in metal-organic capsules

    SciTech Connect

    Atwood, Jerry L.; Brechin, Euan K; Dalgarno, Scott J.; Inglis, Ross; Jones, Leigh F.; Mossine, Andrew; Paterson, Martin J.; Power, Nicholas P.; Teat, Simon J.

    2010-01-07

    Nickel and cobalt seamed metal-organic capsules have been isolated and studied using structural, magnetic and computational approaches. Antiferromagnetic exchange in the Ni capsule results from coordination environments enforced by the capsule framework.

  18. Influence of Mn-doping on densities of screw- and edge-type threading dislocations in Ga 1-xMn xN grown by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, Z. T.; Yang, X. L.; Yang, Z. J.; Zhao, H. B.; Wang, C. D.; Zhang, G. Y.

    2008-05-01

    A detailed study is presented on the influence of Mn-doping on densities of screw (c-type) and edge (a-type) threading dislocations (TDs) in Ga 1-xMn xN grown by metal organic chemical vapor deposition (MOCVD) by using high-resolution X-ray diffraction (XRD). Three regions were present in Mn source rate dependence plots of density of c-TDs, and the mean twist angle corresponding to the density of a-TDs. In each region, Mn-doping exhibits different effects on the densities of a- and c-TDs, which is attributed to different dependences of the two types of TD on stresses. The results obtained from X-ray diffraction are consistent with those of atomic force microscope (AFM) measurements. It is further suggested that similar phenomena would occur when doping other elements into GaN grown by MOCVD.

  19. Enhanced output power of near-ultraviolet LEDs with AlGaN/GaN distributed Bragg reflectors on 6H-SiC by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tao, Pengcheng; Liang, Hongwei; Xia, Xiaochuan; Liu, Yang; Jiang, Jianhua; Huang, Huishi; Feng, Qiuju; Shen, Rensheng; Luo, Yingmin; Du, Guotong

    2015-09-01

    Near-ultraviolet (UV) InGaN/AlGaN multiple quantum well (MQW) LEDs with 30 pairs AlGaN/GaN distributed Bragg reflectors (DBRs) were grown on 6H-SiC substrate by metal-organic chemical vapor deposition. A thin SiNx interlayer was introduced between the DBRs and n-GaN layer of the LED to reduce the threading dislocation density and result in enhancement the internal quantum efficiency (ηint) of the InGaN/AlGaN LED. The result indicates that the light output power for the LED with DBRs and SiNx interlayer was approximately 56% higher (at 350 mA) than the LED without DBRs and SiNx interlayer on 6H-SiC substrate, and this significant improvement in performance is attributed not only to the light extraction enhancement via the DBRs but also due to improve epilayer crystalline quality.

  20. Low Al-composition p-GaN/Mg-doped Al0.25Ga0.75N/n+-GaN polarization-induced backward tunneling junction grown by metal-organic chemical vapor deposition on sapphire substrate

    PubMed Central

    Zhang, Kexiong; Liang, Hongwei; Liu, Yang; Shen, Rensheng; Guo, Wenping; Wang, Dongsheng; Xia, Xiaochuan; Tao, Pengcheng; Yang, Chao; Luo, Yingmin; Du, Guotong

    2014-01-01

    Low Al-composition p-GaN/Mg-doped Al0.25Ga0.75N/n+-GaN polarization-induced backward tunneling junction (PIBTJ) was grown by metal-organic chemical vapor deposition on sapphire substrate. A self-consistent solution of Poisson-Schrödinger equations combined with polarization-induced theory was used to model PIBTJ structure, energy band diagrams and free carrier concentrations distribution. The PIBTJ displays reliable and reproducible backward tunneling with a current density of 3 A/cm2 at the reverse bias of −1 V. The absence of negative differential resistance behavior of PIBTJ at forward bias can mainly be attributed to the hole compensation centers, including C, H and O impurities, accumulated at the p-GaN/Mg-doped AlGaN heterointerface. PMID:25205042

  1. Chemical tracers of high-metallicity environments

    NASA Astrophysics Data System (ADS)

    Bayet, E.; Davis, T. A.; Bell, T. A.; Viti, S.

    2012-08-01

    We present for the first time a detailed study of the properties of molecular gas in metal-rich environments such as early-type galaxies (ETGs). We have explored photon-dominated region chemistry for a wide range of physical conditions likely to be appropriate for these sources. We derive fractional abundances of the 20 most chemically reactive species as a function of the metallicity, as a function of the optical depth and for various volume number gas densities, far-ultraviolet (FUV) radiation fields and cosmic ray ionization rates. We also investigate the response of the chemistry to the changes in α-element enhancement as seen in ETGs. We find that the fractional abundances of CS, H2S, H2CS, H2O, H3O+, HCO+ and H2CN seem invariant to an increase of metallicity whereas C+, CO, C2H, CN, HCN, HNC and OCS appear to be the species most sensitive to this change. The most sensitive species to the change in the fractional abundance of α-elements are C+, C, CN, HCN, HNC, SO, SO2, H2O and CS. Finally, we provide line brightness ratios for the most abundant species, especially in the range observable with Atacama Large Millimeter Array (ALMA). Discussion of favourable line ratios to be used for the estimation of supersolar metallicities and α-elements are also provided.

  2. Metal-organic frameworks for artificial photosynthesis and photocatalysis.

    PubMed

    Zhang, Teng; Lin, Wenbin

    2014-08-21

    Solar energy is an alternative, sustainable energy source for mankind. Finding a convenient way to convert sunlight energy into chemical energy is a key step towards realizing large-scale solar energy utilization. Owing to their structural regularity and synthetic tunability, metal-organic frameworks (MOFs) provide an interesting platform to hierarchically organize light-harvesting antennae and catalytic centers to achieve solar energy conversion. Such photo-driven catalytic processes not only play a critical role in the solar to chemical energy conversion scheme, but also provide a novel methodology for the synthesis of fine chemicals. In this review, we summarize the fundamental principles of energy transfer and photocatalysis and provide an overview of the latest progress in energy transfer, light-harvesting, photocatalytic proton and CO2 reduction, and water oxidation using MOFs. The applications of MOFs in organic photocatalysis and degradation of model organic pollutants are also discussed. PMID:24769551

  3. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.

    PubMed

    Štengl, Václav; Henych, Jiří; Janoš, Pavel; Skoumal, Miroslav

    2016-01-01

    Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces. PMID:26423076

  4. Decontamination of metals using chemical etching

    DOEpatents

    Lerch, Ronald E.; Partridge, Jerry A.

    1980-01-01

    The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.

  5. EFFECT OF NON-TARGET ORGANICS ON ORGANIC CHEMICAL TRANSPORT

    EPA Science Inventory

    To improve our standard of living, man has synthesized organic compounds for use in products considered essential for life. These compounds are having and will continue to have a significant impact on the terrestrial environment. Understanding organic chemical transport through s...

  6. A Novel Permeable Reactive Barrier (PRB) for Simultaneous and Rapid Removal of Heavy Metal and Organic Matter - A Systematic Chemical Speciation Approach on Sustainable Technique for Pallikarani Marshland Remediation

    NASA Astrophysics Data System (ADS)

    Selvaraj, A.; Nambi, I. M.

    2014-12-01

    In this study, an innovative technique of ZVI mediated 'coupling of Fenton like oxidation of phenol and Cr(VI) reduction technique' was attempted. The hypothesis is that Fe3+ generated from Cr(VI) reduction process acts as electron acceptor and catalyst for Fenton's Phenol oxidation process. The Fe2+ formed from Fenton reactions can be reused for Cr(VI) reduction. Thus iron can be made to recycle between two reactions, changing back and forth between Fe2+ and Fe3+ forms, makes treatment sustainable.(Fig 1) This approach advances current Fenton like oxidation process by (i)single system removal of heavy metal and organic matter (ii)recycling of iron species; hence no additional iron required (iii)more contaminant removal to ZVI ratio (iv)eliminating sludge related issues. Preliminary batch studies were conducted at different modes i) concurrent removal ii) sequential removal. The sequential removal was found better for in-situ PRB applications. PRB was designed based on kinetic rate slope and half-life time, obtained from primary column study. This PRB has two segments (i)ZVI segment[Cr(VI)] (ii)iron species segment[phenol]. This makes treatment sustainable by (i) having no iron ions in outlet stream (ii)meeting hypothesis and elongates the life span of PRB. Sequential removal of contaminates were tested in pilot scale PRB(Fig 2) and its life span was calculated based on the exhaustion of filling material. Aqueous, sand and iron aliquots were collected at various segments of PRB and analyzed for precipitation and chemical speciation thoroughly (UV spectrometer, XRD, FTIR, electron microscope). Chemical speciation profile eliminates the uncertainties over in-situ PRB's long term performance. Based on the pilot scale PRB study, 'field level PRB wall construction' was suggested to remove heavy metal and organic compounds from Pallikaranai marshland(Fig 3)., which is contaminated with leachate coming from nearby Perungudi dumpsite. This research provides (i

  7. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes.

    PubMed

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X; Urban, Ania; Thacker, Nathan C; Lin, Wenbin

    2016-01-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals. PMID:27574182

  8. Minerals with metal-organic framework structures.

    PubMed

    Huskić, Igor; Pekov, Igor V; Krivovichev, Sergey V; Friščić, Tomislav

    2016-08-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals. PMID:27532051

  9. Minerals with metal-organic framework structures

    PubMed Central

    Huskić, Igor; Pekov, Igor V.; Krivovichev, Sergey V.; Friščić, Tomislav

    2016-01-01

    Metal-organic frameworks (MOFs) are an increasingly important family of advanced materials based on open, nanometer-scale metal-organic architectures, whose design and synthesis are based on the directed assembly of carefully designed subunits. We now demonstrate an unexpected link between mineralogy and MOF chemistry by discovering that the rare organic minerals stepanovite and zhemchuzhnikovite exhibit structures found in well-established magnetic and proton-conducting metal oxalate MOFs. Structures of stepanovite and zhemchuzhnikovite, exhibiting almost nanometer-wide and guest-filled apertures and channels, respectively, change the perspective of MOFs as exclusively artificial materials and represent, so far, unique examples of open framework architectures in organic minerals. PMID:27532051

  10. Chemical treatment of chelated metal finishing wastes.

    PubMed

    McFarland, Michael J; Glarborg, Christen; Ross, Mark A

    2012-12-01

    This study evaluated two chemical approaches for treatment of commingled cadmium-cyanide (Cd-CN) and zinc-nickel (Zn-Ni) wastewaters. The first approach, which involved application of sodium hypochlorite (NaOCl), focused on elimination of chelating substances. The second approach evaluated the use of sodium dimethyldithiocarbamate (DMDTC) to specifically target and precipitate regulated heavy metals. Results demonstrated that by maintaining a pH of 10.0 and an oxidation-reduction potential (ORP) value of +600 mV, NaOCl treatment was effective in eliminating all chelating substances. Cadmium, chromium, nickel, and zinc solution concentrations were reduced from 0.27, 4.44, 0.06, and 0.10 ppm to 0.16, 0.17, 0.03, and 0.06 ppm, respectively. Similarly, a 1% DMDTC solution reduced these same metal concentrations in commingled wastewater to 0.009, 1.142, 0.036, and 0.320 ppm. Increasing the DMDTC concentration to 2% improved the removal of all regulated heavy metals except zinc, the removal of which at high pH values is limited by its amphotericity. PMID:23342939

  11. Metal-Organic Frameworks as Platforms for Functional Materials.

    PubMed

    Cui, Yuanjing; Li, Bin; He, Huajun; Zhou, Wei; Chen, Banglin; Qian, Guodong

    2016-03-15

    Discoveries of novel functional materials have played very important roles to the development of science and technologies and thus to benefit our daily life. Among the diverse materials, metal-organic framework (MOF) materials are rapidly emerging as a unique type of porous and organic/inorganic hybrid materials which can be simply self-assembled from their corresponding inorganic metal ions/clusters with organic linkers, and can be straightforwardly characterized by various analytical methods. In terms of porosity, they are superior to other well-known porous materials such as zeolites and carbon materials; exhibiting extremely high porosity with surface area up to 7000 m(2)/g, tunable pore sizes, and metrics through the interplay of both organic and inorganic components with the pore sizes ranging from 3 to 100 Å, and lowest framework density down to 0.13 g/cm(3). Such unique features have enabled metal-organic frameworks to exhibit great potentials for a broad range of applications in gas storage, gas separations, enantioselective separations, heterogeneous catalysis, chemical sensing and drug delivery. On the other hand, metal-organic frameworks can be also considered as organic/inorganic self-assembled hybrid materials, we can take advantages of the physical and chemical properties of both organic and inorganic components to develop their functional optical, photonic, and magnetic materials. Furthermore, the pores within MOFs can also be utilized to encapsulate a large number of different species of diverse functions, so a variety of functional MOF/composite materials can be readily synthesized. In this Account, we describe our recent research progress on pore and function engineering to develop functional MOF materials. We have been able to tune and optimize pore spaces, immobilize specific functional groups, and introduce chiral pore environments to target MOF materials for methane storage, light hydrocarbon separations, enantioselective recognitions

  12. Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices

    SciTech Connect

    Cipro, R.; Gorbenko, V.; Baron, T. Martin, M.; Moeyaert, J.; David, S.; Bassani, F.; Bogumilowicz, Y.; Barnes, J. P.; Rochat, N.; Loup, V.; Vizioz, C.; Allouti, N.; Chauvin, N.; Bao, X. Y.; Ye, Z.; Pin, J. B.; Sanchez, E.

    2014-06-30

    Metal organic chemical vapor deposition of GaAs, InGaAs, and AlGaAs on nominal 300 mm Si(100) at temperatures below 550 °C was studied using the selective aspect ratio trapping method. We clearly show that growing directly GaAs on a flat Si surface in a SiO{sub 2} cavity with an aspect ratio as low as 1.3 is efficient to completely annihilate the anti-phase boundary domains. InGaAs quantum wells were grown on a GaAs buffer and exhibit room temperature micro-photoluminescence. Cathodoluminescence reveals the presence of dark spots which could be associated with the presence of emerging dislocation in a direction parallel to the cavity. The InGaAs layers obtained with no antiphase boundaries are perfect candidates for being integrated as channels in n-type metal oxide semiconductor field effect transistor (MOSFET), while the low temperatures used allow the co-integration of p-type MOSFET.

  13. Metal-Organic Frameworks as Sensory Materials and Imaging Agents

    PubMed Central

    Liu, Demin; Lu, Kuangda; Poon, Christopher

    2014-01-01

    Metal-organic frameworks (MOFs) are a class of hybrid materials self-assembled from organic bridging ligands and metal ion/cluster connecting points. The combination of a variety of organic linkers, metal ions/clusters, and structural motifs can lead to an infinite array of new materials with interesting properties for many applications. In this Forum article, we discuss the design and applications of MOFs in chemical sensing and biological imaging. The first half of this article focuses on the development of MOFs as chemical sensors by highlighting how unique attributes of MOFs can be utilized to enhance sensitivity and selectivity. We also discuss some of the issues that need to be addressed in order to develop practically useful MOF sensors. The second half of this article focuses on the design and applications of nanoscale metal-organic frameworks (NMOFs) as imaging contrast agents. NMOFs possess several interesting attributes, such as high cargo loading capacity, ease of post-modification, tunable size and shape, and intrinsic biodegradability, to make them excellent candidates as imaging contrast agents. We discuss the use of representative NMOFs in magnetic resonance imaging (MRI), X-ray computed tomography (CT), and optical imaging (OI). Although still in their infancy, we believe that the compositional tunability and mild synthetic conditions of NMOF imaging agents should greatly facilitate their further development for clinical translation. PMID:24251853

  14. Influences of group-III source preflow on the polarity, optical, and structural properties of GaN grown on nitridated sapphire substrates by metal-organic chemical vapor deposition

    SciTech Connect

    Li, Chengguo; Liu, Hongfei; Chua, Soo Jin

    2015-03-28

    We report the influences of group-III source preflow, which were introduced prior to the growth of the low temperature GaN on the polarity, photoluminescence (PL), and crystallographic properties of GaN epilayers grown on nitridated c-plane sapphire substrates by metal-organic chemical vapor deposition. By studying the surface morphology evolutions under chemical etching in KOH, we found that with increasing the trimethyl-gallium (TMGa) preflow duration (t), the polarity of the GaN film can be changed from a complete N-polarity to a mixture of N- and Ga-polarity and further to a complete Ga-polarity. PL and high-resolution X-ray diffraction studies revealed that the impurity incorporation and the edge- and screw-type threading dislocations are strongly polarity dependent. A further study at the optimized t (i.e., 30 s for TMGa) shows that the polarity inversion of GaN can be realized not only by TMGa preflow but also by trimethyl-aluminium preflow and by trimethyl-indium preflow. A two-monolayer model was employed to explain the polarity inversion mechanism.

  15. Metal-Organic Chemical Vapor Deposition (MOCVD) Synthesis of Heteroepitaxial Pr0.7Ca0.3MnO3 Films: Effects of Processing Conditions on Structural/Morphological and Functional Properties.

    PubMed

    Catalano, Maria R; Cucinotta, Giuseppe; Schilirò, Emanuela; Mannini, Matteo; Caneschi, Andrea; Lo Nigro, Raffaella; Smecca, Emanuele; Condorelli, Guglielmo G; Malandrino, Graziella

    2015-08-01

    Calcium-doped praseodymium manganite films (Pr0.7Ca0.3MnO3, PCMO) were prepared by metal-organic chemical vapor deposition (MOCVD) on SrTiO3 (001) and SrTiO3 (110) single-crystal substrates. Structural characterization through X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM) analyses confirmed the formation of epitaxial PCMO phase films. Energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) characterization was used to confirm lateral and vertical composition and the purity of the deposited films. Magnetic measurements, obtained in zero-field-cooling (ZFC) and field-cooling (FC) modes, provided evidence of the presence of a ferromagnetic (FM) transition temperature, which was correlated to the transport properties of the film. The functional properties of the deposited films, combined with the structural and chemical characterization collected data, indicate that the MOCVD approach represents a suitable route for the growth of pure, good quality PCMO for the fabrication of novel spintronic devices. PMID:26478849

  16. Influences of group-III source preflow on the polarity, optical, and structural properties of GaN grown on nitridated sapphire substrates by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Li, Chengguo; Liu, Hongfei; Chua, Soo Jin

    2015-03-01

    We report the influences of group-III source preflow, which were introduced prior to the growth of the low temperature GaN on the polarity, photoluminescence (PL), and crystallographic properties of GaN epilayers grown on nitridated c-plane sapphire substrates by metal-organic chemical vapor deposition. By studying the surface morphology evolutions under chemical etching in KOH, we found that with increasing the trimethyl-gallium (TMGa) preflow duration (t), the polarity of the GaN film can be changed from a complete N-polarity to a mixture of N- and Ga-polarity and further to a complete Ga-polarity. PL and high-resolution X-ray diffraction studies revealed that the impurity incorporation and the edge- and screw-type threading dislocations are strongly polarity dependent. A further study at the optimized t (i.e., 30 s for TMGa) shows that the polarity inversion of GaN can be realized not only by TMGa preflow but also by trimethyl-aluminium preflow and by trimethyl-indium preflow. A two-monolayer model was employed to explain the polarity inversion mechanism.

  17. Metal-Organic Chemical Vapor Deposition (MOCVD) Synthesis of Heteroepitaxial Pr0.7Ca0.3MnO3 Films: Effects of Processing Conditions on Structural/Morphological and Functional Properties

    PubMed Central

    Catalano, Maria R; Cucinotta, Giuseppe; Schilirò, Emanuela; Mannini, Matteo; Caneschi, Andrea; Lo Nigro, Raffaella; Smecca, Emanuele; Condorelli, Guglielmo G; Malandrino, Graziella

    2015-01-01

    Calcium-doped praseodymium manganite films (Pr0.7Ca0.3MnO3, PCMO) were prepared by metal-organic chemical vapor deposition (MOCVD) on SrTiO3 (001) and SrTiO3 (110) single-crystal substrates. Structural characterization through X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM) analyses confirmed the formation of epitaxial PCMO phase films. Energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) characterization was used to confirm lateral and vertical composition and the purity of the deposited films. Magnetic measurements, obtained in zero-field-cooling (ZFC) and field-cooling (FC) modes, provided evidence of the presence of a ferromagnetic (FM) transition temperature, which was correlated to the transport properties of the film. The functional properties of the deposited films, combined with the structural and chemical characterization collected data, indicate that the MOCVD approach represents a suitable route for the growth of pure, good quality PCMO for the fabrication of novel spintronic devices. PMID:26478849

  18. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  19. ORGAN AND SPECIES SPECIFICITY IN CHEMICAL CARCINOGENESIS

    EPA Science Inventory

    The focus of the Symposium and this volume is the relative susceptibility of specific animal species strains and organs to various carcinogens. For the first time, investigators in chemical carcinogenesis are able to pool their discoveries in this area. Once analyzed, this data c...

  20. Alkali-metal azides interacting with metal-organic frameworks.

    PubMed

    Armata, Nerina; Cortese, Remedios; Duca, Dario; Triolo, Roberto

    2013-01-14

    Interactions between alkali-metal azides and metal-organic framework (MOF) derivatives, namely, the first and third members of the isoreticular MOF (IRMOF) family, IRMOF-1 and IRMOF-3, are studied within the density functional theory (DFT) paradigm. The investigations take into account different models of the selected IRMOFs. The mutual influence between the alkali-metal azides and the π rings or Zn centers of the involved MOF derivatives are studied by considering the interactions both of the alkali-metal cations with model aromatic centers and of the alkali-metal azides with distinct sites of differently sized models of IRMOF-1 and IRMOF-3. Several exchange and correlation functionals are employed to calculate the corresponding interaction energies. Remarkably, it is found that, with increasing alkali-metal atom size, the latter decrease for cations interacting with the π-ring systems and increase for the azides interacting with the MOF fragments. The opposite behavior is explained by stabilization effects on the azide moieties and determined by the Zn atoms, which constitute the inorganic vertices of the IRMOF species. Larger cations can, in fact, coordinate more efficiently to both the aromatic center and the azide anion, and thus stabilizing bridging arrangements of the azide between one alkali-metal and two Zn atoms in an η(2) coordination mode are more favored. PMID:23161861

  1. Experimental spectral signatures of organic 1D metals

    NASA Astrophysics Data System (ADS)

    Zwick, F.; Grioni, M.; Onellion, M.; Montgomery, L. K.; Margaritondo, G.

    1999-04-01

    We performed high-resolution angle resolved photoelectron spectroscopy studies of quasi-one-dimensional organic materials. For TTF-TCNQ, we observe dispersive spectral features corresponding to the donor and acceptor band. For the Bechgaard salts (TMTSF) 2X and (TMTTF) 2X, on the other hand, we observe a non-dispersive band feature. In all cases the photoelectron spectrum is strongly renormalized at the chemical potential, in contrast with the common picture of a normal metal.

  2. Effect of etching time and illumination on optical properties of SiNWs elaborated by Metal Assisted Chemical Etching (MACE) for organic photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Saidi, H.; Hidouri, T.; Fraj, I.; Saidi, F.; Bouazizi, A.

    2015-09-01

    Using Ag-assisted chemical etching technique, vertical silicon nanowires (SiNWs) arrays on n-type (0 0 1) substrates has been prepared with different conditions such as etching time and illumination condition. A photoluminescence measurement at room temperature has shown a decrease of PL intensity when decreasing etching time. These results are attributed to the decrease of SiNWs density and reduction of laser capture surface. The presence of defect states lead to a non-radiative recombination. Indeed, the blue shift observed when using a low etching time is due to the confinement effect. Using a low etching time, illumination condition does not vary SiNWs density. The optimal experimental condition for photovoltaic application is observed after deposition of Poly (3-hexylthiophene-2,5-diyl) P3HT into the different silicon substrates prepared. An important charges transfer between P3HT and SiNWs is observed for high etching time (120 min under illumination). A blue shift is due to the presence of defects and electric field.

  3. Laser nanolithography and chemical metalization for the manufacturing of 3D metallic interconnects

    NASA Astrophysics Data System (ADS)

    Jonavičius, Tomas; RekštytÄ--, Sima; Žukauskas, Albertas; Malinauskas, Mangirdas

    2014-03-01

    We present a developed method based on direct laser writing (DLW) and chemical metallization (CM) for microfabrication of three-dimensional (3D) metallic structures. Such approach enables manufacturing of free­-form electro conductive interconnects which can be used in integrated electric circuits such micro-opto-electro mechanical systems (MOEMS). The proposed technique employing ultrafast high repetition rate laser enables efficient fabrication of 3D microstructures on dielectric as well as conductive substrates. The produced polymer links out of organic-inorganic composite matrix after CM serve as interconnects of separate metallic contacts, their dimensions are: height 15μm, width 5μm, length 35-45 μm and could provide 300 nΩm resistivity measured in a macroscopic way. This proves the techniques potential for creating integrated 3D electric circuits at microscale.

  4. Organically Modified Silicas on Metal Nanowires

    PubMed Central

    2010-01-01

    Organically modified silica coatings were prepared on metal nanowires using a variety of silicon alkoxides with different functional groups (i.e., carboxyl groups, polyethylene oxide, cyano, dihydroimidazole, and hexyl linkers). Organically modified silicas were deposited onto the surface of 6-μm-long, ∼300-nm-wide, cylindrical metal nanowires in suspension by the hydrolysis and polycondensation of silicon alkoxides. Syntheses were performed at several ratios of tetraethoxysilane to an organically modified silicon alkoxide to incorporate desired functional groups into thin organosilica shells on the nanowires. These coatings were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy. All of the organically modified silicas prepared here were sufficiently porous to allow the removal of the metal nanowire cores by acid etching to form organically modified silica nanotubes. Additional functionality provided to the modified silicas as compared to unmodified silica prepared using only tetraethoxysilane precursors was demonstrated by chromate adsorption on imidazole-containing silicas and resistance to protein adsorption on polyethyleneoxide-containing silicas. Organically modified silica coatings on nanowires and other nano- and microparticles have potential application in fields such as biosensing or nanoscale therapeutics due to the enhanced properties of the silica coatings, for example, the prevention of biofouling. PMID:20715881

  5. Healable supramolecular polymers as organic metals.

    PubMed

    Armao, Joseph J; Maaloum, Mounir; Ellis, Thomas; Fuks, Gad; Rawiso, Michel; Moulin, Emilie; Giuseppone, Nicolas

    2014-08-13

    Organic materials exhibiting metallic behavior are promising for numerous applications ranging from printed nanocircuits to large area electronics. However, the optimization of electronic conduction in organic metals such as charge-transfer salts or doped conjugated polymers requires high crystallinity, which is detrimental to their processability. To overcome this problem, the combination of the electronic properties of metal-like materials with the mechanical properties of soft self-assembled systems is attractive but necessitates the absence of structural defects in a regular lattice. Here we describe a one-dimensional supramolecular polymer in which photoinduced through-space charge-transfer complexes lead to highly coherent domains with delocalized electronic states displaying metallic behavior. We also reveal that diffusion of supramolecular polarons in the nanowires repairs structural defects thereby improving their conduction. The ability to access metallic properties from mendable self-assemblies extends the current understanding of both fields and opens a wide range of processing techniques for applications in organic electronics. PMID:25053238

  6. Chemical Evolution of Presolar Organics in Astromaterials

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Clemett, S. J.; Messenger, Scott; Keller, L. P.

    2010-01-01

    Sub-micron, hollow organic globules reported from several carbonaceous chondrites, interplanetary dust particles, and comet Wild-2 samples returned by NASA?s Stardust mission are enriched in N-15/N-14 and D/H compared with terrestrial materials and the parent materials [1-4]. These anomalies are ascribed to the preservation of presolar cold molecular cloud material from where H, C, and N isotopic constraints point to chemical fractionation near 10 K [5]. An origin well beyond the planet forming region and their survival in meteorites suggests submicrometer organic globules were once prevalent throughout the solar nebula. The survival of the membrane structures indicates primitive meteorites and cometary dust particles would have delivered these organic precursors to the early Earth as well as other planets and satellites. The physical, chemical, and isotopic properties of the organic globules varies to its meteorite types and its lithologies. For example, organic globules in the Tagish Lake meteorite are always embedded in fined grained (poorly crystallized) saponite, and hardly encapsulated in coarse grained serpentine, even though saponite and serpentine are both main components of phyllosilicate matrix of the Tagish Lake meteorite. The organic globules are commonly observed in the carbonate-poor lithology but not in the carbonate-rich one. In Tagish Lake, isolated single globules are common, but in the Bells (CM2) meteorite, globules are mostly aggregated. We will review the evolutions of the organic globules from its birth to alteration in the parent bodies in terms of its own physical and chemical properties as well as its associated minerals.

  7. Visualizing weld metal solidification using organic analogs

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.; Rogers, Gary Ray

    1993-01-01

    The objectives of this educational exercise are to allow the student to observe the solidification of a low melting temperature transparent crystalline organic compound that exhibits behavior similar to that of weld metal. A list of equipment and supplies and the procedure for the experiment are presented.

  8. Nets, tiles, and metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    O'Keeffe, Michael

    2014-12-01

    An account is given of the basic nets that are important in the description and design of metal-organic framework (MOF) structures. These are generally of minimal transitivity, a concept which is explained. Derived nets are defined and the advantages of using derived nets to describe the topology of MOF frameworks with multiple branch points are emphasized.

  9. Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequence under acid lateritic soils.

    PubMed

    Rautaray, S K; Ghosh, B C; Mittra, B N

    2003-12-01

    A field experiment was conducted for two years in sandy loam acid lateritic soil to study the direct effect of fly ash, organic wastes and chemical fertilizers on rice (Oryza sativa) and their residual effect on mustard (Brassica napus var glauca) grown in sequence. Rice yields were higher when fly ash, organic wastes and chemical fertilizers were used in an integrated manner as compared to sole application of chemical fertilizers. Yields of mustard were also higher under the residual effect of the former rather than the latter. However, this beneficial residual effect under integrated nutrient sources was inadequate for the mustard crop in the low fertility test soil. Hence, direct application of fertilizers was needed, in addition to residual fertility. The effect of fly ash on mean rice equivalent yield of the rice-mustard cropping sequence was highest (up to 14%) when it was used in combination with organic wastes and chemical fertilizers. While the yield increase was 10% when it was used in combination with only chemical fertilizers. The minimum yield advantage, 3%, occurred when fly ash was applied alone. The equivalent yield of the rice-mustard cropping sequence was equally influenced by either of the organic wastes. Cadmium and Ni content in rice grain and straw were less under the direct effect of fly ash. The residual effect on mustard was similar for Ni content in seed and stover; however, Cd content was increased. Beneficial residual soil chemical properties in terms of pH, organic carbon and available N, P and K were noted for integrated nutrient treatments involved fly ash, organic wastes and chemical fertilizers as compared to continuous use of only chemical fertilizers. Application of fly ash alone was effective in raising soil available P. Thus, integrated use of fly ash, organic wastes and chemical fertilizers was beneficial in improving crop yield, soil pH, organic carbon and available N, P and K in sandy loam acid lateritic soil. PMID:14575950

  10. Computer simulation of metal-organic materials

    NASA Astrophysics Data System (ADS)

    Stern, Abraham C.

    Computer simulations of metal-organic frameworks are conducted to both investigate the mechanism of hydrogen sorption and to elucidate a detailed, molecular-level understanding of the physical interactions that can lead to successful material design strategies. To this end, important intermolecular interactions are identified and individually parameterized to yield a highly accurate representation of the potential energy landscape. Polarization, one such interaction found to play a significant role in H 2 sorption, is included explicitly for the first time in simulations of metal-organic frameworks. Permanent electrostatics are usually accounted for by means of an approximate fit to model compounds. The application of this method to simulations involving metal-organic frameworks introduces several substantial problems that are characterized in this work. To circumvent this, a method is developed and tested in which atomic point partial charges are computed more directly, fit to the fully periodic electrostatic potential. In this manner, long-range electrostatics are explicitly accounted for via Ewald summation. Grand canonical Monte Carlo simulations are conducted employing the force field parameterization developed here. Several of the major findings of this work are: Polarization is found to play a critical role in determining the overall structure of H2 sorbed in metal-organic frameworks, although not always the determining factor in uptake. The parameterization of atomic point charges by means of a fit to the periodic electrostatic potential is a robust, efficient method and consistently results in a reliable description of Coulombic interactions without introducing ambiguity associated with other procedures. After careful development of both hydrogen and framework potential energy functions, quantitatively accurate results have been obtained. Such predictive accuracy will aid greatly in the rational, iterative design cycle between experimental and theoretical

  11. Metal-Organic Coordination Number Determined Charge Transfer Magnitude

    NASA Astrophysics Data System (ADS)

    Yang, Hung-Hsiang; Chu, Yu-Hsun; Lu, Chun-I.; Yang, Tsung-Han; Yang, Kai-Jheng; Kaun, Chao-Cheng; Hoffmann, Germar; Lin, Minn-Tsong

    2014-03-01

    By the appropriate choice of head groups and molecular ligands, various metal-organic coordination geometries can be engineered. Such metal-organic structures provide different chemical environments for molecules and give us templates to study the charge redistribution within the metal-organic interface. We created various metal-organic bonding environment by growing self-assembly nanostructures of Fe-PTCDA (3,4,9,10-perylene tetracarboxylic dianhydride) chains and networks on a Au(111) surface. Bonding environment dependent frontier molecular orbital energies are acquired by low temperature scanning tunneling microscopy and scanning tunneling spectroscopy. By comparing the frontier energies with the molecular coordination environments, we conclude that the specific coordination affects the magnitude of charge transfer onto each PTCDA in the Fe-PTCDA hybridization system. H.-H. Yang, Y.-H. Chu, C.-I Lu, T.-H. Yang, K.-J. Yang, C.-C. Kaun, G. Hoffmann, and M.-T. Lin, ACS Nano 7, 2814 (2013).

  12. Enhanced optical properties of InAs/InAlGaAs/InP quantum dots grown by metal-organic chemical vapor deposition using a double-cap technique

    NASA Astrophysics Data System (ADS)

    Shi, Bei; Lau, Kei May

    2016-01-01

    The effects of a double-cap procedure on the optical properties of an InAs/InAlGaAs quantum dots (QDs) system grown by metal-organic chemical vapor deposition (MOCVD) have been investigated by atomic force microscopy (AFM) and room temperature photoluminescence (RT-PL) spectroscopy. An optimized QD growth condition has been achieved, with an areal density of 4.6×1010 cm-2. It was found that the thickness and lattice constant of the high temperature second cap layer (SCL) were crucial for improving the integrated PL intensity and line-width of the 1.55 μm emission from the InAs/InAlGaAs QD system grown on a semi-insulating InP (100) substrate. With fine-tuned SCL thickness and lattice constant, the optical performance of the five-stack QDs was enhanced. The improvements can be attributed to the smooth growth front, observed from the AFM images, and the well-balanced stress engineering.

  13. Comparison of electrical properties and deep traps in p-Al{sub x}Ga{sub 1-x}N grown by molecular beam epitaxy and metal organic chemical vapor deposition

    SciTech Connect

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Kozhukhova, E. A.; Dabiran, A. M.; Chow, P. P.; Wowchak, A. M.; Lee, In-Hwan; Ju, Jin-Woo; Pearton, S. J.

    2009-10-01

    The electrical properties, admittance spectra, microcathodoluminescence, and deep trap spectra of p-AlGaN films with an Al mole fraction up to 45% grown by both metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) were compared. The ionization energy of Mg increases from 0.15 to 0.17 eV in p-GaN to 0.3 eV in 45% Al p-AlGaN. In p-GaN films grown by MBE and MOCVD and in MOCVD grown p-AlGaN, we observed additional acceptors with a concentration an order lower than that of Mg acceptors, with a higher hole capture cross section and an ionization energy close to that of Mg. For some of the MBE grown p-AlGaN, we also detected the presence of additional acceptor centers, but in that case the centers were located near the p-AlGaN layer interface with the semi-insulating AlGaN buffer and showed activation energies considerably lower than those of Mg.

  14. Multi-purpose InGaAsP buried heterostructure laser diodes for uncooled digital, analog, and wireless applications grown by molecular beam epitaxy and metal-organic chemical-vapor deposition

    NASA Astrophysics Data System (ADS)

    Pickrell, G. W.; Zhang, H. L.; Ren, H. W.; Zhang, D.; Xue, Q.; Um, J.; Lin, H. C.; Anselm, K. A.; Makino, T.; Hwang, W. Y.

    2009-02-01

    Using a combination of molecular beam epitaxy (MBE) and metal-organic, chemical-vapor deposition (MOCVD), highperformance, buried-heterostructure, distributed feedback (DFB), laser diodes are being manufactured for multiple, uncooled (-20 to 85 °C and -40 to 95 °C) product lines. MBE is used to grow the active regions and the p-type cladding layers, while MOCVD is used for the Fe-doped blocking layers. Multi-wafer growths are used to reduce device costs. Devices, employing the same basic active region design, have been fabricated operating at wavelengths from 1490 to 1610 nm for applications including coarse wavelength division multiplexing (CWDM) OC-48 digital, analog return path, and 2.2 GHz (3G) wireless code division multiple access (W-CDMA). These devices show good linearity (analog return path and wireless) and high-speed operation (digital). Accelerated lifetime testing of these devices shows excellent reliability with a median lifetime of 17 years at 90 °C.

  15. Effect of a Ti capping layer on thermal stability of NiSi formed from Ni thin films deposited by metal-organic chemical vapor deposition using a Ni(iPr-DAD)2 precursor

    NASA Astrophysics Data System (ADS)

    Park, Jingyu; Jeon, Heeyoung; Kim, Hyunjung; Jang, Woochool; Kang, Chunho; Yuh, Junhan; Jeon, Hyeongtag

    2015-02-01

    Ni films were deposited by metal-organic chemical vapor deposition (MOCVD) using a novel Ni precursor, bis(1,4-di-isopropyl-1,3-diazabutadienyl)nickel [Ni(iPr-DAD)2], and NH3 gas. To optimize process conditions, the deposition temperature and reactant partial pressure were varied from 200 to 350 °C and from 0.2 to 0.99 Torr, respectively. Ni films deposited at 300 °C with a reactant pressure of 0.8 Torr exhibited excellent quality, and had a low carbon impurity concentration of around 4%. In addition, a sacrificial Ti capping layer was deposited by an in situ e-beam evaporator on top of the Ni films to enhance the thermal stability of the subsequently formed NiSi films. Both the Ti-capped and uncapped Ni films were annealed by a two-step method, with a first annealing conducted at 500 °C, followed by wet etching and then a second annealing carried out from 500 to 900 °C. The Ti capping layer did not affect the silicidation kinetic process, but by acting as an oxygen scavenger, it did enhance the morphological stability of the NiSi films and thus improve their electrical properties.

  16. Double-sided reel-to-reel metal-organic chemical vapor deposition system of YBa{sub 2}Cu{sub 3}O{sub 7-δ} thin films

    SciTech Connect

    Zhang, Fei; Xiong, Jie Liu, Xin; Zhao, Ruipeng; Zhao, Xiaohui; Tao, Bowan; Li, Yanrong

    2014-07-01

    Two-micrometer thick YBa{sub 2}Cu{sub 3}O{sub 7-δ} (YBCO) films have been successfully deposited on both sides of LaAlO{sub 3} single crystalline substrates by using a home-made reel-to-reel metal-organic chemical vapor deposition (MOCVD) system, which has two opposite symmetrical shower heads and a special-designed heater. This technique can simultaneously fabricate double-sided films with high deposition rate up to 500 nm/min, and lead to doubling current carrying capability of YBCO, especially for coated conductors (CCs). X-ray diffraction analysis showed that YBCO films were well crystallized and highly epitaxial with the full width at half maximum values of 0.2° ∼ 0.3° for the rocking curves of (005) YBCO and 1.0° for Φ-scans of (103) YBCO. Scanning electron microscope revealed dense, crack-free, slightly rough surface with Ba-Cu-O precipitates. The films showed critical current density (J{sub c}, 77 K, 0 T) of about 1 MA/cm{sup 2}, and overall critical current of 400 A/cm, ascribed to the double-sided structure. Our results also demonstrated that the temperature and composition in the deposition zone were uniform, which made MOCVD preparation of low cost and high performance double-sided YBCO CCs more promising for industrialization.

  17. Defects and disorder in metal organic frameworks.

    PubMed

    Cheetham, Anthony K; Bennett, Thomas D; Coudert, François-Xavier; Goodwin, Andrew L

    2016-03-14

    The wide-ranging properties of metal organic frameworks (MOFs) rely in many cases on the presence of defects within their structures and the disorder that is inevitably associated with such defects. In the present work we review several aspects of defects in MOFs, ranging from simple substitutional defects at metal cation or ligand positions, to correlated defects on a larger length scale and the extreme case of disorder associated with amorphous MOFs. We consider both porous and dense MOFs, and focus particularly on the way in which defects and disorder can be used to tune physical properties such as gas adsorption, catalysis, photoluminescence, and electronic and mechanical properties. PMID:26836459

  18. Nano-engineered defect structures in Ce- and Ho-doped metal-organic chemical vapor deposited YBa2Cu3O6+δ films: Correlation of structure and chemistry with flux pinning performance

    NASA Astrophysics Data System (ADS)

    Aytug, T.; Chen, Z.; Maroni, V. A.; Miller, D. J.; Cantoni, C.; Specht, E. D.; Kropf, A. J.; Zaluzec, N.; Zhang, Y.; Zuev, Y.; Paranthaman, M.

    2011-06-01

    This study reports on the fabrication of metal-organic chemical vapor deposited (MOCVD) YBa2Cu3O6+δ (YBCO) films doped with varying amounts of Ce and Ho and the characterization of their electrical, microstructural, and chemical properties. The films are prepared by vapor phase deposition of a Y-Ba-Cu precursor mix containing controlled amounts of Ce and Ho onto buffered metal strip templates. The comprehensive characterization of these films by critical current measurement, transmission electron microscopy, x-ray diffraction, Raman microspectroscopy, and x-ray absorption spectroscopy provides detailed information about the structure/chemistry/performance relationships and how they vary with varying amounts of Ce and Ho in the YBCO films. The microstructure exhibited by both the Ce-doped and the Ho-doped films contains a high density of crystal basal-plane aligned, fluoritelike precipitates within the YBCO matrix. For optimally doped samples, the influence of these nanocrystalline phases on the flux pinning properties manifests itself as a significant improvement in the critical current density (Jc) for magnetic field orientations that approach being parallel to the ab planes of the YBCO, while no appreciable change is observed in either self-field Jc or applied-field Jc performance in the vicinity of field orientations parallel to the YBCO c-axis. The Ce is almost exclusively concentrated in the fluoritelike nanoprecipitates, while the Ho incorporates into both the planar arrays of nanoprecipitates and the superconducting matrix, where it substitutes for Y in the YBCO lattice. The present findings for Ce and Ho doping are in interesting contrast with our prior findings for Zr-doped MOCVD films due to the fact that the Zr-doped films exhibit columnar precipitate arrays that produce a substantial improvement in Jc for magnetic field orientations parallel to the YBCO c-axis, while no appreciable change is observed in either self-field or applied-field Jc performance

  19. Nano-engineered defect structures in Ce- and Ho-doped metal-organic chemical vapor deposited YBa{sub 2}Cu{sub 3}O{sub 3+{delta} }films : correlation of structure and chemistry with flux pinning performance.

    SciTech Connect

    Aytug, T.; Chen, Z.; Maroni, V. A.; Miller, D. J.; Cantoni, C.; Specht, E. D.; Kropf, A. J.; Zaluzec, N.; Zhang, Y.; Zuev, Y.; Paranthaman, M.

    2011-06-01

    This study reports on the fabrication of metal-organic chemical vapor deposited (MOCVD) YBa{sub 2}Cu{sub 3}O{sub 6+{delta}} (YBCO) films doped with varying amounts of Ce and Ho and the characterization of their electrical, microstructural, and chemical properties. The films are prepared by vapor phase deposition of a Y-Ba-Cu precursor mix containing controlled amounts of Ce and Ho onto buffered metal strip templates. The comprehensive characterization of these films by critical current measurement, transmission electron microscopy, x-ray diffraction, Raman microspectroscopy, and x-ray absorption spectroscopy provides detailed information about the structure/chemistry/performance relationships and how they vary with varying amounts of Ce and Ho in the YBCO films. The microstructure exhibited by both the Ce-doped and the Ho-doped films contains a high density of crystal basal-plane aligned, fluoritelike precipitates within the YBCO matrix. For optimally doped samples, the influence of these nanocrystalline phases on the flux pinning properties manifests itself as a significant improvement in the critical current density (J{sub c}) for magnetic field orientations that approach being parallel to the ab planes of the YBCO, while no appreciable change is observed in either self-field J{sub c} or applied-field J{sub c} performance in the vicinity of field orientations parallel to the YBCO c-axis. The Ce is almost exclusively concentrated in the fluoritelike nanoprecipitates, while the Ho incorporates into both the planar arrays of nanoprecipitates and the superconducting matrix, where it substitutes for Y in the YBCO lattice. The present findings for Ce and Ho doping are in interesting contrast with our prior findings for Zr-doped MOCVD films due to the fact that the Zr-doped films exhibit columnar precipitate arrays that produce a substantial improvement in J{sub c} for magnetic field orientations parallel to the YBCO c-axis, while no appreciable change is observed in

  20. Metal hybrid nanoparticles for catalytic organic and photochemical transformations.

    PubMed

    Song, Hyunjoon

    2015-03-17

    In order to understand heterogeneous catalytic reactions, model catalysts such as a single crystalline surface have been widely studied for many decades. However, catalytic systems that actually advance the reactions are three-dimensional and commonly have multiple components including active metal nanoparticles and metal oxide supports. On the other hand, as nanochemistry has rapidly been developed and been applied to various fields, many researchers have begun to discuss the impact of nanochemistry on heterogeneous catalysis. Metal hybrid nanoparticles bearing multiple components are structurally very close to the actual catalysts, and their uniform and controllable morphology is suitable for investigating the relationship between the structure and the catalytic properties in detail. In this Account, we introduce four typical structures of metal hybrid nanoparticles that can be used to conduct catalytic organic and photochemical reactions. Metal@silica (or metal oxide) yolk-shell nanoparticles, in which metal cores exist in internal voids surrounded by thin silica (or metal oxide) shells, exhibited extremely high thermal and chemical stability due to the geometrical protection of the silica layers against the metal cores. The morphology of the metal cores and the pore density of the hollow shells were precisely adjusted to optimize the reaction activity and diffusion rates of the reactants. Metal@metal oxide core-shell nanoparticles and inverted structures, where the cores supported the shells serving an active surface, exhibited high activity with no diffusion barriers for the reactants and products. These nanostructures were used as effective catalysts for various organic and gas-phase reactions, including hydrogen transfer, Suzuki coupling, and steam methane reforming. In contrast to the yolk- and core-shell structures, an asymmetric arrangement of distinct domains generated acentric dumbbells and tipped rods. A large domain of each component added multiple

  1. Metallization with generic metallo-organic inks

    NASA Technical Reports Server (NTRS)

    Vest, G. M.

    1983-01-01

    The use and fabrication of metallo-organic films are discussed. Metallo-organic compounds are ones in which a metal is linked to a long chain carbon ligand through a hetero atom such as O, S, N, P or As. Films formed by the thermal decomposition of these metallo-organics are called MOD films. In order that the products of decomposition contain only CO2, H2O, and in rare cases nitrogen compounds, and to avoid S containing products, the use of a set of metallo-organic compounds for ink fabrication where the linking hetero atom was oxygen was pioneered. These links were made from commercially available carboxylates, or synthesized from commonly available reagents. The processing is described and the molecular design criteria are given. The particular carboxylates or amine carboxylates selected were the octoates or neodecanoates, and they are described.

  2. Porosity in metal-organic framework glasses.

    PubMed

    Thornton, A W; Jelfs, K E; Konstas, K; Doherty, C M; Hill, A J; Cheetham, A K; Bennett, T D

    2016-03-01

    The porosity of a glass formed by melt-quenching a metal-organic framework, has been characterized by positron annihilation lifetime spectroscopy. The results reveal porosity intermediate between the related open and dense crystalline frameworks ZIF-4 and ZIF-zni. A structural model for the glass was constructed using an amorphous polymerization algorithm, providing additional insight into the gas-inaccessible nature of porosity and the possible applications of hybrid glasses. PMID:26800518

  3. Purification of metal-organic framework materials

    SciTech Connect

    Farha, Omar K.; Hupp, Joseph T.

    2012-12-04

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  4. Purification of metal-organic framework materials

    SciTech Connect

    Farha, Omar K.; Hupp, Joseph T.

    2015-06-30

    A method of purification of a solid mixture of a metal-organic framework (MOF) material and an unwanted second material by disposing the solid mixture in a liquid separation medium having a density that lies between those of the wanted MOF material and the unwanted material, whereby the solid mixture separates by density differences into a fraction of wanted MOF material and another fraction of unwanted material.

  5. Multiphoton harvesting metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Quah, Hong Sheng; Chen, Weiqiang; Schreyer, Martin K.; Yang, Hui; Wong, Ming Wah; Ji, Wei; Vittal, Jagadese J.

    2015-08-01

    Multiphoton upconversion is a process where two or more photons are absorbed simultaneously to excite an electron to an excited state and, subsequently, the relaxation of electron gives rise to the emission of a photon with frequency greater than those of the absorbed photons. Materials possessing such property attracted attention due to applications in biological imaging, photodynamic therapy, three-dimensional optical data storage, frequency-upconverted lasing and optical power limiting. Here we report four-photon upconversion in metal-organic frameworks containing the ligand, trans, trans-9,10-bis(4-pyridylethenyl)anthracene. The ligand has a symmetrical acceptor-π-donor-π-acceptor structure and a singlet biradical electronic ground state, which boosted its multiphoton absorption cross-sections. We demonstrate that the upconversion efficiency can be enhanced by Förster resonance energy transfer within host-guest metal-organic frameworks consisting of encapsulated high quantum yielding guest molecules. Using these strategies, metal-organic framework materials, which can exhibit frequency-upconverted photoluminescence excited by simultaneous multiphoton absorption, can be rationally designed and synthesized.

  6. Metallic taste from electrical and chemical stimulation.

    PubMed

    Lawless, Harry T; Stevens, David A; Chapman, Kathryn W; Kurtz, Anne

    2005-03-01

    A series of three experiments investigated the nature of metallic taste reports after stimulation with solutions of metal salts and after stimulation with metals and electric currents. To stimulate with electricity, a device was fabricated consisting of a small battery affixed to a plastic handle with the anode side exposed for placement on the tongue or oral tissues. Intensity of taste from metals and batteries was dependent upon the voltage and was more robust in areas dense in fungiform papillae. Metallic taste was reported from stimulation with ferrous sulfate solutions, from metals and from electric stimuli. However, reports of metallic taste were more frequent when the word 'metallic' was presented embedded in a list of choices, as opposed to simple free-choice labeling. Intensity decreased for ferrous sulfate when the nose was occluded, consistent with a decrease in retronasal smell, as previously reported. Intensity of taste evoked by copper metal, bimetallic stimuli (zinc/copper) or small batteries (1.5-3 V) was not affected by nasal occlusion. This difference suggests two distinct mechanisms for evocation of metallic taste reports, one dependent upon retronasal smell and a second mediated by oral chemoreceptors. PMID:15741603

  7. Metal Vinylidenes as Catalytic Species in Organic Reactions

    PubMed Central

    McClory, Andrew

    2008-01-01

    Organic vinylidene species have found limited use in organic synthesis due to their inaccessibility. In contrast, metal vinylidenes are much more stable, and may be readily accessed through transition metal activation of terminal alkynes. These electrophilic species may be trapped by a number of nucleophiles. Additionally, metal vinylidenes can participate in pericyclic reactions and processes involving migration of a metal ligand to the vinylidene species. This review addresses the reactions and applications of metal vinylidenes in organic synthesis. PMID:18172846

  8. Chemical Reactivity at Metal Oxide-Aqueous Solution Interfaces

    NASA Astrophysics Data System (ADS)

    Brown, Gordon E., Jr.

    2005-03-01

    The chemical reactivity of metal oxide surfaces in contact with aqueous solutions, with respect to cations and anions, is controlled by the composition, structure, and charging properties of the surface, the dielectric properties of the bulk oxide, and the stability of the aqueous cation or anion complex versus its sorption complex. These points will be illustrated for selected cations, anions, and metal oxides using macroscopic uptake and EXAFS spectroscopy results, x-ray standing wave data, and crystal truncation rod diffraction data. The reactivity of metal oxide surfaces with respect to low molecular weight (LMW) carboxylic acids is also dependent on the types of ring structures formed between surface functional groups and the LMW organic molecules. These types of interactions will be illustrated using ATR-FTIR data and dissolution measurements as a function of pH for oxalate, maleate, phthalate, and pyromellitate interacting with boehmite (AlOOH). Co-Authors are Tae Hyun Yoon, Stephen B. Johnson, Dept. of Geological & Environmental Sciences, Stanford University, Stanford CA 94305-2115; Thomas P. Trainor, Dept. of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK 99775; Anne M. Chaka, National Institute of Standards and Technology, Gaithersburg, MD 20899

  9. Microporous Metal Organic Materials for Hydrogen Storage

    SciTech Connect

    S. G. Sankar; Jing Li; Karl Johnson

    2008-11-30

    We have examined a number of Metal Organic Framework Materials for their potential in hydrogen storage applications. Results obtained in this study may, in general, be summarized as follows: (1) We have identified a new family of porous metal organic framework materials with the compositions M (bdc) (ted){sub 0.5}, {l_brace}M = Zn or Co, bdc = biphenyl dicarboxylate and ted = triethylene diamine{r_brace} that adsorb large quantities of hydrogen ({approx}4.6 wt%) at 77 K and a hydrogen pressure of 50 atm. The modeling performed on these materials agree reasonably well with the experimental results. (2) In some instances, such as in Y{sub 2}(sdba){sub 3}, even though the modeling predicted the possibility of hydrogen adsorption (although only small quantities, {approx}1.2 wt%, 77 K, 50 atm. hydrogen), our experiments indicate that the sample does not adsorb any hydrogen. This may be related to the fact that the pores are extremely small or may be attributed to the lack of proper activation process. (3) Some samples such as Zn (tbip) (tbip = 5-tert butyl isophthalate) exhibit hysteresis characteristics in hydrogen sorption between adsorption and desorption runs. Modeling studies on this sample show good agreement with the desorption behavior. It is necessary to conduct additional studies to fully understand this behavior. (4) Molecular simulations have demonstrated the need to enhance the solid-fluid potential of interaction in order to achieve much higher adsorption amounts at room temperature. We speculate that this may be accomplished through incorporation of light transition metals, such as titanium and scandium, into the metal organic framework materials.

  10. Using chemical organization theory for model checking

    PubMed Central

    Kaleta, Christoph; Richter, Stephan; Dittrich, Peter

    2009-01-01

    Motivation: The increasing number and complexity of biomodels makes automatic procedures for checking the models' properties and quality necessary. Approaches like elementary mode analysis, flux balance analysis, deficiency analysis and chemical organization theory (OT) require only the stoichiometric structure of the reaction network for derivation of valuable information. In formalisms like Systems Biology Markup Language (SBML), however, information about the stoichiometric coefficients required for an analysis of chemical organizations can be hidden in kinetic laws. Results: First, we introduce an algorithm that uncovers stoichiometric information that might be hidden in the kinetic laws of a reaction network. This allows us to apply OT to SBML models using modifiers. Second, using the new algorithm, we performed a large-scale analysis of the 185 models contained in the manually curated BioModels Database. We found that for 41 models (22%) the set of organizations changes when modifiers are considered correctly. We discuss one of these models in detail (BIOMD149, a combined model of the ERK- and Wnt-signaling pathways), whose set of organizations drastically changes when modifiers are considered. Third, we found inconsistencies in 5 models (3%) and identified their characteristics. Compared with flux-based methods, OT is able to identify those species and reactions more accurately [in 26 cases (14%)] that can be present in a long-term simulation of the model. We conclude that our approach is a valuable tool that helps to improve the consistency of biomodels and their repositories. Availability: All data and a JAVA applet to check SBML-models is available from http://www.minet.uni-jena.de/csb/prj/ot/tools Contact: dittrich@minet.uni-jena.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19468053

  11. Chemical characterization and metal abundance in Sri Lankan serpentine soils

    NASA Astrophysics Data System (ADS)

    Vithanage, M. S.; Rajapaksha, A. U.; Ok, Y. S.; Oze, C.

    2012-12-01

    Chemical weathering of ultramafic rocks and their related soils provide localized sources of metal contamination. In Sri Lanka, rural communities live in close proximity to these rocks and soils and utilize associated groundwaters where human intake of these high metal sources may have adverse human health effects. This study investigates metal abundances and variations in Sri Lankan serpentine soils to begin evaluating potential human health hazards. Specifically, we examine serpentinite occurrences at Ussangoda, Wasgamuwa, Ginigalpelessa, and Indikolapelessa located at the geological boundary between the Highland and Vijayan Complexes. The pH of the soils are near neutral (6.26 to 7.69) with soil electrical conductivities (EC) ranging from 33.5 to 129.9 μS cm-1, a range indicative of relatively few dissolved salts and/or major dissolved inorganic solutes. The highest EC is from the Ussangoda soil which may be due to the atmospheric deposition of salt spray from the sea. Organic carbon contents of the soils range from 1.09% to 2.58%. The highest organic carbon percentage is from the Wasgamuwa soil which is located in a protected preserve. X-ray fluorescence (XRF) spectrometry and total metal digestion results show that all serpentine soils are Fe-, Cr-, and Ni-rich with abundant aluminosilicate minerals. Nickel is highest in the Ussangoda soil (6,459 mg kg-1), while Cr (>10,000 mg kg-1), Co (441 mg kg-1) and Mn (2,263 mg kg-1) are highest in the Wasgamuwa serpentine soil. Additionally, Mn (2,200 mg kg-1) and Co (400 mg kg-1) are present at high concentrations in the Wasgamuwa and Ginigalpelessa soils respectively. Electron microprobe mapping demonstrates that these heavy metals are not homogeneously distributed where Cr is specifically associated with Al and Fe phases. Metal speciation of these serpentine soils are currently being investigated using X-ray absorption spectroscopy (XAS) to provide better constraints with regards to their mobility and toxicity.

  12. Impact of metals on the biodegradation of organic pollutants.

    PubMed Central

    Sandrin, Todd R; Maier, Raina M

    2003-01-01

    Forty percent of hazardous waste sites in the United States are co-contaminated with organic and metal pollutants. Data from both aerobic and anaerobic systems demonstrate that biodegradation of the organic component can be reduced by metal toxicity. Metal bioavailability, determined primarily by medium composition/soil type and pH, governs the extent to which metals affect biodegradation. Failure to consider bioavailability rather than total metal likely accounts for much of the enormous variability among reports of inhibitory concentrations of metals. Metals appear to affect organic biodegradation through impacting both the physiology and ecology of organic degrading microorganisms. Recent approaches to increasing organic biodegradation in the presence of metals involve reduction of metal bioavailability and include the use of metal-resistant bacteria, treatment additives, and clay minerals. The addition of divalent cations and adjustment of pH are additional strategies currently under investigation. PMID:12826480

  13. Melt-Quenched Glasses of Metal-Organic Frameworks.

    PubMed

    Bennett, Thomas D; Yue, Yuanzheng; Li, Peng; Qiao, Ang; Tao, Haizheng; Greaves, Neville G; Richards, Tom; Lampronti, Giulio I; Redfern, Simon A T; Blanc, Frédéric; Farha, Omar K; Hupp, Joseph T; Cheetham, Anthony K; Keen, David A

    2016-03-16

    Crystalline solids dominate the field of metal-organic frameworks (MOFs), with access to the liquid and glass states of matter usually prohibited by relatively low temperatures of thermal decomposition. In this work, we give due consideration to framework chemistry and topology to expand the phenomenon of the melting of 3D MOFs, linking crystal chemistry to framework melting temperature and kinetic fragility of the glass-forming liquids. Here we show that melting temperatures can be lowered by altering the chemistry of the crystalline MOF state, which provides a route to facilitate the melting of other MOFs. The glasses formed upon vitrification are chemically and structurally distinct from the three other existing categories of melt-quenched glasses (inorganic nonmetallic, organic, and metallic), and retain the basic metal-ligand connectivity of crystalline MOFs, which connects their mechanical properties to their starting chemical composition. The transfer of functionality from crystal to glass points toward new routes to tunable, functional hybrid glasses. PMID:26885940

  14. Governing metal-organic frameworks towards high stability.

    PubMed

    Li, Na; Xu, Jian; Feng, Rui; Hu, Tong-Liang; Bu, Xian-He

    2016-06-30

    Metal-organic frameworks (MOFs) constructed with metal ions/clusters and organic ligands have emerged as an important family of porous materials for various applications. However, the stability of this class of materials is crucial for their practical applications, which might be improved by varying their chemical composition and/or structurally tuning them. To fabricate MOFs with high stability, several strategies for enhancing the stability of MOFs have been developed, in which the strength of metal-ligand bonds is especially considered: the use of highly charged cations and higher pKa ligands, and varying the chemical functionality of linkers. On the other hand, the regulation of their structural architectures is also investigated: interpenetrated frameworks, multi-walled frameworks, and self-strengthening of the frameworks. In addition, the surface modification can also improve the stability of the materials. In this review, we introduce and summarize these strategies from the viewpoint of structural tuning and component choosing, providing useful instructions for the further design and synthesis of MOFs with high-level stability. PMID:27230794

  15. High-quality uniaxial In(x)Ga(1-x)N/GaN multiple quantum well (MQW) nanowires (NWs) on Si(111) grown by metal-organic chemical vapor deposition (MOCVD) and light-emitting diode (LED) fabrication.

    PubMed

    Ra, Yong-Ho; Navamathavan, R; Park, Ji-Hyeon; Lee, Cheul-Ro

    2013-03-01

    This article describes the growth and device characteristics of vertically aligned high-quality uniaxial p-GaN/InxGa1-xN/GaN multiple quantum wells (MQW)/n-GaN nanowires (NWs) on Si(111) substrates grown by metal-organic chemical vapor deposition (MOCVD) technique. The resultant nanowires (NWs), with a diameter of 200-250 nm, have an average length of 2 μm. The feasibility of growing high-quality NWs with well-controlled indium composition MQW structure is demonstrated. These resultant NWs grown on Si(111) substrates were utilized for fabricating vertical-type light-emitting diodes (LEDs). The steep and intense photoluminescence (PL) and cathodoluminescence (CL) spectra are observed, based on the strain-free NWs on Si(111) substrates. High-resolution transmission electron microscopy (HR-TEM) analysis revealed that the MQW NWs are grown along the c-plane with uniform thickness. The current-voltage (I-V) characteristics of these NWs exhibited typical p-n junction LEDs and showed a sharp onset voltage at 2.75 V in the forward bias. The output power is linearly increased with increasing current. The result indicates that the pulsed MOCVD technique is an effective method to grow uniaxial p-GaN/InxGa1-xN/GaN MQW/n-GaN NWs on Si(111), which is more advantageous than other growth techniques, such as molecular beam epitaxy. These results suggest the uniaxial NWs are promising to allow flat-band quantum structures, which can enhance the efficiency of LEDs. PMID:23432423

  16. Capturing snapshots of post-synthetic metallation chemistry in metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Bloch, Witold M.; Burgun, Alexandre; Coghlan, Campbell J.; Lee, Richmond; Coote, Michelle L.; Doonan, Christian J.; Sumby, Christopher J.

    2014-10-01

    Post-synthetic metallation is employed strategically to imbue metal-organic frameworks (MOFs) with enhanced performance characteristics. However, obtaining precise structural information for metal-centred reactions that take place within the pores of these materials has remained an elusive goal, because of issues with high symmetry in certain MOFs, lower initial crystallinity for some chemically robust MOFs, and the reduction in crystallinity that can result from carrying out post-synthetic reactions on parent crystals. Here, we report a new three-dimensional MOF possessing pore cavities that are lined with vacant di-pyrazole groups poised for post-synthetic metallation. These metallations occur quantitatively without appreciable loss of crystallinity, thereby enabling examination of the products by single-crystal X-ray diffraction. To illustrate the potential of this platform to garner fundamental insight into metal-catalysed reactions in porous solids we use single-crystal X-ray diffraction studies to structurally elucidate the reaction products of consecutive oxidative addition and methyl migration steps that occur within the pores of the Rh-metallated MOF, 1·[Rh(CO)2][Rh(CO)2Cl2].

  17. IMPACT OF TOXIC ORGANIC CHEMICALS ON THE KINETICS OF ACETOCLASTICMETHOGENESIS

    EPA Science Inventory

    A knowledge of the effect of toxic organic chemicals on thebiotransformation characteristics of organic co-susbstrates isessential for predicting the impact of these chemicals in anaerobicprocesses. ench-scale tests were conducted to assess the impactof toxic organic chemicals on...

  18. Chemical alteration of extraterrestrial organics during atmospheric entry of micrometeorites

    NASA Astrophysics Data System (ADS)

    Kress, M.; Brownlee, D.

    Most of the extraterrestrial carbon accreted by Earth is carried by the 40,000 tons of ~0.2 mm micrometeorites that enter the atmosphere every year. Particles in this size range would have supplied an enormous amount of carbon to the inchoate biosphere since the exogenous influx at ~4 Ga would have been much higher than today. However, these particles undergo strong drag heating to ~1500 K for several seconds upon atmospheric entry, ostensibly burning away all the organics as CO. Ironically, particles of this size seemed to contribute no organic carbon to Earth despite the fact that they constitute the bulk of the total incoming mass. Conventional wisdom has thus held that organics survive only in smaller cosmic dust grains and in >~cm-sized meteorites, which account for only a tiny fraction of the total exogenous mass flux. However, carbon has been found in several smaller, yet still strongly-heated particles in the form of a refractory, char-like material imbedded with tiny FeNi metal beads, motivating us to study the pyrolysis of complex organic matter. We will present results from experiments and chemical models of the transient drag heating of micrometeorites. We predict that small aromatics, light hydrocarbons, and other organics, as well as CO and char, are formed, indicating that strongly-heated micrometeorites may have indeed been a significant source of organic carbon during the origin of life on Earth.

  19. Conductive metal-organic frameworks and networks: fact or fantasy?

    PubMed

    Hendon, Christopher H; Tiana, Davide; Walsh, Aron

    2012-10-14

    Electrical conduction is well understood in materials formed from inorganic or organic building blocks, but their combination to produce conductive hybrid frameworks and networks is an emerging and rapidly developing field of research. Self-assembling organic-inorganic compounds offer immense potential for functionalising material properties for a wide scope of applications including solar cells, light emitters, gas sensors and bipolar transparent conductors. The flexibility of combining two distinct material classes into a single solid-state system provides an almost infinite number of chemical and structural possibilities; however, there is currently no systematic approach established for designing new compositions and configurations with targeted electronic or optical properties. We review the current status in the field, in particular, the range of hybrid systems reported to date and the important role of materials modelling in the field. From theoretical arguments, the Mott insulator-to-metal transition should be possible in semiconducting metal-organic frameworks, but has yet to be observed. The question remains as to whether electro-active hybrid materials will evolve from chemical curiosities towards practical applications in the near term. PMID:22858739

  20. Chemical Fracturing of Refractory-Metal Vessels

    NASA Technical Reports Server (NTRS)

    Campana, R. J.

    1986-01-01

    Localized reactions cause refractory-metal vessels to break up at predetermined temperatures. Device following concept designed to break up along predetermined lines into smaller pieces at temperature significantly below melting point of metal from which made. Possible applications include fire extinguishers that breakup to release extinguishing gas in enclosed areas, pressure vessels that could otherwise burst dangerously in fire, and self-destroying devices. Technique particularly suitable modification to already existing structures.

  1. Biomimicry in metal-organic materials

    SciTech Connect

    Zhang, MW; Gu, ZY; Bosch, M; Perry, Z; Zhou, HC

    2015-06-15

    Nature has evolved a great number of biological molecules which serve as excellent constructional or functional units for metal-organic materials (MOMs). Even though the study of biomimetic MOMs is still at its embryonic stage, considerable progress has been made in the past few years. In this critical review, we will highlight the recent advances in the design, development and application of biomimetic MOMs, and illustrate how the incorporation of biological components into MOMs could further enrich their structural and functional diversity. More importantly, this review will provide a systematic overview of different methods for rational design of MOMs with biomimetic features. Published by Elsevier B.V.

  2. Polyrotaxane metal-organic frameworks (PMOFs).

    PubMed

    Yang, Jin; Ma, Jian-Fang; Batten, Stuart R

    2012-08-18

    Polyrotaxane metal-organic frameworks (PMOFs), a relatively rare branch of entangled networks, have received significant attention due to their unusual entanglement topologies. The PMOFs we described here are still at an early stage of development. This feature article summarizes the recent developments in structural types of PMOFs from our own group and others. We make some generalizations about the various classes of PMOFs, and develop the definitions and nomenclature of these entanglements, including classification into trivial and nontrivial polyrotaxanes, and limits on what constitutes a (nontrivial) polyrotaxane. Finally, the synthetic strategies toward the design and preparation of new PMOFs are elucidated. PMID:22745934

  3. Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage

    PubMed Central

    Gao, Fei; Ding, Zijing; Meng, Sheng

    2013-01-01

    A new form of nanoporous material, metal intercalated covalent organic framework (MCOF) is proposed and its energy storage property revealed. Employing density functional and thermodynamical analysis, we find that stable, chemically active, porous materials could form by stacking covalent organic framework (COF) layers with metals as a gluing agent. Metal acts as active sites, while its aggregation is suppressed by a binding energy significantly larger than the corresponding cohesive energy of bulk metals. Two important parameters, metal binding and metal-metal separation, are tuned by selecting suitable building blocks and linkers when constructing COF layers. Systematic searches among a variety of elements and organic molecules identify Ca-intercalated COF with diphenylethyne units as optimal material for H2 storage, reaching a striking gravimetric density ~ 5 wt% at near-ambient conditions (300 K, 20 bar), in comparison to < 0.1 wt% for bare COF-1 under the same condition. PMID:23698018

  4. Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Ding, Zijing; Meng, Sheng

    2013-05-01

    A new form of nanoporous material, metal intercalated covalent organic framework (MCOF) is proposed and its energy storage property revealed. Employing density functional and thermodynamical analysis, we find that stable, chemically active, porous materials could form by stacking covalent organic framework (COF) layers with metals as a gluing agent. Metal acts as active sites, while its aggregation is suppressed by a binding energy significantly larger than the corresponding cohesive energy of bulk metals. Two important parameters, metal binding and metal-metal separation, are tuned by selecting suitable building blocks and linkers when constructing COF layers. Systematic searches among a variety of elements and organic molecules identify Ca-intercalated COF with diphenylethyne units as optimal material for H2 storage, reaching a striking gravimetric density ~ 5 wt% at near-ambient conditions (300 K, 20 bar), in comparison to < 0.1 wt% for bare COF-1 under the same condition.

  5. Heterogeneity within a Mesoporous Metal-Organic Framework with Three Distinct Metal-Containing Building Units.

    PubMed

    Tu, Binbin; Pang, Qingqing; Ning, Erlong; Yan, Wenqing; Qi, Yi; Wu, Doufeng; Li, Qiaowei

    2015-10-28

    Materials built from multiple constituents have revealed emerging properties that are beyond linear integration of those from single components. We report a mesoporous metal-organic framework made from three geometrically distinct metal-containing secondary building units (SBUs) as a result of topological induction. The combinations of the Cu-based triangular, Zn-based octahedral, and Zn-based square pyramidal SBUs have created four types of cages in the network, despite that only one organic linker pyrazolecarboxylate was used. The longest distance for molecules maneuvering inside the largest cage is 5.2 nm. Furthermore, the complex and diversified pore environments allow the installation of various new functionalities in the framework as well as the expedited Ag nanoparticle formation in the pores. As presented in the molecule movement diagram, the crystal has provided specific arrangements of cages and apertures with distinct chemical features for guests transporting between the pores. PMID:26335899

  6. Increasing the Stability of Metal-Organic Frameworks

    DOE PAGESBeta

    Bosch, Mathieu; Zhang, Muwei; Zhou, Hong-Cai

    2014-01-01

    Metal-organic frameworks (MOFs) are a new category of advanced porous materials undergoing study by many researchers for their vast variety of both novel structures and potentially useful properties arising from them. Their high porosities, tunable structures, and convenient process of introducing both customizable functional groups and unsaturated metal centers have afforded excellent gas sorption and separation ability, catalytic activity, luminescent properties, and more. However, the robustness and reactivity of a given framework are largely dependent on its metal-ligand interactions, where the metal-containing clusters are often vulnerable to ligand substitution by water or other nucleophiles, meaning that the frameworks may collapsemore » upon exposure even to moist air. Other frameworks may collapse upon thermal or vacuum treatment or simply over time. This instability limits the practical uses of many MOFs. In order to further enhance the stability of the framework, many different approaches, such as the utilization of high-valence metal ions or nitrogen-donor ligands, were recently investigated. This review details the efforts of both our research group and others to synthesize MOFs possessing drastically increased chemical and thermal stability, in addition to exemplary performance for catalysis, gas sorption, and separation.« less

  7. Complexed metals in hazardous waste: Limitations of conventional chemical oxidation

    SciTech Connect

    Diel, B.N.; Kuchynka, D.J.; Borchert, J.

    1994-12-31

    In the management of hazardous waste, more is known regarding the treatment of metals than about the fixation, destruction and/or immobilization of any other hazardous constituent group. Metals are the only hazardous constituents which cannot be destroyed, and so must be converted to their least soluble and/or reactive form to prevent reentry into the environment. The occurrence of complexed metals, e.g., metallocyanides, and/or chelated metals, e.g., M{center_dot}EDTA in hazardous waste streams presents formidable challenges to conventional waste treatment practices. This paper presents the results of extensive research into the destruction (chemical oxidation) of metallocyanides and metal-chelates, defines the utility and limitations of conventional chemical oxidation approaches, illustrates some of the waste management difficulties presented by such species, and presents preliminary data on the UV/H{sub 2}O{sub 2} photodecomposition of chelated metals.

  8. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2007-10-23

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  9. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2003-09-02

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  10. Electronic and chemical structure of metal-silicon interfaces

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Grunthaner, F. J.

    1984-01-01

    This paper reviews our current understanding of the near-noble metal silicides and the interfaces formed with Si(100). Using X-ray photoemission spectroscopy, we compare the chemical composition and electronic structure of the room temperature metal-silicon and reacted silicide-silicon interfaces. The relationship between the interfacial chemistry and the Schottky barrier heights for this class of metals on silicon is explored.