Science.gov

Sample records for metallic kagome layer

  1. Layered kagome spin ice

    NASA Astrophysics Data System (ADS)

    Hamp, James; Dutton, Sian; Mourigal, Martin; Mukherjee, Paromita; Paddison, Joseph; Ong, Harapan; Castelnovo, Claudio

    Spin ice materials provide a rare instance of emergent gauge symmetry and fractionalisation in three dimensions: the effective degrees of freedom of the system are emergent magnetic monopoles, and the extensively many `ice rule' ground states are those devoid of monopole excitations. Two-dimensional (kagome) analogues of spin ice have also been shown to display a similarly rich behaviour. In kagome ice however the ground-state `ice rule' condition implies the presence everywhere of magnetic charges. As temperature is lowered, an Ising transition occurs to a charge-ordered state, which can be mapped to a dimer covering of the dual honeycomb lattice. A second transition, of Kosterlitz-Thouless or three-state Potts type, occurs to a spin-ordered state at yet lower temperatures, due to small residual energy differences between charge-ordered states. Inspired by recent experimental capabilities in growing spin ice samples with selective (layered) substitution of non-magnetic ions, in this work we investigate the fate of the two ordering transitions when individual kagome layers are brought together to form a three-dimensional pyrochlore structure coupled by long range dipolar interactions. We also consider the response to substitutional disorder and applied magnetic fields.

  2. Ionothermal synthesis of open-framework metal phosphates with a Kagome lattice network exhibiting canted anti-ferromagnetism

    SciTech Connect

    Wang, Guangmei; Valldor, Martin; Mallick, Bert; Mudring, Anja-Verena

    2014-01-01

    Four open-framework transition-metal phosphates; (NH4)2Co3(HPO4)2F4 (1), (NH4)Co3(HPO4)2(H2PO4)F2 (2), KCo3(HPO4)2(H2PO4)F2 (3), and KFe3(HPO4)2(H2PO4)F2 (4); are prepared by ionothermal synthesis using pyridinium hexafluorophosphate as the ionic liquid. Single-crystal X-ray diffraction analyses reveal that the four compounds contain cobalt/iron–oxygen/fluoride layers with Kagomé topology composed of interlinked face-sharing MO3F3/MO4F2 octahedra. PO3OH pseudo-tetrahedral groups augment the [M3O6F4] (1)/[M3O8F2] layers on both sides to give M3(HPO4)2F4 (1) and M3(HPO4)2F2 (2–4) layers. These layers are stacked along the a axis in a sequence AA…, resulting in the formation of a layer structure for (NH4)2Co3(HPO4)2F4(1). In NH4Co3(HPO4)2(H2PO4)F2 and KM3(HPO4)2(H2PO4)F2, the M3(HPO4)2F2 layers are stacked along the a axis in a sequence AAi… and are connected by [PO3(OH)] tetrahedra, giving rise to a 3-D open framework structure with 10-ring channels along the [001] direction. The negative charges of the inorganic framework are balanced by K+/NH4+ ions located within the channels. The magnetic transition metal cations themselves form layers with stair-case Kagomé topology. Magnetic susceptibility and magnetization measurements reveal that all four compounds exhibit a canted anti-ferromagnetic ground state (Tc = 10 or 13 K for Co and Tc = 27 K for Fe) with different canting angles. The full orbital moment is observed for both Co2+ and Fe2+.

  3. Turbulent boundary layer control through spanwise wall oscillation using Kagome lattice structures

    NASA Astrophysics Data System (ADS)

    Bird, James; Santer, Matthew; Morrison, Jonathan

    2015-11-01

    It is well established that a reduction in skin-friction and turbulence intensity can be achieved by applying in-plane spanwise forcing to a surface beneath a turbulent boundary layer. It has also been shown in DNS (M. Quadrio, P. Ricco, & C. Viotti; J. Fluid Mech; 627, 161, 2009), that this phenomenon is significantly enhanced when the forcing takes the form of a streamwise travelling wave of spanwise perturbation. In the present work, this type of forcing is generated by an active surface comprising a compliant structure, based on a Kagome lattice geometry, supporting a membrane skin. The structural design ensures negligible wall normal displacement while facilitating large in-plane velocities. The surface is driven pneumatically, achieving displacements of 3 mm approximately, at frequencies in excess of 70 Hz for a turbulent boundary layer at Reτ ~ 1000 . As the influence of this forcing on boundary layer is highly dependent on the wavenumber and frequency of the travelling wave, a flat surface was designed and optimised to allow these forcing parameters to be varied, without reconfiguration of the experiment. Simultaneous measurements of the fluid and surface motion are presented, and notable skin-friction drag reduction is demonstrated. Airbus support agreement IW202838 is gratefully acknowledged.

  4. Bond formation effects on the metal-insulator transition in the half-filled kagome Hubbard model

    NASA Astrophysics Data System (ADS)

    Higa, Ryota; Asano, Kenichi

    2016-06-01

    We study the metal-insulator transition in the half-filled Hubbard model on a Kagome lattice using the variational cluster approximation. The strong coupling limit of the model corresponds to the S =1 /2 Kagome Heisenberg antiferromagnet, which is known to have a singlet ground state, although its detail is still debated. As the results of the cluster methods generally depend much on the choice of the unit cluster, we have chosen the clusters that are compatible with these singlet ground states in the strong coupling case found so far, which basically consist of even number of sites. It is found that the correlated electrons on the Kagome lattice have a strong tendency to form valence-bond structures, which are the resonation of electrons on a single bond or several bonds forming loops. The zero-temperature metal-insulator transition at some interaction strength is possibly driven by the formation of such short range valence bonds and shows a second order character, which is distinctive from the Brinkman-Rice scenario. The electrons on these valence bonds further localizes onto each site as the interaction increases, and the valence bonds of electrons finally turn into magnetic singlet bonds between localized S =1 /2 spins, which are consistent with the ground states of the Kagome antiferromagnet.

  5. Designing artificial two dimensional electron lattice on metal surface: a Kagome-like lattice as an example

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Qiu, Wen-Xuan; Gao, Jin-Hua

    2016-06-01

    Recently, a new kind of artificial two dimensional (2D) electron lattice on the nanoscale, i.e. molecular graphene, has drawn a lot of interest, where the metal surface electrons are transformed into a honeycomb lattice via absorbing a molecular lattice on the metal surface [Gomes et al., Nature, 2012, 438, 306; Wang et al., Phys. Rev. Lett., 2014, 113, 196803]. In this work, we theoretically demonstrate that this technique can be readily used to build other complex 2D electron lattices on a metal surface, which are of high interest in the field of condensed matter physics. The main challenge to build a complex 2D electron lattice is that this is a quantum antidot system, where the absorbed molecule normally exerts a repulsive potential on the surface electrons. Thus, there is no straightforward corresponding relation between the molecular lattice pattern and the desired 2D lattice of surface electrons. Here, we give an interesting example about the Kagome lattice, which has exotic correlated electronic states. We design a special molecular pattern and show that this molecular lattice can transform the surface electrons into a Kagome-like lattice. The numerical simulation is conducted using a Cu(111) surface and CO molecules. We first estimate the effective parameters of the Cu/CO system by fitting experimental data of the molecular graphene. Then, we calculate the corresponding energy bands and LDOS of the surface electrons in the presence of the proposed molecular lattice. Finally, we interpret the numerical results by the tight binding model of the Kagome lattice. We hope that our work can stimulate further theoretical and experimental interest in this novel artificial 2D electron lattice system.

  6. Designing artificial two dimensional electron lattice on metal surface: a Kagome-like lattice as an example.

    PubMed

    Li, Shuai; Qiu, Wen-Xuan; Gao, Jin-Hua

    2016-07-01

    Recently, a new kind of artificial two dimensional (2D) electron lattice on the nanoscale, i.e. molecular graphene, has drawn a lot of interest, where the metal surface electrons are transformed into a honeycomb lattice via absorbing a molecular lattice on the metal surface [Gomes et al., Nature, 2012, 438, 306; Wang et al., Phys. Rev. Lett., 2014, 113, 196803]. In this work, we theoretically demonstrate that this technique can be readily used to build other complex 2D electron lattices on a metal surface, which are of high interest in the field of condensed matter physics. The main challenge to build a complex 2D electron lattice is that this is a quantum antidot system, where the absorbed molecule normally exerts a repulsive potential on the surface electrons. Thus, there is no straightforward corresponding relation between the molecular lattice pattern and the desired 2D lattice of surface electrons. Here, we give an interesting example about the Kagome lattice, which has exotic correlated electronic states. We design a special molecular pattern and show that this molecular lattice can transform the surface electrons into a Kagome-like lattice. The numerical simulation is conducted using a Cu(111) surface and CO molecules. We first estimate the effective parameters of the Cu/CO system by fitting experimental data of the molecular graphene. Then, we calculate the corresponding energy bands and LDOS of the surface electrons in the presence of the proposed molecular lattice. Finally, we interpret the numerical results by the tight binding model of the Kagome lattice. We hope that our work can stimulate further theoretical and experimental interest in this novel artificial 2D electron lattice system. PMID:27279292

  7. Two-dimensional Kagome phosphorus and its edge magnetism: a density functional theory study.

    PubMed

    Yu, Guodong; Jiang, Liwei; Zheng, Yisong

    2015-07-01

    By means of density functional theory calculations, we predict a new two-dimensional phosphorus allotrope with the Kagome-like lattice(Kagome-P). It is an indirect gap semiconductor with a band gap of 1.64 eV. The gap decreases sensitively with the compressive strain. In particular, shrinking the lattice beyond 13% can drive it into metallic state. In addition, both the AA and AB stacked Kagome-P multi-layer structures exhibit a bandgap much smaller than 1.64 eV. Edges in the Kagome-P monolayer probably suffer from the edge reconstruction. An isolated zigzag edge can induce antiferromagnetic (AF) ordering with a magnetic transition temperature of 23 K. More importantly, when applying a stretching strain beyond 4%, such an edge turns to possess a ferromagnetic ground state. A very narrow zigzag-edged Kagome-P ribbon displays the spin moment distribution similar to the zigzag-edged graphene nanoribbon because of the coupling between the opposites edges. But the inter-edge coupling in the Kagome-P ribbon vanishes more rapidly as the ribbon width increases. These properties make it a promising material in spintronics. PMID:26020446

  8. Spin-orbit coupling induced semi-metallic state in the 1/3 hole-doped hyper-kagome Na3Ir3O8

    PubMed Central

    Takayama, Tomohiro; Yaresko, Alexander; Matsumoto, Akiyo; Nuss, Jürgen; Ishii, Kenji; Yoshida, Masahiro; Mizuki, Junichiro; Takagi, Hidenori

    2014-01-01

    The complex iridium oxide Na3Ir3O8 with a B-site ordered spinel structure was synthesized in single crystalline form, where the chiral hyper-kagome lattice of Ir ions, as observed in the spin-liquid candidate Na4Ir3O8, was identified. The average valence of Ir is 4.33+ and, therefore, Na3Ir3O8 can be viewed as a doped analogue of the hyper-kagome spin liquid with Ir4+. The transport measurements, combined with the electronic structure calculations, indicate that the ground state of Na3Ir3O8 is a low carrier density semi-metal. We argue that the semi-metallic state is produced by a competition of the molecular orbital splitting of t2g orbitals on Ir3 triangles with strong spin-orbit coupling inherent to heavy Ir ions. PMID:25351992

  9. Magnetic behavior of Gd3Ru4Al12, a layered compound with distorted kagomé net

    NASA Astrophysics Data System (ADS)

    Chandragiri, Venkatesh; Iyer, Kartik K.; Sampathkumaran, E. V.

    2016-07-01

    The magnetic behavior of the compound, Gd3Ru4Al12, which was reported about two decades ago to crystallize in a hexagonal structure (space group P63/mmc), has not been investigated in the past literature despite interesting structural features (that is, magnetic layers and triangular as well as kagomé-lattice features favoring frustrated magnetism) characterizing this compound. We report here the results of studies of magnetization, heat capacity and magnetoresistance in the temperature range T  =  1.8–300 K. The results establish that there is a long-range magnetic order of antiferromagnetic type below (T N  =) 18.5 K, despite a much larger value (~80 K) of paramagnetic Curie temperature with a positive sign characteristic of ferromagnetic interaction. We attribute this to geometric frustration. The most interesting finding is that there is an additional magnetic anomaly below ~55 K before the onset of long-range order in the magnetic susceptibility data. Concurrent with this observation, the sign of isothermal change in entropy, ΔS  =  S(0)  ‑  S(H), where H is the externally applied magnetic field, remains positive above T N, with a broad peak. This observation indicates the presence of ferromagnetic clusters before the onset of long-range magnetic order. Thus, this compound may serve as an example of a situation in which magnetic frustration due to geometrical reasons faces competition from such magnetic precursor effects. There is also a reversal of the sign of  ‑ΔS in the curves for lower final fields (H  <  30 kOe) on entering the magnetically ordered state consistent with the entrance to an antiferromagetic state. The magnetoresistance behavior is consistent with the above conclusions.

  10. Tests on Double Layer Metalization

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1983-01-01

    28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.

  11. Theory of quantum kagome ice

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Ping; Hermele, Michael

    Some pyrochlore oxides realize novel dipolar-octupolar (DO) doublets on the sites of the pyrochlore lattice of corner-sharing tetrahedra. With magnetic field along the (111) direction, such systems can approximately be described as decoupled layers of a S =1/2 XYZ model on Kagome planes, with perpendicular magnetic field. A recent quantum Monte Carlo study found a zero temperature disordered phase in this model, dubbed quantum kagome ice, and proposed that it is a type of Z2 quantum spin liquid (J. Carrasquilla, Z. Hao and R. G. Melko, Nat. Comm., 6, 7421). We will describe an effective theory for this putative Z2 spin liquid, and present results on its symmetry fractionalization and resulting properties that may be tested in future numerical simulations. the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award # DE-SC0014415.

  12. First-Principles Design of a Half-Filled Flat Band of the Kagome Lattice in Two-Dimensional Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Yamada, Masahiko G.; Soejima, Tomohiro; Tsuji, Naoto; Hirai, Daisuke; Dincă, Mircea; Aoki, Hideo

    Metal-organic frameworks (MOFs) are crystalline materials composed of metal ions and bridging organic molecules, which have been the subject of numerous investigations in inorganic and materials chemistry. Owing to their typically trivial electronic states, MOFs have not attracted much attentions from condensed-matter physicists. However, recent experimental success in fabricating two-dimensional (2D) MOFs with kagome lattice structures is bridging the gap between condensed-matter physics and chemistry. Then, we design from first principles a new type of 2D MOFs with phenalenyl-based ligands to realize a half-filled flat band of the kagome lattice, which belongs to the lattice family that shows Lieb-Mielke-Tasaki's flat-band ferromagnetism. We find that trans-Au-THTAP(trihydroxytriaminophenalenyl) has an ideal band structure, where the Fermi energy is adjusted right at the nearly flat band. The spin-orbit coupling opens a band gap and gives a non-zero Chern number to the nearly flat band. This is a novel and realistic example of a system in which a nearly flat band is both ferromagnetic and topologically non-trivial. See arXiv:1510.00164.

  13. First-principles design of a half-filled flat band of the kagome lattice in two-dimensional metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Yamada, Masahiko G.; Soejima, Tomohiro; Tsuji, Naoto; Hirai, Daisuke; Dincǎ, Mircea; Aoki, Hideo

    2016-08-01

    We design from first principles a type of two-dimensional metal-organic framework (MOF) using phenalenyl-based ligands to exhibit a half-filled flat band of the kagome lattice, which is one of a family of lattices that show Lieb-Mielke-Tasaki's flat-band ferromagnetism. Among various MOFs, we find that trans-Au-THTAP (THTAP=trihydroxytriaminophenalenyl) has such an ideal band structure, where the Fermi energy is adjusted right at the flat band due to unpaired electrons of radical phenalenyl. The spin-orbit coupling opens a band gap giving a nonzero Chern number to the nearly flat band, as confirmed by the presence of the edge states in first-principles calculations and by fitting to the tight-binding model. This is a novel and realistic example of a system in which a nearly flat band is both ferromagnetic and topologically nontrivial.

  14. Metal deposition using seed layers

    DOEpatents

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  15. Quantum magnetism on kagome lattice

    NASA Astrophysics Data System (ADS)

    Hao, Zhihao

    The spin 1/2 Heisenberg antiferromagnet on kagome (a planar lattice of corner sharing triangles) is one of the most celebrated models of a strongly correlated system. Despite intensive studies, the physics of its ground state and excitations remains unsettled. Recently, researchers successfully synthesized and characterized several new materials described by this model. It is hoped that the longstanding problem can be finally resolved through combined efforts of experimentalists, material scientists and theorists. In this thesis, we present a physical picture of the low energy physics of kagome. We demonstrate that there are N/3 fermionic particles on a kagome of N sites. The motion of these particles is strongly constrained. They are bound into small bosonic states by strong pair-wise attractions. The "antiparticle" also exists and a particle-antiparticle pair can be created at energy cost 0.218J. Low energy spin 1 excitations correspond to breaking a bound state into two free particles at energy cost 0.06J. This is the physical mechanism of the kagome spin gap. Our physical picture finds several applications. The dynamical structure factor of pair-breaking processes on kagome is computed. We assume the bound states are independent thanks to their small sizes. The result agrees well with the recent inelastic neutron scattering measurement conducted on herbertsmithite, a kagome antiferromagnet. In the second application, we study the effect of Dzyaloshinskii-Moriya (DM) interaction. DM interaction is important for low energy physics on kagome since the ground state of the dominate exchange interaction is highly degenerated. Through analytical and numerical arguments, it is determined that the vacuum become unstable to creation of particle-antiparticle pairs at critical strength D of DM interaction on the sawtooth chain, a chain of corner sharing triangles. We speculate that the mechanism is behind the numerically observed quantum phase transition at finite D on

  16. High applicability of two-dimensional phosphorous in Kagome lattice predicted from first-principles calculations.

    PubMed

    Chen, Peng-Jen; Jeng, Horng-Tay

    2016-01-01

    A new semiconducting phase of two-dimensional phosphorous in the Kagome lattice is proposed from first-principles calculations. The band gaps of the monolayer (ML) and bulk Kagome phosphorous (Kagome-P) are 2.00 and 1.11 eV, respectively. The magnitude of the band gap is tunable by applying the in-plane strain and/or changing the number of stacking layers. High optical absorption coefficients at the visible light region are predicted for multilayer Kagome-P, indicating potential applications for solar cell devices. The nearly dispersionless top valence band of the ML Kagome-P with high density of states at the Fermi level leads to superconductivity with Tc of ~9 K under the optimal hole doping concentration. We also propose that the Kagome-P can be fabricated through the manipulation of the substrate-induced strain during the process of the sample growth. Our work demonstrates the high applicability of the Kagome-P in the fields of electronics, photovoltaics, and superconductivity. PMID:26980060

  17. High applicability of two-dimensional phosphorous in Kagome lattice predicted from first-principles calculations

    PubMed Central

    Chen, Peng-Jen; Jeng, Horng-Tay

    2016-01-01

    A new semiconducting phase of two-dimensional phosphorous in the Kagome lattice is proposed from first-principles calculations. The band gaps of the monolayer (ML) and bulk Kagome phosphorous (Kagome-P) are 2.00 and 1.11 eV, respectively. The magnitude of the band gap is tunable by applying the in-plane strain and/or changing the number of stacking layers. High optical absorption coefficients at the visible light region are predicted for multilayer Kagome-P, indicating potential applications for solar cell devices. The nearly dispersionless top valence band of the ML Kagome-P with high density of states at the Fermi level leads to superconductivity with Tc of ~9 K under the optimal hole doping concentration. We also propose that the Kagome-P can be fabricated through the manipulation of the substrate-induced strain during the process of the sample growth. Our work demonstrates the high applicability of the Kagome-P in the fields of electronics, photovoltaics, and superconductivity. PMID:26980060

  18. Localized structures in Kagome lattices

    SciTech Connect

    Saxena, Avadh B; Bishop, Alan R; Law, K J H; Kevrekidis, P G

    2009-01-01

    We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.

  19. Biaxially textured metal substrate with palladium layer

    DOEpatents

    Robbins, William B [Maplewood, MN

    2002-12-31

    Described is an article comprising a biaxially textured metal substrate and a layer of palladium deposited on at least one major surface of the metal substrate; wherein the palladium layer has desired in-plane and out-of-plane crystallographic orientations, which allow subsequent layers that are applied on the article to also have the desired orientations.

  20. Ceramic TBS/porous metal compliant layer

    NASA Technical Reports Server (NTRS)

    Tolokan, Robert P.; Jarrabet, G. P.

    1992-01-01

    Technetics Corporation manufactures metal fiber materials and components used in aerospace applications. Our technology base is fiber metal porous sheet material made from sinter bonded metal fibers. Fiber metals have percent densities (metal content by volume) from 10 to 65 percent. Various topics are covered and include the following: fiber metal materials, compliant layer thermal bayer coatings (TBC's), pad properties, ceramic/pad TBC design, thermal shock rig, fabrication, and applications.

  1. Magnetic Diffuse Scattering in the Frustrated Kagome Antiferromagnet YBaCo4O7

    NASA Astrophysics Data System (ADS)

    Manuel, Pascal; Chapon, Laurent; Radaelli, Paolo; Mitchell, John; Zheng, Hong

    2008-03-01

    Cobalt oxides of composition RBaCo4O7 (R=Y, Tb-Lu) crystallize with a lattice structure topologically related to that of the pyrochlore. Considering only the magnetic transition metal sublattice, R-114 appears as Kagome sheets linked by triangular layers and is therefore expected to provide a new materials class for exploring geometric magnetic frustration. We have recently shown that stoichiometric R-114 compound orders antiferromagnetically into a long-range ordered (LRO) structure with features common to the √3 *√3 negative chirality spin arrangements often found in Kagome net systems. In contrast, small excesses of O added to the system, as little as 0.1, destroys this LRO state. To explore the nature of the frustrated magnetism in this novel system, we have measured magnetic diffuse scattering on YBaCo4O7 and YBaCo4O7.1 single crystals at the ISIS facility. Large maps of reciprocal space in several planes have been recorded showing a very structured diffuse scattering. The data compared to models obtained by the Monte-Carlo method using the metropolis algorithm, reveal the exact nature of the disordered ground state in this new class of frustrated magnets.

  2. Ionothermal synthesis of open-framework metal phosphates with a Kagomé lattice network exhibiting canted anti-ferromagnetism† †Electronic supplementary information (ESI) available: Cif files, atomic parameters, X-ray diffraction patterns, IR spectra, TG curves, and thermal ellipsoid plot and atomic label schemes of compound 1–4. See DOI: 10.1039/c4tc00290c Click here for additional data file.

    PubMed Central

    Wang, Guangmei; Valldor, Martin; Mallick, Bert

    2014-01-01

    Four open-framework transition-metal phosphates; (NH4)2Co3(HPO4)2F4 (1), (NH4)Co3(HPO4)2(H2PO4)F2 (2), KCo3(HPO4)2(H2PO4)F2 (3), and KFe3(HPO4)2(H2PO4)F2 (4); are prepared by ionothermal synthesis using pyridinium hexafluorophosphate as the ionic liquid. Single-crystal X-ray diffraction analyses reveal that the four compounds contain cobalt/iron–oxygen/fluoride layers with Kagomé topology composed of interlinked face-sharing MO3F3/MO4F2 octahedra. PO3OH pseudo-tetrahedral groups augment the [M3O6F4] (1)/[M3O8F2] layers on both sides to give M3(HPO4)2F4 (1) and M3(HPO4)2F2 (2–4) layers. These layers are stacked along the a axis in a sequence AA…, resulting in the formation of a layer structure for (NH4)2Co3(HPO4)2F4(1). In NH4Co3(HPO4)2(H2PO4)F2 and KM3(HPO4)2(H2PO4)F2, the M3(HPO4)2F2 layers are stacked along the a axis in a sequence AAi… and are connected by [PO3(OH)] tetrahedra, giving rise to a 3-D open framework structure with 10-ring channels along the [001] direction. The negative charges of the inorganic framework are balanced by K+/NH4 + ions located within the channels. The magnetic transition metal cations themselves form layers with stair-case Kagomé topology. Magnetic susceptibility and magnetization measurements reveal that all four compounds exhibit a canted anti-ferromagnetic ground state (T c = 10 or 13 K for Co and T c = 27 K for Fe) with different canting angles. The full orbital moment is observed for both Co2+ and Fe2+. PMID:25580250

  3. Spatially anisotropic Heisenberg kagome antiferromagnet

    NASA Astrophysics Data System (ADS)

    Apel, W.; Yavors'kii, T.; Everts, H.-U.

    2007-04-01

    In the search for spin-1/2 kagome antiferromagnets, the mineral volborthite has recently been the subject of experimental studies (Hiroi et al 2001 J. Phys. Soc. Japan 70 3377; Fukaya et al 2003 Phys. Rev. Lett. 91 207603; Bert et al 2004 J. Phys.: Condens. Matter 16 S829; Bert et al 2005 Phys. Rev. Lett. 95 087203). It has been suggested that the magnetic properties of this material are described by a spin-1/2 Heisenberg model on the kagome lattice with spatially anisotropic exchange couplings. We report on investigations of the {\\mathrm {Sp}}(\\mathcal {N}) symmetric generalization of this model in the large \\mathcal {N} limit. We obtain a detailed description of the dependence of possible ground states on the anisotropy and on the spin length S. A fairly rich phase diagram with a ferrimagnetic phase, incommensurate phases with and without long-range order and a decoupled chain phase emerges.

  4. Magnetic properties in kagomé lattice with RKKY interaction: A Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.

    2016-03-01

    The magnetic properties of the kagomé lattice have been studied with Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interactions in a spin-7/2 Ising model using Monte Carlo simulations. The RKKY interaction between the two magnetic layers is considered for different distances. The magnetizations and magnetic susceptibilities of this lattice are given for different triquadratic interactions around each triangular face. The critical temperature is obtained for a fixed size. The magnetic hysteresis cycle of kagomé lattice with RKKY interactions is obtained for different temperatures and for different crystal field with a fixed size of nonmagnetic layer.

  5. Progress in MOSFET double-layer metalization

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.; Trotter, J. D.; Wade, T. E.

    1980-01-01

    Report describes one-year research effort in VLSL fabrication. Four activities are described: theoretical study of two-dimensional diffusion in SOS (silicon-on-sapphire); setup of sputtering system, furnaces, and photolithography equipment; experiments on double layer metal; and investigation of two-dimensional modeling of MOSFET's (metal-oxide-semiconductor field-effect transistors).

  6. Anomalous Hall Effect in a Kagome Ferromagnet

    NASA Astrophysics Data System (ADS)

    Ye, Linda; Wicker, Christina; Suzuki, Takehito; Checkelsky, Joseph; Joseph Checkelsky Team

    The ferromagnetic kagome lattice is theoretically known to possess topological band structures. We have synthesized large single crystals of a kagome ferromagnet Fe3Sn2 which orders ferromagnetically well above room temperature. We have studied the electrical and magnetic properties of these crystals over a broad temperature and magnetic field range. Both the scaling relation of anomalous Hall effect and anisotropic magnetic susceptibility show that the ferromagnetism of Fe3Sn2 is unconventional. We discuss these results in the context of magnetism in kagome systems and relevance to the predicted topological properties in this class of compounds. This research is supported by DMR-1231319.

  7. Graphitic Tribological Layers in Metal-on-Metal Hip Replacements

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Pourzal, R.; Wimmer, M. A.; Jacobs, J. J.; Fischer, A.; Marks, L. D.

    2011-12-01

    Arthritis is a leading cause of disability, and when nonoperative methods have failed, a prosthetic implant is a cost-effective and clinically successful treatment. Metal-on-metal replacements are an attractive implant technology, a lower-wear alternative to metal-on-polyethylene devices. Relatively little is known about how sliding occurs in these implants, except that proteins play a critical role and that there is a tribological layer on the metal surface. We report evidence for graphitic material in the tribological layer in metal-on-metal hip replacements retrieved from patients. As graphite is a solid lubricant, its presence helps to explain why these components exhibit low wear and suggests methods of improving their performance; simultaneously, this raises the issue of the physiological effects of graphitic wear debris.

  8. Magnetic properties and concurrence for fluid {sup 3}He on kagome lattice

    SciTech Connect

    Ananikian, N. S. Ananikian, L. N.; Lazaryan, H. A.

    2012-10-15

    We present the results of magnetic properties and entanglement for kagome lattice using Heisenberg model with two- and three-site exchange interactions in strong magnetic field. Kagome lattice correspond to the third layer of fluid {sup 3}He absorbed on the surface of graphite. The magnetic properties and concurrence as a measure of pairwise thermal entanglement are studied by means of variational mean-field like treatment based on Gibbs-Bogoliubov inequality. The system exhibits different magnetic behaviors depending on the values of the exchange parameters (J{sub 2}, J{sub 3}). We have obtained the magnetization plateaus at low temperatures. The central theme of the paper is comparing the entanglement and magnetic behavior for kagome lattice. We have found that in the antiferromagnetic region behavior of the concurrence coincides with the magnetic susceptibility one.

  9. Buffer layers on biaxially textured metal substrates

    DOEpatents

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2001-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  10. Monte Carlo simulations of ABC stacked kagome lattice films

    NASA Astrophysics Data System (ADS)

    Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.

    2016-05-01

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  11. Monte Carlo simulations of ABC stacked kagome lattice films.

    PubMed

    Yerzhakov, H V; Plumer, M L; Whitehead, J P

    2016-05-18

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed. PMID:27092744

  12. Interaction of metal layers with polycrystalline Si

    NASA Technical Reports Server (NTRS)

    Nakamura, K.; Olowolafe, J. O.; Lau, S. S.; Nicolet, M.-A.; Mayer, J. W.; Shima, R.

    1976-01-01

    Solid-phase reactions of metal films deposited on 0.5-micron-thick polycrystalline layers of Si grown by chemical vapor deposition at 640 C were investigated by MeV He-4 backscattering spectrometry, glancing angle X-ray diffraction, and SEM observations. For the metals Al, Ag, and Au, which form simple eutectics, heat treatment at temperatures below the eutectic results in erosion of the poly-Si layer and growth of Si crystallites in the metal film. Crystallite formation is observed at temperatures exceeding 550 C for Ag, at those exceeding 400 C for Al, and at those exceeding 200 C for Au films. For Pd, Ni, and Cr, heat treatment results in silicide formation. The same initial silicides (Pd2Si, Ni2Si, and CrSi2), are formed at similar temperatures on single-crystal substrates.

  13. Advanced atom chips with two metal layers.

    SciTech Connect

    Stevens, James E.; Blain, Matthew Glenn; Benito, Francisco M.; Biedermann, Grant

    2010-12-01

    A design concept, device layout, and monolithic microfabrication processing sequence have been developed for a dual-metal layer atom chip for next-generation positional control of ultracold ensembles of trapped atoms. Atom chips are intriguing systems for precision metrology and quantum information that use ultracold atoms on microfabricated chips. Using magnetic fields generated by current carrying wires, atoms are confined via the Zeeman effect and controllably positioned near optical resonators. Current state-of-the-art atom chips are single-layer or hybrid-integrated multilayer devices with limited flexibility and repeatability. An attractive feature of multi-level metallization is the ability to construct more complicated conductor patterns and thereby realize the complex magnetic potentials necessary for the more precise spatial and temporal control of atoms that is required. Here, we have designed a true, monolithically integrated, planarized, multi-metal-layer atom chip for demonstrating crossed-wire conductor patterns that trap and controllably transport atoms across the chip surface to targets of interest.

  14. Experimental signatures of spin liquid physics on the S=1/2 kagom'e lattice

    NASA Astrophysics Data System (ADS)

    Lee, Young

    2012-02-01

    I will describe our recent experimental progress on the quest to study novel ground states in frustrated magnets. New states of matter may be produced if quantum effects and frustration conspire to prevent the ground state from achieving classical order. Materials based on the kagom'e lattice appear to be ideal hosts for the possibility of a quantum spin liquid ground state in two-dimensions. I will discuss our work which includes single crystal growth, bulk characterization, and neutron scattering measurements of the S=1/2 kagom'e lattice material ZnCu3(OH)6Cl2 (also known as herbertsmithite). Recent susceptibility measurements on single crystals yield valuable information on the additional terms in the spin Hamiltonian beyond nearest neighbor Heisenberg exchange, and anomalous x-ray diffraction yields detailed information on the presence of a small amount of atomic impurities. Most interestingly, inelastic neutron scattering measurements of the spin correlations in a single crystal sample reveal a continuum of spinon excitations in this two-dimensional insulating magnet. We will discuss our results in relation to recent theories for spin liquid physics on the S=1/2 kagom'e lattice.

  15. Laser evaporation of metal sandwich layers for improved IC metallization

    NASA Astrophysics Data System (ADS)

    Pielmeier, R.; Bollmann, D.; Haberger, K.

    1990-12-01

    With the further shrink of IC dimensions, metallization becomes the most crucial layer because conductivity and contact resistivity determine the RC constants and thus the speed of the circuits. With our Q-switched Nd:YAG laser we have evaporated different materials (Al, Ti, W, Pt, Au), alloys (Ta-Si) and dielectrics (ZrO 2, Al 2O 3). We also produced sandwich layers (Al-Au, Ti-Al). The layers were investigated with regard to deposition rate, homogeneity, adhesion, step coverage and surface roughness. Deposition rates in the order of 60 nm/min were achieved. At a power of 10 W and a repetition rate of about 5 kHz we could form ohmic contacts to silicon with a good step coverage in the contact.

  16. New Layered Ternary Transition-Metal Tellurides

    NASA Astrophysics Data System (ADS)

    Mar, Arthur

    Several new ternary transition-metal tellurides, a class of compounds hitherto largely unexplored, have been synthesized and characterized. These are layered materials whose structures have been determined by single -crystal X-ray diffraction methods. The successful preparation of the compound TaPtTe_5 was crucial in developing an understanding of the MM'Te_5 (M = Nb, Ta; M' = Ni, Pd, Pt) series of compounds, which adopt either of two possible closely-related layered structures. Interestingly, the compound TaPdTe _5 remains unknown. Instead, the compound Ta_4Pd_3Te _{16} has been prepared. Its structure is closely related to that of the previously prepared compound Ta_3Pd _3Te_{14}. The physical properties of these compounds have been measured and correlated with the metal substitutions and interlayer separations. A new series of compounds, MM'Te _4 (M = Nb, Ta; M' = Ru, Os, Rh, Ir), has been discovered. The structure of NbIrTe_4 serves as a prototype: it is an ordered variant of the binary telluride WTe_2. Electronic band-structure calculations have been performed in order to rationalize the trends in metal-metal and tellurium -tellurium bonding observed in WTe_2 and the MM'Te_4 phases. Extension of these studies to include main-group metals has resulted in the synthesis of the new layered ternary germanium tellurides TiGeTe_6, ZrGeTe_4 , and HfGeTe_4. Because germanium can behave ambiguously in its role as a metalloid element, it serves as an anion by capping the metal-centered trigonal prisms and also as a cation in being coordinated in turn by other tellurium atoms in a trigonal pyramidal fashion. Structural relationships among these compounds are illustrated through the use of bicapped trigonal prisms and trigonal pyramids as the basic structural building blocks. The electrical and magnetic properties of these compounds have been measured. Insight into the unusual bonding and physical properties of these germanium-containing compounds has been gained through

  17. Atomic layer deposition of metallic cobalt

    NASA Astrophysics Data System (ADS)

    Kwon, Jinhee; Saly, Mark; Kanjolia, Ravi; Chabal, Yves; University of Texas at Dallas Collaboration; SAFC Collaboration

    2011-03-01

    Metallic cobalt has rich catalytic, electronic and magnetic properties, which makes it critical to have a better control of Co thin film deposition for various applications. This work focuses on the atomic layer deposition (ALD) of cobalt using (tertiarybutylallyl)cobalttricarbonyl (t BuAllyl)Co(CO)3 and dimethylhydrazine (DMHy) on H-terminated Si to uncover the growth mechanisms. The first pulse of (t BuAllyl)Co(CO)3 reacts with surface H--Si bonds completely, forming one monolayer of metallic silicide. In situ infrared absorption spectra show that further deposition of Co is made possible only after linear carbonyl groups which remain after the first (t BuAllyl)Co(CO)3 pulse as the surface ligand are removed by subsequent ALD cycles. Further ALD cycles give rise to metallic Co growth through ligand exchange after a nucleation period of 8--10 cycles. The derived growth rate of cobalt is 0.6 +/- 0.1 Å/cycle. The resultant Co film shows low concentration of carbon and nitrogen impurities in the bulk according to X-ray photoemission spectroscopy.

  18. Competing magnetic interactions in the extended Kagome system YBaCo{sub 4}O{sub 7}

    SciTech Connect

    Chapon, L. C.; Radaelli, P. G.; Zheng, H.; Mitchell, J. F.

    2006-11-01

    YBaCo{sub 4}O{sub 7} belongs to a new class of geometrically frustrated magnets like the pyrochlores, in which Co spins occupy corners of tetrahedra. The structure can be viewed as an alternating stacking of Kagome and triangular layers. Exactly half of the triangular units of the Kagome plane are capped by Co ions to form columns running perpendicular to the Kagome sheets. Neutron powder diffraction reveals a broad temperature range of diffuse magnetic scattering, followed by long-range magnetic ordering below 110 K. A unique low-temperature magnetic structure simultaneously satisfies an S=0 arrangement in the uncapped triangular units and antiferromagnetic coupling along the columns. A spin reorientation above 30 K tracks the relative strengths of the in-plane and out-of-plane interactions.

  19. Ferromagnetic resonance and resonance modes in kagome lattices: From an open to a closed kagome structure

    NASA Astrophysics Data System (ADS)

    Dubowik, J.; Kuświk, P.; Matczak, M.; Bednarski, W.; Stobiecki, F.; Aleshkevych, P.; Szymczak, H.; Kisielewski, M.; Kisielewski, J.

    2016-06-01

    We present ferromagnetic resonance (FMR) investigations of 20 nm thick permalloy (Ni80Fe20 ) elements (width W =200 nm, length L =470 nm, period a =500 nm) arranged in open and closed artificial kagome lattices. The measurements were done at 9.4 and 34 GHz to ensure a saturated or near-saturated magnetic state of the kagome structures. The FMR data are analyzed in the framework of an analytical macrospin model which grasps the essential features of the bulk and edge modes at these microwave frequencies and is in agreement with the results of micromagnetic simulations. Polar plots of the resonance fields versus the field angle made by the direction of the magnetic field with respect to the main symmetry directions of the kagome lattice are compared with the results of the analytical model. The measured FMR spectra with a sixfold rotational symmetry qualitatively reproduce the structure expected from the theory. Magnetic dipolar interactions between the elements of the kagome lattices result in the mixing of edge and bulklike excitations at 9.4 GHz and in a systematic deviation from the model, especially for the closed kagome lattice.

  20. Atomic layer deposition of metal sulfide materials.

    PubMed

    Dasgupta, Neil P; Meng, Xiangbo; Elam, Jeffrey W; Martinson, Alex B F

    2015-02-17

    CONSPECTUS: The field of nanoscience is delivering increasingly intricate yet elegant geometric structures incorporating an ever-expanding palette of materials. Atomic layer deposition (ALD) is a powerful driver of this field, providing exceptionally conformal coatings spanning the periodic table and atomic-scale precision independent of substrate geometry. This versatility is intrinsic to ALD and results from sequential and self-limiting surface reactions. This characteristic facilitates digital synthesis, in which the film grows linearly with the number of reaction cycles. While the majority of ALD processes identified to date produce metal oxides, novel applications in areas such as energy storage, catalysis, and nanophotonics are motivating interest in sulfide materials. Recent progress in ALD of sulfides has expanded the diversity of accessible materials as well as a more complete understanding of the unique chalcogenide surface chemistry. ALD of sulfide materials typically uses metalorganic precursors and hydrogen sulfide (H2S). As in oxide ALD, the precursor chemistry is critical to controlling both the film growth and properties including roughness, crystallinity, and impurity levels. By modification of the precursor sequence, multicomponent sulfides have been deposited, although challenges remain because of the higher propensity for cation exchange reactions, greater diffusion rates, and unintentional annealing of this more labile class of materials. A deeper understanding of these surface chemical reactions has been achieved through a combination of in situ studies and quantum-chemical calculations. As this understanding matures, so does our ability to deterministically tailor film properties to new applications and more sophisticated devices. This Account highlights the attributes of ALD chemistry that are unique to metal sulfides and surveys recent applications of these materials in photovoltaics, energy storage, and photonics. Within each application

  1. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    PubMed Central

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-01-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665

  2. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-05-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  3. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-01-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665

  4. Impact Electrochemistry of Layered Transition Metal Dichalcogenides.

    PubMed

    Lim, Chee Shan; Tan, Shu Min; Sofer, Zdeněk; Pumera, Martin

    2015-08-25

    Layered transition metal dichalcogenides (TMDs) exhibit paramount importance in the electrocatalysis of the hydrogen evolution reaction. It is crucial to determine the size of the electrocatalytic particles as well as to establish their electrocatalytic activity, which occurs at the edges of these particles. Here, we show that individual TMD (MoS2, MoSe2, WS2, or WSe2; in general MX2) nanoparticles impacting an electrode surface provide well-defined current "spikes" in both the cathodic and anodic regions. These spikes originate from direct oxidation of the nanoparticles (from M(4+) to M(6+)) at the anodic region and from the electrocatalytic currents generated upon hydrogen evolution in the cathodic region. The positive correlation between the frequency of the impacts and the concentration of TMD nanoparticles is also demonstrated here, enabling determination of the concentration of TMD nanoparticles in colloidal form. In addition, the size of individual TMD nanoparticles can be evaluated using the charge passed during every spike. The capability of detecting both the "indirect" catalytic effect of an impacting TMD nanoparticle as well as "direct" oxidation indicates that the frequency of impacts in both the "indirect" and "direct" scenarios are comparable. This suggests that all TMD nanoparticles, which are electrochemically oxidizable (thus capable of donating electrons to electrodes), are also capable of catalyzing the hydrogen reduction reaction. PMID:26241193

  5. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, J.W.

    1992-09-15

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel is disclosed. The composition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than approximately 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300 C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  6. Solder for oxide layer-building metals and alloys

    DOEpatents

    Kronberg, James W.

    1992-01-01

    A low temperature solder and method for soldering an oxide layer-building metal such as aluminum, titanium, tantalum or stainless steel. The comosition comprises tin and zinc; germanium as a wetting agent; preferably small amounts of copper and antimony; and a grit, such as silicon carbide. The grit abrades any oxide layer formed on the surface of the metal as the germanium penetrates beneath and loosens the oxide layer to provide good metal-to-metal contact. The germanium comprises less than aproximatley 10% by weight of the solder composition so that it provides sufficient wetting action but does not result in a melting temperature above approximately 300.degree. C. The method comprises the steps rubbing the solder against the metal surface so the grit in the solder abrades the surface while heating the surface until the solder begins to melt and the germanium penetrates the oxide layer, then brushing aside any oxide layer loosened by the solder.

  7. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  8. Quantum gases in trimerized kagome lattices

    SciTech Connect

    Damski, B.; Fehrmann, H.; Everts, H.-U.; Baranov, M.; Santos, L.; Lewenstein, M.

    2005-11-15

    We study low-temperature properties of atomic gases in trimerized optical kagome lattices. The laser arrangements that can be used to create these lattices are briefly described. We also present explicit results for the coupling constants of the generalized Hubbard models that can be realized in such lattices. In the case of a single-component Bose gas the existence of a Mott insulator phase with fractional numbers of particles per trimer is verified in a mean-field approach. The main emphasis of the paper is on an atomic spinless interacting Fermi gas in the trimerized kagome lattice with two fermions per site. This system is shown to be described by a quantum spin-1/2 model on the triangular lattice with couplings that depend on the bond directions. We investigate this model by means of exact diagonalization. Our key finding is that the system exhibits nonstandard properties of a quantum spin-liquid crystal: it combines planar antiferromagnetic order in the ground state with an exceptionally large number of low-energy excitations. The possibilities of experimental verification of our theoretical results are critically discussed.

  9. Magnetic studies of S=1/2 kagom'e lattice single crystals

    NASA Astrophysics Data System (ADS)

    Han, Tianheng; Chu, Shaoyan; Takano, Yasu; Rodriguez-Rivera, Jose; Broholm, Collin; Nocera, Daniel; Lee, Young

    2012-02-01

    Herbertsmithite ZnCu3(OH)6Cl2--one of the most promising quantum spin liquid candidates--presents a promising system for studies of frustrated magnetism on an S=1/2 kagom'e lattice. Following our recent success in crystal growth, we have measured anisotropies in the magnetic susceptibility and specific heat. The implication on the Hamiltonian will be discussed. Specific heat has been measured at dilution fridge temperatures up to 18 T on a single crystal sample which gives further information on the low temperature phases. In addition, inelastic neutron scattering has been performed and the broad continuum observed is consistent with deconfined 2D spinons which lends further support of herbertsmithite's quantum spin liquid candidacy.

  10. Energy dissipation in intercalated carbon nanotube forests with metal layers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vertically aligned carbon nanotube (CNT) forests were synthesized to study their quasi-static mechanical properties in a layered configuration with metallization. The top and bottom surfaces of CNT forests were metalized with Ag, Fe, and In using paste, sputtering, and thermal evaporation, respectiv...

  11. Layer-by-layer synthesis of metal-containing conducting polymers: caged metal centers for interlayer charge transport.

    PubMed

    Liu, Wenjun; Huang, Weijie; Pink, Maren; Lee, Dongwhan

    2010-09-01

    Metal-templated [2 + 3]-type cocondensation of a pi-extended boronic acid and nioxime furnished a series of cage molecules, which were electropolymerized to prepare metal-containing conducting polymers (MCPs). Despite sharing essentially isostructural organic scaffolds, these materials display metal-dependent electrochemical properties as evidenced by different redox windows observed for M = Co, Fe, Ru. Consecutive electropolymerization using two different monomers furnished bilayer MCPs having different metals in each layer. In addition to functioning as heavy atom markers in cross-sectional analysis by FIB and EDX, redox-active metal centers participate in voltage-dependent interlayer electron transport to give rise to cyclic voltammograms that are distinctively different from those of each layer alone or random copolymers. A simple electrochemical technique can thus be used as a straightforward diagnostic tool to investigate the structural ordering of electrically conductive layered materials. PMID:20690667

  12. The mesospheric metal layer topside: a possible connection to meteoroids

    NASA Astrophysics Data System (ADS)

    Höffner, J.; Friedman, J. S.

    2004-05-01

    In the past, many studies have been carried out to demonstrate the influence of meteoroids on the atmospheric metal layer, observed roughly in the altitude range 80-105 km. Even with the capability of present day resonance lidars to measure metal densities within single meteor trails, it has been difficult to prove any influence of meteors on the average metal layer. In contrast to approaches taken earlier, we discuss here the seasonal characteristics of potassium, calcium, calcium ion, iron and sodium above 110 km altitude where the average nocturnal densities are so low that the existence of a baseline level of metal atoms and ions is often overlooked. By comparing simultaneous and common-volume observations of different metal layers at one location, we demonstrate that despite their different seasonal characteristics at lower altitudes remarkably similar seasonal characteristics are observed at higher altitudes. In addition, a qualitative agreement is also found for potassium at different latitudes. A comparison of metal densities at 113 km altitude with known meteor showers indicates a strong influence of shower meteoroids on the topside of the metal layers. Simultaneous observations of K along with Ca, Fe and/or Na permit the calculation of abundance ratios, which at 113 km altitude are quite similar to values measured in single meteor trails by ground based lidars. Furthermore, the increase in densities throughout summer is strong evidence for the influence of sporadic meteoroids on the high metal layers. This increase correlates well with the seasonal variation of sporadic micrometeor input independent of meteor showers. Given these evidences, we contend that there is a direct influence of ablating meteoroids on the topside of the mesospheric metal layer.

  13. Ternary metal-rich sulfide with a layered structure

    DOEpatents

    Franzen, Hugo F.; Yao, Xiaoqiang

    1993-08-17

    A ternary Nb-Ta-S compound is provided having the atomic formula, Nb.sub.1.72 Ta.sub.3.28 S.sub.2, and exhibiting a layered structure in the sequence S-M3-M2-M1-M2-M3-S wherein S represents sulfur layers and M1, M2, and M3 represent Nb/Ta mixed metal layers. This sequence generates seven sheets stacked along the [001] direction of an approximate body centered cubic crystal structure with relatively weak sulfur-to-sulfur van der Waals type interactions between adjacent sulfur sheets and metal-to-metal bonding within and between adjacent mixed metal sheets.

  14. Energy dissipation in intercalated carbon nanotube forests with metal layers

    NASA Astrophysics Data System (ADS)

    Boddu, Veera M.; Brenner, Matthew W.

    2016-02-01

    Vertically aligned carbon nanotube (CNT) forests were synthesized to study their quasi-static mechanical properties in a layered configuration with metallization. The top and bottom surfaces of CNT forests were metalized with Ag, Fe, and In using paste, sputtering, and thermal evaporation, respectively. Stacks of one, two, and three layers of these forests were assembled and compressed to measure their mechanical properties. The samples were strain limited to 0.7, and the results indicate that energy dissipation is approximately linear with respect to the number of layers and relatively independent of metal type. The energy per unit volume was approximately the same for all samples. Successive stacking of CNT forests reduces local buckling events, which is enhanced with a thick Ag deposition on the CNT forest surface. Young's modulus was also observed to increase as the number of layers was increased. These results are useful in the design of composite materials for high energy absorption and high stiffness applications.

  15. Method of adhesion between an oxide layer and a metal layer

    DOEpatents

    Jennison, Dwight R.; Bogicevic, Alexander; Kelber, Jeffry A.; Chambers, Scott A.

    2004-09-14

    A method of controlling the wetting characteristics and increasing the adhesion between a metal and an oxide layer. By introducing a negatively-charged species to the surface of an oxide layer, layer-by-layer growth of metal deposited onto the oxide surface is promoted, increasing the adhesion strength of the metal-oxide interface. The negatively-charged species can either be deposited onto the oxide surface or a compound can be deposited that dissociates on, or reacts with, the surface to form the negatively-charged species. The deposited metal adatoms can thereby bond laterally to the negatively-charged species as well as vertically to the oxide surface as well as react with the negatively charged species, be oxidized, and incorporated on or into the surface of the oxide.

  16. Tunable anisotropic superfluidity in optical Kagome superlattice

    NASA Astrophysics Data System (ADS)

    Pelster, Axel; Zhang, Xue-Feng; Wang, Tao; Eggert, Sebastian

    2015-03-01

    We study the extended Bose-Hubbard model for the optical Kagome superlattice which is generated by enhancing the long wavelength laser in one direction. By combining Quantum Monte Carlo simulations with the Generalized Effective Potential Landau Theory, we find not only the Mott insulator-superfluid quantum phase transition, but also striped solid phases with non-integer filling factors. Furthermore, we determine with high accuracy the quantum phase diagram for different trap potential offsets. Due to the delicate interplay between onsite repulsion and artificial symmetry breaking, the superfluid density turns out to be anisotropic which reveals its tensorial property. Counterintuitively, the bias of the anisotropy is alternating between x- and y-direction while tuning the particle number or the hopping strength. Finally, we discuss how to observe such phenomenon experimentally, in particular via time-of-flight absorption measurements. Supported by OPTIMAS and the Deutsche Forschungsgemeinschaft via the SFB/TR49

  17. Spin liquids on an anisotropic kagome lattice

    NASA Astrophysics Data System (ADS)

    Schaffer, Robert; Hwang, Kyusung; Huh, Yejin; Kim, Yong Baek

    Much recent theoretical and experimental effort has been devoted to the search for quantum spin liquids, which arise in the presence of strong frustration of magnetic interactions. Motivated by recent experiments on the vanadium oxyfluoride material DQVOF, we examine possible spin liquid phases on an anisotropic kagome lattice of S = 1 / 2 spins, in which the C6 symmetry is broken to C3. Using the projective symmetry group analysis, we determine the possible phases for both bosonic and fermionic Z2 spin liquids on this lattice. Using VMC, we study the Heisenberg model on this lattice, and show that a Z2 spin liquid emerges as the ground state in the presence of this anisotropy.

  18. Rare earth zirconium oxide buffer layers on metal substrates

    DOEpatents

    Williams, Robert K.; Paranthaman, Mariappan; Chirayil, Thomas G.; Lee, Dominic F.; Goyal, Amit; Feenstra, Roeland

    2001-01-01

    A laminate article comprises a substrate and a biaxially textured (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer over the substrate, wherein 0layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sub.x A.sub.(1-x)).sub.2 O.sub.2-(x/2) buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  19. Single-layer transition metal sulfide catalysts

    DOEpatents

    Thoma, Steven G.

    2011-05-31

    Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.

  20. Direct current voltage generated in metallic layers by spin pumping

    NASA Astrophysics Data System (ADS)

    Vilela-Leão, L. H.; da Silva, G. L.; Salvador, C.; Rezende, S. M.; Azevedo, A.

    2011-04-01

    We report an investigation of the dc voltage generated in a normal-metal (NM) layer by spin pumping from an adjacent ferromagnetic (FM) layer under ferromagnetic resonance (FMR) excitation. The spin-current injected across the FM/NM interface by the spin pumping effect generates a charge current along the NM layer by means of the inverse spin Hall effect. Room temperature field scan measurements were made in a series of Ni81Fe19/Pt bilayers with several thicknesses of the FM and Pt layers. By varying the angle of the in-plane magnetization we are able to accurately separate the contributions arising from anisotropic magnetoresistance and from the spin-current pumped into the NM layer by the precessing magnetization of the FM layer. The data for the spin pumping dc voltage is in excellent agreement with a theory incorporating the full dependence on the thicknesses of the FM and NM layers.

  1. Method of depositing buffer layers on biaxially textured metal substrates

    DOEpatents

    Beach, David B.; Morrell, Jonathan S.; Paranthaman, Mariappan; Chirayil, Thomas; Specht, Eliot D.; Goyal, Amit

    2002-08-27

    A laminate article comprises a substrate and a biaxially textured (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer over the substrate, wherein 0layer can be deposited using sol-gel or metal-organic decomposition. The laminate article can include a layer of YBCO over the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. A layer of CeO.sub.2 between the YBCO layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer can also be include. Further included can be a layer of YSZ between the CeO.sub.2 layer and the (RE.sup.1.sub.x RE.sup.2.sub.(1-x)).sub.2 O.sub.3 buffer layer. The substrate can be a biaxially textured metal, such as nickel. A method of forming the laminate article is also disclosed.

  2. Methods of Fabricating a Layer of Metallic Glass-Based Material Using Immersion and Pouring Techniques

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention implement layers of metallic glass-based materials. In one embodiment, a method of fabricating a layer of metallic glass includes: applying a coating layer of liquid phase metallic glass to an object, the coating layer being applied in a sufficient quantity such that the surface tension of the liquid phase metallic glass causes the coating layer to have a smooth surface; where the metallic glass has a critical cooling rate less than 1000 K/s; and cooling the coating layer of liquid phase metallic glass to form a layer of solid phase metallic glass.

  3. The Thermomagnetic Instability in Superconducting Films with Adjacent Metal Layer

    NASA Astrophysics Data System (ADS)

    Vestgården, J. I.; Galperin, Y. M.; Johansen, T. H.

    2013-12-01

    Dendritic flux avalanches is a frequently encountered consequence of the thermomagnetic instability in type-II superconducting films. The avalanches, which are potentially harmful for superconductor-based devices, can be suppressed by an adjacent normal metal layer, even when the two layers are not in thermal contact. The suppression of the avalanches in this case is due to so-called magnetic braking, caused by eddy currents generated in the metal layer by propagating magnetic flux. We develop a theory of magnetic braking by analyzing coupled electrodynamics and heat flow in a superconductor-normal metal bilayer. The equations are solved by linearization and by numerical simulation of the avalanche dynamics. We find that in an uncoated superconductor, even a uniform thermomagnetic instability can develop into a dendritic flux avalanche. The mechanism is that a small non-uniformity caused by the electromagnetic non-locality induces a flux-flow hot spot at a random position. The hot spot quickly develops into a finger, which at high speeds penetrates into the superconductor, forming a branching structure. Magnetic braking slows the avalanches, and if the normal metal conductivity is sufficiently high, it can suppress the formation of the dendritic structure. During avalanches, the braking by the normal metal layer prevents the temperature from exceeding the transition temperature of the superconductor. Analytical criteria for the instability threshold are developed using the linear stability analysis. The criteria are found to match quantitatively the instability onsets obtained in simulations.

  4. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12

    DOE PAGESBeta

    Xu, Gang; Lian, Biao; Zhang, Shou -Cheng

    2015-10-27

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs2Mn3F12 kagome lattice and on the (001) surface of a Cs2LiMn3F12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding model based on the in-plane ddσ antibondingmore » states is constructed to understand the topological band structures of the system.« less

  5. Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs2 LiMn3 F12

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Lian, Biao; Zhang, Shou-Cheng; Zhang's Group Team

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from the ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs2Mn3F12 kagome lattice and on the (001) surface of a Cs2LiMn3F12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Moreover, a simplified tight binding model based on the inplane dd σ antibonding states is constructed to understand the topological band structures of the system.

  6. Intrinsic Quantum Anomalous Hall Effect in the Kagome Lattice Cs2 LiMn3 F12

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Lian, Biao; Zhang, Shou-Cheng

    2015-10-01

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs2Mn3F12 kagome lattice and on the (001) surface of a Cs2LiMn3F12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Moreover, a simplified tight binding model based on the in-plane d d σ antibonding states is constructed to understand the topological band structures of the system.

  7. Chromospheric, transition layer and coronal emission of metal deficient stars

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1982-01-01

    It is shown that while MgII k line emission decreases for metal deficient stars, the Ly alpha emission increases. The sum of chromospheric hydrogen and metallic emission appears to be independent of metal abundances. The total chromospheric energy loss is estimated to be 0.0004 F sub bol. The chromospheric energy input does not seem to decrease for increasing age. The transition layer emission is reduced for metal deficient stars, but it is not known whether the reduction is larger than can be explained by curve of growth effects only. Coronal X-ray emission was measured for 4 metal deficient stars. Within a 12 limit it could still be consistent with the emission of solar abundance stars.

  8. Growth of transition metals on cerium tungstate model catalyst layers.

    PubMed

    Skála, T; Tsud, N; Stetsovych, V; Mysliveček, J; Matolín, V

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed. PMID:27494195

  9. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  10. Monolayer and/or few-layer graphene on metal or metal-coated substrates

    DOEpatents

    Sutter, Peter Werner; Sutter, Eli Anguelova

    2015-04-14

    Disclosed is monolayer and/or few-layer graphene on metal or metal-coated substrates. Embodiments include graphene mirrors. In an example, a mirror includes a substrate that has a surface exhibiting a curvature operable to focus an incident beam onto a focal plane. A graphene layer conformally adheres to the substrate, and is operable to protect the substrate surface from degradation due to the incident beam and an ambient environment.

  11. Optimum Interfacial Layers For Fiber/Metal Composites

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Ghosn, Louis J.

    1993-01-01

    Report presents theoretical stress-analysis study of some of factors affecting choice of thin layer of material placed at interface between each fiber and matrix of ceramic-fiber/metal-matrix composite. Effects of thickness, modulus of elasticity, and coefficient of thermal expansion considered.

  12. Abrupt Depletion Layer Approximation for the Metal Insulator Semiconductor Diode.

    ERIC Educational Resources Information Center

    Jones, Kenneth

    1979-01-01

    Determines the excess surface change carrier density, surface potential, and relative capacitance of a metal insulator semiconductor diode as a function of the gate voltage, using the precise questions and the equations derived with the abrupt depletion layer approximation. (Author/GA)

  13. Advanced optical interference filters based on metal and dielectric layers.

    PubMed

    Begou, Thomas; Lemarchand, Fabien; Lumeau, Julien

    2016-09-01

    In this paper, we investigate the design and the fabrication of an advanced optical interference filter based on metal and dielectric layers. This filter respects the specifications of the 2016 OIC manufacturing problem contest. We study and present all the challenges and solutions that allowed achieving a low deviation between the fabricated prototype and the target. PMID:27607695

  14. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Zaletel, Michael P.; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R.

    2016-05-01

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.

  15. Design of a Kagome lattice from soft anisotropic particles.

    PubMed

    Fejer, Szilard N; Wales, David J

    2015-09-01

    We present a simple model of triblock Janus particles based on discoidal building blocks, which can form energetically stabilized Kagome structures. We find 'magic number' global minima in small clusters whenever particle numbers are compatible with a perfect Kagome structure, without constraining the accessible three-dimensional configuration space. The preference for planar structures with two bonds per patch among all other possible minima on the landscape is enhanced when sedimentation forces are included. For the building blocks in question, structures containing three bonds per patch become progressively higher in energy compared to Kagome structures as sedimentation forces increase. Rearrangements between competing structures, as well as ring formation mechanisms are characterised and found to be highly cooperative. PMID:26212130

  16. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.

    PubMed

    Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R

    2016-05-13

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations. PMID:27232041

  17. A Kagome Map of Spin Liquidsx

    NASA Astrophysics Data System (ADS)

    Essafi, Karim; Benton, Owen; Jaubert, Ludovic D. C.

    Competing interactions in frustrated magnets prevent ordering down to very low temperatures and stabilize exotic highly degenerate phases where strong correlations coexist with fluctuations. We study a very general nearest-neighbour Heisenberg spin model Hamiltonian on the kagome lattice which consist of Dzyaloshinskii-Moriya, ferro- and antiferromagnetic interactions. We present a three-fold mapping which transforms the well-known Heisenberg antiferromagnet (HAF) and XXZ model onto two lines of time-reversal Hamiltonians. The mapping is exact for both classical and quantum spins, i.e. preserves the energy spectrums of the HAF and XXZ model. As a consequence, our three-fold mapping gives rise to a connected network of quantum spin liquids centered around the Ising antiferromagnet. We show that this quantum disorder spreads over an extended region of the phase diagram at linear order in spin wave theory, which overlaps with the parameter region of Herbertsmithite ZnCu3(OH)6Cl2. At the classical level, all the phases have an extensively degenerate ground-state which present a variety of properties such as ferromagnetically induced pinch points in the structure factor and spontaneous scalar chirality which was absent in the original HAF and XXZ models. This work was supported by the Okinawa Institute of Science and Technology Graduate University.

  18. Kagome antiferromagnet: a chiral topological spin liquid?

    PubMed

    Messio, Laura; Bernu, Bernard; Lhuillier, Claire

    2012-05-18

    Inspired by the recent discovery of a new instability towards a chiral phase of the classical Heisenberg model on the kagome lattice, we propose a specific chiral spin liquid that reconciles different, well-established results concerning both the classical and quantum models. This proposal is analyzed in an extended mean-field Schwinger boson framework encompassing time reversal symmetry breaking phases, which allows both a classical and a quantum phase description. At low temperatures, we find that quantum fluctuations favor this chiral phase, which is stable against small perturbations of second- and third-neighbor interactions. For spin-1/2, this phase may be, beyond the mean field, a chiral gapped spin liquid. Such a phase is consistent with the density matrix renormalization group results of Yan et al. [Science 332, 1173 (2011)]. Mysterious features of the low-lying excitations of exact diagonalization spectra also find an explanation in this framework. Moreover, thermal fluctuations compete with quantum ones and induce a transition from this flux phase to a planar zero flux phase at a nonzero value of the renormalized temperature (T/S2), reconciling these results with those obtained for the classical system. PMID:23003183

  19. Localized modes in nonlinear binary kagome ribbons

    NASA Astrophysics Data System (ADS)

    Beličev, P. P.; Gligorić, G.; Radosavljević, A.; Maluckov, A.; Stepić, M.; Vicencio, R. A.; Johansson, M.

    2015-11-01

    The localized mode propagation in binary nonlinear kagome ribbons is investigated with the premise to ensure controlled light propagation through photonic lattice media. Particularity of the linear system characterized by the dispersionless flat band in the spectrum is the opening of new minigaps due to the "binarism." Together with the presence of nonlinearity, this determines the guiding mode types and properties. Nonlinearity destabilizes the staggered rings found to be nondiffracting in the linear system, but can give rise to dynamically stable ringlike solutions of several types: unstaggered rings, low-power staggered rings, hour-glass-like solutions, and vortex rings with high power. The type of solutions, i.e., the energy and angular momentum circulation through the nonlinear lattice, can be controlled by suitable initial excitation of the ribbon. In addition, by controlling the system "binarism" various localized modes can be generated and guided through the system, owing to the opening of the minigaps in the spectrum. All these findings offer diverse technical possibilities, especially with respect to the high-speed optical communications and high-power lasers.

  20. Exfoliation of large-area transition metal chalcogenide single layers

    PubMed Central

    Magda, Gábor Zsolt; Pető, János; Dobrik, Gergely; Hwang, Chanyong; Biró, László P.; Tapasztó, Levente

    2015-01-01

    Isolating large-areas of atomically thin transition metal chalcogenide crystals is an important but challenging task. The mechanical exfoliation technique can provide single layers of the highest structural quality, enabling to study their pristine properties and ultimate device performance. However, a major drawback of the technique is the low yield and small (typically < 10 μm) lateral size of the produced single layers. Here, we report a novel mechanical exfoliation technique, based on chemically enhanced adhesion, yielding MoS2 single layers with typical lateral sizes of several hundreds of microns. The idea is to exploit the chemical affinity of the sulfur atoms that can bind more strongly to a gold surface than the neighboring layers of the bulk MoS2 crystal. Moreover, we found that our exfoliation process is not specific to MoS2, but can be generally applied for various layered chalcogenides including selenites and tellurides, providing an easy access to large-area 2D crystals for the whole class of layered transition metal chalcogenides. PMID:26443185

  1. Kagome lattices for ultracold atoms induced by additional lightfields

    NASA Astrophysics Data System (ADS)

    Zhang, Huirong; Chen, Xuzong; Ma, Zhaoyuan; Zhou, Yuqing

    2016-06-01

    We propose a novel method for the realization of an optical Kagome lattice due to the Raman processes driven by additional light fields applied to the ultracold atoms of two hyperfine internal states trapped in a planar optical triangular lattice. The tunneling between the different internal states of the nearest-neighbor atoms in Kagome lattices can be adjusted by the additional light fields independently of the on-site interaction. This optical lattice protocol can be used to investigate the magnetic quantum phenomena and the nearest-neighbor magnetic coupling becomes strong enough by increasing the intensities of the additional light fields.

  2. Comparative study of the synthesis of layered transition metal molybdates

    SciTech Connect

    Mitchell, S.; Gomez-Aviles, A.; Gardner, C.; Jones, W.

    2010-01-15

    Mixed metal oxides (MMOs) prepared by the mild thermal decomposition of layered double hydroxides (LDHs) differ in their reactivity on exposure to aqueous molybdate containing solutions. In this study, we investigate the reactivity of some T-Al containing MMOs (T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates (LTMs) possessing the general formula AT{sub 2}(OH)(MoO{sub 4}){sub 2}.H{sub 2}O, where A=NH{sub 4}{sup +}, Na{sup +} or K{sup +}. The phase selectivity of the reaction was studied with respect to the source of molybdate, the ratio of T to Mo and the reaction pH. LTMs were obtained on reaction of Cu-Al and Zn-Al containing MMOs with aqueous solutions of ammonium heptamolybdate. Rehydration of these oxides in the presence of sodium or potassium molybdate yielded a rehydrated LDH phase as the only crystalline product. The LTM products obtained by the rehydration of MMO precursors were compared with LTMs prepared by direct precipitation from the metal salts in order to study the influence of preparative route on their chemical and physical properties. Differences were noted in the composition, morphology and thermal properties of the resulting products. - Graphical abstract: Mixed metal oxides (MMOs) derived from layered double hydroxide precursors differ in their reactivity on exposure to aqueous molybdate containing solutions. We investigate the influence of the molybdate source, the rehydration pH and the ratio of T/Mo on the reactivity of some T-Al containing MMOs (T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates of general formula AT{sub 2}(OH)(MoO{sub 4}){sub 2}.H{sub 2}O (where A{sup +}=NH{sub 4}{sup +}, K{sup +} or Na{sup +}).

  3. Photoluminescence emission from Alq3 organic layer in metal-Alq3-metal plasmonic structure

    NASA Astrophysics Data System (ADS)

    Huang, Bohr-Ran; Liao, Chung-Chi; Fan, Wan-Ting; Wu, Jin-Han; Chen, Cheng-Chang; Lin, Yi-Ping; Li, Jung-Yu; Chen, Shih-Pu; Ke, Wen-Cheng; Chen, Nai-Chuan

    2014-06-01

    The emission properties of an organic layer embedded in a metal-organic-metal (MOM) structure were investigated. A partially radiative odd-SPW as well as a non-radiative even-SPW modes are supported by hybridization of the SPW modes on the opposite organic/metal interface in the structure. Because of the competition by this radiative SPW, the population of excitons that recombine to form non-radiative SPW should be reduced. This may account for why the photoluminescence intensity of the MOM sample is higher than that of an organic-metal sample even though the MOM sample has an additional metal layer that should intuitively act as a filter.

  4. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2015-04-28

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  5. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2014-09-16

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  6. Self assembled multi-layer nanocomposite of graphene and metal oxide materials

    DOEpatents

    Liu, Jun; Aksay, Ilhan A; Choi, Daiwon; Kou, Rong; Nie, Zimin; Wang, Donghai; Yang, Zhenguo

    2013-10-22

    Nanocomposite materials having at least two layers, each layer consisting of one metal oxide bonded to at least one graphene layer were developed. The nanocomposite materials will typically have many alternating layers of metal oxides and graphene layers, bonded in a sandwich type construction and will be incorporated into an electrochemical or energy storage device.

  7. Hydrogen permeation resistant layers for liquid metal reactors

    SciTech Connect

    McGuire, J.C.

    1980-03-01

    Reviewing the literature in the tritium diffusion field one can readily see a wide divergence in results for both the response of permeation rate to pressure, and the effect of oxide layers on total permeation rates. The basic mechanism of protective oxide layers is discussed. Two coatings which are less hydrogen permeable than the best naturally occurring oxide are described. The work described is part of an HEDL-ANL cooperative research program on Tritium Permeation in Liquid Metal Cooled Reactors. This includes permeation work on hydrogen, deuterium, and tritium with the hydrogen-deuterium research leading to the developments presented.

  8. CdCu{sub 3}(OH){sub 6}Cl{sub 2}: A new layered hydroxide chloride

    SciTech Connect

    McQueen, T.M.; Han, T.H.; Freedman, D.E.; Stephens, P.W.; Lee, Y.S.; Nocera, D.G.

    2011-12-15

    A new transition metal hydroxide chloride containing kagome layers of magnetic ions, CdCu{sub 3}(OH){sub 6}Cl{sub 2}, has been synthesized and structurally characterized. The actual low symmetry P2{sub 1}/n structure can be derived from the ideal trigonal one with a change in cation distribution and coherent distortions of the anion framework. The result is a fundamentally different Cu{sup 2+} kagome framework than found in the related Herbertsmithite and Kapellasite minerals. Magnetization measurements show no transition to long range magnetic order above T=2 K, despite strong antiferromagnetic interactions with a Weiss temperature of {theta}{sub w}=-150 K. Furthermore, we show that the structure of CdCu{sub 3}(OH){sub 6}Cl{sub 2} and related hydroxide chlorides can be rationalized on the basis of [(OH){sub 3}Cl]{sup 4-} pseudopolyatomic anions that pack and rotate, in much the same way as do traditional polyatomic anions. This opens the door to rational design of new and useful hydroxide chloride materials. - Graphical Abstract: The [(OH){sub 3}Cl]{sup 4-} pseudopolyatomic anion and the kagome lattice of CdCu{sub 3}[(OH){sub 3}Cl]{sub 2}. Highlights: Black-Right-Pointing-Pointer A new understanding of hydroxide chlorides, based on the polyatomic anion [(OH){sub 3}Cl]{sup 4-}. Black-Right-Pointing-Pointer Synthesis and structure of a new layered hydroxide chloride, CdCu{sub 3}(OH){sub 6}Cl{sub 2}, are reported. Black-Right-Pointing-Pointer A new compound is reported with kagome layers of Cu{sup 2+}.

  9. Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides

    PubMed Central

    Kim, Youngjun; Song, Jeong-Gyu; Park, Yong Ju; Ryu, Gyeong Hee; Lee, Su Jeong; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Chang Wan; Woo, Whang Je; Choi, Taejin; Jung, Hanearl; Lee, Han-Bo-Ram; Myoung, Jae-Min; Im, Seongil; Lee, Zonghoon; Ahn, Jong-Hyun; Park, Jusang; Kim, Hyungjun

    2016-01-01

    This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (~10 cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 108. This process is also shown to be applicable to WSe2, with a PN diode fabricated from a MoS2/WSe2 heterostructure exhibiting gate-tunable rectifying characteristics. PMID:26725854

  10. Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides.

    PubMed

    Kim, Youngjun; Song, Jeong-Gyu; Park, Yong Ju; Ryu, Gyeong Hee; Lee, Su Jeong; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Chang Wan; Woo, Whang Je; Choi, Taejin; Jung, Hanearl; Lee, Han-Bo-Ram; Myoung, Jae-Min; Im, Seongil; Lee, Zonghoon; Ahn, Jong-Hyun; Park, Jusang; Kim, Hyungjun

    2016-01-01

    This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (~10 cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 10(8). This process is also shown to be applicable to WSe2, with a PN diode fabricated from a MoS2/WSe2 heterostructure exhibiting gate-tunable rectifying characteristics. PMID:26725854

  11. Self-Limiting Layer Synthesis of Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Kim, Youngjun; Song, Jeong-Gyu; Park, Yong Ju; Ryu, Gyeong Hee; Lee, Su Jeong; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Chang Wan; Woo, Whang Je; Choi, Taejin; Jung, Hanearl; Lee, Han-Bo-Ram; Myoung, Jae-Min; Im, Seongil; Lee, Zonghoon; Ahn, Jong-Hyun; Park, Jusang; Kim, Hyungjun

    2016-01-01

    This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a process in which the number of layers is determined by temperature rather than process cycles due to the chemically inactive nature of 2D MoS2. Through spectroscopic and microscopic investigation it is demonstrated that SLS is capable of producing MoS2 with a wafer-scale (~10 cm) layer-number uniformity of more than 90%, which when used as the active layer in a top-gated field-effect transistor, produces an on/off ratio as high as 108. This process is also shown to be applicable to WSe2, with a PN diode fabricated from a MoS2/WSe2 heterostructure exhibiting gate-tunable rectifying characteristics.

  12. Layer-selective half-metallicity in bilayer graphene nanoribbons

    PubMed Central

    Jeon, Gi Wan; Lee, Kyu Won; Lee, Cheol Eui

    2015-01-01

    Half-metallicity recently predicted in the zigzag-edge graphene nanoribbons (ZGNRs) and the hydrogenated carbon nanotubes (CNTs) enables fully spin-polarized electric currents, providing a basis for carbon-based spintronics. In both carbon systems, the half-metallicity arises from the edge-localized electron states under an electric field, lowering the critical electric field Dc for the half-metallicity being an issue in recent works on ZGNRs. A properly chosen direction of the electric field alone has been predicted to significantly reduce Dc in the hydrogenated CNTs, which in this work turned out to be the case in narrow bilayer ZGNRs (biZGNRs). Here, our simple model based on the electrostatic potential difference between the edges predicts that for wide biZGNRs of width greater than ~2.0 nm (10 zigzag carbon chains), only one layer of the biZGNRs becomes half-metallic leaving the other layer insulating as confirmed by our density functional theory (DFT) calculations. The electric field-induced switching of the spin-polarized current path is believed to open a new route to graphene-based spintronics applications. PMID:25950724

  13. Dielectric and Conductivity Mapping of Few-Layer Metal Chalcogenides

    NASA Astrophysics Data System (ADS)

    Lai, Keji; Wu, Di; Liu, Yingnan; Ren, Yuan; Lin, Min; Peng, Hailin; Ismach, Ariel; Ghosh, Rudresh; Ruoff, Rodney

    2014-03-01

    A novel microwave impedance microscope was used to spatially map the local dielectric constant and conductivity of few-layered metal chalcogenides without the need of contact electrodes. For phase-change In2Se3 nanoplates grown on mica substrates, our results showed a sudden drop of permittivity from the bulk value for thicknesses below 5 layers and strong dielectric inhomogeneity around 4 and 5 layers. For CVD-grown MoS2 flakes on SiO2/Si wafers, we observed highly conductive localized regions within monolayer islands. These regions, which can be imaged by scanning electron microscopy and atomic force microscopy, show enhanced Raman signals and PL signal quenching. Continued imaging effort is expected to shed some light on the growth mechanism and electron physics of these quasi-2D chalcogenides.

  14. Protein Induces Layer-by-Layer Exfoliation of Transition Metal Dichalcogenides.

    PubMed

    Guan, Guijian; Zhang, Shuangyuan; Liu, Shuhua; Cai, Yongqing; Low, Michelle; Teng, Choon Peng; Phang, In Yee; Cheng, Yuan; Duei, Koh Leng; Srinivasan, Bharathi Madurai; Zheng, Yuangang; Zhang, Yong-Wei; Han, Ming-Yong

    2015-05-20

    Here, we report a general and facile method for effective layer-by-layer exfoliation of transition metal dichalcogenides (TMDs) and graphite in water by using protein, bovine serum albumin (BSA) to produce single-layer nanosheets, which cannot be achieved using other commonly used bio- and synthetic polymers. Besides serving as an effective exfoliating agent, BSA can also function as a strong stabilizing agent against reaggregation of single-layer nanosheets for greatly improving their biocompatibility in biomedical applications. With significantly increased surface area, single-layer MoS2 nanosheets also exhibit a much higher binding capacity to pesticides and a much larger specific capacitance. The protein exfoliation process is carefully investigated with various control experiments and density functional theory simulations. It is interesting to find that the nonpolar groups of protein can firmly bind to TMD layers or graphene to expose polar groups in water, facilitating the effective exfoliation of single-layer nanosheets in aqueous solution. The present work will enable to optimize the fabrication of various 2D materials at high yield and large scale, and bring more opportunities to investigate the unique properties of 2D materials and exploit their novel applications. PMID:25936424

  15. Polarized thermal radiation by layer-by-layer metallic emitters with sub-wavelength grating.

    PubMed

    Lee, Jae-Hwang; Leung, Wai; Kim, Tae Guen; Constant, Kristen; Ho, Kai-Ming

    2008-06-01

    Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 mum, as well as high emissivity up to 0.65 at a wavelength of 3.7 microm. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization. PMID:18545587

  16. Comparative study of the synthesis of layered transition metal molybdates

    NASA Astrophysics Data System (ADS)

    Mitchell, S.; Gómez-Avilés, A.; Gardner, C.; Jones, W.

    2010-01-01

    Mixed metal oxides (MMOs) prepared by the mild thermal decomposition of layered double hydroxides (LDHs) differ in their reactivity on exposure to aqueous molybdate containing solutions. In this study, we investigate the reactivity of some T-Al containing MMOs ( T=Co, Ni, Cu or Zn) towards the formation of layered transition metal molybdates (LTMs) possessing the general formula AT2(OH)(MoO 4) 2·H 2O, where A=NH 4+, Na + or K +. The phase selectivity of the reaction was studied with respect to the source of molybdate, the ratio of T to Mo and the reaction pH. LTMs were obtained on reaction of Cu-Al and Zn-Al containing MMOs with aqueous solutions of ammonium heptamolybdate. Rehydration of these oxides in the presence of sodium or potassium molybdate yielded a rehydrated LDH phase as the only crystalline product. The LTM products obtained by the rehydration of MMO precursors were compared with LTMs prepared by direct precipitation from the metal salts in order to study the influence of preparative route on their chemical and physical properties. Differences were noted in the composition, morphology and thermal properties of the resulting products.

  17. Dynamic Control of Optical Response in Layered Metal Chalcogenide Nanoplates.

    PubMed

    Liu, Yanping; Tom, Kyle; Wang, Xi; Huang, Chunming; Yuan, Hongtao; Ding, Hong; Ko, Changhyun; Suh, Joonki; Pan, Lawrence; Persson, Kristin A; Yao, Jie

    2016-01-13

    Tunable optical transitions in ultrathin layered 2-dimensional (2D) materials unveil the electronic structures of materials and provide exciting prospects for potential applications in optics and photonics. Here, we present our realization of dynamic optical modulation of layered metal chalcogenide nanoplates using ionic liquid (IL) gating over a wide spectral range. The IL gating significantly increased the tuning range of the Fermi level and, as a result, substantially altered the optical transitions in the nanoplates. Using heavily n-doped Bi2Se3 nanoplates, we substantially modulated the light transmission through the ultrathin layer. A tunable, high-transmission spectral window in the visible to near-infrared region has been observed due to simultaneous shifts of both the plasma edge and absorption edge of the material. On the other hand, optical response of multilayer MoSe2 flakes gated by IL has shown enhanced transmission in both positive and negative biases, which is consistent with their ambipolar electrical behavior. The electrically controlled optical property tuning in metal chalcogenide material systems provides new opportunities for potential applications, such as wide spectral range optical modulators, optical filters, and electrically controlled smart windows with extremely low material consumption. PMID:26599063

  18. Nucleation and Early Stages of Layer-by-Layer Growth of Metal Organic Frameworks on Surfaces

    PubMed Central

    2015-01-01

    High resolution atomic force microscopy (AFM) is used to resolve the evolution of crystallites of a metal organic framework (HKUST-1) grown on Au(111) using a liquid-phase layer-by-layer methodology. The nucleation and faceting of individual crystallites is followed by repeatedly imaging the same submicron region after each cycle of growth and we find that the growing surface is terminated by {111} facets leading to the formation of pyramidal nanostructures for [100] oriented crystallites, and triangular [111] islands with typical lateral dimensions of tens of nanometres. AFM images reveal that crystallites can grow by 5–10 layers in each cycle. The growth rate depends on crystallographic orientation and the morphology of the gold substrate, and we demonstrate that under these conditions the growth is nanocrystalline with a morphology determined by the minimum energy surface. PMID:26709359

  19. Double layer effects on metal nucleation in deep eutectic solvents.

    PubMed

    Abbott, Andrew P; Barron, John C; Frisch, Gero; Gurman, Stephen; Ryder, Karl S; Fernando Silva, A

    2011-06-01

    The electrodeposition of zinc has been studied in two deep eutectic solvents. Unlike the metals studied to date in these liquids, zinc electrodeposition is not mass transport limited and the morphology of the deposit differs in the two liquids. This study shows that changing the concentration of solute affects the physical properties of the liquid to different extents although this is found to not effect the morphology of the metal deposited. EXAFS was used to show that the speciation of zinc was the same in both liquids. Double layer capacitance studies showed differences between the two liquids and these are proposed to be due to the adsorption of a species on the electrode which is thought to be chloride. The differences in zinc morphology is attributed to blocking of certain crystal faces leading to deposition of small platelet shaped crystals in the glycol based liquid. PMID:21519629

  20. Spin and pseudospins in layered transition metal dichalcogenides

    SciTech Connect

    Xu, Xiaodong; Yao, Wang; Xiao, Di; Heinz, Tony F.

    2014-01-01

    The recent emergence of two-dimensional layered materials in particular the transition metal dichalcogenides provides a new laboratory for exploring the internal quantum degrees of freedom of electrons and their potential for new electronics. These degrees of freedom are the real electron spin, the layer pseudospin, and the valley pseudospin. New methods for the quantum control of the spin and these pseudospins arise from the existence of Berry phase-related physical properties and strong spin orbit coupling. The former leads to the versatile control of the valley pseudospin, whereas the latter gives rise to an interplay between the spin and the pseudospins. Here, we provide a brief review of both theoretical and experimental advances in this field.

  1. Template-Free 3D Microprinting of Metals Using a Force-Controlled Nanopipette for Layer-by-Layer Electrodeposition.

    PubMed

    Hirt, Luca; Ihle, Stephan; Pan, Zhijian; Dorwling-Carter, Livie; Reiser, Alain; Wheeler, Jeffrey M; Spolenak, Ralph; Vörös, János; Zambelli, Tomaso

    2016-03-23

    A novel 3D printing method for voxel-by-voxel metal printing is presented. Hollow atomic force microscopy (AFM) cantilevers are used to locally supply metal ions in an electrochemical cell, enabling a localized electroplating reaction. By exploiting the deflection feedback of these probes, electrochemical 3D metal printing is, for the first time, demonstrated in a layer-by-layer fashion, enabling the fabrication of arbitrary-shaped geometries. PMID:26783090

  2. Spin Frustration in an Organic Radical Ion Salt Based on a Kagome-Coupled Chain Structure.

    PubMed

    Postulka, Lars; Winter, Stephen M; Mihailov, Adam G; Mailman, Aaron; Assoud, Abdeljalil; Robertson, Craig M; Wolf, Bernd; Lang, Michael; Oakley, Richard T

    2016-08-31

    Electro-oxidation of the quinoidal bisdithiazole BT in dichloroethane in the presence of [Bu4N][GaBr4] affords the 1:1 radical ion salt [BT][GaBr4], crystals of which belong to the trigonal space group P3. The packing pattern of the radical cations provides a rare example of an organic kagome basket structure, with S = 1/2 radical ion chains located at the triangular corners of a trihexagonal lattice. Magnetic measurements over a wide temperature range from 30 mK to 300 K suggest strongly frustrated AFM interactions on the scale of J/kb ∼ 30 K, but reveal no anomalies that would be associated with magnetic order. These observations are discussed in terms of the symmetry allowed magnetic interactions within and between the frustrated layers. PMID:27537064

  3. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers

    PubMed Central

    Bogdanov, Nikolay A.; Katukuri, Vamshi M.; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  4. Orbital reconstruction in nonpolar tetravalent transition-metal oxide layers.

    PubMed

    Bogdanov, Nikolay A; Katukuri, Vamshi M; Romhányi, Judit; Yushankhai, Viktor; Kataev, Vladislav; Büchner, Bernd; van den Brink, Jeroen; Hozoi, Liviu

    2015-01-01

    A promising route to tailoring the electronic properties of quantum materials and devices rests on the idea of orbital engineering in multilayered oxide heterostructures. Here we show that the interplay of interlayer charge imbalance and ligand distortions provides a knob for tuning the sequence of electronic levels even in intrinsically stacked oxides. We resolve in this regard the d-level structure of layered Sr2IrO4 by electron spin resonance. While canonical ligand-field theory predicts g||-factors less than 2 for positive tetragonal distortions as present in Sr2IrO4, the experiment indicates g|| is greater than 2. This implies that the iridium d levels are inverted with respect to their normal ordering. State-of-the-art electronic-structure calculations confirm the level switching in Sr2IrO4, whereas we find them in Ba2IrO4 to be instead normally ordered. Given the nonpolar character of the metal-oxygen layers, our findings highlight the tetravalent transition-metal 214 oxides as ideal platforms to explore d-orbital reconstruction in the context of oxide electronics. PMID:26105992

  5. Atomic Quantum Gases in Kagomé Lattices

    NASA Astrophysics Data System (ADS)

    Santos, L.; Baranov, M. A.; Cirac, J. I.; Everts, H.-U.; Fehrmann, H.; Lewenstein, M.

    2004-07-01

    We demonstrate the possibility of creating and controlling an ideal and trimerized optical Kagomé lattice, and study the low temperature physics of various atomic gases in such lattices. In the trimerized Kagomé lattice, a Bose gas exhibits a Mott transition with fractional filling factors, whereas a spinless interacting Fermi gas at 2/3 filling behaves as a quantum magnet on a triangular lattice. Finally, a Fermi-Fermi mixture at half-filling for both components represents a frustrated quantum antiferromagnet with a resonating-valence-bond ground state and quantum spin liquid behavior dominated by a continuous spectrum of singlet and triplet excitations. We discuss the method of preparing and observing such a quantum spin liquid employing molecular Bose condensates.

  6. Dynamically generated flat-band phases in optical kagome lattices

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei; Chien, Chih-Chun; Di Ventra, Massimiliano

    2014-07-01

    Motivated by recent advances in the realization of complex two-dimensional optical lattices, we investigate theoretically the quantum transport of ultracold fermions in an optical kagome lattice. In particular, we focus on its extensively degenerate localized states (flat band). By loading fermions in a partial region of the lattice and depleting the mobile atoms at the far boundary of the initially unoccupied region, we find a dynamically generated flat-band insulator, which is also a population-inverted state. We further show that inclusion of weak repulsion leads to a dynamical stripe phase for two-component fermions in a similar setup. Finally, by preparing a topological insulating state in a partially occupied kagome lattice, we find that the topological chiral current decays but exhibits an interesting oscillating dynamics during the nonequilibrium transport. Given the broad variety of lattice geometries supporting localized or topological states, our work suggests new possibilities for using geometrical effects and their dynamics in atomtronic devices.

  7. Topological Magnon Bands in a Kagome Lattice Ferromagnet

    NASA Astrophysics Data System (ADS)

    Chisnell, R.; Helton, J. S.; Freedman, D. E.; Singh, D. K.; Bewley, R. I.; Nocera, D. G.; Lee, Y. S.

    2015-10-01

    There is great interest in finding materials possessing quasiparticles with topological properties. Such materials may have novel excitations that exist on their boundaries which are protected against disorder. We report experimental evidence that magnons in an insulating kagome ferromagnet can have a topological band structure. Our neutron scattering measurements further reveal that one of the bands is flat due to the unique geometry of the kagome lattice. Spin wave calculations show that the measured band structure follows from a simple Heisenberg Hamiltonian with a Dzyaloshinkii-Moriya interaction. This serves as the first realization of an effectively two-dimensional topological magnon insulator—a new class of magnetic material that should display both a magnon Hall effect and protected chiral edge modes.

  8. Monte Carlo simulations of kagome lattices with magnetic dipolar interactions

    NASA Astrophysics Data System (ADS)

    Plumer, Martin; Holden, Mark; Way, Andrew; Saika-Voivod, Ivan; Southern, Byron

    Monte Carlo simulations of classical spins on the two-dimensional kagome lattice with only dipolar interactions are presented. In addition to revealing the sixfold-degenerate ground state, the nature of the finite-temperature phase transition to long-range magnetic order is discussed. Low-temperature states consisting of mixtures of degenerate ground-state configurations separated by domain walls can be explained as a result of competing exchange-like and shape-anisotropy-like terms in the dipolar coupling. Fluctuations between pairs of degenerate spin configurations are found to persist well into the ordered state as the temperature is lowered until locking in to a low-energy state. Results suggest that the system undergoes a continuous phase transition at T ~ 0 . 43 in agreement with previous MC simulations but the nature of the ordering process differs. Preliminary results which extend this analysis to the 3D fcc ABC-stacked kagome systems will be presented.

  9. Thermal Hall Effect of Spin Excitations in a Kagome Magnet.

    PubMed

    Hirschberger, Max; Chisnell, Robin; Lee, Young S; Ong, N P

    2015-09-01

    At low temperatures, the thermal conductivity of spin excitations in a magnetic insulator can exceed that of phonons. However, because they are charge neutral, the spin waves are not expected to display a thermal Hall effect. However, in the kagome lattice, theory predicts that the Berry curvature leads to a thermal Hall conductivity κ(xy). Here we report observation of a large κ(xy) in the kagome magnet Cu(1-3, bdc) which orders magnetically at 1.8 K. The observed κ(xy) undergoes a remarkable sign reversal with changes in temperature or magnetic field, associated with sign alternation of the Chern flux between magnon bands. The close correlation between κ(xy) and κ(xx) firmly precludes a phonon origin for the thermal Hall effect. PMID:26382691

  10. Topological Magnon Bands in a Kagome Lattice Ferromagnet.

    PubMed

    Chisnell, R; Helton, J S; Freedman, D E; Singh, D K; Bewley, R I; Nocera, D G; Lee, Y S

    2015-10-01

    There is great interest in finding materials possessing quasiparticles with topological properties. Such materials may have novel excitations that exist on their boundaries which are protected against disorder. We report experimental evidence that magnons in an insulating kagome ferromagnet can have a topological band structure. Our neutron scattering measurements further reveal that one of the bands is flat due to the unique geometry of the kagome lattice. Spin wave calculations show that the measured band structure follows from a simple Heisenberg Hamiltonian with a Dzyaloshinkii-Moriya interaction. This serves as the first realization of an effectively two-dimensional topological magnon insulator--a new class of magnetic material that should display both a magnon Hall effect and protected chiral edge modes. PMID:26551820

  11. Linear spin-wave study of a quantum kagome ice

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Burkov, A. A.; Melko, Roger G.

    2016-04-01

    We present a large-S study of a quantum spin ice Hamiltonian, introduced by Huang et al. [Phys. Rev. Lett. 112, 167203 (2014), 10.1103/PhysRevLett.112.167203], on the kagome lattice. This model involves a competition between the frustrating Ising term of classical kagome ice, a Zeeman magnetic field h , and a nearest-neighbor transverse spin-flip term SixSjx-SiySjy . Recent quantum Monte Carlo (QMC) simulations by Carrasquilla et al. [Nat. Commun. 6, 7421 (2015), 10.1038/ncomms8421], uncovered lobes of a disordered phase for large Ising interaction and h ≠0 —a putative quantum spin liquid phase. Here, we examine the nature of this model using large-S expansion. We show that the ground state properties generally have the same trends with those observed in QMC simulations. In particular, the large-S ground state phase diagram captures the existence of the disordered lobes.

  12. Magnetization plateaus of dipolar spin ice on kagome lattice

    SciTech Connect

    Xie, Y. L.; Wang, Y. L.; Yan, Z. B.; Liu, J.-M.

    2014-05-07

    Unlike spin ice on pyrochlore lattice, the spin ice structure on kagome lattice retains net magnetic charge, indicating non-negligible dipolar interaction in modulating the spin ice states. While it is predicted that the dipolar spin ice on kagome lattice exhibits a ground state with magnetic charge order and √3 × √3 spin order, our work focuses on the magnetization plateau of this system. By employing the Wang-Landau algorithm, it is revealed that the lattice exhibits the fantastic three-step magnetization in response to magnetic field h along the [10] and [01] directions, respectively. For the h//[1 0] case, an additional √3/6M{sub s} step, where M{sub s} is the saturated magnetization, is observed in a specific temperature range, corresponding to a new state with charge order and short-range spin order.

  13. Microstructures of YBa2Cu3Oy Layers Deposited on Conductive Layer-Buffered Metal Tapes

    NASA Astrophysics Data System (ADS)

    Ichinose, Ataru; Hashimoto, Masayuki; Horii, Shigeru; Doi, Toshiya

    REBa2Cu3Oy (REBCO; RE: rare-earth elements)-coated conductors (CCs) have high potential for use in superconducting devices. In particular, REBCO CCs are useful for superconducting devices working at relatively high temperatures near 77 K. The important issues in their applications are high performance, reliability and low cost. To date, sufficient performance for some applications has almost been achieved by considerable efforts. The establishment of the reliability of superconducting devices is under way at present. The issue of low cost must be resolved to realize the application of superconducting devices in the near future. Therefore, we have attempted several ways to reduce the cost of REBCO CCs. The coated conductors using a Nb-doped SrTiO3 buffer layer and Ni-plated Cu and stainless steel laminate metal tapes have recently been developed to eliminate the use of electric stabilization layers of Cu and Ag, which are expected to reduce the material cost. Good superconducting properties are obtained at 77 K. The critical current density (JC) at 77 K under a magnetic self-field is determined to be more than 2x106 A/cm2. The microstructures of the CCs are analyzed by transmission electron microscopy to obtain a much higher quality. By microscopic structure analysis, an overgrowth of the buffer layer is observed at a grain boundary of the metal substrate, which is one of the reasons for the high JC.

  14. Wear mechanisms in metal-on-metal bearings: the importance of tribochemical reaction layers.

    PubMed

    Wimmer, Markus A; Fischer, Alfons; Büscher, Robin; Pourzal, Robin; Sprecher, Christoph; Hauert, Roland; Jacobs, Joshua J

    2010-04-01

    Metal-on-metal (MoM) bearings are at the forefront in hip resurfacing arthroplasty. Because of their good wear characteristics and design flexibility, MoM bearings are gaining wider acceptance with market share reaching nearly 10% worldwide. However, concerns remain regarding potential detrimental effects of metal particulates and ion release. Growing evidence is emerging that the local cell response is related to the amount of debris generated by these bearing couples. Thus, an urgent clinical need exists to delineate the mechanisms of debris generation to further reduce wear and its adverse effects. In this study, we investigated the microstructural and chemical composition of the tribochemical reaction layers forming at the contacting surfaces of metallic bearings during sliding motion. Using X-ray photoelectron spectroscopy and transmission electron microscopy with coupled energy dispersive X-ray and electron energy loss spectroscopy, we found that the tribolayers are nanocrystalline in structure, and that they incorporate organic material stemming from the synovial fluid. This process, which has been termed "mechanical mixing," changes the bearing surface of the uppermost 50 to 200 nm from pure metallic to an organic composite material. It hinders direct metal contact (thus preventing adhesion) and limits wear. This novel finding of a mechanically mixed zone of nanocrystalline metal and organic constituents provides the basis for understanding particle release and may help in identifying new strategies to reduce MoM wear. PMID:19877285

  15. Metal-phthalocyanine ordered layers on Au(110): Metal-dependent adsorption energy

    SciTech Connect

    Massimi, Lorenzo Angelucci, Marco; Gargiani, Pierluigi; Betti, Maria Grazia; Montoro, Silvia; Mariani, Carlo

    2014-06-28

    Iron-phthalocyanine and cobalt-phthalocyanine chains, assembled along the Au(110)-(1×2) reconstructed channels, present a strong interaction with the Au metallic states, via the central metal ion. X-ray photoemission spectroscopy from the metal-2p core-levels and valence band high-resolution ultraviolet photoelectron spectroscopy bring to light signatures of the interaction of the metal-phthalocyanine single-layer with gold. The charge transfer from Au to the molecule causes the emerging of a metal-2p core level component at lower binding energy with respect to that measured in the molecular thin films, while the core-levels associated to the organic macrocycle (C and N 1s) are less influenced by the adsorption, and the macrocycles stabilize the interaction, inducing a strong interface dipole. Temperature Programmed Desorption experiments and photoemission as a function of temperature allow to estimate the adsorption energy for the thin-films, mainly due to the molecule-molecule van der Waals interaction, while the FePc and CoPc single-layers remain adsorbed on the Au surface up to at least 820 K.

  16. Magnetic diffuse scattering in artificial kagome spin ice

    NASA Astrophysics Data System (ADS)

    Sendetskyi, Oles; Anghinolfi, Luca; Scagnoli, Valerio; Möller, Gunnar; Leo, Naëmi; Alberca, Aurora; Kohlbrecher, Joachim; Lüning, Jan; Staub, Urs; Heyderman, Laura Jane

    2016-06-01

    The study of magnetic correlations in dipolar-coupled nanomagnet systems with synchrotron x-ray scattering provides a means to uncover emergent phenomena and exotic phases, in particular in systems with thermally active magnetic moments. From the diffuse signal of soft x-ray resonant magnetic scattering, we have measured magnetic correlations in a highly dynamic artificial kagome spin ice with sub-70-nm Permalloy nanomagnets. On comparing experimental scattering patterns with Monte Carlo simulations based on a needle-dipole model, we conclude that kagome ice I phase correlations exist in our experimental system even in the presence of moment fluctuations, which is analogous to bulk spin ice and spin liquid behavior. In addition, we describe the emergence of quasi-pinch-points in the magnetic diffuse scattering in the kagome ice I phase. These quasi-pinch-points bear similarities to the fully developed pinch points with singularities of a magnetic Coulomb phase, and continually evolve into the latter on lowering the temperature. The possibility to measure magnetic diffuse scattering with soft x rays opens the way to study magnetic correlations in a variety of nanomagnetic systems.

  17. Magnetization of rare earth kagome systems in pulsed fields

    NASA Astrophysics Data System (ADS)

    Hoch, Michael; Mun, Eun; Harrison, Neil; Zhou, Haidong

    2014-03-01

    The rare earth kagome systems R3 Ga5 SiO14 (R = Nd or Pr) exhibit cooperative paramagnetism at low temperatures. Evidence for correlated spin clusters in these weakly frustrated systems has previously been obtained in neutron scattering experiments. The present pulsed field (0 - 60 T) low temperature magnetization measurements on single crystals of Nd3 Ga5 SiO14 (NGS) and Pr3 Ga5 SiO14 (PGS) have revealed striking differences in the magnetic responses of these two materials. At 1.6 K NGS shows a low field plateau, saturation of the magnetization for μ0 H > 10 T and significant hysteresis while the PGS magnetization does not saturate in fields up to 60 T and shows no hysteresis or plateaus. While Nd3+ (J = 9/2) is a Kramers ion Pr3+ (J = 4) is not. The exchange couplings J ~ 1 K are similar for PGS and NGS but the crystal field splittings and anisotropies are quite different. The marked contrast in the behavior of the two kagome systems is attributed to differences in the spin cluster structures and dynamics. The pulsed field approach has great potential for investigating kagome cluster dynamics at low temperatures.

  18. Layering effects on low frequency modes in n-layered MX2 transition metal dichalcogenides.

    PubMed

    Cammarata, Antonio; Polcar, Tomas

    2016-02-14

    n-Layered (n = 2, 3, 4) MX2 transition metal dichalcogenides (M = Mo, W; X = S, Se, Te) have been studied using DFT techniques. Long-range van der Waals forces have been modeled using the Grimme correction to capture interlayer interactions. We study the dynamic and electronic dependence of atomic displacement on the number of layers. We find that the displacement patterns mainly affected by a change in the layer number are low-frequency modes at Γ and A k-points; such modes are connected with the intrinsic tribological response. We disentangle electro-phonon coupling by combining orbital polarization, covalency and cophonicity analysis with phonon band calculations. We find that the frequency dependence on the number of layers and the atomic type has a non-trivial relation with the electronic charge distribution in the interlayer region. We show that the interlayer electronic density can be adjusted by appropriately tuning M-X cophonicity, acting as a knob to control vibrational frequencies, hence the intrinsic frictional response. The present results can be exploited to study the electro-phonon coupling effects in TMD-based materials beyond tribological applications. PMID:26806673

  19. Ultraviolet photodetectors based on ZnO nanorods-seed layer effect and metal oxide modifying layer effect

    NASA Astrophysics Data System (ADS)

    Zhou, Hai; Fang, Guojia; Liu, Nishuang; Zhao, Xingzhong

    2011-12-01

    Pt/ZnO nanorod (NR) and Pt/modified ZnO NR Schottky barrier ultraviolet (UV) photodetectors (PDs) were prepared with different seed layers and metal oxide modifying layer materials. In this paper, we discussed the effect of metal oxide modifying layer on the performance of UV PDs pre- and post-deposition annealing at 300°C, respectively. For Schottky barrier UV PDs with different seed layers, the MgZnO seed layer-PDs without metal oxide coating showed bigger responsivity and larger detectivity ( D λ*) than those of PDs with ZnO seed layer, and the reason was illustrated through energy band theory and the electron transport mechanism. Also the ratio of D 254* to D 546* was calculated above 8 × 102 for all PDs, which demonstrated that our PDs showed high selectivity for detecting UV light with less influence of light with long wavelength.

  20. Intrinsic quantum anomalous Hall effect in the kagome lattice Cs2LiMn3F12

    SciTech Connect

    Xu, Gang; Lian, Biao; Zhang, Shou -Cheng

    2015-10-27

    In a kagome lattice, the time reversal symmetry can be broken by a staggered magnetic flux emerging from ferromagnetic ordering and intrinsic spin-orbit coupling, leading to several well-separated nontrivial Chern bands and intrinsic quantum anomalous Hall effect. Based on this idea and ab initio calculations, we propose the realization of the intrinsic quantum anomalous Hall effect in the single layer Cs2Mn3F12 kagome lattice and on the (001) surface of a Cs2LiMn3F12 single crystal by modifying the carrier coverage on it, where the band gap is around 20 meV. Furthermore, a simplified tight binding model based on the in-plane ddσ antibonding states is constructed to understand the topological band structures of the system.

  1. Method for producing functionally graded nanocrystalline layer on metal surface

    DOEpatents

    Ajayi, Oyelayo O.; Hershberger, Jeffrey G.

    2010-03-23

    An improved process for the creation or formation of nanocrystalline layers on substrates' surfaces is provided. The process involves "prescuffing" the surface of a substrate such as a metal by allowing friction to occur on the surface by a load-bearing entity making rubbing contact and moving along and on the substrate's surface. The "prescuffing" action is terminated when the coefficient of friction between the surface and the noise is rising significantly. Often, the significant rise in the coefficient of friction is signaled by a change in pitch of the scuffing action sound emanating from the buffeted surface. The "prescuffing" gives rise to a harder and smoother surface which withstands better any inadequate lubrication that may take place when the "prescuffed" surface is contacted by other surfaces.

  2. Vertical Bipolar Charge Plasma Transistor with Buried Metal Layer

    PubMed Central

    Nadda, Kanika; Kumar, M. Jagadesh

    2015-01-01

    A self-aligned vertical Bipolar Charge Plasma Transistor (V-BCPT) with a buried metal layer between undoped silicon and buried oxide of the silicon-on-insulator substrate, is reported in this paper. Using two-dimensional device simulation, the electrical performance of the proposed device is evaluated in detail. Our simulation results demonstrate that the V-BCPT not only has very high current gain but also exhibits high BVCEO · fT product making it highly suitable for mixed signal high speed circuits. The proposed device structure is also suitable for realizing doping-less bipolar charge plasma transistor using compound semiconductors such as GaAs, SiC with low thermal budgets. The device is also immune to non-ideal current crowding effects cropping up at high current densities. PMID:25597295

  3. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

    DOE PAGESBeta

    Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng; Lee, Young S.

    2015-11-06

    Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with themore » magnetic field dependence of χkagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.« less

  4. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet.

    PubMed

    Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S

    2015-11-01

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χ(kagome), deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χ(kagome) that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap. PMID:26542565

  5. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Fu, Mingxuan; Imai, Takashi; Han, Tian-Heng; Lee, Young S.

    2015-11-01

    The kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χkagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  6. Plasmonic broadband absorber by stacking multiple metallic nanoparticle layers

    NASA Astrophysics Data System (ADS)

    Ji, Ting; Peng, Lining; Zhu, Yuntao; Yang, Fan; Cui, Yanxia; Wu, Xueyan; Liu, Liu; He, Sailing; Zhu, Furong; Hao, Yuying

    2015-04-01

    High efficiency, broadband plasmonic absorbers are constructed based on a stack of alternating metallic nanoparticle layers (MNLs) and SiO2 slabs on top of a reflective Ag substrate. Experimental results show that the stacks with thick MNLs absorb light better than those with thin MNLs when the number of MNL/SiO2 cells (N) is small (e.g., 1 or 2), but the situation gets reversed when N is greater than 3. When the nominal thickness of MNL is as thin as 5 nm, the acquired Ag nanoparticles are so small that light penetration through all of the stacked MNLs in the proposed design is possible. Thus, an increase in N leads to a growing number of light trapping elements. Our simulation reveals that the Ag nanoparticles at different layers are hybridized to excite rich localized plasmonic resonances, resulting in multiple absorption peaks at optical frequencies and thus a broader absorption band. The broadband absorbers with an integrated absorption efficiency of 96% over the 300-1100 nm wavelength range were achieved by stacking 18 MNL/SiO2 cells. The proposed absorbers can be used for applications in solar energy harvesting and thermal emission tailoring, due to their easy fabrication procedure and excellent optical properties.

  7. Directional Emission from Metal-Dielectric-Metal Structures: Effect of Mixed Metal Layers, Dye Location and Dielectric Thickness

    PubMed Central

    Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Ray, Krishanu; Lakowicz, Joseph R.

    2015-01-01

    Metal-dielectric-metal (MDM) structures provide directional emission close to the surface normal, which offers opportunities for new design formats in fluorescence based applications. The directional emission arises due to near-field coupling of fluorophores with the optical modes present in the MDM substrate. Reflectivity simulations and dispersion diagrams provide a basic understanding of the mode profiles and the factors that affect the coupling efficiency and the spatial distribution of the coupled emission. This work reveals that the composition of the metal layers, the location of the dye in the MDM substrate and the dielectric thickness are important parameters that can be chosen to tune the color of the emission wavelength, the angle of observation, the angular divergence of the emission and the polarization of the emitted light. These features are valuable for displays and optical signage. PMID:25844110

  8. Frustration and Dzyaloshinsky-Moriya anisotropy in the kagome francisites Cu3Bi (SeO3)2 O2X (X = Br , Cl )

    NASA Astrophysics Data System (ADS)

    Rousochatzakis, Ioannis; Richter, Johannes; Zinke, Ronald; Tsirlin, Alexander A.

    2015-01-01

    We investigate the antiferromagnetic canting instability of the spin-1/2 kagome ferromagnet, as realized in the layered cuprates Cu3Bi (SeO3)2 O2X (X = Br , Cl ). While the local canting can be explained in terms of competing exchange interactions, the direction of the ferrimagnetic order parameter fluctuates strongly even at short distances on account of frustration which gives rise to an infinite ground state degeneracy at the classical level. In analogy with the kagome antiferromagnet, the accidental degeneracy is fully lifted only by nonlinear 1 /S corrections, rendering the selected uniform canted phase very fragile even for spins-1/2, as shown explicitly by coupled-cluster calculations. To account for the observed ordering, we show that the minimal description of these systems must include the microscopic Dzyaloshinsky-Moriya interactions, which we obtain from density-functional band-structure calculations. The model explains all qualitative properties of the kagome francisites, including the detailed nature of the ground state and the anisotropic response under a magnetic field. The predicted magnon excitation spectrum and quantitative features of the magnetization process call for further experimental investigations of these compounds.

  9. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-05-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery.Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a

  10. Thermodynamic analysis of a kagome spin liquid candidate

    NASA Astrophysics Data System (ADS)

    Han, Tianheng; Bonnoit, Craig; Chisnell, Robin; Helton, Joel; Takano, Yasu; Lee, Young

    2013-03-01

    Herbertsmithite ZnCu3(OH)6Cl2-one of the most promising quantum spin liquid candidates-presents a promising system for studies of frustrated magnetism on an S =1/2 kagomé lattice. Following our recent success in crystal growth, specific heat has been measured at dilution fridge temperatures up to 18 T on a single crystal sample which gives further information on the low temperature phase. Additional analysis of the thermodynamic measurements on single crystal samples lends further hints on the intrinsic spin liquid physics.

  11. Electronic Transport Study of Connected Artificial Kagome Spin Ice

    NASA Astrophysics Data System (ADS)

    Rench, D. W.; Le, B. L.; Lammert, P. E.; Misra, R.; Crespi, V. H.; Samarth, N.; Schiffer, P.

    2014-03-01

    We present experimental and computational results of magnetotransport in connected ferromagnetic nanowire arrays (connected artificial spin ice). We probed the artificial kagome spin ice lattice using AC transport techniques as a function of applied magnetic field strength and angle and compared these results to calculated transport properties based on OOMMF computational modeling. We find that many of the transport properties observed experimentally can be described in a simple manner using the Anistropic Magnetoresistance (AMR) model for individual nanowires and then calculating the net resistance using classical circuit analogues. Supported by the US Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under grant number DE-SC0005313.

  12. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-10-05

    An article including a substrate, at least one intermediate layer upon the surface of the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the at least one intermediate layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected I.sub.c 's of over 200 Amperes across a sample 1 cm wide.

  13. Spontaneous formation of kagome network and Dirac half-semimetal on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Akagi, Yutaka; Motome, Yukitoshi

    2015-04-01

    In spin-charge coupled systems, geometrical frustration of underlying lattice structures can give rise to nontrivial magnetic orders and electronic states. Here we explore such a possibility in the Kondo lattice model with classical localized spins on a triangular lattice by using a variational calculation and simulated annealing. We find that the system exhibits a four-sublattice collinear ferrimagnetic phase at 5/8 filling for a large Hund's-rule coupling. In this state, the system spontaneously differentiates into the up-spin kagome network and the isolated down-spin sites, which we call the kagome network formation. In the kagome network state, the system becomes Dirac half-semimetallic: The electronic structure shows a massless Dirac node at the Fermi level, and the Dirac electrons are almost fully spin polarized due to the large Hund's-rule coupling. We also study the effect of off-site Coulomb repulsion in the kagome network phase where the system is effectively regarded as a 1/3-filling spinless fermion system on the kagome lattice. We find that, at the level of the mean-field approximation, a √{3 }×√{3 } -type charge order occurs in the kagome network state, implying the possibility of fractional charge excitations in this triangular lattice system. Moreover, we demonstrate that the kagome network formation with fully polarized Dirac electrons are controllable by an external magnetic field.

  14. Liquid exfoliation of alkyl-ether functionalised layered metal-organic frameworks to nanosheets.

    PubMed

    Foster, Jonathan A; Henke, Sebastian; Schneemann, Andreas; Fischer, Roland A; Cheetham, Anthony K

    2016-08-18

    We report the synthesis of a 2D-layered metal-organic framework incorporating weakly interacting chains designed to aid exfoliation of the layers into nanosheets. Dispersion of the nanosheets exposes labile metal-sites which are shown to exchange solvent molecules allowing the nanosheets to act as sensors in suspension. PMID:27452790

  15. Low resistance barrier layer for isolating, adhering, and passivating copper metal in semiconductor fabrication

    DOEpatents

    Weihs, Timothy P.; Barbee, Jr., Troy W.

    2002-01-01

    Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).

  16. Synthesis and magnetic properties of centennialite: a new S = ½ Kagomé antiferromagnet and comparison with herbertsmithite and kapellasite

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Huang, Ya-Xi; Pan, Yuanming; Mi, Jin-Xiao

    2016-02-01

    Minerals of the atacamite group such as herbertsmithite and kapellasite have recently attracted enormous attention as the S = ½ Kagomé antiferromagnets for achieving the quantum spin liquid (QSL) state with diverse technological applications. Herein we report on the synthesis of the newly discovered mineral centennialite by using an unconventional "solid-state" reaction method at 463 K. Synthetic centennialite, Ca1.06Cu2.94Cl2.01(OH)5.99·0.73H2O, has been characterized by scanning electron microscopy, electron microprobe analyses, Fourier-transform infrared spectroscopy, thermogravimetric and differential scanning calorimetric analyses, single-crystal X-ray diffraction structure refinements, and magnetic susceptibility measurements. The crystal structure of centennialite is characterized by a perfect (threefold symmetry) Kagomé layer with <5 % substitution between Ca and Cu and therefore differs from those of herbertsmithite and kapellasite, in which 15-25 % mixing between similar Zn and Cu atoms dramatically affects the QSL state. Centennialite remains antiferromagnetic down to ~7 K with a moderate spin frustration (i.e., a Weiss temperature θ = -56 K and a spin frustration parameter f = 8), but exhibits a canted antiferromagnetic ordering with a ferromagnetic component at lower temperatures.

  17. Improving Metal-Oxide-Metal (MOM) Diode Performance Via the Optimization of the Oxide Layer

    NASA Astrophysics Data System (ADS)

    Dodd, Linzi E.; Shenton, Samantha A.; Gallant, Andrew J.; Wood, David

    2015-05-01

    Small area metal-oxide-metal (MOM) diodes are being investigated in many research groups for the detection of THz frequency radiation. In order to create a high-speed rectifying device, the central oxide layer of the MOM structure must be thin and have known physical characteristics. The thickness, structure and uniformity of the oxide can be controlled during the fabrication process. In the work presented here, the effects of both oxygen plasma concentration and annealing temperature during fabrication of MOM diodes have been explored. It has been found that, by reducing the oxygen gas concentration from previous work, the layer can be more repeatable and uniform. Furthermore, for an anneal temperature up to a threshold temperature in the to range, the performance of the diodes is excellent, with a value of zero-bias curvature coefficient (CCZB) that can be up to . For higher temperature treatments, the value of CCZB decreases to a maximum of . Similar trends in AC tests can be seen for voltage and current responsivity values.

  18. The chromospheric and transition layer emission of stars with different metal abundances

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, E.

    1981-01-01

    Preliminary results on observations of chromospheric and transition layer emission of stars with different metal abundances are reported. Metal deficient stars generally show reduced emission in the Mg II resonance lines and also in the other chromospheric and transition layer emission lines. This is interpreted as showing that energy fluxes other than acoustic fluxes must at least be coresponsible for the coronal and transition layer heating.

  19. Quantum gases in trimerized kagomé lattices

    NASA Astrophysics Data System (ADS)

    Damski, B.; Fehrmann, H.; Everts, H.-U.; Baranov, M.; Santos, L.; Lewenstein, M.

    2005-11-01

    We study low-temperature properties of atomic gases in trimerized optical kagomé lattices. The laser arrangements that can be used to create these lattices are briefly described. We also present explicit results for the coupling constants of the generalized Hubbard models that can be realized in such lattices. In the case of a single-component Bose gas the existence of a Mott insulator phase with fractional numbers of particles per trimer is verified in a mean-field approach. The main emphasis of the paper is on an atomic spinless interacting Fermi gas in the trimerized kagomé lattice with two fermions per site. This system is shown to be described by a quantum spin- 1/2 model on the triangular lattice with couplings that depend on the bond directions. We investigate this model by means of exact diagonalization. Our key finding is that the system exhibits nonstandard properties of a quantum spin-liquid crystal: it combines planar antiferromagnetic order in the ground state with an exceptionally large number of low-energy excitations. The possibilities of experimental verification of our theoretical results are critically discussed.

  20. Chiral Spin Liquid in a Frustrated Anisotropic Kagome Heisenberg Model

    NASA Astrophysics Data System (ADS)

    He, Yin-Chen; Sheng, D. N.; Chen, Yan

    2014-04-01

    Kalmeyer-Laughlin (KL) chiral spin liquid (CSL) is a type of quantum spin liquid without time-reversal symmetry, and it is considered as the parent state of an exotic type of superconductor—anyon superconductor. Such an exotic state has been sought for more than twenty years; however, it remains unclear whether it can exist in a realistic system where time-reversal symmetry is breaking (T breaking) spontaneously. By using the density matrix renormalization group, we show that KL CSL exists in a frustrated anisotropic kagome Heisenberg model, which has spontaneous T breaking. We find that our model has two topological degenerate ground states, which exhibit nonvanishing scalar chirality order and are protected by finite excitation gap. Furthermore, we identify this state as KL CSL by the characteristic edge conformal field theory from the entanglement spectrum and the quasiparticles braiding statistics extracted from the modular matrix. We also study how this CSL phase evolves as the system approaches the nearest-neighbor kagome Heisenberg model.

  1. Superfluidity of bosons in kagome lattices with frustration.

    PubMed

    You, Yi-Zhuang; Chen, Zhu; Sun, Xiao-Qi; Zhai, Hui

    2012-12-28

    In this Letter we consider spinless bosons in a kagome lattice with nearest-neighbor hopping and on-site interaction, and the sign of hopping is inverted by insetting a π flux in each triangle of the kagome lattice so that the lowest single particle band is perfectly flat. We show that in the high-density limit, despite the infinite degeneracy of the single particle ground states, interaction will select out the Bloch state at the K point of the Brillouin zone for boson condensation at the lowest temperature. As the temperature increases, the single-boson superfluid order can be easily destroyed, while an exotic triple-boson paired superfluid order will remain. We establish that this trion superfluid exists in a broad temperature regime until the temperature is increased to the same order of hopping and then the system turns into normal phases. Finally, we show that time-of-flight measurement of the momentum distribution and its noise correlation can be used to distinguish these three phases. PMID:23368576

  2. Pulsed field magnetization in rare-earth kagome systems

    NASA Astrophysics Data System (ADS)

    Hoch, M. J. R.; Zhou, H. D.; Mun, E.; Harrison, N.

    2016-02-01

    The rare-earth kagome systems R 3Ga5SiO14 (R  =  Nd or Pr) exhibit cooperative paramagnetism at low temperatures. Evidence for correlated spin clusters in these weakly frustrated systems has previously been obtained from neutron scattering and from ESR and NMR results. The present pulsed field (0-60 T, 25 ms) magnetization measurements made on single crystals of Nd3Ga5SiO14 (NGS) and Pr3Ga5SiO14 (PGS) at temperatures down to 450 mK have revealed striking differences in the magnetic responses of the two materials. For NGS the magnetization shows a low field plateau, saturation in high transient fields, and significant hysteresis while the PGS magnetization does not saturate in transient fields up to 60 T and shows no hysteresis or plateaus. Nd3+ is a Kramers ion while Pr3+ is a non-Kramers ion and the crystal field effects are quite different in the two systems. For the conditions used in the experiments the magnetization behavior is not in agreement with Heisenberg model predictions for kagome systems in which easy-axis anisotropy is much larger than the exchange coupling. The extremely slow spin dynamics found below 4 K in NGS is, however, consistent with the model for Kramers ions and provides a basis for explaining the pulsed field magnetization features.

  3. Pulsed field magnetization in rare-earth kagome systems.

    PubMed

    Hoch, M J R; Zhou, H D; Mun, E; Harrison, N

    2016-02-01

    The rare-earth kagome systems R 3Ga5SiO14 (R  =  Nd or Pr) exhibit cooperative paramagnetism at low temperatures. Evidence for correlated spin clusters in these weakly frustrated systems has previously been obtained from neutron scattering and from ESR and NMR results. The present pulsed field (0-60 T, 25 ms) magnetization measurements made on single crystals of Nd3Ga5SiO14 (NGS) and Pr3Ga5SiO14 (PGS) at temperatures down to 450 mK have revealed striking differences in the magnetic responses of the two materials. For NGS the magnetization shows a low field plateau, saturation in high transient fields, and significant hysteresis while the PGS magnetization does not saturate in transient fields up to 60 T and shows no hysteresis or plateaus. Nd(3+) is a Kramers ion while Pr(3+) is a non-Kramers ion and the crystal field effects are quite different in the two systems. For the conditions used in the experiments the magnetization behavior is not in agreement with Heisenberg model predictions for kagome systems in which easy-axis anisotropy is much larger than the exchange coupling. The extremely slow spin dynamics found below 4 K in NGS is, however, consistent with the model for Kramers ions and provides a basis for explaining the pulsed field magnetization features. PMID:26732305

  4. Superfluidity of Bosons in Kagome Lattices with Frustration

    NASA Astrophysics Data System (ADS)

    You, Yi-Zhuang; Chen, Zhu; Sun, Xiao-Qi; Zhai, Hui

    2012-12-01

    In this Letter we consider spinless bosons in a kagome lattice with nearest-neighbor hopping and on-site interaction, and the sign of hopping is inverted by insetting a π flux in each triangle of the kagome lattice so that the lowest single particle band is perfectly flat. We show that in the high-density limit, despite the infinite degeneracy of the single particle ground states, interaction will select out the Bloch state at the K point of the Brillouin zone for boson condensation at the lowest temperature. As the temperature increases, the single-boson superfluid order can be easily destroyed, while an exotic triple-boson paired superfluid order will remain. We establish that this trion superfluid exists in a broad temperature regime until the temperature is increased to the same order of hopping and then the system turns into normal phases. Finally, we show that time-of-flight measurement of the momentum distribution and its noise correlation can be used to distinguish these three phases.

  5. Buffer layers on metal alloy substrates for superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.; Arendt, Paul N.; Groves, James R.

    2004-06-29

    An article including a substrate, a layer of an inert oxide material upon the surface of the substrate, a layer of an amorphous oxide or oxynitride material upon the inert oxide material layer, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the amorphous oxide material layer, and a layer of a SrRuO.sub.3 buffer material upon the oriented cubic oxide material layer is provided together with additional layers such as a HTS top-layer of YBCO directly upon the layer of a SrRuO.sub.3 buffer material layer. With a HTS top-layer of YBCO upon at least one layer of the SrRuO.sub.3 buffer material in such an article, J.sub.c 's of up to 1.3.times.10.sup.6 A/cm.sup.2 have been demonstrated with projected IC's of over 200 Amperes across a sample 1 cm wide.

  6. Influence of head size on the development of metallic wear and on the characteristics of carbon layers in metal-on-metal hip joints

    PubMed Central

    Sprecher, Christoph M; Wimmer, Markus A; Milz, Stefan; Taeger, Georg

    2009-01-01

    Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces. Methods Atomic absorption spectrometry (AAS) was used to analyze the metal content in capsular tissue. Visually detectable carbon layers located on the articulating surfaces were evaluated using scanning electron microscopy (SEM), energy-dispersive Xray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Results Metallic debris was detected in all capsular tissue samples but no statistically significant differences in metal content were found in relation to implant head size. The morphological characteristics of the different layer zones allowed an exact analysis of contact and non-contact areas. Furthermore, surface layers appear to have a protective function because they can prevent sharp-edged particles from damaging the prostheses surface. Interpretation The implant head size does not appear to influence the amount of metallic debris. The layers obviously act like a lubricating agent because the protection function does not occur in regions without layers where the metal surface often shows numerous scratches. As layers are not generated immediately after the implantation of hip prostheses, these findings may at least partially explain the high amount of wear early after implantation. PMID:19421914

  7. The effect of the carbon nanotube buffer layer on the performance of a Li metal battery.

    PubMed

    Zhang, Ding; Zhou, Yi; Liu, Changhong; Fan, Shoushan

    2016-06-01

    Lithium (Li) metal is one of the most promising candidates as an anode for the next-generation energy storage systems because of its high specific capacity and lowest negative electrochemical potential. But the growth of Li dendrites limits the application of the Li metal battery. In this work, a type of modified Li metal battery with a carbon nanotube (CNT) buffer layer inserted between the separator and the Li metal electrode was reported. The electrochemical results show that the modified batteries have a much better rate capability and cycling performance than the conventional Li metal batteries. The mechanism study by electrochemical impedance spectroscopy reveals that the modified battery has a smaller charge transfer resistance and larger Li ion diffusion coefficient during the deposition process on the Li electrode than the conventional Li metal batteries. Symmetric battery tests show that the interfacial behavior of the Li metal electrode with the buffer layer is more stable than the naked Li metal electrode. The morphological characterization of the CNT buffer layer and Li metal lamina reveals that the CNT buffer layer has restrained the growth of Li dendrites. The CNT buffer layer has great potential to solve the safety problem of the Li metal battery. PMID:27181758

  8. Extending the Family of V(4+) S=(1/2) Kagome Antiferromagnets.

    PubMed

    Clark, Lucy; Aidoudi, Farida H; Black, Cameron; Arachchige, Kasun S A; Slawin, Alexandra M Z; Morris, Russell E; Lightfoot, Philip

    2015-12-14

    The ionothermal synthesis, structure, and magnetic susceptibility of a novel inorganic-organic hybrid material, imidazolium vanadium(III,IV) oxyfluoride [C3 H5 N2 ][V9 O6 F24 (H2 O)2 ] (ImVOF) are presented. The structure consists of inorganic vanadium oxyfluoride slabs with kagome layers of V(4+) S=${{ 1/2 }}$ ions separated by a mixed valence layer. These inorganic slabs are intercalated with imidazolium cations. Quinuclidinium (Q) and pyrazinium (Pyz) cations can also be incorporated into the hybrid structure type to give QVOF and PyzVOF analogues, respectively. The highly frustrated topology of the inorganic slabs, along with the quantum nature of the magnetism associated with V(4+) , means that these materials are excellent candidates to host exotic magnetic ground states, such as the highly sought quantum spin liquid. Magnetic susceptibility measurements of all samples suggest an absence of conventional long-range magnetic order down to 2 K despite considerable antiferromagnetic exchange. PMID:26515792

  9. μ SR insight into the impurity problem in quantum kagome antiferromagnets

    NASA Astrophysics Data System (ADS)

    Gomilšek, M.; Klanjšek, M.; Pregelj, M.; Luetkens, H.; Li, Y.; Zhang, Q. M.; Zorko, A.

    2016-07-01

    Impurities, which are unavoidable in real materials, may play an important role in the magnetism of frustrated spin systems with a spin-liquid ground state. We address the impurity issue in quantum kagome antiferromagnets by investigating ZnCu3(OH) 6SO4 (Zn-brochantite) by means of muon spin spectroscopy. We show that muons dominantly couple to impurities, originating from Cu-Zn intersite disorder, and that the impurity spins are highly correlated with the kagome spins, allowing us to probe the host kagome physics via a Kondo-like effect. The low-temperature plateau in the impurity susceptibility suggests that the kagome spin-liquid ground state is gapless. The corresponding spin fluctuations exhibit an unconventional spectral density and a nontrivial field dependence.

  10. Metal-semiconductor-metal ultraviolet photodetectors based on gallium nitride grown by atomic layer deposition at low temperatures

    NASA Astrophysics Data System (ADS)

    Tekcan, Burak; Ozgit-Akgun, Cagla; Bolat, Sami; Biyikli, Necmi; Okyay, Ali Kemal

    2014-10-01

    Proof-of-concept, first metal-semiconductor-metal ultraviolet photodetectors based on nanocrystalline gallium nitride (GaN) layers grown by low-temperature hollow-cathode plasma-assisted atomic layer deposition are demonstrated. Electrical and optical characteristics of the fabricated devices are investigated. Dark current values as low as 14 pA at a 30 V reverse bias are obtained. Fabricated devices exhibit a 15× UV/VIS rejection ratio based on photoresponsivity values at 200 nm (UV) and 390 nm (VIS) wavelengths. These devices can offer a promising alternative for flexible optoelectronics and the complementary metal oxide semiconductor integration of such devices.

  11. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  12. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-01-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes. PMID:25692264

  13. Influence of metal bonding layer on strain transfer performance of FBG

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Chen, Weimin; Zhang, Peng; Liu, Li; Shu, Yuejie; Wu, Jun

    2013-01-01

    Metal bonding layer seriously affects the strain transfer performance of Fiber Bragg Grating (FBG). Based on the mode of FBG strain transfer, the influence of the length, the thickness, Poisson's ratio, elasticity modulus of metal bonding layer on the strain transfer coefficient of FBG is analyzed by numerical simulation. FBG is packaged to steel wire using metal bonding technology of FBG. The tensile tests of different bonding lengths and elasticity modulus are carried out. The result shows the strain transfer coefficient of FBGs are 0.9848,0.962 and their average strain sensitivities are 1.076 pm/μɛ,1.099 pm/μɛ when the metal bonding layer is zinc, whose lengths are 15mm, 20mm, respectively. The strain transfer coefficient of FBG packaged by metal bonding layer raises 8.9 percent compared to epoxy glue package. The preliminary experimental results show that the strain transfer coefficient increases with the length of metal bonding layer, decreases with the thickness of metal bonding layer and the influence of Poisson's ratio can be ignored. The experiment result is general agreement with the analysis and provides guidance for metal package of FBG.

  14. Microstructural and failure characteristics of metal-lntermetallic layered sheet composites

    NASA Astrophysics Data System (ADS)

    Alman, D. E.; Rawers, J. C.; Hawk, J. A.

    1995-03-01

    A processing technique for the fabrication of layered metal-intermetallic composites is presented, in which a self-propagating, high-temperature synthesis reaction (SHS) was initiated at the interface between dissimilar elemental metal foils. The resultant composite microstructure consisted of a fully dense, well-bonded metal-intermetallic layered composite. In this United States Bureau of Mines study, metal (Fe, Ni, or Ti) foils were reacted with Al foils to produce metal-metal aluminide layered composites. Tensile tests conducted at room temperature revealed that composites could be designed to behave in a high-strength and high-toughness manner by altering the thicknesses of the starting elemental foils. Failure characteristics revealed that the processes that govern ductile vs brittle behavior of the composites occur early in the fracture.

  15. Ionic polymer-metal composite actuators based on triple-layered polyelectrolytes composed of individually functionalized layers.

    PubMed

    Lee, Jang-Woo; Yoo, Young-Tai; Lee, Jae Yeol

    2014-01-22

    Ionic polymer-metal composite (IPMC) actuators based on two types of triple-layered Nafion composite membranes were prepared via consecutive solution recasting and electroless plating methods. The triple-layered membranes are composed of a Nafion layer containing an amphiphilic organic molecule (10-camphorsulfonic acid; CSA) in the middle section (for fast and large ion conduction) and two Nafion/modified inorganic composite layers in the outer sections (for large accumulation/retention of mobile ions). For construction of the two types of IPMCs, sulfonated montmorillonite (MMT) and polypyrrole (PPy)-coated alumina fillers were incorporated into the outer layers. Both the triple-layered IPMCs exhibited 42% higher tip displacements at the maximum deflections with a negligible back-relaxation, 50-74% higher blocking forces, and more rapid responses under 3 V dc, compared with conventional single-layered Nafion-IPMCs. Improvements in cyclic displacement under a rectangular voltage input of 3 V at 1 Hz were also made in the triple-layered configurations. Compared with single-layered IPMCs consisting of the identical compositions with the respective outer composite layers, the bending rates and energy efficiencies of both the triple-layered IPMCs were significantly higher, although the blocking forces were a bit lower. These remarkable improvements were attributed to higher capacitances and Young's moduli as well as a more efficient transport of mobile ions and water through the middle layer (Nafion/CSA) and a larger accumulation/retention of the mobile species in the outer functionalized inorganic composite layers. Especially, the triple-layered IPMC with the PPy-modified alumina registered the best actuation performance among all the samples, including a viable actuation even at a low voltage of 1.5 V due to involving efficient redox reactions of PPy with the aid of hygroscopic alumina. PMID:24383744

  16. Modified kagome physics in the natural spin-1/2 kagome lattice systems: kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2.

    PubMed

    Janson, O; Richter, J; Rosner, H

    2008-09-01

    The recently discovered natural minerals Cu3Zn(OH)6Cl2 and Cu3Mg(OH)6Cl2 are spin 1/2 systems with an ideal kagome geometry. Based on electronic structure calculations, we develop a realistic model which includes couplings across the kagome hexagons beyond the original kagome model that are intrinsic in real kagome materials. Exact diagonalization studies for the derived model reveal a strong impact of these couplings on the magnetic ground state. Our predictions could be compared to and supplied with neutron scattering, thermodynamic data, and NMR data. PMID:18851233

  17. Proximity Effect in BSCCO Intrinsic Josephson Junctions Contacted with a Normal Metal Layer

    NASA Astrophysics Data System (ADS)

    Suzuki, Minoru; Koizumi, Masayuki; Ohmaki, Masayuki; Kakeya, Itsuhiro; Shukrinov, Yu. M.

    Superconductivity proximity effect is numerically evaluated based on McMillan's tunneling proximity model for a sandwich of a normal metal layer on top of the surface superconducting layer of intrinsic Josephson junctions in a Bi2Sr2CaCu2O8+δ (BSCCO) crystal. Due to the very thin thickness of 0.3 nm of the superconducting layer in IJJs, the surface layer is subject to influence of the proximity effect when the top layer is contacted with a normal metal layer. The effect manifests itself as a significant change in the characteristics of the IJJ surface Josephson junction. It is found that when the superconducting layer thickness is smaller than 0.6 nm, the pair potential reduces significantly, leading to an almost complete suppression of the critical Josephson current density for the surface junction. This result can partly explain the experimental results on the IJJ characteristics of a mesa type structure.

  18. Fragmentation of magnetism in artificial kagome dipolar spin ice.

    PubMed

    Canals, Benjamin; Chioar, Ioan-Augustin; Nguyen, Van-Dai; Hehn, Michel; Lacour, Daniel; Montaigne, François; Locatelli, Andrea; Menteş, Tevfik Onur; Burgos, Benito Santos; Rougemaille, Nicolas

    2016-01-01

    Geometrical frustration in magnetic materials often gives rise to exotic, low-temperature states of matter, such as the ones observed in spin ices. Here we report the imaging of the magnetic states of a thermally active artificial magnetic ice that reveal the fingerprints of a spin fragmentation process. This fragmentation corresponds to a splitting of the magnetic degree of freedom into two channels and is evidenced in both real and reciprocal space. Furthermore, the internal organization of both channels is interpreted within the framework of a hybrid spin-charge model that directly emerges from the parent spin model of the kagome dipolar spin ice. Our experimental and theoretical results provide insights into the physics of frustrated magnets and deepen our understanding of emergent fields through the use of tailor-made magnetism. PMID:27173154

  19. Tunable anisotropic superfluidity in an optical kagome superlattice

    NASA Astrophysics Data System (ADS)

    Zhang, Xue-Feng; Wang, Tao; Eggert, Sebastian; Pelster, Axel

    2015-07-01

    We study the phase diagram of the Bose-Hubbard model on the kagome lattice with a broken sublattice symmetry. Such a superlattice structure can naturally be created and tuned by changing the potential offset of one sublattice in the optical generation of the frustrated lattice. The superstructure gives rise to a rich quantum phase diagram, which is analyzed by combining quantum Monte Carlo simulations with the generalized effective potential Landau theory. Mott phases with noninteger filling and a characteristic order along stripes are found, which show a transition to a superfluid phase with an anisotropic superfluid density. Surprisingly, the direction of the superfluid anisotropy can be tuned by changing the particle number, the hopping strength, or the interaction. Finally, we discuss characteristic signatures of anisotropic phases in time-of-flight absorption measurements.

  20. Topologically nontrivial Hofstadter bands on the kagome lattice

    NASA Astrophysics Data System (ADS)

    Redder, Christoph H.; Uhrig, Götz S.

    2016-03-01

    We investigate how the multiple bands of fermions on a crystal lattice evolve if a magnetic field is added which does not increase the number of bands. The kagome lattice is studied as generic example for a lattice with loops of three bonds. Finite Chern numbers occur as a nontrivial topological property in the presence of the magnetic field. The symmetries and periodicities as a function of the applied field are discussed. Strikingly, the dispersions of the edge states depend crucially on the precise shape of the boundary. This suggests that suitable design of the boundaries helps to tune physical properties which may even differ between upper and lower edges. Moreover, we suggest a promising gauge to realize this model in optical lattices.

  1. Fragmentation of magnetism in artificial kagome dipolar spin ice

    PubMed Central

    Canals, Benjamin; Chioar, Ioan-Augustin; Nguyen, Van-Dai; Hehn, Michel; Lacour, Daniel; Montaigne, François; Locatelli, Andrea; Menteş, Tevfik Onur; Burgos, Benito Santos; Rougemaille, Nicolas

    2016-01-01

    Geometrical frustration in magnetic materials often gives rise to exotic, low-temperature states of matter, such as the ones observed in spin ices. Here we report the imaging of the magnetic states of a thermally active artificial magnetic ice that reveal the fingerprints of a spin fragmentation process. This fragmentation corresponds to a splitting of the magnetic degree of freedom into two channels and is evidenced in both real and reciprocal space. Furthermore, the internal organization of both channels is interpreted within the framework of a hybrid spin–charge model that directly emerges from the parent spin model of the kagome dipolar spin ice. Our experimental and theoretical results provide insights into the physics of frustrated magnets and deepen our understanding of emergent fields through the use of tailor-made magnetism. PMID:27173154

  2. Fragmentation of magnetism in artificial kagome dipolar spin ice

    NASA Astrophysics Data System (ADS)

    Canals, Benjamin; Chioar, Ioan-Augustin; Nguyen, Van-Dai; Hehn, Michel; Lacour, Daniel; Montaigne, François; Locatelli, Andrea; Menteş, Tevfik Onur; Burgos, Benito Santos; Rougemaille, Nicolas

    2016-05-01

    Geometrical frustration in magnetic materials often gives rise to exotic, low-temperature states of matter, such as the ones observed in spin ices. Here we report the imaging of the magnetic states of a thermally active artificial magnetic ice that reveal the fingerprints of a spin fragmentation process. This fragmentation corresponds to a splitting of the magnetic degree of freedom into two channels and is evidenced in both real and reciprocal space. Furthermore, the internal organization of both channels is interpreted within the framework of a hybrid spin-charge model that directly emerges from the parent spin model of the kagome dipolar spin ice. Our experimental and theoretical results provide insights into the physics of frustrated magnets and deepen our understanding of emergent fields through the use of tailor-made magnetism.

  3. Surface plasmon dispersion engineering via double-metallic AU/AG layers for nitride light-emitting diodes

    DOEpatents

    Tansu, Nelson; Zhao, Hongping; Zhang, Jing; Liu, Guangyu

    2014-04-01

    A double-metallic deposition process is used whereby adjacent layers of different metals are deposited on a substrate. The surface plasmon frequency of a base layer of a first metal is tuned by the surface plasmon frequency of a second layer of a second metal formed thereon. The amount of tuning is dependent upon the thickness of the metallic layers, and thus tuning can be achieved by varying the thicknesses of one or both of the metallic layers. In a preferred embodiment directed to enhanced LED technology in the green spectrum regime, a double-metallic Au/Ag layer comprising a base layer of gold (Au) followed by a second layer of silver (Ag) formed thereon is deposited on top of InGaN/GaN quantum wells (QWs) on a sapphire/GaN substrate.

  4. Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays

    SciTech Connect

    Marset, zsolt; Hang, z. h.; Chan, C. T.; Kravchenko, Ivan I; Bower, J. E.

    2010-01-01

    We measure the transmission of infra-red radiation through double-layer metal lms with periodic arrays of subwavelength holes. When the two metal lms are placed in su ciently close proximity, two types of transmission resonances emerge. For the surface plasmon mode, the electromagnetic eld is concentrated on the outer surface of the entire metallic layer stack. In contrast, for the guided mode the eld is con ned to the gap between the two metal layers. Our measurements indicate that as the two layers are laterally shifted from perfect alignment, the peak transmission frequency of the guided mode decreases signi cantly, while that of the surface plasmon mode remains largely unchanged, in agreement with numerical calculations.

  5. ZnO buffer layer for metal films on silicon substrates

    DOEpatents

    Ihlefeld, Jon

    2014-09-16

    Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.

  6. The work function in the case of thin metallic layers

    NASA Astrophysics Data System (ADS)

    Chrzanowski, Janusz

    2005-08-01

    The investigations of electrons collective excitations on metal surface is important for deeper understanding both the metal properties and the response of the metal to an accident electromagnetic radiation. It is a matter of common knowledge that the properties of metal can be substantially modified as its physical dimension are reduced to the nanoscale. In such case a lot of experiments have shown the variation of work function, but there still exist the discrepancy between them and theoretical results. It seems to be really important to push the theory just a bit further. Here the work function is exactly defined function of the electron density and wave number what allows to take into account an influence of the uncertainty principle in obtained results.

  7. Emerging interface dipole versus screening effect in copolymer/metal nano-layered systems

    NASA Astrophysics Data System (ADS)

    Torrisi, V.; Ruffino, F.; Liscio, A.; Grimaldi, M. G.; Marletta, G.

    2015-12-01

    Despite to the importance on the charge carrier injection and transport at organic/metal interface, there is yet an incomplete estimation of the various contribution to the overall dipole. This work shows how the mapping of the surface potential performed by Kelvin Probe Force Microscopy (KPFM) allows the direct observation of the interface dipole within an organic/metal multilayered structure. Moreover, we show how the sub-surface sensitivity of the KPFM depends on the thickness and surface coverage of the metallic layer. This paper proposes a way to control the surface potential of the exposed layer of an hybrid layered system by controlling the interface dipole at the organic/metal interface as a function of the nanometer scale thickness and the surface coverage of the metallic layer. We obtained a layered system constituted by repeated sequence of a copolymer film, poly(n-butylacrylate)-b-polyacrilic acid, and Au layer. We compared the results obtained by means of scanning probe microscopy technique with the results of the KPFM technique, that allows us to obtain high-contrast images of the underlying layer of copolymer behind a typical threshold, on the nanoscale, of the thickness of the metal layer. We considered the effect of the morphology of the gold layer on the covered area at different thicknesses by using the scanning electron microscopy technique. This finding represents a step forward towards the using of dynamic atomic force microscopy based characterization to explore the electrical properties of the sub-surface states of layered nanohybrid, that is a critical point for nanohybrid applications in sensors and energy storage devices.

  8. Orbital magnetization and its effects in spin-chiral ferromagnetic kagomé lattice

    NASA Astrophysics Data System (ADS)

    Wang, Zhigang; Zhang, Ping

    2007-08-01

    Recently, Berry phase in the semiclassical dynamics of Bloch electrons has been found to make a correction to the phase-space density of states and a general multiband formula for finite-temperature orbital magnetization has been given [D. Xiao , Phys. Rev. Lett. 97, 026603 (2006)], where the orbital magnetization M consists of two parts, i.e., the conventional part Mc and the Berry-phase correction part MΩ . Using this general formula, we theoretically investigate the orbital magnetization and its effects on thermoelectric transport and magnetic susceptibility properties of the two-dimensional kagomé lattice with spin anisotropies included. The study in this paper is highly interesting because of the nonzero spin chirality parameter ϕ (see text), which results in profound effects on the topology of the electron Bloch states and the orbital magnetization properties. It is found that the two parts in orbital magnetization oppose each other. In particular, we show that the orbital magnetization displays fully different behaviors in the metallic and insulating regions, which is due to the different roles Mc and MΩ play in these two regions. The anomalous Nernst conductivity is also calculated, which displays a peak-valley structure as a function of the electron Fermi energy.

  9. Spectral and total temperature-dependent emissivities of few-layer structures on a metallic substrate.

    PubMed

    Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe

    2016-01-25

    We investigate the thermal radiative emission of few-layer structures deposited on a metallic substrate and its dependence on temperature with the Fluctuational Electrodynamics approach. We highlight the impact of the variations of the optical properties of metallic layers on their temperature-dependent emissivity. Fabry-Pérot spectral selection involving at most two transparent layers and one thin reflective layer leads to well-defined peaks and to the amplification of the substrate emission. For a single Fabry-Pérot layer on a reflective substrate, an optimal thickness that maximizes the emissivity of the structure can be determined at each temperature. A thin lossy layer deposited on the previous structure can enhance interference phenomena, and the analysis of the participation of each layer to the emission shows that the thin layer is the main source of emission. Eventually, we investigate a system with two Fabry-Pérot layers and a metallic thin layer, and we show that an optimal architecture can be found. The total hemispherical emissivity can be increased by one order of magnitude compared to the substrate emissivity. PMID:26832589

  10. Surface plasmon sensing with different metals in single and double layer configurations.

    PubMed

    Nesterenko, Dmitry V; Saif-ur-Rehman; Sekkat, Zouheir

    2012-09-20

    The resolution of surface plasmon resonance sensors in the geometry of Kretschmann is estimated by numerical simulation for different thicknesses of combinations of silver (Ag), copper, and aluminum (Al) metallic layers with a gold coating layer at set of wavelengths in cases of detecting the change of the refractive index of the bulk medium and the change in optical thickness of an adsorption layer. The lowest resolution among the examined combinations of the sensors is achieved with a single Al layer for ultraviolet region and with a single Ag layer for longer wavelengths. PMID:23205393

  11. Linearity optimization of atomic layer deposited ZrO2 metal-insulator-metal capacitors by inserting interfacial Zr-doped chromia layers

    NASA Astrophysics Data System (ADS)

    Lutzer, B.; Simsek, S.; Zimmermann, C.; Stoeger-Pollach, M.; Bethge, O.; Bertagnolli, E.

    2016-03-01

    In order to improve the electrical behaviour of metal-insulator-metal capacitors with ZrO2 insulator grown by Atomic Layer Deposition, the influence of the insertion of interfacial Cr layers between Pt electrodes and the zirconia is investigated. An improvement of the α-voltage coefficient of capacitance as low as 567 ppm/V2 is achieved for a single layer of Cr while maintaining a high capacitance density of 10.7 fF/μm2 and a leakage current of less than 1.2 × 10-8 A/cm2 at +1 V. The role of the interface is discussed by means of X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy showing the formation of Zr stabilized chromia oxide phase with a dielectric constant of 16.

  12. Layer-by-Layer Deposition with Polymers Containing Nitrilotriacetate, A Convenient Route to Fabricate Metal- and Protein-Binding Films.

    PubMed

    Wijeratne, Salinda; Liu, Weijing; Dong, Jinlan; Ning, Wenjing; Ratnayake, Nishanka Dilini; Walker, Kevin D; Bruening, Merlin L

    2016-04-27

    This paper describes a convenient synthesis of nitrilotriacetate (NTA)-containing polymers and subsequent layer-by-layer adsorption of these polymers on flat surfaces and in membrane pores. The resulting films form NTA-metal-ion complexes and capture 2-3 mmol of metal ions per mL of film. Moreover, these coatings bind multilayers of polyhistidine-tagged proteins through association with NTA-metal-ion complexes. Inclusion of acrylic acid repeat units in NTA-containing copolymers promotes swelling to increase protein binding in films on Au-coated wafers. Adsorption of NTA-containing films in porous nylon membranes gives materials that capture ∼46 mg of His-tagged ubiquitin per mL. However, the binding capacity decreases with the protein molecular weight. Due to the high affinity of NTA for metal ions, the modified membranes show modest leaching of Ni(2+) in binding and rinsing buffers. Adsorption of NTA-containing polymers is a simple method to create metal- and protein-binding films and may, with future enhancement of stability, facilitate development of disposable membranes that rapidly purify tagged proteins. PMID:27042860

  13. LOW VELOCITY IMPACT RESPONSE OF A LAMINATED COMPOSITE TUBE WITH A METALLIC BUMPER LAYER

    SciTech Connect

    Ibekwe, S.I.; Li, G.; Pang, S.S.; and Smith, B. H.

    2006-07-01

    A thin metallic sheet was bonded to the outer surface of a laminated composite curved beam as a bumper layer. It was believed that a metallic bumper layer such as an aluminum thin sheet would be able to intercept any lateral impacting force and absorb impact energy through plastic deformation. Since aluminum is comparatively light weight, a thin sheet will not result in a significant increase in structural weight. Results showed that impact damage occurred primarily in the bumper layer, thereby resulting in a much higher residual bending strength compared to the control specimen.

  14. Noise and vibration level reduction by covering metal structures with layers of damping materials. [considering viscoelastic insulation layers

    NASA Technical Reports Server (NTRS)

    Rugina, I.; Paven, H. T. O.

    1974-01-01

    One of the most important methods of reducing the noise and vibration level is the damping of the secondary sources, such as metal plates, often used in vehicle structures, by means of covering materials with high internal viscosity. Damping layers are chosen at an optimum thickness corresponding to the frequency and temperature range in which a certain structure works. The structure's response corresponding to various real situations is analyzed by means of a measuring chain including electroacoustical or electromechanical transducers. The experimental results provide the dependence of the loss factor and damping transmission coefficient as a function of the damping layer thickness or of the frequency for various viscoelastic covering materials.

  15. Electric Double-Layer Effects Induce Separation of Aqueous Metal Ions.

    PubMed

    Ji, Qinghua; An, Xiaoqiang; Liu, Huijuan; Guo, Lin; Qu, Jiuhui

    2015-11-24

    Metal ion separation is crucial to environmental decontamination, chromatography, and metal recovery and recycling. Theoretical studies have suggested that the ion distributions in the electric double-layer (EDL) region depend on the nature of the ions and the characteristics of the charged electrode surface. We believe that rational design of the electrode material and device structure will enable EDL-based devices to be utilized in the separation of aqueous metal ions. On the basis of this concept, we fabricate an EDL separation (EDLS) device based on sandwich-structured N-functionalized graphene sheets (CN-GS) for selective separation of aqueous toxic heavy metal ions. We demonstrate that the EDLS enables randomly distributed soluble ions to form a coordination-driven layer and electrostatic-driven layer in the interfacial region of the CN-GS/solution. Through tuning the surface potential of the CN-GS, the effective separation of heavy metal ions (coordination-driven layer) from alkali or alkaline earth metal ions (electrostatic-driven layer) can be achieved. PMID:26481603

  16. Spin tuning of electron-doped metal-phthalocyanine layers.

    PubMed

    Stepanow, Sebastian; Lodi Rizzini, Alberto; Krull, Cornelius; Kavich, Jerald; Cezar, Julio C; Yakhou-Harris, Flora; Sheverdyaeva, Polina M; Moras, Paolo; Carbone, Carlo; Ceballos, Gustavo; Mugarza, Aitor; Gambardella, Pietro

    2014-04-01

    The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state. PMID:24635343

  17. Metallic layer-by-layer photonic crystals for linearly-polarized thermal emission and thermophotovoltaic device including same

    DOEpatents

    Lee, Jae-Hwang; Ho, Kai-Ming; Constant, Kristen P.

    2016-07-26

    Metallic thermal emitters consisting of two layers of differently structured nickel gratings on a homogeneous nickel layer are fabricated by soft lithography and studied for polarized thermal radiation. A thermal emitter in combination with a sub-wavelength grating shows a high extinction ratio, with a maximum value close to 5, in a wide mid-infrared range from 3.2 to 7.8 .mu.m, as well as high emissivity up to 0.65 at a wavelength of 3.7 .mu.m. All measurements show good agreement with theoretical predictions. Numerical simulations reveal that a high electric field exists within the localized air space surrounded by the gratings and the intensified electric-field is only observed for the polarizations perpendicular to the top sub-wavelength grating. This result suggests how the emissivity of a metal can be selectively enhanced at a certain range of wavelengths for a given polarization.

  18. Atomic layer deposition to prevent metal transfer from implants: An X-ray fluorescence study

    NASA Astrophysics Data System (ADS)

    Bilo, Fabjola; Borgese, Laura; Prost, Josef; Rauwolf, Mirjam; Turyanskaya, Anna; Wobrauschek, Peter; Kregsamer, Peter; Streli, Christina; Pazzaglia, Ugo; Depero, Laura E.

    2015-12-01

    We show that Atomic Layer Deposition is a suitable coating technique to prevent metal diffusion from medical implants. The metal distribution in animal bone tissue with inserted bare and coated Co-Cr alloys was evaluated by means of micro X-ray fluorescence mapping. In the uncoated implant, the migration of Co and Cr particles from the bare alloy in the biological tissues is observed just after one month and the number of particles significantly increases after two months. In contrast, no metal diffusion was detected in the implant coated with TiO2. Instead, a gradient distribution of the metals was found, from the alloy surface going into the tissue. No significant change was detected after two months of aging. As expected, the thicker is the TiO2 layer, the lower is the metal migration.

  19. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet

    SciTech Connect

    Fu, Mingxuan; Imai, Takahashi; Han, Tian -Heng; Lee, Young S.

    2015-11-06

    Here, the kagome Heisenberg antiferromagnet is a leading candidate in the search for a spin system with a quantum spin-liquid ground state. The nature of its ground state remains a matter of active debate. We conducted oxygen-17 single-crystal nuclear magnetic resonance (NMR) measurements of the spin-1/2 kagome lattice in herbertsmithite [ZnCu3(OH)6Cl2], which is known to exhibit a spinon continuum in the spin excitation spectrum. We demonstrated that the intrinsic local spin susceptibility χkagome, deduced from the oxygen-17 NMR frequency shift, asymptotes to zero below temperatures of 0.03J, where J ~ 200 kelvin is the copper-copper superexchange interaction. Combined with the magnetic field dependence of χkagome that we observed at low temperatures, these results imply that the kagome Heisenberg antiferromagnet has a spin-liquid ground state with a finite gap.

  20. Kondo Effects in Single Layer Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Phillips, Michael; Aji, Vivek

    2015-03-01

    Inversion symmetry breaking and strong spin orbit coupling in two dimensional transition metal dichalcogenides leads to interesting new phenomena such as the valley hall and spin hall effects. They display optical circular dichroism and the ability to generate excitation with valley specificity. In this talk we report on the consequences of these properties on correlated states in hole doped systems focussing on the physics of the screening of magnetic impurities. Unlike typical metals, the breaking of inversion symmetry leads to the mixing of a triplet component to the Kondo cloud. Using a variational wave function approach we determine the nature of the many body state. With the ground state in hand we analyze the excitations generated by valley discriminating perturbations. Graduate Student.

  1. Metallic stereostructured layer: An approach for broadband polarization state manipulation

    SciTech Connect

    Xiong, Xiang; Hu, Yuan-Sheng; Jiang, Shang-Chi; Hu, Yu-Hui; Fan, Ren-Hao; Ma, Guo-Bin; Shu, Da-Jun; Peng, Ru-Wen; Wang, Mu

    2014-11-17

    In this letter, we report a full-metallic broadband wave plate assembled by standing metallic L-shaped stereostructures (LSSs). We show that with an array of LSSs, high polarization conversion ratio is achieved within a broad frequency band. Moreover, by rotating the orientation of the array of LSSs, the electric components of the reflection beam in two orthogonal directions and their phase difference can be independently tuned. In this way, all the polarization states on the Poincaré sphere can be realized. As examples, the functionalities of a quarter wave plate and a half wave plate are experimentally demonstrated with both reflection spectra and focal-plane-array imaging. Our designing provides a unique approach in realizing the broadband wave plate to manipulate the polarization state of light.

  2. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    PubMed

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth. PMID:26999431

  3. Layered metal sulfides: Exceptionally selective agents for radioactive strontium removal

    PubMed Central

    Manos, Manolis J.; Ding, Nan; Kanatzidis, Mercouri G.

    2008-01-01

    In this article, we report the family of robust layered sulfides K2xMnxSn3-xS6 (x = 0.5–0.95) (KMS-1). These materials feature hexagonal [MnxSn3-xS6]2x− slabs of the CdI2 type and contain highly mobile K+ ions in their interlayer space that are easily exchangeable with other cations and particularly strontium. KMS-1 display outstanding preference for strontium ions in highly alkaline solutions containing extremely large excess of sodium cations as well as in acidic environment where most alternative adsorbents with oxygen ligands are nearly inactive. The implication of these results is that simple layered sulfides should be considered for the efficient remediation of certain nuclear wastes. PMID:18316731

  4. Topological phase transition in layered transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Choe, Duk-Hyun; Sung, Ha-Jun; Chang, Kee Joo

    Despite considerable interests in transition metal dichalcogenides (TMDs), such as MX2 with M = (Mo, W) and X = (S, Se, Te), the physical origin of their topological nature is still in its infancy. The conventional view of topological phase transition (TPT) in TMDs is that the band inversion occurs between the metal d and chalcogen p orbital bands. More precisely, the former is pulled down below the latter. Here we introduce an explicit scheme for analyzing TPT in topological materials and find that the TPT in TMDs is different from the conventional speculation. When the 1T phase undergoes a structural transformation to the 1T' phase in monolayer MX2, the band topology changes from trivial to non-trivial, leading to the TPT. We discuss the exact role of the metal d and chalcogen p orbital bands during the TPT. Our finding would provide clear guidelines for understanding the topological nature not only in TMDs but also in other topological materials yet to be explored.

  5. Stitching 2D polymeric layers into flexible interpenetrated metal-organic frameworks within single crystals.

    PubMed

    Zhang, Zi-Xuan; Ding, Ni-Ni; Zhang, Wen-Hua; Chen, Jin-Xiang; Young, David J; Hor, T S Andy

    2014-04-25

    A 2D coordination polymer prepared with bulky diethylformamide solvates exhibits channels which allow dipyridyl bridging ligands to diffuse into the crystal lattice. The absorbed dipyridyls thread through the pores of one layer and substitute the surface diethylformamide molecules on the neighboring layers to stitch alternate layers to form flexible interpenetrated metal-orgaic frameworks. The threading process also results in exchange of the bulky diethylformamide solvates for aqua to minimize congestion and, more strikingly, forces the slippage of two-dimensional layers, while still maintaining crystallinity. PMID:24692130

  6. Self-aligned metallization on organic semiconductor through 3D dual-layer thermal nanoimprint

    NASA Astrophysics Data System (ADS)

    Jung, Y.; Cheng, X.

    2014-09-01

    High-resolution patterning of metal structures on organic semiconductors is important to the realization of high-performance organic transistors for organic integrated circuit applications. The traditional shadow mask technique has a limited resolution, precluding sub-micron metal structures on organic semiconductors. Thus organic transistors cannot benefit from scaling into the deep sub-micron region to improve their dc and ac performances. In this work, we report an efficient multiple-level metallization on poly (3-hexylthiophene) (P3HT) with a deep sub-micron lateral gap. By using a 3D nanoimprint mold in a dual-layer thermal nanoimprint process, we achieved self-aligned two-level metallization on P3HT. The 3D dual-layer thermal nanoimprint enables the first metal patterns to have suspending side-wings that can clearly define a distance from the second metal patterns. Isotropic and anisotropic side-wing structures can be fabricated through two different schemes. The process based on isotropic side-wings achieves a lateral-gap in the order of 100 nm (scheme 1). A gap of 60 nm can be achieved from the process with anisotropic side-wings (scheme 2). Because of the capability of nanoscale metal patterning on organic semiconductors with high overlay accuracy, this self-aligned metallization technique can be utilized to fabricate high-performance organic metal semiconductor field-effect transistor.

  7. Interphase layer optimization for metal matrix composites with fabrication considerations

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    A methodology is presented to reduce the final matrix microstresses for metal matrix composites by concurrently optimizing the interphase characteristics and fabrication process. Application cases include interphase tailoring with and without fabrication considerations for two material systems, graphite/copper and silicon carbide/titanium. Results indicate that concurrent interphase/fabrication optimization produces significant reductions in the matrix residual stresses and strong coupling between interphase and fabrication tailoring. The interphase coefficient of thermal expansion and the fabrication consolidation pressure are the most important design parameters and must be concurrently optimized to further reduce the microstresses to more desirable magnitudes.

  8. Microwave shielding enhancement of high-transparency, double-layer, submillimeter-period metallic mesh

    NASA Astrophysics Data System (ADS)

    Lu, Zhengang; Wang, Heyan; Tan, Jiubin; Lin, Shen

    2014-12-01

    We demonstrate both theoretically and experimentally that the microwave-shielding effectiveness of a double-layer metallic mesh with a submillimeter period can be improved by increasing the separation between the two mesh layers (without affecting transmittance). This double-layer mesh consists of two layers of square aluminum mesh separated by a quartz-glass substrate. By increasing the substrate's optical thickness from zero to λ/4 of the shielding band's upper frequency, the shielding of the double-layer mesh improves considerably, owing to the increased reflectivity of the double-layer mesh with increasing separation in the low-frequency band. A Ku-band shielding effectiveness of over 32 dB is observed for the double-layer mesh with a normalized visible transmittance greater than 91%. It is found that the electromagnetic shielding effectiveness is enhanced by over 7 dB (80.0% energy attenuation) across the Ku-band, compared with that of a single-layer mesh, while the optical transmittances are almost identical for both tested structures. Such an enhancement permits the design of high-transparency optical elements with stronger microwave shielding that can be achieved using single-layer metallic mesh.

  9. Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides

    NASA Astrophysics Data System (ADS)

    Nourbakhsh, Amirhasan; Adelmann, Christoph; Song, Yi; Lee, Chang Seung; Asselberghs, Inge; Huyghebaert, Cedric; Brizzi, Simone; Tallarida, Massimo; Schmeißer, Dieter; van Elshocht, Sven; Heyns, Marc; Kong, Jing; Palacios, Tomás; de Gendt, Stefan

    2015-06-01

    Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the capacitive properties of GO with its electronic structure. Capacitance-voltage measurements showed that the capacitive behavior of Al2O3/GO depends on the oxidation level of GO. Finally, GO was successfully used as an ALD seed layer for the deposition of Al2O3 on chemically inert single layer graphene, resulting in high performance top-gated field-effect transistors.Graphene oxide (GO) was explored as an atomically-thin transferable seed layer for the atomic layer deposition (ALD) of dielectric materials on any substrate of choice. This approach does not require specific chemical groups on the target surface to initiate ALD. This establishes GO as a unique interface which enables the growth of dielectric materials on a wide range of substrate materials and opens up numerous prospects for applications. In this work, a mild oxygen plasma treatment was used to oxidize graphene monolayers with well-controlled and tunable density of epoxide functional groups. This was confirmed by synchrotron-radiation photoelectron spectroscopy. In addition, density functional theory calculations were carried out on representative epoxidized graphene monolayer models to correlate the

  10. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting

    SciTech Connect

    Liu, Jian; Li, Xi-Bo; Wang, Da; Liu, Li-Min E-mail: limin.liu@csrc.ac.cn; Lau, Woon-Ming; Peng, Ping E-mail: limin.liu@csrc.ac.cn

    2014-02-07

    The family of bulk metal phosphorus trichalcogenides (APX{sub 3}, A = M{sup II}, M{sub 0.5}{sup I}M{sub 0.5}{sup III}; X = S, Se; M{sup I}, M{sup II}, and M{sup III} represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functional theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX{sub 3} should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe{sub 3}, CdPSe{sub 3}, Ag{sub 0.5}Sc{sub 0.5}PSe{sub 3}, and Ag{sub 0.5}In{sub 0.5}PX{sub 3} (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag{sub 0.5}Sc{sub 0.5}PSe{sub 3} is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting.

  11. A kagome map of spin liquids from XXZ to Dzyaloshinskii-Moriya ferromagnet

    NASA Astrophysics Data System (ADS)

    Essafi, Karim; Benton, Owen; Jaubert, L. D. C.

    2016-01-01

    Despite its deceptive simplicity, few concepts have more fundamental implications than chirality, from the therapeutic activity of drugs to the fundamental forces of nature. In magnetic materials, chirality gives rise to unconventional phenomena such as the anomalous Hall effect and multiferroicity, taking an enhanced flavour in the so-called spin-liquid phases where magnetic disorder prevails. Kagome systems sit at the crossroad of these ideas. Motivated by the recent synthesis of rare-earth kagome materials and the progresses in optical-lattice experiments, we bring together an entire network of spin liquids with anisotropic and Dzyaloshinskii-Moriya interactions. This network revolves around the Ising antiferromagnet and ends on (ferromagnetic) chiral spin liquids with spontaneously broken time-reversal symmetry. As for the celebrated Heisenberg antiferromagnet, it now belongs to a triad of equivalently disordered phases. The present work provides a unifying theory of kagome spin liquids with time-reversal invariant nearest-neighbour Hamiltonians.

  12. A kagome map of spin liquids from XXZ to Dzyaloshinskii–Moriya ferromagnet

    PubMed Central

    Essafi, Karim; Benton, Owen; Jaubert, L.D.C.

    2016-01-01

    Despite its deceptive simplicity, few concepts have more fundamental implications than chirality, from the therapeutic activity of drugs to the fundamental forces of nature. In magnetic materials, chirality gives rise to unconventional phenomena such as the anomalous Hall effect and multiferroicity, taking an enhanced flavour in the so-called spin-liquid phases where magnetic disorder prevails. Kagome systems sit at the crossroad of these ideas. Motivated by the recent synthesis of rare-earth kagome materials and the progresses in optical-lattice experiments, we bring together an entire network of spin liquids with anisotropic and Dzyaloshinskii–Moriya interactions. This network revolves around the Ising antiferromagnet and ends on (ferromagnetic) chiral spin liquids with spontaneously broken time-reversal symmetry. As for the celebrated Heisenberg antiferromagnet, it now belongs to a triad of equivalently disordered phases. The present work provides a unifying theory of kagome spin liquids with time-reversal invariant nearest-neighbour Hamiltonians. PMID:26796866

  13. Magnetostatic bias in Kagome artificial spin ice systems

    NASA Astrophysics Data System (ADS)

    Panagiotopoulos, I.

    2016-04-01

    The magnetostatic bias in elongated nanomagnetic elements arranged in artificial Kagome spin ice arrays is studied by micromagnetic simulations. Using the Nmag package the reversal of a given element has been simulated under the influence of its four nearest neighbors with their magnetic states fixed in all possible configurations, which amount to 24=16 states that can be classified under five distinct cases. The hysteresis loop of each element is greatly influenced by the magnetic state of the nearest neighbors, not only by the expected shift due to dipolar interaction bias, but as it regards the loop shape and width itself. This presents a correction to the usual macrospin calculation based on the assumption that the loop is shifted by a biasing field (equal to the local dipole field) but the loop width (and shape in general) does not change. Although coercive and biasing fields depend strongly on the dimensions their relative strength has only weak thickness dependence for a fixed length to width aspect ratio. Therefore the behavior of such arrays is expected to be to a large degree size invariant apart from an appropriate maximum external applied field scaling.

  14. Simple metal under tensile stress: layer-dependent herringbone reconstruction of thin potassium films on graphite

    NASA Astrophysics Data System (ADS)

    Yin, Feng; Kulju, Sampo; Koskinen, Pekka; Akola, Jaakko; Palmer, Richard E.

    2015-05-01

    While understanding the properties of materials under stress is fundamentally important, designing experiments to probe the effects of large tensile stress is difficult. Here tensile stress is created in thin films of potassium (up to 4 atomic layers) by epitaxial growth on a rigid support, graphite. We find that this “simple” metal shows a long-range, periodic “herringbone” reconstruction, observed in 2- and 3- (but not 1- and 4-) layer films by low-temperature scanning tunneling microscopy (STM). Such a pattern has never been observed in a simple metal. Density functional theory (DFT)simulations indicate that the reconstruction consists of self-aligned stripes of enhanced atom density formed to relieve the tensile strain. At the same time marked layer-dependent charging effects lead to substantial variation in the apparent STM layer heights.

  15. Simple metal under tensile stress: layer-dependent herringbone reconstruction of thin potassium films on graphite

    PubMed Central

    Yin, Feng; Kulju, Sampo; Koskinen, Pekka; Akola, Jaakko; Palmer, Richard E.

    2015-01-01

    While understanding the properties of materials under stress is fundamentally important, designing experiments to probe the effects of large tensile stress is difficult. Here tensile stress is created in thin films of potassium (up to 4 atomic layers) by epitaxial growth on a rigid support, graphite. We find that this “simple” metal shows a long-range, periodic “herringbone” reconstruction, observed in 2- and 3- (but not 1- and 4-) layer films by low-temperature scanning tunneling microscopy (STM). Such a pattern has never been observed in a simple metal. Density functional theory (DFT)simulations indicate that the reconstruction consists of self-aligned stripes of enhanced atom density formed to relieve the tensile strain. At the same time marked layer-dependent charging effects lead to substantial variation in the apparent STM layer heights. PMID:25959681

  16. Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells

    PubMed Central

    Trost, S.; Becker, T.; Zilberberg, K.; Behrendt, A.; Polywka, A.; Heiderhoff, R.; Görrn, P.; Riedl, T.

    2015-01-01

    ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1–20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated. PMID:25592174

  17. Saturation field entropies of antiferromagnetic Ising models: Ladders and the kagome lattice

    NASA Astrophysics Data System (ADS)

    Varma, Vipin Kerala

    2013-10-01

    Saturation field entropies of antiferromagnetic Ising models on quasi-one-dimensional lattices (ladders) and the kagome lattice are calculated. The former is evaluated exactly by constructing the corresponding transfer matrices, while the latter calculation uses Binder's algorithm for efficiently and exactly computing the partition function of over 1300 spins to give Skag/kB=0.393589(6). We comment on the relation of the kagome lattice to the experimental situation in the spin-ice compound Dy2Ti2O7.

  18. Ground-state candidate for the classical dipolar kagome Ising antiferromagnet

    NASA Astrophysics Data System (ADS)

    Chioar, I. A.; Rougemaille, N.; Canals, B.

    2016-06-01

    We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.

  19. Generation of high-resolution kagome lattice structures using extreme ultraviolet interference lithography

    NASA Astrophysics Data System (ADS)

    Wang, Li; Terhalle, Bernd; Guzenko, Vitaliy A.; Farhan, Alan; Hojeij, Mohamad; Ekinci, Yasin

    2012-08-01

    High-resolution kagome lattice structures with feature sizes down to the sub-50 nm regime are fabricated using diffraction-based extreme ultraviolet interference lithography. The resulting interference pattern of multiple beams is sensitive to the relative phase of the interfering beams. The precise control of their phases is achieved by precise positioning of transmission diffraction gratings on a mask using a high-end electron beam lithography tool. The presented method may find applications in providing high-resolution and large-area kagome lattice structures for studies on frustrated magnetic systems, photonic crystals, and plasmonics.

  20. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode.

    PubMed

    Yan, Kai; Lee, Hyun-Wook; Gao, Teng; Zheng, Guangyuan; Yao, Hongbin; Wang, Haotian; Lu, Zhenda; Zhou, Yu; Liang, Zheng; Liu, Zhongfan; Chu, Steven; Cui, Yi

    2014-10-01

    Stable cycling of lithium metal anode is challenging due to the dendritic lithium formation and high chemical reactivity of lithium with electrolyte and nearly all the materials. Here, we demonstrate a promising novel electrode design by growing two-dimensional (2D) atomic crystal layers including hexagonal boron nitride (h-BN) and graphene directly on Cu metal current collectors. Lithium ions were able to penetrate through the point and line defects of the 2D layers during the electrochemical deposition, leading to sandwiched lithium metal between ultrathin 2D layers and Cu. The 2D layers afford an excellent interfacial protection of Li metal due to their remarkable chemical stability as well as mechanical strength and flexibility, resulting from the strong intralayer bonds and ultrathin thickness. Smooth Li metal deposition without dendritic and mossy Li formation was realized. We showed stable cycling over 50 cycles with Coulombic efficiency ∼97% in organic carbonate electrolyte with current density and areal capacity up to the practical value of 2.0 mA/cm(2)and 5.0 mAh/cm(2), respectively, which is a significant improvement over the unprotected electrodes in the same electrolyte. PMID:25166749

  1. FTIR spectroscopy structural analysis of the interaction between Lactobacillus kefir S-layers and metal ions

    NASA Astrophysics Data System (ADS)

    Gerbino, E.; Mobili, P.; Tymczyszyn, E.; Fausto, R.; Gómez-Zavaglia, A.

    2011-02-01

    FTIR spectroscopy was used to structurally characterize the interaction of S-layer proteins extracted from two strains of Lactobacillus kefir (the aggregating CIDCA 8348 and the non-aggregating JCM 5818) with metal ions (Cd +2, Zn +2, Pb +2 and Ni +2). The infrared spectra indicate that the metal/protein interaction occurs mainly through the carboxylate groups of the side chains of Asp and Glut residues, with some contribution of the NH groups belonging to the peptide backbone. The frequency separation between the νCOO - anti-symmetric and symmetric stretching vibrations in the spectra of the S-layers in presence of the metal ions was found to be ca. 190 cm -1 for S-layer CIDCA 8348 and ca. 170 cm -1 for JCM 5818, denoting an unidentate coordination in both cases. Changes in the secondary structures of the S-layers induced by the interaction with the metal ions were also noticed: a general trend to increase the amount of β-sheet structures and to reduce the amount of α-helices was observed. These changes allow the proteins to adjust their structure to the presence of the metal ions at minimum energy expense, and accordingly, these adjustments were found to be more important for the bigger ions.

  2. Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition.

    PubMed

    Kozen, Alexander C; Lin, Chuan-Fu; Pearse, Alexander J; Schroeder, Marshall A; Han, Xiaogang; Hu, Liangbing; Lee, Sang-Bok; Rubloff, Gary W; Noked, Malachi

    2015-06-23

    Lithium metal is considered to be the most promising anode for next-generation batteries due to its high energy density of 3840 mAh g(-1). However, the extreme reactivity of the Li surface can induce parasitic reactions with solvents, contamination, and shuttled active species in the electrolyte, reducing the performance of batteries employing Li metal anodes. One promising solution to this issue is application of thin chemical protection layers to the Li metal surface. Using a custom-made ultrahigh vacuum integrated deposition and characterization system, we demonstrate atomic layer deposition (ALD) of protection layers directly on Li metal with exquisite thickness control. We demonstrate as a proof-of-concept that a 14 nm thick ALD Al2O3 layer can protect the Li surface from corrosion due to atmosphere, sulfur, and electrolyte exposure. Using Li-S battery cells as a test system, we demonstrate an improved capacity retention using ALD-protected anodes over cells assembled with bare Li metal anodes for up to 100 cycles. PMID:25970127

  3. Electrode dependent interfacial layer variation in metal-oxide-semiconductor capacitor

    NASA Astrophysics Data System (ADS)

    Park, I.-S.; Jung, Y. C.; Lee, M.; Seong, S.; Ahn, J.

    2014-03-01

    The interfacial layer between oxide and semiconductor in metal-oxide-semiconductor (MOS) capacitors depends on the metal electrode material. The metal/HfO2/Si and metal/HfO2/Ge capacitor were made using an atomic layer deposited HfO2 dielectric films and Mo, Ru, and Pt electrodes above Si substrate and Ti, Ru, and Pt electrodes above Ge substrate. The measured saturation capacitance was varied with electrode and evaluated to capacitance equivalent thickness (CET). In Si-based MOS capacitor, the CET value of the capacitor with Pt electrode is larger than those with Mo and Ru electrode. In addition, the CET is 27.4 A, 38.2 A, and 30.8 A for Ti, Ru, and Pt electrode, respectively, for Ge-based MOS capacitors. The CET variation with electrode is attributed the variation of dielectric constant of HfO2 dielectric and the difference of interfacial layer. The CET variation is well in agreement with the interfacial layer thickness taken by a transmission electron microscopy. The thickness variation of interfacial layer results from the oxygen gettering ability of the electrode even though they are apart.

  4. Process for preparation of a seed layer for selective metal deposition

    DOEpatents

    Bernhardt, Anthony F.

    1992-01-01

    Disclosed is a process for selective metal deposition comprising of the steps of: a. formation of an initial surface on a substrate, said initial surface being comprised of at least two layers of which the uppermost is inert, b. exposing the surface to a source of heat in pre-determined places wherein surface activation is desired, and c. deposition of metal on activated portions of said surface.

  5. Resonant microwave transmission from a double layer of subwavelength metal square arrays: Evanescent handedness

    NASA Astrophysics Data System (ADS)

    Butler, C. A. M.; Hobson, P. A.; Hibbins, A. P.; Sambles, J. R.

    2012-12-01

    A double layer of identical subwavelength metal patch arrays is experimentally shown to be electromagnetically chiral due to the evanescent coupling of the near fields between nonchiral layers—it exhibits “evanescent handedness.” Despite each layer being intrinsically isotropic in the plane with four mirror planes orthogonal to the plane of the structure, circular dichroism, leading to significant polarization rotation, is found in the resonant microwave transmission for any incident linear polarization.

  6. Synthesis and stabilization of supported metal catalysts by atomic layer deposition.

    PubMed

    Lu, Junling; Elam, Jeffrey W; Stair, Peter C

    2013-08-20

    Supported metal nanoparticles are among the most important catalysts for many practical reactions, including petroleum refining, automobile exhaust treatment, and Fischer-Tropsch synthesis. The catalytic performance strongly depends on the size, composition, and structure of the metal nanoparticles, as well as the underlying support. Scientists have used conventional synthesis methods including impregnation, ion exchange, and deposition-precipitation to control and tune these factors, to establish structure-performance relationships, and to develop better catalysts. Meanwhile, chemists have improved the stability of metal nanoparticles against sintering by the application of protective layers, such as polymers and oxides that encapsulate the metal particle. This often leads to decreased catalytic activity due to a lack of precise control over the thickness of the protective layer. A promising method of catalyst synthesis is atomic layer deposition (ALD). ALD is a variation on chemical vapor deposition in which metals, oxides, and other materials are deposited on surfaces by a sequence of self-limiting reactions. The self-limiting character of these reactions makes it possible to achieve uniform deposits on high-surface-area porous solids. Therefore, design and synthesis of advanced catalysts on the nanoscale becomes possible through precise control over the structure and composition of the underlying support, the catalytic active sites, and the protective layer. In this Account, we describe our advances in the synthesis and stabilization of supported metal catalysts by ALD. After a short introduction to the technique of ALD, we show several strategies for metal catalyst synthesis by ALD that take advantage of its self-limiting feature. Monometallic and bimetallic catalysts with precise control over the metal particle size, composition, and structure were achieved by combining ALD sequences, surface treatments, and deposition temperature control. Next, we describe

  7. Surface Phonon Dispersion of the Layered Transition-metal Oxides

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ismail; Matzdorf, R.; Plummer, E. W.; Kimura, T.; Tokura, Y.

    2000-03-01

    Transition-metal oxides exhibit strong coupling between the charge and spin of the electrons and the lattice. Creating a surface by cleaving a single crystal breaks the symmetry of the lattice and disturbs the correlated system without changing the stoichiometry, providing the opportunity to study the response of electronic, structural, and magnetic properties. We have utilized electron-energy loss sprectroscopy (EELS) to study the electronic and lattice excitations of the Sr_2RuO4 and La_0.5Sr_1.5MnO4 surfaces. For both of these materials there are many more than three modes; three dominate surface optical phonons with small dispersion and with higher energies compared to those in the bulk materials. However, these phonons show completely different temperature dependence for different samples. The surface phonons become soft for Sr_2RuO4 while they become stiff for La_0.5Sr_1.5MnO4 with increasing temparature. The change of phonon energy of La_0.5Sr_1.5MnO4 with temperature is also in opposite direction to that of (La, Ca)MnO_4( Zhang et al., Surf. Sci. 393, 64(1997) * LMER Corp. for U.S. DOE under contract No. DE-AC05-96OR22464). These behaviors will be discussed in terms of the electronic, magnetic, and structural properties.

  8. APCVD Transition Metal Oxides - Functional Layers in "Smart windows"

    NASA Astrophysics Data System (ADS)

    Gesheva, K. A.; Ivanova, T. M.; Bodurov, G. K.

    2014-11-01

    Transition metal oxides (TMO) exhibit electrochromic effect. Under a small voltage they change their optical transmittance from transparent to collored (absorbing) state. The individual material can manifest its electrochromic properties only when it is part of electrochromic (EC) multilayer system. Smart window is controlling the energy of solar flux entering the building or car and makes the interiors comfortable and energy utilization more effective. Recently the efforts of material researchers in this field are directed to price decreasing. APCVD technology is considered as promissing as this process permits flowthrough large-scale production process. The paper presents results on device optimization based on WO3-MoO3 working electrode. Extensive research reveals that WO3-MoO3 structure combines positive features of single oxides: excellent electrochromic performance of WO3 and better kinetic properties of MoO3 deposition. The achieved color efficiency of APCVD WO3-MoO3 films is 200cm2/C and optical modulation of 65-70% are practically favorable electrochromic characteristics. To respond to low cost requirement, the expensive hexacarbonyl can be replaced with acetylacetonate. We have started with this precursor to fabricate mixed WxV1-xO3 films. The films possess excellent surface coverage and high growth-rate. CVD deposition of VO2, a promissing thermochromic thin film material is also presented.

  9. Charge Transfer Stabilization of Late Transition Metal Oxide Nanoparticles on a Layered Niobate Support.

    PubMed

    Strayer, Megan E; Senftle, Thomas P; Winterstein, Jonathan P; Vargas-Barbosa, Nella M; Sharma, Renu; Rioux, Robert M; Janik, Michael J; Mallouk, Thomas E

    2015-12-30

    Interfacial interactions between late transition metal/metal oxide nanoparticles and oxide supports impact catalytic activity and stability. Here, we report the use of isothermal titration calorimetry (ITC), electron microscopy and density functional theory (DFT) to explore periodic trends in the heats of nanoparticle-support interactions for late transition metal and metal oxide nanoparticles on layered niobate and silicate supports. Data for Co(OH)2, hydroxyiridate-capped IrOx·nH2O, Ni(OH)2, CuO, and Ag2O nanoparticles were added to previously reported data for Rh(OH)3 grown on nanosheets of TBA0.24H0.76Ca2Nb3O10 and a layered silicate. ITC measurements showed stronger bonding energies in the order Ag < Cu ≈ Ni ≈ Co < Rh < Ir on the niobate support, as expected from trends in M-O bond energies. Nanoparticles with exothermic heats of interaction were stabilized against sintering. In contrast, ITC measurements showed endothermic interactions of Cu, Ni, and Rh oxide/hydroxide nanoparticles with the silicate and poor resistance to sintering. These trends in interfacial energies were corroborated by DFT calculations using single-atom and four-atom cluster models of metal/metal oxide nanoparticles. Density of states and charge density difference calculations reveal that strongly bonded metals (Rh, Ir) transfer d-electron density from the adsorbed cluster to niobium atoms in the support; this mixing is absent in weakly binding metals, such as Ag and Au, and in all metals on the layered silicate support. The large differences between the behavior of nanoparticles on niobate and silicate supports highlight the importance of d-orbital interactions between the nanoparticle and support in controlling the nanoparticles' stability. PMID:26651875

  10. Active diagenetic formation of metal-rich layers in N. E. Atlantic sediments

    NASA Astrophysics Data System (ADS)

    Wallace, H. E.; Thomson, J.; Wilson, T. R. S.; Weaver, P. P. E.; Higgs, N. C.; Hydes, D. J.

    1988-06-01

    Sediment cores from the Porcupine Abyssal Plain exhibit an indurated layer 0.5-3 cm thick at depths of approximately 50 cm. This is some 15-20 cm below the glacial/Holocene transition as interpreted by radiocarbon dating and the palaeontological criteria of RUDDIMAN and MCINTYRE (1981). The layer is forming currently at the oxic/post-oxic boundary in the sediments, as revealed by pore water data: O 2 and NO -3 are present in solution above the layer, while Fe 2+, Mn 2+, PO 3-4 and NH +4 are present in solution below, and all these species show concentration gradients indicating fluxes into the layer. These data are consistent with the hypothesis for the initiation and sustained formation of such layers proposed by WILSONet al. (1986a,b). The elements Mn, Ni, Co, Fe, P, V, Cu, Zn and U are all enriched to varying degrees in the vicinity of the layer. Some differential stratification of these elements in the vertical, consistent with a redox control, is observed at one site with a 0.5 cm layer, with Mn, Ni and Co above, Fe, P, V and Cu in the layer, and U below. At another site the metal-rich layer has higher Fe and P concentrations and is more indurated. Here all enrichments except Co are contained within a single layer sample, 3 cm thick.

  11. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers

    DOE PAGESBeta

    Anasori, Babak; Shi, Chenyang; Moon, Eun Ju; Xie, Yu; Voigt, Cooper A.; Kent, Paul R. C.; May, Steven J.; Billinge, Simon J. L.; Barsoum, Michel W.; Gogotsi, Yury

    2016-02-24

    In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M3C2 and M4C3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX]nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M'2M"C2 and M'2M"2C3 – where M' and M" are two different early transition metals, such as Mo, Cr, Ta, Nb, V, andmore » Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo2TiC2 and Mo2Ti2C3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC]nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti3C2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo2TiC2Tx exhibits semiconductor-like transport behavior, while Ti3C2Tx is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.« less

  12. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOEpatents

    Syn, C.K.; Lesuer, D.R.

    1995-07-04

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step. 5 figs.

  13. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and making same

    DOEpatents

    Syn, Chol K.; Lesuer, Donald R.

    1995-01-01

    A laminated metal composite of low flow stress layers and high flow stress layers is described which is formed using flow constraining elements, preferably in the shape of rings, individually placed around each of the low flow stress layers while pressure is applied to the stack to bond the layers of the composite together, to thereby restrain the flow of the low flow stress layers from the stack during the bonding. The laminated metal composite of the invention is made by the steps of forming a stack of alternate layers of low flow stress layers and high flow stress layers with each layer of low flow stress material surrounded by an individual flow constraining element, such as a ring, and then applying pressure to the top and bottom surfaces of the resulting stack to bond the dissimilar layers together, for example, by compression rolling the stack. In a preferred embodiment, the individual flow constraining elements surrounding the layers of low flow stress material are formed of a material which may either be the same material as the material comprising the high flow stress layers, or have similar flow stress characteristics to the material comprising the high flow stress layers. Additional sacrificial layers may be added to the top and bottom of the stack to avoid damage to the stack during the bonding step; and these additional layers may then be removed after the bonding step.

  14. Electrical and materials characterization of tungsten-titanium diffusion barrier layers and alloyed silver metallization

    NASA Astrophysics Data System (ADS)

    Bhagat, Shekhar Kumar

    With the constant miniaturization of semiconductor devices, research is always ongoing to obtain the best materials and/or materials systems which fulfill all the requirements of an ideal interconnect. Silver (Ag) and silver based alloys are front runners among other metals and alloys being investigated. Ag has a low electrical resistivity (1.59 micro-ohm-centimeters for bulk), very high thermal conductivity (4.25 Watt per centimeters per Kelvin), and has better electromigration resistance than aluminum (Al). In the pure form, however, it has several drawbacks (e.g., a tendency to diffuse in silicon substrate at higher temperatures, inadequate adhesion to silicon dioxide, poor corrosion resistance, and agglomeration at higher temperatures). These drawbacks can be circumvented by the addition of diffusion barrier layers and/or alloying in silver. The present study investigates both routes to make silver a legitimate interconnect material. Initially this study focuses on thermal stability and behavior of tungsten-titanium (W-Ti) barrier layers for Ag metallization. It is shown that Ag thin films are thermally stable up to 650 degrees centigrade with the presence of W-Ti under layers. The effect of a W-Ti layer on the {111} texture formation in Ag thin film is also evaluated in detail. Insertion of a thin W-Ti over layer on Ag thin films is investigated with respect to their thermal stability. This research also evaluates the diffusion of Ag into silicon dioxide and W-Ti barriers. This project shows that W-Ti is an effective barrier layer for silver metallization. Later, the study investigates the effect of Cu addition in silver metallization and its impact on electromigration resistance. It is shown that Cu addition enhances the electromigration lifetime for silver metallization.

  15. Schottky barriers based on metal nanoparticles deposited on InP epitaxial layers

    NASA Astrophysics Data System (ADS)

    Grym, Jan; Yatskiv, Roman

    2013-04-01

    Fabrication of high-quality Schottky barriers on InP epitaxial layers prepared by liquid-phase epitaxy from rare-earth treated melts is reported. The Schottky structures are based on metal nanoparticles and a graphite layer deposited from colloidal solutions onto epitaxial layers with varying carrier concentration. The structures have notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi-level pinning. Electrical characteristics of these diodes are shown to be extremely sensitive to the exposure of gas mixtures with small hydrogen content.

  16. Solvent-free synthesis of new metal phosphites with double-layered, pillared-layered, and framework structures

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Zhang, Wei; Shi, Zhonghua; Chen, Yaoqiang; Lin, Zhien

    2014-12-01

    Three new metal phosphites, formulated as (H3O)2·Mn2(HPO3)3 (1), Co(bpy) (H2O) (HPO3) (2), and H2tmpda·Zn3(HPO3)4 (3), have been synthesized under solvent-free conditions, where bpy = 4,4‧-bipyridine, and tmpda = N,N,N‧,N‧-tetramethyl-1,3-propanediamine. Compound 1 has a double-layered structure with a thickness of 5.68 Å. Compound 2 has an inorganic-organic hybrid framework with cobalt phosphite layers pillared by bpy ligands. Compound 3 has a three-dimensional open-framework structure containing 8-ring channels. The temperature dependence of the magnetic susceptibility of compounds 1 and 2 were also investigated.

  17. Laminated metal composite formed from low flow stress layers and high flow stress layers using flow constraining elements and method of making same

    SciTech Connect

    Syn, C.K.; Lesuer, D.R.

    1994-12-31

    This invention relates to a laminated metal composite, comprising alternating layers of low flow stress material and high flow stress material, and formed using flow constraining elements around each low flow stress layer; and a method of making same. A composite is a combination of at least two chemically distinct materials with a distinct interface separating the two materials. A metal matrix composite (MMC) is a composite material composed of a metal and a nonmetallic reinforcing agent such as silicon carbide (SiC) or graphite in continuous or discontinuous fiber, whisker, or discrete particulate form. A laminate is a material composed of several bonded layers. It is possible to have a laminate composed of multi-layers of a single type of material bonded to each other. However, such a laminate would not be considered to be a composite. The term {open_quotes}laminated metal composite{close_quotes} (LMC), as used herein, is intended to include a structural material composed of: (1) layers of metal or metal alloys interleaved with (2) a different metal, a metal alloy, or a metal matrix composite (MMC) containing strengthening agents.

  18. Characteristics of Spontaneous Emission of Polarized Atoms in Metal Dielectric Multiple Layer Structures

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Ming; Gu, Ben-Yuan; Zhou, Yun-Song

    2007-11-01

    The spontaneous emission (SE) progress of polarized atoms in a stratified structure of air-dielectric(D0)-metal(M)-dielectric(D1)-air can be controlled effectively by changing the thickness of the D1 layer and rotating the polarized direction of atoms. It is found that the normalized SE rate of atoms located inside the D0 layer crucially depends on the atomic position and the thickness of the D1 layer. When the atom is located near the D0-M interface, the normalized atomic SE rate as a function of the atomic position is abruptly onset for the thin D1 layer. However, with the increasing thickness of the D1 layer, the corresponding curve profile exhibits plateau and stays nearly unchanged. The substantial change of the SE rate stems from the excitation of the surface plasmon polaritons in metal-dielectric interface, and the feature crucially depends on the thickness of D1 layer. If atoms are positioned near the D0-air interface, the substantial variation of the normalized SE rate appears when rotating the polarized direction of atoms. These findings manifest that the atomic SE processes can be flexibly controlled by altering the thickness of the dielectric layer D1 or rotating the orientation of the polarization of atoms.

  19. Effect of electron collecting metal oxide layer in normal and inverted structure polymer solar cells

    NASA Astrophysics Data System (ADS)

    Ng, A.; Liu, X.; Sun, Y. C.; Djurišić, A. B.; Ng, A. M. C.; Chan, W. K.

    2013-12-01

    We performed a systematic study of the effect of electron collecting metal oxide layer on the performance of P3HT: PCBM solar cells. Zinc oxide (ZnO) or titanium dioxide (TiO2) buffer layers were prepared by either e-beam evaporation or solution processing method. We also compared the photovoltaic performance of inserting the buffer layer between indium tin oxide (ITO) and the polymer layer for the inverted structure (ITO/ ZnO or TiO2/P3HT:PCBM/V2O5/Au) as well as inserting the buffers layers between the polymer and the aluminum electrode for the conventional structure (ITO/V2O5/P3HT:PCBM/ZnO or TiO2/Al). The results are shown in detail.

  20. Effect of electron collecting metal oxide layer in normal and inverted structure polymer solar cells

    SciTech Connect

    Ng, A.; Liu, X.; Sun, Y. C.; Djurišić, A. B.; Ng, A. M. C.; Chan, W. K.

    2013-12-04

    We performed a systematic study of the effect of electron collecting metal oxide layer on the performance of P3HT: PCBM solar cells. Zinc oxide (ZnO) or titanium dioxide (TiO{sub 2}) buffer layers were prepared by either e-beam evaporation or solution processing method. We also compared the photovoltaic performance of inserting the buffer layer between indium tin oxide (ITO) and the polymer layer for the inverted structure (ITO/ ZnO or TiO{sub 2}/P3HT:PCBM/V{sub 2}O{sub 5}/Au) as well as inserting the buffers layers between the polymer and the aluminum electrode for the conventional structure (ITO/V{sub 2}O{sub 5}/P3HT:PCBM/ZnO or TiO{sub 2}/Al). The results are shown in detail.

  1. Alleviation of fermi-level pinning effect at metal/germanium interface by the insertion of graphene layers

    SciTech Connect

    Baek, Seung-heon Chris; Seo, Yu-Jin; Oh, Joong Gun; Albert Park, Min Gyu; Bong, Jae Hoon; Yoon, Seong Jun; Lee, Seok-Hee; Seo, Minsu; Park, Seung-young; Park, Byong-Guk

    2014-08-18

    In this paper, we report the alleviation of the Fermi-level pinning on metal/n-germanium (Ge) contact by the insertion of multiple layers of single-layer graphene (SLG) at the metal/n-Ge interface. A decrease in the Schottky barrier height with an increase in the number of inserted SLG layers was observed, which supports the contention that Fermi-level pinning at metal/n-Ge contact originates from the metal-induced gap states at the metal/n-Ge interface. The modulation of Schottky barrier height by varying the number of inserted SLG layers (m) can bring about the use of Ge as the next-generation complementary metal-oxide-semiconductor material. Furthermore, the inserted SLG layers can be used as the tunnel barrier for spin injection into Ge substrate for spin-based transistors.

  2. Metallic conduction induced by direct anion site doping in layered SnSe2

    PubMed Central

    Kim, Sang Il; Hwang, Sungwoo; Kim, Se Yun; Lee, Woo-Jin; Jung, Doh Won; Moon, Kyoung-Seok; Park, Hee Jung; Cho, Young-Jin; Cho, Yong-Hee; Kim, Jung-Hwa; Yun, Dong-Jin; Lee, Kyu Hyoung; Han, In-taek; Lee, Kimoon; Sohn, Yoonchul

    2016-01-01

    The emergence of metallic conduction in layered dichalcogenide semiconductor materials by chemical doping is one of key issues for two-dimensional (2D) materials engineering. At present, doping methods for layered dichalcogenide materials have been limited to an ion intercalation between layer units or electrostatic carrier doping by electrical bias owing to the absence of appropriate substitutional dopant for increasing the carrier concentration. Here, we report the occurrence of metallic conduction in the layered dichalcogenide of SnSe2 by the direct Se-site doping with Cl as a shallow electron donor. The total carrier concentration up to ~1020 cm−3 is achieved by Cl substitutional doping, resulting in the improved conductivity value of ~170 S·cm−1 from ~1.7 S·cm−1 for non-doped SnSe2. When the carrier concentration exceeds ~1019 cm−3, the conduction mechanism is changed from hopping to degenerate conduction, exhibiting metal-insulator transition behavior. Detailed band structure calculation reveals that the hybridized s-p orbital from Sn 5s and Se 4p states is responsible for the degenerate metallic conduction in electron-doped SnSe2. PMID:26792630

  3. Elasto-plastic analysis of interface layers for fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Doghri, I.; Leckie, F. A.

    1991-01-01

    The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal matrix composites reinforced with ceramic fibers induces high thermal stresses in the matrix. Elasto-plastic analyses - with different degrees of simplification and modelization - show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress in the matrix substantially.

  4. Electric-field noise above a thin dielectric layer on metal electrodes

    NASA Astrophysics Data System (ADS)

    Kumph, Muir; Henkel, Carsten; Rabl, Peter; Brownnutt, Michael; Blatt, Rainer

    2016-02-01

    The electric-field noise above a layered structure composed of a planar metal electrode covered by a thin dielectric is evaluated and it is found that the dielectric film considerably increases the noise level, in proportion to its thickness. Importantly, even a thin (mono) layer of a low-loss dielectric can enhance the noise level by several orders of magnitude compared to the noise above a bare metal. Close to this layered surface, the power spectral density of the electric field varies with the inverse fourth power of the distance to the surface, rather than with the inverse square, as it would above a bare metal surface. Furthermore, compared to a clean metal, where the noise spectrum does not vary with frequency (in the radio-wave and microwave bands), the dielectric layer can generate electric-field noise which scales in inverse proportion to the frequency. For various realistic scenarios, the noise levels predicted from this model are comparable to those observed in trapped-ion experiments. Thus, these findings are of particular importance for the understanding and mitigation of unwanted heating and decoherence in miniaturized ion traps.

  5. Metallic conduction induced by direct anion site doping in layered SnSe2

    NASA Astrophysics Data System (ADS)

    Kim, Sang Il; Hwang, Sungwoo; Kim, Se Yun; Lee, Woo-Jin; Jung, Doh Won; Moon, Kyoung-Seok; Park, Hee Jung; Cho, Young-Jin; Cho, Yong-Hee; Kim, Jung-Hwa; Yun, Dong-Jin; Lee, Kyu Hyoung; Han, In-Taek; Lee, Kimoon; Sohn, Yoonchul

    2016-01-01

    The emergence of metallic conduction in layered dichalcogenide semiconductor materials by chemical doping is one of key issues for two-dimensional (2D) materials engineering. At present, doping methods for layered dichalcogenide materials have been limited to an ion intercalation between layer units or electrostatic carrier doping by electrical bias owing to the absence of appropriate substitutional dopant for increasing the carrier concentration. Here, we report the occurrence of metallic conduction in the layered dichalcogenide of SnSe2 by the direct Se-site doping with Cl as a shallow electron donor. The total carrier concentration up to ~1020 cm-3 is achieved by Cl substitutional doping, resulting in the improved conductivity value of ~170 S·cm-1 from ~1.7 S·cm-1 for non-doped SnSe2. When the carrier concentration exceeds ~1019 cm-3, the conduction mechanism is changed from hopping to degenerate conduction, exhibiting metal-insulator transition behavior. Detailed band structure calculation reveals that the hybridized s-p orbital from Sn 5s and Se 4p states is responsible for the degenerate metallic conduction in electron-doped SnSe2.

  6. A fluorescent, photochromic and thermochromic trifunctional material based on a layered metal-viologen complex.

    PubMed

    Wan, Fang; Qiu, Li-Xia; Zhou, Liang-Liang; Sun, Yan-Qiong; You, Yi

    2015-11-14

    The azide anion as an energy acceptor and an electron donor has been introduced into a metal-viologen compound to form a 2D layered viologen-based trifunctional material, which exhibits the rare discolored function of reversible photochromism and thermochromism. Interestingly, its fluorescence can be switched by visible light irradiation and heating in air. PMID:26445888

  7. Metallic conduction induced by direct anion site doping in layered SnSe2.

    PubMed

    Kim, Sang Il; Hwang, Sungwoo; Kim, Se Yun; Lee, Woo-Jin; Jung, Doh Won; Moon, Kyoung-Seok; Park, Hee Jung; Cho, Young-Jin; Cho, Yong-Hee; Kim, Jung-Hwa; Yun, Dong-Jin; Lee, Kyu Hyoung; Han, In-taek; Lee, Kimoon; Sohn, Yoonchul

    2016-01-01

    The emergence of metallic conduction in layered dichalcogenide semiconductor materials by chemical doping is one of key issues for two-dimensional (2D) materials engineering. At present, doping methods for layered dichalcogenide materials have been limited to an ion intercalation between layer units or electrostatic carrier doping by electrical bias owing to the absence of appropriate substitutional dopant for increasing the carrier concentration. Here, we report the occurrence of metallic conduction in the layered dichalcogenide of SnSe2 by the direct Se-site doping with Cl as a shallow electron donor. The total carrier concentration up to ~10(20) cm(-3) is achieved by Cl substitutional doping, resulting in the improved conductivity value of ~170 S · cm(-1) from ~1.7 S · cm(-1) for non-doped SnSe2. When the carrier concentration exceeds ~10(19) cm(-3), the conduction mechanism is changed from hopping to degenerate conduction, exhibiting metal-insulator transition behavior. Detailed band structure calculation reveals that the hybridized s-p orbital from Sn 5s and Se 4p states is responsible for the degenerate metallic conduction in electron-doped SnSe2. PMID:26792630

  8. Sol-gel deposition of buffer layers on biaxially textured metal substances

    DOEpatents

    Shoup, Shara S.; Paranthamam, Mariappan; Beach, David B.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    A method is disclosed for forming a biaxially textured buffer layer on a biaxially oriented metal substrate by using a sol-gel coating technique followed by pyrolyzing/annealing in a reducing atmosphere. This method is advantageous for providing substrates for depositing electronically active materials thereon.

  9. Metal to Insulator Quantum-Phase Transition in Few-Layered ReS₂.

    PubMed

    Pradhan, Nihar R; McCreary, Amber; Rhodes, Daniel; Lu, Zhengguang; Feng, Simin; Manousakis, Efstratios; Smirnov, Dmitry; Namburu, Raju; Dubey, Madan; Walker, Angela R Hight; Terrones, Humberto; Terrones, Mauricio; Dobrosavljevic, Vladimir; Balicas, Luis

    2015-12-01

    In ReS2, a layer-independent direct band gap of 1.5 eV implies a potential for its use in optoelectronic applications. ReS2 crystallizes in the 1T'-structure, which leads to anisotropic physical properties and whose concomitant electronic structure might host a nontrivial topology. Here, we report an overall evaluation of the anisotropic Raman response and the transport properties of few-layered ReS2 field-effect transistors. We find that ReS2 exfoliated on SiO2 behaves as an n-type semiconductor with an intrinsic carrier mobility surpassing μ(i) ∼ 30 cm(2)/(V s) at T = 300 K, which increases up to ∼350 cm(2)/(V s) at 2 K. Semiconducting behavior is observed at low electron densities n, but at high values of n the resistivity decreases by a factor of >7 upon cooling to 2 K and displays a metallic T(2)-dependence. This suggests that the band structure of 1T'-ReS2 is quite susceptible to an electric field applied perpendicularly to the layers. The electric-field induced metallic state observed in transition metal dichalcogenides was recently claimed to result from a percolation type of transition. Instead, through a scaling analysis of the conductivity as a function of T and n, we find that the metallic state of ReS2 results from a second-order metal-to-insulator transition driven by electronic correlations. This gate-induced metallic state offers an alternative to phase engineering for producing ohmic contacts and metallic interconnects in devices based on transition metal dichalcogenides. PMID:26599563

  10. Large area nanoscale metal meshes for use as transparent conductive layers

    NASA Astrophysics Data System (ADS)

    Jin, Yuanhao; Li, Qunqing; Chen, Mo; Li, Guanhong; Zhao, Yudan; Xiao, Xiaoyang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2015-10-01

    We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple drawing process of the SACNT networks prepared and a common deposition process. This approach should be easy to extend to various research fields and has broad prospects in commercial applications.We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple

  11. Growth mechanism of pulsed laser fabricated few-layer MoS₂ on metal substrates.

    PubMed

    Loh, Tamie A J; Chua, Daniel H C

    2014-09-24

    Pulsed laser deposition (PLD) on metal substrates has recently been discovered to present an alternative method for producing highly crystalline few-layer MoS2. However, not every metal behaves in the same manner during film growth, and hence, it is crucial that the ability of various metals to produce crystalline MoS2 be thoroughly investigated. In this work, MoS2 was deposited on metal substrates, Al, Ag, Ni, and Cu, using a pulsed laser. Highly crystalline few-layer MoS2 was successfully grown on Ag, but is absent in Al, Ni, and Cu under specific growth conditions. This discrepancy was attributed to either excessively strong or insufficient adlayer-substrate interactions. In the case of Al, the effects of the strong interface interactions can be offset by increasing the amount of source atoms supplied, thereby producing semicrystalline few-layer MoS2. The results show that despite PLD being a physical vapor deposition technique, both physical and chemical processes play an important role in MoS2 growth on metal substrates. PMID:25203278

  12. Heat-resistant organic molecular layer as a joint interface for metal reduction on plastics surfaces

    NASA Astrophysics Data System (ADS)

    Sang, Jing; Aisawa, Sumio; Hirahara, Hidetoshi; Kudo, Takahiro; Mori, Kunio

    2016-04-01

    Heat-resistant organic molecular layers have been fabricated by triazine-based silane coupling agent for metal reduction on plastic surfaces using adsorption method. These molecular layers were used as an interfacial layer between polyamide (PA6) and metal solution to reduce Ag+ ion to Ag0. The interfacial behaviors of triazine molecular layer at the interfaces between PA6 and Ag solution were investigated using quartz crystal microbalance (QCM). The kinetics of molecular adsorption on PA6 was investigated by using triazine-based silane coupling agent solutions at different pH and concentration. X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), and local nano thermal analysis were employed to characterize the surfaces and interfaces. The nano thermal analysis results show that molecular layers of triazine-based silane coupling agent greatly improved heat resistance of PA6 resin from 170 °C up to 230 °C. This research developed an in-depth insight for molecular behaviors of triazine-based silane coupling agent at the PA6 and Ag solution interfaces and should be of significant value for interfacial research between plastics and metal solution in plating industry.

  13. Thermal properties of a pyroelectric-ceramic infrared detector with metallic intermediate layer

    NASA Astrophysics Data System (ADS)

    Lee, Moon H.; Bae, Seong H.; Bhalla, Amar S.

    1998-06-01

    Infrared thermal detectors were prepared with pyroelectric PSN-PT-PZ (1/47/52) ceramics, where a signal electrode had a structure Au/metallic buffer/Pb(Zr,Ti)O3 ceramic. The effect of a metallic buffer layer on the voltage responsivity was investigated with a response to a step signal, made by a dynamic pyroelectric measurement. A pyroelectric ceramic wafer was prepared by a mixed-oxide technique. The Au layer (thickness 50 nm) and the metallic buffers (thickness 0 to 20 nm) of Cr, NiCr (80:20), and Ti were prepared by dc magnetron sputtering. In order to improve the light absorptivity, Au black was coated on the Au signal electrode by thermal evaporation. A detector without a buffer layer showed a noisy and fluctuating output signal. Among the three kinds of buffer materials, NiCr (80:20) and Ti adhered well with ceramics and showed good electrical and thermal contact, whereas Cr resulted in bad contacts. Considering the output voltage and thermal properties, the optimum thickness of the buffer layer was about 15 to 20 nm, and sensors with a Ti buffer 15 to 20 nm in thickness showed good detectivity. Thus, the stability and reliability of the infrared thermal sensors could be improved by using an appropriate buffer layer.

  14. Angle resolved XPS of monomolecular layer of 5-chlorobenzotriazole on oxidized metallic surface

    NASA Astrophysics Data System (ADS)

    Kazansky, L. P.; Selyaninov, I. A.; Kuznetsov, Yu. I.

    2012-10-01

    Angle resolved XPS is used to study adsorption of 5-chlorobenzotriazole (5-chloroBTAH) on surfaces of the oxidized metals: mild steel, copper and zinc from borate buffer solution (pH 7.4). It is shown that for the metals studied the 5-chloroBTA anions, when adsorbed, form a monomolecular layer whose thickness is ∼6 Å comparable with the size of BTA. As XPS evidences adsorption proceeds with deprotonation of 5-chloroBTAH and formation of the coordination bonds between the lone pair of nitrogens and cation of a metal. Measuring XPS at two different angles unequivocally points out almost vertical arrangement of the anions toward the sample surface, when chlorine atoms form outmost virtual layer.

  15. Studies of proximity-effect and tunneling in YBCO/metal layered films

    NASA Astrophysics Data System (ADS)

    Greene, L. H.; Barner, J. B.; Feldmann, W. L.; Farrow, L. A.; Miceli, P. F.; Ramesh, R.; Wilkens, B. J.; Bagley, B. G.; Tarascon, J. M.; Wernick, J. H.; Giroud, M.; Rowell, J. M.

    1989-12-01

    The short coherence length of the high-T c superconductors, coupled with their tendency to form non-superconducting surface layers, accounts for the difficulty in achieving good tunnel junctions. A proximity layer of a longer coherence length normal metal (N) is expected to “draw out” Cooper pairs. Our goal is to fabricate reproducible, planar tunnel junctions of SNIS layered structures for proximity tunneling spectroscopy. Such structures of YBCO/N/I/Pb and SNS structures of YBCO/N/Pb indicate that the normal metal produces a low resistance contact to the YBCO surface with a supercurrent observed in the SNS. The insulating barrier in the SNIS is reproducible, insulating and continuous: A sharp Pb gap and phonons from the counter-electrode are routinely observed.

  16. First-principles study of the noble metal-doped BN layer

    SciTech Connect

    Zhou, Yungang; Yang, Ping; Sun, Xin; Wang, Zhiguo; Zu, Xiaotao T.; Gao, Fei

    2011-04-18

    Intriguing electronic and magnetic properties of BN layer with noble metal (Pd, Pt, Ag and Au) doping are obtained by first-principles calculations. Adsorbed Pd (or Pt) reduces the band gap of BN sheet owing to the induction of impurity states. The unpaired electrons in the Ag (or Au)-adsorbed and the Pd (or Pt)-substituted BN layers are polarized, and thus exhibit a magnetic moment of 1.0 µB, leading to these BN configurations to be magnetic semiconductors. The half-metallic feature of the Ag-substituted BN layer, along with the delocalization of spin states, renders this configuration an excellent spin filter material. Thus, these findings offer a unique opportunity for developing BN-based nanoscale devices.

  17. Isolation and characterization of nanosheets containing few layers of the Aurivillius family of oxides and metal-organic compounds

    SciTech Connect

    Sreedhara, M.B.; Prasad, B.E.; Moirangthem, Monali; Murugavel, R.; Rao, C.N.R.

    2015-04-15

    Nanosheets containing few-layers of ferroelectric Aurivillius family of oxides, Bi{sub 2}A{sub n−1}B{sub n}O{sub 3n+3} (where A=Bi{sup 3+}, Ba{sup 2+} etc. and B=Ti{sup 4+}, Fe{sup 3+} etc.) with n=3, 4, 5, 6 and 7 have been prepared by reaction with n-butyllithium, followed by exfoliation in water. The few-layer samples have been characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and other techniques. The few-layer species have a thickness corresponding to a fraction of the c-parameter along which axis the perovskite layers are stacked. Magnetization measurements have been carried out on the few-layer samples containing iron. Few-layer species of a few layered metal-organic compounds have been obtained by ultrasonication and characterized by Tyndall cones, atomic force microscopy, optical spectroscopy and magnetic measurements. Significant changes in the optical spectra and magnetic properties are found in the few-layer species compared to the bulk samples. Few-layer species of the Aurivillius family of oxides may find uses as thin layer dielectrics in photovoltaics and other applications. - Graphical abstract: Exfoliation of the layered Aurivillius oxides into few-layer nanosheets by chemical Li intercalation using n-BuLi followed by reaction in water. Exfoliation of the layered metal-organic compounds into few-layer nanosheets by ultrasonication. - Highlights: • Few-layer nanosheets of Aurivillius family of oxides with perovskite layers have been generated by lithium intercalation. • Few-layer nanosheets of few layered metal-organic compounds have been generated by ultrasonication. • Few-layer nanosheets of the Aurivillius oxides have been characterized by AFM, TEM and optical spectroscopy. • Aurivillius oxides containing Fe show layer dependent magnetic properties. • Exfoliated few-layer metal-organic compounds show changes in spectroscopic and magnetic properties compared with bulk materials.

  18. Engineering slow light and mode crossover in a fractal-kagome waveguide network

    NASA Astrophysics Data System (ADS)

    Nandy, Atanu; Chakrabarti, Arunava

    2016-01-01

    We present an analytically exact scheme of unraveling a multitude of flat, dispersionless photonic bands in a kagome waveguide strip where each elementary plaquette hosts a deterministic fractal geometry of arbitrary generation. The number of nondispersive eigenmodes grows as higher and higher order fractal geometry is embedded in the kagome motif. Such eigenmodes are found to be localized with finite support in the kagome strip and exhibit a hierarchy of localization areas. The onset of localization can, in principle, be delayed in space by an appropriate choice of frequency of the incident wave. The length scale at which the onset of localization for each mode occurs can be tuned at will as prescribed here using a real-space renormalization method. Conventional methods of extracting the nondispersive modes in such geometrically frustrated lattices fail as a non-translationally-invariant fractal decorates the unit cells in the transverse direction. The scheme presented here circumvents this difficulty, and thus may inspire experimentalists to design similar fractal-incorporated kagome or Lieb classes of lattices to observe a multifractal distribution of flat photonic bands.

  19. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  20. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  1. Application of Al-Nb alloy film to metal capping layer on Cu

    NASA Astrophysics Data System (ADS)

    Takeyama, Mayumi B.; Noya, Atsushi

    2016-02-01

    An Al-Nb alloy film with the Al72Nb28 composition is applied as a candidate metal capping layer on Cu interconnects. In the Al72Nb28/Cu/SiO2/Si model system, the preferential oxidation of Al forming a thin surface Al2O3 layer occurs owing to oxidation in air for 1 h at temperatures up to ˜300 °C, resulting in the protection of the layers underneath from further oxidation, although a slight Cu intermixing into Al-Nb occurs. With increasing oxidation temperature up to 500 °C, the surface Al2O3 layer still grows by the preferential oxidation of Al and rejects Cu atoms from the surface oxidized layer. Although Nb atoms are left behind in the surface oxidized layer, they are in a metallic state owing to the high solubility of oxygen before forming an oxide. The extremely low solubility of Nb in Cu also protects Cu without excess intermixing. A good passivation characteristic of the Al72Nb28 alloy film on Cu is demonstrated.

  2. Impact of thin metal layer on the optical and electrical properties of indium-doped-tin oxide and aluminum-doped-zinc oxide layers

    NASA Astrophysics Data System (ADS)

    Kumar, Melvin David; Park, Yun Chang; Kim, Joondong

    2015-06-01

    The distinguished transparent conductive oxide (TCO) layers like indium-doped-tin oxide (ITO) and aluminum-doped-zinc oxide (AZO) layers were prepared in different combinations with and without thin Ni metal layer. The optical and electrical properties of prepared samples were analyzed and compared with the objective to understand the role and influence of the Ni layer in each TCO combination. The highest transmittance value of 91.49% was exhibited by prepared AZO layers. Even though if the transmittance of Ni inserting TCO layers was marginally reduced than that of the ordinary TCO samples, they exhibited balanced optical properties with enhanced electrical properties. Carrier concentration of indium doped tin-oxide and aluminum doped zinc oxide (ITO/AZO) bilayer sample is increased more than double the times when the Ni layer was inserted between ITO and AZO. Thin layer of Ni in between TCO layers reduced sheet resistance and offered substantial transmittance, so that the figure of merit (FOM) value of Ni embedding TCOs was greater than that of TCOs without Ni layer. The ITO/Ni/AZO combination provided optimum results in all the electrical properties. As compared to other TCO/metal combinations, the overall performance of ITO/Ni/AZO tri-layer combination was appreciable. These results show that the optical and electrical properties of TCO layers could be enhanced by inserting a Ni layer with optimum thickness in between them.

  3. Role of metallic substrate on the plasmon modes in double-layer graphene structures

    NASA Astrophysics Data System (ADS)

    Cruz, G. Gonzalez de la

    2015-07-01

    Novel heterostructures combining different layered materials offer new opportunities for applications and fundamental studies of collective excitations driven by interlayer Coulomb interactions. In this work, we have investigated the influence of the metallic-like substrate on the plasmon spectrum of a double layer graphene system and a structure consisting of conventional two-dimensional electron gas (2DEG) immersed in a semiconductor quantum well and a graphene sheet with an interlayer separation of d. Long-range Coulomb interactions between substrate and graphene layered systems lead a new set of spectrum plasmons. At long wavelengths (q→0) the acoustic modes (ω~q) depend, besides on the carrier density in each layer, on the distance between the first carrier layer and the substrate in both structures. Furthermore, in the relativistic/nonrelativistic layered structure an undamped acoustic mode emerges for a certain interlayer critical distance dc. On the other hand, the optical plasmon modes emerging from the coupling of the double-layer systems and the substrate, both start at finite frequency at q=0 in contrast to the collective excitation spectrum ω~q1/2 reported in the literature for double-layer graphene structures.

  4. Highly sensitive multi-layer pressure sensor with an active nanostructured layer of an organic molecular metal

    NASA Astrophysics Data System (ADS)

    Laukhin, V.; Lebedev, V.; Laukhina, E.; Rovira, C.; Veciana, J.

    2016-03-01

    This work addresses to the modern technologies that need to be instrumented with lightweight highly sensitive pressure sensors. The paper presents the development of a new plain flexible thin pressure sensor using a nanostructured layer of the highly sensitive organic piezoresistive metal β-(BEDT-TTF)2I3 as an active component; BEDT-TTF=bis (ethylenedithio)tetrathiafulvalene. The original construction approach permits one to operate the developed sensor on the principle of electrical resistance variations when its piezoresistive layer is elongated under a pressure increase. The pressure sensing element and a set of gold electrodes were integrated into one compact multi-layer design. The construction was optimized to enable one generic design for pressure ranges from 1 to 400 bar. The pressure tests showed that the sensor is able to control a small pressure change as a well definite electrical signal. So the developed type of the sensors is very attractive as a new generation of compact, lightweight, low-cost sensors that might monitor pressure with a good level of measurement accuracy.

  5. Transmission enhancement based on strong interference in metal-semiconductor layered film for energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Du, Kaikai; Mao, Kening; Fang, Xu; Zhao, Ding; Ye, Hui; Qiu, Min

    2016-07-01

    A fundamental strategy to enhance optical transmission through a continuous metallic film based on strong interference dominated by interface phase shift is developed. In a metallic film coated with a thin semiconductor film, both transmission and absorption are simultaneously enhanced as a result of dramatically reduced reflection. For a 50-nm-thick Ag film, experimental transmission enhancement factors of 4.5 and 9.5 are realized by exploiting Ag/Si non-symmetric and Si/Ag/Si symmetric geometries, respectively. These planar layered films for transmission enhancement feature ultrathin thickness, broadband and wide-angle operation, and reduced resistance. Considering one of their potential applications as transparent metal electrodes in solar cells, a calculated 182% enhancement in the total transmission efficiency relative to a single metallic film is expected. This strategy relies on no patterned nanostructures and thereby may power up a wide spectrum of energy-harvesting applications such as thin-film photovoltaics and surface photocatalysis.

  6. Exchange coupling in metallic multilayers with a top FeRh layer

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Tanikawa, K.; Hirayama, J.; Kanashima, T.; Taniyama, T.; Hamaya, K.

    2016-05-01

    We study magnetic properties of metallic multilayers with FeRh/ferromagnet interfaces grown by low-temperature molecular beam epitaxy. Room-temperature coercivity of the ferromagnetic layers is significantly enhanced after the growth of FeRh, proving the existence of the exchange coupling between the antiferromagnetic FeRh layer and the ferromagnetic layer. However, exchange bias is not clearly observed probably due to the presence of disordered structures, which result from the lattice strain at the FeRh/ferromagnet interfaces due to the lattice mismatch. We infer that the lattice matched interface between FeRh and ferromagnetic layers is a key parameter for controlling magnetic switching fields in such multilayer systems.

  7. Lidar observations of Ca and K metallic layers from Arecibo and comparison with micrometeor sporadic activity

    NASA Astrophysics Data System (ADS)

    Raizada, S.; Tepley, C. A.; Janches, D.; Friedman, J. S.; Zhou, Q.; Mathews, J. D.

    2004-04-01

    We report on the first simultaneous observations of Ca and K metallic layers using the low-latitude lidar systems located at the Arecibo Observatory in Puerto Rico (18.35°N, 66.75°W). We often observe sudden increases in both Ca and K densities during early morning hours on nights where meteor showers take place. During these periods, the Ca/K abundance ratio varied between 2 and 3. On occasion, differences were observed in Ca and K layers, which relate to differences in the chemistry of the two metals. It is known that metallic layers display distinct seasonal variations, but chemistry alone cannot explain the measured differences. Thus, we examined whether or not the seasonal distribution of micrometeoroids, derived from meteor observations using the Arecibo 430MHz radar, can account for the dissimilar metallic observations. We found that the deposition flux of micrometeoroids, with particle sizes ranging between 0.5 and 100μm, increased by a factor of two during the summer as compared with the winter, suggesting a seasonal variation of their sporadic activity. In addition, our data support the idea that differential ablation leads to a depletion of Ca atoms in the mesosphere.

  8. Predictive double-layer modeling of metal sorption in mine-drainage systems

    SciTech Connect

    Smith, K.S.; Plumlee, G.S.; Ranville, J.F.; Macalady, D.L.

    1996-10-01

    Previous comparison of predictive double-layer modeling and empirically derived metal-partitioning data has validated the use of the double-layer model to predict metal sorption reactions in iron-rich mine-drainage systems. The double-layer model subsequently has been used to model data collected from several mine-drainage sites in Colorado with diverse geochemistry and geology. This work demonstrates that metal partitioning between dissolved and sediment phases can be predictively modeled simply by knowing the water chemistry and the amount of suspended iron-rich particulates present in the system. Sorption on such iron-rich suspended sediments appears to control metal and arsenic partitioning between dissolved and sediment phases, with sorption on bed sediment playing a limited role. At pH > 5, Pb and As are largely sorbed by iron-rich suspended sediments and Cu is partially sorbed; Zn, Cd, and Ni usually remain dissolved throughout the pH range of 3 to 8.

  9. Exclusion of metal oxide by an RF sputtered Ti layer in flexible perovskite solar cells: energetic interface between a Ti layer and an organic charge transporting layer.

    PubMed

    Ameen, Sadia; Akhtar, M Shaheer; Seo, Hyung-Kee; Nazeeruddin, Mohammad Khaja; Shin, Hyung-Shik

    2015-04-14

    In this work, the effects of a titanium (Ti) layer on the charge transport and recombination rates of flexible perovskite solar cells were studied. Ti as an efficient barrier layer was deposited directly on PET-ITO flexible substrates through RF magnetic sputtering using a Ti-source and a pressure of ∼5 mTorr. A Ti coated PET-ITO was used for the fabrication of a flexible perovskite solar cell without using any metal oxide layer. The fabricated flexible perovskite solar cell was composed of a PET-ITO/Ti/perovskite (CH3NH3PbI3)/organic hole transport layer of 2,2',7,7'-tetrakis [N,N'-di-p-methoxyphenylamine]-9,9'-spirobifluorene (spiro-OMeTAD)-Li-TFSI/Ag. A high conversion efficiency of ∼8.39% along with a high short circuit current (JSC) of ∼15.24 mA cm(-2), an open circuit voltage (VOC) of ∼0.830 V and a high fill factor (FF) of ∼0.66 was accomplished by the fabricated flexible perovskite solar cell under a light illumination of ∼100 mW cm(-2) (1.5 AM). Intensity-modulated photocurrent (IMPS)/photovoltage spectroscopy (IMVS) studies demonstrated that the fabricated flexible perovskite solar cell considerably reduced the recombination rate. PMID:25747794

  10. Engineering damping in insulating magnet-metal bilayers using ultrathin spacer layers

    NASA Astrophysics Data System (ADS)

    Aradhya, Sriharsha V.; Jermain, Colin L.; Paik, Hanjong; Heron, John T.; Schlom, Darrell G.; Ralph, Daniel C.; Buhrman, Robert A.

    2015-03-01

    Insulating magnetic materials, particularly yttrium iron garnet (YIG), are of significant interest for fundamental research as well as technological applications. Thus far copper spacer layers of ~10 nm - 1 μm thickness sandwiched between YIG and heavy metal films have been shown to modulate the damping of the magnetic layer either higher or lower. We report on the effect of ultrathin nonmagnetic spacer layers on the damping of YIG with different heavy metal overlayers. We start with YIG films grown by oxide molecular beam epitaxy with thicknesses below 20 nm and Gilbert damping as low as 0.0005. We observe that a spacer layer can increase the damping by 50% in YIG/spacer/Ta samples compared to YIG/Ta, and the increase can be as large 500% for YIG/spacer/Pt compared to YIG/Pt. These observations suggest a significant increase in the effective spin mixing conductance at the YIG-heavy metal interface that might be used to improve the efficiency of the spin torque produced by the spin Hall effect.