Science.gov

Sample records for metal oxide heterostructure

  1. Observation of complete space-charge-limited transport in metal-oxide-graphene heterostructure

    SciTech Connect

    Chen, Wei; Wang, Fei; Fang, Jingyue; Wang, Guang; Qin, Shiqiao; Zhang, Xue-Ao E-mail: xazhang@nudt.edu.cn; Wang, Chaocheng; Wang, Li E-mail: xazhang@nudt.edu.cn

    2015-01-12

    The metal-oxide-graphene heterostructures have abundant physical connotations. As one of the most important physical properties, the electric transport property of the gold-chromium oxide-graphene heterostructure has been studied. The experimental measurement shows that the conductive mechanism is dominated by the space-charge-limited transport, a kind of bulk transport of an insulator with charge traps. Combining the theoretical analysis, some key parameters such as the carrier mobility and trap energy also are obtained. The study of the characteristics of the metal-oxide-graphene heterostructures is helpful to investigate the graphene-based electronic and photoelectric devices.

  2. Coupled molecular-dynamics and first-principle transport calculations of metal/oxide/metal heterostructures

    NASA Astrophysics Data System (ADS)

    Zapol, Peter; Karpeyev, Dmitry; Maheshwari, Ketan; Zhong, Xiaoliang; Narayanan, Badri; Sankaranarayanan, Subramanian; Wilde, Michael; Heinonen, Olle; Rungger, Ivan

    2015-03-01

    The electronic conduction in Hf-oxide heterostructures for use in, e.g., resistive switching devices, depends sensitively on local oxygen stoichiometry and interactions at interfaces with metal electrodes. In order to model the electronic structure of different disordered configurations near interfaces, we have combined molecular dynamics (MD) simulations with first-principle based non-equilibrium Green's functions (NEGF) methods, including self-interaction corrections. We have developed an approach to generating automated workflows that combine MD and NEGF computations over many parameter values using the Swift parallel scripting language. A sequence of software tools transforms the result of one calculation into the input of the next allowing for a high-throughput concurrent parameter sweep. MD simulations generate systems with quenched disorder, which are then directly fed to NEGF and on to postprocessing. Different computations can be run on different computer platforms matching the computational load to the hardware resources. We will demonstrate results for metal-HfO2-metal heterostructures obtained using this workflow. Argonne National Laboratory's work was supported under U.S. Department of Energy Contract DE-AC02-06CH11357.

  3. LETTER TO THE EDITOR: Efficient photocarrier injection in a transition metal oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Muraoka, Y.; Yamauchi, T.; Ueda, Y.; Hiroi, Z.

    2002-12-01

    An efficient method for doping a transition metal oxide (TMO) with hole carriers is presented: photocarrier injection (PCI) in an oxide heterostructure. It is shown that an insulating vanadium dioxide (VO2) film is rendered metallic under light irradiation by PCI from an n-type titanium dioxide (TiO2) substrate doped with Nb. Consequently, a large photoconductivity, which is exceptional for TMOs, is found in the VO2/TiO2:Nb heterostructure. We propose an electronic band structure where photoinduced holes created in TiO2:Nb can be transferred into the filled V 3d band via the low-lying O 2p band of VO2.

  4. Topological phases in oxide heterostructures with light and heavy transition metal ions (invited)

    SciTech Connect

    Fiete, Gregory A.; Rüegg, Andreas

    2015-05-07

    Using a combination of density functional theory, tight-binding models, and Hartree-Fock theory, we predict topological phases with and without time-reversal symmetry breaking in oxide heterostructures. We consider both heterostructures containing light transition metal ions and those containing heavy transition metal ions. We find that the (111) growth direction naturally leads to favorable conditions for topological phases in both perovskite structures and pyrochlore structures. For the case of light transition metal elements, Hartree-Fock theory predicts the spin-orbit coupling is effectively enhanced by on-site multiple-orbital interactions and may drive the system through a topological phase transition, while heavy elements with intrinsically large spin-orbit coupling require much weaker or even vanishing electron interactions to bring about a topological phase.

  5. Multifunctional Oxide Heterostructures

    SciTech Connect

    Tsymbal, E Y; Dagotto, Elbio R; Eom, Professor Chang-Beom; Ramesh, Ramamoorthy

    2012-01-01

    This book is devoted to the rapidly developing field of oxide thin-films and heterostructures. Oxide materials combined with atomic-scale precision in a heterostructure exhibit an abundance of macroscopic physical properties involving the strong coupling between the electronic, spin, and structural degrees of freedom, and the interplay between magnetism, ferroelectricity, and conductivity. Recent advances in thin-film deposition and characterization techniques made possible the experimental realization of such oxide heterostructures, promising novel functionalities and device concepts.

  6. Tuning the work function in transition metal oxides and their heterostructures

    NASA Astrophysics Data System (ADS)

    Zhong, Z.; Hansmann, P.

    2016-06-01

    The development of novel functional materials in experimental labs combined with computer-based compound simulation brings the vision of materials design on a microscopic scale continuously closer to reality. For many applications interface and surface phenomena rather than bulk properties are key. One of the most fundamental qualities of a material-vacuum interface is the energy required to transfer an electron across this boundary, i.e., the work function. It is a crucial parameter for numerous applications, including organic electronics, field electron emitters, and thermionic energy converters. Being generally very resistant to degradation at high temperatures, transition metal oxides present a promising materials class for such devices. We have performed a systematic study for perovskite oxides that provides reference values and, equally important, reports on materials trends and the tunability of work functions. Our results identify and classify dependencies of the work function on several parameters including specific surface termination, surface reconstructions, oxygen vacancies, and heterostructuring.

  7. Research Update: Magnetoionic control of magnetization and anisotropy in layered oxide/metal heterostructures

    NASA Astrophysics Data System (ADS)

    Duschek, K.; Pohl, D.; Fähler, S.; Nielsch, K.; Leistner, K.

    2016-03-01

    Electric field control of magnetization and anisotropy in layered structures with perpendicular magnetic anisotropy is expected to increase the versatility of spintronic devices. As a model system for reversible voltage induced changes of magnetism by magnetoionic effects, we present several oxide/metal heterostructures polarized in an electrolyte. Room temperature magnetization of Fe-O/Fe layers can be changed by 64% when applying only a few volts in 1M KOH. In a next step, the bottom interface of the in-plane magnetized Fe layer is functionalized by an L10 FePt(001) underlayer exhibiting perpendicular magnetic anisotropy. During subsequent electrocrystallization and electrooxidation, well defined epitaxial Fe3O4/Fe/FePt heterostructures evolve. The application of different voltages leads to a thickness change of the Fe layer sandwiched between Fe-O and FePt. At the point of transition between rigid magnet and exchange spring magnet regime for the Fe/FePt bilayer, this induces a large variation of magnetic anisotropy.

  8. Probing the structural flexibility of MOFs by constructing metal oxide@MOF-based heterostructures for size-selective photoelectrochemical response

    NASA Astrophysics Data System (ADS)

    Zhan, Wenwen; He, Yue; Guo, Jiangbin; Chen, Luning; Kong, Xiangjian; Zhao, Haixia; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2016-07-01

    It is becoming a challenge to achieve simpler characterization and wider application of flexible metal organic frameworks (MOFs) exhibiting the gate-opening or breathing behavior. Herein, we designed an intelligent MOF-based system where the gate-opening or breathing behavior of MOFs can be facially visualized in solution. Two types of metal oxide@MOF core-shell heterostructures, ZnO@ZIF-7 and ZnO@ZIF-71, were prepared using ZnO nanorods as self-sacrificial templates. The structural flexibility of both the MOFs can be easily judged from the distinct molecular-size-related formation modes and photoelectrochemical performances between the two ZnO@ZIF heterostructures. Moreover, the rotational dynamics of the flexible parts of ZIF-7 were studied by analyzing the intrinsic physical properties, such as dielectric constants, of the structure. The present work reminds us to pay particular attention to the influences of the structural flexibility of MOFs on the structure and properties of MOF-involved heterostructures in future studies.It is becoming a challenge to achieve simpler characterization and wider application of flexible metal organic frameworks (MOFs) exhibiting the gate-opening or breathing behavior. Herein, we designed an intelligent MOF-based system where the gate-opening or breathing behavior of MOFs can be facially visualized in solution. Two types of metal oxide@MOF core-shell heterostructures, ZnO@ZIF-7 and ZnO@ZIF-71, were prepared using ZnO nanorods as self-sacrificial templates. The structural flexibility of both the MOFs can be easily judged from the distinct molecular-size-related formation modes and photoelectrochemical performances between the two ZnO@ZIF heterostructures. Moreover, the rotational dynamics of the flexible parts of ZIF-7 were studied by analyzing the intrinsic physical properties, such as dielectric constants, of the structure. The present work reminds us to pay particular attention to the influences of the structural flexibility of

  9. Probing the structural flexibility of MOFs by constructing metal oxide@MOF-based heterostructures for size-selective photoelectrochemical response.

    PubMed

    Zhan, Wenwen; He, Yue; Guo, Jiangbin; Chen, Luning; Kong, Xiangjian; Zhao, Haixia; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun

    2016-07-21

    It is becoming a challenge to achieve simpler characterization and wider application of flexible metal organic frameworks (MOFs) exhibiting the gate-opening or breathing behavior. Herein, we designed an intelligent MOF-based system where the gate-opening or breathing behavior of MOFs can be facially visualized in solution. Two types of metal oxide@MOF core-shell heterostructures, ZnO@ZIF-7 and ZnO@ZIF-71, were prepared using ZnO nanorods as self-sacrificial templates. The structural flexibility of both the MOFs can be easily judged from the distinct molecular-size-related formation modes and photoelectrochemical performances between the two ZnO@ZIF heterostructures. Moreover, the rotational dynamics of the flexible parts of ZIF-7 were studied by analyzing the intrinsic physical properties, such as dielectric constants, of the structure. The present work reminds us to pay particular attention to the influences of the structural flexibility of MOFs on the structure and properties of MOF-involved heterostructures in future studies. PMID:27336961

  10. Magnetic Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anand; May, Steven J.

    2014-07-01

    Complex transition metal oxides have played a central role in the study of magnetic materials, serving as model systems for explorations of fundamental exchange interactions and the relationships between structural, electronic, and magnetic responses. Enabled by advances in epitaxial synthesis techniques, abrupt heterointerfaces and superlattices have emerged as a powerful platform for engineering novel magnetic behavior in oxides. Following a brief introduction to the dominant exchange mechanisms in metal oxides, we review the general means by which interfacial magnetism can be tailored in ABO3 perovskites, including interfacial charge transfer, epitaxial strain and structural coupling, orbital polarizations and reconstructions, and tailoring exchange interactions via cation ordering. Recent examples are provided to illustrate how these strategies have been employed at isolated interfaces and in short-period superlattices. We conclude by briefly discussing underexplored and emerging research directions in the field.

  11. Controlling the interface charge density in GaN-based metal-oxide-semiconductor heterostructures by plasma oxidation of metal layers

    SciTech Connect

    Hahn, Herwig Kalisch, Holger; Vescan, Andrei; Pécz, Béla; Kovács, András; Heuken, Michael

    2015-06-07

    In recent years, investigating and engineering the oxide-semiconductor interface in GaN-based devices has come into focus. This has been driven by a large effort to increase the gate robustness and to obtain enhancement mode transistors. Since it has been shown that deep interface states act as fixed interface charge in the typical transistor operating regime, it appears desirable to intentionally incorporate negative interface charge, and thus, to allow for a positive shift in threshold voltage of transistors to realise enhancement mode behaviour. A rather new approach to obtain such negative charge is the plasma-oxidation of thin metal layers. In this study, we present transmission electron microscopy and energy dispersive X-ray spectroscopy analysis as well as electrical data for Al-, Ti-, and Zr-based thin oxide films on a GaN-based heterostructure. It is shown that the plasma-oxidised layers have a polycrystalline morphology. An interfacial amorphous oxide layer is only detectable in the case of Zr. In addition, all films exhibit net negative charge with varying densities. The Zr layer is providing a negative interface charge density of more than 1 × 10{sup 13 }cm{sup –2} allowing to considerably shift the threshold voltage to more positive values.

  12. Slow and fast traps in metal-oxide-semiconductor capacitors fabricated on recessed AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Fiorenza, Patrick; Greco, Giuseppe; Iucolano, Ferdinando; Patti, Alfonso; Roccaforte, Fabrizio

    2015-04-01

    In this letter, slow and fast trap states in metal-oxide-semiconductor (MOS) capacitors fabricated on recessed AlGaN/GaN heterostructures were studied by frequency dependent conductance measurements. In particular, the comparison of devices before and after annealing in forming gas allowed to ascribe the fast states (with characteristic response time in the range of 5-50 μs) to SiO2/GaN "interface traps," and the slow states (50-100 μs) to "border traps" located few nanometers inside the SiO2 layer. These results can be important to predict and optimize the threshold voltage stability of hybrid MOS-based transistors on GaN.

  13. Exploring and alleviating detrimental interface dipole effects in ultra-thin all-oxide metal-ferroelectric-metal heterostructures

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Wang, Yong; Lukashev, Pavel; Burton, J. D.; Tsymbal, Evgeny

    2012-02-01

    Ultrathin-film metal-ferroelectric-metal heterostructures present an exciting prospect for switchable nanoelectronic memories and devices such as ferroelectric tunnel junctions. The main challenge is to realize ferroelectricity in ultrathin-films where detrimental interface effects become increasingly more pronounced as ferroelectric film thicknesses approach the nanoscale. We studied the ferroelectric polarization of BaTiO3 in epitaxial SrRuO3/BaTiO3/SrRuO3 junctions by first-principles density functional theory and phenomenological modeling. The calculations show that the presence of a RuO2/BaO termination sequence at the SrRuO3/BaTiO3 interface leads to a pinned interface dipole and is therefore detrimental to the stability of ferroelectricity, leading to the disappearance of switchable polarization under a certain thickness. Here, we propose to alleviate this behavior by depositing a thin layer of SrTiO3 at this interface to suppress the RuO2/BaO interface termination sequence, thereby eliminating the associated unfavorable pinned interface dipole. By doing this we find, and experiments confirm, that a switchable ferroelectric state can be stabilized in much thinner heterostructures.

  14. Ultraviolet GaN photodetectors on Si via oxide buffer heterostructures with integrated short period oxide-based distributed Bragg reflectors and leakage suppressing metal-oxide-semiconductor contacts

    SciTech Connect

    Szyszka, A. E-mail: adam.szyszka@pwr.wroc.pl; Haeberlen, M.; Storck, P.; Thapa, S. B.; Schroeder, T.

    2014-08-28

    Based on a novel double step oxide buffer heterostructure approach for GaN integration on Si, we present an optimized Metal-Semiconductor-Metal (MSM)-based Ultraviolet (UV) GaN photodetector system with integrated short-period (oxide/Si) Distributed Bragg Reflector (DBR) and leakage suppressing Metal-Oxide-Semiconductor (MOS) electrode contacts. In terms of structural properties, it is demonstrated by in-situ reflection high energy electron diffraction and transmission electron microscopy-energy dispersive x-ray studies that the DBR heterostructure layers grow with high thickness homogeneity and sharp interface structures sufficient for UV applications; only minor Si diffusion into the Y{sub 2}O{sub 3} films is detected under the applied thermal growth budget. As revealed by comparative high resolution x-ray diffraction studies on GaN/oxide buffer/Si systems with and without DBR systems, the final GaN layer structure quality is not significantly influenced by the growth of the integrated DBR heterostructure. In terms of optoelectronic properties, it is demonstrated that—with respect to the basic GaN/oxide/Si system without DBR—the insertion of (a) the DBR heterostructures and (b) dark current suppressing MOS contacts enhances the photoresponsivity below the GaN band-gap related UV cut-off energy by almost up to two orders of magnitude. Given the in-situ oxide passivation capability of grown GaN surfaces and the one order of magnitude lower number of superlattice layers in case of higher refractive index contrast (oxide/Si) systems with respect to classical III-N DBR superlattices, virtual GaN substrates on Si via functional oxide buffer systems are thus a promising robust approach for future GaN-based UV detector technologies.

  15. Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures

    SciTech Connect

    Xiao, Di; Zhu, Wenguang; Ran, Ying; Nagaosa, Naoto; Okamoto, Satoshi

    2011-01-01

    Topological insulators (TIs) are characterized by a non-trivial band topology driven by the spin-orbit coupling. To fully explore the fundamental science and application of TIs, material realization is indispensable. Here we predict, based on tight-binding modeling and first-principles calculations, that bilayers of perovskite-type transition-metal oxides grown along the [111] crystallographic axis are potential candidates for two-dimensional TIs. The topological band structure of these materials can be fine-tuned by changing dopant ions, substrates and external gate voltages. We predict that LaAuO$_3$ bilayers have a topologically non-trivial energy gap of about 0.15~eV, which is sufficiently large to realize the quantum spin Hall effect at room temperature. Intriguing phenomena, such as fractional quantum Hall effect, associated with the nearly flat topologically non-trivial bands found in $e_g$ systems are also discussed.

  16. Final LDRD report : metal oxide films, nanostructures, and heterostructures for solar hydrogen production.

    SciTech Connect

    Kronawitter, Coleman X.; Antoun, Bonnie R.; Mao, Samuel S.

    2012-01-01

    The distinction between electricity and fuel use in analyses of global power consumption statistics highlights the critical importance of establishing efficient synthesis techniques for solar fuels-those chemicals whose bond energies are obtained through conversion processes driven by solar energy. Photoelectrochemical (PEC) processes show potential for the production of solar fuels because of their demonstrated versatility in facilitating optoelectronic and chemical conversion processes. Tandem PEC-photovoltaic modular configurations for the generation of hydrogen from water and sunlight (solar water splitting) provide an opportunity to develop a low-cost and efficient energy conversion scheme. The critical component in devices of this type is the PEC photoelectrode, which must be optically absorptive, chemically stable, and possess the required electronic band alignment with the electrochemical scale for its charge carriers to have sufficient potential to drive the hydrogen and oxygen evolution reactions. After many decades of investigation, the primary technological obstacle remains the development of photoelectrode structures capable of efficient conversion of light with visible frequencies, which is abundant in the solar spectrum. Metal oxides represent one of the few material classes that can be made photoactive and remain stable to perform the required functions.

  17. General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance

    PubMed Central

    Wang, Hengguo; Ma, Delong; Huang, Xiaolei; Huang, Yun; Zhang, Xinbo

    2012-01-01

    We demonstrate a simple, efficient, yet versatile strategy for the synthesis of novel hierarchical heterostructures composed of TiO2 nanofiber stem and various metal oxides (MOs) secondary nanostructures, including Co3O4, Fe2O3, Fe3O4, and CuO, by advantageously combining the versatility of the electrospinning technique and hydrothermal growth method, for which the controllable formation process and possible formation mechanism are also investigated. Moreover, as a proof-of-concept demonstration of the functional properties of these hierarchical heterostructures, the Co3O4/TiO2 hierarchical heterostructures are investigated as the lithium-ion batteries (LIBs) anode materials for the first time, which not only delivers a high reversible capacity of 632.5 mAh g-1 and 95.3% capacity retention over 480 cycles, but also shows excellent rate capability with respect to the pristine TiO2 nanofibers. The synergetic effect between Co3O4 and TiO2 as well as the unique feature of hierarchical heterostructures are probably responsible for the enhanced electrochemical performance. PMID:23050085

  18. P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas

    NASA Astrophysics Data System (ADS)

    Zhang, Kexiong; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Sang, Liwen

    2016-03-01

    The concept of p-channel InGaN/GaN heterostructure field effect transistor (FET) using a two-dimensional hole gas (2DHG) induced by polarization effect is demonstrated. The existence of 2DHG near the lower interface of InGaN/GaN heterostructure is verified by theoretical simulation and capacitance-voltage profiling. The metal-oxide-semiconductor FET (MOSFET) with Al2O3 gate dielectric shows a drain-source current density of 0.51 mA/mm at the gate voltage of ‑2 V and drain bias of ‑15 V, an ON/OFF ratio of two orders of magnitude and effective hole mobility of 10 cm2/Vs at room temperature. The normal operation of MOSFET without freeze-out at 8 K further proves that the p-channel behavior is originated from the polarization-induced 2DHG.

  19. P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas.

    PubMed

    Zhang, Kexiong; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Sang, Liwen

    2016-01-01

    The concept of p-channel InGaN/GaN heterostructure field effect transistor (FET) using a two-dimensional hole gas (2DHG) induced by polarization effect is demonstrated. The existence of 2DHG near the lower interface of InGaN/GaN heterostructure is verified by theoretical simulation and capacitance-voltage profiling. The metal-oxide-semiconductor FET (MOSFET) with Al2O3 gate dielectric shows a drain-source current density of 0.51 mA/mm at the gate voltage of -2 V and drain bias of -15 V, an ON/OFF ratio of two orders of magnitude and effective hole mobility of 10 cm(2)/Vs at room temperature. The normal operation of MOSFET without freeze-out at 8 K further proves that the p-channel behavior is originated from the polarization-induced 2DHG. PMID:27021054

  20. Charge transfer and emergent phenomena of oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui

    Charge transfer is a common phenomenon at oxide interfaces. We use first-principles calculations to show that via heterostructuring of transition metal oxides, the electronegativity difference between two dissimilar transition metal ions can lead to high level of charge transfer and induce substantial redistribution of electrons and ions. Notable examples include i) enhancing correlation effects and inducing a metal-insulator transition; ii) tailoring magnetic structures and inducing interfacial ferromagnetism; iii) engineering orbital splitting and inducing a non-cuprate single-orbital Fermi surface. Utilizing charge transfer to induce emergent electronic/magnetic/orbital properties at oxide interfaces is a robust approach. Combining charge transfer with quantum confinement and expitaxial strain provides an appealing prospect of engineering electronic structure of artificial oxide heterostructures. This research was supported by National Science Foundation under Grant No. DMR-1120296.

  1. Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature

    NASA Astrophysics Data System (ADS)

    Liuan, Li; Jiaqi, Zhang; Yang, Liu; Jin-Ping, Ao

    2016-03-01

    In this paper, TiN/AlOx gated AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS-HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process, ohmic contact can be obtained by annealing at 600 °C with the contact resistance approximately 1.6 Ω·mm. The ohmic annealing process also acts as a post-deposition annealing on the oxide film, resulting in good device performance. Those results demonstrated that the TiN/AlOx gated MOS-HFETs with low temperature ohmic process can be applied for self-aligned gate AlGaN/GaN MOS-HFETs. Project supported by the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260).

  2. Giant switchable Rashba effect in oxide heterostructures

    SciTech Connect

    Zhong, Zhicheng; Si, Liang; Zhang, Qinfang; Yin, Wei-Guo; Yunoki, Seiji; Held, Karsten

    2015-03-01

    One of the most fundamental phenomena and a reminder of the electron’s relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction. Interfacing ferroelectric BaTiO₃ and a 5d (or 4d) transition metal oxide with a large spin-orbit coupling, Ba(Os,Ir,Ru)O₃, we show that giant Rashba spin splittings are indeed possible and even controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, induces a large (Os,Ir,Ru)-O distortion. The BaTiO₃/Ba(Os,Ru,Ir)O₃ heterostructure is hence the ideal test station for switching and studying the Rashba effect and allows applications at room temperature.

  3. Giant switchable Rashba effect in oxide heterostructures

    DOE PAGESBeta

    Zhong, Zhicheng; Si, Liang; Zhang, Qinfang; Yin, Wei-Guo; Yunoki, Seiji; Held, Karsten

    2015-03-01

    One of the most fundamental phenomena and a reminder of the electron’s relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction. Interfacing ferroelectric BaTiO₃ and a 5d (or 4d) transition metal oxide with a large spin-orbit coupling, Ba(Os,Ir,Ru)O₃, we show that giant Rashba spin splittings are indeed possible and even controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, inducesmore » a large (Os,Ir,Ru)-O distortion. The BaTiO₃/Ba(Os,Ru,Ir)O₃ heterostructure is hence the ideal test station for switching and studying the Rashba effect and allows applications at room temperature.« less

  4. P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas

    PubMed Central

    Zhang, Kexiong; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Sang, Liwen

    2016-01-01

    The concept of p-channel InGaN/GaN heterostructure field effect transistor (FET) using a two-dimensional hole gas (2DHG) induced by polarization effect is demonstrated. The existence of 2DHG near the lower interface of InGaN/GaN heterostructure is verified by theoretical simulation and capacitance-voltage profiling. The metal-oxide-semiconductor FET (MOSFET) with Al2O3 gate dielectric shows a drain-source current density of 0.51 mA/mm at the gate voltage of −2 V and drain bias of −15 V, an ON/OFF ratio of two orders of magnitude and effective hole mobility of 10 cm2/Vs at room temperature. The normal operation of MOSFET without freeze-out at 8 K further proves that the p-channel behavior is originated from the polarization-induced 2DHG. PMID:27021054

  5. GaN metal-oxide-semiconductor field-effect transistors on AlGaN/GaN heterostructure with recessed gate

    NASA Astrophysics Data System (ADS)

    Wang, Qingpeng; Ao, Jin-Ping; Wang, Pangpang; Jiang, Ying; Li, Liuan; Kawaharada, Kazuya; Liu, Yang

    2015-04-01

    GaN metal-oxide-semiconductor field-effect transistors (MOSFETs) on AlGaN/GaN heterostructure with a recess gate were fabricated and characterized. The device showed good pinch-off characteristics and a maximum field-effect mobility of 145.2 cm2·V-1·s-1. The effects of etching gas of Cl2 and SiCl4 were investigated in the gate recess process. SiCl4-etched devices showed higher channel mobility and lower threshold voltage. Atomic force microscope measurement was done to investigate the etching profile with different etching protection mask. Compared with photoresist, SiO2-masked sample showed lower surface roughness and better profile with stepper sidewall and weaker trenching effect resulting in higher channel mobility in the MOSFET.

  6. Ultrafast Strain Engineering in Complex Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Caviglia, A. D.; Scherwitzl, R.; Popovich, P.; Hu, W.; Bromberger, H.; Singla, R.; Mitrano, M.; Hoffmann, M. C.; Kaiser, S.; Zubko, P.; Gariglio, S.; Triscone, J.-M.; Först, M.; Cavalleri, A.

    2012-03-01

    We report on ultrafast optical experiments in which femtosecond midinfrared radiation is used to excite the lattice of complex oxide heterostructures. By tuning the excitation energy to a vibrational mode of the substrate, a long-lived five-order-of-magnitude increase of the electrical conductivity of NdNiO3 epitaxial thin films is observed as a structural distortion propagates across the interface. Vibrational excitation, extended here to a wide class of heterostructures and interfaces, may be conducive to new strategies for electronic phase control at THz repetition rates.

  7. Ultrafast strain engineering in complex oxide heterostructures.

    PubMed

    Caviglia, A D; Scherwitzl, R; Popovich, P; Hu, W; Bromberger, H; Singla, R; Mitrano, M; Hoffmann, M C; Kaiser, S; Zubko, P; Gariglio, S; Triscone, J-M; Först, M; Cavalleri, A

    2012-03-30

    We report on ultrafast optical experiments in which femtosecond midinfrared radiation is used to excite the lattice of complex oxide heterostructures. By tuning the excitation energy to a vibrational mode of the substrate, a long-lived five-order-of-magnitude increase of the electrical conductivity of NdNiO(3) epitaxial thin films is observed as a structural distortion propagates across the interface. Vibrational excitation, extended here to a wide class of heterostructures and interfaces, may be conducive to new strategies for electronic phase control at THz repetition rates. PMID:22540718

  8. Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Mahmood, Khalid; Swain, Bhabani Sankar; Amassian, Aram

    2015-07-01

    To achieve highly efficient mesoscopic perovskite solar cells (PSCs), the structure and properties of an electron transport layer (ETL) or material (ETM) have been shown to be of supreme importance. Particularly, the core-shell heterostructured mesoscopic ETM architecture has been recognized as a successful electrode design, because of its large internal surface area, superior light-harvesting efficiency and its ability to achieve fast charge transport. Here we report the successful fabrication of a hysteresis-free, 15.3% efficient PSC using vertically aligned ZnO nanorod/TiO2 shell (ZNR/TS) core-shell heterostructured ETMs for the first time. We have also added a conjugated polyelectrolyte polymer into the growth solution to promote the growth of high aspect ratio (AR) ZNRs and substantially improve the infiltration of the perovskite light absorber into the ETM. The PSCs based on the as-synthesized core-shell ZnO/TiO2 heterostructured ETMs exhibited excellent performance enhancement credited to the superior light harvesting capability, larger surface area, prolonged charge-transport pathways and lower recombination rate. The unique ETM design together with minimal hysteresis introduces core-shell ZnO/TiO2 heterostructures as a promising mesoscopic electrode approach for the fabrication of efficient PSCs.To achieve highly efficient mesoscopic perovskite solar cells (PSCs), the structure and properties of an electron transport layer (ETL) or material (ETM) have been shown to be of supreme importance. Particularly, the core-shell heterostructured mesoscopic ETM architecture has been recognized as a successful electrode design, because of its large internal surface area, superior light-harvesting efficiency and its ability to achieve fast charge transport. Here we report the successful fabrication of a hysteresis-free, 15.3% efficient PSC using vertically aligned ZnO nanorod/TiO2 shell (ZNR/TS) core-shell heterostructured ETMs for the first time. We have also added a

  9. Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells.

    PubMed

    Mahmood, Khalid; Swain, Bhabani Sankar; Amassian, Aram

    2015-08-14

    To achieve highly efficient mesoscopic perovskite solar cells (PSCs), the structure and properties of an electron transport layer (ETL) or material (ETM) have been shown to be of supreme importance. Particularly, the core-shell heterostructured mesoscopic ETM architecture has been recognized as a successful electrode design, because of its large internal surface area, superior light-harvesting efficiency and its ability to achieve fast charge transport. Here we report the successful fabrication of a hysteresis-free, 15.3% efficient PSC using vertically aligned ZnO nanorod/TiO2 shell (ZNR/TS) core-shell heterostructured ETMs for the first time. We have also added a conjugated polyelectrolyte polymer into the growth solution to promote the growth of high aspect ratio (AR) ZNRs and substantially improve the infiltration of the perovskite light absorber into the ETM. The PSCs based on the as-synthesized core-shell ZnO/TiO2 heterostructured ETMs exhibited excellent performance enhancement credited to the superior light harvesting capability, larger surface area, prolonged charge-transport pathways and lower recombination rate. The unique ETM design together with minimal hysteresis introduces core-shell ZnO/TiO2 heterostructures as a promising mesoscopic electrode approach for the fabrication of efficient PSCs. PMID:26159238

  10. Nano-scale polar-nonpolar oxide heterostructures for photocatalysis

    NASA Astrophysics Data System (ADS)

    Guo, Hongli; Saidi, Wissam A.; Yang, Jinlong; Zhao, Jin

    2016-03-01

    We proposed based on first principles density functional theory calculations that a nano-scale thin film based on a polar-nonpolar transition-metal oxide heterostructure can be used as a highly-efficient photocatalyst. This is demonstrated using a SrTiO3/LaAlO3/SrTiO3 sandwich-like heterostructure with photocatalytic activity in the near-infrared region. The effect of the polar nature of LaAlO3 is two-fold. First, the induced electrostatic field accelerates the photo-generated electrons and holes into opposite directions and minimizes their recombination rates. Hence, the reduction and oxidation reactions can be instigated at the SrTiO3 surfaces located on the opposite sides of the heterostructure. Second, the electric field reduces the band gap of the system making it photoactive in the infrared region. We also show that charge separation can be enhanced by using compressive strain engineering that creates ferroelectric instability in STO. The proposed setup is ideal for tandem oxide photocatalysts especially when combined with photoactive polar materials.We proposed based on first principles density functional theory calculations that a nano-scale thin film based on a polar-nonpolar transition-metal oxide heterostructure can be used as a highly-efficient photocatalyst. This is demonstrated using a SrTiO3/LaAlO3/SrTiO3 sandwich-like heterostructure with photocatalytic activity in the near-infrared region. The effect of the polar nature of LaAlO3 is two-fold. First, the induced electrostatic field accelerates the photo-generated electrons and holes into opposite directions and minimizes their recombination rates. Hence, the reduction and oxidation reactions can be instigated at the SrTiO3 surfaces located on the opposite sides of the heterostructure. Second, the electric field reduces the band gap of the system making it photoactive in the infrared region. We also show that charge separation can be enhanced by using compressive strain engineering that creates

  11. High-performance GaAs-based metal-oxide-semiconductor heterostructure field-effect transistors with atomic-layer-deposited Al2O3 gate oxide and in situ AlN passivation by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Aoki, Takeshi; Fukuhara, Noboru; Osada, Takenori; Sazawa, Hiroyuki; Hata, Masahiko; Inoue, Takayuki

    2014-10-01

    GaAs-based metal-oxide-semiconductor heterostructure field-effect transistors (MOSHFETs) with Al2O3 gate oxide and in situ AlN passivation were investigated. Passivation with AlN improved the quality of the MOS interfaces, leading to good control of the gate. The devices had a sufficiently small subthreshold swing of 84 mV decade-1 in the drain current vs gate voltage curves, as well as negligible frequency dispersions and nearly zero hysteresis in the gate capacitance vs gate voltage curves. A maximum drain current of 630 mA/mm and a peak effective mobility of 6720 cm2 V-1 s-1 at a sheet carrier density of 3 × 1012 cm-2 were achieved.

  12. Reduced pressure chemical vapor deposition of Si/Si1-yCy heterostructures for n-type metal-oxide-semiconductor transistors

    NASA Astrophysics Data System (ADS)

    Hartmann, J. M.; Ernst, T.; Loup, V.; Ducroquet, F.; Rolland, G.; Lafond, D.; Holliger, P.; Laugier, F.; Semeria, M. N.; Deleonibus, S.

    2002-09-01

    We have grown by reduced pressure chemical vapor deposition Si/Si1-yCy/Si heterostructures for electrical purposes. The incorporation of substitutional carbon atoms into Si creates a carrier confinement in the channel region of metal-oxide-semiconductor (MOS) transistors. Indeed, tensile strain Si1-yCy layers present a type II band alignment with Si, with a conduction band offset of the order of 60 meV per at. % of substitutional carbon atoms. For small SiH3CH3 flows, all the incoming carbon atoms are incorporated into substitutional sites. At 600 degC, when the SiH3CH3 flow increases, the substitutional carbon concentration saturates at 1.12%. Meanwhile, the total carbon concentration CT still increases, following a simple law: CT/(1-CT)=0.88 * F(SiH3CH3)/F(SiH4). This is a sign that a growing number of C atoms incorporates into interstitial sites. The hydrogenated chemistry adopted does not enable one to achieve selectivity over SiO2-masked wafers, but does not however generate any adverse loading effect. We have integrated Si/Si1-yCy/Si stacks (which have been shown to be stable versus conventional gate oxidations and electrical activation anneals) into the channel region of ultrashort gate length (50 nm) nMOS transistors. Secondary ions mass spectrometry profiling has shown that C atoms segregate from the Si1-yCy layer into the Si cap and the SiO2 gate, but also that they block the diffusion paths of B coming from the antipunch through layer towards the gate, generating very retrograde doping profiles. The addition of C leads to a degradation of the electron mobility which seems to be linked to the high amount of C atoms into interstitial sites.

  13. Thermal and Electrical Transport in Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Ravichandran, Jayakanth

    This dissertation presents a study of thermal and electrical transport phenomena in heterostructures of transition metal oxides, with specific interest in understanding and tailoring thermoelectricity in these systems. Thermoelectric energy conversion is a promising method for waste heat recovery and the efficiency of such an engine is directly related to a material dependent figure of merit, Z, given as S2sigma/kappa, where S is thermopower and sigma and kappa are electrical and thermal conductivity respectively. Achieving large figure of merit has been hampered by the coupling between these three thermoelectric coefficients, and the primary aim of this study is to understand the nature of thermoelectricity in complex oxides and identify mechanisms which can allow tuning of one or more thermoelectric coefficients in a favorable manner. Unlike the heavily studied conventional thermoelectric semiconductors, transition metals based complex oxides show conduction band characteristics dominated by d-bands, with much larger effective masses and varying degrees of electron correlations. These systems provide for exotic thermoelectric effects which are typically not explained by conventional theories and hence provide an ideal platform for exploring the limits of thermoelectricity. Meanwhile, oxides are composed of earth abundant elements and have excellent high temperature stability, thus providing compelling technological possibilities for thermoelectrics based power generation. In this dissertation, we address specific aspects of thermoelectricity in model complex oxide systems such as perovskite titanates and layered cobaltates to understand thermal and thermoelectric behavior and explore the tunability of thermoelectricity in these systems. The demonstration of band engineering as a viable method to tune physical properties of materials is explored. The model system used for this case is strontium titanate, where two dopants such as La on the Sr-site and oxygen

  14. Topological properties and correlation effects in oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Okamoto, Satoshi

    2015-03-01

    Transition-metal oxides (TMOs) have long been one of the main subjects of material science because of their novel functionalities such as high-Tc superconductivity in cuprates and the colossal magnetoresistance effect in manganites. In recent years, we have seen tremendous developments in thin film growth techniques with the atomic precision, resulting in the discovery of a variety of electronic states in TMO heterostructures. These developments motivate us to explore the possibility of novel quantum states of matter such as topological insulators (TIs) in TMO heterostructures. In this talk, I will present our systematic theoretical study on unprecedented electronic states in TMO heterostructures. An extremely simple but crucial observation is that, when grown along the [111] crystallographic axis, bilayers of perovskite TMOs form buckled honeycomb lattices of transition-metal ions, similar to graphene. Thus, with the relativistic spin-orbit coupling and proper band filling, two-dimensional TI states or spin Hall insulators are anticipated. Based on tight-binding modeling and density-functional theory calculations, possible candidate materials for TIs are identified. By means of the dynamical-mean-field theory and a slave-boson mean field theory, correlation effects, characteristics of TMOs, are also examined. I will further discuss future prospects in topological phenomena in TMO heterostructures and related systems. The author thanks D. Xiao, W. Zhu, Y. Ran, R. Arita, Y. Nomura and N. Nagaosa for their fruitful discussions and collaboration. This work is supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  15. Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO₄ metal oxide – CdSe nanocrystal composite heterostructures

    SciTech Connect

    Han, Jinkyu; McBean, Coray; Wang, Lei; Hoy, Jessica; Jaye, Cherno; Liu, Haiqing; Li, Zhuo-Qun; Sfeir, Matthew Y.; Fischer, Daniel A.; Taylor, Gordon T.; Misewich, James A.; Wong, Stanislaus S.

    2015-01-30

    In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dot (QDs) coupled with (ii) both one and zero-dimensional (1D and 0D) motifs of self-activated luminescence CaWO₄ metal oxides. Specifically, ~4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring ~230 nm in diameter and ~3 μm in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of ~ 80 nm) of CaWO₄ through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementary electron microscopy and spectroscopy (i.e. IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO₄ as compared with unbound CaWO₄. We propose that a photo-induced electron transfer process occurs from CaWO₄ to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO₄ nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO₄ within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO₄ itself.

  16. Semiconductor-oxide heterostructured nanowires using postgrowth oxidation.

    PubMed

    Wallentin, Jesper; Ek, Martin; Vainorious, Neimantas; Mergenthaler, Kilian; Samuelson, Lars; Pistol, Mats-Erik; Reine Wallenberg, L; Borgström, Magnus T

    2013-01-01

    Semiconductor-oxide heterointerfaces have several electron volts high-charge carrier potential barriers, which may enable devices utilizing quantum confinement at room temperature. While a single heterointerface is easily formed by oxide deposition on a crystalline semiconductor, as in MOS transistors, the amorphous structure of most oxides inhibits epitaxy of a second semiconductor layer. Here, we overcome this limitation by separating epitaxy from oxidation, using postgrowth oxidation of AlP segments to create axial and core-shell semiconductor-oxide heterostructured nanowires. Complete epitaxial AlP-InP nanowire structures were first grown in an oxygen-free environment. Subsequent exposure to air converted the AlP segments into amorphous aluminum oxide segments, leaving isolated InP segments in an oxide matrix. InP quantum dots formed on the nanowire sidewalls exhibit room temperature photoluminescence with small line widths (down to 15 meV) and high intensity. This optical performance, together with the control of heterostructure segment length, diameter, and position, opens up for optoelectrical applications at room temperature. PMID:24195687

  17. Ferromagnetic Resonance Spin Pumping and Electrical Spin Injection in Silicon-Based Metal-Oxide-Semiconductor Heterostructures.

    PubMed

    Pu, Y; Odenthal, P M; Adur, R; Beardsley, J; Swartz, A G; Pelekhov, D V; Flatté, M E; Kawakami, R K; Pelz, J; Hammel, P C; Johnston-Halperin, E

    2015-12-11

    We present the measurement of ferromagnetic resonance (FMR-)driven spin pumping and three-terminal electrical spin injection within the same silicon-based device. Both effects manifest in a dc spin accumulation voltage V_{s} that is suppressed as an applied field is rotated to the out-of-plane direction, i.e., the oblique Hanle geometry. Comparison of V_{s} between these two spin injection mechanisms reveals an anomalously strong suppression of FMR-driven spin pumping with increasing out-of-plane field H_{app}^{z}. We propose that the presence of the large ac component to the spin current generated by the spin pumping approach, expected to exceed the dc value by 2 orders of magnitude, is the origin of this discrepancy through its influence on the spin dynamics at the oxide-silicon interface. This convolution, wherein the dynamics of both the injector and the interface play a significant role in the spin accumulation, represents a new regime for spin injection that is not well described by existing models of either FMR-driven spin pumping or electrical spin injection. PMID:26705647

  18. Ferromagnetic Resonance Spin Pumping and Electrical Spin Injection in Silicon-Based Metal-Oxide-Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Pu, Y.; Odenthal, P. M.; Adur, R.; Beardsley, J.; Swartz, A. G.; Pelekhov, D. V.; Flatté, M. E.; Kawakami, R. K.; Pelz, J.; Hammel, P. C.; Johnston-Halperin, E.

    2015-12-01

    We present the measurement of ferromagnetic resonance (FMR-)driven spin pumping and three-terminal electrical spin injection within the same silicon-based device. Both effects manifest in a dc spin accumulation voltage Vs that is suppressed as an applied field is rotated to the out-of-plane direction, i.e., the oblique Hanle geometry. Comparison of Vs between these two spin injection mechanisms reveals an anomalously strong suppression of FMR-driven spin pumping with increasing out-of-plane field Happz . We propose that the presence of the large ac component to the spin current generated by the spin pumping approach, expected to exceed the dc value by 2 orders of magnitude, is the origin of this discrepancy through its influence on the spin dynamics at the oxide-silicon interface. This convolution, wherein the dynamics of both the injector and the interface play a significant role in the spin accumulation, represents a new regime for spin injection that is not well described by existing models of either FMR-driven spin pumping or electrical spin injection.

  19. Chemical changes in carbon Nanotube-Nickel/Nickel Oxide Core/Shell nanoparticle heterostructures treated at high temperatures

    SciTech Connect

    Chopra, Nitin; McWhinney, Hylton G.; Shi Wenwu

    2011-06-15

    Heterostructures composed of carbon nanotube (CNT) coated with Ni/NiO core/shell nanoparticles (denoted as CNC heterostructures) were synthesized in a wet-chemistry and single-step synthesis route involving direct nucleation of nanoparticles on CNT surface. Two different aspects of CNC heterostructures were studied here. First, it was observed that the nanoparticle coatings were more uniform on the as-produced and non-purified CNTs compared to purified (or acid treated) CNTs. These heterostructures were characterized using electron microscopy, Raman spectroscopy, and energy dispersive spectroscopy. Second, thermal stability of CNC heterostructures was studied by annealing them in N{sub 2}-rich (O{sub 2}-lean) environment between 125 and 750 deg. C for 1 h. A detailed X-ray photoelectron spectroscopy and Raman spectroscopy analysis was performed to evaluate the effects of annealing temperatures on chemical composition, phases, and stability of the heterostructures. It was observed that the CNTs present in the heterostructures completely decomposed and core Ni nanoparticle oxidized significantly between 600 and 750 deg. C. - Research Highlights: {yields} Heterostructures composed of CNTs coated with Ni/NiO core/shell nanoparticles. {yields} Poor nanoparticle coverage on purified CNT surface compared to non-purified CNTs. {yields} CNTs in heterostructures decompose between 600 and 750 deg. C in N{sub 2}-rich atmosphere. {yields} Metallic species in heterostructures were oxidized at higher temperatures.

  20. Inverse spin Hall effect in a complex ferromagnetic oxide heterostructure

    PubMed Central

    Wahler, Martin; Homonnay, Nico; Richter, Tim; Müller, Alexander; Eisenschmidt, Christian; Fuhrmann, Bodo; Schmidt, Georg

    2016-01-01

    We present spin pumping and inverse spin Hall effect (ISHE) in an epitaxial complex oxide heterostructure. Ferromagnetic La0.7Sr0.3MnO3 (LSMO) is used as a source of spin pumping while the spin sink exhibiting the ISHE consists of SrRuO3 (SRO). SRO is a ferromagnetic oxide with metallic conductivity, however, with a Curie temperature (TC) of 155 K, thus well below room temperature. This choice allows to perform the experiment above and below TC of the SRO and to demonstrate that SRO not only shows an ISHE of a magnitude comparable to Pt (though with opposite sign) in its non magnetic state but also exhibits a finite ISHE even 50 K below TC. PMID:27346793

  1. Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO₄ metal oxide – CdSe nanocrystal composite heterostructures

    DOE PAGESBeta

    Han, Jinkyu; McBean, Coray; Wang, Lei; Hoy, Jessica; Jaye, Cherno; Liu, Haiqing; Li, Zhuo-Qun; Sfeir, Matthew Y.; Fischer, Daniel A.; Taylor, Gordon T.; et al

    2015-01-30

    In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dot (QDs) coupled with (ii) both one and zero-dimensional (1D and 0D) motifs of self-activated luminescence CaWO₄ metal oxides. Specifically, ~4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring ~230 nm in diameter and ~3 μm in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of ~ 80 nm) of CaWO₄ through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementarymore » electron microscopy and spectroscopy (i.e. IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO₄ as compared with unbound CaWO₄. We propose that a photo-induced electron transfer process occurs from CaWO₄ to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO₄ nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO₄ within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO₄ itself.« less

  2. General Considerations of the Electrostatic Boundary Conditions in Oxide Heterostructures

    SciTech Connect

    Higuchi, Takuya

    2011-08-19

    When the size of materials is comparable to the characteristic length scale of their physical properties, novel functionalities can emerge. For semiconductors, this is exemplified by the 'superlattice' concept of Esaki and Tsu, where the width of the repeated stacking of different semiconductors is comparable to the 'size' of the electrons, resulting in novel confined states now routinely used in opto-electronics. For metals, a good example is magnetic/non-magnetic multilayer films that are thinner than the spin-scattering length, from which giant magnetoresistance (GMR) emerged, used in the read heads of hard disk drives. For transition metal oxides, a similar research program is currently underway, broadly motivated by the vast array of physical properties that they host. This long-standing notion has been recently invigorated by the development of atomic-scale growth and probe techniques, which enables the study of complex oxide heterostructures approaching the precision idealized in Fig. 1(a). Taking the subset of oxides derived from the perovskite crystal structure, the close lattice match across many transition metal oxides presents the opportunity, in principle, to develop a 'universal' heteroepitaxial materials system. Hand-in-hand with the continual improvements in materials control, an increasingly relevant challenge is to understand the consequences of the electrostatic boundary conditions which arise in these structures. The essence of this issue can be seen in Fig. 1(b), where the charge sequence of the sublayer 'stacks' for various representative perovskites is shown in the ionic limit, in the (001) direction. To truly 'universally' incorporate different properties using different materials components, be it magnetism, ferroelectricity, superconductivity, etc., it is necessary to access and join different charge sequences, labelled here in analogy to the designations 'group IV, III-V, II-VI' for semiconductors. As we will review, interfaces between

  3. Strongly coupled phase transition in ferroelectric/correlated electron oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Seok Choi, Woo; Jeen, Hyoungjeen; Egami, Takeshi; Nyung Lee, Ho

    2012-07-01

    We fabricated ultrathin ferroelectric/correlated electron oxide heterostructures composed of the ferroelectric Pb(Zr0.2Ti0.8)O3 and the correlated electron oxide (CEO) La0.8Sr0.2MnO3 on SrTiO3 substrates by pulsed laser epitaxy. The hole accumulation in the ultrathin CEO layer was substantially modified by heterostructuring with the ferroelectric layer, resulting in an insulator-metal transition. In particular, our thickness dependent study showed that drastic changes in transport and magnetic properties were strongly coupled to the modulation of charge carriers by ferroelectric field effect, which was confined to the vicinity of the interface. Thus, our results provide crucial evidence that strong ferroelectric field effect control can be achieved in ultrathin (10 nm) heterostructures, yielding at least a 100 000-fold change in resistivity.

  4. Size control of noble metal clusters and metallic heterostructures through the reduction kinetics of metal precursors

    NASA Astrophysics Data System (ADS)

    Sevonkaev, Igor V.; Herein, Daniel; Jeske, Gerald; Goia, Dan V.

    2014-07-01

    Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties.Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03045a

  5. Fabrication of Metal-Semiconductor Heterostructures in Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Yang, Luyun

    The increasing demand for fossil fuels and the need to reduce greenhouse gases require clean energy sources and more efficient utilization of energy. Thermoelectric materials provide a means toward achieving these goals since they convert heat, including waste heat, directly into an electric potential difference. Metal-semiconductor heterostructures can work as Schottky barriers in thermoelectric materials to increase thermoelectric efficiency. In this project, nickel silicide phases were introduced into silicon nanowires (SiNWs) to build up the Schottky barrier. SiNW arrays were fabricated using a metal-assisted chemical process, creating SiNWs about 200 nm in diameter and 30im in length. Different methods were adopted for nickel deposition: electroless nickel deposition, electro nickel deposition, E-beam deposition, and thermal evaporation. The samples were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that depositing nickel on SiNWs in an aqueous solution without electricity is a simple way to deposit nickel particles, and the morphology of nickel particles depends on the concentration of the deposition bath. However, an aqueous solution will cause oxidation of the SiNWs and hinder the formation of nickel silicide. To solve this problem, depositing nickel on SiNWs in organic solutions inside an oxygen-free glove box is a way to prevent oxidation, and nickel can diffuse into silicon substrates easily via annealing when there no oxidation layer on the surface of SiNWs. The dominant phase formed in these samples is NiSi2 after being annealed at 650°C for one hour in a tube furnace.

  6. Scanning probe microscopy investigation of complex-oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Bi, Feng

    Advances in the growth of precisely tailored complex-oxide heterostructures have led to new emergent behavior and associated discoveries. One of the most successful examples consists of an ultrathin layer of LaAlO 3 (LAO) deposited on TiO2-terminated SrTiO3 (STO), where a high mobility quasi-two dimensional electron liquid (2DEL) is formed at the interface. Such 2DEL demonstrates a variety of novel properties, including field tunable metal-insulator transition, superconductivity, strong spin-orbit coupling, magnetic and ferroelectric like behavior. Particularly, for 3-unit-cell (3 u.c.) LAO/STO heterostructures, it was demonstrated that a conductive atomic force microscope (c-AFM) tip can be used to "write" or "erase" nanoscale conducting channels at the interface, making LAO/STO a highly flexible platform to fabricate novel nanoelectronics. This thesis is focused on scanning probe microscopy studies of LAO/STO properties. We investigate the mechanism of c-AFM lithography over 3 u.c. LAO/STO in controlled ambient conditions by using a vacuum AFM, and find that the water molecules dissociated on the LAO surface play a critical role during the c-AFM lithography process. We also perform electro-mechanical response measurements over top-gated LAO/STO devices. Simultaneous piezoresponse force microscopy (PFM) and capacitance measurements reveal a correlation between LAO lattice distortion and interfacial carrier density, which suggests that PFM could not only serve as a powerful tool to map the carrier density at the interface but also provide insight into previously reported frequency dependence of capacitance enhancement of top-gated LAO/STO structures. To study magnetism at the LAO/STO interface, magnetic force microscopy (MFM) and magnetoelectric force microscopy (MeFM) are carried out to search for magnetic signatures that depend on the carrier density at the interface. Results demonstrate an electronicallycontrolled ferromagnetic phase on top-gated LAO

  7. Atomic Scale Chemical and Structural Characterization of Ceramic Oxide Heterostructure Interfaces

    SciTech Connect

    Singh, R. K.

    2003-04-16

    The research plan was divided into three tasks: (a) growth of oxide heterostructures for interface engineering using standard thin film deposition techniques, (b) atomic level characterization of oxide heterostructure using such techniques as STEM-2 combined with AFM/STM and conventional high-resolution microscopy (HRTEM), and (c) property measurements of aspects important to oxide heterostructures using standard characterization methods, including dielectric properties and dynamic cathodoluminescence measurements. Each of these topics were further classified on the basis of type of oxide heterostructure. Type I oxide heterostructures consisted of active dielectric layers, including the materials Ba{sub x}Sr{sub 1-x}TiO{sub 3} (BST), Y{sub 2}O{sub 3} and ZrO{sub 2}. Type II heterostructures consisted of ferroelectric active layers such as lanthanum manganate and Type III heterostructures consist of phosphor oxide active layers such as Eu-doped Y{sub 2}O{sub 3}.

  8. High-frequency dynamics of hybrid oxide Josephson heterostructures

    NASA Astrophysics Data System (ADS)

    Komissinskiy, P.; Ovsyannikov, G. A.; Constantinian, K. Y.; Kislinski, Y. V.; Borisenko, I. V.; Soloviev, I. I.; Kornev, V. K.; Goldobin, E.; Winkler, D.

    2008-07-01

    We summarize our results on Josephson heterostructures Nb/Au/YBa2Cu3Ox that combine conventional (S) and oxide high- Tc superconductors with a dominant d -wave symmetry of the superconducting order parameter (D). The heterostructures were fabricated on (001) and (1 1 20) YBa2Cu3Ox films grown by pulsed laser deposition. The structural and surface studies of the (1 1 20) YBa2Cu3Ox thin films reveal nanofaceted surface structure with two facet domain orientations, which are attributed as (001) and (110)-oriented surfaces of YBa2Cu3Ox and result in S/D(001) and S/D(110) nanojunctions formed on the facets. Electrophysical properties of the Nb/Au/YBa2Cu3Ox heterostructures are investigated by the electrical and magnetic measurements at low temperatures and analyzed within the faceting scenario. The superconducting current-phase relation (CPR) of the heterostructures with finite first and second harmonics is derived from the Shapiro steps, which appear in the I-V curves of the heterostructures irradiated at frequencies up to 100 GHz. The experimental positions and amplitudes of the Shapiro steps are explained within the modified resistive Josephson junction model, where the second harmonic of the CPR and capacitance of the Josephson junctions are taken into account. We experimentally observe a crossover from a lumped to a distributed Josephson junction limit for the size of the heterostructures smaller than Josephson penetration depth. The effect is attributed to the variations of the harmonics of the superconducting CPR across the heterojunction, which may give rise to splintered vortices of magnetic flux quantum. Our investigations of parameters and phenomena that are specific for superconductors having d -wave symmetry of the superconducting order parameter may be of importance for applications such as high-frequency detectors and novel elements of a possible quantum computer.

  9. Optical spectroscopy of nanoscale and heterostructured oxides

    NASA Astrophysics Data System (ADS)

    Senty, Tess R.

    Through careful analysis of a material's properties, devices are continually getting smaller, faster and more efficient each day. Without a complete scientific understanding of material properties, devices cannot continue to improve. This dissertation uses optical spectroscopy techniques to understand light-matter interactions in several oxide materials with promising uses mainly in light harvesting applications. Linear absorption, photoluminescence and transient absorption spectroscopy are primarily used on europium doped yttrium vanadate nanoparticles, copper gallium oxide delafossites doped with iron, and cadmium selenide quantum dots attached to titanium dioxide nanoparticles. Europium doped yttrium vanadate nanoparticles have promising applications for linking to biomolecules. Using Fourier-transform infrared spectroscopy, it was shown that organic ligands (benzoic acid, 3-nitro 4-chloro-benzoic acid and 3,4-dihydroxybenzoic acid) can be attached to the surface of these molecules using metal-carboxylate coordination. Photoluminescence spectroscopy display little difference in the position of the dominant photoluminescence peaks between samples with different organic ligands although there is a strong decrease in their intensity when 3,4-dihydroxybenzoic acid is attached. It is shown that this strong quenching is due to the presence of high-frequency hydroxide vibrational modes within the organic linker. Ultraviolet/visible linear absorption measurements on delafossites display that by doping copper gallium oxide with iron allows for the previously forbidden fundamental gap transition to be accessed. Using tauc plots, it is shown that doping with iron lowers the bandgap from 2.8 eV for pure copper gallium oxide, to 1.7 eV for samples with 1 -- 5% iron doping. Using terahertz transient absorption spectroscopy measurements, it was also determined that doping with iron reduces the charge mobility of the pure delafossite samples. A comparison of cadmium selenide

  10. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures

    PubMed Central

    Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter; Iddir, Hakim; Baldo, Peter M.; Eastman, Jeffrey A.

    2016-01-01

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment. PMID:27283250

  11. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures.

    PubMed

    Veal, Boyd W; Kim, Seong Keun; Zapol, Peter; Iddir, Hakim; Baldo, Peter M; Eastman, Jeffrey A

    2016-01-01

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment. PMID:27283250

  12. Interfacial control of oxygen vacancy doping and electrical conduction in thin film oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Veal, Boyd W.; Kim, Seong Keun; Zapol, Peter; Iddir, Hakim; Baldo, Peter M.; Eastman, Jeffrey A.

    2016-06-01

    Oxygen vacancies in proximity to surfaces and heterointerfaces in oxide thin film heterostructures have major effects on properties, resulting, for example, in emergent conduction behaviour, large changes in metal-insulator transition temperatures or enhanced catalytic activity. Here we report the discovery of a means of reversibly controlling the oxygen vacancy concentration and distribution in oxide heterostructures consisting of electronically conducting In2O3 films grown on ionically conducting Y2O3-stabilized ZrO2 substrates. Oxygen ion redistribution across the heterointerface is induced using an applied electric field oriented in the plane of the interface, resulting in controlled oxygen vacancy (and hence electron) doping of the film and possible orders-of-magnitude enhancement of the film's electrical conduction. The reversible modified behaviour is dependent on interface properties and is attained without cation doping or changes in the gas environment.

  13. Zinc-oxide-based nanostructured materials for heterostructure solar cells

    SciTech Connect

    Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A. Somov, P. A.; Terukov, E. I.

    2015-10-15

    Results obtained in the deposition of nanostructured zinc-oxide layers by hydrothermal synthesis as the basic method are presented. The possibility of controlling the structure and morphology of the layers is demonstrated. The important role of the procedure employed to form the nucleating layer is noted. The faceted hexagonal nanoprisms obtained are promising for the fabrication of solar cells based on oxide heterostructures, and aluminum-doped zinc-oxide layers with petal morphology, for the deposition of an antireflection layer. The results are compatible and promising for application in flexible electronics.

  14. Dynamic Feedback in Ferromagnet-Spin Hall Metal Heterostructures.

    PubMed

    Cheng, Ran; Zhu, Jian-Gang; Xiao, Di

    2016-08-26

    In ferromagnet-normal-metal heterostructures, spin pumping and spin-transfer torques are two reciprocal processes that occur concomitantly. Their interplay introduces a dynamic feedback effect interconnecting energy dissipation channels of both magnetization and current. By solving the spin diffusion process in the presence of the spin Hall effect in the normal metal, we show that the dynamic feedback gives rise to (i) a nonlinear magnetic damping that is crucial to sustain uniform steady-state oscillations of a spin Hall oscillator at large angles and (ii) a frequency-dependent spin Hall magnetoimpedance that reduces to the spin Hall magnetoresistance in the dc limit. PMID:27610880

  15. Tightly Bound Trions in Transition Metal Dichalcogenide Heterostructures.

    PubMed

    Bellus, Matthew Z; Ceballos, Frank; Chiu, Hsin-Ying; Zhao, Hui

    2015-06-23

    We report the observation of trions at room temperature in a van der Waals heterostructure composed of MoSe2 and WS2 monolayers. These trions are formed by excitons excited in the WS2 layer and electrons transferred from the MoSe2 layer. Recombination of trions results in a peak in the photoluminescence spectra, which is absent in monolayer WS2 that is not in contact with MoSe2. The trion origin of this peak is further confirmed by the linear dependence of the peak position on excitation intensity. We deduced a zero-density trion binding energy of 62 meV. The trion formation facilitates electrical control of exciton transport in transition metal dichalcogenide heterostructures, which can be utilized in various optoelectronic applications. PMID:26046238

  16. Metal Semiconductor Heterostructures for Photocatalytic Conversion of Light Energy.

    PubMed

    Dutta, Sumit Kumar; Mehetor, Shyamal Kumar; Pradhan, Narayan

    2015-03-19

    For fast separation of the photogenerated charge carriers, metal semiconductor heterostructures have emerged as one of the leading materials in recent years. Among these, metal Au coupled with low bandgap semiconductors remain as ideal materials where both can absorb the solar light in the visible region. It is also established that on excitation, the plasmonic state of gold interacts with excited state of semiconductor and helps for the delocalization of the photogenerated electrons. Focusing these materials where electron transfer preferably occurs from semiconductor to metal Au on excitation, in this Perspective, we report the latest developments in the synthetic chemistry in designing such nano heterostructures and discuss their photocatalytic activities in organic dye degradation/reduction and/or photocatalytic water splitting for generation of hydrogen. Among these, materials such as Au-CZTS, Au-SnS, Au-Bi2S3, Au-ZnSe, and so forth are emphasized, and their formation chemistry as well as their photocatalytic activities are discussed in this Perspective. PMID:26262849

  17. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  18. Vertical Field-Effect Transistor Based on Graphene-Transition Metal Dichalcogenides Heterostructures

    NASA Astrophysics Data System (ADS)

    Kumar, Jatinder; Chien, Hui-Chun; Bellus, Matthew Z.; Sicilian, David L.; Aubin, Davis St.; Chiu, Hsin-Ying; Physics and Astronomy, University of Kansas Team

    2014-03-01

    The remarkable properties of graphene has made it possible to create transistors just few atoms thick. A new development was that the other two-dimensional materials can be stacked on it with atomic layer precision, creating numerous heterostructures on demand. Here, novel vertical field-effect transistor composed of graphene- transition metal dichalcogenides (TMDs) heterostructures is fabricated and characterized at various temperatures. Due to ultrathin nature of these transistors, they present the ultimate limit for electron transport in heterostructures. Tunneling and thermionic transport characteristics are studied among different graphene-TMDs heterostructures. Their electronic properties have been investigated and can be used in vast range of devices.

  19. Strain engineered optoelectronic properties of transition metal dichalcogenides lateral heterostructures

    NASA Astrophysics Data System (ADS)

    Lee, Jaekwang; Yoon, Mina

    2015-03-01

    Most three-dimensional bulk-scale materials rarely survive beyond 1% strain, while recently spotlighted two-dimensional (2-D) materials can sustain a high elastic strain (up to 10%) to optimize optical quantities such as band gaps and absorption spectra governing optoelectronic device performance. Despite the enormous interest in strained 2-D materials, most researches are focused on single materials or vertical heterostructures where precise control of stacking orientation is challenging. Here, using first-principles density-functional calculations, we explore how uniaxial tensile strains modify overall electronic and optical properties of transition metal dichalcogenides lateral heterostructures, such as MoX2/WX2 (X =S, Se). Based on the detailed optoelectronic information, we predict the optimal strain condition for maximal power efficiency. Furthermore, we find that uniaxial tensile strain readily develops a continuously varying direct-bandgap across the lateral heterojunctions, which results in the broad range absorption of solar spectrum useful for future optoelectronic devices. This research was conducted at the CNMS, which is sponsored at Oak Ridge National Laboratory (ORNL) by the Office of Basic Energy Sciences, U.S. Department of Energy; a portion of theory work was supported by the LDRD Program of ORNL.

  20. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis

    NASA Astrophysics Data System (ADS)

    Gong, Ming; Zhou, Wu; Tsai, Mon-Che; Zhou, Jigang; Guan, Mingyun; Lin, Meng-Chang; Zhang, Bo; Hu, Yongfeng; Wang, Di-Yan; Yang, Jiang; Pennycook, Stephen J.; Hwang, Bing-Joe; Dai, Hongjie

    2014-08-01

    Active, stable and cost-effective electrocatalysts are a key to water splitting for hydrogen production through electrolysis or photoelectrochemistry. Here we report nanoscale nickel oxide/nickel heterostructures formed on carbon nanotube sidewalls as highly effective electrocatalysts for hydrogen evolution reaction with activity similar to platinum. Partially reduced nickel interfaced with nickel oxide results from thermal decomposition of nickel hydroxide precursors bonded to carbon nanotube sidewalls. The metal ion-carbon nanotube interactions impede complete reduction and Ostwald ripening of nickel species into the less hydrogen evolution reaction active pure nickel phase. A water electrolyzer that achieves ~20 mA cm-2 at a voltage of 1.5 V, and which may be operated by a single-cell alkaline battery, is fabricated using cheap, non-precious metal-based electrocatalysts.

  1. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis.

    PubMed

    Gong, Ming; Zhou, Wu; Tsai, Mon-Che; Zhou, Jigang; Guan, Mingyun; Lin, Meng-Chang; Zhang, Bo; Hu, Yongfeng; Wang, Di-Yan; Yang, Jiang; Pennycook, Stephen J; Hwang, Bing-Joe; Dai, Hongjie

    2014-01-01

    Active, stable and cost-effective electrocatalysts are a key to water splitting for hydrogen production through electrolysis or photoelectrochemistry. Here we report nanoscale nickel oxide/nickel heterostructures formed on carbon nanotube sidewalls as highly effective electrocatalysts for hydrogen evolution reaction with activity similar to platinum. Partially reduced nickel interfaced with nickel oxide results from thermal decomposition of nickel hydroxide precursors bonded to carbon nanotube sidewalls. The metal ion-carbon nanotube interactions impede complete reduction and Ostwald ripening of nickel species into the less hydrogen evolution reaction active pure nickel phase. A water electrolyzer that achieves ~20 mA cm(-2) at a voltage of 1.5 V, and which may be operated by a single-cell alkaline battery, is fabricated using cheap, non-precious metal-based electrocatalysts. PMID:25146255

  2. Impact of GaN cap on charges in Al₂O₃/(GaN/)AlGaN/GaN metal-oxide-semiconductor heterostructures analyzed by means of capacitance measurements and simulations

    SciTech Connect

    Ťapajna, M. Jurkovič, M.; Válik, L.; Haščík, Š.; Gregušová, D.; Kuzmík, J.; Brunner, F.; Cho, E.-M.; Hashizume, T.

    2014-09-14

    Oxide/semiconductor interface trap density (D{sub it}) and net charge of Al₂O₃/(GaN)/AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor (MOS-HEMT) structures with and without GaN cap were comparatively analyzed using comprehensive capacitance measurements and simulations. D{sub it} distribution was determined in full band gap of the barrier using combination of three complementary capacitance techniques. A remarkably higher D{sub it} (∼5–8 × 10¹²eV⁻¹ cm⁻²) was found at trap energies ranging from EC-0.5 to 1 eV for structure with GaN cap compared to that (D{sub it} ∼ 2–3 × 10¹²eV⁻¹ cm⁻²) where the GaN cap was selectively etched away. D{sub it} distributions were then used for simulation of capacitance-voltage characteristics. A good agreement between experimental and simulated capacitance-voltage characteristics affected by interface traps suggests (i) that very high D{sub it} (>10¹³eV⁻¹ cm⁻²) close to the barrier conduction band edge hampers accumulation of free electron in the barrier layer and (ii) the higher D{sub it} centered about EC-0.6 eV can solely account for the increased C-V hysteresis observed for MOS-HEMT structure with GaN cap. Analysis of the threshold voltage dependence on Al₂O₃ thickness for both MOS-HEMT structures suggests that (i) positive charge, which compensates the surface polarization, is not necessarily formed during the growth of III-N heterostructure, and (ii) its density is similar to the total surface polarization charge of the GaN/AlGaN barrier, rather than surface polarization of the top GaN layer only. Some constraints for the positive surface compensating charge are discussed.

  3. Polarization-induced resistive switching behaviors in complex oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Wu, Lei; Zhang, Chao; Dong, Chunhui; Jia, Chenglong; Jiang, Changjun; Xue, Desheng

    2015-09-01

    Complex oxide heterostructures are fabricated by growing La0.67Ca0.33MnO3 films on ferroelectric 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (011) single-crystal substrates. The nonvolatile or pulsed resistive switching behaviors induced by an electric field are achieved simultaneously. Further analyses indicate that the different resistive switching behaviors are resulted from co-control of piezostrain and polarization current effects. With decreasing in-plane read current from 0.1 mA to 0.001 mA, the polarization current effect gradually begins to play a more important role than the piezostrain effect. Consequently, the nonvolatile resistive switching behavior is converted to pulse resistive switching behavior. The results further enhance the application of complex oxides in multifunctional memory devices.

  4. Integration of Multifunctional Epitaxial Oxide Heterostructures with Si(001)

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Prater, John; Narayan, Jay

    Multifunctional heterostructures exhibit a wide range of functional properties, including colossal magneto-resistance, multiferroic behavior, and spin, charge, and orbital ordering. However, putting this functionality to work remains a challenge. To date, most of the previous works reported in the literature have dealt with heterostructures deposited on closely lattice matched (using lattice matching epitaxy-LME) insulating substrates such as DyScO3, NdGaO3, MgO, SrTiO3 and MBE-grown STO buffered Si(100). This presentation discusses the major advances in the integration of multifunctional oxide materials onto ubiquitous silicon semiconductor platform reported1-6 in the recent past by the presenting authors using a novel thin film growth approach, called `domain matching epitaxy'(DME), which minimizes the strain and nucleation of unwanted defects. The DME paradigm has been used across the large misfit scale (7-25%). Of particular interest, thin film heterostructures including two-phase multiferroics such as BiFeO3(BFO)/La0.7Sr0.3MnO3 (LSMO), BaTiO3(BTO)/LSMO, and LSMO/SrRuO3(SRO). These significant materials advancements may herald a flurry of exciting new advances in CMOS-compatible multifunctional devices.1S. S. Rao,et al.,Nano Letters 13, 5814 (2013); J. Appl. Phys., 116, 094103 (2014); J. Appl. Phys., 116, 224104 (2014); J. Appl. Phys., 117, 17D908 (2015); 5J. Appl. Phys., 117, 17B711 (2015); 6Current Opinion in Solid State and Materials Science. 19, 301-304 (2015).

  5. Femtosecond control of electric currents in metallic ferromagnetic heterostructures.

    PubMed

    Huisman, T J; Mikhaylovskiy, R V; Costa, J D; Freimuth, F; Paz, E; Ventura, J; Freitas, P P; Blügel, S; Mokrousov, Y; Rasing, Th; Kimel, A V

    2016-05-01

    The idea to use not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (10(12) Hz) emission spectroscopy and exploiting the spin-orbit interaction, we demonstrate the optical generation of electric photocurrents in metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism. PMID:26854566

  6. Femtosecond control of electric currents in metallic ferromagnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Huisman, T. J.; Mikhaylovskiy, R. V.; Costa, J. D.; Freimuth, F.; Paz, E.; Ventura, J.; Freitas, P. P.; Blügel, S.; Mokrousov, Y.; Rasing, Th.; Kimel, A. V.

    2016-05-01

    The idea to use not only the charge but also the spin of electrons in the operation of electronic devices has led to the development of spintronics, causing a revolution in how information is stored and processed. A novel advancement would be to develop ultrafast spintronics using femtosecond laser pulses. Employing terahertz (1012 Hz) emission spectroscopy and exploiting the spin–orbit interaction, we demonstrate the optical generation of electric photocurrents in metallic ferromagnetic heterostructures at the femtosecond timescale. The direction of the photocurrent is controlled by the helicity of the circularly polarized light. These results open up new opportunities for realizing spintronics in the unprecedented terahertz regime and provide new insights in all-optical control of magnetism.

  7. Observation of Interlayer Phonons in Transition Metal Dichalcogenide Heterostructures

    NASA Astrophysics Data System (ADS)

    He, Rui; Ye, Zhipeng; Ji, Chao; Means-Shively, Casie; Anderson, Heidi; Kidd, Tim; Chiu, Kuan-Chang; Chou, Cheng-Tse; Wu, Jenn-Ming; Lee, Yi-Hsien; Andersen, Trond; Lui, Chun Hung

    Interlayer phonon modes in transition metal dichalcogenide (TMD) heterostructures are observed for the first time. We measured the low-frequency Raman response of MoS2/WSe2 and MoSe2/MoS2 heterobilayers. We discovered a distinct Raman mode (30 - 35 cm-1) that cannot be found in any individual monolayers. By comparing with Raman spectra of Bernal bilayer (2L) MoS2, 2L MoSe2 and 2L WSe2, we identified the new Raman mode as the layer breathing vibration arising from the vertical displacement of the two TMD layers. The layer breathing mode (LBM) only emerges in bilayer regions with atomically close layer-layer proximity and clean interface. In addition, the LBM frequency exhibits noticeable dependence on the rotational angle between the two TMD layers, which implies a change of interlayer separation and interlayer coupling strength with the layer stacking.

  8. Conduction properties of metal/organic monolayer/semiconductor heterostructures

    SciTech Connect

    Li, D.; Bishop, A.; Gim, Y.; Shi, X.B.; Fitzsimmons, M.R.; Jia, Q.X.

    1998-11-01

    We have fabricated and characterized rectifying devices made of metal/organic monolayer/semiconductor heterostructures. The devices consist of an organic barrier layer sandwiched between an aluminum (Al) metal contact and a {ital p}-type Si semiconductor. The barrier materials were chosen from three types of self-assembled monolayers (SAMs) with different electronic properties: (1) wide-band gap poly(diallydimethyl ammonium) chloride (PDDA), (2) narrow-band gap PDDA/NiPc (nickel phthalocyanine tetrasulfonate), and (3) donor type PDDA/PPP (poly {ital p}-quaterphenylene-disulfonic-dicarboxylic acid). From current{endash}voltage (I{endash}V) measurements at room temperature, we have found the turn-on voltage of the devices can be tuned by varying the structure, hence electronic properties, of the organic monolayers, and that there exists a power-law dependence of {ital I} on V, I{proportional_to}V{sup {alpha}}, with the exponent {alpha}=2.2 for PDDA, 2.7 for PDDA/NiPc, and 1.44 for PDDA/PPP as the barrier layer, respectively. Our results imply that the transport properties are controlled by both the electronic properties of the SAMs and those of the metal and semiconductor, as indicated by the power-law dependence of the I{endash}V characteristics. {copyright} {ital 1998 American Institute of Physics.}

  9. X-ray photoelectron spectroscopy and diffraction investigation of a metal-oxide-semiconductor heterostructure: Pt/Gd2O3/Si(111)

    NASA Astrophysics Data System (ADS)

    Ferrah, D.; El Kazzi, M.; Niu, G.; Botella, C.; Penuelas, J.; Robach, Y.; Louahadj, L.; Bachelet, R.; Largeau, L.; Saint-Girons, G.; Liu, Q.; Vilquin, B.; Grenet, G.

    2015-04-01

    Platinum thin films deposited by physical vapor deposition (PVD) on Gd2O3/Si(111) templates are investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray photoelectron diffraction (XPD). Both XRD and XPD give clear evidence that Gd2O3 grows (111)-oriented and single-domain on Si(111) with mirror epitaxial relationship viz., [1bar10] Gd2O3(111)//[11bar0] Si(111). On Gd2O3/Si(111), Pt is partially crystallized with (111) orientation. There are two epitaxial domains and a slightly visible (111) fiber texture. The in-plane relationships of these Pt(111) domains with Gd2O3(111) are a direct one: [11bar0] Pt(111)//[11bar0] Gd2O3(111) and a mirror one: [1bar10] Pt(111)//[11bar0] Gd2O3(111). XPS reveals that Pt4f exhibits a metallic behavior even for small amounts of Pt but very small chemical shifts suggest that Pt environment is different at the interface with Gd2O3. These XPS chemical shifts have been correlated with features in XPD azimuth curves, which could be related with the existence of hexagonal α-PtO2(0001)layer.

  10. Heterostructured nanohybrid of zinc oxide-montmorillonite clay.

    PubMed

    Hur, Su Gil; Kim, Tae Woo; Hwang, Seong-Ju; Hwang, Sung-Ho; Yang, Jae Hun; Choy, Jin-Ho

    2006-02-01

    We have synthesized heterostructured zinc oxide-aluminosilicate nanohybrids through a hydrothermal reaction between the colloidal suspension of exfoliated montmorillonite nanosheets and the sol solution of zinc acetate. According to X-ray diffraction, N2 adsorption-desorption isotherm, and field emission-scanning electron microscopic analyses, it was found that the intercalation of zinc oxide nanoparticles expands the basal spacing of the host montmorillonite clay, and the crystallites of the nanohybrids are assembled to form a house-of-cards structure. From UV-vis spectroscopic investigation, it becomes certain that calcined nanohybrid contains two kinds of the zinc oxide species in the interlayer space of host lattice and in mesopores formed by the house-of-cards type stacking of the crystallites. Zn K-edge X-ray absorption near-edge structure/extended X-ray absorption fine structure analyses clearly demonstrate that guest species in the nanohybrids exist as nanocrystalline zinc oxides with wurzite-type structure. PMID:16471722

  11. Electronic Structure near the Interface of Complex Oxide Heterostructure SmTiO3/SrTiO3

    NASA Astrophysics Data System (ADS)

    Mori, Ryo; Isaac, Brandon; Marshall, Patrick; Denlinger, Jonathan; Stemmer, Susanne; Lanzara, Alessandra

    Quantum wells created from oxide heterostructures induce quantum confinement systems at the heterostructure interface, which show unique properties, such as strong electron correlation, two-dimensional superconductivity, high carrier densities and mobility, and/or magnetism. The rare earth titanate, SmTiO3, and the transition metal oxide, SrTiO3, create such confined electron systems at their interface, which has a controllable quantum well length by changing the number of SrO layers in SrTiO3. By Varying the number of SrO layers, we will present the layer-dependent electronic structure of the SmTiO3/SrTiO3 interface system from angle-resolved photoemission spectroscopy (ARPES) measurements and discuss these results in terms of strong correlations.

  12. Exciton-polariton condensation in transition metal dichalcogenide bilayer heterostructure

    NASA Astrophysics Data System (ADS)

    Lee, Ki Hoon; Jeong, Jae-Seung; Min, Hongki; Chung, Suk Bum

    For the bilayer heterostructure system in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon coupling can lead to the emergence of quasiparticles consisting of the spatially indirect exciton and cavity photons known as dipolariton, which can form the Bose-Einstein condensate above a threshold density. Additional physics comes into play when each layer of the bilayer system consists of the transition metal dichalcogenide (TMD) monolayer. The TMD monolayer band structure in the low energy spectrum has two valley components with nontrivial Berry phase, which gives rise to a selection rule in the exciton-polariton coupling, e.g. the exciton from one (the other) valley can couple only to the clockwise (counter-clockwise) polarized photon. We investigate possible condensate phases of exciton-polariton in the bilayer TMD microcavity changing relevant parameters such as detuning, excitation density and interlayer distance. This work was supported in part by the Institute for Basic Science of Korea (IBS) under Grant IBS-R009-Y1 and by the National Research Foundation of Korea (NRF) under the Basic Science Research Program Grant No. 2015R1D1A1A01058071.

  13. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  14. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  15. Defect Mediated Ferromagnetism in Zinc Oxide Thin Film Heterostructures

    NASA Astrophysics Data System (ADS)

    Mal, Siddhartha

    Recent developments in the field of spintronics (spin based electronics) have led to an extensive search for materials in which semiconducting properties can be integrated with magnetic properties to realize the objective of successful fabrication of spin-based devices. Since zinc oxide (ZnO) posits a promising player, it is important to elucidate the critical issues regarding the origin and nature of magnetism in ZnO thin film heterostructures. Another critical issue in the development of practical devices based on metal oxides is the integration of high quality epitaxial thin films on the existing technology based on Si (100) substrates, which requires appropriate substrate templates. The present research work is focused on the study of room temperature ferromagnetism (RTFM) caused by intrinsic defects and precise control of RTFM using thermal treatments and laser and ion irradiation. We performed a systematic study of the structural, chemical, electrical, optical and magnetic properties of undoped ZnO films grown under different conditions as well as the films that were annealed in various environments. Oxygen annealed films displayed a sequential transition from ferromagnetism to diamagnetism as a function of the annealing temperature. An increase in the green band intensity has been observed in oxygen annealed ZnO films. Reversible switching of room-temperature ferromagnetism and n-type conductivity have been demonstrated by oxygen and vacuum annealing. Detailed electron energy loss spectroscopy and secondary ion mass spectroscopy studies have been presented to rule out the possibility of external source of magnetism. Electron-Paramagnetic Resonance (EPR) measurements indicate the presence of a broad peak at g=2.01. This would be most consistent with the magnetic moment arising from the oxygen vacancies (g=1.996), although the possible contribution from Zn vacancies (g=2.013) cannot be entirely ruled out. The magnetic moment in these films may arise from the

  16. Sequence of hole resonances in complex oxide heterostructures.

    PubMed

    Smadici, S; Logvenov, G; Bozovic, I; Abbamonte, P

    2014-04-16

    Resonant soft x-ray scattering measurements at the O K edge on Sr2CuO4-ν/La2NiO4+δ (SCO/LNO) complex oxide superlattices show resonances for holes in the two constituent layers, in a sequence of energy levels. The observation of well defined resonances, on a superlattice with layers one unit cell thick, indicates that the resonance energy is largely unaffected by atoms outside a cluster extending half a unit cell along the c axis, consistent with calculations for bulk materials. Comparison to measurements on related superlattices confirms that the order of resonances at the O K edge reflects the order of hole ground-state energies in the heterostructure buried layers. For the SCO/LNO superlattices, the measurements show that the ground-state energies remain different in very thin SCO and LNO layers, which is a contributing factor when considering electronic reconstruction at interfaces, in addition to the areal density of ionic charges in the atomic planes. Different hole energy levels in the SCO/LNO superlattice also imply that holes do not spread into SCO from LNO layers. PMID:24675566

  17. Interface of transition metal oxides at the atomic scale

    NASA Astrophysics Data System (ADS)

    Shang, Tong-Tong; Liu, Xin-Yu; Gu, Lin

    2016-09-01

    Remarkable phenomena arise at well-defined heterostructures, composed of transition metal oxides, which is absent in the bulk counterpart, providing us a paradigm for exploring the various electron correlation effects. The functional properties of such heterostructures have attracted much attention in the microelectronic and renewable energy fields. Exotic and unexpected states of matter could arise from the reconstruction and coupling among lattice, charge, orbital and spin at the interfaces. Aberration-corrected scanning transmission electron microscopy (STEM) is a powerful tool to visualize the lattice structure and electronic structure at the atomic scale. In the present study some novel phenomena of oxide heterostructures at the atomic scale are summarized and pointed out from the perspective of electron microscopy.

  18. Reactive metal-oxide interfaces: A microscopic view

    NASA Astrophysics Data System (ADS)

    Picone, A.; Riva, M.; Brambilla, A.; Calloni, A.; Bussetti, G.; Finazzi, M.; Ciccacci, F.; Duò, L.

    2016-03-01

    Metal-oxide interfaces play a fundamental role in determining the functional properties of artificial layered heterostructures, which are at the root of present and future technological applications. Magnetic exchange and magnetoelectric coupling, spin filtering, metal passivation, catalytic activity of oxide-supported nano-particles are just few examples of physical and chemical processes arising at metal-oxide hybrid systems, readily exploited in working devices. These phenomena are strictly correlated with the chemical and structural characteristics of the metal-oxide interfacial region, making a thorough understanding of the atomistic mechanisms responsible of its formation a prerequisite in order to tailor the device properties. The steep compositional gradient established upon formation of metal-oxide heterostructures drives strong chemical interactions at the interface, making the metal-oxide boundary region a complex system to treat, both from an experimental and a theoretical point of view. However, once properly mastered, interfacial chemical interactions offer a further degree of freedom for tuning the material properties. The goal of the present review is to provide a summary of the latest achievements in the understanding of metal/oxide and oxide/metal layered systems characterized by reactive interfaces. The influence of the interface composition on the structural, electronic and magnetic properties will be highlighted. Particular emphasis will be devoted to the discussion of ultra-thin epitaxial oxides stabilized on highly oxidizable metals, which have been rarely exploited as oxide supports as compared to the much more widespread noble and quasi noble metallic substrates. In this frame, an extensive discussion is devoted to the microscopic characterization of interfaces between epitaxial metal oxides and the Fe(001) substrate, regarded from the one hand as a prototypical ferromagnetic material and from the other hand as a highly oxidizable metal.

  19. Van der Waals Epitaxy of Functional Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Chu, Ying-Hao

    In the diligent pursuit of low-power consumption, multifunctional, and environmentally friendly electronics, more sophisticated requirements on functional materials are on demand. Recently, the discovery of 2D layered materials has created a revolution to this field. Pioneered by graphene, these new 2D materials exhibit abundant unusual physical phenomena that is undiscovered in bulk forms. These materials are characterized with their layer form and almost pure 2D electronic behavior. The confinement of charge and heat transport at such ultrathin planes offers possibilities to overcome the bottleneck of present device development in thickness limitation, and thus push the technologies into next generation. Van der Waals epitaxy, an epitaxial growth method to combine 2D and 3D materials, is one of current reliable manufacturing processes to fabricate 2D materials by growing these 2D materials epitaxially on 3D materials. Then, transferring the 2D materials to the substrates for practical applications. In the mean time, van der Waals epitaxy has also been used to create free-standing 3D materials by growing 3D materials on 2D materials and then removing them from 2D materials since the interfacial boding between 2D and 3D materials should be weak van der Waals bonds. In this study, we intend to take the same concept, but to integrate a family of functional materials in order to open new avenue to flexible electronics. Due to the interplay of lattice, charge, orbital, and spin degrees of freedom, correlated electrons in oxides generate a rich spectrum of competing phases and physical properties. Recently, lots of studies have suggested that oxide heterostructures provide a powerful route to create and manipulate the degrees of freedom and offer new possibilities for next generation devices, thus create a new playground for researchers to investigate novel physics and the emergence of fascinating states of condensed matter. In this talk, we use a 2D layered material as

  20. TOPICAL REVIEW Ionic conductivity in oxide heterostructures: the role of interfaces

    NASA Astrophysics Data System (ADS)

    Fabbri, Emiliana; Pergolesi, Daniele; Traversa, Enrico

    2010-10-01

    Rapidly growing attention is being directed to the investigation of ionic conductivity in oxide film heterostructures. The main reason for this interest arises from interfacial phenomena in these heterostructures and their applications. Recent results revealed that heterophase interfaces have faster ionic conduction pathways than the bulk or homophase interfaces. This finding can open attractive opportunities in the field of micro-ionic devices. The influence of the interfaces on the conduction properties of heterostructures is becoming increasingly important with the miniaturization of solid-state devices, which leads to an enhanced interface density at the expense of the bulk. This review aims to describe the main evidence of interfacial phenomena in ion-conducting film heterostructures, highlighting the fundamental and technological relevance and offering guidelines to understanding the interface conduction mechanisms in these structures.

  1. Monolithic metal oxide transistors.

    PubMed

    Choi, Yongsuk; Park, Won-Yeong; Kang, Moon Sung; Yi, Gi-Ra; Lee, Jun-Young; Kim, Yong-Hoon; Cho, Jeong Ho

    2015-04-28

    We devised a simple transparent metal oxide thin film transistor architecture composed of only two component materials, an amorphous metal oxide and ion gel gate dielectric, which could be entirely assembled using room-temperature processes on a plastic substrate. The geometry cleverly takes advantage of the unique characteristics of the two components. An oxide layer is metallized upon exposure to plasma, leading to the formation of a monolithic source-channel-drain oxide layer, and the ion gel gate dielectric is used to gate the transistor channel effectively at low voltages through a coplanar gate. We confirmed that the method is generally applicable to a variety of sol-gel-processed amorphous metal oxides, including indium oxide, indium zinc oxide, and indium gallium zinc oxide. An inverter NOT logic device was assembled using the resulting devices as a proof of concept demonstration of the applicability of the devices to logic circuits. The favorable characteristics of these devices, including (i) the simplicity of the device structure with only two components, (ii) the benign fabrication processes at room temperature, (iii) the low-voltage operation under 2 V, and (iv) the excellent and stable electrical performances, together support the application of these devices to low-cost portable gadgets, i.e., cheap electronics. PMID:25777338

  2. Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides.

    PubMed

    Azizi, Amin; Eichfeld, Sarah; Geschwind, Gayle; Zhang, Kehao; Jiang, Bin; Mukherjee, Debangshu; Hossain, Lorraine; Piasecki, Aleksander F; Kabius, Bernd; Robinson, Joshua A; Alem, Nasim

    2015-05-26

    Vertical stacking of two-dimensional (2D) crystals has recently attracted substantial interest due to unique properties and potential applications they can introduce. However, little is known about their microstructure because fabrication of the 2D heterostructures on a rigid substrate limits one's ability to directly study their atomic and chemical structures using electron microscopy. This study demonstrates a unique approach to create atomically thin freestanding van der Waals heterostructures-WSe2/graphene and MoS2/graphene-as ideal model systems to investigate the nucleation and growth mechanisms in heterostructures. In this study, we use transmission electron microscopy (TEM) imaging and diffraction to show epitaxial growth of the freestanding WSe2/graphene heterostructure, while no epitaxy is maintained in the MoS2/graphene heterostructure. Ultra-high-resolution aberration-corrected scanning transmission electron microscopy (STEM) shows growth of monolayer WSe2 and MoS2 triangles on graphene membranes and reveals their edge morphology and crystallinity. Photoluminescence measurements indicate a significant quenching of the photoluminescence response for the transition metal dichalcogenides on freestanding graphene, compared to those on a rigid substrate, such as sapphire and epitaxial graphene. Using a combination of (S)TEM imaging and electron diffraction analysis, this study also reveals the significant role of defects on the heterostructure growth. The direct growth technique applied here enables us to investigate the heterostructure nucleation and growth mechanisms at the atomic level without sample handling and transfer. Importantly, this approach can be utilized to study a wide spectrum of van der Waals heterostructures. PMID:25885122

  3. A selector device based on graphene-oxide heterostructures for memristor crossbar applications

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Lian, Xiaojuan; Pan, Yiming; Zeng, Junwen; Wang, Chengyu; Liu, Erfu; Wang, Baigeng; Yang, J. Joshua; Miao, Feng; Xing, Dingyu

    2015-08-01

    Most of the potential applications of memristive devices adopt crossbar architecture for ultra-high density. One of the biggest challenges of the crossbar architecture is severe residue leakage current (sneak path) issue. A possible solution is introducing a selector device with strong nonlinear current-voltage ( I- V) characteristics in series with each memristor in crossbar arrays. Here, we demonstrate a novel selector device based on graphene-oxide heterostructures, which successfully converts a typical linear TaO x memristor into a nonlinear device. The origin of the nonlinearity in the heterostructures is studied in detail, which highlights an important role of the graphene-oxide interfaces.

  4. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes.

    PubMed

    Jia, S; Sun, H D; Du, J H; Zhang, Z K; Zhang, D D; Ma, L P; Chen, J S; Ma, D G; Cheng, H M; Ren, W C

    2016-05-19

    The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A(-1) and 98.2 lm W(-1), respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability. PMID:27153523

  5. Engineering SrTiO3 /LaAlO3 heterostructures thicknessthrough a metallic capping layer electrodes

    NASA Astrophysics Data System (ADS)

    Iori, Federico

    The possibility to achieve conducting and superconducting properties at the interface between two bulk insulator oxides as SrTiO3 (STO) and LaAlO3 (LAO) in 2004 has wide opened the route toward the discovery and control of broad functional emerging properties in different oxides heterostructures. Nonetheless the STO/LAO system still present not clarified questions concerning the possibility to control the presence of the 2DEG at the interface. In this work we present our theoretical results supported by experimental measurementsconcerning the possibility to tune the critical thickness of the LAO topmost layer through the deposition of a metallic capping layer at the surface. Our ab initio Density Functional Theory calculations show how different metallic contact can lead to a reduction of the LAO critical thickness of 4 u.c. still preserving the 2D electronic gas at the interface. UNRAVEL Marie Curie project.

  6. Probing Transition Metal Dichalcogenide Monolayers and Heterostructures by Optical Spectroscopy and Scanning Tunneling Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hill, Heather M.

    Atomically thin two-dimensional materials, such as graphene and semiconductor transition metal dichalcogenides (TMDCs), exhibit remarkable and desirable optical and electronic properties. This dissertation focuses on the excitonic properties of monolayer TMDCs taken first in isolation and then in contact with another material. We begin with a study of the exciton binding energy in two monolayer TMDCs, WS2 and MoS2. We observe excited states of the exciton by two dierent optical spectroscopy techniques: reflectance contrast and photoluminescence excitation (PLE) spectroscopy. We fit a hydrogenic model to the energies associated with the excited states and infer a binding energy, which is an order of magnitude higher than the bulk material. In the second half of this work, we study two types of two-dimensional vertical heterostructures. First, we investigate heterostructures composed of monolayer WS2 partially capped with graphene one to four layers thick. Using reflectance contrast to measure the spectral broadening of the excitonic features, we measure the decrease in the coherence lifetime of the exciton in WS2 due to charge and energy transfer when in contact with graphene. We then compare our results with the exciton lifetime in MoS 2/WS2 and MoSe2/WSe2 heterostructures. In TMDC/TMDC heterostructures, the decrease in exciton lifetime is twice that in WS2/graphene heterostructures and due predominantly to charge transfer between the layers. Finally, we probe the band alignment in MoS2/WS2 heterostructures using scanning tunneling microscopy (STM) and spectroscopy (STS). We confirm the monolayer band gaps and the predicted type II band alignment in the heterostructure. Drawing from all the research presented, we arrive at a favorable conclusion about the viability of TMDC based devices.

  7. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1994-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  8. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1997-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  9. Non-radiative relaxation and rectification behavior of metal/semiconductor tetrapod heterostructures

    SciTech Connect

    Kanta Haldar, Krishna; Kundu, Simanta; Patra, Amitava

    2014-02-10

    The metal-semiconductor hetero-structures have recently emerged as functional materials for their potential applications in the areas of photonic, optoelectronic, and other fields. Here, we discuss the structural characterization of Au/CdSe tetrapod hetero-structures by using high-resolution transmission electron microscope, high angle annular dark field-scanning transmission electron microscopic, and X-ray diffraction. The blue shifting of the plasmonic band and red shifting of the excitonic band suggest a strong surface plasmon-exciton interaction between Au and CdSe in Au/CdSe tetrapod heterostructure. A significant photoluminescence quenching (83.4%) of CdSe nanorod (NR) is observed in the presence of Au nanoparticle in Au/CdSe tetrapod heterostructure. The radiative and nonradiative decay rates of CdSe nanorods are found to be modified in Au/CdSe tetrapod structures and the nonradiative rate changes from 1.91 × 10{sup 7} s{sup −1} to 9.33 × 10{sup 9} s{sup −1} for CdSe NR to Au/CdSe tetrapod structure, respectively. Current-voltage characteristics of Au/CdSe heterostructure exhibit the rectification property with a threshold voltage of about 0.85 V and the rectifying ratio is 140 which can open up avenues for developing challenging devices.

  10. Semiconductor-halfmetal-metal transition and magnetism of bilayer graphene nanoribbons/hexagonal boron nitride heterostructure

    NASA Astrophysics Data System (ADS)

    Ilyasov, V. V.; Meshi, B. C.; Nguyen, V. C.; Ershov, I. V.; Nguyen, D. C.

    2014-12-01

    The paper presents the results of ab initio study of electronic structure modulation and edge magnetism in the antiferromagnetic (AF) bilayer zigzag graphene nanoribbons (AF-BZGNR)/hexagonal boron nitride (h-BN(0001)) semiconductor heterostructure induced with transverse external electric field (Eext) and nanomechanical compression (extension), performed within the framework of the density functional theory using Grimme's DFT(PBE)-D2 scheme. For the first time we established critical values of Eext and interlayer distance in the bilayer for the BZGNR/h-BN(0001) heterostructure providing for semiconductor-halfmetal-metal phase transition for one of the electron spin configurations. We discovered the effect of preserved local magnetic moment (0.3μB) of edge carbon atoms of the lower (buffer) graphene nanoribbon during nanomechanical uniaxial compression (or extension) of the BZGNR/h-BN(0001) semiconductor heterostructure. It has been demonstrated that magnetic properties of the AF-BZGNR/h-BN(0001) semiconductor heterostructure can be controlled using Eext. In particular, the local magnetic moment of edge carbon atoms decreases by 10% at a critical value of the positive potential. We have established that local magnetic moments and band gaps can be altered in a wide range using nanomechanical uniaxial compression and Eext, thus making the AF-BZGNR/h-BN(0001) semiconductor heterostructure potentially promising for nanosensors, spin filters, and spintronics applications.

  11. Template-assisted synthesis of III-nitride and metal-oxide nano-heterostructures using low-temperature atomic layer deposition for energy, sensing, and catalysis applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Biyikli, Necmi; Ozgit-Akgun, Cagla; Eren, Hamit; Haider, Ali; Uyar, Tamer; Kayaci, Fatma; Guler, Mustafa Ozgur; Garifullin, Ruslan; Okyay, Ali K.; Ulusoy, Gamze M.; Goldenberg, Eda

    2015-08-01

    Recent experimental research efforts on developing functional nanostructured III-nitride and metal-oxide materials via low-temperature atomic layer deposition (ALD) will be reviewed. Ultimate conformality, a unique propoerty of ALD process, is utilized to fabricate core-shell and hollow tubular nanostructures on various nano-templates including electrospun nanofibrous polymers, self-assembled peptide nanofibers, metallic nanowires, and multi-wall carbon nanotubes (MWCNTs). III-nitride and metal-oxide coatings were deposited on these nano-templates via thermal and plasma-enhanced ALD processes with thickness values ranging from a few mono-layers to 40 nm. Metal-oxide materials studied include ZnO, TiO2, HfO2, ZrO2, and Al2O3. Standard ALD growth recipes were modified so that precursor molecules have enough time to diffuse and penetrate within the layers/pores of the nano-template material. As a result, uniform and conformal coatings on high-surface area nano-templates were demonstrated. Substrate temperatures were kept below 200C and within the self-limiting ALD window, so that temperature-sensitive template materials preserved their integrity III-nitride coatings were applied to similar nano-templates via plasma-enhanced ALD (PEALD) technique. AlN, GaN, and InN thin-film coating recipes were optimized to achieve self-limiting growth with deposition temperatures as low as 100C. BN growth took place only for >350C, in which precursor decomposition occured and therefore growth proceeded in CVD regime. III-nitride core-shell and hollow tubular single and multi-layered nanostructures were fabricated. The resulting metal-oxide and III-nitride core-shell and hollow nano-tubular structures were used for photocatalysis, dye sensitized solar cell (DSSC), energy storage and chemical sensing applications. Significantly enhanced catalysis, solar efficiency, charge capacity and sensitivity performance are reported. Moreover, core-shell metal-oxide and III-nitride materials

  12. Extracting metals directly from metal oxides

    DOEpatents

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  13. Extracting metals directly from metal oxides

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  14. Effect of rare earth metal on the spin-orbit torque in magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Ueda, Kohei; Pai, Chi-Feng; Tan, Aik Jun; Mann, Maxwell; Beach, Geoffrey S. D.

    2016-06-01

    We report the effect of the rare earth metal Gd on current-induced spin-orbit torques (SOTs) in perpendicularly magnetized Pt/Co/Gd heterostructures, characterized using harmonic measurements and spin-torque ferromagnetic resonance (ST-FMR). By varying the Gd metal layer thickness from 0 nm to 8 nm, harmonic measurements reveal a significant enhancement of the effective fields generated from the Slonczewski-like and field-like torques. ST-FMR measurements confirm an enhanced effective spin Hall angle and show a corresponding increase in the magnetic damping constant with increasing Gd thickness. These results suggest that Gd plays an active role in generating SOTs in these heterostructures. Our finding may lead to spin-orbitronics device application such as non-volatile magnetic random access memory, based on rare earth metals.

  15. Spin Andreev-like Reflection in Metal-Mott Insulator Heterostructures

    DOE PAGESBeta

    Al Hassanieh, Khaled A; Rincon, Julian; Alvarez, Gonzalo; Dagotto, Elbio R

    2015-01-01

    Using the time-dependent density-matrix renormalization group (tDMRG), we study the time evolution of electron wave packets in one-dimensional (1D) metal-superconductor heterostructures. The results show Andreev reflection at the interface, as expected. By combining these results with the well-known single- spin-species electron-hole transformation in the Hubbard model, we predict an analogous spin Andreev reflection in metal-Mott insulator heterostructures. This effect is numerically confirmed using 1D tDMRG, but it is expected to also be present in higher dimensions, as well as in more general Hamiltonians. We present an intuitive picture of the spin reflection, analogous to that of Andreev reflection at metal-more » superconductor interfaces. This allows us to discuss a novel antiferromagnetic proximity effect. Possible experimental realizations are discussed.« less

  16. Spin Andreev-like Reflection in Metal-Mott Insulator Heterostructures

    SciTech Connect

    Al Hassanieh, Khaled A; Rincon, Julian; Alvarez, Gonzalo; Dagotto, Elbio R

    2015-01-01

    Using the time-dependent density-matrix renormalization group (tDMRG), we study the time evolution of electron wave packets in one-dimensional (1D) metal-superconductor heterostructures. The results show Andreev reflection at the interface, as expected. By combining these results with the well-known single- spin-species electron-hole transformation in the Hubbard model, we predict an analogous spin Andreev reflection in metal-Mott insulator heterostructures. This effect is numerically confirmed using 1D tDMRG, but it is expected to also be present in higher dimensions, as well as in more general Hamiltonians. We present an intuitive picture of the spin reflection, analogous to that of Andreev reflection at metal- superconductor interfaces. This allows us to discuss a novel antiferromagnetic proximity effect. Possible experimental realizations are discussed.

  17. Three-dimensional heterostructure of metallic nanoparticles and carbon nanotubes as potential nanofiller.

    PubMed

    Kim, Whi Dong; Huh, Jun Young; Ahn, Ji Young; Lee, Jae Beom; Lee, Dongyun; Hong, Suck Won; Kim, Soo Hyung

    2012-01-01

    The effect of the dimensionality of metallic nanoparticle-and carbon nanotube-based fillers on the mechanical properties of an acrylonitrile butadiene styrene (ABS) polymer matrix was examined. ABS composite films, reinforced with low dimensional metallic nanoparticles (MNPs, 0-D) and carbon nanotubes (CNTs, 1-D) as nanofillers, were fabricated by a combination of wet phase inversion and hot pressing. The tensile strength and elongation of the ABS composite were increased by 39% and 6%, respectively, by adding a mixture of MNPs and CNTs with a total concentration of 2 wt%. However, the tensile strength and elongation of the ABS composite were found to be significantly increased by 62% and 55%, respectively, upon addition of 3-D heterostructures with a total concentration of 2 wt%. The 3-D heterostructures were composed of multiple CNTs grown radially on the surface of MNP cores, resembling a sea urchin. The mechanical properties of the ABS/3-D heterostructured nanofiller composite films were much improved compared to those of an ABS/mixture of 0-D and 1-D nanofillers composite films at various filler concentrations. This suggests that the 3-D heterostructure of the MNPs and CNTs plays a key role as a strong reinforcing agent in supporting the polymer matrix and simultaneously serves as a discrete force-transfer medium to transfer the loaded tension throughout the polymer matrix. PMID:22455480

  18. Three-dimensional heterostructure of metallic nanoparticles and carbon nanotubes as potential nanofiller

    NASA Astrophysics Data System (ADS)

    Kim, Whi Dong; Huh, Jun Young; Ahn, Ji Young; Lee, Jae Beom; Lee, Dongyun; Hong, Suck Won; Kim, Soo Hyung

    2012-03-01

    The effect of the dimensionality of metallic nanoparticle-and carbon nanotube-based fillers on the mechanical properties of an acrylonitrile butadiene styrene (ABS) polymer matrix was examined. ABS composite films, reinforced with low dimensional metallic nanoparticles (MNPs, 0-D) and carbon nanotubes (CNTs, 1-D) as nanofillers, were fabricated by a combination of wet phase inversion and hot pressing. The tensile strength and elongation of the ABS composite were increased by 39% and 6%, respectively, by adding a mixture of MNPs and CNTs with a total concentration of 2 wt%. However, the tensile strength and elongation of the ABS composite were found to be significantly increased by 62% and 55%, respectively, upon addition of 3-D heterostructures with a total concentration of 2 wt%. The 3-D heterostructures were composed of multiple CNTs grown radially on the surface of MNP cores, resembling a sea urchin. The mechanical properties of the ABS/3-D heterostructured nanofiller composite films were much improved compared to those of an ABS/mixture of 0-D and 1-D nanofillers composite films at various filler concentrations. This suggests that the 3-D heterostructure of the MNPs and CNTs plays a key role as a strong reinforcing agent in supporting the polymer matrix and simultaneously serves as a discrete force-transfer medium to transfer the loaded tension throughout the polymer matrix.

  19. In-plane interfacing effects of two-dimensional transition-metal dichalcogenide heterostructures.

    PubMed

    Wei, Wei; Dai, Ying; Huang, Baibiao

    2016-06-21

    In-plane heterostructures of two-dimensional transition-metal dichalcogenides (TMDs) demonstrate the formation of one-dimensional interfaces (or interlines), leading to new exciting properties and device functionalities. In this work, the interfacing effects have been studied in MoS2/WS2 quantum-well and superlattice in-plane heterostructures on the basis of first-principles electronic calculations. In light of the orbital-projected band structures, MoS2/WS2 in-plane heterostructures illustrate type-II band alignments with rather a small band offset for the valence band maximum and a relatively large band offset for the conduction band minimum. Upon increasing the width of TMD constituents, the band gap varies within a small range. In MoS2 and WS2, the surline energy and work function of zigzag edges with S-terminations are obviously higher than those of metal-terminations, and charge transfer from MoS2 to WS2 could be addressed due to the difference in the Fermi level. In-gap levels induced by S vacancies in MoS2/WS2 in-plane heterostructures are discrete and, interestingly, change to consecutive bands due to the built-in electric field. PMID:27220413

  20. Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jia, S.; Sun, H. D.; Du, J. H.; Zhang, Z. K.; Zhang, D. D.; Ma, L. P.; Chen, J. S.; Ma, D. G.; Cheng, H. M.; Ren, W. C.

    2016-05-01

    The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability, and good compatibility with HIL materials (MoO3 in this work). Moreover, the conductivity of the heterostructure is not sacrificed compared to the pristine three-layer graphene electrodes, but is significantly higher than that of pristine two-layer graphene films. In addition to high flexibility, OLEDs with different emission colors based on the GO/G heterostructure TCEs show much better performance than those based on indium tin oxide (ITO) anodes. Green OLEDs with GO/G heterostructure electrodes have the maximum current efficiency and power efficiency, as high as 82.0 cd A-1 and 98.2 lm W-1, respectively, which are 36.7% (14.8%) and 59.2% (15.0%) higher than those with pristine graphene (ITO) anodes. These findings open up the possibility of using graphene for next generation high-performance flexible and wearable optoelectronics with high stability.The relatively high sheet resistance, low work function and poor compatibility with hole injection layers (HILs) seriously limit the applications of graphene as transparent conductive electrodes (TCEs) for organic light emitting diodes (OLEDs). Here, a graphene oxide/graphene (GO/G) vertical heterostructure is developed as TCEs for high-performance OLEDs, by directly oxidizing the top layer of three-layer graphene films with ozone treatment. Such GO/G heterostructure electrodes show greatly improved optical transmittance, a large work function, high stability

  1. Combined flame and solution synthesis of nanoscale tungsten-oxide and zinc/tin-oxide heterostructures.

    PubMed

    Dong, Zhizhong; Huo, Di; Kear, Bernard H; Tse, Stephen D

    2015-12-28

    Heterostructures of tungsten-oxide nanowires decorated with zinc/tin-oxide nanostructures are synthesized via a combined flame and solution synthesis approach. Vertically well-aligned tungsten-oxide nanowires are grown on a tungsten substrate by a flame synthesis method. Here, tetragonal WO(2.9) nanowires (diameters of 20-50 nm, lengths >10 μm, and coverage density of 10(9)-10(10) cm(-2)) are produced by the vapor-solid mechanism at 1720 K. Various kinds of Zn/Sn-oxide nanostructures are grown or deposited on the WO(2.9) nanowires by adjusting the Sn(2+) : Zn(2+) molar ratio in an aqueous ethylenediamine solution at 65 °C. With WO(2.9) nanowires serving as the base structures, sequential growth or deposition on them of hexagonal ZnO nanoplates, Zn(2)SnO(4) nanocubes, and SnO(2) nanoparticles are attained for Sn(2+) : Zn(2+) ratios of 0 : 1, 1 : 10, and 10 : 1, respectively, along with different saturation conditions. High-resolution transmission electron microscopy of the interfaces at the nanoheterojunctions shows abrupt interfaces for ZnO/WO(2.9) and Zn(2)SnO(4)/WO(2.9), despite lattice mismatches of >20%. PMID:26585764

  2. Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures

    SciTech Connect

    Kim, Bongjun; Jang, Seonpil; Dodabalapur, Ananth; Geier, Michael L.; Prabhumirashi, Pradyumna L.; Hersam, Mark C.

    2014-02-10

    We report ambipolar field-effect transistors (FETs) consisting of inkjet printed semiconductor bilayer heterostructures utilizing semiconducting single-walled carbon nanotubes (SWCNTs) and amorphous zinc tin oxide (ZTO). The bilayer structure allows for electron transport to occur principally in the amorphous oxide layer and hole transport to occur exclusively in the SWCNT layer. This results in balanced electron and hole mobilities exceeding 2 cm{sup 2} V{sup −1} s{sup −1} at low operating voltages (<5 V) in air. We further show that the SWCNT-ZTO hybrid ambipolar FETs can be integrated into functional inverter circuits that display high peak gain (>10). This work provides a pathway for realizing solution processable, inkjet printable, large area electronic devices, and systems based on SWCNT-amorphous oxide heterostructures.

  3. Synthesis, optical and electrochemical properties of ZnO nanowires/graphene oxide heterostructures

    PubMed Central

    2013-01-01

    Large-scale vertically aligned ZnO nanowires with high crystal qualities were fabricated on thin graphene oxide films via a low temperature hydrothermal method. Room temperature photoluminescence results show that the ultraviolet emission of nanowires grown on graphene oxide films was greatly enhanced and the defect-related visible emission was suppressed, which can be attributed to the improved crystal quality and possible electron transfer between ZnO and graphene oxide. Electrochemical property measurement results demonstrated that the ZnO nanowires/graphene oxide have large integral area of cyclic voltammetry loop, indicating that such heterostructure is promising for application in supercapacitors. PMID:23522184

  4. Synthesis, optical and electrochemical properties of ZnO nanowires/graphene oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Zeng, Huidan; Cao, Ying; Xie, Shufan; Yang, Junhe; Tang, Zhihong; Wang, Xianying; Sun, Luyi

    2013-03-01

    Large-scale vertically aligned ZnO nanowires with high crystal qualities were fabricated on thin graphene oxide films via a low temperature hydrothermal method. Room temperature photoluminescence results show that the ultraviolet emission of nanowires grown on graphene oxide films was greatly enhanced and the defect-related visible emission was suppressed, which can be attributed to the improved crystal quality and possible electron transfer between ZnO and graphene oxide. Electrochemical property measurement results demonstrated that the ZnO nanowires/graphene oxide have large integral area of cyclic voltammetry loop, indicating that such heterostructure is promising for application in supercapacitors.

  5. In-plane graphene/boron-nitride heterostructures as an efficient metal-free electrocatalyst for the oxygen reduction reaction.

    PubMed

    Sun, Qiao; Sun, Caixia; Du, Aijun; Dou, Shixue; Li, Zhen

    2016-08-01

    Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a four-electron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next cycle. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for the ORR in FCs. PMID:27396486

  6. Vertical heterostructures of layered metal chalcogenides by van der Waals epitaxy.

    PubMed

    Zhang, Xingwang; Meng, Fei; Christianson, Jeffrey R; Arroyo-Torres, Christian; Lukowski, Mark A; Liang, Dong; Schmidt, J R; Jin, Song

    2014-06-11

    We report a facile chemical vapor deposition (CVD) growth of vertical heterostructures of layered metal dichalcogenides (MX2) enabled by van der Waals epitaxy. Few layers of MoS2, WS2, and WSe2 were grown uniformly onto microplates of SnS2 under mild CVD reaction conditions (<500 °C) and the heteroepitaxy between them was confirmed using cross-sectional transmission electron microscopy (TEM) and unequivocally characterized by resolving the large-area Moiré patterns that appeared on the basal planes of microplates in conventional TEM (nonsectioned). Additional photoluminescence peaks were observed in heterostructures of MoS2-SnS2, which can be understood with electronic structure calculations to likely result from electronic coupling and charge separation between MoS2 and SnS2 layers. This work opens up the exploration of large-area heterostructures of diverse MX2 nanomaterials as the material platform for electronic structure engineering of atomically thin two-dimensional (2D) semiconducting heterostructures and device applications. PMID:24798138

  7. Modular synthesis of a dual metal-dual semiconductor nano-heterostructure

    SciTech Connect

    Amirav, Lilac; Oba, Fadekemi; Aloni, Shaul; Alivisatos, A. Paul

    2015-04-29

    Reported is the design and modular synthesis of a dual metal-dual semiconductor heterostructure with control over the dimensions and placement of its individual components. Analogous to molecular synthesis, colloidal synthesis is now evolving into a series of sequential synthetic procedures with separately optimized steps. Here we detail the challenges and parameters that must be considered when assembling such a multicomponent nanoparticle, and their solutions.

  8. Approach to multifunctional device platform with epitaxial graphene on transition metal oxide

    PubMed Central

    Park, Jeongho; Back, Tyson; Mitchel, William C.; Kim, Steve S.; Elhamri, Said; Boeckl, John; Fairchild, Steven B.; Naik, Rajesh; Voevodin, Andrey A.

    2015-01-01

    Heterostructures consisting of two-dimensional materials have shown new physical phenomena, novel electronic and optical properties, and new device concepts not observed in bulk material systems or purely three dimensional heterostructures. These new effects originated mostly from the van der Waals interaction between the different layers. Here we report that a new optical and electronic device platform can be provided by heterostructures of 2D graphene with a metal oxide (TiO2). Our novel direct synthesis of graphene/TiO2 heterostructure is achieved by C60 deposition on transition Ti metal surface using a molecular beam epitaxy approach and O2 intercalation method, which is compatible with wafer scale growth of heterostructures. As-grown heterostructures exhibit inherent photosensitivity in the visible light spectrum with high photo responsivity. The photo sensitivity is 25 times higher than that of reported graphene photo detectors. The improved responsivity is attributed to optical transitions between O 2p orbitals in the valence band of TiO2 and C 2p orbitals in the conduction band of graphene enabled by Coulomb interactions at the interface. In addition, this heterostructure provides a platform for realization of bottom gated graphene field effect devices with graphene and TiO2 playing the roles of channel and gate dielectric layers, respectively. PMID:26395160

  9. In-plane graphene/boron-nitride heterostructures as an efficient metal-free electrocatalyst for the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Sun, Qiao; Sun, Caixia; Du, Aijun; Dou, Shixue; Li, Zhen

    2016-07-01

    Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a four-electron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next cycle. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for the ORR in FCs.Exploiting metal-free catalysts for the oxygen reduction reaction (ORR) and understanding their catalytic mechanisms are vital for the development of fuel cells (FCs). Our study has demonstrated that in-plane heterostructures of graphene and boron nitride (G/BN) can serve as an efficient metal-free catalyst for the ORR, in which the C-N interfaces of G/BN heterostructures act as reactive sites. The formation of water at the heterointerface is both energetically and kinetically favorable via a four-electron pathway. Moreover, the water formed can be easily released from the heterointerface, and the catalytically active sites can be regenerated for the next cycle. Since G/BN heterostructures with controlled domain sizes have been successfully synthesized in recent reports (e.g. Nat. Nanotechnol., 2013, 8, 119), our results highlight the great potential of such heterostructures as a promising metal-free catalyst for the ORR in FCs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03288e

  10. Electrical permittivity driven metal-insulator transition in heterostructures of nonpolar Mott and band insulators

    NASA Astrophysics Data System (ADS)

    Omori, Yukiko; Rüegg, Andreas; Sigrist, Manfred

    2014-10-01

    Metallic interfaces between insulating perovskites are often observed in heterostructures combining polar and nonpolar materials. In these systems, the polar discontinuity across the interface may drive an electronic reconstruction inducing free carriers at the interface. Here, we theoretically show that a metallic interface between a Mott and a band insulator can also form in the absence of a polar discontinuity. The condition for the appearance of such a metallic state is consistent with the classical Mott criterion: the metallic state is stable if the screening length falls below the effective Bohr radius of a particle-hole pair. In this case, the metallic state bears a remarkable similarity to the one found in polar/nonpolar heterostructures. On the other hand, if the screening length approaches the size of the effective Bohr radius, particles and holes are bound to each other resulting in an overall insulating phase. We analyze this metal-insulator transition, which is tunable by the dielectric constant, in the framework of the slave-boson mean-field theory for a lattice model with both on-site and long-range Coulomb interactions. We discuss ground-state properties and transport coefficients, which we derive in the relaxation-time approximation. Interestingly, we find that the metal-insulator transition is accompanied by a strong enhancement of the Seebeck coefficient in the band-insulator region in the vicinity of the interface. The implications of our theoretical findings for various experimental systems such as nonpolar (110) interfaces are also discussed.

  11. Ultimate photovoltage in perovskite oxide heterostructures with critical film thickness

    SciTech Connect

    Wang Cong; Jin Kuijuan; Zhao Ruiqiang; Lu Huibin; Guo Haizhong; Ge Chen; He Meng; Wang Can; Yang Guozhen

    2011-05-02

    One order larger photovoltage is obtained with critical thicknesses of La{sub 0.9}Sr{sub 0.1}MnO{sub 3} films in both kinds of heterostructures of La{sub 0.9}Sr{sub 0.1}MnO{sub 3}/SrTiO{sub 3} (0.8 wt % Nb-doped) and La{sub 0.9}Sr{sub 0.1}MnO{sub 3}/Si fabricated at various oxygen pressures. Our self-consistent calculation reveals that the critical thickness of the La{sub 0.9}Sr{sub 0.1}MnO{sub 3} film with the ultimate value of photovoltage is just the thickness of the depletion layer of La{sub 0.9}Sr{sub 0.1}MnO{sub 3} in both heterojunctions, respectively.

  12. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts.

    PubMed

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-10-21

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields. PMID:24056899

  13. Novel Photocatalytic Metal Oxides

    SciTech Connect

    Smith, Robert W.; Mei, Wai-Ning; Sabirianov, Renat; Wang, Lu

    2012-08-31

    The principal short-term objective is to develop improved solid-state photocatalysts for the decomposition of water into hydrogen gas using ultraviolet and visible solar radiation. We will pursue our objective by modeling candidate metal oxides through computer simulations followed by synthesis of promising candidates. We will characterize samples through standard experimental techniques. The long-term objective is to provide a more efficient source of hydrogen gas for fixed-site hydrogen fuel cells, particularly for energy users in remote locations.

  14. Enhancing triplet superconductivity by the proximity to a singlet superconductor in oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Horsdal, Mats; Khaliullin, Giniyat; Hyart, Timo; Rosenow, Bernd

    2016-06-01

    We show how in principle a coherent coupling between two superconductors of opposite parity can be realized in a three-layer oxide heterostructure. Due to strong intraionic spin-orbit coupling in the middle layer, singlet Cooper pairs are converted into triplet ones and vice versa. This results in a large enhancement of the triplet superconductivity, persisting well above the native triplet critical temperature.

  15. Magnetotransport in metal/insulating-ferromagnet heterostructures: Spin Hall magnetoresistance or magnetic proximity effect

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Zheng, Jian-Guo; Evans, R. F. L.; Zhou, S. M.

    2015-08-01

    We study the anomalous Hall-like effect (AHLE) and the effective anisotropic magnetoresistance (EAMR) in antiferromagnetic γ -IrMn3/Y3Fe5O12(YIG ) and Pt/YIG heterostructures. For γ -IrMn3/YIG , the EAMR and the AHLE resistivity change sign with temperature due to the competition between the spin Hall magnetoresistance (SMR) and the magnetic proximity effect (MPE) induced by the interfacial antiferromagnetic uncompensated magnetic moment. In contrast, for Pt/YIG, the AHLE resistivity changes sign with temperature whereas no sign change is observed in the EAMR. This is because the MPE and the SMR play a dominant role in the AHLE and the EAMR, respectively. As different types of galvanomagnetic properties, the AHLE and the EAMR have proved vital in disentangling the MPE and the SMR in metal/insulating-ferromagnet heterostructures.

  16. Research Update: Strategies for efficient photoelectrochemical water splitting using metal oxide photoanodes

    SciTech Connect

    Cho, Seungho; Jang, Ji-Wook; Lee, Kun-Hong E-mail: ce20047@postech.ac.kr; Lee, Jae Sung E-mail: ce20047@postech.ac.kr

    2014-01-01

    Photoelectrochemical (PEC) water splitting to hydrogen is an attractive method for capturing and storing the solar energy in the form of chemical energy. Metal oxides are promising photoanode materials due to their low-cost synthetic routes and higher stability than other semiconductors. In this paper, we provide an overview of recent efforts to improve PEC efficiencies via applying a variety of fabrication strategies to metal oxide photoanodes including (i) size and morphology-control, (ii) metal oxide heterostructuring, (iii) dopant incorporation, (iv) attachments of quantum dots as sensitizer, (v) attachments of plasmonic metal nanoparticles, and (vi) co-catalyst coupling. Each strategy highlights the underlying principles and mechanisms for the performance enhancements.

  17. Band Alignment in MoS2/WS2 Transition Metal Dichalcogenide Heterostructures Probed by Scanning Tunneling Microscopy and Spectroscopy.

    PubMed

    Hill, Heather M; Rigosi, Albert F; Rim, Kwang Taeg; Flynn, George W; Heinz, Tony F

    2016-08-10

    Using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS), we examine the electronic structure of transition metal dichalcogenide heterostructures (TMDCHs) composed of monolayers of MoS2 and WS2. STS data are obtained for heterostructures of varying stacking configuration as well as the individual monolayers. Analysis of the tunneling spectra includes the influence of finite sample temperature, yield information about the quasi-particle bandgaps, and the band alignment of MoS2 and WS2. We report the band gaps of MoS2 (2.16 ± 0.04 eV) and WS2 (2.38 ± 0.06 eV) in the materials as measured on the heterostructure regions and the general type II band alignment for the heterostructure, which shows an interfacial band gap of 1.45 ± 0.06 eV. PMID:27298270

  18. Fabrication and characterization of copper oxide (CuO)–gold (Au)–titania (TiO{sub 2}) and copper oxide (CuO)–gold (Au)–indium tin oxide (ITO) nanowire heterostructures

    SciTech Connect

    Chopra, Nitin; Shi, Wenwu; Lattner, Andrew

    2014-10-15

    Nanoscale heterostructures composed of standing copper oxide nanowires decorated with Au nanoparticles and shells of titania and indium tin oxide were fabricated. The fabrication process involved surfactant-free and wet-chemical nucleation of gold nanoparticles on copper oxide nanowires followed by a line-of-sight sputtering of titania or indium tin oxide. The heterostructures were characterized using high resolution electron microscopy, diffraction, and energy dispersive spectroscopy. The interfaces, morphologies, crystallinity, phases, and chemical compositions were analyzed. The process of direct nucleation of gold nanoparticles on copper oxide nanoparticles resulted in low energy interface with aligned lattice for both the components. Coatings of polycrystalline titania or amorphous indium tin oxide were deposited on standing copper oxide nanowire–gold nanoparticle heterostructures. Self-shadowing effect due to standing nanowire heterostructures was observed for line-of-sight sputter deposition of titania or indium tin oxide coatings. Finally, the heterostructures were studied using Raman spectroscopy and ultraviolet–visible spectroscopy, including band gap energy analysis. Tailing in the band gap energy at longer wavelengths (or lower energies) was observed for the nanowire heterostructures. - Highlights: • Heterostructures comprised of CuO nanowires coated with Au nanoparticles. • Au nanoparticles exhibited nearly flat and low energy interface with nanowire. • Heterostructures were further sputter-coated with oxide shell of TiO{sub 2} or ITO. • The process resulted in coating of polycrystalline TiO{sub 2} and amorphous ITO shell.

  19. Thermal oxidation of Si/SiGe heterostructures for use in quantum dot qubits

    NASA Astrophysics Data System (ADS)

    Neyens, Samuel F.; Foote, Ryan H.; Knapp, T. J.; McJunkin, Thomas; Savage, D. E.; Lagally, M. G.; Coppersmith, S. N.; Eriksson, M. A.

    Here we demonstrate dry thermal oxidation of a Si/SiGe heterostructure at 700°C and use a Hall bar device to measure the mobility after oxidation to be 43,000 cm2V-1s-1 at a carrier density of 4.1 ×1011 cm-2. Surprisingly, we find no significant reduction in mobility compared with an Al2O3 device made with atomic layer deposition on the same heterostructure, indicating thermal oxidation can be used to process Si/SiGe quantum dot devices. This result provides a path for investigating improvements to the gate oxide in Si/SiGe qubit devices, whose performance is believed to be limited by charge noise in the oxide layer. This work was supported in part by ARO (W911NF-12-0607) and NSF (DMR-1206915 and PHY-1104660). Development and maintenance of the growth facilities used for fabricating samples is supported by DOE (DE-FG02-03ER46028). This research utilized NSF-supported shared facilities at the University of Wisconsin-Madison.

  20. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    DOEpatents

    Quinby, Thomas C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution leaving a molten urea solution containing the metal values. The molten urea solution is heated to above about 180.degree. C. whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles.

  1. Tunable absorption in heterostructures composed of a highly absorptive metallic film and Fibonacci fractal photonic crystals

    NASA Astrophysics Data System (ADS)

    Qiao, Wei; Sun, Jie; Du, Gui-Qiang

    2016-03-01

    We have theoretically investigated the anomalous optical properties of heterostructures composed of a highly absorptive metal film and a truncated Fibonacci fractal photonic crystal. It is found that one or multiple highly reflected peaks, even enhanced transmission narrowband, can be realized in the near-complete absorption broadband, where the photonic crystals are selected with various Fibonacci sequences or a given sequence as the basic unit. These properties are significant to design important reflection or transmission optical devices in the visible and near-infrared ranges.

  2. Heterostructures of phosphorene and transition metal dichalcogenides for excitonic solar cells: A first-principles study

    NASA Astrophysics Data System (ADS)

    Ganesan, Vellayappan Dheivanayagam S./O.; Linghu, Jiajun; Zhang, Chun; Feng, Yuan Ping; Shen, Lei

    2016-03-01

    Using the many-body perturbation GW theory, we study the quasiparticle conduction-band offsets of phosphorene, a two-dimensional atomic layer of black phosphorus, and transition-metal dichalcogenides (TMDs). The calculated large exciton binding energies of phosphorene and TMDs indicate that their type-II heterostructures are suitable for excitonic thin-film solar cell applications. Our results show that these heterojunctions have a potential maximum power conversion efficiency of up to 12%, which can be further enhanced up to 20% by strain engineering.

  3. Lateral Heterostructures of Monolayer Transition Metal Dichalcogenides: a First-principles Study

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Cao, Ting; Louie, Steven G.

    Using first-principles calculations, we investigate the electronic structure and optical properties of lateral heterostructures consisting of different monolayer transition metal dichalcogenides (TMDs). We find that the spin-orbital coupling effect plays an important role in modifying the ground-state electronic structure and excited-state properties such as optical responses. The anisotropy of optical absorption is investigated including local-field effects. This work was supported by NSF Grant No. DMR15-1508412, the U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at Lawrence Berkeley National Laboratory's NERSC facility.

  4. MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics

    ScienceCinema

    Palmstrom, Chris [University of California, Santa Barbara, California, United States

    2010-01-08

    Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.

  5. MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics

    SciTech Connect

    Palmstrom, Chris

    2009-07-01

    Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.

  6. Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures

    NASA Astrophysics Data System (ADS)

    Guo, Yuzheng; Robertson, John

    2016-06-01

    We calculate a large difference in the band alignments for transition metal dichalcogenide (TMD) heterojunctions when arranged in the stacked layer or lateral (in-plane) geometries, using direct supercell calculations. The stacked case follows the unpinned limit of the electron affinity rule, whereas the lateral geometry follows the strongly pinned limit of alignment of charge neutrality levels. TMDs therefore provide one of the few clear tests of band alignment models, whereas three-dimensional semiconductors give less stringent tests because of accidental chemical trends in their properties.

  7. Photo-Response of Functionalized Self-Assembled Graphene Oxide on Zinc Oxide Heterostructure to UV Illumination.

    PubMed

    Fouda, A N; El Basaty, A B; Eid, E A

    2016-12-01

    Convective assembly technique which is a simple and scalable method was used for coating uniform graphene oxide (GO) nanosheets on zinc oxide (ZnO) thin films. Upon UV irradiation, an enhancement in the on-off ratio was observed after functionalizing ZnO films by GO nanosheets. The calculations of on-off ratio, the device responsivity, and the external quantum efficiency were investigated and implied that the GO layer provides a stable pathway for electron transport. Structural investigations of the assembled GO and the heterostructure of GO on ZnO were performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The covered GO layer has a wide continuous area, with wrinkles and folds at the edges. In addition, the phonon lattice vibrations were investigated by Raman analysis. For GO and the heterostructure, a little change in the ratio between the D-band and G-band was found which means that no additional defects were formed within the heterostructure. PMID:26754939

  8. Photo-Response of Functionalized Self-Assembled Graphene Oxide on Zinc Oxide Heterostructure to UV Illumination

    NASA Astrophysics Data System (ADS)

    Fouda, A. N.; El Basaty, A. B.; Eid, E. A.

    2016-01-01

    Convective assembly technique which is a simple and scalable method was used for coating uniform graphene oxide (GO) nanosheets on zinc oxide (ZnO) thin films. Upon UV irradiation, an enhancement in the on-off ratio was observed after functionalizing ZnO films by GO nanosheets. The calculations of on-off ratio, the device responsivity, and the external quantum efficiency were investigated and implied that the GO layer provides a stable pathway for electron transport. Structural investigations of the assembled GO and the heterostructure of GO on ZnO were performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The covered GO layer has a wide continuous area, with wrinkles and folds at the edges. In addition, the phonon lattice vibrations were investigated by Raman analysis. For GO and the heterostructure, a little change in the ratio between the D-band and G-band was found which means that no additional defects were formed within the heterostructure.

  9. Thin-film heterostructures based on oxides of copper and zinc obtained by RF magnetron sputtering in one vacuum cycle

    NASA Astrophysics Data System (ADS)

    Afanasjev, V.; Bazhan, M.; Klimenkov, B.; Mukhin, N.; Chigirev, D.

    2016-07-01

    Investigations of formation conditions of oxide heterostructures ZnO/CuO in the same vacuum cycle using RF magnetron sputtering of powder targets of zinc and copper oxides were carried out. The optical and electrical properties of the thin film structures were studied.

  10. The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.

    PubMed

    Su, Jie; Feng, Liping; Zhang, Yan; Liu, Zhengtang

    2016-06-22

    Using first-principles calculations within density functional theory, we systematically studied the effect of BN-MoS2 heterostructure on the Schottky barriers of metal-MoS2 contacts. Two types of FETs are designed according to the area of the BN-MoS2 heterostructure. Results show that the vertical and lateral Schottky barriers in all the studied contacts, irrespective of the work function of the metal, are significantly reduced or even vanish when the BN-MoS2 heterostructure substitutes the monolayer MoS2. Only the n-type lateral Schottky barrier of Au/BN-MoS2 contact relates to the area of the BN-MoS2 heterostructure. Notably, the Pt-MoS2 contact with n-type character is transformed into a p-type contact upon substituting the monolayer MoS2 by a BN-MoS2 heterostructure. These changes of the contact natures are ascribed to the variation of Fermi level pinning, work function and charge distribution. Analysis demonstrates that the Fermi level pinning effects are significantly weakened for metal/BN-MoS2 contacts because no gap states dominated by MoS2 are formed, in contrast to those of metal-MoS2 contacts. Although additional BN layers reduce the interlayer interaction and the work function of the metal, the Schottky barriers of metal/BN-MoS2 contacts still do not obey the Schottky-Mott rule. Moreover, different from metal-MoS2 contacts, the charges transfer from electrodes to the monolayer MoS2, resulting in an increment of the work function of these metals in metal/BN-MoS2 contacts. These findings may prove to be instrumental in the future design of new MoS2-based FETs with ohmic contact or p-type character. PMID:27282959

  11. Semiconductor to Metal Transition Characteristics of VO2/NiO Epitaxial Heterostructures Integrated with Si(100)

    NASA Astrophysics Data System (ADS)

    Molaei, Roya

    The novel functionalities of Vanadium dioxide (VO2), such as, several orders of magnitude transition in resistivity and IR transmittance, provide the exciting opportunity for the development of next generation memory, sensor, and field-effect based devices. A critical issue in the development of practical devices based on metal oxides is the integration of high quality epitaxial oxide thin films with the existing silicon technology which is based on silicon (100) substrates. However, silicon is not suitable for epitaxial growth of oxides owing to its tendency to readily form an amorphous oxide layer or silicide at the film-substrate interface. The oxide films deposited directly on silicon exhibit poor crystallinity and are not suitable for device applications. To overcome this challenge, appropriate substrate templates must be developed for the growth of oxide thin films on silicon substrates. The primary objective of this dissertation was to develop an integration methodology of VO2 with Si (100) substrates so they could be used in "smart" sensor type of devices along with other multifunctional devices on the same silicon chip. This was achieved by using a NiO/c- YSZ template layer deposited in situ. It will be shown that if the deposition conditions are controlled properly. This approach was used to integrate VO 2 thin films with Si (100) substrates using pulsed laser deposition (PLD) technique. The deposition methodology of integrating VO2 thin films on silicon using various other template layers will also be discussed. Detailed epitaxial relationship of NiO/c-YSZ/Si(100) heterostructures as a template to growth of VO2 as well as were studied. We also were able to create a p-n junction within a single NiO epilayer through subsequent nanosecond laser annealing, as well as established a structure-property correlation in NiO/c-YSZ/Si(100) thin film epitaxial heterostructures with especial emphasis on the stoichiometry and crystallographic characteristics. Ni

  12. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  13. Fabrication of vertical GaN/InGaN heterostructure nanowires using Ni-Au bi-metal catalysts

    PubMed Central

    2013-01-01

    We have fabricated the vertically aligned coaxial or longitudinal heterostructure GaN/InGaN nanowires. The GaN nanowires are first vertically grown by vapor–liquid-solid mechanism using Au/Ni bi-metal catalysts. The GaN nanowires are single crystal grown in the [0001] direction, with a length and diameter of 1 to 10 μm and 100 nm, respectively. The vertical GaN/InGaN coaxial heterostructure nanowires (COHN) are then fabricated by the subsequent deposition of 2 nm of InxGa1-xN shell on the surface of GaN nanowires. The vertical GaN/InGaN longitudinal heterostructure nanowires (LOHN) are also fabricated by subsequent growth of an InGaN layer on the vertically aligned GaN nanowires using the catalyst. The photoluminescence from the COHN and LOHN indicates that the optical properties of GaN nanowires can be tuned by the formation of a coaxial or longitudinal InGaN layer. Our study demonstrates that the bi-metal catalysts are useful for growing vertical as well as heterostructure GaN nanowires. These vertically aligned GaN/InGaN heterostructure nanowires may be useful for the development of high-performance optoelectronic devices. PMID:23803283

  14. Carrier-mediated magnetoelectricity in complex oxide heterostructures.

    PubMed

    Rondinelli, James M; Stengel, Massimiliano; Spaldin, Nicola A

    2008-01-01

    Increasing demands for high-density, stable nanoscale memory elements, as well as fundamental discoveries in the field of spintronics, have led to renewed interest in exploring the coupling between magnetism and electric fields. Although conventional magnetoelectric routes often result in weak responses, there is considerable current research activity focused on identifying new mechanisms for magnetoelectric coupling. Here we demonstrate a linear magnetoelectric effect that arises from a carrier-mediated mechanism, and is a universal feature of the interface between a dielectric and a spin-polarized metal. Using first-principles density functional calculations, we illustrate this effect at the SrRuO3/SrTiO3 interface and describe its origin. To formally quantify the magnetic response of such an interface to an applied electric field, we introduce and define the concept of spin capacitance. In addition to its magnetoelectric and spin capacitive behaviour, the interface displays a spatial coexistence of magnetism and dielectric polarization, suggesting a route to a new type of interfacial multiferroic. PMID:18654450

  15. Atomic thin titania nanosheet-coupled reduced graphene oxide 2D heterostructures for enhanced photocatalytic activity and fast lithium storage

    NASA Astrophysics Data System (ADS)

    Li, Dong Jun; Huang, Zhegang; Hwang, Tae Hoon; Narayan, Rekha; Choi, Jang Wook; Kim, Sang Ouk

    2016-03-01

    Realizing practical high performance materials and devices using the properties of 2D materials is of key research interest in the materials science field. In particular, building well-defined heterostructures using more than two different 2D components in a rational way is highly desirable. In this paper, a 2D heterostructure consisting of atomic thin titania nanosheets densely grown on reduced graphene oxide surface is successfully prepared through incorporating polymer functionalized graphene oxide into the novel TiO2 nanosheets synthesis scheme. As a result of the synergistic combination of a highly accessible surface area and abundant interface, which can modulate the physicochemical properties, the resultant heterostructure can be used in high efficiency visible light photocatalysis as well as fast energy storage with a long lifecycle. [Figure not available: see fulltext.

  16. METAL OXIDE NANOPARTICLES

    SciTech Connect

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  17. Metal oxide nanostructures with hierarchical morphology

    DOEpatents

    Ren, Zhifeng; Lao, Jing Yu; Banerjee, Debasish

    2007-11-13

    The present invention relates generally to metal oxide materials with varied symmetrical nanostructure morphologies. In particular, the present invention provides metal oxide materials comprising one or more metallic oxides with three-dimensionally ordered nanostructural morphologies, including hierarchical morphologies. The present invention also provides methods for producing such metal oxide materials.

  18. Stoner enhanced paramagnetic influence on superconductivity in a superconductor/metallic heterostructure

    NASA Astrophysics Data System (ADS)

    Ray, S. J.; Lister, S. J.; Lee, S. L.; Hellwig, Olav; Stahn, J.

    2013-04-01

    The unusual magnetic behaviour of a Pd/Nb67Ti33/Pd heterostructure was investigated using polarised neutron reflectivity technique. On application of a large in-plane magnetic field, Stoner enhanced paramagnet Pd was found to influence the magnetic state of the Nb67Ti33 layer both above and below the superconducting transition temperature Tc significantly. Unlike the case of a conventional proximity effect for a superconductor/metallic heterostructure, the pair correlation in the superconducting state has been found to be more stable in the higher field limit compared to its low field counterpart, possibly signaturing a ‘novel’ coupled state in the system. The superconducting state in Nb67Ti33 has been found to be diamagnetic in nature at all the fields that can be fitted using a Meissner kind of behaviour in the high field limit. The magnetic properties of Pd and Nb67Ti33 are in excellent agreement with those measured using bulk magnetisation measurements.

  19. Magneto-optical investigation of spin–orbit torques in metallic and insulating magnetic heterostructures

    PubMed Central

    Montazeri, Mohammad; Upadhyaya, Pramey; Onbasli, Mehmet C.; Yu, Guoqiang; Wong, Kin L.; Lang, Murong; Fan, Yabin; Li, Xiang; Khalili Amiri, Pedram; Schwartz, Robert N.; Ross, Caroline A.; Wang, Kang L.

    2015-01-01

    Manipulating magnetism by electric current is of great interest for both fundamental and technological reasons. Much effort has been dedicated to spin–orbit torques (SOTs) in metallic structures, while quantitative investigation of analogous phenomena in magnetic insulators remains challenging due to their low electrical conductivity. Here we address this challenge by exploiting the interaction of light with magnetic order, to directly measure SOTs in both metallic and insulating structures. The equivalency of optical and transport measurements is established by investigating a heavy-metal/ferromagnetic-metal device (Ta/CoFeB/MgO). Subsequently, SOTs are measured optically in the contrasting case of a magnetic-insulator/heavy-metal (YIG/Pt) heterostructure, where analogous transport measurements are not viable. We observe a large anti-damping torque in the YIG/Pt system, revealing its promise for spintronic device applications. Moreover, our results demonstrate that SOT physics is directly accessible by optical means in a range of materials, where transport measurements may not be possible. PMID:26643048

  20. Magneto-optical investigation of spin-orbit torques in metallic and insulating magnetic heterostructures.

    PubMed

    Montazeri, Mohammad; Upadhyaya, Pramey; Onbasli, Mehmet C; Yu, Guoqiang; Wong, Kin L; Lang, Murong; Fan, Yabin; Li, Xiang; Khalili Amiri, Pedram; Schwartz, Robert N; Ross, Caroline A; Wang, Kang L

    2015-01-01

    Manipulating magnetism by electric current is of great interest for both fundamental and technological reasons. Much effort has been dedicated to spin-orbit torques (SOTs) in metallic structures, while quantitative investigation of analogous phenomena in magnetic insulators remains challenging due to their low electrical conductivity. Here we address this challenge by exploiting the interaction of light with magnetic order, to directly measure SOTs in both metallic and insulating structures. The equivalency of optical and transport measurements is established by investigating a heavy-metal/ferromagnetic-metal device (Ta/CoFeB/MgO). Subsequently, SOTs are measured optically in the contrasting case of a magnetic-insulator/heavy-metal (YIG/Pt) heterostructure, where analogous transport measurements are not viable. We observe a large anti-damping torque in the YIG/Pt system, revealing its promise for spintronic device applications. Moreover, our results demonstrate that SOT physics is directly accessible by optical means in a range of materials, where transport measurements may not be possible. PMID:26643048

  1. Magneto-optical investigation of spin-orbit torques in metallic and insulating magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Montazeri, Mohammad; Upadhyaya, Pramey; Onbasli, Mehmet C.; Yu, Guoqiang; Wong, Kin L.; Lang, Murong; Fan, Yabin; Li, Xiang; Khalili Amiri, Pedram; Schwartz, Robert N.; Ross, Caroline A.; Wang, Kang L.

    2015-12-01

    Manipulating magnetism by electric current is of great interest for both fundamental and technological reasons. Much effort has been dedicated to spin-orbit torques (SOTs) in metallic structures, while quantitative investigation of analogous phenomena in magnetic insulators remains challenging due to their low electrical conductivity. Here we address this challenge by exploiting the interaction of light with magnetic order, to directly measure SOTs in both metallic and insulating structures. The equivalency of optical and transport measurements is established by investigating a heavy-metal/ferromagnetic-metal device (Ta/CoFeB/MgO). Subsequently, SOTs are measured optically in the contrasting case of a magnetic-insulator/heavy-metal (YIG/Pt) heterostructure, where analogous transport measurements are not viable. We observe a large anti-damping torque in the YIG/Pt system, revealing its promise for spintronic device applications. Moreover, our results demonstrate that SOT physics is directly accessible by optical means in a range of materials, where transport measurements may not be possible.

  2. Interfacial Magnetism in Complex Oxide Heterostructures Probed by Neutrons and X-rays

    DOE PAGESBeta

    Liu, Yaohua; Ke, Xianglin

    2015-09-02

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces have all been intensively investigated, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied viamore » polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.« less

  3. Interfacial Magnetism in Complex Oxide Heterostructures Probed by Neutrons and X-rays

    SciTech Connect

    Liu, Yaohua; Ke, Xianglin

    2015-09-02

    Magnetic complex-oxide heterostructures are of keen interest because a wealth of phenomena at the interface of dissimilar materials can give rise to fundamentally new physics and potentially valuable functionalities. Altered magnetization, novel magnetic coupling and emergent interfacial magnetism at the epitaxial layered-oxide interfaces have all been intensively investigated, which shapes our understanding on how to utilize those materials, particularly for spintronics. Neutron and x-ray based techniques have played a decisive role in characterizing interfacial magnetic structures and clarifying the underlying physics in this rapidly developing field. Here we review some recent experimental results, with an emphasis on those studied via polarized neutron reflectometery and polarized x-ray absorption spectroscopy. We conclude with some perspectives.

  4. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures

    PubMed Central

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-01-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices. PMID:27553787

  5. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.

    PubMed

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-01-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices. PMID:27553787

  6. Mesoporous metal oxide graphene nanocomposite materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Kou, Rong; Wang, Donghai

    2016-05-24

    A nanocomposite material formed of graphene and a mesoporous metal oxide having a demonstrated specific capacity of more than 200 F/g with particular utility when employed in supercapacitor applications. A method for making these nanocomposite materials by first forming a mixture of graphene, a surfactant, and a metal oxide precursor, precipitating the metal oxide precursor with the surfactant from the mixture to form a mesoporous metal oxide. The mesoporous metal oxide is then deposited onto a surface of the graphene.

  7. Process for fabrication of metal oxide films

    SciTech Connect

    Tracy, C.E.; Benson, D.; Svensson, S.

    1990-07-17

    This invention is comprised of a method of fabricating metal oxide films from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of metal oxides, e.g. electro-optically active transition metal oxides, at a high deposition rate. The presence of hydrogen during the plasma reaction enhances the deposition rate of the metal oxide. Various types of metal oxide films can be produced.

  8. Photoinduced Charge Transfer at Metal Oxide/Oxide Interfaces Prepared with Plasma Enhanced Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Kaur, Manpuneet

    LiNbO3 and ZnO have shown great potential for photochemical surface reactions and specific photocatalytic processes. However, the efficiency of LiNbO3 is limited due to recombination or back reactions and ZnO exhibits a chemical instability in a liquid cell. In this dissertation, both materials were coated with precise thickness of metal oxide layers to passivate the surfaces and to enhance their photocatalytic efficiency. LiNbO 3 was coated with plasma enhanced atomic layer deposited (PEALD) ZnO and Al2O3, and molecular beam deposited TiO2 and VO2. On the other hand, PEALD ZnO and single crystal ZnO were passivated with PEALD SiO2 and Al2O3. Metal oxide/LiNbO3 heterostructures were immersed in aqueous AgNO3 solutions and illuminated with ultraviolet (UV) light to form Ag nanoparticle patterns. Alternatively, Al2O3 and SiO2/ZnO heterostructures were immersed in K3PO 4 buffer solutions and studied for photoelectrochemical reactions. A fundamental aspect of the heterostructures is the band alignment and band bending, which was deduced from in situ photoemission measurements. This research has provided insight to three aspects of the heterostructures. First, the band alignment at the interface of metal oxides/LiNbO 3, and Al2O3 or SiO2/ZnO were used to explain the possible charge transfer processes and the direction of carrier flow in the heterostructures. Second, the effect of metal oxide coatings on the LiNbO3 with different internal carrier concentrations was related to the surface photochemical reactions. Third is the surface passivation and degradation mechanism of Al2O 3 and SiO2 on ZnO was established. The heterostructures were characterized after stability tests using atomic force microscopy (AFM), scanning electron microscopy (SEM), and cross-section transmission electron microscopy (TEM). The results indicate that limited thicknesses of ZnO or TiO2 on polarity patterned LiNbO3 (PPLN) enhances the Ag+ photoinduced reduction process. ZnO seems more efficient

  9. SINTERING METAL OXIDES

    DOEpatents

    Roake, W.E.

    1960-09-13

    A process is given for producing uranium dioxide material of great density by preparing a compacted mixture of uranium dioxide and from 1 to 3 wt.% of calcium hydride, heating the mixture to at least 675 deg C for decomposition of the hydride and then for sintering, preferably in a vacuum, at from 1550 to 2000 deg C. Calcium metal is formed, some uranium is reduced by the calcium to the metal and a product of high density is obtained.

  10. Electric Field Dependent Photoluminescence in Atomically Thin Transition Metal Dichalcogenides van der Waals Heterostructures

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis A.; High, Alex A.; Dibos, Alan; Joe, Andrew; Gulpinar, Elgin; Park, Hongkun; Kim, Philip

    uregui, Alex A. High, Alan Dibos, Andrew Joe, Elgin Gulpinar, Hongkun Park, Philip Kim Harvard University, Physics Department -abstract- Single layer transition metal dichalcogenides (TMDC) are 2-dimensional (2D) semiconductors characterized by a direct optical bandgap and large exciton binding energies (>100 meV). We fabricate CQW heterostructures made of 2D TMDCs with hexagonal Boron nitride (BN) as atomically thin barrier and gate dielectric, with top and bottom gate electrodes. We study the evolution of photoluminescence (PL) spectrum with varying BN barrier thickness, electric field, temperature and polarization. Our measured low-temperature (T = 3K) PL peaks show full width at half maxima on the order of ~3meV. We identify the photoluminescence peaks, corresponding to the charged exciton emission, which red shifts and its brightness increases while the neutral exciton emission becomes darker for increasing electric field.

  11. Methods for synthesizing metal oxide nanowires

    DOEpatents

    Sunkara, Mahendra Kumar; Kumar, Vivekanand; Kim, Jeong H.; Clark, Ezra Lee

    2016-08-09

    A method of synthesizing a metal oxide nanowire includes the steps of: combining an amount of a transition metal or a transition metal oxide with an amount of an alkali metal compound to produce a mixture; activating a plasma discharge reactor to create a plasma discharge; exposing the mixture to the plasma discharge for a first predetermined time period such that transition metal oxide nanowires are formed; contacting the transition metal oxide nanowires with an acid solution such that an alkali metal ion is exchanged for a hydrogen ion on each of the transition metal oxide nanowires; and exposing the transition metal oxide nanowires to the plasma discharge for a second predetermined time period to thermally anneal the transition metal oxide nanowires. Transition metal oxide nanowires produced using the synthesis methods described herein are also provided.

  12. Copper Oxide Substrates and Epitaxial Copper Oxide/Zinc Oxide Thin Film Heterostructures for Solar Energy Conversion

    NASA Astrophysics Data System (ADS)

    Darvish, Davis Solomon

    Future fossil fuel scarcity and environmental degradation have demonstrated the need for renewable, low-carbon sources of energy to power an increasingly industrialized world. Solar energy with its infinite supply makes it an extraordinary resource that should not go unused. However with current materials, adoption is limited by cost and so a paradigm shift must occur to get everyone on the same page embracing solar technology. Cuprous Oxide (Cu2O) is a promising earth abundant material that can be a great alternative to traditional thin-film photovoltaic materials like CIGS, CdTe, etc. We have prepared Cu 2O bulk substrates by the thermal oxidation of copper foils as well Cu2O thin films deposited via plasma-assisted Molecular Beam Epitaxy. From preliminary Hall measurements it was determined that Cu2O would need to be doped extrinsically. This was further confirmed by simulations of ZnO/Cu2O heterojunctions. A cyclic interdependence between, defect concentration, minority carrier lifetime, film thickness, and carrier concentration manifests itself a primary reason for why efficiencies greater than 4% has yet to be realized. Our growth methodology for our thin-film heterostructures allow precise control of the number of defects that incorporate into our film during both equilibrium and nonequilibrium growth. We also report process flow/device design/fabrication techniques in order to create a device. A typical device without any optimizations exhibited open-circuit voltages Voc, values in excess 500mV; nearly 18% greater than previous solid state devices.

  13. Influence of the silver oxidation on the resistive switching in Ag/AgOx/WO3-x/Pt heterostructures

    NASA Astrophysics Data System (ADS)

    Dong, Chun-Ying; Wei, Wen Gang; Zhao, Jing; Zhang, Jian; Zhao, Xu; Chen, Wei

    2015-12-01

    Silver is usually considered as an inert material and is most commonly used as an electrode. In this work, however, we demonstrate that silver can be easily oxidized during preparation. The influence of the silver oxidation on the resistive switching (RS) effect of the Ag/AgOx/WO3-x/Pt heterostructures was systematically investigated. The heterostructure in which the AgOx film was deposited under an oxygen pressure of 5 × 10-4 Pa showed a linear current-voltage relationship (Ohmic contact). The heterostructures in which the AgOx films were deposited under oxygen pressures of 10 and 100 Pa showed a typical interface RS effect with rectification. In combination with the analysis of the dependence of high-resistance-state (HRS) on RESET current and RESET voltage under different compliance currents, we inferred that the electrochemical redox reaction of the silver oxide is responsible for the RS effect in Ag/AgOx/WO3-x/Pt heterostructures.

  14. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  15. Method for plating with metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-08-23

    A method is disclosed of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate. 1 fig.

  16. Method for plating with metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-08-23

    A method of plating hydrous metal oxides on at least one substrate, which method is indifferent to the electrochemical properties of the substrate, and comprises reacting metallic ions in aqueous solution with an appropriate oxidizing agent such as sodium hypochlorite or calcium sulfite with oxygen under suitable conditions of pH and concentration such that oxidation and precipitation of metal oxide are sufficiently slow to allow satisfactory plating of metal oxide on the substrate.

  17. Triplet proximity effect in superconducting heterostructures with a half-metallic layer

    NASA Astrophysics Data System (ADS)

    Mironov, S.; Buzdin, A.

    2015-11-01

    We present the Usadel theory describing the superconducting proximity effect in heterostructures with a half-metallic layer. It is shown that the full spin polarization inside the half-metals gives rise to an additional component of the Green's function which results in the giant triplet spin-valve effect in superconductor (S)-ferromagnet (F)-half-metal (HM) trilayers and provides a natural explanation for the φ0-junction formation in the S/F/HM/F/S systems. In addition, we consider the exactly solvable model of the S/F/HM trilayers of atomic thickness and demonstrate that it reproduces the main features of the spin-valve effect found within the Usadel approach. Our results are shown to be in qualitative agreement with the recent experimental data on the spin-valve effect in MoGe /Ni /Cu /CrO2 hybrids [Singh et al., Phys. Rev. X 5, 021019 (2015), 10.1103/PhysRevX.5.021019].

  18. Tuning polarization states and interface properties of BaTiO3/SrTiO3 heterostructure by metal capping layers

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Yang, Ming; Shen, Lei; Wu, Qing Yun; Xu, Lei; Feng, Yuan Ping; Rusydi, Andrivo

    2016-04-01

    How to tune two-dimensional electron gas at interface of heterostructures is becoming an important question for both fundamental physics and electronic applications. Here, using density functional theory calculations, we find that the polarization state of BaTiO3 in metal capped BaTiO3/SrTiO3 heterostructures changes dramatically, depending on the termination of BaTiO3 and the different metal layers (M =Al , Fe, Pt Au). Most interestingly, for Pt on the BaO-terminated BaTiO3/SrTiO3, interface conductivity can be tuned. With a paraelectric state in BaTiO3, Pt_BaTiO 3 /SrTiO3 remains insulating at interface, while when BaTiO3 is ferroelectric, a hole- or electron-conducting BaTiO3/SrTiO3 interface can be realized, depending on its polarization direction in BaTiO3. This conducting interface and the top Pt layer screen the depolarization field, and thus stabilize the ferroelectricity in BaTiO3. Our result provides important clues for the reversibly tunable conductivity at oxide interfaces.

  19. Research Update: Interface-engineered oxygen octahedral tilts in perovskite oxide heterostructures

    SciTech Connect

    Kan, Daisuke Aso, Ryotaro; Kurata, Hiroki; Shimakawa, Yuichi

    2015-06-01

    Interface engineering of structural distortions is a key for exploring the functional properties of oxide heterostructures and superlattices. In this paper, we report on our comprehensive investigations of oxygen octahedral distortions at the heterointerface between perovskite oxides SrRuO{sub 3} and BaTiO{sub 3} on GdScO{sub 3} substrates and of the influences of the interfacially engineered distortions on the magneto-transport properties of the SrRuO{sub 3} layer. Our state-of-the-art annular bright-field imaging in aberration-corrected scanning transmission electron microscopy revealed that the RuO{sub 6} octahedral distortions in the SrRuO{sub 3} layer have strong dependence on the stacking order of the SrRuO{sub 3} and BaTiO{sub 3} layers on the substrate. This can be attributed to the difference in the interfacial octahedral connections. We also found that the stacking order of the oxide layers has a strong impact on the magneto-transport properties, allowing for control of the magnetic anisotropy of the SrRuO{sub 3} layer through interface engineering. Our results demonstrate the significance of the interface engineering of the octahedral distortions on the structural and physical properties of perovskite oxides.

  20. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  1. Numerical study of metal oxide heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Shao, G.; Luo, J. K.

    2011-08-01

    Metal oxide (MO) semiconductors have great potential for photovoltaic (PV) application owing to some optimal bandgaps and a variety of possible combinations of the materials. The progress is limited due to lack of high-quality materials, reliable process and theoretical study and models which can guide the development. This paper reports on the numerical modelling of MO semiconductor PV cells. The effects of the bandgap structure, material, doping concentration and layer thickness on the proposed oxide solar cells have been investigated. It was found that, in an ideal case of no defects and no interface states, wide-gap MO, CuO and Cu2O can form a heterostructure n+/p/p+ cell with efficiency up to 28.6%, demonstrating great potential for development.

  2. Fundamentals of metal oxide catalysis

    NASA Astrophysics Data System (ADS)

    Nair, Hari

    The properties of metal oxide catalysts and hence, catalytic activity are highly dependent on the composition and structure of these oxides. This dissertation has 3 parts -- all directed towards understanding relationships between structure, composition and activity in metal oxide catalysts. The first part of this dissertation focuses on supported metal oxide catalysts of tungsten, vanadium and molybdenum. Mechanisms are proposed for ethanol oxidative dehydrogenation which is used to probe the acidity and reducibility of these oxide catalysts. These studies are then used to develop a novel method to quantify active redox sites and determine the nature of the active site on these catalysts -- our results show that the intrinsic redox turn-over frequency is independent of the nature of the metal oxide and its loading and that the actual rate obtained over an oxide is only a function of the number of removable oxygen atoms linking the metal to the support. The extension of Ultraviolet-visible Diffuse Reflectance Spectroscopy (UV-vis DRS) to the study of active oxide domains in binary oxide catalysts is demonstrated for distinguishing between interacting and non-interacting domains in binary MoO x-WOx catalysts on alumina. We show also how the rigorous analysis of pre-edge features, absorption white-line intensity and the full width at half maximum of the white-line in X-ray Absorption Spectra provide determinants for metal atom coordination and domain size in supported metal oxide catalysts. The second part of this work looks at effects of structure variations on the activity of polyoxometalate catalysts that are promising for the production of Methacrylic Acid from Isobutane. The use of these catalysts is limited by structural changes that impact their performance -- an "activation" period is required before the catalysts become active for methacrylic acid production and structural changes also lead to degradation of the catalyst, which are also seen during thermal

  3. Constructing heterostructure on highly roughened caterpillar-like gold nanotubes with cuprous oxide grains for ultrasensitive and stable nonenzymatic glucose sensor.

    PubMed

    Chen, Anran; Ding, Yu; Yang, Zhimao; Yang, Shengchun

    2015-12-15

    In this study, a metal-metal oxide heterostructure was designed and constructed by growing cuprous oxide (Cu2O) grains on highly surface roughened caterpillar-like Au nanotubes (CLGNs) for ultrasensitive, selective and stable nonenzymatic glucose biosensors. The Cu2O grains are tightly anchored to the surface of CLGNs by the spines, resulting in a large increase in the contact area between Cu2O grains and the CLGNs, which facilitates the electron transport between metal and metal oxide and improves the sensitivity and stability of the sensors. The electron transfer coefficient (α) and electron transfer rate constant (ks) for redox reaction of Cu2O-CLGNs/GCE are found to be 0.50114 and 3.24±0.1 s(-1), respectively. The biosensor shows a linear response to glucose over a concentration range of 0.1-5mM and a high sensitivity of 1215.7 µA mM(-1) cm(-2) with a detection limit of 1.83 μM. Furthermore, the Cu2O-CLGNs biosensor exhibited strong anti-interference capability against uric acid (UA), ascorbic acid (AA), potassium chloride (KCl) and sodium ascorbate (SA), as well as a high stability and repeatability. Our current research indicates that the Cu2O-CLGNs hybrid electrode is a promising choice for constructing nonenzyme based electrochemical biosensors. PMID:26258877

  4. Ferromagnetic Schottky junctions using half-metallic Co{sub 2}MnSi/diamond heterostructures

    SciTech Connect

    Ueda, K.; Soumiya, T.; Nishiwaki, M.; Asano, H.

    2013-07-29

    We demonstrate half-metallic Heusler Co{sub 2}MnSi films epitaxially grown on diamond semiconductors using the ion-beam assisted sputtering method. Lower temperature growth below ∼400 °C is key for obtaining abrupt Co{sub 2}MnSi/diamond interfaces. The Co{sub 2}MnSi films on diamond showed a negative anisotropic magnetoresistance of ∼0.2% at 10 K, suggesting the half-metallic nature of the Co{sub 2}MnSi films. Schottky junctions formed using the Co{sub 2}MnSi/diamond heterostructures at 400 °C showed clear rectification properties with a rectification ratio of ∼10{sup 3}. The Schottky barrier heights of the Co{sub 2}MnSi/diamond interfaces were estimated to be ∼0.8 eV. These results indicate that Co{sub 2}MnSi is a promising spin source for spin injection into diamond.

  5. Molecular Level Coating of Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); St.Clair, Terry L. (Inventor)

    2002-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar osmotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing, synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper. making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  6. Molecular Level Coating for Metal Oxide Particles

    NASA Technical Reports Server (NTRS)

    McDaniel, Patricia R. (Inventor); Saint Clair, Terry L. (Inventor)

    2000-01-01

    Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.

  7. Metal versus insulator behavior in ultrathin SrTiO3-based heterostructures

    NASA Astrophysics Data System (ADS)

    Bjaalie, Lars; Janotti, Anderson; Himmetoglu, Burak; Van de Walle, Chris G.

    2016-07-01

    Complex-oxide interfaces can give rise to two-dimensional electron gases (2DEGs) with extremely high densities: for SrTiO3/GdTiO3 (STO/GTO), a density of 1/2 electron per unit-cell area is found within the STO. In this work we use first-principles calculations to study GTO/STO/GTO heterostructures, where both interfaces contribute electrons to the STO. We find that for a thick STO layer the electrons from the interfaces delocalize over multiple TiO2 planes. Once the STO thickness is reduced below three layers, we find that the electrons localize on every other interfacial Ti atom, leading to an insulating phase. We attribute this localization to the combination of high electron density and distortions at the interface. This is further confirmed by a model of the transition based on electron doping of bulk STO, allowing for the same type of distortions as at the interface with GTO. These findings elucidate previous observations [P. Moetakef et al., Phys. Rev. B 86, 201102 (2012), 10.1103/PhysRevB.86.201102], but our proposed physical mechanisms are general and should apply to other complex-oxide interfaces as well.

  8. Method for preparing hollow metal oxide microsphere

    DOEpatents

    Schmitt, C.R.

    1974-02-12

    Hollow refractory metal oxide microspheres are prepared by impregnating resinous microspheres with a metallic compound, drying the impregnated microspheres, heating the microspheres slowly to carbonize the resin, and igniting the microspheres to remove the carbon and to produce the metal oxide. Zirconium oxide is given as an example. (Official Gazette)

  9. P-type Oxides and the Growth of Heterostructure Oxide Devices

    NASA Astrophysics Data System (ADS)

    Hosono, Hideo

    2002-03-01

    Transparent conductive oxides (TCOs) are widely used as transparent metallic electrodes for various displays and solar cells. However, even though TCO is an n-type semiconductor, there is almost no application based on the active function as a compound semiconductor. The primary reason is because most active functions in semiconductors come from the characteristic properties of p-n junction but TCOs do not have a p-type. We anticipate that new frontier of transparent oxide semiconductors (TOSs) utilizing both optical transparency and electron activity in semiconductors will be opened if a p-type TCO is realized. In 1997, we reported on CuAlO2 (thin films) as the first p-type TCO along with a chemical design concept to explore the candidate materials. After that, a series of p-type TCOs based on a Cu+ -based system have been reported following the design concept, i.e., CuGaO2, CuInO2, and SrCu2O2. In 1999, a transparent p-n heterojunction diode exhibiting a rectifying I-V characteristic was fabricated using a combination of p-SrCu2O2 (SCO) and n-ZnO. Ultraviolet-emitting diode (UV-LED) is a typical active device, which can use the features of TOSs. Thus, since the initiation of our project (October, 1999), we concentrated our effort on the fabrication of UV-LED based on transparent p-n junction composed of TOSs. The fabrication was realized(APL,77,475,2000) by the formation of p-n heterojunction composed of heteroepitaxially grown p-SCO and n-ZnO. In this talk I will review our approach to P-type TCOs and UV-LED based on PN heterojuction utilizing TCOs along with recent advances.

  10. Optical properties of transition metal oxide quantum wells

    SciTech Connect

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-21

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO{sub 3}/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  11. Optical properties of transition metal oxide quantum wells

    NASA Astrophysics Data System (ADS)

    Lin, Chungwei; Posadas, Agham; Choi, Miri; Demkov, Alexander A.

    2015-01-01

    Fabrication of a quantum well, a structure that confines the electron motion along one or more spatial directions, is a powerful method of controlling the electronic structure and corresponding optical response of a material. For example, semiconductor quantum wells are used to enhance optical properties of laser diodes. The ability to control the growth of transition metal oxide films to atomic precision opens an exciting opportunity of engineering quantum wells in these materials. The wide range of transition metal oxide band gaps offers unprecedented control of confinement while the strong correlation of d-electrons allows for various cooperative phenomena to come into play. Here, we combine density functional theory and tight-binding model Hamiltonian analysis to provide a simple physical picture of transition metal oxide quantum well states using a SrO/SrTiO3/SrO heterostructure as an example. The optical properties of the well are investigated by computing the frequency-dependent dielectric functions. The effect of an external electric field, which is essential for electro-optical devices, is also considered.

  12. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure.

    PubMed

    Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S

    2016-05-21

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures. PMID:27124772

  13. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Prajapat, C. L.; Singh, Surendra; Paul, Amitesh; Bhattacharya, D.; Singh, M. R.; Mattauch, S.; Ravikumar, G.; Basu, S.

    2016-05-01

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  14. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

    PubMed Central

    Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  15. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers.

    PubMed

    Bogdanov, Nikolay A; Katukuri, Vamshi M; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  16. Co-Al mixed metal oxides/carbon nanotubes nanocomposite prepared via a precursor route and enhanced catalytic property

    SciTech Connect

    Fan Guoli; Wang Hui; Xiang Xu; Li Feng

    2013-01-15

    The present work reported the synthesis of Co-Al mixed metal oxides/carbon nanotubes (CoAl-MMO/CNT) nanocomposite from Co-Al layered double hydroxide/CNTs composite precursor (CoAl-LDH/CNT). The materials were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), low temperature nitrogen adsorption-desorption experiments, thermogravimetric and differential thermal analyses (TG-DTA), Raman spectra and X-ray photoelectron spectroscopy (XPS). The results revealed that in CoAl-MMO/CNT nanocomposite, the nanoparticles of cobalt oxide (CoO) and Co-containing spinel-type complex metal oxides could be well-dispersed on the surface of CNTs, thus forming the heterostructure of CoAl-MMO and CNTs. Furthermore, as-synthesized CoAl-MMO/CNT nanocomposite was utilized as additives for catalytic thermal decomposition of ammonium perchlorate (AP). Compared to those for pure AP and CoAl-MMO, the peak temperature of AP decomposition for CoAl-MMO/CNT was significantly decreased, which is attributed to the novel heterostructure and synergistic effect of multi-component metal oxides of nanocomposite. - Graphical abstract: Hybrid Co-Al mixed metal oxides/carbon nanotubes nanocomposite showed the enhanced catalytic activity in the thermal decomposition of ammonium perchlorate, as compared to carbon nanotubes and pure Co-Al mixed metal oxides. Highlights: Black-Right-Pointing-Pointer Co-Al mixed metal oxides/carbon nanotubes nanocomposite was synthesized. Black-Right-Pointing-Pointer Co-Al mixed metal oxides consisted of cobalt oxide and Co-containing spinels. Black-Right-Pointing-Pointer Nanocomposite exhibited excellent catalytic activity for the decomposition of AP. Black-Right-Pointing-Pointer The superior catalytic property is related to novel heterostructure and composition.

  17. Tuning magnetic anisotropy by interfacially engineering the oxygen coordination environment in a transition metal oxide

    NASA Astrophysics Data System (ADS)

    Kan, Daisuke; Aso, Ryotaro; Sato, Riko; Haruta, Mitsutaka; Kurata, Hiroki; Shimakawa, Yuichi

    2016-04-01

    Strong correlations between electrons, spins and lattices--stemming from strong hybridization between transition metal d and oxygen p orbitals--are responsible for the functional properties of transition metal oxides. Artificial oxide heterostructures with chemically abrupt interfaces provide a platform for engineering bonding geometries that lead to emergent phenomena. Here we demonstrate the control of the oxygen coordination environment of the perovskite, SrRuO3, by heterostructuring it with Ca0.5Sr0.5TiO3 (0-4 monolayers thick) grown on a GdScO3 substrate. We found that a Ru-O-Ti bond angle of the SrRuO3 /Ca0.5Sr0.5TiO3 interface can be engineered by layer-by-layer control of the Ca0.5Sr0.5TiO3 layer thickness, and that the engineered Ru-O-Ti bond angle not only stabilizes a Ru-O-Ru bond angle never seen in bulk SrRuO3, but also tunes the magnetic anisotropy in the entire SrRuO3 layer. The results demonstrate that interface engineering of the oxygen coordination environment allows one to control additional degrees of freedom in functional oxide heterostructures.

  18. Numerical study of metal oxide Schottky type solar cells

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Shao, G.; Luo, J. K.

    2012-07-01

    Metal oxide (MO) semiconductors hold the promise for the development of high efficiency solar cells with low cost. Currently heterostructure type MO solar cells have been theoretically and experimentally studied, demonstrated their potential for applications. This paper highlights a numerical investigation on Schottky type MO solar cells using CuO as the absorption layer. It is shown that the doping concentration, absorption layer thickness, barrier height and back surface field have significant effects on the performance of the devices. Under the optimal structure and doping, the Schottky barrier solar cells, if can be fabricated with suitable techniques, can have a conversion efficiency up to 18.5%, comparable to MO heterojunction solar cells, but at a much simpler structure and lower cost. Some guidelines about the materials selection and structure design for MO Schottky barrier solar cells are summarized.

  19. Topological and unconventional magnetic states in transition metal oxides

    NASA Astrophysics Data System (ADS)

    Fiete, Gregory

    In this talk I describe some recent work on unusual correlated phases that may be found in bulk transition metal oxides with strong spin-orbit coupling. I will focus on model Hamiltonian studies that are motivated by the pyrocholore iridates, though the correlated topological phases described may appear in a much broader class of materials. I will describe a variety of fractionalized topological phases protected by time-reversal and crystalline symmetries: The weak topological Mott insulator (WTMI), the TI* phase, and the topological crystalline Mott insulator (TCMI). If time permits, I will also discuss closely related heterostructures of pyrochlore iridates in a bilayer and trilayer film geometry. These quasi-two dimensional systems may exhibit a number of interesting topological and magnetic phases. This work is generously funded by the ARO, DARPA, and the NSF.

  20. Reduced Graphene Oxide-Ag3PO4 Heterostructure: A Direct Z-Scheme Photocatalyst for Augmented Photoreactivity and Stability.

    PubMed

    Samal, Alaka; Das, D P; Nanda, K K; Mishra, B K; Das, J; Dash, A

    2016-02-18

    A visible light driven, direct Z-scheme reduced graphene oxide-Ag3PO4 (RGO-Ag3 PO4 ) heterostructure was synthesized by means of a simple one-pot photoreduction route by varying the amount of RGO under visible light illumination. The reduction of graphene oxide (GO) and growth of Ag3PO4 took place simultaneously. The effect of the amount of RGO on the textural properties and photocatalytic activity of the heterostructure was investigated under visible light illumination. Furthermore, total organic carbon (TOC) analysis confirmed 97.1 % mineralization of organic dyes over RGO-Ag3PO4 in just five minutes under visible-light illumination. The use of different quenchers in the photomineralization suggested the presence of hydroxyl radicals ((.)OH), superoxide radicals ((.)O2 (-)), and holes (h(+)), which play a significant role in the mineralization of organic dyes. In addition to that, clean hydrogen fuel generation was also observed with excellent reusability. The 4 RGO-Ag3PO4 heterostructure has a high H2 evolution rate of 3690 μmol h(-1)  g(-1), which is 6.15 times higher than that of RGO. PMID:26639552

  1. Preparing oxidizer coated metal fuel particles

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.; Simmons, G. M. (Inventor)

    1974-01-01

    A solid propellant composition of improved efficiency is described which includes an oxidizer containing ammonium perchlorate, and a powered metal fuel, preferably aluminum or beryllium, in the form of a composite. The metal fuel is contained in the crystalline lattice framework of the oxidizer, as well as within the oxidizer particles, and is disposed in the interstices between the oxidizer particles of the composition. The propellant composition is produced by a process comprising the crystallization of ammonium perchlorate in water, in the presence of finely divided aluminum or beryllium. A suitable binder is incorporated in the propellant composition to bind the individual particles of metal with the particles of oxidizer containing occluded metal.

  2. Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping

    DOE PAGESBeta

    Bruno, F. Y.; Grisolia, M. N.; Visani, C.; Valencia, S.; Varela, M.; Abrudan, R.; Tornos, J.; Rivera-Calzada, A.; Ünal, A. A.; Pennycook, S. J.; et al

    2015-02-17

    At interfaces between complex oxides, electronic, orbital and magnetic reconstructions may produce states of matter absent from the materials involved, offering novel possibilities for electronic and spintronic devices. Here we show that magnetic reconstruction has a strong influence on the interfacial spin selectivity, a key parameter controlling spin transport in magnetic tunnel junctions. In epitaxial heterostructures combining layers of antiferromagnetic LaFeO3 (LFO) and ferromagnetic La0.7Sr0.3MnO3 (LSMO), we find that a net magnetic moment is induced in the first few unit planes of LFO near the interface with LSMO. Using X-ray photoemission electron microscopy, we show that the ferromagnetic domain structuremore » of the manganite electrodes is imprinted into the antiferromagnetic tunnel barrier, endowing it with spin selectivity. Finally, we find that the spin arrangement resulting from coexisting ferromagnetic and antiferromagnetic interactions strongly influences the tunnel magnetoresistance of LSMO/LFO/LSMO junctions through competing spin-polarization and spin-filtering effects.« less

  3. Spin structure in an interfacially-coupled epitaxial ferromagnetic oxide heterostructure

    NASA Astrophysics Data System (ADS)

    Ke, Xianglin

    2014-03-01

    We report the spin structure of an exchange-biased ferromagnetic oxide heterostructure, La0.67Sr0.33MnO3 / SrRuO3, through magnetization and polarized neutron reflectometry measurements. We reveal that the magnetization reversal process of the La0.67Sr0.33MnO3 biased layer critically depends on the frozen-in spin structure of the SrRuO3 biasing layer during the cooling process. Furthermore, we observe unexpected double-shifted hysteresis loops of the biased layer that originates from the formation of lateral 180° magnetic domains within the biasing layer, a new mechanism not found in conventional exchange-bias systems. The effects of the thus-formed spin structure on the magnetotransport properties will be presented as well. This work was done in collaboration with L. J. Belenky, V. Lauter, H. Ambaye, C. W. Bark, C. B. Eom, M. S. Rzchowski, J. Smith, and M. Zhu.

  4. IMPORTANCE OF IN SITU MONITORS IN THE PREPARATION OF LAYERED OXIDE HETEROSTRUCTURES BY REACTIVE MBE.

    SciTech Connect

    Schlom, Darrell G.; Haeni, J. H.; Theis, C. D.; Tian, W.; Pan, X. Q.; Brown, G. W.; Hawley, M. E.

    2001-01-01

    Using a variety of in situ monitors and when possible adsorption-controlled growth conditions, layered oxide heterostructures including new compounds and metastable superlattices have been grown by reactive molecular beam epitaxy (MBE). The heteroepitaxial layers grown include Bi{sub 4}Ti{sub 3}O{sub 12}-SrTiO{sub 3} and Bi{sub 4}Ti{sub 3}O{sub 12}-PbTiO{sub 3} Aurivillius phases, Sr{sub n+1}Ti{sub n}O{sub 3n+1} Ruddlesden-Popper phases, and metastable PbTiO{sub 3}/SrTiO{sub 3} and BaTiO{sub 3}/SrTiO{sub 3} superlattices. Accurate composition control is key to the controlled growth of such structures, and to this end combinations of reflection high-energy electron diffraction (RHEED), atomic absorption spectroscopy (AA), a quartz crystal microbalance (QCM), and adsorption-controlled growth conditions were employed during growth. The structural perfection of the films has been investigated using in situ RHEED, four-circle x-ray diffraction, atomic force microscopy (AFM), and high-resolution transmission electron microscopy (TEM).

  5. Insight into spin transport in oxide heterostructures from interface-resolved magnetic mapping

    SciTech Connect

    Bruno, F. Y.; Varela, M.; Abrudan, R.; Pennycook, S. J.; Sefrioui, Z.

    2015-02-17

    At interfaces between complex oxides, electronic, orbital and magnetic reconstructions may produce states of matter absent from the materials involved, offering novel possibilities for electronic and spintronic devices. Here we show that magnetic reconstruction has a strong influence on the interfacial spin selectivity, a key parameter controlling spin transport in magnetic tunnel junctions. In epitaxial heterostructures combining layers of antiferromagnetic LaFeO3 (LFO) and ferromagnetic La0.7Sr0.3MnO3 (LSMO), we find that a net magnetic moment is induced in the first few unit planes of LFO near the interface with LSMO. Using X-ray photoemission electron microscopy, we show that the ferromagnetic domain structure of the manganite electrodes is imprinted into the antiferromagnetic tunnel barrier, endowing it with spin selectivity. Finally, we find that the spin arrangement resulting from coexisting ferromagnetic and antiferromagnetic interactions strongly influences the tunnel magnetoresistance of LSMO/LFO/LSMO junctions through competing spin-polarization and spin-filtering effects.

  6. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOEpatents

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  7. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  8. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  9. Method for producing metal oxide nanoparticles

    DOEpatents

    Phillips, Jonathan; Mendoza, Daniel; Chen, Chun-Ku

    2008-04-15

    Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.

  10. One-Step Synthesis of MoS₂/WS₂ Layered Heterostructures and Catalytic Activity of Defective Transition Metal Dichalcogenide Films.

    PubMed

    Woods, John M; Jung, Yeonwoong; Xie, Yujun; Liu, Wen; Liu, Yanhui; Wang, Hailiang; Cha, Judy J

    2016-02-23

    Transition metal dichalcogenides (TMDCs) are a promising class of two-dimensional (2D) materials for use in applications such as 2D electronics, optoelectronics, and catalysis. Due to the van der Waals (vdW) bonding between layers, vdW heterostructures can be constructed between two different species of TMDCs. Most studies employ exfoliation or co-vapor growth schemes, which are limited by the small size and uneven distribution of heterostructures on the growth substrate. In this work we demonstrate a one-step synthesis procedure for large-area vdW heterostructures between horizontal TMDCs MoS2 and WS2. The synthesis procedure is scalable and provides patterning ability, which is critical for electronic applications in integrated circuits. We demonstrate rectification characteristics of large-area MoS2/WS2 stacks. In addition, hydrogen evolution reaction performance was measured in these horizontal MoS2 and WS2 thin films, which indicate that, in addition to the catalytically active sulfur edge sites, defect sites may serve as catalyst sites. PMID:26836122

  11. Epitaxial ferromagnetic thin films and heterostructures of Mn-based metallic and semiconducting compounds on GaAs

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki

    1998-07-01

    We present two approaches to integrate magnetic materials with III-V semiconductors. One is epitaxial ferromagnetic metallic films and heterostructures on GaAs (0 0 1) substrates. Although crystal structure, lattice constant, chemical bonding and other properties are dissimilar, ferromagnetic hexagonal MnAs thin films and MnAs/NiAs ferromagnet/nonmagnet heterostructures (HSs) are grown on GaAs by molecular beam epitaxy (MBE). Multi-stepped magnetic hysteresis are controllably realized in MnAs/NiAs HSs, making this material promising for the application to multi-level nonvolatile recording on semiconductors. The other approach is to prepare a new class of GaAs based magnetic semiconductor, GaMnAs, by low-temperature molecular beam epitaxy (LT-MBE) on GaAs (0 0 1). New III-V based superlattices consisting of ferromagnetic semiconductor GaMnAs and nonmagnetic semiconductor AlAs are also successfully grown. Structural and magnetic properties of these new heterostructures are presented.

  12. Reduced TiO2-Graphene Oxide Heterostructure As Broad Spectrum-Driven Efficient Water-Splitting Photocatalysts.

    PubMed

    Li, Lihua; Yu, Lili; Lin, Zhaoyong; Yang, Guowei

    2016-04-01

    The reduced TiO2-graphene oxide heterostructure as an alternative broad spectrum-driven efficient water splitting photocatalyst has become a really interesting topic, however, its syntheses has many flaws, e.g., tedious experimental steps, time-consuming, small scale production, and requirement of various additives, for example, hydrazine hydrate is widely used as reductant to the reduction of graphene oxide, which is high toxicity and easy to cause the second pollution. For these issues, herein, we reported the synthesis of the reduced TiO2-graphene oxide heterostructure by a facile chemical reduction agent-free one-step laser ablation in liquid (LAL) method, which achieves extended optical response range from ultraviolet to visible and composites TiO2-x (reduced TiO2) nanoparticle and graphene oxide for promoting charge conducting. 30.64% Ti(3+) content in the reduced TiO2 nanoparticles induces the electronic reconstruction of TiO2, which results in 0.87 eV decrease of the band gap for the visible light absorption. TiO2-x-graphene oxide heterostructure achieved drastically increased photocatalytic H2 production rate, up to 23 times with respect to the blank experiment. Furthermore, a maximum H2 production rate was measured to be 16 mmol/h/g using Pt as a cocatalyst under the simulated sunlight irradiation (AM 1.5G, 135 mW/cm(2)), the quantum efficiencies were measured to be 5.15% for wavelength λ = 365 ± 10 nm and 1.84% for λ = 405 ± 10 nm, and overall solar energy conversion efficiency was measured to be 14.3%. These findings provided new insights into the broad applicability of this methodology for accessing fascinate photocatalysts. PMID:26986700

  13. Materials optimization and ghz spin dynamics of metallic ferromagnetic thin film heterostructures

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng

    Metallic ferromagnetic (FM) thin film heterostructures play an important role in emerging magnetoelectronic devices, which introduce the spin degree of freedom of electrons into conventional charge-based electronic devices. As the majority of magnetoelectronic devices operate in the GHz frequency range, it is critical to understand the high-frequency magnetization dynamics in these structures. In this thesis, we start with the static magnetic properties of FM thin films and their optimization via the field-sputtering process incorporating a specially designed in-situ electromagnet. We focus on the origins of anisotropy and hysteresis/coercivity in soft magnetic thin films, which are most relevant to magentic susceptibility and power dissipation in applications in the sub-GHz frequency regime, such as magnetic-core integrated inductors. Next we explore GHz magnetization dynamics in thin-film heterostructures, both in semi-infinite samples and confined geometries. All investigations are rooted in the Landau-Lifshitz-Gilbert (LLG) equation, the equation of motion for magnetization. The phenomenological Gilbert damping parameter in the LLG equation has been interpreted, since the 1970's, in terms of the electrical resistivity. We present the first interpretation of the size effect in Gilbert damping in single metallic FM films based on this electron theory of damping. The LLG equation is intrinsically nonlinear, which provides possibilities for rf signal processing. We analyze the frequency doubling effect at small-angle magnetization precession from the first-order expansion of the LLG equation, and demonstrate second harmonic generation from Ni81 Fe19 (Permalloy) thin film under ferromagnetic resonance (FMR), three orders of magnitude more efficient than in ferrites traditionally used in rf devices. Though the efficiency is less than in semiconductor devices, we provide field- and frequency-selectivity in the second harmonic generation. To address further the

  14. Metal oxide composite dosimeter method and material

    DOEpatents

    Miller, Steven D.

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  15. Metal oxides for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Yu, Xinge; Marks, Tobin J.; Facchetti, Antonio

    2016-04-01

    Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

  16. Metal oxides for optoelectronic applications.

    PubMed

    Yu, Xinge; Marks, Tobin J; Facchetti, Antonio

    2016-04-01

    Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III-V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p-n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories. PMID:27005918

  17. Strong interlayer coupling mediated giant two-photon absorption in MoS e2 /graphene oxide heterostructure: Quenching of exciton bands

    NASA Astrophysics Data System (ADS)

    Sharma, Rituraj; Aneesh, J.; Yadav, Rajesh Kumar; Sanda, Suresh; Barik, A. R.; Mishra, Ashish Kumar; Maji, Tuhin Kumar; Karmakar, Debjani; Adarsh, K. V.

    2016-04-01

    A complex few-layer MoS e2 /graphene oxide (GO) heterostructure with strong interlayer coupling was prepared by a facile hydrothermal method. In this strongly coupled heterostructure, we demonstrate a giant enhancement of two-photon absorption that is in stark contrast to the reverse saturable absorption of a weakly coupled MoS e2 /GO heterostructure and saturable absorption of isolated MoS e2 . Spectroscopic evidence of our study indicates that the optical signatures of isolated MoS e2 and GO domains are significantly modified in the heterostructure, displaying a direct coupling of both domains. Furthermore, our first-principles calculations indicate that strong interlayer coupling between the layers dramatically suppresses the MoS e2 excitonic bands. We envision that our findings provide a powerful tool to explore different optical functionalities as a function of interlayer coupling, which may be essential for the development of device technologies.

  18. Strongly enhanced spin current in topological insulator/ferromagnetic metal heterostructures by spin pumping

    SciTech Connect

    Wu, C. N.; Hung, H. Y.; Lin, H. Y.; Lin, P. H.; Kwo, J. E-mail: raynien@phys.nthu.edu.tw; Lin, Y. H.; Fanchiang, Y. T.; Hong, M. E-mail: raynien@phys.nthu.edu.tw; Lin, J. G.; Lee, S. F.

    2015-05-07

    Spin pumping effect in Bi{sub 2}Se{sub 3}/Fe{sub 3}Si and Fe/Bi{sub 2}Te{sub 3} heterostructures was studied. High quality films of Bi{sub 2}Se{sub 3}(001) on ferromagnetic Fe{sub 3}Si(111) layer and Fe(111) films on Bi{sub 2}Te{sub 3}(001) layer were grown epitaxially by molecular beam epitaxy. Using a microwave cavity source, large voltages due to the Inverse Spin Hall Effect (V{sub ISHE}) were detected in Bi{sub 2}Se{sub 3}(001)/Fe{sub 3}Si(111) bi-layer at room temperature. V{sub ISHE} of up to 63.4 ± 4.0 μV at 100 mW microwave power (P{sub MW}) was observed. In addition, Fe(111)/Bi{sub 2}Te{sub 3}(001) bi-layer also showed a large V{sub ISHE} of 3.0 ± 0.1 μV at P{sub MW} of 25 mW. V{sub ISHE} of both structures showed microwave linear power dependence in accordance with the theoretical model of spin pumping. The spin Hall angle was calculated to be 0.0053 ± 0.002 in Bi{sub 2}Se{sub 3} and was estimated to be 0.0068 ± 0.003 in Bi{sub 2}Te{sub 3}. The charge current density (J{sub c}) of Bi{sub 2}Se{sub 3}/Fe{sub 3}Si and Fe/Bi{sub 2}Te{sub 3} structures are comparable and are about 2–5 times higher than the Fe{sub 3}Si/normal metal and Fe{sub 3}Si/GaAs results. The significant enhancement of spin current in topological insulator/ferromagnetic metal (TI/FM) and FM/TI bilayers is attributed to strong spin-orbit coupling inherent of TIs and demonstrates the high potential of exploiting TI-based structures for spintronic applications.

  19. Gold and gold-palladium alloy nanoparticles on heterostructured TiO2 nanobelts as plasmonic photocatalysts for benzyl alcohol oxidation

    NASA Astrophysics Data System (ADS)

    Jiang, Tongtong; Jia, Chuancheng; Zhang, Lanchun; He, Shuren; Sang, Yuanhua; Li, Haidong; Li, Yanqing; Xu, Xiaohong; Liu, Hong

    2014-11-01

    Plasmonic photocatalysts composed of Au and bimetallic Au-Pd alloy nanoparticles (NPs) on one-dimensional TiO2 nanobelts (TiO2-NBs) were used for the aerobic oxidation of benzyl alcohol under visible light irradiation. Remarkable light-promoted activity was observed for the as-synthesized M/TiO2-NB (M = Au, Au-Pd) nanostructures based on the TiO2(B)/anatase heterostructured nanobelt. The difference in band structure and the well matched interface between the TiO2(B) and anatase phases, coupled with the one-dimensional nanostructure, enable an enhanced charge transfer within the heterostructured nanobelt. This inter-phase charge transfer greatly facilitates the flow of hot electrons from the metal NPs to TiO2 and promotes benzyl alcohol oxidation. This efficient electron transfer was identified by the much higher photocurrent response measured for the Au/TiO2-NB nanostructure with the TiO2(B)/anatase heterojunction than those with either of the single phases under visible light irradiation. Alloying Au with Pd in Au-Pd/TiO2-NB results in a significant improvement in the visible light-promoted activity compared to the monometallic Au/TiO2-NB sample. It is supposed that the plasmon-mediated charge distribution within the alloy NPs is mainly responsible for the enhanced photocatalytic activity of the bimetallic nanostructures.Plasmonic photocatalysts composed of Au and bimetallic Au-Pd alloy nanoparticles (NPs) on one-dimensional TiO2 nanobelts (TiO2-NBs) were used for the aerobic oxidation of benzyl alcohol under visible light irradiation. Remarkable light-promoted activity was observed for the as-synthesized M/TiO2-NB (M = Au, Au-Pd) nanostructures based on the TiO2(B)/anatase heterostructured nanobelt. The difference in band structure and the well matched interface between the TiO2(B) and anatase phases, coupled with the one-dimensional nanostructure, enable an enhanced charge transfer within the heterostructured nanobelt. This inter-phase charge transfer greatly

  20. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode

  1. Thermal stability of an InAlN/GaN heterostructure grown on silicon by metal-organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Watanabe, Arata; Freedsman, Joseph J.; Urayama, Yuya; Christy, Dennis; Egawa, Takashi

    2015-12-01

    The thermal stabilities of metal-organic chemical vapor deposition-grown lattice-matched InAlN/GaN/Si heterostructures have been reported by using slower and faster growth rates for the InAlN barrier layer in particular. The temperature-dependent surface and two-dimensional electron gas (2-DEG) properties of these heterostructures were investigated by means of atomic force microscopy, photoluminescence excitation spectroscopy, and electrical characterization. Even at the annealing temperature of 850 °C, the InAlN layer grown with a slower growth rate exhibited a smooth surface morphology that resulted in excellent 2-DEG properties for the InAlN/GaN heterostructure. As a result, maximum values for the drain current density (IDS,max) and transconductance (gm,max) of 1.5 A/mm and 346 mS/mm, respectively, were achieved for the high-electron-mobility transistor (HEMT) fabricated on this heterostructure. The InAlN layer grown with a faster growth rate, however, exhibited degradation of the surface morphology at an annealing temperature of 850 °C, which caused compositional in-homogeneities and impacted the 2-DEG properties of the InAlN/GaN heterostructure. Additionally, an HEMT fabricated on this heterostructure yielded lower IDS,max and gm,max values of 1 A/mm and 210 mS/mm, respectively.

  2. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor); Gedwill, Michael G. (Inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  3. “Conductive” yttria-stabilized zirconia as an epitaxial template for oxide heterostructures

    SciTech Connect

    Caspers, C.; Müller, M.; Gloskovskii, A.; Drube, W.; Schneider, C. M.

    2014-05-07

    We report an in situ thermochemical treatment that significantly increases the macroscopic electrical conductivity of insulating yttria-stabilized zirconia (YSZ) (001) single-crystalline substrates. We demonstrate the high-quality surface crystalline structure of the resulting “conductive” cYSZ (001) by low- and high-energy electron diffraction. Soft- and hard X-ray photoemission spectroscopy measurements reveal a sizable reduction of Zr cations to a metallic state and their homogeneous distribution within the cYSZ. We discuss the correlation between the microscopic chemical processes leading to the increased macroscopic metallicity. Finally, the heteroepitaxial growth of a functional magnetic oxide model system, ultrathin EuO on cYSZ (001), was demonstrated. cYSZ (001) thereby enables both high quality oxide heteroepitaxy and the advanced sample characterization by high electron-fluence characterization techniques.

  4. Method of producing adherent metal oxide coatings on metallic surfaces

    DOEpatents

    Lane, Michael H.; Varrin, Jr., Robert D.

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  5. Photodegradation of chlorofluorocarbon alternatives on metal oxide

    SciTech Connect

    Tanaka, K.; Hisanaga, T. )

    1994-05-01

    HCFC and HFC were photodegraded on metal oxides. Degradation rate on several metal oxides was in the order: TiO[sub 2] > ZnO > Fe[sub 2]O[sub 3] > kaolin [ge] SiO[sub 2] [ge] Al[sub 2]O[sub 3]. Principal degradation products were CO[sub 2], Cl[sup [minus

  6. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2015-06-30

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  7. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2012-09-04

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10C.

  8. Nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A.; Choi, Daiwon; Wang, Donghai; Yang, Zhenguo

    2013-10-15

    Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.

  9. Metal-insulator transition in AlxGa1-xAs/GaAs heterostructures with large spacer width

    NASA Astrophysics Data System (ADS)

    Gold, A.

    1991-10-01

    Analytical results are presented for the mobility of a two-dimensional electron gas in a heterostructure with a thick spacer layer α. Due to multiple-scattering effects a metal-insulator transition occurs at a critical electron density Nc=N1/2i/(4π1/2α) (Ni is the impurity density). The transport mean free path l(t) (calculated in Born approximation) at the metal-insulator transition is l(t)c=2α. A localization criterion in terms of the renormalized single-particle mean free path l(sr) is presented: kFcl(sr)c=(1/2)1/2 (kFc is the Fermi wave number at the critical density). I compare the theoretical results with recent experimental results found in AlxGa1-xAs/GaAs heterostructures with large spacer width: 1200<α<2800 Å. Remote impurity doping and homogeneous background doping are considered. The only fitting parameter used for the theoretical results is the background doping density NB=6×1013 cm-3. My theory is in fair agreement with the experimental results.

  10. Large anisotropic magnetoresistance across the Schottky interface in all oxide ferromagnet/semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Li, P.; Guo, B. L.; Bai, H. L.

    2011-06-01

    Over 80% fourfold symmetric anisotropic magnetoresistance (AMR) across the interface is observed in epitaxial Fe3O4 (001)/Nb:SrTiO3 (001) heterostructures, while the twofold symmetric AMR across the interface in epitaxial Fe3O4 (111)/ZnO (0001) heterostructures is rather small. The large AMR across the interface is considered to be induced by the assistance of magnetocrystalline anisotropic energy for the transport electrons while the applied voltage bias is near the height of Schottky barrier, which is further verified by the fact that a larger critical current is needed for the maximum AMR in the Fe3O4 (001)/Nb:SrTiO3 (001) heterostructures with heavier Nb-doping.

  11. Surface protected lithium-metal-oxide electrodes

    DOEpatents

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  12. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, M.W.; Coronado, P.R.; Hair, L.M.

    1995-03-07

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels. 6 figs.

  13. Three-Electrode Metal Oxide Reduction Cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2005-06-28

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  14. Three-electrode metal oxide reduction cell

    DOEpatents

    Dees, Dennis W.; Ackerman, John P.

    2008-08-12

    A method of electrochemically reducing a metal oxide to the metal in an electrochemical cell is disclosed along with the cell. Each of the anode and cathode operate at their respective maximum reaction rates. An electrolyte and an anode at which oxygen can be evolved, and a cathode including a metal oxide to be reduced are included as is a third electrode with independent power supplies connecting the anode and the third electrode and the cathode and the third electrode.

  15. Method for making monolithic metal oxide aerogels

    DOEpatents

    Droege, Michael W.; Coronado, Paul R.; Hair, Lucy M.

    1995-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The present invention is especially advantageous for making metal oxides other than silica that are prone to forming opaque, cracked aerogels.

  16. Direct electrochemical reduction of metal-oxides

    DOEpatents

    Redey, Laszlo I.; Gourishankar, Karthick

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  17. Photocurrent measurements in Coupled Quantum Well van der Waals Heterostructures made of 2D Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Joe, Andrew; Jauregui, Luis; High, Alex; Dibos, Alan; Gulpinar, Elgin; Pistunova, Kateryna; Park, Hongkun; Kim, Philip

    , Luis A. Jauregui, Alex A. High, Alan Dibos, Elgin Gulpinar, Kateryna Pistunova, Hongkun Park, Philip Kim Harvard University, Physics Department -abstract- Single layer transition metal dichalcogenides (TMDC) are 2-dimensional (2D) semiconductors van der Waals (vdW) characterized by a direct optical bandgap in the visible wavelength (~2 eV). Characterization of the band alignment between TMDC and the barrier is important for the fabrication of tunneling devices. Here, we fabricate coupled quantum well (CQW) heterostructures made of 2D TMDCs with hexagonal Boron nitride (hBN) as an atomically thin barrier and gate dielectric and with top and bottom metal (or graphite) as gate electrodes. We observe a clear dependence of the photo-generated current with varying hBN thickness, electrode workfunctions, electric field, laser excitation power, excitation wavelength, and temperature. We will discuss the implication of photocurrent in relation to quantum transport process across the vdW interfaces.

  18. Methods of producing adsorption media including a metal oxide

    DOEpatents

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  19. Metal Nitrite: A Powerful Oxidizing Reagent

    PubMed Central

    Baidya, Mahiuddin; Yamamoto, Hisashi

    2011-01-01

    An efficient and simple source of nitroso reagents and their oxidation reactions are described. The combination of a Lewis acid and a metal nitrite is applied to the oxidation of silyl enol ethers. Amino acid and peptide derivatives were easily accessed through in situ C-C bond cleavage of fully substituted silyl enol ethers upon oxidation. PMID:21830770

  20. Spatially correlated two-dimensional arrays of semiconductor and metal quantum dots in GaAs-based heterostructures

    SciTech Connect

    Nevedomskiy, V. N. Bert, N. A.; Chaldyshev, V. V.; Preobrazhernskiy, V. V.; Putyato, M. A.; Semyagin, B. R.

    2015-12-15

    A single molecular-beam epitaxy process is used to produce GaAs-based heterostructures containing two-dimensional arrays of InAs semiconductor quantum dots and AsSb metal quantum dots. The twodimensional array of AsSb metal quantum dots is formed by low-temperature epitaxy which provides a large excess of arsenic in the epitaxial GaAs layer. During the growth of subsequent layers at a higher temperature, excess arsenic forms nanoinclusions, i.e., metal quantum dots in the GaAs matrix. The two-dimensional array of such metal quantum dots is created by the δ doping of a low-temperature GaAs layer with antimony which serves as a precursor for the heterogeneous nucleation of metal quantum dots and accumulates in them with the formation of AsSb metal alloy. The two-dimensional array of InAs semiconductor quantum dots is formed via the Stranski–Krastanov mechanism at the GaAs surface. Between the arrays of metal and semiconductor quantum dots, a 3-nm-thick AlAs barrier layer is grown. The total spacing between the arrays of metal and semiconductor quantum dots is 10 nm. Electron microscopy of the structure shows that the arrangement of metal quantum dots and semiconductor quantum dots in the two-dimensional arrays is spatially correlated. The spatial correlation is apparently caused by elastic strain and stress fields produced by both AsSb metal and InAs semiconductor quantum dots in the GaAs matrix.

  1. Au/metal oxides for low temperature CO oxidation

    SciTech Connect

    Srinivas, G.; Wright, J.; Bai, C.S.; Cook, R.

    1996-12-31

    Oxidation of carbon monoxide is important for several operations including fuel cells and carbon dioxide lasers. Room temperature CO oxidation has been investigated on a series of Au/metal oxide catalysts at conditions typical of spacecraft atmospheres; CO = 50 ppm, CO{sub 2} = 7,000 ppm, H{sub 2}O = 40% (RH) at 25{degrees}C, balance = air, and gas hourly space velocities of 7,000-60,000 hr{sup -1}. The addition of Au increases the room temperature CO oxidation activity of the metal oxides dramatically. All the Au/metal oxides deactivate during the CO oxidation reaction, especially in the presence of CO{sub 2} in the feed. The stability of the Au/metal oxide catalysts decreases in the following order: TiO{sub 2} > Fe{sub 2}O{sub 3} > NiO > Co{sub 3}O{sub 4}. The stability appears to decrease with an increase in the basicity of the metal oxides. In situ FTIR of CO adsorption on Au/TiO{sub 2} at 25{degrees}C indicates the formation of adsorbed CO, carboxylate, and carbonate species on the catalyst surface.

  2. Synthesis, Morphological, and Electro-optical Characterizations of Metal/Semiconductor Nanowire Heterostructures.

    PubMed

    Glaser, Markus; Kitzler, Andreas; Johannes, Andreas; Prucnal, Slawomir; Potts, Heidi; Conesa-Boj, Sonia; Filipovic, Lidija; Kosina, Hans; Skorupa, Wolfgang; Bertagnolli, Emmerich; Ronning, Carsten; Fontcuberta I Morral, Anna; Lugstein, Alois

    2016-06-01

    In this letter, we demonstrate the formation of unique Ga/GaAs/Si nanowire heterostructures, which were successfully implemented in nanoscale light-emitting devices with visible room temperature electroluminescence. Based on our recent approach for the integration of InAs/Si heterostructures into Si nanowires by ion implantation and flash lamp annealing, we developed a routine that has proven to be suitable for the monolithic integration of GaAs nanocrystallite segments into the core of silicon nanowires. The formation of a Ga segment adjacent to longer GaAs nanocrystallites resulted in Schottky-diode-like I/V characteristics with distinct electroluminescence originating from the GaAs nanocrystallite for the nanowire device operated in the reverse breakdown regime. The observed electroluminescence was ascribed to radiative band-to-band recombinations resulting in distinct emission peaks and a low contribution due to intraband transition, which were also observed under forward bias. Simulations of the obtained nanowire heterostructure confirmed the proposed impact ionization process responsible for hot carrier luminescence. This approach may enable a new route for on-chip photonic devices used for light emission or detection purposes. PMID:27168031

  3. Synthesis, Morphological, and Electro-optical Characterizations of Metal/Semiconductor Nanowire Heterostructures

    PubMed Central

    2016-01-01

    In this letter, we demonstrate the formation of unique Ga/GaAs/Si nanowire heterostructures, which were successfully implemented in nanoscale light-emitting devices with visible room temperature electroluminescence. Based on our recent approach for the integration of InAs/Si heterostructures into Si nanowires by ion implantation and flash lamp annealing, we developed a routine that has proven to be suitable for the monolithic integration of GaAs nanocrystallite segments into the core of silicon nanowires. The formation of a Ga segment adjacent to longer GaAs nanocrystallites resulted in Schottky-diode-like I/V characteristics with distinct electroluminescence originating from the GaAs nanocrystallite for the nanowire device operated in the reverse breakdown regime. The observed electroluminescence was ascribed to radiative band-to-band recombinations resulting in distinct emission peaks and a low contribution due to intraband transition, which were also observed under forward bias. Simulations of the obtained nanowire heterostructure confirmed the proposed impact ionization process responsible for hot carrier luminescence. This approach may enable a new route for on-chip photonic devices used for light emission or detection purposes. PMID:27168031

  4. Investigation of Current Channels at the Interface between Complex Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Rosenberg, Aaron; Kirtley, John; Spanton, Eric; Watson, Christopher; di Gennaro, Emiliano; Scotti di Uccio, Umberto; Aruta, Carmela; Tafuri, Francesco; Miletto Granozio, Fabio; Moler, Kathryn

    2013-03-01

    The interface between SrTiO3 and LaAlO3, both perovskite oxide insulators, supports metallic and superconducting states under certain conditions. Previous unpublished data by Kalisky et al. shows spatial variation in the current flow in these interfaces, including enhanced conductivity associated with structural domains. The microscopic origin of this variation in conductivity is unknown. We extend the previous work to LaGaO3/SrTiO3, and NdGaO3/ SrTiO3 interfaces, observe similar stripe-like modulations in the current flow, and study their temperature and frequency dependence. Additionally, we plan to study how the current channels in LaAlO3/SrTiO3 change under a uniaxial strain. Investigation of these spatial variations may improve our understanding of the relationship between structure and conductivity in complex oxide interfaces.

  5. General synthetic approach to heterostructured nanocrystals based on noble metals and I-VI, II-VI, and I-III-VI metal chalcogenides.

    PubMed

    Liu, Minghui; Zeng, Hua Chun

    2014-08-19

    Solid metal precursors (alloys or monometals) can serve both as a starting template and as a source material for chemical transformation to metal chalcogenides. Herein, we develop a simple solution-based strategy to obtain highly monodisperse noble-metal-based heterostructured nanocrystals from such precursor seeds. By utilizing chemical and structural inhomogeneity of these metal seeds, in this work, we have synthesized a total of five I-VI (Ag2S, Ag2Se, Ag3AuS2, Ag3AuSe2, and Cu9S5), three II-VI (CdS, CdSe, and CuSe), and four I-III-VI (AgInS2, AgInSe2, CuInS2, and CuInSe2) chalcogenides, together with their fifteen associated heterodimers (Au-Ag2S, Au-Ag2Se, Au-Ag3AuS2, Au-Ag3AuSe2, Au-AgInS2, Au-AgInSe2, Au-CdS, Au-CdSe, Ag-Ag2S, Ag-AgInS2, Au-Cu9S5, Au-CuInS2, Au-CuSe, Au-CuInSe2, and Pt-AgInS2) to affirm the process generality. Briefly, by adding elemental sulfur or selenium to AuAg alloy seeds and tuning the reaction conditions, we can readily obtain phase-pure Au-Ag2S, Au-Ag2Se, Au-Ag3AuS2, and Au-Ag3AuSe2 heterostructures. Similarly, we can also fabricate Au-AgInS2 and Au-AgInSe2 heterostructures from the AuAg seeds by adding sulfur/selenium and indium precursors. Furthermore, by partial or full conversion of Ag seeds, we can prepare both single-phase Ag chalcogenide nanocrystals and Ag-based heterostructures. To demonstrate wide applicability of this strategy, we have also synthesized Au-based binary and ternary Cu chalcogenide (Au-Cu9S5, Au-CuSe, Au-CuInS2, and Au-CuInSe2) heterostructures from alloy seeds of AuCu and Pt chalcogenides (e.g., Pt-AgInS2) from alloy seeds of PtAg. The structure and composition of the above products have been confirmed with X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy methods. A kinetic investigation of the formation mechanism of these heterostructures is brought forward using Au-AgInS2 and Ag-CuInS2 as model examples. PMID

  6. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  7. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  8. Effects of growth temperature on the properties of InGaN channel heterostructures grown by pulsed metal organic chemical vapor deposition

    SciTech Connect

    Zhang, Yachao; Zhou, Xiaowei; Xu, Shengrui; Wang, Zhizhe; Chen, Zhibin; Zhang, Jinfeng; Zhang, Jincheng E-mail: xd-zhangyachao@163.com; Hao, Yue E-mail: xd-zhangyachao@163.com

    2015-12-15

    Pulsed metal organic chemical vapor deposition (P-MOCVD) is introduced into the growth of high quality InGaN channel heterostructures. The effects of InGaN channel growth temperature on the structural and transport properties of the heterostructures are investigated in detail. High resolution x-ray diffraction (HRXRD) and Photoluminescence (PL) spectra indicate that the quality of InGaN channel strongly depends on the growth temperature. Meanwhile, the atomic force microscopy (AFM) results show that the interface morphology between the InGaN channel and the barrier layer also relies on the growth temperature. Since the variation of material properties of InGaN channel has a significant influence on the electrical properties of InAlN/InGaN heterostructures, the optimal transport properties can be achieved by adjusting the growth temperature. A very high two dimension electron gas (2DEG) density of 1.92 × 10{sup 13} cm{sup −2} and Hall electron mobility of 1025 cm{sup 2}/(V⋅s) at room temperature are obtained at the optimal growth temperature around 740 °C. The excellent transport properties in our work indicate that the heterostructure with InGaN channel is a promising candidate for the microwave power devices, and the results in this paper will be instructive for further study of the InGaN channel heterostructures.

  9. Effects of growth temperature on the properties of InGaN channel heterostructures grown by pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yachao; Zhou, Xiaowei; Xu, Shengrui; Wang, Zhizhe; Chen, Zhibin; Zhang, Jinfeng; Zhang, Jincheng; Hao, Yue

    2015-12-01

    Pulsed metal organic chemical vapor deposition (P-MOCVD) is introduced into the growth of high quality InGaN channel heterostructures. The effects of InGaN channel growth temperature on the structural and transport properties of the heterostructures are investigated in detail. High resolution x-ray diffraction (HRXRD) and Photoluminescence (PL) spectra indicate that the quality of InGaN channel strongly depends on the growth temperature. Meanwhile, the atomic force microscopy (AFM) results show that the interface morphology between the InGaN channel and the barrier layer also relies on the growth temperature. Since the variation of material properties of InGaN channel has a significant influence on the electrical properties of InAlN/InGaN heterostructures, the optimal transport properties can be achieved by adjusting the growth temperature. A very high two dimension electron gas (2DEG) density of 1.92 × 1013 cm-2 and Hall electron mobility of 1025 cm2/(Vṡs) at room temperature are obtained at the optimal growth temperature around 740 °C. The excellent transport properties in our work indicate that the heterostructure with InGaN channel is a promising candidate for the microwave power devices, and the results in this paper will be instructive for further study of the InGaN channel heterostructures.

  10. Rational Concept for Designing Vapor-Liquid-Solid Growth of Single Crystalline Metal Oxide Nanowires.

    PubMed

    Klamchuen, Annop; Suzuki, Masaru; Nagashima, Kazuki; Yoshida, Hideto; Kanai, Masaki; Zhuge, Fuwei; He, Yong; Meng, Gang; Kai, Shoichi; Takeda, Seiji; Kawai, Tomoji; Yanagida, Takeshi

    2015-10-14

    Metal oxide nanowires hold great promise for various device applications due to their unique and robust physical properties in air and/or water and also due to their abundance on Earth. Vapor-liquid-solid (VLS) growth of metal oxide nanowires offers the high controllability of their diameters and spatial positions. In addition, VLS growth has applicability to axial and/or radial heterostructures, which are not attainable by other nanowire growth methods. However, material species available for the VLS growth of metal oxide nanowires are substantially limited even though the variety of material species, which has fascinating physical properties, is the most interesting feature of metal oxides. Here we demonstrate a rational design for the VLS growth of various metal oxide nanowires, based on the "material flux window". This material flux window describes the concept of VLS nanowire growth within a limited material flux range, where nucleation preferentially occurs only at a liquid-solid interface. Although the material flux was previously thought to affect primarily the growth rate, we experimentally and theoretically demonstrate that the material flux is the important experimental variable for the VLS growth of metal oxide nanowires. On the basis of the material flux window concept, we discover novel metal oxide nanowires, composed of MnO, CaO, Sm2O3, NiO, and Eu2O3, which were previously impossible to form via the VLS route. The newly grown NiO nanowires exhibited stable memristive properties superior to conventional polycrystalline devices due to the single crystallinity. Thus, this VLS design route offers a useful guideline for the discovery of single crystalline nanowires that are composed of functional metal oxide materials. PMID:26372675

  11. Development of techniques for processing metal-metal oxide systems

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1976-01-01

    Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.

  12. Multilevel metallization method for fabricating a metal oxide semiconductor device

    NASA Technical Reports Server (NTRS)

    Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)

    1978-01-01

    An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.

  13. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.

    2008-01-01

    An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

  14. Process for etching mixed metal oxides

    DOEpatents

    Ashby, C.I.H.; Ginley, D.S.

    1994-10-18

    An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.

  15. Process for etching mixed metal oxides

    DOEpatents

    Ashby, Carol I. H.; Ginley, David S.

    1994-01-01

    An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.

  16. High surface area, electrically conductive nanocarbon-supported metal oxide

    SciTech Connect

    Worsley, Marcus A.; Han, Thomas Yong-Jin; Kuntz, Joshua D.; Cervantes, Octavio; Gash, Alexander E.; Baumann, Theodore F.; Satcher, Jr., Joe H.

    2015-07-14

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  17. High surface area, electrically conductive nanocarbon-supported metal oxide

    SciTech Connect

    Worsley, Marcus A; Han, Thomas Yong-Jin; Kuntz, Joshua D; Cervanted, Octavio; Gash, Alexander E; Baumann, Theodore F; Satcher, Jr., Joe H

    2014-03-04

    A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.

  18. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications. PMID:25280707

  19. Towards enhancing two-dimensional electron gas quantum confinement effects in perovskite oxide heterostructures

    SciTech Connect

    Nazir, Safdar; Behtash, Maziar; Yang, Kesong

    2015-03-21

    We explore the possibility of achieving highly confined two-dimensional electron gas (2DEG) within one single atomic layer through a comprehensive comparison study on three prototypical perovskite heterostructures, LaAlO{sub 3}/ATiO{sub 3} (A = Ca, Sr, and Ba), using first-principles electronic structure calculations. We predict that the heterostructure LaAlO{sub 3}/BaTiO{sub 3} has a highly confined 2DEG within a single atomic layer of the substrate BaTiO{sub 3}, and exhibits relatively higher interfacial charge carrier density and larger magnetic moments than the well-known LaAlO{sub 3}/SrTiO{sub 3} system. The long Ti-O bond length in the ab-plane of the LaAlO{sub 3}/BaTiO{sub 3} heterostructure is responsible for the superior charge confinement. We propose BaTiO{sub 3} as an exceptional substrate material for 2DEG systems with potentially superior properties.

  20. Aerosol-spray diverse mesoporous metal oxides from metal nitrates

    PubMed Central

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  1. Aerosol-spray diverse mesoporous metal oxides from metal nitrates.

    PubMed

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-01-01

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances. PMID:25897988

  2. Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core-shell heterostructures: formation mechanism, and enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Zhang, Shaofeng; Ren, Feng; Xiao, Xiangheng; Zhou, Juan; Jiang, Changzhong

    2011-11-01

    Iron oxide/SnO2 magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO2 quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO2 core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe2O3 seeds and commercial SnO2 products, mainly owing to the effective electron hole separation at the iron oxides/SnO2 interfaces.Iron oxide/SnO2 magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO2 quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO2 core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe2O3 seeds and commercial SnO2 products, mainly owing to the effective electron hole separation at the iron oxides/SnO2 interfaces. Electronic supplementary information (ESI) available: TEM and HRTEM images of hematite seeds and iron oxide/SnO2 (12 h and 36 h). See DOI: 10.1039/c1nr10728c

  3. Controlled synthesis of magnetic iron oxides@SnO2 quasi-hollow core-shell heterostructures: formation mechanism, and enhanced photocatalytic activity.

    PubMed

    Wu, Wei; Zhang, Shaofeng; Ren, Feng; Xiao, Xiangheng; Zhou, Juan; Jiang, Changzhong

    2011-11-01

    Iron oxide/SnO(2) magnetic semiconductor core-shell heterostructures with high purity were synthesized by a low-cost, surfactant-free and environmentally friendly hydrothermal strategy via a seed-mediated method. The morphology and structure of the hybrid nanostructures were characterized by means of high-resolution transmission electron microscopy and X-ray diffraction. The morphology evolution investigations reveal that the Kirkendall effect directs the diffusion and causes the formation of iron oxide/SnO(2) quasi-hollow particles. Significantly, the as-obtained iron oxides/SnO(2) core-shell heterostructures exhibited enhanced visible light or UV photocatalytic abilities, remarkably superior to as-used α-Fe(2)O(3) seeds and commercial SnO(2) products, mainly owing to the effective electron hole separation at the iron oxides/SnO(2) interfaces. PMID:21947413

  4. Method for making monolithic metal oxide aerogels

    DOEpatents

    Coronado, Paul R.

    1999-01-01

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  5. Method for making monolithic metal oxide aerogels

    SciTech Connect

    Coronado, P.R.

    1999-09-28

    Transparent, monolithic metal oxide aerogels of varying densities are produced using a method in which a metal alkoxide solution and a catalyst solution are prepared separately and reacted. The resulting hydrolyzed-condensed colloidal solution is gelled, and the wet gel is contained within a sealed, but gas permeable, containment vessel during supercritical extraction of the solvent. The containment vessel is enclosed within an aqueous atmosphere that is above the supercritical temperature and pressure of the solvent of the metal alkoxide solution.

  6. Superior material qualities and transport properties of InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ya-Chao, Zhang; Xiao-Wei, Zhou; Sheng-Rui, Xu; Da-Zheng, Chen; Zhi-Zhe, Wang; Xing, Wang; Jin-Feng, Zhang; Jin-Cheng, Zhang; Yue, Hao

    2016-01-01

    Pulsed metal organic chemical vapor deposition is introduced into the growth of InGaN channel heterostructure for improving material qualities and transport properties. High-resolution transmission electron microscopy imaging shows the phase separation free InGaN channel with smooth and abrupt interface. A very high two-dimensional electron gas density of approximately 1.85 × 1013 cm-2 is obtained due to the superior carrier confinement. In addition, the Hall mobility reaches 967 cm2/V·s, owing to the suppression of interface roughness scattering. Furthermore, temperature-dependent Hall measurement results show that InGaN channel heterostructure possesses a steady two-dimensional electron gas density over the tested temperature range, and has superior transport properties at elevated temperatures compared with the traditional GaN channel heterostructure. The gratifying results imply that InGaN channel heterostructure grown by pulsed metal organic chemical vapor deposition is a promising candidate for microwave power devices. Project supported by the National Natural Science Foundation of China (Grant Nos. 61306017, 61334002, 61474086, and 11435010) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61306017).

  7. Flexible heterostructures based on metal phthalocyanines thin films obtained by MAPLE

    NASA Astrophysics Data System (ADS)

    Socol, M.; Preda, N.; Rasoga, O.; Breazu, C.; Stavarache, I.; Stanculescu, F.; Socol, G.; Gherendi, F.; Grumezescu, V.; Popescu-Pelin, G.; Girtan, M.; Stefan, N.

    2016-06-01

    Heterostructures based on zinc phthalocyanine (ZnPc), magnesium phthalocyanine (MgPc) and 5,10,15,20-tetra(4-pyrydil)21H,23H-porphine (TPyP) were deposited on ITO flexible substrates by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. Organic heterostructures containing (TPyP/ZnPc(MgPc)) stacked or (ZnPc(MgPc):TPyP) mixed layers were characterized by X-ray diffraction-XRD, photoluminescence-PL, UV-vis and FTIR spectroscopy. No chemical decomposition of the initial materials was observed. The investigated structures present a large spectral absorption in the visible range making them suitable for organic photovoltaics applications (OPV). Scanning electron microscopy-SEM and atomic force microscopy-AFM revealed morphologies typical for the films prepared by MAPLE. The current-voltage characteristics of the investigated structures, measured in dark and under light, present an improvement in the current value (∼3 order of magnitude larger) for the structure based on the mixed layer (Al/MgPc:TPyP/ITO) in comparison with the stacked layer (Al/MgPc//TPyP/ITO). A photogeneration process was evidenced in the case of structures Al/ZnPc:TPyP/ITO with mixed layers.

  8. Ohmic contact formation between metal and AlGaN/GaN heterostructure via graphene insertion

    NASA Astrophysics Data System (ADS)

    Sung Park, Pil; Reddy, Kongara M.; Nath, Digbijoy N.; Yang, Zhichao; Padture, Nitin P.; Rajan, Siddharth

    2013-04-01

    A simple method for the creation of Ohmic contact to 2D electron gas in AlGaN/GaN high electron-mobility transistors using Cr/graphene layer is demonstrated. A weak temperature dependence of this Ohmic contact observed in the range 77 to 300 K precludes thermionic emission or trap-assisted hopping as possible carrier-transport mechanisms. It is suggested that the Cr/graphene combination acts akin to a doped n-type semiconductor in contact with AlGaN/GaN heterostructure, and promotes carrier transport along percolating Al-lean paths through the AlGaN layer. This use of graphene offers a simple method for making Ohmic contacts to AlGaN/GaN heterostructures, circumventing complex additional processing steps involving high temperatures. These results could have important implications for the fabrication and manufacturing of AlGaN/GaN-based microelectronic and optoelectronic devices/sensors of the future.

  9. Quantitative determination of bond order and lattice distortions in nickel oxide heterostructures by resonant x-ray scattering

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Frano, A.; Bluschke, M.; Hepting, M.; Macke, S.; Strempfer, J.; Wochner, P.; Cristiani, G.; Logvenov, G.; Habermeier, H.-U.; Haverkort, M. W.; Keimer, B.; Benckiser, E.

    2016-04-01

    We present a combined study of Ni K -edge resonant x-ray scattering and density functional calculations to probe and distinguish electronically driven ordering and lattice distortions in nickelate heterostructures. We demonstrate that due to the low crystal symmetry, contributions from structural distortions can contribute significantly to the energy-dependent Bragg peak intensities of a bond-ordered NdNiO3 reference film. For a LaNiO3-LaAlO3 superlattice that exhibits magnetic order, we establish a rigorous upper bound on the bond-order parameter. We thus conclusively confirm predictions of a dominant spin density wave order parameter in metallic nickelates with a quasi-two-dimensional electronic structure.

  10. Thermal stability of an InAlN/GaN heterostructure grown on silicon by metal-organic chemical vapor deposition

    SciTech Connect

    Watanabe, Arata Freedsman, Joseph J.; Urayama, Yuya; Christy, Dennis; Egawa, Takashi

    2015-12-21

    The thermal stabilities of metal-organic chemical vapor deposition-grown lattice-matched InAlN/GaN/Si heterostructures have been reported by using slower and faster growth rates for the InAlN barrier layer in particular. The temperature-dependent surface and two-dimensional electron gas (2-DEG) properties of these heterostructures were investigated by means of atomic force microscopy, photoluminescence excitation spectroscopy, and electrical characterization. Even at the annealing temperature of 850 °C, the InAlN layer grown with a slower growth rate exhibited a smooth surface morphology that resulted in excellent 2-DEG properties for the InAlN/GaN heterostructure. As a result, maximum values for the drain current density (I{sub DS,max}) and transconductance (g{sub m,max}) of 1.5 A/mm and 346 mS/mm, respectively, were achieved for the high-electron-mobility transistor (HEMT) fabricated on this heterostructure. The InAlN layer grown with a faster growth rate, however, exhibited degradation of the surface morphology at an annealing temperature of 850 °C, which caused compositional in-homogeneities and impacted the 2-DEG properties of the InAlN/GaN heterostructure. Additionally, an HEMT fabricated on this heterostructure yielded lower I{sub DS,max} and g{sub m,max} values of 1 A/mm and 210 mS/mm, respectively.

  11. In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting.

    PubMed

    Wu, Mi; Chen, Wei-Jian; Shen, Yu-Hua; Huang, Fang-Zhi; Li, Chuan-Hao; Li, Shi-Kuo

    2014-09-10

    In this paper, we report a novel matchlike zinc oxide (ZnO)/gold (Au) heterostructure with plasmonic-enhanced photoelectrochemical (PEC) activity for solar hydrogen production. The matchlike heterostructure with Au nanoparticles coated on the tip of ZnO nanorods is in situ grown on a zinc (Zn) substrate by using a facile hydrothermal and photoreduction combined approach. This unique heterostructure exhibits plasmonic-enhanced light absorption, efficient charge separation and transportation properties with tunable Au contents. The photocurrent density of the matchlike ZnO/Au heterostructure reaches 9.11 mA/cm(2) at an applied potential of 1.0 V (vs Ag/AgCl) with an Au/Zn atomic ratio of 0.039, which is much higher than that of the pristine ZnO nanorod array (0.33 mA/cm(2)). Moreover, the solar-to-hydrogen conversion efficiency of this special heterostructure can reach 0.48%, 16 times higher than that of the pristine ZnO nanorod array (0.03%). What is more, the efficiency could be further improved by optimizing the Au content of the heterostructure. The formation mechanism of such a unique heterostructure is proposed to explain the plasmonic-enhanced PEC performance. This study might contribute to the rational design of the visible-light-responsive plasmonic semiconductor/metal heterostructure photoanode to harvest the solar spectrum. PMID:25144940

  12. PLUTONIUM METAL: OXIDATION CONSIDERATIONS AND APPROACH

    SciTech Connect

    Estochen, E.

    2013-03-20

    Plutonium is arguably the most unique of all metals when considered in the combined context of metallurgical, chemical, and nuclear behavior. Much of the research in understanding behavior and characteristics of plutonium materials has its genesis in work associated with nuclear weapons systems. However, with the advent of applications in fuel materials, the focus in plutonium science has been more towards nuclear fuel applications, as well as long term storage and disposition. The focus of discussion included herein is related to preparing plutonium materials to meet goals consistent with non-proliferation. More specifically, the emphasis is on the treatment of legacy plutonium, in primarily metallic form, and safe handling, packaging, and transport to meet non-proliferation goals of safe/secure storage. Elevated temperature oxidation of plutonium metal is the treatment of choice, due to extensive experiential data related to the method, as the oxide form of plutonium is one of only a few compounds that is relatively simple to produce, and stable over a large temperature range. Despite the simplicity of the steps required to oxidize plutonium metal, it is important to understand the behavior of plutonium to ensure that oxidation is conducted in a safe and effective manner. It is important to understand the effect of changes in environmental variables on the oxidation characteristics of plutonium. The primary purpose of this report is to present a brief summary of information related to plutonium metal attributes, behavior, methods for conversion to oxide, and the ancillary considerations related to processing and facility safety. The information provided is based on data available in the public domain and from experience in oxidation of such materials at various facilities in the United States. The report is provided as a general reference for implementation of a simple and safe plutonium metal oxidation technique.

  13. Pure electronic metal-insulator transition at the interface of complex oxides

    PubMed Central

    Meyers, D.; Liu, Jian; Freeland, J. W.; Middey, S.; Kareev, M.; Kwon, Jihwan; Zuo, J. M.; Chuang, Yi-De; Kim, J. W.; Ryan, P. J.; Chakhalian, J.

    2016-01-01

    In complex materials observed electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. Here, we demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. These findings illustrate the utility of heterointerfaces as a powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change. PMID:27324948

  14. Pure electronic metal-insulator transition at the interface of complex oxides.

    PubMed

    Meyers, D; Liu, Jian; Freeland, J W; Middey, S; Kareev, M; Kwon, Jihwan; Zuo, J M; Chuang, Yi-De; Kim, J W; Ryan, P J; Chakhalian, J

    2016-01-01

    In complex materials observed electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. Here, we demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. These findings illustrate the utility of heterointerfaces as a powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change. PMID:27324948

  15. Pure electronic metal-insulator transition at the interface of complex oxides

    NASA Astrophysics Data System (ADS)

    Meyers, D.; Liu, Jian; Freeland, J. W.; Middey, S.; Kareev, M.; Kwon, Jihwan; Zuo, J. M.; Chuang, Yi-De; Kim, J. W.; Ryan, P. J.; Chakhalian, J.

    2016-06-01

    In complex materials observed electronic phases and transitions between them often involve coupling between many degrees of freedom whose entanglement convolutes understanding of the instigating mechanism. Metal-insulator transitions are one such problem where coupling to the structural, orbital, charge, and magnetic order parameters frequently obscures the underlying physics. Here, we demonstrate a way to unravel this conundrum by heterostructuring a prototypical multi-ordered complex oxide NdNiO3 in ultra thin geometry, which preserves the metal-to-insulator transition and bulk-like magnetic order parameter, but entirely suppresses the symmetry lowering and long-range charge order parameter. These findings illustrate the utility of heterointerfaces as a powerful method for removing competing order parameters to gain greater insight into the nature of the transition, here revealing that the magnetic order generates the transition independently, leading to an exceptionally rare purely electronic metal-insulator transition with no symmetry change.

  16. Coupling Ferroelectricity with Spin-Valley Physics in Oxide-Based Heterostructures

    NASA Astrophysics Data System (ADS)

    Yamauchi, Kunihiko; Barone, Paolo; Shishidou, Tatsuya; Oguchi, Tamio; Picozzi, Silvia

    2015-07-01

    The coupling of spin and valley physics is nowadays regarded as a promising route toward next-generation spintronic and valleytronic devices. In the aim of engineering functional properties for valleytronic applications, we focus on the ferroelectric heterostructure BiAlO3/BiIrO3 , where the complex interplay among a trigonal crystal field, layer degrees of freedom, and spin-orbit coupling mediates a strong spin-valley coupling. Furthermore, we show that ferroelectricity provides a nonvolatile handle to manipulate and switch the emerging valley-contrasting spin polarization.

  17. Step-Edge Directed Metal Oxidation.

    PubMed

    Zhu, Qing; Saidi, Wissam A; Yang, Judith C

    2016-07-01

    Metal surface oxidation is governed by surface mass transport processes. Realistic surfaces have many defects such as step edges, which often dictate the oxide growth dynamics and result in novel oxide nanostructures. Here we present a comprehensive and systematic study of the oxidation of stepped (100), (110) and (111) Cu surfaces using a multiscale approach employing density functional theory (DFT) and reactive force field molecular dynamics (MD) simulations. We show that the early stages of oxidation of these stepped surfaces can be qualitatively understood from the potential energy surface of single oxygen adatoms, namely, adsorption energies and Ehrlich-Schwöbel barriers. These DFT predictions are then validated using classical MD simulations with a newly optimized ReaxFF force field. In turn, we show that the DFT results can be explained using a simple bond-counting argument that makes our results general and transferable to other metal surfaces. PMID:27299380

  18. Cross-sectional scanning tunneling microscopy and spectroscopy of fractured oxide surfaces and heterostructure interfaces

    NASA Astrophysics Data System (ADS)

    Chien, Teyu

    2011-03-01

    Recently, interfaces between novel oxide materials have become a playground for manipulation of new functionalities. At interfaces, the broken symmetry and the spatially confined environment have been shown to modify the local interactions and generate wholly new electronic phases (e.g. magnetism, metallicity, superconductivity etc.) distinct from the composite bulk materials. However, to date our understanding of these interface driven phases is still limited. While there exists powerful spatially resolved tools for visualizing the chemical and magnetic structure of an interface, a direct observation of electronic behavior across the interface presents a major experimental challenge. After the success of creating flat fractured surfaces on Nb-doped SrTi O3 (Nb:STO) accessible to scanning tunneling microscopy (STM) [1-3], we have further harnessed the high-sensitivity to electronic local density of states (LDOS) of the scanning tunneling spectroscopy (STS) in cross-sectional geometry to visualize complex oxide interface electronic properties. By extending XSTM/S to the interface between colossal magnetoresistant manganite La 2/3 Ca 1/3 Mn O3 (LCMO) and semiconducting Nb:STO, we were able to map the LDOS across the boundary to unambiguously visualize the interface by the location of the valence band and elucidate the fundamental issue of band alignment at a complex oxide heterointerface. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  19. Lithium metal oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho

    2010-06-08

    An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. The xLi.sub.2-yH.sub.y.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 material is prepared by preconditioning a precursor lithium metal oxide (i.e., xLi.sub.2M'O.sub.3.(1-x)LiMO.sub.2) with a proton-containing medium with a pH<7.0 containing an inorganic acid. Methods of preparing the electrodes are disclosed, as are electrochemical cells and batteries containing the electrodes.

  20. Stoichiometry-driven metal-to-insulator transition in NdTiO3/SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Xu, Peng; Phelan, Daniel; Seok Jeong, Jong; Andre Mkhoyan, K.; Jalan, Bharat

    2014-02-01

    By controlling stoichiometry via a hybrid molecular beam epitaxy approach, we report on the study of thin film growth and the electronic transport properties of phase-pure, epitaxial NdTiO3/SrTiO3 heterostructures grown on (001) (La0.3Sr0.7)(Al0.65Ta0.35)O3 (LSAT) substrates as a function of cation stoichiometry in NdTiO3. Despite the symmetry mismatch between bulk NdTiO3 and the substrate, NdTiO3 films grew in an atomic layer-by-layer fashion over a range of cation stoichiometry; however amorphous films resulted in cases of extreme cation non-stoichiometry. Temperature-dependent sheet resistance measurements were consistent with Fermi-liquid metallic behavior over a wide temperature range, but revealed a remarkable crossover from metal-to-insulator (M-I) type behavior at low temperatures for all compositions. A direct correlation between cation stoichiometry, transport behavior, and the temperature of M-I transition is established.

  1. Enhanced photophysical properties of plasmonic magnetic metal-alloyed semiconductor heterostructure nanocrystals: a case study for the Ag@Ni/Zn1-xMgxO system.

    PubMed

    Paul, Sumana; Ghosh, Sirshendu; Saha, Manas; De, S K

    2016-05-14

    Understanding the effect of homovalent cation alloying in wide band gap ZnO and the formation of metal-semiconductor heterostructures is very important for maximisation of the photophysical properties of ZnO. Nearly monodisperse ZnO nanopyramid and Mg alloyed ZnO nanostructures have been successfully synthesized by one pot decomposition of metal stearate by using oleylamine both as activating and capping agent. The solid solubility of Mg(ii) ions in ZnO is limited to ∼30% without phase segregation. An interesting morphology change is found on increasing Mg alloying: from nanopyramids to self-assembled nanoflowers. The morphology change is explained by the oriented attachment process. The introduction of Mg into the ZnO matrix increases the band gap of the materials and also generates new zinc interstitial (Zni) and oxygen vacancy related defects. Plasmonic magnetic Ag@Ni core-shell (Ag as core and Ni as shell) nanocrystals are used as a seed material to synthesize Ag@Ni/Zn1-xMgxO complex heterostructures. Epitaxial growth is established between Ag(111) and ZnO(110) planes in the heterostructure. An epitaxial metal-semiconductor interface is very crucial for complete electron-hole (e-h) separation and enhancement of the exciton lifetime. The alloyed semiconductor-metal heterostructure is observed to be highly photocatalytically active for dye degradation as well as photodetection. Incorporation of magnetic Ni(0) makes the photocatalyst superparamagnetic at room temperature which is found to be helpful for catalyst regeneration. PMID:27113320

  2. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  3. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  4. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  5. Electronic doping of transition metal oxide perovskites

    NASA Astrophysics Data System (ADS)

    Cammarata, Antonio; Rondinelli, James M.

    2016-05-01

    CaFeO3 is a prototypical negative charge transfer oxide that undergoes electronic metal-insulator transition concomitant with a dilation and contraction of nearly rigid octahedra. Altering the charge neutrality of the bulk system destroys the electronic transition, while the structure is significantly modified at high charge content. Using density functional theory simulations, we predict an alternative avenue to modulate the structure and the electronic transition in CaFeO3. Charge distribution can be modulated using strain-rotation coupling and thin film engineering strategies, proposing themselves as a promising avenue for fine tuning electronic features in transition metal-oxide perovskites.

  6. Regeneration of sulfated metal oxides and carbonates

    DOEpatents

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  7. Metal ion binding to iron oxides

    NASA Astrophysics Data System (ADS)

    Ponthieu, M.; Juillot, F.; Hiemstra, T.; van Riemsdijk, W. H.; Benedetti, M. F.

    2006-06-01

    The biogeochemistry of trace elements (TE) is largely dependent upon their interaction with heterogeneous ligands including metal oxides and hydrous oxides of iron. The modeling of TE interactions with iron oxides has been pursued using a variety of chemical models. The objective of this work is to show that it is possible to model the adsorption of protons and TE on a crystallized oxide (i.e., goethite) and on an amorphous oxide (HFO) in an identical way. Here, we use the CD-MUSIC approach in combination with valuable and reliable surface spectroscopy information about the nature of surface complexes of the TE. The other objective of this work is to obtain generic parameters to describe the binding of the following elements (Cd, Co, Cu, Ni, Pb, and Zn) onto both iron oxides for the CD-MUSIC approach. The results show that a consistent description of proton and metal ion binding is possible for goethite and HFO with the same set of model parameters. In general a good prediction of almost all the collected experimental data sets corresponding to metal ion binding to HFO is obtained. Moreover, dominant surface species are in agreement with the recently published surface complexes derived from X-ray absorption spectroscopy (XAS) data. Until more detailed information on the structure of the two iron oxides is available, the present option seems a reasonable approximation and can be used to describe complex geochemical systems. To improve our understanding and modeling of multi-component systems we need more data obtained at much lower metal ion to iron oxide ratios in order to be able to account eventually for sites that are not always characterized in spectroscopic studies.

  8. Role of metal oxides in chemical evolution

    NASA Astrophysics Data System (ADS)

    Kamaluddin

    2013-06-01

    Steps of chemical evolution have been designated as formation of biomonomers followed by their polymerization and then to modify in an organized structure leading to the formation of first living cell. Formation of small molecules like amino acids, organic bases, sugar etc. could have occurred in the reducing atmosphere of the primitive Earth. Polymerization of these small molecules could have required some catalyst. In addition to clay, role of metal ions and metal complexes as prebiotic catalyst in the synthesis and polymerization of biomonomers cannot be ruled out. Metal oxides are important constituents of Earth crust and that of other planets. These oxides might have adsorbed organic molecules and catalyzed the condensation processes, which may have led to the formation of first living cell. Different studies were performed in order to investigate the role of metal oxides (especially oxides of iron and manganese) in chemical evolution. Iron oxides (goethite, akaganeite and hematite) as well as manganese oxides (MnO, Mn2O3, Mn3O4 and MnO2) were synthesized and their characterization was done using IR, powder XRD, FE-SEM and TEM. Role of above oxides was studied in the adsorption of ribose nucleotides, formation of nucleobases from formamide and oligomerization of amino acids. Above oxides of iron and manganese were found to have good adsorption affinity towards ribose nucleotides, high catalytic activity in the formation of several nucleobases from formamide and oligomerization of glycine and alanine. Characterization of products was performed using UV, IR, HPLC and ESI-MS techniques. Presence of hematite-water system on Mars has been suggested to be a positive indicator in the chemical evolution on Mars.

  9. Reduction of metal oxides through mechanochemical processing

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Senkov, Oleg N.

    2000-01-01

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  10. Spectral and photoelectric characteristics of the gamma irradiated intrinsic oxide-InSe heterostructures obtained under different conditions

    NASA Astrophysics Data System (ADS)

    Sydor, O. M.

    2016-09-01

    The investigations of photoelectric characteristics and photoresponce spectral dependences were carried out for intrinsic oxide-InSe heterostructures (HSs) and their changes induced by bremsstrahlung γ-quanta with an energy of 1-34 MeV at fluences of 1012-1015 cm-2. The thermal oxidation of the p-InSe:Cd substrates was carried out at a temperature of 420 °C. For three selected groups of samples the duration of the process was 15 min, 60 min, and 96 h. At a short-term oxidation (15 and 60 min) a layer of In2O3 appears. The only difference between the samples of these two groups is a higher photosensitivity in the range of energy 1.25-2.8 eV of the HSs obtained after the 60 min oxidation. At the long-term oxidation the photoresponce spectra η(hν) of the obtained HSs are characterized with a sharp short-wavelength decrease at hν≅2.0 eV. It is established that the intrinsic oxide films act as transparent barrier electrodes in the corresponding HSs and are low-sensitive to γ-irradiation in the all range of fluences. The shape of the photoresponce spectra for all the gamma irradiated HSs remains practically the same. However, it was found: (i) some decrease of photosensitivity at the long-wavelength edge, (ii) decreasing the width of η(hν) at half-height, (iii) the appearance of the exciton peak, (iv) the improvement of a slope of the low-energy edge of the photoresponce spectra with increasing irradiation dose whereas at the maximum fluence this parameter decreases, and (v) the slight extension of the spectral sensitivity to the short-wavelength range for the structures obtained after oxidation for 96 h. The photoelectric parameters of the intrinsic oxide-p-InSe HSs, open circuit voltage Voc, short-circuit current Jsc, current SIλmax and voltage SVλmax sensitivities become only improved after irradiation with the fluences 1012-1013 cm-2. At the maximum fluence a small decreasing of the values of Voc and Jsc was detected except for the structures obtained

  11. Designing heterostructures -- a route towards new superconductors

    NASA Astrophysics Data System (ADS)

    Kopp, Thilo

    2013-03-01

    By now it has become technologically feasible to grow controllably transition metal oxides layer by layer. In effect, the achieved progress allows to design heterostructures with optimized electronic properties. The talk will specifically address scenarios for interface superconductivity and the possibility to raise the transition temperature of bulk superconductors by layer design. Heterostructures offer a complexity beyond that of bulk materials. The nature of the superconducting states formed in layered materials and at interfaces is a fascinating topic of recent research which will be in the focus of this presentation. This work was supported by the DFG (TRR 80). I thankfully acknowledge the collaboration with Natalia Pavlenko, Peter Hirschfeld, Cyril Stephanos, Florian Loder, Arno Kampf, and Jochen Mannhart.

  12. Oxidative decomposition of formaldehyde by metal oxides at room temperature

    NASA Astrophysics Data System (ADS)

    Sekine, Yoshika

    Formaldehyde (HCHO) is still a major indoor air pollutant in Japanese air-tight houses and is the subject of numerous complaints regarding health disorders. Authors have developed a passive-type air-cleaning material and an air cleaner using manganese oxide (77% MnO 2) as an active component and successfully reduced indoor HCHO concentrations in newly built multi-family houses. In this study, the reactivity between manganese oxide and HCHO was discussed. We tested the removal efficiencies of several metal oxides for HCHO in a static reaction vessel and found manganese oxide could react with HCHO and release carbon dioxide even at room temperature. The reactivity and mechanisms were discussed for the proposed chemical reactions. A mass balance study proved that a major product through the heterogeneous reaction between manganese oxide and HCHO was carbon dioxide. Harmful by-products (HCOOH and CO) were not found.

  13. Photovoltaic effect in an indium-tin-oxide/ZnO/BiFeO{sub 3}/Pt heterostructure

    SciTech Connect

    Fan, Zhen; Yao, Kui E-mail: msewangj@nus.edu.sg; Wang, John E-mail: msewangj@nus.edu.sg

    2014-10-20

    We have studied the photovoltaic effect in a metal/semiconductor/ferroelectric/metal heterostructure of In{sub 2}O{sub 3}-SnO{sub 2}/ZnO/BiFeO{sub 3}/Pt (ITO/ZnO/BFO/Pt) multilayer thin films. The heterolayered structure shows a short-circuit current density (J{sub sc}) of 340 μA/cm{sup 2} and an energy conversion efficiency of up to 0.33% under blue monochromatic illumination. The photovoltaic mechanism, specifically in terms of the major generation site of photo-excited electron-hole (e-h) pairs and the driving forces for the separation of e-h pairs, is clarified. The significant increase in photocurrent of the ITO/ZnO/BFO/Pt compared to that of ITO/BFO/Pt is attributed to the abundant e-h pairs generated from ZnO. Ultraviolet photoelectron spectroscopy reveals the energy band alignment of ITO/ZnO/BFO/Pt, where a Schottky barrier and an n{sup +}-n junction are formed at the BFO/Pt and ZnO/BFO interfaces, respectively. Therefore, two built-in fields developed at the two interfaces are constructively responsible for the separation and transport of photo-excited e-h pairs.

  14. Metal oxide electrocatalysts for alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve

  15. Interlayer molecular diffusion and thermodynamic equilibrium in organic heterostructures on a metal electrode

    NASA Astrophysics Data System (ADS)

    Amsalem, P.; Wilke, A.; Frisch, J.; Niederhausen, J.; Vollmer, A.; Rieger, R.; Müllen, K.; Rabe, J. P.; Koch, N.

    2011-12-01

    In this paper, we investigate by photoemission the electronic properties of an organic/organic interface consisting in a strong electron acceptor hexaazatriphenylene-hexacarbonitrile (HATCN) deposited on a physisorbed N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (α-NPD) monolayer on Ag(111). At the first HATCN deposition steps (˜1 monolayer), the sample work function increases by 1.05 eV and the hole injection barrier (HIB) in the pre-adsorbed α-NPD monolayer is lowered by 0.65 eV. This results from HATCN diffusion to the silver surface through the α-NPD monolayer. Furthermore, this HATCN monolayer is proposed to form a compact chemisorbed monolayer, with a different structural arrangement than that observed on pristine Ag(111). In a second step, the additional deposited HATCN start growing on top of the α-NPD layer, and Fermi-level pinning, associated with the formation of HATCN negative polarons, is identified at the HATCN/α-NPD interface. Finally, HATCN is deposited on a α-NPD multilayer film. In this case, HATCN is also found to diffuse to the silver surface giving a similar HIB value in the α-NPD multilayer. This work demonstrates the importance of studying in detail the formation of organic heterostructures to understand the interplay between growth mode and electronic properties.

  16. Monitoring non-pseudomorphic epitaxial growth of spinel/perovskite oxide heterostructures by reflection high-energy electron diffraction

    SciTech Connect

    Schütz, P.; Pfaff, F.; Scheiderer, P.; Sing, M.; Claessen, R.

    2015-02-09

    Pulsed laser deposition of spinel γ-Al{sub 2}O{sub 3} thin films on bulk perovskite SrTiO{sub 3} is monitored by high-pressure reflection high-energy electron diffraction (RHEED). The heteroepitaxial combination of two materials with different crystal structures is found to be inherently accompanied by a strong intensity modulation of bulk diffraction patterns from inelastically scattered electrons, which impedes the observation of RHEED intensity oscillations. Avoiding such electron surface-wave resonance enhancement by de-tuning the RHEED geometry allows for the separate observation of the surface-diffracted specular RHEED signal and thus the real-time monitoring of sub-unit cell two-dimensional layer-by-layer growth. Since these challenges are essentially rooted in the difference between film and substrate crystal structure, our findings are of relevance for the growth of any heterostructure combining oxides with different crystal symmetry and may thus facilitate the search for novel oxide heterointerfaces.

  17. James C. McGroddy Prize Talk: Controlling and Manipulating Ferromagnetism with an Electric Field Using Multiferroic Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Ramesh, R.

    2010-03-01

    Complex perovskite oxides exhibit a rich spectrum of functional responses, including magnetism, ferroelectricity, highly correlated electron behavior, superconductivity, etc. The basic materials physics of such materials provide the ideal playground for interdisciplinary scientific exploration. Over the past decade we have been exploring the science of such materials (for example, colossal magnetoresistance, ferroelectricity, etc) in thin film form by creating epitaxial heterostructures and nanostructures. Among the large number of materials systems, there exists a small set of materials which exhibit multiple order parameters; these are known as multiferroics. Using our work in the field of ferroelectric and ferromagnetic oxides as the background, we are now exploring such materials, as epitaxial thin films as well as nanostructures. A particularly interesting problem is that related to electric field control and manipulation of ferromagnetism. In this talk I will describe to you some aspects of such materials as well as the scientific and technological excitement in this field. Finally I will share my ideas on the most exciting open problems and emerging directions in multiferroics and beyond.

  18. Multi-metal oxide ceramic nanomaterial

    DOEpatents

    O'Brien, Stephen; Liu, Shuangyi; Huang, Limin

    2016-06-07

    A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.

  19. Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode.

    PubMed

    Kawasaki, Seiji; Takahashi, Ryota; Yamamoto, Takahisa; Kobayashi, Masaki; Kumigashira, Hiroshi; Yoshinobu, Jun; Komori, Fumio; Kudo, Akihiko; Lippmaa, Mikk

    2016-01-01

    Production of chemical fuels by direct solar energy conversion in a photoelectrochemical cell is of great practical interest for developing a sustainable energy system. Various nanoscale designs such as nanowires, nanotubes, heterostructures and nanocomposites have been explored to increase the energy conversion efficiency of photoelectrochemical water splitting. Here we demonstrate a self-organized nanocomposite material concept for enhancing the efficiency of photocarrier separation and electrochemical energy conversion. Mechanically robust photoelectrodes are formed by embedding self-assembled metal nanopillars in a semiconductor thin film, forming tubular Schottky junctions around each pillar. The photocarrier transport efficiency is strongly enhanced in the Schottky space charge regions while the pillars provide an efficient charge extraction path. Ir-doped SrTiO3 with embedded iridium metal nanopillars shows good operational stability in a water oxidation reaction and achieves over 80% utilization of photogenerated carriers under visible light in the 400- to 600-nm wavelength range. PMID:27255209

  20. Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode

    NASA Astrophysics Data System (ADS)

    Kawasaki, Seiji; Takahashi, Ryota; Yamamoto, Takahisa; Kobayashi, Masaki; Kumigashira, Hiroshi; Yoshinobu, Jun; Komori, Fumio; Kudo, Akihiko; Lippmaa, Mikk

    2016-06-01

    Production of chemical fuels by direct solar energy conversion in a photoelectrochemical cell is of great practical interest for developing a sustainable energy system. Various nanoscale designs such as nanowires, nanotubes, heterostructures and nanocomposites have been explored to increase the energy conversion efficiency of photoelectrochemical water splitting. Here we demonstrate a self-organized nanocomposite material concept for enhancing the efficiency of photocarrier separation and electrochemical energy conversion. Mechanically robust photoelectrodes are formed by embedding self-assembled metal nanopillars in a semiconductor thin film, forming tubular Schottky junctions around each pillar. The photocarrier transport efficiency is strongly enhanced in the Schottky space charge regions while the pillars provide an efficient charge extraction path. Ir-doped SrTiO3 with embedded iridium metal nanopillars shows good operational stability in a water oxidation reaction and achieves over 80% utilization of photogenerated carriers under visible light in the 400- to 600-nm wavelength range.

  1. Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode

    PubMed Central

    Kawasaki, Seiji; Takahashi, Ryota; Yamamoto, Takahisa; Kobayashi, Masaki; Kumigashira, Hiroshi; Yoshinobu, Jun; Komori, Fumio; Kudo, Akihiko; Lippmaa, Mikk

    2016-01-01

    Production of chemical fuels by direct solar energy conversion in a photoelectrochemical cell is of great practical interest for developing a sustainable energy system. Various nanoscale designs such as nanowires, nanotubes, heterostructures and nanocomposites have been explored to increase the energy conversion efficiency of photoelectrochemical water splitting. Here we demonstrate a self-organized nanocomposite material concept for enhancing the efficiency of photocarrier separation and electrochemical energy conversion. Mechanically robust photoelectrodes are formed by embedding self-assembled metal nanopillars in a semiconductor thin film, forming tubular Schottky junctions around each pillar. The photocarrier transport efficiency is strongly enhanced in the Schottky space charge regions while the pillars provide an efficient charge extraction path. Ir-doped SrTiO3 with embedded iridium metal nanopillars shows good operational stability in a water oxidation reaction and achieves over 80% utilization of photogenerated carriers under visible light in the 400- to 600-nm wavelength range. PMID:27255209

  2. Coaxial metal-oxide-semiconductor (MOS) Au/Ga2O3/GaN nanowires.

    PubMed

    Hsieh, Chin-Hua; Chang, Mu-Tung; Chien, Yu-Jen; Chou, Li-Jen; Chen, Lih-Juann; Chen, Chii-Dong

    2008-10-01

    Coaxial metal-oxide-semiconductor (MOS) Au-Ga2O3-GaN heterostructure nanowires were successfully fabricated by an in situ two-step process. The Au-Ga2O3 core-shell nanowires were first synthesized by the reaction of Ga powder, a mediated Au thin layer, and a SiO2 substrate at 800 degrees C. Subsequently, these core-shell nanowires were nitridized in ambient ammonia to form a GaN coating layer at 600 degrees C. The GaN shell is a single crystal, an atomic flat interface between the oxide and semiconductor that ensures that the high quality of the MOS device is achieved. These novel 1D nitride-based MOS nanowires may have promise as building blocks to the future nitride-based vertical nanodevices. PMID:18778107

  3. Microbial-mediated method for metal oxide nanoparticle formation

    SciTech Connect

    Rondinone, Adam J.; Moon, Ji Won; Love, Lonnie J.; Yeary, Lucas W.; Phelps, Tommy J.

    2015-09-08

    The invention is directed to a method for producing metal oxide nanoparticles, the method comprising: (i) subjecting a combination of reaction components to conditions conducive to microbial-mediated formation of metal oxide nanoparticles, wherein said combination of reaction components comprise: metal-reducing microbes, a culture medium suitable for sustaining said metal-reducing microbes, an effective concentration of one or more surfactants, a reducible metal oxide component containing one or more reducible metal species, and one or more electron donors that provide donatable electrons to said metal-reducing microbes during consumption of the electron donor by said metal-reducing microbes; and (ii) isolating said metal oxide nanoparticles, which contain a reduced form of said reducible metal oxide component. The invention is also directed to metal oxide nanoparticle compositions produced by the inventive method.

  4. Comparative study on interface and bulk charges in AlGaN/GaN metal-insulator-semiconductor heterostructures with Al2O3, AlN, and Al2O3/AlN laminated dielectrics

    NASA Astrophysics Data System (ADS)

    Zhu, Jie-Jie; Ma, Xiao-Hua; Chen, Wei-Wei; Hou, Bin; Xie, Yong; Hao, Yue

    2016-05-01

    In this paper, the interface and bulk charges in AlGaN/GaN metal-insulator-semiconductor (MIS) heterostructures with AlN, Al2O3, and Al2O3/AlN laminated dielectrics were studied. In situ plasma pretreatment resulted negligible interface trap states and voltage hysteresis. The fixed charge density at Al2O3/AlN (or Al2O3/barrier) interface was estimated to be 1.66 × 1013 cm-2 by using flat-band voltage shift, and the oxide bulk charge concentration was 2.86 × 1017 cm-3. The interface charge density at other interfaces were at the order of 1011 cm-2. Simulation results using the above charge density/concentration indicated that Al2O3/AlN interface fixed charges dominated the dielectric-related voltage shift in AlGaN/GaN MIS heterostructures, which caused a large voltage shift of -3 V with 10 nm Al2O3 thickness, while the flat-band voltage variety resulting from other types of charges was within 0.1 V.

  5. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.

    PubMed

    You, Baiqing; Wang, Xiaocha; Zheng, Zhida; Mi, Wenbo

    2016-03-14

    The electronic structure of black phosphorene (BP)/monolayer 1H-XT2 (X = Mo, W; T = S, Se, Te) two dimensional (2D) van der Waals heterostructures have been calculated by the first-principles method. It is found that the electronic band structures of both BP and XT2 are preserved in the combined van der Waals heterostructures. The WSe2/BP van der Waals heterostructure demonstrates a type-I band alignment, but the MoS2/BP, MoSe2/BP, MoTe2/BP, WS2/BP and WTe2/BP van der Waals heterostructures demonstrate a type-II band alignment. In particular, the n-type XT2/p-type BP van der Waals heterostructures can be applied in p-n diode and logical devices. Strong spin splitting appears in all of the heterostructures when considering the spin orbital coupling. Our results play a significant role in the prediction of novel 2D van der Waals heterostructures that have potential applications in spin-filter devices, spin field effect transistors, optoelectronic devices, etc. PMID:26899350

  6. Complexity in Transition Metal Oxides

    NASA Astrophysics Data System (ADS)

    Dagotto, Elbio; Alvarez, Gonzalo; Moreo, Adriana

    2004-03-01

    Recent computational results in the context of models for manganites and cuprates will be briefly discussed. It is argued that correlations in quenched disorder -- needed to mimic cooperative Jahn-Teller effects -- are important to have colossal magnetoresistance in 3D. A related recently discussed metal-insulator transition induced by disorder in a one-orbital model with cooperative phonons is intuitively explained [1]. In addition, it is argued that colossal effects should be far more common than currently known, and they may appear in cuprate superconductors as well [2]. [1] J. Burgy et al., cond-mat/0308456; C. Sen, G. Alvarez, and E. Dagotto, preprint. [2] See also Adriana Moreo, invited talk, March APS 04; G. Alvarez, M. Mayr et al., preprint.

  7. InGaAs heterostructure formation in catalyst-free GaAs nanopillars by selective-area metal-organic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Shapiro, J. N.; Lin, A.; Wong, P. S.; Scofield, A. C.; Tu, C.; Senanayake, P. N.; Mariani, G.; Liang, B. L.; Huffaker, D. L.

    2010-12-01

    We investigate axial GaAs/InGaAs/GaAs heterostructures embedded in GaAs nanopillars via catalyst-free selective-area metal-organic chemical vapor deposition. Structural characterization by transmission electron microscopy with energy dispersive x-ray spectroscopy (EDS) indicates formation of axial InxGa1-xAs (x˜0.20) inserts with thicknesses from 36 to 220 nm with ±10% variation and graded Ga:In transitions controlled by In segregation. Using the heterointerfaces as markers, the vertical growth rate is determined to increase linearly during growth. Photoluminescence from 77 to 290 K and EDS suggest the presence of strain in the shortest inserts. This capability to control the formation of axial nanopillar heterostructures is crucial for optimized device integration.

  8. Method for producing nanostructured metal-oxides

    DOEpatents

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  9. Apparatus enables accurate determination of alkali oxides in alkali metals

    NASA Technical Reports Server (NTRS)

    Dupraw, W. A.; Gahn, R. F.; Graab, J. W.; Maple, W. E.; Rosenblum, L.

    1966-01-01

    Evacuated apparatus determines the alkali oxide content of an alkali metal by separating the metal from the oxide by amalgamation with mercury. The apparatus prevents oxygen and moisture from inadvertently entering the system during the sampling and analytical procedure.

  10. Kelvin probe imaging of photo-injected electrons in metal oxide nanosheets from metal sulfide quantum dots under remote photochromic coloration

    NASA Astrophysics Data System (ADS)

    Kondo, A.; Yin, G.; Srinivasan, N.; Atarashi, D.; Sakai, E.; Miyauchi, M.

    2015-07-01

    Metal oxide and quantum dot (QD) heterostructures have attracted considerable recent attention as materials for developing efficient solar cells, photocatalysts, and display devices, thus nanoscale imaging of trapped electrons in these heterostructures provides important insight for developing efficient devices. In the present study, Kelvin probe force microscopy (KPFM) of CdS quantum dot (QD)-grafted Cs4W11O362- nanosheets was performed before and after visible-light irradiation. After visible-light excitation of the CdS QDs, the Cs4W11O362- nanosheet surface exhibited a decreased work function in the vicinity of the junction with CdS QDs, even though the Cs4W11O362- nanosheet did not absorb visible light. X-ray photoelectron spectroscopy revealed that W5+ species were formed in the nanosheet after visible-light irradiation. These results demonstrated that excited electrons in the CdS QDs were injected and trapped in the Cs4W11O362- nanosheet to form color centers. Further, the CdS QDs and Cs4W11O362- nanosheet composite films exhibited efficient remote photochromic coloration, which was attributed to the quantum nanostructure of the film. Notably, the responsive wavelength of the material is tunable by adjusting the size of QDs, and the decoloration rate is highly efficient, as the required length for trapped electrons to diffuse into the nanosheet surface is very short owing to its nanoscale thickness. The unique properties of this photochromic device make it suitable for display or memory applications. In addition, the methodology described in the present study for nanoscale imaging is expected to aid in the understanding of electron transport and trapping processes in metal oxide and metal chalcogenide heterostructure, which are crucial phenomena in QD-based solar cells and/or photocatalytic water-splitting systems.Metal oxide and quantum dot (QD) heterostructures have attracted considerable recent attention as materials for developing efficient solar cells

  11. Spin-polarized Wide Electron Slabs in Functionally Graded Polar Oxide Heterostructures

    PubMed Central

    Ye, Jiandong; Ter Lim, Sze; Bosman, Michel; Gu, Shulin; Zheng, Youdou; Tan, Hark Hoe; Jagadish, Chennupati; Sun, Xiaowei; Teo, Kie Leong

    2012-01-01

    We report on the high mobility wide electron slabs with enhanced correlation effects by tailoring the polarization effects in a functionally graded ZnMgO/ZnO heterostructures. The characteristics of three-dimensional (3D) spreading electrons are evidenced by the capacitance-voltage profiling and the quantization of 3D Fermi surface in magneto-transport measurements. Despite the weak spin-orbit interaction, such electron slabs are spin-polarized with a large zero-field spin splitting energy, which is induced by the carrier-mediated ferromagnetism. Our results suggest that the vast majority of electrons are localized at the surface magnetic moment which does not allow spin manipulations, and only in the region visited by the itinerant carriers that the ferromagnetic exchange interactions via coupling to the surface local moments contribute to the spin transport. The host ferromagnetism is likely due to the formation of Zn cation vacancies on the surface regime induced by the stabilization mechanism and strain-relaxation in ZnMgO polar ionic surface. PMID:22833785

  12. Exchange-Driven Spin Relaxation in Ferromagnet-Oxide-Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Ou, Yu-Sheng; Chiu, Yi-Hsin; Harmon, N. J.; Odenthal, Patrick; Sheffield, Matthew; Chilcote, Michael; Kawakami, R. K.; Flatté, M. E.; Johnston-Halperin, E.

    2016-03-01

    We demonstrate that electron spin relaxation in GaAs in the proximity of a Fe /MgO layer is dominated by interaction with an exchange-driven hyperfine field at temperatures below 60 K. Temperature-dependent spin-resolved optical pump-probe spectroscopy reveals a strong correlation of the electron spin relaxation with carrier freeze-out, in quantitative agreement with a theoretical interpretation that at low temperatures the free-carrier spin lifetime is dominated by inhomogeneity in the local hyperfine field due to carrier localization. As the regime of large nuclear inhomogeneity is accessible in these heterostructures for magnetic fields <3 kG , inferences from this result resolve a long-standing and contentious dispute concerning the origin of spin relaxation in GaAs at low temperature when a magnetic field is present. Further, this improved fundamental understanding clarifies the importance of future experiments probing the time-dependent exchange interaction at a ferromagnet-semiconductor interface and its consequences for spin dissipation and transport during spin pumping.

  13. Polymorphism Control in Nanostructured Metal Oxides

    NASA Astrophysics Data System (ADS)

    Sood, Shantanu

    Polymorphic phase transformations are common to all nanocrystalline binary metal oxides. The polymorphic nature of such metal oxides makes available a large number of phases with differing crystal structures, each stable under certain conditions of temperature, pressure, and/or particle size. These different crystal structures translate to unique physical and chemical properties for each structural class of polymorphs. Thus predicting when polymorphic phase transitions are likely to occur becomes important to the synthesis of stable functional materials with desired properties. Theoretical calculations using a heuristic approach have resulted in an accurate estimation of the critical particle size predicting metastable to stable phase transitions. This formula is applied to different case studies: for anatase to rutile titania; gamma-Alumina to alpha-Alumina; and tetragonal to monoclinic zirconia. The theoretical values calculated have been seen to be very close to the experimental results from the literature. Manifestation of the effect of phase transitions in nanostructured metal oxides was provided in the study of metastable to stable phase transitions in WO3. Nanowires of tungsten trioxide have been synthesized in-situ inside an electron microscope. Such structure of tungsten trioxide result due to a metastable to stable phase transformation, from the cubic to the monoclinic phase. The transformation is massive and complete. The structures formed are unique one-dimensional nanowires. Such a method can be scaled inside any equipment equipped with an electron gun, for example lithography systems either using STEM or E-beam lithography. Another study on nanowire formation in binary metal oxides involved the synthesis of stable orthorhombic MoO3 by means of blend electrospinning. Both a traditional single jet electrospinning set up and a novel high-throughput process to get high aspect ratio nanowires. The latter is a jet-controlled and flow controlled

  14. Kelvin probe imaging of photo-injected electrons in metal oxide nanosheets from metal sulfide quantum dots under remote photochromic coloration.

    PubMed

    Kondo, A; Yin, G; Srinivasan, N; Atarashi, D; Sakai, E; Miyauchi, M

    2015-08-01

    Metal oxide and quantum dot (QD) heterostructures have attracted considerable recent attention as materials for developing efficient solar cells, photocatalysts, and display devices, thus nanoscale imaging of trapped electrons in these heterostructures provides important insight for developing efficient devices. In the present study, Kelvin probe force microscopy (KPFM) of CdS quantum dot (QD)-grafted Cs4W11O36(2-) nanosheets was performed before and after visible-light irradiation. After visible-light excitation of the CdS QDs, the Cs4W11O36(2-) nanosheet surface exhibited a decreased work function in the vicinity of the junction with CdS QDs, even though the Cs4W11O36(2-) nanosheet did not absorb visible light. X-ray photoelectron spectroscopy revealed that W(5+) species were formed in the nanosheet after visible-light irradiation. These results demonstrated that excited electrons in the CdS QDs were injected and trapped in the Cs4W11O36(2-) nanosheet to form color centers. Further, the CdS QDs and Cs4W11O36(2-) nanosheet composite films exhibited efficient remote photochromic coloration, which was attributed to the quantum nanostructure of the film. Notably, the responsive wavelength of the material is tunable by adjusting the size of QDs, and the decoloration rate is highly efficient, as the required length for trapped electrons to diffuse into the nanosheet surface is very short owing to its nanoscale thickness. The unique properties of this photochromic device make it suitable for display or memory applications. In addition, the methodology described in the present study for nanoscale imaging is expected to aid in the understanding of electron transport and trapping processes in metal oxide and metal chalcogenide heterostructure, which are crucial phenomena in QD-based solar cells and/or photocatalytic water-splitting systems. PMID:26139287

  15. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  16. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  17. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  18. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  19. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  20. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  1. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  2. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  3. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  4. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  5. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  6. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  7. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  8. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  9. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  10. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  11. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  12. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  13. 40 CFR 721.4610 - Mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN...

  14. 40 CFR 721.5549 - Lithiated metal oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lithiated metal oxide. 721.5549... Substances § 721.5549 Lithiated metal oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as lithiated metal oxide (LiNiO2) (PMN...

  15. Reactor vessel using metal oxide ceramic membranes

    DOEpatents

    Anderson, Marc A.; Zeltner, Walter A.

    1992-08-11

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane.

  16. In-situ synthesis of highly efficient visible light driven stannic oxide/graphitic carbon nitride heterostructured photocatalysts.

    PubMed

    Tao, Binglin; Yan, Zifeng

    2016-10-15

    Novel and efficient visible-light-driven stannic oxide/graphitic carbon nitride heterostructured photocatalysts are prepared via a simple in-situ solvothermal method. Characterization results demonstrate that there exist strong interactions between SnO2 nanoparticles and g-C3N4 matrix, which indicates the formation of SnO2/g-C3N4 heterojunction. The as-synthesized SnO2/g-C3N4 composite exhibits improved efficiency for photodegradation of rhodamine B in aqueous solutions, with an apparent rate constant 6.5 times higher than that of commercial TiO2 (Degussa P25). The enhanced photocatalytic activity is attributed to synergistic effect between SnO2 and g-C3N4, resulting in effective interfacial charge transfer and prolonged charge-hole separation time. Moreover, SnO2/g-C3N4 composite photocatalysts possess excellent durability and stability after 6 recycling runs, and a possible photocatalytic mechanism is also proposed. This research highlights the promising applications of two dimensional g-C3N4 based composite photocatalysts in the field of waste water disposal and environmental remediation. PMID:27421114

  17. Optimal control of AlAs oxidation via digital alloy heterostructure compositions

    NASA Astrophysics Data System (ADS)

    Suárez, I.; Almuneau, G.; Condé, M.; Arnoult, A.; Fontaine, C.

    2009-09-01

    A thorough study of wet thermal oxidation in AlAs/AlxGa1-xAs superlattices is presented. The results shown here demonstrate that the final oxidation depth can be finely tuned via the composition and thickness of AlxGa1-xAs into the digital alloy. A complete model of oxidation in these structures is proposed, relying on diffusion through the AlAs layer, its oxidation and an additional effect due to the AlxGa1-xAs intermediate barriers. This barrier contribution is shown to further improve the control of the oxidation rate, and thereby fabrication of sophisticated AlOx/GaAs integrated optoelectronic devices.

  18. Metal oxide nanoparticles with low toxicity.

    PubMed

    Ng, Alan Man Ching; Guo, Mu Yao; Leung, Yu Hang; Chan, Charis M N; Wong, Stella W Y; Yung, Mana M N; Ma, Angel P Y; Djurišić, Aleksandra B; Leung, Frederick C C; Leung, Kenneth M Y; Chan, Wai Kin; Lee, Hung Kay

    2015-10-01

    A number of different nanomaterials produced and incorporated into various products are rising. However, their environmental hazards are frequently unknown. Here we consider three different metal oxide compounds (SnO2, In2O3, and Al2O3), which have not been extensively studied and are expected to have low toxicity. This study aimed to comprehensively characterize the physicochemical properties of these nanomaterials and investigate their toxicity on bacteria (Escherichia coli) under UV illumination and in the dark, as well as on a marine diatom (Skeletonema costatum) under ambient illumination/dark (16-8h) cycles. The material properties responsible for their low toxicity have been identified based on comprehensive experimental characterizations and comparison to a metal oxide exhibiting significant toxicity under illumination (anatase TiO2). The metal oxide materials investigated exhibited significant difference in surface properties and interaction with the living organisms. In order for a material to exhibit significant toxicity, it needs to be able to both form a stable suspension in the culture medium and to interact with the cell walls of the test organism. Our results indicated that the observed low toxicities of the three nanomaterials could be attributed to the limited interaction between the nanoparticles and cell walls of the test organisms. This could occur either due to the lack of significant attachment between nanoparticles and cell walls, or due to their tendency to aggregate in solution. PMID:26143160

  19. Optical sensors based on metal oxide nanowires for UV/IR detection

    NASA Astrophysics Data System (ADS)

    Pau, Jose Luis; García Nuñez, Carlos; García Marín, Antonio; Ruiz, Eduardo; Piqueras, Juan

    2013-05-01

    Metal oxide nanowires (NWs) present high stability and excellent optical, electrical and mechanical properties. Their synthesis is cost-effective since they can be produced by means of conventional ovens using vapor phase transport or direct metal oxidation. In this work, n-type ZnO and p-type CuO NWs are deposited on pre-patterned electrodes of Aldoped ZnO (AZO) by dielectrophoresis. Performance of devices fabricated from single and multiple NWs are compared. Highly selective UV detection is demonstrated in n-type ZnO NW photoconductors with high external gains in the 0.09-1×108 range and slow time responses, both effects induced by surface effects. In contrast, n-p-n AZO/ CuO NW/AZO heterostructures show lower gains but faster optical responses, mainly limited by device parasitics. Given the CuO bandgap (1.2 eV), the results are quite promising for the development of hybrid metal oxide detection structures in imaging and photovoltaic applications.

  20. Spontaneous Formation of a Superconductor-Topological Insulator-Normal Metal Layered Heterostructure.

    PubMed

    Wang, Yu-Qi; Wu, Xu; Wang, Ye-Liang; Shao, Yan; Lei, Tao; Wang, Jia-Ou; Zhu, Shi-Yu; Guo, Haiming; Zhao, Ling-Xiao; Chen, Gen-Fu; Nie, Simin; Weng, Hong-Ming; Ibrahim, Kurash; Dai, Xi; Fang, Zhong; Gao, Hong-Jun

    2016-07-01

    2D materials with heterolayered structures beyond graphene are explored. A theoretically predicted superconductor-topological insulator-normal metal heterolayered structure is realized experimentally. The generated hybrid structure HfTe3 /HfTe5 /Hf has potential applications in both quantum-spin Hall effect-based and Majorana-based devices. PMID:27087261

  1. Hydrous metal oxide catalysts for oxidation of hydrocarbons

    SciTech Connect

    Miller, J.E.; Dosch, R.G.; McLaughlin, L.I.

    1993-07-01

    This report describes work performed at Sandia under a CRADA with Shell Development of Houston, Texas aimed at developing hydrous metal oxide (HMO) catalysts for oxidation of hydrocarbons. Autoxidation as well as selective oxidation of 1-octene was studied in the presence of HMO catalysts based on known oxidation catalysts. The desired reactions were the conversion of olefin to epoxides, alcohols, and ketones, HMOs seem to inhibit autoxidation reactions, perhaps by reacting with peroxides or radicals. Attempts to use HMOs and metal loaded HMOs as epoxidation catalysts were unsuccessful, although their utility for this reaction was not entirely ruled out. Likewise, alcohol formation from olefins in the presence of HMO catalysts was not achieved. However, this work led to the discovery that acidified HMOs can lead to carbocation reactions of hydrocarbons such as cracking. An HMO catalyst containing Rh and Cu that promotes the reaction of {alpha}-olefins with oxygen to form methyl ketones was identified. Although the activity of the catalyst is relatively low and isomerization reactions of the olefin simultaneously occur, results indicate that these problems may be addressed by eliminating mass transfer limitations. Other suggestions for improving the catalyst are also made. 57 refs.

  2. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1995-04-25

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm{sup 3} and greater than 0.27g/cm{sup 3}. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods. 8 figs.

  3. Method for producing metal oxide aerogels

    DOEpatents

    Tillotson, Thomas M.; Poco, John F.; Hrubesh, Lawrence W.; Thomas, Ian M.

    1995-01-01

    A two-step hydrolysis-condensation method was developed to form metal oxide aerogels of any density, including densities of less than 0.003g/cm.sup.3 and greater than 0.27g/cm.sup.3. High purity metal alkoxide is reacted with water, alcohol solvent, and an additive to form a partially condensed metal intermediate. All solvent and reaction-generated alcohol is removed, and the intermediate is diluted with a nonalcoholic solvent. The intermediate can be stored for future use to make aerogels of any density. The aerogels are formed by reacting the intermediate with water, nonalcoholic solvent, and a catalyst, and extracting the nonalcoholic solvent directly. The resulting monolithic aerogels are hydrophobic and stable under atmospheric conditions, and exhibit good optical transparency, high clarity, and homogeneity. The aerogels have high thermal insulation capacity, high porosity, mechanical strength and stability, and require shorter gelation times than aerogels formed by conventional methods.

  4. Removal of Metallic Iron on Oxide Slags

    NASA Astrophysics Data System (ADS)

    Shannon, George N.; Fruehan, R. J.; Sridhar, Seetharaman

    2009-10-01

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere ({p_{O2}} of approximately 10-4 atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400 °C and in 160 seconds at 1600 °C.

  5. Removal of metallic iron on oxide slags

    SciTech Connect

    Shannon, G.N.; Fruehan, R.J.; Sridhar, S.

    2009-10-15

    It is possible, in some cases, for ground coal particles to react with gasifier gas during combustion, allowing the ash material in the coal to form phases besides the expected slag phase. One of these phases is metallic iron, because some gasifiers are designed to operate under a reducing atmosphere (pO{sub 2}) of approximately 10{sup -4} atm). Metallic iron can become entrained in the gas stream and deposit on, and foul, downstream equipment. To improve the understanding of the reaction between different metallic iron particles and gas, which eventually oxidizes them, and the slag that the resulting oxide dissolves in, the kinetics of iron reaction on slag were predicted using gas-phase mass-transfer limitations for the reaction and were compared with diffusion in the slag; the reaction itself was observed under confocal scanning laser microscopy. The expected rates for iron droplet removal are provided based on the size and effective partial pressure of oxygen, and it is found that decarburization occurs before iron reaction, leading to an extra 30- to 100-second delay for carbon-saturated particles vs pure iron particles. A pure metallic iron particle of 0.5 mg should be removed in about 220 seconds at 1400{sup o}C and in 160 seconds at 1600{sup o}C.

  6. Interface control by chemical and dimensional matching in an oxide heterostructure

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Marita; Hadermann, Joke; Dyer, Matthew S.; Turner, Stuart; Alaria, Jonathan; Manning, Troy D.; Abakumov, Artem M.; Claridge, John B.; Rosseinsky, Matthew J.

    2016-04-01

    Interfaces between different materials underpin both new scientific phenomena, such as the emergent behaviour at oxide interfaces, and key technologies, such as that of the transistor. Control of the interfaces between materials with the same crystal structures but different chemical compositions is possible in many materials classes, but less progress has been made for oxide materials with different crystal structures. We show that dynamical self-organization during growth can create a coherent interface between the perovskite and fluorite oxide structures, which are based on different structural motifs, if an appropriate choice of cations is made to enable this restructuring. The integration of calculation with experimental observation reveals that the interface differs from both the bulk components and identifies the chemical bonding requirements to connect distinct oxide structures.

  7. Assembly and Photocarrier Dynamics of Heterostructured Nanocomposite Photoanodes from Multicomponent Colloidal Nanocrystals.

    PubMed

    Loiudice, Anna; Cooper, Jason K; Hess, Lucas H; Mattox, Tracy M; Sharp, Ian D; Buonsanti, R

    2015-11-11

    Multicomponent oxides and their heterostructures are rapidly emerging as promising light absorbers to drive oxidative chemistry. To fully exploit their functionality, precise tuning of their composition and structure is crucial. Here, we report a novel solution-based route to nanostructured bismuth vanadate (BiVO4) that facilitates the assembly of BiVO4/metal oxide (TiO2, WO3, and Al2O3) nanocomposites in which the morphology of the metal oxide building blocks is finely tailored. The combination of transient absorption spectroscopy-spanning from picoseconds to second time scales-and photoelectrochemical measurements reveals that the achieved structural tunability is key to understanding and directing charge separation, transport, and efficiency in these complex oxide heterostructured films. PMID:26457457

  8. Impact dynamics of oxidized liquid metal drops

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Brown, Eric; Jaeger, Heinrich M.

    2013-04-01

    With exposure to air, many liquid metals spontaneously generate an oxide layer on their surface. In oscillatory rheological tests, this skin is found to introduce a yield stress that typically dominates the elastic response but can be tuned by exposing the metal to hydrochloric acid solutions of different concentration. We systematically studied the normal impact of eutectic gallium-indium (eGaIn) drops under different oxidation conditions and show how this leads to two different dynamical regimes. At low impact velocity (or low Weber number), eGaIn droplets display strong recoil and rebound from the impacted surface when the oxide layer is removed. In addition, the degree of drop deformation or spreading during impact is controlled by the oxide skin. We show that the scaling law known from ordinary liquids for the maximum spreading radius as a function of impact velocity can still be applied to the case of oxidized eGaIn if an effective Weber number We is employed that uses an effective surface tension factoring in the yield stress. In contrast, no influence on spreading from different oxidations conditions is observed for high impact velocity. This suggests that the initial kinetic energy is mostly damped by bulk viscous dissipation. Results from both regimes can be collapsed in an impact phase diagram controlled by two variables, the maximum spreading factor Pm=R0/Rm, given by the ratio of initial to maximum drop radius, and the impact number K=We/Re4/5, which scales with the effective Weber number We as well as the Reynolds number Re. The data exhibit a transition from capillary to viscous behavior at a critical impact number Kc≈0.1.

  9. Method for inhibiting oxidation of metal sulfide-containing material

    DOEpatents

    Elsetinow, Alicia; Borda, Michael J.; Schoonen, Martin A.; Strongin, Daniel R.

    2006-12-26

    The present invention provides means for inhibiting the oxidation of a metal sulfide-containing material, such as ore mine waste rock or metal sulfide taiulings, by coating the metal sulfide-containing material with an oxidation-inhibiting two-tail lipid coating (12) thereon, thereby inhibiting oxidation of the metal sulfide-containing material in acid mine drainage conditions. The lipids may be selected from phospholipids, sphingolipids, glycolipids and combinations thereof.

  10. Graphene oxide-based flexible metal-insulator-metal capacitors

    NASA Astrophysics Data System (ADS)

    Bag, A.; Hota, M. K.; Mallik, S.; Maiti, C. K.

    2013-05-01

    This work explores the fabrication of graphene oxide (GO)-based metal-insulator-metal (MIM) capacitors on flexible polyethylene terephthalate (PET) substrates. Electrical properties are studied in detail. A high capacitance density of ˜4 fF µm-2 measured at 1 MHz and permittivity of ˜6 have been obtained. A low voltage coefficient of capacitance, VCC-α, and a low dielectric loss tangent indicate the potential of GO-based MIM capacitors for RF applications. The constant voltage stressing study has shown a high reliability against degradation up to a projected period of 10 years. Degradation in capacitance of the devices on flexible substrates has been studied by bending radius down to 1 cm even up to 6000 times of repeated bending.

  11. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis.

    PubMed

    Pal, Jaya; Pal, Tarasankar

    2015-09-14

    The review addresses new advances in metal, bimetallic, metal oxide, and composite particles in their nanoregime for facet-selective catalytic applications. The synthesis and growth mechanisms of the particles have been summarized in brief in this review with a view to develop critical examination of the faceted morphology of the particles for catalysis. The size, shape and composition of the particles have been found to be largely irrelevant in comparison to the nature of facets in catalysis. Thus selective high- and low-index facets have been found to selectively promote adsorption, which eventually leads to an effective catalytic reaction. As a consequence, a high density of atoms rest at the corners, steps, stages, kinks etc on the catalyst surface in order to host the adsorbate efficiently and catalyze the reaction. Again, surface atomic arrangement and bond length have been found to play a dominant role in adsorption, leading to effective catalysis. PMID:26255749

  12. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis

    NASA Astrophysics Data System (ADS)

    Pal, Jaya; Pal, Tarasankar

    2015-08-01

    The review addresses new advances in metal, bimetallic, metal oxide, and composite particles in their nanoregime for facet-selective catalytic applications. The synthesis and growth mechanisms of the particles have been summarized in brief in this review with a view to develop critical examination of the faceted morphology of the particles for catalysis. The size, shape and composition of the particles have been found to be largely irrelevant in comparison to the nature of facets in catalysis. Thus selective high- and low-index facets have been found to selectively promote adsorption, which eventually leads to an effective catalytic reaction. As a consequence, a high density of atoms rest at the corners, steps, stages, kinks etc on the catalyst surface in order to host the adsorbate efficiently and catalyze the reaction. Again, surface atomic arrangement and bond length have been found to play a dominant role in adsorption, leading to effective catalysis.

  13. Fabrication of quantum dots in undoped Si/Si0.8Ge0.2 heterostructures using a single metal-gate layer

    DOE PAGESBeta

    Lu, T. M.; Gamble, J. K.; Muller, R. P.; Nielsen, E.; Bethke, D.; Ten Eyck, G. A.; Pluym, T.; Wendt, J. R.; Dominguez, J.; Lilly, M. P.; et al

    2016-08-29

    Enhancement-mode Si/SiGe electron quantum dots have been pursued extensively by many groups for their potential in quantum computing. Most of the reported dot designs utilize multiple metal-gate layers and use Si/SiGe heterostructures with Ge concentration close to 30%. Here, we report the fabrication and low-temperature characterization of quantum dots in the Si/Si0.8Ge0.2 heterostructures using only one metal-gate layer. We find that the threshold voltage of a channel narrower than 1 μm increases as the width decreases. The higher threshold can be attributed to the combination of quantum confinement and disorder. We also find that the lower Ge ratio used heremore » leads to a narrower operational gate bias range. The higher threshold combined with the limited gate bias range constrains the device design of lithographic quantum dots. We incorporate such considerations in our device design and demonstrate a quantum dot that can be tuned from a single dot to a double dot. Furthermore, the device uses only a single metal-gate layer, greatly simplifying device design and fabrication.« less

  14. Metallic and insulating oxide interfaces controlled by electronic correlations.

    SciTech Connect

    Jang, H. W.; Felker, D. A.; Bark, C. W.; Wang, Y.; Niranjan , M. K.; Nelson, C. T.; Zhang, Y.; Su, D.; Folkman, C. M.; Baek, S. H.; Lee, S.; Janicka, K.; Zhu, Y.; Pan, X. Q.; Fong, D. D.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.; Materials Science Division; Univ. of Wisconsin at Madison; Univ. of Nebraska at Lincoln; Univ. of Michigan; BNL

    2011-01-01

    The formation of two-dimensional electron gases (2DEGs) at complex oxide interfaces is directly influenced by the oxide electronic properties. We investigated how local electron correlations control the 2DEG by inserting a single atomic layer of a rare-earth oxide (RO) [R is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), or yttrium (Y)] into an epitaxial strontium titanate oxide (SrTiO{sub 3}) matrix using pulsed-laser deposition with atomic layer control. We find that structures with La, Pr, and Nd ions result in conducting 2DEGs at the inserted layer, whereas the structures with Sm or Y ions are insulating. Our local spectroscopic and theoretical results indicate that the interfacial conductivity is dependent on electronic correlations that decay spatially into the SrTiO{sub 3} matrix. Such correlation effects can lead to new functionalities in designed heterostructures.

  15. Metallic and Insulating Oxide Interfaces Controlled by Electronic Correlations

    SciTech Connect

    Jang, H.W.; Su, D.; Jang, H.W.; Felker, D.A.; Bark, C.W.; Wang, Y.; Niranjan, M.K.; Nelson, C.T.; Zhang, Y.; Folkman, C.M.; Baek, S.H.; Lee, S.; Janicka, K.; Zhu, Y.; Pan, X.Q.; Fong,, D.D.; Tsymbal, E.Y.; Rzchowski, M.S.; Eom, C.B.

    2011-02-18

    The formation of two-dimensional electron gases (2DEGs) at complex oxide interfaces is directly influenced by the oxide electronic properties. We investigated how local electron correlations control the 2DEG by inserting a single atomic layer of a rare-earth oxide (RO) [RO is lanthanum (La), praseodymium (Pr), neodymium (Nd), samarium (Sm), or yttrium (Y)] into an epitaxial strontium titanate oxide (SrTiO{sub 3}) matrix using pulsed-laser deposition with atomic layer control. We find that structures with La, Pr, and Nd ions result in conducting 2DEGs at the inserted layer, whereas the structures with Sm or Y ions are insulating. Our local spectroscopic and theoretical results indicate that the interfacial conductivity is dependent on electronic correlations that decay spatially into the SrTiO{sub 3} matrix. Such correlation effects can lead to new functionalities in designed heterostructures.

  16. Metal oxide semiconductors for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Thimsen, Elijah James

    The correlation between energy consumption and human development illustrates the importance of this societal resource. We will consume more energy in the future. In light of issues with the status quo, such as climate change, long-term supply and security, solar energy is an attractive source. It is plentiful, virtually inexhaustible, and can provide more than enough energy to power society. However, the issue with producing electricity and fuels from solar energy is that it is expensive, primarily from the materials (silicon) used in building the cells. Metal oxide semiconductors are an attractive class of materials that are extremely low cost and can be produced at the scale needed to meet widespread demand. An industrially attractive thin film synthesis process based on aerosol deposition was developed that relies on self-assembly to afford rational control over critical materials parameters such as film morphology and nanostructure. The film morphology and nanostructure were found to have dramatic effects on the performance of TiO2-based photovoltaic dye-sensitized solar cells. Taking a cue from nature, to overcome the spatial and temporal mismatch between the supply of sunlight and demand for energy consumption, it is desirable to produce solar fuels such as hydrogen from photoelectrochemical water splitting. The source of water is important---seawater is attractive. The fundamental reaction mechanism for TiO2-based cells is discussed in the context of seawater splitting. There are two primary issues with producing hydrogen by photoelectrochemical water splitting using metal-oxide semiconductors: visible light activity and spontaneous activity. To address the light absorption issue, a combined theory-experiment approach was taken to understand the fundamental role of chemical composition in determining the visible light absorption properties of mixed metal-oxide semiconductors. To address the spontaneous activity issue, self-biasing all oxide p/n bulk

  17. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Vogt, Patrick; Bierwagen, Oliver

    2015-02-01

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga2O3, In2O3, and SnO2 on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga2O, In2O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO2, somewhat lower for In2O3, and the lowest for Ga2O3. Our findings can be generalized to further oxides that possess related sub-oxides.

  18. The competing oxide and sub-oxide formation in metal-oxide molecular beam epitaxy

    SciTech Connect

    Vogt, Patrick; Bierwagen, Oliver

    2015-02-23

    The hetero-epitaxial growth of the n-type semiconducting oxides β-Ga{sub 2}O{sub 3}, In{sub 2}O{sub 3}, and SnO{sub 2} on c- and r-plane sapphire was performed by plasma-assisted molecular beam epitaxy. The growth-rate and desorbing flux from the substrate were measured in-situ under various oxygen to metal ratios by laser reflectometry and quadrupole mass spectrometry, respectively. These measurements clarified the role of volatile sub-oxide formation (Ga{sub 2}O, In{sub 2}O, and SnO) during growth, the sub-oxide stoichiometry, and the efficiency of oxide formation for the three oxides. As a result, the formation of the sub-oxides decreased the growth-rate under metal-rich growth conditions and resulted in etching of the oxide film by supplying only metal flux. The flux ratio for the exclusive formation of the sub-oxide (e.g., the p-type semiconductor SnO) was determined, and the efficiency of oxide formation was found to be the highest for SnO{sub 2}, somewhat lower for In{sub 2}O{sub 3}, and the lowest for Ga{sub 2}O{sub 3}. Our findings can be generalized to further oxides that possess related sub-oxides.

  19. Sorption mechanisms of metals to graphene oxide

    NASA Astrophysics Data System (ADS)

    Showalter, Allison R.; Duster, Thomas A.; Szymanowski, Jennifer E. S.; Na, Chongzheng; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    Environmental toxic metal contamination remediation and prevention is an ongoing issue. Graphene oxide is highly sorptive for many heavy metals over a wide pH range under different ionic strength conditions. We present x-ray absorption fine structure (XAFS) spectroscopy results investigating the binding environment of Pb(II), Cd(II) and U(VI) ions onto multi-layered graphene oxide (MLGO). Analysis indicates that the dominant sorption mechanism of Pb to MLGO changes as a function of pH, with increasing inner sphere contribution as pH increases. In contrast, the sorption mechanism of Cd to MLGO remains constant under the studied pH range. This adsorption mechanism is an electrostatic attraction between the hydrated Cd+2 ion and the MLGO surface. The U(VI), present as the uranyl ion, changes only subtly as a function of pH and is bound to the surface via an inner sphere bond. Knowledge of the binding mechanism for each metal is necessary to help in optimizing environmental remediation or prevention in filtration systems.

  20. Thermally stable crystalline mesoporous metal oxides with substantially uniform pores

    SciTech Connect

    Wiesner, Ulrich; Orilall, Mahendra Christopher; Lee, Jinwoo; DiSalvo, Jr., Francis J

    2015-01-27

    Highly crystalline metal oxide-carbon composites, as precursors to thermally stable mesoporous metal oxides, are coated with a layer of amorphous carbon. Using a `one-pot` method, highly crystalline metal oxide-carbon composites are converted to thermally stable mesoporous metal oxides, having highly crystalline mesopore walls, without causing the concomitant collapse of the mesostructure. The `one-pot` method uses block copolymers with an sp or sp 2 hybridized carbon containing hydrophobic block as structure directing agents which converts to a sturdy, amorphous carbon material under appropriate heating conditions, providing an in-situ rigid support which maintains the pores of the oxides intact while crystallizing at temperatures as high as 1000 deg C. A highly crystalline metal oxide-carbon composite can be heated to produce a thermally stable mesoporous metal oxide consisting of a single polymorph.

  1. Structural and electronic properties of Sr(Zr,Ti)O3 alloys for use in oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Weston, Leigh; Janotti, Anderson; Cui, Xiangyuan; Himmetoglu, Burak; Stampfl, Catherine; van de Walle, Chris G.

    Sr(Ti,Zr)O3 alloys are promising materials for use in oxide heterostructures, however the fundamental properties of this system have not yet been characterized. Using hybrid density functional calculations, we study the electronic and structural properties of ordered SrTixZr1-xO3 alloys at x=0, 0.25, 0.5, 0.75, and 1. As Ti is added to SrZrO3, the lattice parameter is reduced according to Vegard's law, while the band gap shows a large bowing and is sensitive to the Ti distribution. For x=0.5, arranging the Ti and Zr atoms into a 1 ×1 SrZrO3/SrTiO3 superlattice along the [001] direction leads to a highly dispersive single band at the conduction-band minimum (CBM) that is absent in the parent compounds, and a direct gap close to that of pure SrTiO3. This is explained by the splitting of the Ti 3 d t2 g states in the reduced symmetry of the superlattice, lowering the band originating from the Ti 3dxy orbitals. The lifting of the orbital degeneracy around the CBM suppresses scattering due to electron-phonon interactions. We propose that short-period SrZrO3/SrTiO3 superlattices could be exploited to engineer the band structure and improve carrier mobility compared to bulk SrTiO3. This work was supported by NSF, ONR and ARC.

  2. Process for Producing Metal Compounds From Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen. This intermediary product can be fiber processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  3. Process for Producing Metal Compounds from Graphite Oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon. metal. chloride. and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon. metal carbonate. and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide: b) in an inert environment to produce metal oxide on carbon substrate: c) in a reducing environment. to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  4. Process for producing metal compounds from graphite oxide

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor)

    2000-01-01

    A process for providing elemental metals or metal oxides distributed on a carbon substrate or self-supported utilizing graphite oxide as a precursor. The graphite oxide is exposed to one or more metal chlorides to form an intermediary product comprising carbon, metal, chloride, and oxygen This intermediary product can be flier processed by direct exposure to carbonate solutions to form a second intermediary product comprising carbon, metal carbonate, and oxygen. Either intermediary product may be further processed: a) in air to produce metal oxide; b) in an inert environment to produce metal oxide on carbon substrate; c) in a reducing environment to produce elemental metal distributed on carbon substrate. The product generally takes the shape of the carbon precursor.

  5. Dielectric response of metal/SrTiO{sub 3}/two-dimensional electron liquid heterostructures

    SciTech Connect

    Mikheev, Evgeny; Raghavan, Santosh; Stemmer, Susanne

    2015-08-17

    Maximizing the effective dielectric constant of the gate dielectric stack is important for electrostatically controlling high carrier densities inherent to strongly correlated materials. SrTiO{sub 3} is uniquely suited for this purpose, given its extremely high dielectric constant, which can reach 10{sup 4}. Here, we present a systematic study of the thickness dependence of the dielectric response and leakage of SrTiO{sub 3} that is incorporated into a vertical structure on a high-carrier-density two-dimensional electron liquid (2DEL). A simple model can be used to interpret the data. The results show a need for improved interface control in the design of metal/SrTiO{sub 3}/2DEL devices.

  6. Experimental verification and investigation of disks scattering slab modes in metal-dielectric heterostructures

    PubMed Central

    Ding, Lan; Wang, Ke Jia; Wang, Wei; Zhu, De Feng; Yin, Chao Yun; Liu, Jin Song

    2013-01-01

    A thin dielectric plate can support conventional slab modes such as leaky Fabry-Perot, guided waves and radiation modes. When the plate is coated on a metallic subwavelength disk array, it can result in new confined modes, hereby named 'disks scattering slab modes' (DSSMs). By use of a terahertz time-domain spectroscopy system, we experimentally verify the existence of two types of DSSMs in terahertz range: one we refer to as highly confined disks scattering Fabry-Perot-like modes (DSFPMs) and the other as, weakly confined disks scattering radiation-like modes (DSRMs). Spectral characteristics of these confined modes are measured and numerically simulated. Particularly, based on the experimental results and a dipole-scattering model developed here, we show that the features of the DSFPMs can be tuned by changing the filling fraction of the disk array. We believe these results can make important contributions to the designs of new terahertz devices, including tunable absorbers and filters. PMID:23966179

  7. Research Update: Synthesis, properties, and applications of ultrathin metallic nanowires and associated heterostructures

    NASA Astrophysics Data System (ADS)

    Liu, Haiqing; Li, Luyao; Scofield, Megan E.; Wong, Stanislaus S.

    2015-08-01

    The properties of one-dimensional (1D) nanostructured materials can change considerably and unexpectedly, when their diameters attain the "ultrathin" level, i.e., below 10 nm. Herein, we have summarized recent developments associated with not only the synthesis but also more importantly, the applications of ultrathin 1D nanowires. Specifically, various classes of ultrathin metallic nanowires have been shown to be excellent, high-performing structural motifs for electrocatalysts, superconducting materials, electrical devices, and nano-sized pressure sensors. Moreover, the fabrication of ultrathin-based 0D-1D, 1D-1D, and 1D-2D composite hybrid structures may represent one of the most promising designs for novel architectures in energy storage and conversion, photovoltaic devices, photoconductivity, and photoelectrocatalysis.

  8. Quantum Heterostructures

    NASA Astrophysics Data System (ADS)

    Mitin, Vladimir; Kochelap, Viacheslav; Stroscio, Michael A.

    1999-07-01

    Quantum Heterostructures provides a detailed description of the key physical and engineering principles of quantum semiconductor heterostructures. Blending important concepts from physics, materials science, and electrical engineering, it also explains clearly the behavior and operating features of modern microelectronic and optoelectronic devices. The authors begin by outlining the trends that have driven development in this field, most importantly the need for high-performance devices in computer, information, and communications technologies. They then describe the basics of quantum nanoelectronics, including various transport mechanisms. In the latter part of the book, they cover novel microelectronic devices, and optical devices based on quantum heterostructures. The book contains many homework problems and is suitable as a textbook for undergraduate and graduate courses in electrical engineering, physics, or materials science. It will also be of great interest to those involved in research or development in microelectronic or optoelectronic devices.

  9. Polymer-assisted aqueous deposition of metal oxide films

    DOEpatents

    Li, DeQuan; Jia, Quanxi

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  10. The Effect of Metal Oxide on Nanoparticles from Thermite Reactions

    ERIC Educational Resources Information Center

    Moore, Lewis Ryan

    2006-01-01

    The purpose of this research was to determine how metal oxide used in a thermite reaction can impact the production of nanoparticles. The results showed the presence of nanoparticles (less than 1 micron in diameter) of at least one type produced by each metal oxide. The typical particles were metallic spheres, which ranged from 300 nanometers in…

  11. Synthesis and electronic applications of oxide-metal eutectic composites

    SciTech Connect

    Holder, J.D.; Cochran, J.K.; Hill, D.N.; Chapman, A.T.; Clark, G.W.

    1980-01-01

    A review is given of important developments in the synthesis of oxide-metal eutectic composites and the composite application in the continuing development of field emitters. Known metal oxide-metal binary and ternary eutectic systems are listed. The synthesis, electrical conductivity, thermodynamics, and applications are discussed. (FS)

  12. Suppression of Octahedral Tilts and Associated Changes in Electronic Properties at Epitaxial Oxide Heterostructure Interfaces

    SciTech Connect

    Borisevich, Albina Y; Chang, Hye Jung; Huijben, Mark; Oxley, Mark P; Okamoto, Satoshi; Niranjan, M K; Burton, J D; Tsymbal, E Y; Chu, Ying-Hao; Yu, P; Ramesh, R.; Kalinin, Sergei V; Pennycook, Stephen J

    2010-01-01

    Epitaxial oxide interfaces with broken translational symmetry have emerged as a central paradigm behind the novel behaviors of oxide superlattices. Here, we use scanning transmission electron microscopy to demonstrate a direct, quantitative unit-cell-by-unit-cell mapping of lattice parameters and oxygen octahedral rotations across the BiFeO{sub 3{sup -}}La{sub 0.7}Sr{sub 0.3}MnO{sub 3} interface to elucidate how the change of crystal symmetry is accommodated. Combined with low-loss electron energy loss spectroscopy imaging, we demonstrate a mesoscopic antiferrodistortive phase transition near the interface in BiFeO{sub 3} and elucidate associated changes in electronic properties in a thin layer directly adjacent to the interface.

  13. Chemical Sensors Based on Metal Oxide Nanostructures

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Mike J.; Liu, Chung-Chiun

    2006-01-01

    This paper is an overview of sensor development based on metal oxide nanostructures. While nanostructures such as nanorods show significan t potential as enabling materials for chemical sensors, a number of s ignificant technical challenges remain. The major issues addressed in this work revolve around the ability to make workable sensors. This paper discusses efforts to address three technical barriers related t o the application of nanostructures into sensor systems: 1) Improving contact of the nanostructured materials with electrodes in a microse nsor structure; 2) Controling nanostructure crystallinity to allow co ntrol of the detection mechanism; and 3) Widening the range of gases that can be detected by using different nanostructured materials. It is concluded that while this work demonstrates useful tools for furt her development, these are just the beginning steps towards realizati on of repeatable, controlled sensor systems using oxide based nanostr uctures.

  14. Metallic oxide switches using thick film technology

    NASA Technical Reports Server (NTRS)

    Patel, D. N.; Williams, L., Jr.

    1974-01-01

    Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.

  15. Preferential orientation of metal oxide superconducting materials

    DOEpatents

    Capone, Donald W.; Poeppel, Roger B.

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0

  16. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, Marc A.; Webster, Elizabeth T.; Xu, Qunyin

    1994-01-01

    A method for permformation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation.

  17. Metal oxide membranes for gas separation

    DOEpatents

    Anderson, M.A.; Webster, E.T.; Xu, Q.

    1994-08-30

    A method for formation of a microporous ceramic membrane onto a porous support includes placing a colloidal suspension of metal oxide particles on one side of the porous support and exposing the other side of the porous support to a drying stream of gas or a reactive gas stream so that the particles are deposited on the drying side of the support as a gel. The gel so deposited can be sintered to form a supported ceramic membrane having mean pore sizes less than 30 Angstroms and useful for ultrafiltration, reverse osmosis, or gas separation. 4 figs.

  18. Surfactant-Templated Mesoporous Metal Oxide Nanowires

    DOE PAGESBeta

    Luo, Hongmei; Lin, Qianglu; Baber, Stacy; Naalla, Mahesh

    2010-01-01

    We demore » monstrate two approaches to prepare mesoporous metal oxide nanowires by surfactant assembly and nanoconfinement via sol-gel or electrochemical deposition. For example, mesoporous Ta 2 O 5 and zeolite nanowires are prepared by block copolymer Pluronic 123-templated sol-gel method, and mesoporous ZnO nanowires are prepared by electrodeposition in presence of anionic surfactant sodium dodecyl sulfate (SDS) surfactant, in porous membranes. The morphologies of porous nanowires are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.« less

  19. Defect Engineering in Plasmonic Metal Oxide Nanocrystals.

    PubMed

    Runnerstrom, Evan L; Bergerud, Amy; Agrawal, Ankit; Johns, Robert W; Dahlman, Clayton J; Singh, Ajay; Selbach, Sverre M; Milliron, Delia J

    2016-05-11

    Defects may tend to make crystals interesting but they do not always improve performance. In doped metal oxide nanocrystals with localized surface plasmon resonance (LSPR), aliovalent dopants and oxygen vacancies act as centers for ionized impurity scattering of electrons. Such electronic damping leads to lossy, broadband LSPR with low quality factors, limiting applications that require near-field concentration of light. However, the appropriate dopant can mitigate ionized impurity scattering. Herein, we report the synthesis and characterization of a novel doped metal oxide nanocrystal material, cerium-doped indium oxide (Ce:In2O3). Ce:In2O3 nanocrystals display tunable mid-infrared LSPR with exceptionally narrow line widths and the highest quality factors observed for nanocrystals in this spectral region. Drude model fits to the spectra indicate that a drastic reduction in ionized impurity scattering is responsible for the enhanced quality factors, and high electronic mobilities reaching 33 cm(2)V(-1) s(-1) are measured optically, well above the optical mobility for tin-doped indium oxide (ITO) nanocrystals. We investigate the microscopic mechanisms underlying this enhanced mobility with density functional theory calculations, which suggest that scattering is reduced because cerium orbitals do not hybridize with the In orbitals that dominate the bottom of the conduction band. Ce doping may also reduce the equilibrium oxygen vacancy concentration, further enhancing mobility. From the absorption spectra of single Ce:In2O3 nanocrystals, we determine the dielectric function and by simulation predict strong near-field enhancement of mid-IR light, especially around the vertices of our synthesized nanocubes. PMID:27111427

  20. Metal-organic framework derived hollow polyhedron metal oxide posited graphene oxide for energy storage applications.

    PubMed

    Ramaraju, Bendi; Li, Cheng-Hung; Prakash, Sengodu; Chen, Chia-Chun

    2016-01-18

    A composite made from hollow polyhedron copper oxide and graphene oxide was synthesized by sintering a Cu-based metal-organic framework (Cu-MOF) embedded with exfoliated graphene oxide. As a proof-of-concept application, the obtained Cu(ox)-rGO materials were used in a lithium-ion battery and a sodium-ion battery as anode materials. Overall, the Cu(ox)-rGO composite delivers excellent electrochemical properties with stable cycling when compared to pure CuO-rGO and Cu-MOF. PMID:26587567

  1. First Principles Modeling of Metal/Ceramic Multilayer Nano-heterostructures.

    SciTech Connect

    Yadav, Satyesh K.; Wang, Jian; Misra, Amit; Liu, Xiang-Yang; Ramprasad, Ramamurthy

    2012-07-31

    Nanoscaled multilayer films composed of metals and ceramics have been explored for their potential applications as ductile, yet strong, materials. It is believed that at the nanoscale, the interfaces between the two materials constituting the multilayer assume an increasingly important role in determining the properties, as they comprise a more significant volume fraction of the multilayer with decreasing layer thickness. In this ab initio work, density functional theory was used to calculate the ideal shear strengths of pure Al, pure TiN, the Al/TiN interfacial region, and Al/TiN multilayers. The ideal shear strength of the Al/TiN interface was found to vary from very low (on the order of the ideal shear strength of Al) to very high (on the order of the ideal shear strength of TiN), depending on whether the TiN at the interface was Ti- or N-terminated, respectively. The results suggest that the shear properties of Al/TiN depend strongly on the chemistry of the interface, Al:N versus Al:Ti terminations. Nevertheless, for the Al/TiN multilayers, the ideal shear strength was limited by shear in the Al layer away from the interface, even when the individual layer thickness is less than a nanometer. Further we found an unusual structural rotation of bulk single-crystal Al under uniaxial compressive strains. It was found that under strains either along the <11-2> or the <111> directions, beyond a critical stress of about 13 GPa, the Al crystal can rotate through shear in the Shockley partial direction (i.e.,<11-2>) on the {l_brace}111{r_brace} plane, in an attempt to relieve internal stresses. This phenomenon reveals a possible mechanism leading to the onset of homogeneous dislocation nucleation in Al under high uniaxial compressions.

  2. Correlating Interfacial Structure and Magnetism in Thin-Film Oxide Heterostructures Using Transmission Electron Microscopy and Polarized Neutron Reflectometry

    NASA Astrophysics Data System (ADS)

    Spurgeon, Steven Richard

    Oxide thin-films have attracted considerable attention for a new generation of spintronics devices, where both electron charge and spin are used to transport information. However, a poor understanding of the local features that mediate magnetization and coupling in these materials has greatly limited their deployment into new information and communication technologies. This thesis describes direct, local measurements of structure-property relationships in ferrous thin-films and La1--xSrxMnO3 (LSMO) / Pb(ZrxTi1--x)O3 (PZT) thin-film heterostructures using spatially-resolved characterization techniques. In the first part of this thesis we explore the properties of ferrous spintronic thin-films. These films serve as a model system to establish a suite of interfacial characterization techniques for subsequent studies. We then study the static behavior of LSMO / PZT devices with polarization set by the underlying substrate. Using transmission electron microscopy and geometric phase analysis we reveal the presence of significant local strain gradients in these films for the first time. Electron energy loss spectroscopy mapping of the LSMO / PZT interface reveals Mn valence changes induced by charge-transfer screening. Bulk magnetometry and polarized neutron reflectometry indicate that these chemical and strain changes are associated with a graded magnetization across the LSMO layer. Density functional theory calculations are presented, which show that strain and charge-transfer screening act locally to suppress magnetization in the LSMO by changing the Mn orbital polarization. In the second half of this thesis, we explore asymmetric screening effects on magnetization LSMO / PZT composites. We find that the local ferroelectric polarization can vary widely and that this may be responsible for reduced charge-transfer effects, as well as magnetic phase gradients at interfaces. From this information and electron energy loss spectroscopy, we construct a map of the magnetic

  3. Method of making controlled morphology metal-oxides

    DOEpatents

    Ozcan, Soydan; Lu, Yuan

    2016-05-17

    A method of making metal oxides having a preselected morphology includes preparing a suspension that includes a solvent, polymeric nanostructures having multiplicities of hydroxyl surface groups and/or carboxyl surface groups, and a metal oxide precursor. The suspension has a preselected ratio of the polymeric nanostructures to the metal oxide precursor of at least 1:3, the preselected ratio corresponding to a preselected morphology. Subsequent steps include depositing the suspension onto a substrate, removing the solvent to form a film, removing the film from the substrate, and annealing the film to volatilize the polymeric nanostructures and convert the metal oxide precursor to metal oxide nanoparticles having the preselected morphology or to a metal oxide nanosheet including conjoined nanoparticles having the preselected morphology.

  4. Nanoionic switching in metal oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Ielmini, Daniele

    2013-03-01

    Ion migration in oxide nanostructures is a key process in information storage technologies, where the logic data are stored as nanoscale conductive filaments. Due to the inherently nanoscale size of the ionic switching location (few cubic nanometers), the local electric field and current density induce extremely high temperatures as a result of Joule heating. To develop and design advanced nanoionic materials and devices with improved performance and reliability, the ion migration phenomena in metal oxides must be carefully understood and modeled. This talk will address the modeling of ionic migration and the consequent switching in HfOx layers of RRAM devices. The model solves drift/diffusion equations for thermally-activated hopping of positive ion, such as oxygen vacancies (VO+)and metal cations (Hf+) , in presence of intense Joule heating and electric field. The impact of the ion distribution on the local conductivity is described physics-based models of defect-assisted electronic conduction in semiconductors. Microscopic parameters, such as the energy barrier for ion hopping, are directly inferred from the experimental switching kinetics at variable voltages. The simulation results picture the filament growth/depletion with time and account for the observed switching characteristics, such as the progressive opening of a depleted gap and the possibility of electrode-to-electrode migration of ions. Finally, new phenomena, such as switching variability at atomic-size filaments and stress-induced symmetric switching, will be discussed.

  5. Thin films of metal oxides on metal single crystals: Structure and growth by scanning tunneling microscopy

    SciTech Connect

    Galloway, H.C.

    1995-12-01

    Detailed studies of the growth and structure of thin films of metal oxides grown on metal single crystal surfaces using Scanning Tunneling Microscopy (STM) are presented. The oxide overlayer systems studied are iron oxide and titanium oxide on the Pt(III) surface. The complexity of the metal oxides and large lattice mismatches often lead to surface structures with large unit cells. These are particularly suited to a local real space technique such as scanning tunneling microscopy. In particular, the symmetry that is directly observed with the STM elucidates the relationship of the oxide overlayers to the substrate as well as distinguishing, the structures of different oxides.

  6. Fluidized reduction of oxides on fine metal powders without sintering

    NASA Technical Reports Server (NTRS)

    Hayashi, T.

    1985-01-01

    In the process of reducing extremely fine metal particles (av. particle size or = 1000 angstroms) covered with an oxide layer, the metal particles are fluidized by a gas flow contg. H, heated, and reduced. The method uniformly and easily reduces surface oxide layers of the extremely fine metal particles without causing sintering. The metal particles are useful for magnetic recording materials, conductive paste, powder metallurgy materials, chem. reagents, and catalysts.

  7. Laser Processing of Metal Oxides for Plasmonic Applications

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Breckenfeld, Eric; Charipar, Nicholas; Pique, Alberto

    Noble metals such as Au and Ag have been used traditionally for plasmonic devices. However, conventional metals are not suitable for near infrared (IR) plasmonic applications due to their relatively large optical losses at these wavelengths. Metal oxides, on the other hand, have been considered for low loss metallic components in the near IR because they can provide a tunable carrier density by doping. The zero-cross-over permittivity values of these metal oxides, for example, can easily be tuned from 1.0 µm to 3 µm by adjusting doping levels. Optical losses in devices made from these metal oxide materials are generally found to be much lower than those obtained with conventional metals. We have investigated various laser processing techniques for synthesizing several types of metal oxides. First, pulsed laser deposition was used to grow metal oxide thin films such as, Al-doped ZnO, Sn-doped In2O3 and VO2. Second, a laser sintering technique was used to improve the properties of solution-processed VO2 coatings. Third, a laser printing technique was used to produce metal oxide films. We will present details on the use of laser processing techniques for synthesizing these metal oxides along with their electrical, optical, and structural properties. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  8. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  9. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Gash, A; Pantoya, M; Jr., J S; Zhao, L; Shea, K; Simpson, R; Clapsaddle, B

    2003-11-18

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.

  10. Transport through oxide interfaces - The case of SrTiO3 based hetero-structures

    NASA Astrophysics Data System (ADS)

    Ben Shalom, M.; Flekser, E.; Dagan, Y.; Kim, M.; Bell, C.; Hikita, Y.; Hwang, H. Y.

    2013-03-01

    Sharp interfaces can host phenomena that are absent in their constituting materials. By depositing a thin layer of LaAlO3 on top of SrTiO3, the interface between these two band-insulator is highly conducting. Conductivity emerges only for TiO2 termination and above a critical LaAlO3 thickness of 4 unit cells, pointing to the importance of the polar structure. The transition, from insulating to high mobility electron gas, can be controlled continuously by gate voltage, thus enabling a careful study of the dependence of system properties on charge density. Carrier-controlled two-dimensional superconductivity, and magnetic hysteresis were observed between the two non-magnetic oxides. We have found anisotropic magnetoresistance (AMR) in our samples, an outcome of magnetic scattering, which affect the transport through the spin orbit (SO) interaction, and coexists with superconductivity. Gate bias enables tuning the SO energy, which dominates the magnetotransport properties. The exceptionally large amplitude and sign of the AMR suggests a Rashba-type SO coupling. The different AMR characteristics for Nb doped SrTiO3, a symmetric non-polar with similar resistivity and carrier density, demonstrates the significant role of interface polarity for its magnetic properties. This research was partially supported by The BSF and the Israeli Ministry of Science and Technology. A portion of this work was performed at the National High Magnetic Field laboratory.

  11. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals

    SciTech Connect

    Lounis, SD; Runnerstrorm, EL; Llordes, A; Milliron, DJ

    2014-05-01

    Plasmonic nanocrystals of highly doped metal oxides have seen rapid development in the past decade and represent a class of materials with unique optoelectronic properties. In this Perspective, we discuss doping mechanisms in metal oxides and the accompanying physics of free carrier scattering, both of which have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. The balance between activation and compensation of dopants limits the free carrier concentration of the most common metal oxides, placing a ceiling on the LSPR frequency. Furthermore, because of ionized impurity scattering of the oscillating plasma by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well-understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration.

  12. Prediction of electron energies in metal oxides.

    PubMed

    Walsh, Aron; Butler, Keith T

    2014-02-18

    The ability to predict energy levels in metal oxides is paramount to developinguseful materials, such as in the development of water photolysis catalysts and efficient photovoltaic cells. The binding energy of electrons in materials encompasses a wealth of information concerning their physicochemistry. The energies control the optical and electrical properties, dictating for which kinds of chemistry and physics a particular material is useful. Scientists have developed theories and models for electron energies in a variety of chemical systems over the past century. However, the prediction of quantitative energy levels in new materials remains a major challenge. This issue is of particular importance in metal oxide research, where novel chemistries have opened the possibility of a wide range of tailored systems with applications in important fields including light-emitting diodes, energy efficient glasses, and solar cells. In this Account, we discuss the application of atomistic modeling techniques, covering the spectrum from classical to quantum descriptions, to explore the alignment of electron energies between materials. We present a number of paradigmatic examples, including a series of oxides (ZnO, In2O3, and Cu2O). Such calculations allow the determination of a "band alignment diagram" between different materials and can facilitate the prediction of the optimal chemical composition of an oxide for use in a given application. Throughout this Account, we consider direct computational solutions in the context of heuristic models, which are used to relate the fundamental theory to experimental observations. We review a number of techniques that have been commonly applied in the study of electron energies in solids. These models have arisen from different answers to the same basic question, coming from solid-state chemistry and physics perspectives. We highlight common factors, as well as providing a critical appraisal of the strengths and weaknesses of each

  13. Task-specific ionic liquid for solubilizing metal oxides.

    PubMed

    Nockemann, Peter; Thijs, Ben; Pittois, Stijn; Thoen, Jan; Glorieux, Christ; Van Hecke, Kristof; Van Meervelt, Luc; Kirchner, Barbara; Binnemans, Koen

    2006-10-26

    Protonated betaine bis(trifluoromethylsulfonyl)imide is an ionic liquid with the ability to dissolve large quantities of metal oxides. This metal-solubilizing power is selective. Soluble are oxides of the trivalent rare earths, uranium(VI) oxide, zinc(II) oxide, cadmium(II) oxide, mercury(II) oxide, nickel(II) oxide, copper(II) oxide, palladium(II) oxide, lead(II) oxide, manganese(II) oxide, and silver(I) oxide. Insoluble or very poorly soluble are iron(III), manganese(IV), and cobalt oxides, as well as aluminum oxide and silicon dioxide. The metals can be stripped from the ionic liquid by treatment of the ionic liquid with an acidic aqueous solution. After transfer of the metal ions to the aqueous phase, the ionic liquid can be recycled for reuse. Betainium bis(trifluoromethylsulfonyl)imide forms one phase with water at high temperatures, whereas phase separation occurs below 55.5 degrees C (temperature switch behavior). The mixtures of the ionic liquid with water also show a pH-dependent phase behavior: two phases occur at low pH, whereas one phase is present under neutral or alkaline conditions. The structures, the energetics, and the charge distribution of the betaine cation and the bis(trifluoromethylsulfonyl)imide anion, as well as the cation-anion pairs, were studied by density functional theory calculations. PMID:17048916

  14. Enhanced electrochemical supercapacitance of binder-free nanoporous ternary metal oxides/metal electrode.

    PubMed

    Gao, J J; Qiu, H-J; Wen, Y R; Chiang, F-K; Wang, Y

    2016-07-15

    Free-standing nanoporous Ni-Cu-Mn mixed metal oxides on metal with a high surface area was fabricated by chemically dealloying a Ni8Cu12Mn80 single-phase precursor, followed by electrochemical oxidation in an alkaline solution. Electrochemical analysis shows that first Cu and Mn-based metal oxides formed by the electrochemical oxidation. Ni-based oxides grow later with the increase of electrochemical CV cycles and mix with the Cu/Mn oxides, forming a relatively stable mixed metal oxides thin film on metal ligament network. Due to the different electrochemical properties of each metal and the synergetic effect between them, the mixed ternary metal oxides formed on metal nano-ligament can operate stably between a wide potential window (1.5V) in 1.0M KOH aqueous solution when tested as a free-standing supercapacitor electrode. Due to the high volumetric surface area, wide operating potential window and excellent conductivity, the nanoporous metal oxides@metal composite exhibits a high volumetric capacitance (∼500Fcm(-3)), high energy density (∼38mWhcm(-3)) and good cycling stability. PMID:27089016

  15. A study of the impact of gate metals on the performance of AlGaN/AlN/GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Zhao, Jingtao; Lin, Zhaojun; Chen, Quanyou; Yang, Ming; Cui, Peng; Lv, Yuanjie; Feng, Zhihong

    2015-09-01

    The fabrication processes of heterostructure field-effect transistors (HFETs) often introduce stresses into the device structures. These stresses can significantly affect the electrical characteristics of the device. We investigated the additional strain induced by the gate metals (in this study, Au, Cu, Fe, Al, and Ni) in AlGaN/AlN/GaN HFETs using the measured capacitance-voltage and current-voltage characteristics. We found that the intensity of the additional strain of the AlGaN barrier layer is greatly affected by the types of gate metals. For those metals that mainly undergo a physical interaction with the AlGaN barrier layer, there is a negative correlation between the intensity of the additional strain and the Young's modulus of the gate metal. Therefore, the gate metal with a larger Young's modulus will be more favorable for weakening polarization Coulomb field scattering and increasing both the carrier mobility and the sheet carrier density in AlGaN/AlN/GaN HFETs.

  16. Influence of metal oxides on the adsorption characteristics of PPy/metal oxides for Methylene Blue.

    PubMed

    Chen, Jie; Feng, Jiangtao; Yan, Wei

    2016-08-01

    In this paper, the pure PPy and PPy/metal oxide composites including PPy/SiO2, PPy/Al2O3, and PPy/Fe3O4 as well as PPy coated commercial SiO2 and Al2O3 (PPy/SiO2(C) and PPy/Al2O3(C)) were successfully synthetized via chemical oxidative polymerization in acid aqueous medium to investigate the influence of metal oxides on adsorption capacity and their adsorption characteristics for Methylene Blue (MB). The composites were characterized by Zeta potential analysis, BET analysis, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The results indicate that the metal oxides have great impact on textural properties, morphology, Zeta potential and PPy polymerization on their surface, further influence the adsorption capacity of their composites. The PPy/Al2O3(C) composite owns the highest specific surface area, rougher surface and most PPy content, and show the highest monolayer adsorption capacity reaching 134.77mg/g. In the adsorption characteristic studies, isotherm investigation shows an affinity order of PPy/metal oxides of PPy/Al2O3(C)>PPy/Al2O3>PPy/SiO2(C)>PPy/SiO2>PPy/Fe3O4>PPy, stating the affinity between PPy and MB was greatly improved by metal oxide, and Al2O3 owns high affinity for MB, followed by SiO2 and Fe3O4. Kinetic data of the composites selected (PPy/SiO2(C), PPy/Al2O3(C) and PPy/Fe3O4) were described more appropriately by the pseudo-second-order model, and the order of K2 is PPy/Al2O3>PPy/SiO2>PPy/Fe3O4, further showing a fast adsorption and good affinity of PPy/Al2O3(C) for MB. The regeneration method by HCl-elution and NaOH-activation was available, and the composites selected still owned good adsorption and desorption efficiency after six adsorption-desorption cycles. PMID:27149689

  17. Polarization-Mediated Thermal Stability of Metal/Oxide Heterointerface.

    PubMed

    Zhang, Qintong; You, Lu; Shen, Xi; Wan, Caihua; Yuan, Zhonghui; Zhang, Xuan; Huang, Li; Kong, Wenjie; Wu, Hao; Yu, Richeng; Wang, Junling; Han, Xiufeng

    2015-11-18

    A polarization-mediated heterointerface is designed to research the thermal stability of magnetic metal/oxide interfaces. Using polarization engineering, the thermal stability of the interface between BiFeO3 and CoFeB can be improved by about 100°C. This finding provides new insight into the chemistry of the metal/oxide heterointerface. PMID:26421975

  18. 40 CFR 721.10006 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN...

  19. 40 CFR 721.5548 - Mixed metal oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956)...

  20. Oxidation and electrical conductivity of metal chain dioximes

    NASA Astrophysics Data System (ADS)

    Oza, A. T.

    1993-08-01

    Metal chain dioximes having uninterrupted metal chain systems were prepared and oxidized with halogens. Resistivities were found to be lowered because of oxidation. Two new complexes, phenathra-quinone-dioxime and ClS2 substituted Ni(Hdmg)2 [Ni(dad)2], were also prepared. A.c. resistivities were also measured.

  1. Laser-assisted formation of metallic oxide microtubes

    SciTech Connect

    Nanai, L.; George, T.F.

    1997-01-01

    The fabrication of metallic oxide microtubes is possible directly, without any support structure, by continuous wave infrared laser-assisted oxidation of the metal in air. The particular case presented is the growth of tube-like vanadium pentoxide microcrystals grown in our laboratories. {copyright} {ital 1997 Materials Research Society.}

  2. Laboratory studies of refractory metal oxide smokes

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Nelson, R. N.; Donn, Bertram

    1989-01-01

    Studies of the properties of refractory metal oxide smokes condensed from a gas containing various combinations of SiH4, Fe(CO)5, Al(CH3)3, TiCl4, O2 and N2O in a hydrogen carrier stream at 500 K greater than T greater than 1500 K were performed. Ultraviolet, visible and infrared spectra of pure, amorphous SiO(x), FeO(x), AlO(x) and TiO(x) smokes are discussed, as well as the spectra of various co-condensed amorphous oxides, such as FE(x)SiO(y) or Fe(x)AlO(y). Preliminary studies of the changes induced in the infrared spectra of iron-containing oxide smokes by vacuum thermal annealing suggest that such materials become increasingly opaque in the near infrared with increased processing: hydration may have the opposite effect. More work on the processing of these materials is required to confirm such a trend: this work is currently in progress. Preliminary studies of the ultraviolet spectra of amorphous Si2O3 and MgSiO(x) smokes revealed no interesting features in the region from 200 to 300 nm. Studies of the ultraviolet spectra of both amorphous, hydrated and annealed SiO(x), TiO(x), AlO(x) and FeO(x) smokes are currently in progress. Finally, data on the oxygen isotopic composition of the smokes produced in the experiments are presented, which indicate that the oxygen becomes isotopically fractionated during grain condensation. Oxygen in the grains is as much as 3 percent per amu lighter than the oxygen in the original gas stream. The authors are currently conducting experiments to understand the mechanism by which fractionation occurs.

  3. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1991-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  4. Metal oxide porous ceramic membranes with small pore sizes

    DOEpatents

    Anderson, Marc A.; Xu, Qunyin

    1992-01-01

    A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.

  5. Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points.

    PubMed

    Kou, Rong; Shao, Yuyan; Mei, Donghai; Nie, Zimin; Wang, Donghai; Wang, Chongmin; Viswanathan, Vilayanur V; Park, Sehkyu; Aksay, Ilhan A; Lin, Yuehe; Wang, Yong; Liu, Jun

    2011-03-01

    Carbon-supported precious metal catalysts are widely used in heterogeneous catalysis and electrocatalysis, and enhancement of catalyst dispersion and stability by controlling the interfacial structure is highly desired. Here we report a new method to deposit metal oxides and metal nanoparticles on graphene and form stable metal-metal oxide-graphene triple junctions for electrocatalysis applications. We first synthesize indium tin oxide (ITO) nanocrystals directly on functionalized graphene sheets, forming an ITO-graphene hybrid. Platinum nanoparticles are then deposited, forming a unique triple-junction structure (Pt-ITO-graphene). Our experimental work and periodic density functional theory (DFT) calculations show that the supported Pt nanoparticles are more stable at the Pt-ITO-graphene triple junctions. Furthermore, DFT calculations suggest that the defects and functional groups on graphene also play an important role in stabilizing the catalysts. These new catalyst materials were tested for oxygen reduction for potential applications in polymer electrolyte membrane fuel cells, and they exhibited greatly enhanced stability and activity. PMID:21302925

  6. Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials.

    PubMed

    Jeong, Gyoung Hwa; Baek, Seungmin; Lee, Seungyeol; Kim, Sang-Wook

    2016-04-01

    Graphene composites with metal or metal oxide nanoparticles have been extensively investigated owing to their potential applications in the fields of fuel cells, batteries, sensing, solar cells, and catalysis. Among them, much research has focused on supercapacitor applications and have come close to realization. Composites include monometal oxides of cobalt, nickel, manganese, and iron, as well as their binary and ternary oxides. In addition, their morphological control and hybrid systems of carbon nanotubes have also been investigated. This review presents the current trends in research on metal oxide/graphene composites for supercapacitors. Furthermore, methods are suggested to improve the properties of electrochemical capacitor electrodes. PMID:27061763

  7. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  8. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  9. The MSFC complementary metal oxide semiconductor (including multilevel interconnect metallization) process handbook

    NASA Technical Reports Server (NTRS)

    Bouldin, D. L.; Eastes, R. W.; Feltner, W. R.; Hollis, B. R.; Routh, D. E.

    1979-01-01

    The fabrication techniques for creation of complementary metal oxide semiconductor integrated circuits at George C. Marshall Space Flight Center are described. Examples of C-MOS integrated circuits manufactured at MSFC are presented with functional descriptions of each. Typical electrical characteristics of both p-channel metal oxide semiconductor and n-channel metal oxide semiconductor discrete devices under given conditions are provided. Procedures design, mask making, packaging, and testing are included.

  10. Exciton-Plasmon Coupling Enhancement via Metal Oxidation.

    PubMed

    Todisco, Francesco; D'Agostino, Stefania; Esposito, Marco; Fernández-Domínguez, Antonio I; De Giorgi, Milena; Ballarini, Dario; Dominici, Lorenzo; Tarantini, Iolena; Cuscuná, Massimo; Della Sala, Fabio; Gigli, Giuseppe; Sanvitto, Daniele

    2015-10-27

    In this paper, we report on the effect of metal oxidation on strong coupling interactions between silver nanostructures and a J-aggregated cyanine dye. We show that metal oxidation can sensibly affect the plexcitonic system, inducing a change in the coupling strength. In particular, we demonstrate that the presence of oxide prevents the appearance of Rabi splitting in the extinction spectra for thick spacers. In contrast, below a threshold percentage, the oxide layer results in an higher coupling strength between the plasmon and the Frenkel exciton. Contrary to common belief, a thin oxide layer seems thus to act, under certain conditions, as a coupling mediator between an emitter and a localized surface plasmon excited in a metallic nanostructure. This suggests that metal oxidation can be exploited as a means to enhance light-matter interactions in strong coupling applications. PMID:26378956

  11. Popping of graphite oxide: application in preparing metal nanoparticle catalysts.

    PubMed

    Gao, Yongjun; Chen, Xi; Zhang, Jiaguang; Asakura, Hiroyuki; Tanaka, Tsunehiro; Teramura, Kentaro; Ma, Ding; Yan, Ning

    2015-08-26

    A popcorn-like transformation of graphite oxide (GO) is reported and used to synthesize metal nanoparticle catalysts. The popping step is unique and essential, not only generating a high-surface-area support but also partially decomposing the metal precursors to form well-separated metal oxide nuclei, which would further evolve into highly dispersed and uniform-sized nanoparticles in the subsequent reduction. PMID:26179983

  12. Dielectric Engineering of a Boron Nitride/Hafnium Oxide Heterostructure for High-Performance 2D Field Effect Transistors.

    PubMed

    Zou, Xuming; Huang, Chun-Wei; Wang, Lifeng; Yin, Long-Jing; Li, Wenqing; Wang, Jingli; Wu, Bin; Liu, Yunqi; Yao, Qian; Jiang, Changzhong; Wu, Wen-Wei; He, Lin; Chen, Shanshan; Ho, Johnny C; Liao, Lei

    2016-03-01

    A unique design of a hexagonal boron nitride (h-BN)/HfO2 dielectric heterostructure stack is demonstrated, with few-layer h-BN to alleviate the surface optical phonon scattering, followed by high-κ HfO2 deposition to suppress Coulombic impurity scattering so that high-performance top-gated two-dimensional semiconductor transistors are achieved. Furthermore, this dielectric stack can also be extended to GaN-based transistors to enhance their performance. PMID:26762171

  13. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  14. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    SciTech Connect

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  15. Metal-oxide-semiconductor photocapacitor for sensing surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Khalilzade-Rezaie, Farnood; Peale, Robert E.; Panjwani, Deep; Smith, Christian W.; Nath, Janardan; Lodge, Michael; Ishigami, Masa; Nader, Nima; Vangala, Shiva; Yannuzzi, Mark; Cleary, Justin W.

    2015-09-01

    An electronic detector of surface plasmon polaritons (SPP) is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-semiconductor capacitor. Semitransparent metal and graphene gates function similarly. We report the dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing.

  16. Oxidized film structure and method of making epitaxial metal oxide structure

    DOEpatents

    Gan, Shupan [Richland, WA; Liang, Yong [Richland, WA

    2003-02-25

    A stable oxidized structure and an improved method of making such a structure, including an improved method of making an interfacial template for growing a crystalline metal oxide structure, are disclosed. The improved method comprises the steps of providing a substrate with a clean surface and depositing a metal on the surface at a high temperature under a vacuum to form a metal-substrate compound layer on the surface with a thickness of less than one monolayer. The compound layer is then oxidized by exposing the compound layer to essentially oxygen at a low partial pressure and low temperature. The method may further comprise the step of annealing the surface while under a vacuum to further stabilize the oxidized film structure. A crystalline metal oxide structure may be subsequently epitaxially grown by using the oxidized film structure as an interfacial template and depositing on the interfacial template at least one layer of a crystalline metal oxide.

  17. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  18. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  19. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, James A.

    1997-01-01

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  20. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, J.A.

    1997-12-02

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  1. Biomimetic metal oxides for the extraction of nanoparticles from water

    NASA Astrophysics Data System (ADS)

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-03-01

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications.Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial

  2. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  3. Formation of metal oxides by cathodic arc deposition

    SciTech Connect

    Anders, S.; Anders, A.; Rubin, M.; Wang, Z.; Raoux, S.; Kong, F.; Brown, I.G.

    1995-03-01

    Metal oxide thin films are of interest for a number of applications. Cathodic arc deposition, an established, industrially applied technique for formation of nitrides (e.g. TiN), can also be used for metal oxide thin film formation. A cathodic arc plasma source with desired cathode material is operated in an oxygen atmosphere, and metal oxides of various stoichiometric composition can be formed on different substrates. We report here on a series of experiments on metal oxide formation by cathodic arc deposition for different applications. Black copper oxide has been deposited on ALS components to increase the radiative heat transfer between the parts. Various metal oxides such as tungsten oxide, niobium oxide, nickel oxide and vanadium oxide have been deposited on ITO glass to form electrochromic films for window applications. Tantalum oxide films are of interest for replacing polymer electrolytes. Optical waveguide structures can be formed by refractive index variation using oxide multilayers. We have synthesized multilayers of Al{sub 2}O{sub 3}/Y{sub 2}O{sub 3}/AI{sub 2}O{sub 3}/Si as possible basic structures for passive optoelectronic integrated circuits, and Al{sub 2-x}Er{sub x}O{sub 3} thin films with a variable Er concentration which is a potential component layer for the production of active optoelectronic integrated devices such as amplifiers or lasers at a wavelength of 1.53 {mu}m. Aluminum and chromium oxide films have been deposited on a number of substrates to impart improved corrosion resistance at high temperature. Titanium sub-oxides which are electrically conductive and corrosion resistant and stable in a number of aggressive environments have been deposited on various substrates. These sub-oxides are of great interest for use in electrochemical cells.

  4. Preparation, Functionality, and Application of Metal Oxide-coated Noble Metal Nanoparticles.

    PubMed

    Liu, Shuhua; Regulacio, Michelle D; Tee, Si Yin; Khin, Yin Win; Teng, Choon Peng; Koh, Leng Duei; Guan, Guijian; Han, Ming-Yong

    2016-08-01

    With their remarkable properties and wide-ranging applications, nanostructures of noble metals and metal oxides have been receiving significantly increased attention in recent years. The desire to combine the properties of these two functional materials for specific applications has naturally prompted research in the design and synthesis of novel nanocomposites, consisting of both noble metal and metal-oxide components. In this review, particular attention is given to core-shell type metal oxide-coated noble metal nanostructures (i.e., metal@oxide), which display potential utility in applications, including photothermal therapy, catalytic conversions, photocatalysis, molecular sensing, and photovoltaics. Emerging research directions and areas are envisioned at the end to solicit more attention and work in this regard. PMID:27291595

  5. Interaction of nanostructured metal overlayers with oxide surfaces

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Wagner, Thomas

    2007-11-01

    Interactions between metals and oxides are key factors to determine the performance of metal/oxide heterojunctions, particularly in nanotechnology, where the miniaturization of devices down to the nanoregime leads to an enormous increase in the density of interfaces. One central issue of concern in engineering metal/oxide interfaces is to understand and control the interactions which consist of two fundamental aspects: (i) interfacial charge redistribution — electronic interaction, and (ii) interfacial atom transport — chemical interaction. The present paper focuses on recent advances in both electronic and atomic level understanding of the metal-oxide interactions at temperatures below 1000 ∘C, with special emphasis on model systems like ultrathin metal overlayers or metal nanoclusters supported on well-defined oxide surfaces. The important factors determining the metal-oxide interactions are provided. Guidelines are given in order to predict the interactions in such systems, and methods to desirably tune them are suggested. The review starts with a brief summary of the physics and chemistry of heterophase interface contacts. Basic concepts for quantifying the electronic interaction at metal/oxide interfaces are compared to well-developed contact theories and calculation methods. The chemical interaction between metals and oxides, i.e., the interface chemical reaction, is described in terms of its thermodynamics and kinetics. We review the different chemical driving forces and the influence of kinetics on interface reactions, proposing a strong interplay between the chemical interaction and electronic interaction, which is decisive for the final interfacial reactivity. In addition, a brief review of solid-gas interface reactions (oxidation of metal surfaces and etching of semiconductor surfaces) is given, in addition to a comparison of a similar mechanism dominating in solid-solid and solid-gas interface reactions. The main body of the paper reviews

  6. Method for converting uranium oxides to uranium metal

    DOEpatents

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  7. Process for making a noble metal on tin oxide catalyst

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Davis, Patricia (Inventor); Miller, Irvin M. (Inventor)

    1989-01-01

    A quantity of reagent grade tin metal or compound, chloride-free, and high-surface-area silica spheres are placed in deionized water, followed by deaerating the mixture by boiling and adding an oxidizing agent, such as nitric acid. The nitric acid oxidizes the tin to metastannic acid which coats the spheres because the acid is absorbed on the substrate. The metastannic acid becomes tin oxide upon drying and calcining. The tin-oxide coated silica spheres are then placed in water and boiled. A chloride-free precious metal compound in aqueous solution is then added to the mixture containing the spheres, and the precious metal compound is reduced to a precious metal by use of a suitable reducing agent such as formic acid. Very beneficial results were obtained using the precious metal compound tetraammine platinum(II) hydroxide.

  8. Development of a regenerable metal oxide CO removal system

    NASA Technical Reports Server (NTRS)

    Cusick, Robert J.

    1990-01-01

    A regenerable metal oxide carbon dioxide (CO2) removal system was developed to replace the current means of a nonreusable chemical, lithium hydroxide, for removing the metabolic CO2 of an astronaut in a space suit. Testing indicates that a viable low-volume metal oxide concept can be used in the portable life support system for CO2 removal during Space Station extravehicular activity (EVA). A canister of nearly the same volume as that used for the Space Shuttle, containing 0.10 cu ft of silver-oxide-based pellets, was tested; test data analysis indicates that 0.18 cu ft of the metal oxide will result in an 8-hour EVA capability. The testing suggests that the metal oxide technology offers a low-volume approach for a reusable CO2 removal concept applicable for at least 40 EVA missions. The development and testing of the breadboard regeneration package is also described.

  9. Improving Metal-Oxide-Metal (MOM) Diode Performance Via the Optimization of the Oxide Layer

    NASA Astrophysics Data System (ADS)

    Dodd, Linzi E.; Shenton, Samantha A.; Gallant, Andrew J.; Wood, David

    2015-05-01

    Small area metal-oxide-metal (MOM) diodes are being investigated in many research groups for the detection of THz frequency radiation. In order to create a high-speed rectifying device, the central oxide layer of the MOM structure must be thin and have known physical characteristics. The thickness, structure and uniformity of the oxide can be controlled during the fabrication process. In the work presented here, the effects of both oxygen plasma concentration and annealing temperature during fabrication of MOM diodes have been explored. It has been found that, by reducing the oxygen gas concentration from previous work, the layer can be more repeatable and uniform. Furthermore, for an anneal temperature up to a threshold temperature in the to range, the performance of the diodes is excellent, with a value of zero-bias curvature coefficient (CCZB) that can be up to . For higher temperature treatments, the value of CCZB decreases to a maximum of . Similar trends in AC tests can be seen for voltage and current responsivity values.

  10. Electric field effects in graphene/LaAlO{sub 3}/SrTiO{sub 3} heterostructures and nanostructures

    SciTech Connect

    Huang, Mengchen; Jnawali, Giriraj; Hsu, Jen-Feng; Dhingra, Shonali; Bi, Feng; Chen, Lu; D’Urso, Brian; Irvin, Patrick; Levy, Jeremy; Lee, Hyungwoo; Ryu, Sangwoo; Eom, Chang-Beom; Ghahari, Fereshte; Ravichandran, Jayakanth; Kim, Philip

    2015-06-01

    We report the development and characterization of graphene/LaAlO{sub 3}/SrTiO{sub 3} heterostructures. Complex-oxide heterostructures are created by pulsed laser deposition and are integrated with graphene using both mechanical exfoliation and transfer from chemical-vapor deposition on ultraflat copper substrates. Nanoscale control of the metal-insulator transition at the LaAlO{sub 3}/SrTiO{sub 3} interface, achieved using conductive atomic force microscope lithography, is demonstrated to be possible through the graphene layer. LaAlO{sub 3}/SrTiO{sub 3}-based electric field effects using a graphene top gate are also demonstrated. The ability to create functional field-effect devices provides the potential of graphene-complex-oxide heterostructures for scientific and technological advancement.

  11. Reactive sputter deposition of metal oxide nanolaminates

    NASA Astrophysics Data System (ADS)

    Rubin Aita, Carolyn

    2008-07-01

    We discuss the reactive sputter deposition of metal oxide nanolaminates on unheated substrates using four archetypical examples: ZrO2 Al2O3, HfO2 Al2O3, ZrO2 Y2O3, and ZrO2 TiO2. The pseudobinary bulk phase diagrams corresponding to these nanolaminates represent three types of interfaces. I. Complete immiscibility (ZrO2 Al2O3 and HfO2 Al2O3). II. Complete miscibility (ZrO2 Y2O3). III. Limited miscibility without a common end-member lattice (ZrO2 TiO2). We found that, although reactive sputter deposition is a far-from-equilibrium process, thermodynamic considerations strongly influence both phase formation within layers and at interfaces. We show that pseudobinary phase diagrams can be used to predict interfacial cation mixing in the nanolaminates. However, size effects must be considered to predict specific structures. In the absence of pseudoepitaxy, size effects play a significant role in determining the nanocrystalline phases that form within a layer (e.g. tetragonal ZrO2, tetragonal HfO2, and orthorhombic HfO2) and at interfaces (e.g. monoclinic (Zr,Ti)O2). These phases are not bulk standard temperature and pressure phases. Their formation is understood in terms of self-assembly into the lowest energy structure in individual critical nuclei.

  12. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1993-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  13. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, Michael T.; Scott, Timothy C.; Byers, Charles H.

    1992-01-01

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed.

  14. Method and apparatus for the production of metal oxide powder

    DOEpatents

    Harris, M.T.; Scott, T.C.; Byers, C.H.

    1992-06-16

    The present invention provides a method for preparing metal oxide powder. A first solution, which is substantially organic, is prepared. A second solution, which is an aqueous solution substantially immiscible in the first solution, is prepared and delivered as drops to the first solution. The drops of the second solution are atomized by a pulsed electric field forming micro-drops of the second solution. Reagents in the first solution diffuse into and react with reactants in the micro-drops of the second solution forming metal hydroxide or oxalate particles. The metal hydroxide or metal oxalate particles are then recovered and dried to produce the metal oxide powder. An apparatus for preparing a metal oxide powder is also disclosed. 2 figs.

  15. Origin and distribution of charge carriers in LaAlO3-SrTiO3 oxide heterostructures in the high carrier density limit

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sumanta; Pal, Banabir; Choudhury, Debraj; Sarkar, Indranil; Drube, Wolfgang; Gorgoi, Mihaela; Karis, Olof; Takagi, H.; Matsuno, Jobu; Sarma, D. D.

    2016-06-01

    Using hard x-ray photoelectron spectroscopy with variable photon energy (2-8 keV), we address the distribution of charge carriers in the prototypical LaAlO3 (LAO) and SrTiO3 (STO) oxide heterostructures with high carrier densities (1017cm-2 ). Our results demonstrate the presence of two distinct charge distributions in this system: one tied to the interface with a ˜1 -nm width and ˜2 -5 × 1014-cm-2 carrier concentration, while the other appears distributed nearly homogeneously through the bulk of STO corresponding to a much larger carrier contribution. Our results also establish bimodal oxygen vacancies, namely on top of LAO and throughout STO, quantitatively establishing these as the origin of the observed bimodal depth distribution of charge carriers in these highly doped sample.

  16. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors

    PubMed Central

    Wang, Chengxiang; Yin, Longwei; Zhang, Luyuan; Xiang, Dong; Gao, Rui

    2010-01-01

    Conductometric semiconducting metal oxide gas sensors have been widely used and investigated in the detection of gases. Investigations have indicated that the gas sensing process is strongly related to surface reactions, so one of the important parameters of gas sensors, the sensitivity of the metal oxide based materials, will change with the factors influencing the surface reactions, such as chemical components, surface-modification and microstructures of sensing layers, temperature and humidity. In this brief review, attention will be focused on changes of sensitivity of conductometric semiconducting metal oxide gas sensors due to the five factors mentioned above. PMID:22294916

  17. Multiscale model of metal alloy oxidation at grain boundaries

    SciTech Connect

    Sushko, Maria L. Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr{sub 2}O{sub 3}. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl{sub 2}O{sub 4}. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr{sub 2}O{sub 3} has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl{sub 2}O{sub 4} has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular

  18. Multiscale model of metal alloy oxidation at grain boundaries.

    PubMed

    Sushko, Maria L; Alexandrov, Vitaly; Schreiber, Daniel K; Rosso, Kevin M; Bruemmer, Stephen M

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen

  19. Multiscale model of metal alloy oxidation at grain boundaries

    NASA Astrophysics Data System (ADS)

    Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen

  20. Electromagnetic modes of the asymmetric metal-oxide-metal tunnel junction

    NASA Technical Reports Server (NTRS)

    Kurdi, B. N.; Hall, D. G.

    1984-01-01

    The characteristics of the modes of an Al-Al2O3-Ag tunnel junction are analyzed, and the way in which the field profiles, the propagation constant, and the attenuation depend on the thickness of the oxide layer is described. The significance of these results for investigations of light emission from metal-oxide-metal tunnel junctions is discussed.

  1. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  2. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  3. An in situ oxidation route to fabricate graphene nanoplate-metal oxide composites

    SciTech Connect

    Chen Sheng; Zhu Junwu; Wang Xin

    2011-06-15

    We report our studies on an improved soft chemical route to directly fabricate graphene nanoplate-metal oxide (Ag{sub 2}O, Co{sub 3}O{sub 4}, Cu{sub 2}O and ZnO) composites from the in situ oxidation of graphene nanoplates. By virtue of H{sup +} from hydrolysis of the metal nitrate aqueous solution and NO{sub 3}{sup -}, only a small amount of functional groups were introduced, acting as anchor sites and consequently forming the graphene nanoplate-metal oxide composites. The main advantages of this approach are that it does not require cumbersome oxidation of graphite in advance and no need to reduce the composites due to the lower oxidation degree. The microstructures of as-obtained metal oxides on graphene nanoplates can be dramatically controlled by changing the reaction parameters, opening up the possibility for processing the optical and electrochemical properties of the graphene-based nanocomposites. - graphical abstract: An improved soft chemical route to directly fabricate graphene nanoplate-metal oxide composites is reported from the in situ oxidation of graphene nanoplates. Highlights: > An improved soft chemical route to directly fabricate graphene nanoplate-metal oxide composites. > The microstructures can be controlled by changing the reaction parameters. > It does not require oxidation of graphite in advance and no need to reduce the composites due to the lower oxidation degree.

  4. Metal oxide semiconductor structure using oxygen-terminated diamond

    NASA Astrophysics Data System (ADS)

    Chicot, G.; Maréchal, A.; Motte, R.; Muret, P.; Gheeraert, E.; Pernot, J.

    2013-06-01

    Metal-oxide-semiconductor structures with aluminum oxide as insulator and p-type (100) mono-crystalline diamond as semiconductor have been fabricated and investigated by capacitance versus voltage and current versus voltage measurements. The aluminum oxide dielectric was deposited using low temperature atomic layer deposition on an oxygenated diamond surface. The capacitance voltage measurements demonstrate that accumulation, depletion, and deep depletion regimes can be controlled by the bias voltage, opening the route for diamond metal-oxide-semiconductor field effect transistor. A band diagram is proposed and discussed.

  5. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, Kevin C.; Kodas, Toivo T.

    1994-01-01

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said FIELD OF THE INVENTION The present invention relates to the field of film coating deposition techniques, and more particularly to the deposition of multicomponent metal oxide films by aerosol chemical vapor deposition. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  6. Surface Stabilization Mechanisms in Metal Oxides

    NASA Astrophysics Data System (ADS)

    Becerra Toledo, Andres Enrique

    2011-07-01

    Metal oxide surfaces play a central role in modern applications, ranging from heterogeneous catalysis to electronic devices, yet little is known about the processes determining their structural stabilization. Several such stabilization mechanisms are explored via a combination of theoretical and experimental methods. The processes of periodic reconstruction, adsorption and segregation are studied through case studies of model material systems. The evaluation of structural models of periodic SrTiO3(001) reconstructions via bonding analysis and simulated scanning tunneling microscopy images supports the family of "DL" models terminating in two consecutive layers of TiO2 composition, and discards alternative proposals such as the models based on periodic Sr adatoms. Experimental and simulated scanning tunneling microscopy images and complementary spectroscopic data are used to determine the structure of linear Ti-rich SrTiO 3(001) nanostructures. The structural solution exemplifies the recurrence of locally stable motifs across numerous surfaces. In particular, the arrangement of edge-sharing TiO5 surface polyhedra is a trait is shared by (001) nanostructures and DL reconstructions. This is a flexible framework which allows for optimal bonding in surface atoms. Modeling of water adsorption on reconstructed SrTiO3(001) surfaces reveals that water plays two major roles in the stabilization of oxide surfaces: it may mediate the formation of certain ordered structures, or it may be part of the ultimately stable structures themselves. This can be understood in terms of the inevitable presence of chemisorbed water on defective surfaces. Since the surface mobility of cationic species is relatively low, the kinetics associated to water diffusion and desorption dominate the surface ordering process. High-temperature annealing of SrLaAlO4 single crystals leads to the segregation of SrO to the surfaces, in the form of islands. This process is in fact a bulk stabilization

  7. Method of physical vapor deposition of metal oxides on semiconductors

    DOEpatents

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  8. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    SciTech Connect

    Clapsaddle, B; Gash, A; Plantier, K; Pantoya, M; Jr., J S; Simpson, R

    2004-04-27

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. By introducing a fuel metal, such as aluminum, into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. In addition, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. These organic additives can cause the generation of gas upon ignition of the materials, therefore resulting in a composite material that can perform pressure/volume work. Furthermore, the desired organic functionality is well dispersed throughout the composite material on the nanoscale with the other components, and is therefore subject to the same increased reaction kinetics. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of iron(III) oxide/organosilicon oxide nanocomposites and their performance as energetic materials will be discussed.

  9. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes.

    PubMed

    Jiang, Hao; Ma, Jan; Li, Chunzhong

    2012-08-01

    Supercapacitors have attracted huge attention in recent years as they have the potential to satisfy the demand of both huge energy and power density in many advanced technologies. However, poor conductivity and cycling stability remains to be the major challenge for its widespread application. Various strategies have been developed for meeting the ever-increasing energy and power demands in supercapacitors. This Research News article aims to review recent progress in the development of mesoporous carbon incorporated metal oxide nanomaterials, especially metal oxide nanoparticles confined in ordered mesoporous carbon and 1D metal oxides coated with a layer of mesoporous carbon for high-performance supercapacitor applications. In addition, a recent trend in supercapacitor development - hierarchical porous graphitic carbons (HPGC) combining macroporous cores, mesoporous walls, and micropores as an excellent support for metal oxides - is also discussed. PMID:23030034

  10. Electrolytic separation of crystals of transition-metal oxides

    NASA Technical Reports Server (NTRS)

    Arnott, R. J.; Feretti, A.; Kunnamann, W.

    1969-01-01

    Versatile flux system grows large, well-formed, stoichiometric single crystals of mixed oxides of the transition-metal elements. These crystals have important uses in the microwave field, and applications as lasers and masers in communications.

  11. Fabrication and characterization of metal oxide nanowire sensors.

    PubMed

    Shen, Guozhen

    2008-01-01

    Trace detection of chemicals and biological species like industrial gases, proteins, drug molecules, and chemical warfare agents, is an important issue to human health and safety. Central to this issue is the development of high sensitivity, high selectivity, high stability and rapid detection chemical and bio-sensors. With special geometry and chemical and physical properties, one-dimensional (1-D) metal oxide nanostructures have become the promising candidates for chemical and biosensing applications in recent years. Here, we intend to provide an overview on this interesting and important field. In the first part, the patents for rational synthesis of 1-D metal oxide nanostructures on a large scale will be introduced. The patents on chemical and biosensors built on 1-D metal oxide nanostructures are then introduced in the second part. Finally, we provide a review of the recent development of electronic nose systems using 1-D metal oxide nanostructures, which show great potential for the improvement of sensing abilities. PMID:19076050

  12. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  13. Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange

    PubMed Central

    2013-01-01

    For three types of colloidal magnetic nanocrystals, we demonstrate that postsynthetic cation exchange enables tuning of the nanocrystal’s magnetic properties and achieving characteristics not obtainable by conventional synthetic routes. While the cation exchange procedure, performed in solution phase approach, was restricted so far to chalcogenide based semiconductor nanocrystals, here ferrite-based nanocrystals were subjected to a Fe2+ to Co2+ cation exchange procedure. This allows tracing of the compositional modifications by systematic and detailed magnetic characterization. In homogeneous magnetite nanocrystals and in gold/magnetite core shell nanocrystals the cation exchange increases the coercivity field, the remanence magnetization, as well as the superparamagnetic blocking temperature. For core/shell nanoheterostructures a selective doping of either the shell or predominantly of the core with Co2+ is demonstrated. By applying the cation exchange to FeO/CoFe2O4 core/shell nanocrystals the Neél temperature of the core material is increased and exchange-bias effects are enhanced so that vertical shifts of the hysteresis loops are obtained which are superior to those in any other system. PMID:23362940

  14. Cryochemical method for forming spherical metal oxide particles from metal salt solutions

    DOEpatents

    Tinkle, M.C.

    1973-12-01

    A method is described of preparing small metal oxide spheres cryochemically utilizing metal salts (e.g., nitrates) that cannot readily be dried and calcined without loss of sphericity of the particles. Such metal salts are cryochemically formed into small spheres, partially or completely converted to an insoluble salt, and dried and calcined. (Official Gazette)

  15. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOEpatents

    Morrell; Jonathan S. , Ripley; Edward B.

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  16. Noble Metal Nanoparticle-loaded Mesoporous Oxide Microspheres for Catalysis

    NASA Astrophysics Data System (ADS)

    Jin, Zhao

    Noble metal nanoparticles/nanocrystals have attracted much attention as catalysts due to their unique characteristics, including high surface areas and well-controlled facets, which are not often possessed by their bulk counterparts. To avoid the loss of their catalytic activities brought about by their size and shape changes during catalytic reactions, noble metal nanoparticles/nanocrystals are usually dispersed and supported finely on solid oxide supports to prevent agglomeration, nanoparticle growth, and therefore the decrease in the total surface area. Moreover, metal oxide supports can also play important roles in catalytic reactions through the synergistic interactions with loaded metal nanoparticles/nanocrystals. In this thesis, I use ultrasonic aerosol spray to produce hybrid microspheres that are composed of noble metal nanoparticles/nanocrystals embedded in mesoporous metal oxide matrices. The mesoporous metal oxide structure allows for the fast diffusion of reactants and products as well as confining and supporting noble metal nanoparticles. I will first describe my studies on noble metal-loaded mesoporous oxide microspheres as catalysts. Three types of noble metals (Au, Pt, Pd) and three types of metal oxide substrates (TiO2, ZrO2, Al 2O3) were selected, because they are widely used for practical catalytic applications involved in environmental cleaning, pollution control, petrochemical, and pharmaceutical syntheses. By considering every possible combination of the noble metals and oxide substrates, nine types of catalyst samples were produced. I characterized the structures of these catalysts, including their sizes, morphologies, crystallinity, and porosities, and their catalytic performances by using a representative reduction reaction from nitrobenzene to aminobenzene. Comparison of the catalytic results reveals the effects of the different noble metals, their incorporation amounts, and oxide substrates on the catalytic abilities. For this particular

  17. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites

    PubMed Central

    2015-01-01

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide–metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp2-derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network. PMID:25152800

  18. Magnetoelastic coupling in epitaxial cobalt ferrite/barium titanate heterostructures

    NASA Astrophysics Data System (ADS)

    Gräfe, Joachim; Welke, Martin; Bern, Francis; Ziese, Michael; Denecke, Reinhard

    2013-08-01

    Ultra-thin cobalt ferrite films have been synthesised on ferroelectric barium titanate crystals. The cobalt ferrite films exhibit a magnetic response to strain induced by structural changes in the barium titanate substrate, suggesting a pathway to multiferroic coupling. These structural changes are achieved by heating through the phase transition temperatures of barium titanate. In addition the ferromagnetic signal of the substrate itself is taken into account, addressing the influence of impurities or defects in the substrate. The cobalt ferrite/barium titanate heterostructure is a suitable oxidic platform for future magnetoelectric applications with an established ferroelectric substrate and widely tuneable magnetic properties by changing the transition metal in the ferrite film.

  19. Development of metal oxide impregnated stilbite thick film ethanol sensor

    NASA Astrophysics Data System (ADS)

    Mahabole, M. P.; Lakhane, M. A.; Choudhari, A. L.; Khairnar, R. S.

    2016-05-01

    This paper presents the study of the sensing efficiency of Titanium oxide/ Stilbite and Copper oxide /Stilbite composites towards detection of hazardous pollutants like ethanol. Stilbite based composites are prepared by physically mixing zeolite with metal oxides namely TiO2 and CuO with weight ratios of 25:75, 50:50 and 75:25. The resulting sensor materials are characterized by X-ray diffraction and Fourier Transform Infrared Spectroscopy techniques. Composite sensors are fabricated in the form of thick film by using screen printing technique. The effect of metal oxide concentration on various ethanol sensing parameters such as operating temperature, maximum uptake capacity and response/recovery time are investigated. The results indicate that metal oxide impregnated stilbite composites have great potential as low temperature ethanol sensor.

  20. Plutonium metal and oxide container weld development and qualification

    SciTech Connect

    Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

    1996-01-01

    Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

  1. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.

    PubMed

    Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P

    2013-04-01

    Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers. PMID:23539180

  2. Process for Making a Noble Metal on Tin Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  3. Heavy metal removal from water/wastewater by nanosized metal oxides: a review.

    PubMed

    Hua, Ming; Zhang, Shujuan; Pan, Bingcai; Zhang, Weiming; Lv, Lu; Zhang, Quanxing

    2012-04-15

    Nanosized metal oxides (NMOs), including nanosized ferric oxides, manganese oxides, aluminum oxides, titanium oxides, magnesium oxides and cerium oxides, provide high surface area and specific affinity for heavy metal adsorption from aqueous systems. To date, it has become a hot topic to develop new technologies to synthesize NMOs, to evaluate their removal of heavy metals under varying experimental conditions, to reveal the underlying mechanism responsible for metal removal based on modern analytical techniques (XAS, ATR-FT-IR, NMR, etc.) or mathematical models, and to develop metal oxide-based materials of better applicability for practical use (such as granular oxides or composite materials). The present review mainly focuses on NMOs' preparation, their physicochemical properties, adsorption characteristics and mechanism, as well as their application in heavy metal removal. In addition, porous host supported NMOs are particularly concerned because of their great advantages for practical application as compared to the original NMOs. Also, some magnetic NMOs were included due to their unique separation performance. PMID:22018872

  4. Multiscale model of metal alloy oxidation at grain boundaries

    SciTech Connect

    Sushko, Maria L.; Alexandrov, Vitali Y.; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-06-07

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model at experimentally relevant length scales is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2 - 1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular

  5. Research Update: Orbital polarization in LaNiO{sub 3}-based heterostructures

    SciTech Connect

    Disa, Ankit S. Walker, F. J.; Ismail-Beigi, Sohrab; Ahn, Charles H.

    2015-06-01

    The relative energies and occupancies of valence orbital states can dramatically influence collective electronic and magnetic phenomena in correlated transition metal oxide systems. We review the current state of research on the modification and control of these orbital properties in rare-earth nickelates, especially LaNiO{sub 3}, a model degenerate d orbital system where significant recent progress has been made. Theoretical and experimental results on thin films and heterostructures are described, including the influence of electronic correlation effects. We highlight the latest approaches to achieving non-degenerate bands and discuss the outlook and applicability of this body of knowledge to other correlated metal oxide systems.

  6. Thermochemical analyses of the oxidative vaporization of metals and oxides by oxygen molecules and atoms

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Leisz, D. M.; Fryburg, G. C.; Stearns, C. A.

    1977-01-01

    Equilibrium thermochemical analyses are employed to describe the vaporization processes of metals and metal oxides upon exposure to molecular and atomic oxygen. Specific analytic results for the chromium-, platinum-, aluminum-, and silicon-oxygen systems are presented. Maximum rates of oxidative vaporization predicted from the thermochemical considerations are compared with experimental results for chromium and platinum. The oxidative vaporization rates of chromium and platinum are considerably enhanced by oxygen atoms.

  7. Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Minjoo L.; Fitzgerald, Eugene A.; Bulsara, Mayank T.; Currie, Matthew T.; Lochtefeld, Anthony

    2005-01-01

    This article reviews the history and current progress in high-mobility strained Si, SiGe, and Ge channel metal-oxide-semiconductor field-effect transistors (MOSFETs). We start by providing a chronological overview of important milestones and discoveries that have allowed heterostructures grown on Si substrates to transition from purely academic research in the 1980's and 1990's to the commercial development that is taking place today. We next provide a topical review of the various types of strain-engineered MOSFETs that can be integrated onto relaxed Si1-xGex, including surface-channel strained Si n- and p-MOSFETs, as well as double-heterostructure MOSFETs which combine a strained Si surface channel with a Ge-rich buried channel. In all cases, we will focus on the connections between layer structure, band structure, and MOS mobility characteristics. Although the surface and starting substrate are composed of pure Si, the use of strained Si still creates new challenges, and we shall also review the literature on short-channel device performance and process integration of strained Si. The review concludes with a global summary of the mobility enhancements available in the SiGe materials system and a discussion of implications for future technology generations.

  8. Selective Growth of Noble Gases at Metal/Oxide Interface.

    PubMed

    Takahashi, Keisuke; Oka, Hiroshi; Ohnuki, Somei

    2016-02-17

    The locations and roles of noble gases at an oxide/metal interface in oxide dispersed metal are theoretically and experimentally investigated. Oxide dispersed metal consisting of FCC Fe and Y2Hf2O7 (Y2Ti2O7) is synthesized by mechanical alloying under a saturated Ar gas environment. Transmission electron microscopy and density functional theory observes the strain field at the interface of FCC Fe {111} and Y2Hf2O7 {111} whose physical origin emerges from surface reconstruction due to charge transfer. Noble gases are experimentally observed at the oxide (Y2Ti2O7) site and calculations reveal that the noble gases segregate the interface and grow toward the oxide site. In general, the interface is defined as the trapping site for noble gases; however, transmission electron microscopy and density functional theory found evidence which shows that noble gases grow toward the oxide, contrary to the generally held idea that the interface is the final trapping site for noble gases. Furthermore, calculations show that the inclusion of He/Ar hardens the oxide, suggesting that material fractures could begin from the noble gas bubble within the oxides. Thus, experimental and theoretical results demonstrate that noble gases grow from the interface toward the oxide and that oxides behave as a trapping site for noble gases. PMID:26840881

  9. Sol-gel metal oxide and metal oxide/polymer multilayers applied by meniscus coating

    SciTech Connect

    Britten, J.A.; Thomas, I.M.

    1993-10-01

    We are developing a meniscus coating process for manufacturing large-aperture dielectric multilayer high reflectors (HR`s) at ambient conditions from liquid suspensions. Using a lab-scale coater capable of coating 150 mm square substrates, we have produced several HR`s which give 99% + reflection with 24 layers and with edge effects confined to about 10 mm. In calendar 1993 we are taking delivery of an automated meniscus coating machine capable of coating substrates up to 400 mm wide and 600 mm long. The laser-damage threshold and failure stress of sol-gel thin films can be substantially increased through the use of soluble polymers which act as binders for the metal oxide particles comprising the deposited film. Refractive index control of the film is also possible through varying the polymer/oxide ratio. Much of our present effort present is in optimizing oxide particle/binder/solvent formulations for the high-index material. Films from colloidal zirconia strengthened with polyvinylpyrollidone (PVP) have given best results to date. An increase in the laser damage threshold (LDT) for single layers has been shown to significantly increase with increased polymer loading, but as yet the LDT for multilayer stacks remains low.

  10. Complexed metals in hazardous waste: Limitations of conventional chemical oxidation

    SciTech Connect

    Diel, B.N.; Kuchynka, D.J.; Borchert, J.

    1994-12-31

    In the management of hazardous waste, more is known regarding the treatment of metals than about the fixation, destruction and/or immobilization of any other hazardous constituent group. Metals are the only hazardous constituents which cannot be destroyed, and so must be converted to their least soluble and/or reactive form to prevent reentry into the environment. The occurrence of complexed metals, e.g., metallocyanides, and/or chelated metals, e.g., M{center_dot}EDTA in hazardous waste streams presents formidable challenges to conventional waste treatment practices. This paper presents the results of extensive research into the destruction (chemical oxidation) of metallocyanides and metal-chelates, defines the utility and limitations of conventional chemical oxidation approaches, illustrates some of the waste management difficulties presented by such species, and presents preliminary data on the UV/H{sub 2}O{sub 2} photodecomposition of chelated metals.

  11. Metal-oxide-based energetic materials and synthesis thereof

    DOEpatents

    Tillotson, Thomas M. , Simpson; Randall L.; Hrubesh, Lawrence W.

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  12. Integrated photo-responsive metal oxide semiconductor circuit

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban D. (Inventor); Dargo, David R. (Inventor); Lyons, John C. (Inventor)

    1987-01-01

    An infrared photoresponsive element (RD) is monolithically integrated into a source follower circuit of a metal oxide semiconductor device by depositing a layer of a lead chalcogenide as a photoresistive element forming an ohmic bridge between two metallization strips serving as electrodes of the circuit. Voltage from the circuit varies in response to illumination of the layer by infrared radiation.

  13. Generation of singlet oxygen on the surface of metal oxides

    NASA Astrophysics Data System (ADS)

    Kiselev, V. M.; Kislyakov, I. M.; Burchinov, A. N.

    2016-04-01

    Generation of singlet oxygen on the surface of metal oxides is studied. It is shown that, under conditions of heterogeneous photo-catalysis, along with the conventional mechanism of singlet oxygen formation due to the formation of electron-hole pairs in the oxide structure, there is an additional and more efficient mechanism involving direct optical excitation of molecular oxygen adsorbed on the oxide surface. The excited adsorbate molecule then interacts with the surface or with other adsorbate molecules. It is shown that, with respect to singlet oxygen generation, yttrium oxide is more than an order of magnitude more efficient than other oxides, including titanium dioxide.

  14. Voltage control of metal-insulator transition and non-volatile ferroelastic switching of resistance in VOx/PMN-PT heterostructures.

    PubMed

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X

    2014-01-01

    The central challenge in realizing electronics based on strongly correlated electronic states, or 'Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices. PMID:25088796

  15. Voltage Control of Metal-insulator Transition and Non-volatile Ferroelastic Switching of Resistance in VOx/PMN-PT Heterostructures

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X.

    2014-08-01

    The central challenge in realizing electronics based on strongly correlated electronic states, or `Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices.

  16. Voltage Control of Metal-insulator Transition and Non-volatile Ferroelastic Switching of Resistance in VOx/PMN-PT Heterostructures

    PubMed Central

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X.

    2014-01-01

    The central challenge in realizing electronics based on strongly correlated electronic states, or ‘Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices. PMID:25088796

  17. FUNCTIONALIZED METAL OXIDE NANOPARTICLES: ENVIRONMENTAL TRANSFORMATIONS AND ECOTOXICITY

    EPA Science Inventory

    This study will provide fundamental information on alterations in the surface chemistry of commercially important functionalized metal oxide NPs under environmentally relevant oxidative and reductive conditions, as well as needed data on the inherent and photo-enhanced toxicit...

  18. Reductive mobilization of oxide-bound metals

    SciTech Connect

    Stone, A.T.

    1991-01-01

    We have completed a large number of experiments which examine the release of MnO{sub 2}-bound Co, Ni, and Cu. Our work has focused upon the following areas: (1) competitive adsorption among the three toxic metals and Mn(II); (2) toxic metal release upon addition of low MW organic reductants and complexants; and (3) toxic metal release upon addition of natural organic matter-rich surface waters and IHSS organic matter reference material.

  19. A dewetting route to grow heterostructured nanoparticles based on thin film heterojunctions.

    PubMed

    Li, Junjie; Yin, Deqiang; Li, Qiang; Chen, Chunlin; Huang, Sumei; Wang, Zhongchang

    2015-12-21

    Heterostructured nanoparticles have received considerable attention for their various applications due to their unique and tunable functionalities with respect to their individual bulk constituents. However, the current wet chemical synthesis of multicomponent heterostructured nanoparticles is rather complicated. Here, we report a simple and quick method to fabricate Co-Au dumbbell arrays by dewetting Co/Au heterojunctions on a Si substrate and demonstrate that the Co-Au dumbbells vary in size from 2 to 28 nm. We further show by chemical mapping that Co bells are covered by a pseudomorphic Au wetting layer of ∼4 Å, preventing the bells from oxidation. By controlling the thickness of metal heterojunctions and the annealing time, the morphology of the Co-Au nanoparticle is found to be transformed from the dumbbell to the core shell. This facile route is demonstrated to be useful for fabricating other metal-metal and metal-oxide heterostructures and hence holds technological promise for functional applications. PMID:26565804

  20. Metal-oxide-metal point contact junction detectors. [detection mechanism and mechanical stability

    NASA Technical Reports Server (NTRS)

    Baird, J.; Havemann, R. H.; Fults, R. D.

    1973-01-01

    The detection mechanism(s) and design of a mechanically stable metal-oxide-metal point contact junction detector are considered. A prototype for a mechanically stable device has been constructed and tested. A technique has been developed which accurately predicts microwave video detector and heterodyne mixer SIM (semiconductor-insulator-metal) diode performance from low dc frequency volt-ampere curves. The difference in contact potential between the two metals and geometrically induced rectification constitute the detection mechanisms.

  1. Field-assisted nanopatterning of metals, metal oxides and metal salts.

    PubMed

    Liu, Jun-Fu; Miller, Glen P

    2009-02-01

    The tip-based nanofabrication method called field-assisted nanopatterning or FAN has now been extended to the transfer of metals, metal oxides and metal salts onto various receiving substrates including highly ordered pyrolytic graphite, passivated gold and indium-tin oxide. Standard atomic force microscope tips were first dip-coated using suspensions of inorganic compounds in solvent. The films prepared in this manner were non-uniform and contained inorganic nanoparticles. Tip-based nanopatterning on chosen substrates was conducted under high electric field conditions. The same tip was used for both nanofabrication and imaging. Arbitrary patterns were formed with dimensions that ranged from tens of microns to sub-20 nm and were controlled by tuning the tip bias during fabrication. Most tip-based nanopatterning techniques are limited in terms of the type of species that can be deposited and the type of substrates onto which the deposition occurs. With the successful deposition of inorganic species reported here, FAN is demonstrated to be a truly versatile tip-based nanofabrication technique that is useful for the deposition of a wide variety of both organic and inorganic species including small molecules, large molecules and polymers. PMID:19417344

  2. Synthesis of supported metal oxide nanoparticles with narrow size distribution

    NASA Astrophysics Data System (ADS)

    Salem, Diana; Smolyakov, Georgiy; Schosseler, François; Petit, Pierre

    2012-06-01

    We report a versatile synthetic route allowing the formation of transition metal oxide nanoparticles supported on solid surfaces. Basically, the method lies on the complexation of metal cations with both anionic surfactant and hydroxilated surfaces, which results in the formation of small aggregates onto the surface. At thermodynamical equilibrium, the resulting balance between the loss of entropy due to the aggregation and the gain in enthalpy due to hydrophobic interactions between the alkyl chains of the surfactant governs the size of these aggregates. After calcination in air, metal oxide nanoparticles with very narrow size distribution are obtained.

  3. Quantization of Hall Resistance at the Metallic Interface between an Oxide Insulator and SrTiO_{3}.

    PubMed

    Trier, Felix; Prawiroatmodjo, Guenevere E D K; Zhong, Zhicheng; Christensen, Dennis Valbjørn; von Soosten, Merlin; Bhowmik, Arghya; Lastra, Juan Maria García; Chen, Yunzhong; Jespersen, Thomas Sand; Pryds, Nini

    2016-08-26

    The two-dimensional metal forming at the interface between an oxide insulator and SrTiO_{3} provides new opportunities for oxide electronics. However, the quantum Hall effect, one of the most fascinating effects of electrons confined in two dimensions, remains underexplored at these complex oxide heterointerfaces. Here, we report the experimental observation of quantized Hall resistance in a SrTiO_{3} heterointerface based on the modulation-doped amorphous-LaAlO_{3}/SrTiO_{3} heterostructure, which exhibits both high electron mobility exceeding 10,000  cm^{2}/V s and low carrier density on the order of ∼10^{12}  cm^{-2}. Along with unambiguous Shubnikov-de Haas oscillations, the spacing of the quantized Hall resistance suggests that the interface is comprised of a single quantum well with ten parallel conducting two-dimensional sub-bands. This provides new insight into the electronic structure of conducting oxide interfaces and represents an important step towards designing and understanding advanced oxide devices. PMID:27610874

  4. Interactions of Hydrogen Isotopes and Oxides with Metal Tubes

    SciTech Connect

    Glen R. Longhurst

    2008-08-01

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results.

  5. Infrared Photodissociation Spectroscopy of Metal Oxide Carbonyl Cations.

    NASA Astrophysics Data System (ADS)

    Brathwaite, Antonio D.; Duncan, Michael A.

    2013-06-01

    Mass selected metal oxide-carbonyl cations of the form MO_{m}(CO)_{n}^{+} are studied via infrared laser photodissociation spectroscopy, in the 600-2300cm^{1} region. Insight into the structure and bonding of these complexes is obtained from the number of infrared active bands, their relative intensities and their frequency positions. Density functional theory calculations are carried out in support of the experimental data. Insight into the bonding of CO ligands to metal oxides is obtained and the effect of oxidation on the carbonyl stretching frequency is revealed.

  6. Interactions of hydrogen isotopes and oxides with metal tubes

    SciTech Connect

    Longhurst, G. R.; Cleaver, J.

    2008-07-15

    Understanding and accounting for interaction of hydrogen isotopes and their oxides with metal surfaces is important for persons working with tritium systems. Reported data from several investigators have shown that the processes of oxidation, adsorption, absorption, and permeation are all coupled and interactive. A computer model has been developed for predicting the interaction of hydrogen isotopes and their corresponding oxides in a flowing carrier gas stream with the walls of a metallic tube, particularly at low hydrogen concentrations. An experiment has been constructed to validate the predictive model. Predictions from modeling lead to unexpected experiment results. (authors)

  7. Functional Metal Oxide Nanostructures: Their Synthesis, Characterization, and Energy Applications

    NASA Astrophysics Data System (ADS)

    Iyer, Aparna

    This research focuses on studying metal oxides (MnO 2, Co3O4, MgO, Y2O3) for various applications including water oxidation and photocatalytic oxidation, developing different synthesis methodologies, and presenting detailed characterization studies of these metal oxides. This research consists of three major parts. The first part is studying novel applications and developing a synthesis method for manganese oxide nanomaterials. Manganese oxide materials were studied for renewable energy applications by using them as catalysts for water oxidation reactions. In this study, various crystallographic forms of manganese oxides (amorphous, 2D layered, 1D 2 x 2 tunnel structures) were evaluated for water oxidation catalysis. Amorphous manganese oxides (AMO) were found to be catalytically active for chemical and photochemical water oxidation compared to cryptomelane type tunnel manganese oxides (2 x 2 tunnels; OMS2) or layered birnessite (OL-1) materials. Detailed characterization was done to establish a correlation between the properties of the manganese oxide materials and their catalytic activities in water oxidation. The gas phase photocatalytic oxidation of 2-propanol under visible light was studied using manganese oxide 2 x 2 tunnel structures (OMS-2) as catalysts (Chapter 3). The reaction is 100% selective to acetone. As suggested by the photocatalytic and characterization data, important factors for the design of active OMS-2 photocatalysts are synthesis methodology, morphology, mixed valency and the release of oxygen from the OMS-2 structure. Manganese oxide octahedral molecular sieves (2 x 2 tunnels; OMS-2) with self-assembled dense or hollow sphere morphologies were fabricated via a room temperature ultrasonic atomization assisted synthesis (Chapter 4). The properties and catalytic activities of these newly developed materials were compared with that of OMS-2 synthesized by conventional reflux route. These materials exhibit exceptionally high catalytic activities

  8. TiO2/Ferroelectric Heterostructures as Dynamic Polarization-Promoted Catalysts for Photochemical and Electrochemical Oxidation of Water

    NASA Astrophysics Data System (ADS)

    Lee, Jun Hee; Selloni, Annabella

    2014-05-01

    Using first-principles density functional theory calculations, we explore the chemical activity of epitaxial heterostructures of TiO2 anatase on strained polar SrTiO3 films focusing on the oxygen evolution reaction (OER), the bottleneck of water splitting. Our results show that the reactivity of the TiO2 surface is tuned by electric dipoles dynamically induced by the adsorbed species during the intermediate steps of the reaction while the initial and final steps remain unaffected. Compared to the OER on unsupported TiO2, the combined effects of the dynamically induced dipoles and epitaxial strain strongly reduce rate-limiting thermodynamic barriers and significantly improve the efficiency of the reaction.

  9. Aerosol chemical vapor deposition of metal oxide films

    DOEpatents

    Ott, K.C.; Kodas, T.T.

    1994-01-11

    A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate.

  10. The base metal of the oxide-coated cathode

    NASA Astrophysics Data System (ADS)

    Poret, F.; Roquais, J. M.

    2005-09-01

    The oxide-coated cathode has been the most widely used electron emitter in vacuum electronic devices. From one manufacturing company to another the emissive oxide is either a double—Ba, Sr—or a triple—Ba, Sr, Ca—oxide, having always the same respective compositions. Conversely, the base metal composition is very often proprietary because of its importance in the cathode emission performances. The present paper aims at explaining the operation of the base metal through a review. After a brief introduction, the notion of activator is detailed along with their diffusivities and their associated interfacial compounds. Then, the different cathode life models are described prior to few comments on the composition choice of a base metal. Finally, the specificities of the RCA/Thomson "bimetal" base metal are presented with a discussion on the optimized composition choice illustrated by a long-term life-test of five different melts.

  11. Emerging Applications of Liquid Metals Featuring Surface Oxides

    PubMed Central

    2014-01-01

    Gallium and several of its alloys are liquid metals at or near room temperature. Gallium has low toxicity, essentially no vapor pressure, and a low viscosity. Despite these desirable properties, applications calling for liquid metal often use toxic mercury because gallium forms a thin oxide layer on its surface. The oxide interferes with electrochemical measurements, alters the physicochemical properties of the surface, and changes the fluid dynamic behavior of the metal in a way that has, until recently, been considered a nuisance. Here, we show that this solid oxide “skin” enables many new applications for liquid metals including soft electrodes and sensors, functional microcomponents for microfluidic devices, self-healing circuits, shape-reconfigurable conductors, and stretchable antennas, wires, and interconnects. PMID:25283244

  12. Nanostructured Metal Oxides for Stoichiometric Degradation of Chemical Warfare Agents.

    PubMed

    Štengl, Václav; Henych, Jiří; Janoš, Pavel; Skoumal, Miroslav

    2016-01-01

    Metal oxides have very important applications in many areas of chemistry, physics and materials science; their properties are dependent on the method of preparation, the morphology and texture. Nanostructured metal oxides can exhibit unique characteristics unlike those of the bulk form depending on their morphology, with a high density of edges, corners and defect surfaces. In recent years, methods have been developed for the preparation of metal oxide powders with tunable control of the primary particle size as well as of a secondary particle size: the size of agglomerates of crystallites. One of the many ways to take advantage of unique properties of nanostructured oxide materials is stoichiometric degradation of chemical warfare agents (CWAs) and volatile organic compounds (VOC) pollutants on their surfaces. PMID:26423076

  13. Internal zone growth method for producing metal oxide metal eutectic composites

    DOEpatents

    Clark, Grady W.; Holder, John D.; Pasto, Arvid E.

    1980-01-01

    An improved method for preparing a cermet comprises preparing a compact having about 85 to 95 percent theoretical density from a mixture of metal and metal oxide powders from a system containing a eutectic composition, and inductively heating the compact in a radiofrequency field to cause the formation of an internal molten zone. The metal oxide particles in the powder mixture are effectively sized relative to the metal particles to permit direct inductive heating of the compact by radiofrequency from room temperature. Surface melting is prevented by external cooling or by effectively sizing the particles in the powder mixture.

  14. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation.

    PubMed

    Chen, Wei; Wang, Haotian; Li, Yuzhang; Liu, Yayuan; Sun, Jie; Lee, Sanghan; Lee, Jang-Soo; Cui, Yi

    2015-08-26

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt-nickel-iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm(-2), small Tafel slope of 37.6 mV dec(-1), and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  15. In Situ Electrochemical Oxidation Tuning of Transition Metal Disulfides to Oxides for Enhanced Water Oxidation

    PubMed Central

    2015-01-01

    The development of catalysts with earth-abundant elements for efficient oxygen evolution reactions is of paramount significance for clean and sustainable energy storage and conversion devices. Our group demonstrated recently that the electrochemical tuning of catalysts via lithium insertion and extraction has emerged as a powerful approach to improve catalytic activity. Here we report a novel in situ electrochemical oxidation tuning approach to develop a series of binary, ternary, and quaternary transition metal (e.g., Co, Ni, Fe) oxides from their corresponding sulfides as highly active catalysts for much enhanced water oxidation. The electrochemically tuned cobalt–nickel–iron oxides grown directly on the three-dimensional carbon fiber electrodes exhibit a low overpotential of 232 mV at current density of 10 mA cm–2, small Tafel slope of 37.6 mV dec–1, and exceptional long-term stability of electrolysis for over 100 h in 1 M KOH alkaline medium, superior to most non-noble oxygen evolution catalysts reported so far. The materials evolution associated with the electrochemical oxidation tuning is systematically investigated by various characterizations, manifesting that the improved activities are attributed to the significant grain size reduction and increase of surface area and electroactive sites. This work provides a promising strategy to develop electrocatalysts for large-scale water-splitting systems and many other applications. PMID:27162978

  16. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review

    PubMed Central

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called “small size effect”, yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given. PMID:22736968

  17. Metal oxide nanostructures and their gas sensing properties: a review.

    PubMed

    Sun, Yu-Feng; Liu, Shao-Bo; Meng, Fan-Li; Liu, Jin-Yun; Jin, Zhen; Kong, Ling-Tao; Liu, Jin-Huai

    2012-01-01

    Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given. PMID:22736968

  18. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    PubMed

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-12-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products. PMID:27295259

  19. Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress?

    NASA Astrophysics Data System (ADS)

    Song, Bin; Zhang, YanLi; Liu, Jia; Feng, XiaoLi; Zhou, Ting; Shao, LongQuan

    2016-06-01

    With the rapid development of nanotechnology, metallic (metal or metal oxide) nanoparticles (NPs) are widely used in many fields such as cosmetics, the food and building industries, and bio-medical instruments. Widespread applications of metallic NP-based products increase the health risk associated with human exposures. Studies revealed that the brain, a critical organ that consumes substantial amounts of oxygen, is a primary target of metallic NPs once they are absorbed into the body. Oxidative stress (OS), apoptosis, and the inflammatory response are believed to be the main mechanisms underlying the neurotoxicity of metallic NPs. Other studies have disclosed that antioxidant pretreatment or co-treatment can reverse the neurotoxicity of metallic NPs by decreasing the level of reactive oxygen species, up-regulating the activities of antioxidant enzymes, decreasing the proportion of apoptotic cells, and suppressing the inflammatory response. These findings suggest that the neurotoxicity of metallic NPs might involve a cascade of events following NP-induced OS. However, additional research is needed to determine whether NP-induced OS plays a central role in the neurotoxicity of metallic NPs, to develop a comprehensive understanding of the correlations among neurotoxic mechanisms and to improve the bio-safety of metallic NP-based products.

  20. Application of a mixed metal oxide catalyst to a metallic substrate

    NASA Technical Reports Server (NTRS)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  1. Control of threshold voltage in E-mode and D-mode GaN-on-Si metal-insulator-semiconductor heterostructure field effect transistors by in-situ fluorine doping of atomic layer deposition Al2O3 gate dielectrics

    NASA Astrophysics Data System (ADS)

    Roberts, J. W.; Chalker, P. R.; Lee, K. B.; Houston, P. A.; Cho, S. J.; Thayne, I. G.; Guiney, I.; Wallis, D.; Humphreys, C. J.

    2016-02-01

    We report the modification and control of threshold voltage in enhancement and depletion mode AlGaN/GaN metal-insulator-semiconductor heterostructure field effect transistors through the use of in-situ fluorine doping of atomic layer deposition Al2O3. Uniform distribution of F ions throughout the oxide thickness are achievable, with a doping level of up to 5.5 × 1019 cm-3 as quantified by secondary ion mass spectrometry. This fluorine doping level reduces capacitive hysteretic effects when exploited in GaN metal-oxide-semiconductor capacitors. The fluorine doping and forming gas anneal also induces an average positive threshold voltage shift of between 0.75 and 1.36 V in both enhancement mode and depletion mode GaN-based transistors compared with the undoped gate oxide via a reduction of positive fixed charge in the gate oxide from +4.67 × 1012 cm-2 to -6.60 × 1012 cm-2. The application of this process in GaN based power transistors advances the realisation of normally off, high power, high speed devices.

  2. Ethanol oxidation on metal oxide-supported platinum catalysts

    SciTech Connect

    L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

    2009-09-01

    Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of “stoves” that burn ethanol molecules and their partially oxidized derivatives to the “final” products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles

  3. Metal-oxide Nanowires for Toxic Gas Detection

    SciTech Connect

    Devineni, D. P.; Stormo, S.; Kempf, W.; Schenkel, J.; Behanan, R.; Lea, Alan S.; Galipeau, David W.

    2007-01-02

    The feasibility of using Electric field enhanced oxidation (EFEO) to fabricate metal-oxide nanowires for sensing toxic gases was investigated. The effects of fabrication parameters such as film thickness, ambient relative humidity, atomic force microscope (AFM) tip bias voltage, force, scan speed and number of scans on the growth of nanowires were determined. The chemical composition of indium-oxide nanowires was verified using Auger electron spectroscopy. It was found that oxygen to indium ration was 1.69, 1.72, 1.71 and 1.84 at depths of 0, 1.3, 2.5, and 3.8 nm, which was near the 1.5:1 expected for stoichiometric indium-oxide film. Future work will include characterizing the electrical and gas sensing properties of the metal-oxide nanowires.

  4. Surface oxidability of pure liquid metals and alloys

    NASA Astrophysics Data System (ADS)

    Arato, E.; Bernardi, M.; Giuranno, D.; Ricci, E.

    2012-01-01

    The analysis of the oxygen-liquid metal interaction is a topic of particular technological interest. A deep knowledge of the kinetics and transport mechanisms involved in the oxidation phenomena is necessary: the effect of oxidation reactions taking place in the gas phase and the evaporation of oxides must be considered. This paper aims to review our works in order to provide a systematic analysis of the oxidation of pure metals and determine the most likely to keeping oxygen-free the surface in a binary alloy. In addition, the upgrading of this theoretical approach, here briefly described, is addressed to give a contribution to a better understanding of the evolution of oxidation phenomena close to the solid-liquid-gas interfaces.

  5. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    PubMed

    Luc, Wesley; Jiao, Feng

    2016-07-19

    Nanoporous metal-based solids are of particular interest because they combine a large quantity of surface metal sites, interconnected porous networks, and nanosized crystalline walls, thus exhibiting unique physical and chemical properties compared to other nanostructures and bulk counterparts. Among all of the synthetic approaches, nanocasting has proven to be a highly effective method for the syntheses of metal oxides with three-dimensionally ordered porous structures and crystalline walls. A typical procedure involves a thermal annealing process of a porous silica template filled with an inorganic precursor (often a metal nitrate salt), which converts the precursor into a desired phase within the silica pores. The final step is the selective removal of the silica template in either a strong base or a hydrofluoric acid solution. In the past decade, nanocasting has become a popular synthetic approach and has enabled the syntheses of a variety of nanoporous metal oxides. However, there is still a lack of synthetic methods to fabricate nanoporous materials beyond simple metal oxides. Therefore, the development of new synthetic strategies beyond nanocasting has become an important direction. This Account describes new progress in the preparation of novel nanoporous metal-based solids for heterogeneous catalysis. The discussion begins with a method called dealloying, an effective method to synthesize nanoporous metals. The starting material is a metallic alloy containing two or more elements followed by a selective chemical or electrochemical leaching process that removes one of the preferential elements, resulting in a highly porous structure. Nanoporous metals, such as Cu, Ag, and CuTi, exhibit remarkable electrocatalytic properties in carbon dioxide reduction, oxygen reduction, and hydrogen evolution reactions. In addition, the syntheses of metal oxides with hierarchical porous structures are also discussed. On the basis of the choice of hard template, nanoporous

  6. Formation of metallic and metal hydrous oxide dispersions

    NASA Technical Reports Server (NTRS)

    Matijevic, E.; Sapieszko, R. S.

    1979-01-01

    The formation, via hydrothermally induced precipitation from homogeneous solution, of a variety of well-defined dispersions of metallic and hydrous metal in the conditions under which the particles are produced (e.g., pH and composition of the growth medium, aging temperature, rate of heating, or degree of agitation) can be readily discerned by following changes in the mass, composition, and morphology of the final solid phase. The generation of colloidal dispersions in the absence of gravity convection or sedimentation effects may result in the appearance of morphological modifications not previously observed in terrestrially formed hydrosols.

  7. Surface x-ray diffraction of complex metal oxide surfaces and interfaces--a new era

    SciTech Connect

    Schlepuetz, C. M.; Willmott, P. R.; Pauli, S. A.; Herger, R.; Martoccia, D.; Bjoerck, M.; Kumah, D.; Clarke, R.; Yacoby, Y.

    2009-01-29

    The availability of high-brilliance hard x-ray synchrotron radiation and the advent of novel photon counting area detectors have brought surface x-ray diffraction (SXRD) into a new era. It is now possible to record large numbers of structure factors with much improved reliability within reasonable beamtime durations. As a result, structural determination of the surfaces and interfaces of complex crystallographic systems and heterostructures has now become feasible, especially in conjunction with phase-retrieval methods. It is thereby hoped that detailed structural information will shed light on the unusual physical properties of these systems. Complex metal oxide systems investigated at the Materials Science beamline of the Swiss Light Source, including the surface of SrTiO{sub 3}, the interface between LaAlO{sub 3} and SrTiO{sub 3}, and the structure of YBa{sub 2}Cu{sub 3}O{sub 7} grown on NdGaO{sub 3}, SrTiO{sub 3}, and (LaSr)(AlTa)O{sub 3} will be presented as examples of what is now possible using SXRD.

  8. Metal-Catalyzed Oxidation and Photo-oxidation of Glucagon.

    PubMed

    Zhang, Jian

    2016-08-01

    The oxidation of glucagon by the H2O2/Cu(2+) system and by simulated sunlight was studied using HPLC-MS methodologies. It was found that copper ion-catalyzed oxidation is much faster in the residue 1-12 region than in photo-oxidation, but it is slower than photo-oxidation in the residue 18-29 region. This difference is due to the unique feature of the primary sequence of glucagon. The residue 1-12 region contains His-1 and Asp-9 that can bind to Cu(2+) ions and catalyze the oxidation of His-1 and Tyr-10, while the residue 18-29 region lacks these charged residues near the liable Met-27 and Trp-25 and hence no catalysis by the neighboring groups occurs. Fragment (residue 13-17) was more stable than the other regions of the peptide toward photo-oxidation because it contains only one oxidizable residue, Tyr-13. These findings may help explain the mechanism of action of glucagon and provide some hints for the development of effective anti-diabetic drug molecules and stable glucagon formulations. PMID:27435200

  9. Design of Core-Shell Heterostructure Nanofibers with Different Work Function and Their Sensing Properties to Trimethylamine.

    PubMed

    Li, Feng; Gao, Xing; Wang, Rui; Zhang, Tong; Lu, Geyu; Barsan, Nicolae

    2016-08-01

    The metal oxide semiconductor (MOS) core-shell heterostructure nanofibers (NFs) have been successfully synthesized via an environmentally friendly coaxial electrospinning approach. To demonstrate the potential applications of the as-prepared samples, sensors based on MOS core-shell heterostructure NFs have been fabricated and their gas sensing properties were investigated. Results show that the sensors exhibit an advanced gas sensing property to trimethylamine (TMA) including the outstanding selectivity and rapid response/recovery processes in comparison with the sensors based on single MOS NFs. These phenomena are closely associated with the electron flow caused by the work function difference between MOS of the core and the shell. The approach proposed in this study may contribute to the realization of more sensitive MOS core-shell heterostructure sensors. PMID:27403999

  10. Are metallothioneins equally good biomarkers of metal and oxidative stress?

    PubMed

    Figueira, Etelvina; Branco, Diana; Antunes, Sara C; Gonçalves, Fernando; Freitas, Rosa

    2012-10-01

    Several researchers investigated the induction of metallothioneins (MTs) in the presence of metals, namely Cadmium (Cd). Fewer studies observed the induction of MTs due to oxidizing agents, and literature comparing the sensitivity of MTs to different stressors is even more scarce or even nonexistent. The role of MTs in metal and oxidative stress and thus their use as a stress biomarker, remains to be clearly elucidated. To better understand the role of MTs as a biomarker in Cerastoderma edule, a bivalve widely used as bioindicator, a laboratory assay was conducted aiming to assess the sensitivity of MTs to metal and oxidative stressors. For this purpose, Cd was used to induce metal stress, whereas hydrogen peroxide (H2O2), being an oxidizing compound, was used to impose oxidative stress. Results showed that induction of MTs occurred at very different levels in metal and oxidative stress. In the presence of the oxidizing agent (H2O2), MTs only increased significantly when the degree of oxidative stress was very high, and mortality rates were higher than 50 percent. On the contrary, C. edule survived to all Cd concentrations used and significant MTs increases, compared to the control, were observed in all Cd exposures. The present work also revealed that the number of ions and the metal bound to MTs varied with the exposure conditions. In the absence of disturbance, MTs bound most (60-70 percent) of the essential metals (Zn and Cu) in solution. In stressful situations, such as the exposure to Cd and H2O2, MTs did not bind to Cu and bound less to Zn. When organisms were exposed to Cd, the total number of ions bound per MT molecule did not change, compared to control. However the sort of ions bound per MT molecule differed; part of the Zn and all Cu ions where displaced by Cd ions. For organisms exposed to H2O2, each MT molecule bound less than half of the ions compared to control and Cd conditions, which indicates a partial oxidation of thiol groups in the cysteine

  11. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    DOEpatents

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  12. Biomimetic metal oxides for the extraction of nanoparticles from water.

    PubMed

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-04-21

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications. PMID:23471156

  13. CO-oxidation catalysts: Low-temperature CO oxidation over Noble-Metal Reducible Oxide (NMRO) catalysts

    NASA Technical Reports Server (NTRS)

    Herz, Richard K.

    1990-01-01

    Oxidation of CO to CO2 is an important reaction technologically and environmentally and a complex and interesting reaction scientifically. In most cases, the reaction is carried out in order to remove CO as an environmental hazard. A major application of heterogeneous catalysts is catalytic oxidation of CO in the exhaust of combustion devices. The reaction over catalysts in exhaust gas is fast and often mass-transfer-limited since exhaust gases are hot and O2/CO ratios are high. The main challenges to catalyst designers are to control thermal sintering and chemical poisoning of the active materials. The effect of the noble metal on the oxide is discussed, followed by the effect of the oxide on the noble metal, the interaction of the noble metal and oxide to form unique catalytic sites, and the possible ways in which the CO oxidation reaction is catalyzed by the NMRO materials.

  14. Epitaxial 2D MoSe2 (HfSe2) Semiconductor/2D TaSe2 Metal van der Waals Heterostructures.

    PubMed

    Tsoutsou, Dimitra; Aretouli, Kleopatra E; Tsipas, Polychronis; Marquez-Velasco, Jose; Xenogiannopoulou, Evangelia; Kelaidis, Nikolaos; Aminalragia Giamini, Sigiava; Dimoulas, Athanasios

    2016-01-27

    Molecular beam epitaxy of 2D metal TaSe2/2D MoSe2 (HfSe2) semiconductor heterostructures on epi-AlN(0001)/Si(111) substrates is reported. Electron diffraction reveals an in-plane orientation indicative of van der Waals epitaxy, whereas electronic band imaging supported by first-principles calculations and X-ray photoelectron spectroscopy indicate the presence of a dominant trigonal prismatic 2H-TaSe2 phase and a minor contribution from octahedrally coordinated TaSe2, which is present in TaSe2/AlN and TaSe2/HfSe2/AlN but notably absent in the TaSe2/MoSe2/AlN, indicating superior structural quality of TaSe2 grown on MoSe2. Apart from its structural and chemical compatibility with the selenide semiconductors, TaSe2 has a workfunction of 5.5 eV as measured by ultraviolet photoelectron spectroscopy, which matches very well with the semiconductor workfunctions, implying that epi-TaSe2 can be used for low-resistivity contacts to MoSe2 and HfSe2. PMID:26727305

  15. Poole Frenkel current and Schottky emission in SiN gate dielectric in AlGaN/GaN metal insulator semiconductor heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Hanna, Mina J.; Zhao, Han; Lee, Jack C.

    2012-10-01

    We analyze the anomalous I-V behavior in SiN prepared by plasma enhanced chemical vapor deposition for use as a gate insulator in AlGaN/GaN metal insulator semiconductor heterostructure filed effect transistors (HFETs). We observe leakage current across the dielectric with opposite polarity with respect to the applied electric field once the voltage sweep reaches a level below a determined threshold. This is observed as the absolute minimum of the leakage current does not occur at minimum voltage level (0 V) but occurs earlier in the sweep interval. Curve-fitting analysis suggests that the charge-transport mechanism in this region is Poole-Frenkel current, followed by Schottky emission due to band bending. Despite the current anomaly, the sample devices have shown a notable reduction of leakage current of over 2 to 6 order of magnitudes compared to the standard Schottky HFET. We show that higher pressures and higher silane concentrations produce better films manifesting less trapping. This conforms to our results that we reported in earlier publications. We found that higher chamber pressure achieves higher sheet carrier concentration that was found to be strongly dependent on the trapped space charge at the SiN/GaN interface. This would suggest that a lower chamber pressure induces more trap states into the SiN/GaN interface.

  16. Metal ion adsorption to complexes of humic acid and metal oxides: Deviations from the additivity rule

    SciTech Connect

    Vermeer, A.W.P.; McCulloch, J.K.; Van Riemsdijk, W.H.; Koopal, L.K.

    1999-11-01

    The adsorption of cadmium ions to a mixture of Aldrich humic acid and hematite is investigated. The actual adsorption to the humic acid-hematite complex is compared with the sum of the cadmium ion adsorptivities to each of the isolated components. It is shown that the sum of the cadmium ion adsorptivities is not equal to the adsorption to the complex. In general, the adsorption of a specific metal ion to the complex can be understood and qualitatively predicted using the adsorptivities to each of the pure components and taking into account the effect of the pH on the interaction between humic acid and iron oxide on the metal ion adsorption. Due to the interaction between the negatively charged humic acid and the positively charged iron oxide, the adsorption of metal ions on the mineral oxide in the complex will increase as compared to that on the isolated oxide, whereas the adsorption to the humic acid will decrease as compared to that on the isolated humic acid. As a result, the overall adsorption of a specific metal ion to the complex will be smaller than predicted by the additivity rule when this metal ion has a more pronounced affinity for the humic acid than for the mineral oxide, whereas it will be larger than predicted by the additivity rule when the metal ion has a higher affinity for the oxide than for the humic acid.

  17. Oxide surfaces and metal/oxide interfaces studied by grazing incidence X-ray scattering

    NASA Astrophysics Data System (ADS)

    Renaud, Gilles

    Experimental determinations of the atomic structure of insulating oxide surfaces and metal/oxide interfaces are scarce, because surface science techniques are often limited by the insulating character of the substrate. Grazing incidence X-ray scattering (GIXS), which is not subject to charge effects, can provide very precise information on the atomic structure of oxide surfaces: roughness, relaxation and reconstruction. It is also well adapted to analyze the atomic structure, the registry, the misfit relaxation, elastic or plastic, the growth mode and the morphology of metal/oxide interfaces during their growth, performed in situ. GIXS also allows the analysis of thin films and buried interfaces, in a non-destructive way, yielding the epitaxial relationships, and, by variation of the grazing incidence angle, the lattice parameter relaxation along the growth direction. On semi-coherent interfaces, the existence of an ordered network of interfacial misfit dislocations can be demonstrated, its Burger's vector determined, its ordering during in situ annealing cycles followed, and sometimes even its atomic structure can be addressed. Careful analysis during growth allows the modeling of the dislocation nucleation process. This review emphasizes the new information that GIXS can bring to oxide surfaces and metal/oxide interfaces by comparison with other surface science techniques. The principles of X-ray diffraction by surfaces and interfaces are recalled, together with the advantages and properties of grazing angles. The specific experimental requirements are discussed. Recent results are presented on the determination of the atomic structure of relaxed or reconstructed oxide surfaces. A description of results obtained during the in situ growth of metal on oxide surfaces is also given, as well as investigations of thick metal films on oxide surfaces, with lattice parameter misfit relaxed by an array of dislocations. Recent work performed on oxide thin films having

  18. Irreversible electrical manipulation of magnetization on BiFeO{sub 3}-based heterostructures

    SciTech Connect

    Xu, Qingyu E-mail: jdu@nju.edu.cn; Xu, Zhenyu; He, Maocheng; Du, Jun E-mail: jdu@nju.edu.cn; Cao, Yanqiang

    2015-05-07

    We prepared several heterostructures, Co/Bi{sub 0.90}La{sub 0.10}FeO{sub 3} on surface oxidized Si or (111) SrTiO{sub 3} and NiFe/Bi{sub 0.90}La{sub 0.10}FeO{sub 3} on (001) SrTiO{sub 3} substrates using LaNiO{sub 3} as bottom electrode. With different strategies of voltage application, the exchange bias field H{sub E} decreased with increasing voltage irreversibly for all the heterostructures at room temperature. The chemical state at the NiFe/Bi{sub 0.90}La{sub 0.10}FeO{sub 3} interface was studied by X-ray photoelectron spectroscopy before and after the electrical manipulation. The oxidization of the metallic ferromagnetic layer at interface after the electrical manipulation has been confirmed, which might explain the irreversibility.

  19. Ion exchange properties of novel hydrous metal oxide materials

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.

    1996-12-31

    Hydrous metal oxide (HMO) materials are inorganic ion exchangers which have many desirable characteristics for catalyst support applications, including high cation exchange capacity, anion exchange capability, high surface area, ease of adjustment of acidity and basicity, bulk or thin film preparation, and similar chemistry for preparation of various transition metal oxides. Cation exchange capacity is engineered into these materials through the uniform incorporation of alkali cations via manipulation of alkoxide chemistry. Specific examples of the effects of Na stoichiometry and the addition of SiO{sub 2} to hydrous titanium oxide (HTO) on ion exchange behavior will be given. Acid titration and cationic metal precursor complex exchange will be used to characterize the ion exchange behavior of these novel materials.

  20. Properties of ferroelectric/ferromagnetic thin film heterostructures

    SciTech Connect

    Chen, Daming; Harward, Ian; Linderman, Katie; Economou, Evangelos; Celinski, Zbigniew; Nie, Yan

    2014-05-07

    Ferroelectric/ferromagnetic thin film heterostructures, SrBi{sub 2}Ta{sub 2}O{sub 9}/BaFe{sub 12}O{sub 19} (SBT/BaM), were grown on platinum-coated Si substrates using metal-organic decomposition. X-ray diffraction patterns confirmed that the heterostructures contain only SBT and BaM phases. The microwave properties of these heterostructures were studied using a broadband ferromagnetic resonance (FMR) spectrometer from 35 to 60 GHz, which allowed us to determine gyromagnetic ratio and effective anisotropy field. The FMR linewidth is as low as140 Oe at 58 GHz. In addition, measurements of the effective permittivity of the heterostructures were carried out as a function of bias electric field. All heterostructures exhibit hysteretic behavior of the effective permittivity. These properties indicate that such heterostructures have potential for application in dual electric and magnetic field tunable resonators, filters, and phase shifters.