Science.gov

Sample records for metallic single-wall carbon

  1. Metal-doped single-walled carbon nanotubes and production thereof

    DOEpatents

    Dillon, Anne C.; Heben, Michael J.; Gennett, Thomas; Parilla, Philip A.

    2007-01-09

    Metal-doped single-walled carbon nanotubes and production thereof. The metal-doped single-walled carbon nanotubes may be produced according to one embodiment of the invention by combining single-walled carbon nanotube precursor material and metal in a solution, and mixing the solution to incorporate at least a portion of the metal with the single-walled carbon nanotube precursor material. Other embodiments may comprise sputter deposition, evaporation, and other mixing techniques.

  2. Random telegraph noise in metallic single-walled carbon nanotubes

    SciTech Connect

    Chung, Hyun-Jong; Woo Uhm, Tae; Won Kim, Sung; Gyu You, Young; Wook Lee, Sang; Ho Jhang, Sung; Campbell, Eleanor E. B.; Woo Park, Yung

    2014-05-12

    We have investigated random telegraph noise (RTN) observed in individual metallic carbon nanotubes (CNTs). Mean lifetimes in high- and low-current states, τ{sub high} and τ{sub low}, have been studied as a function of bias-voltage and gate-voltage as well as temperature. By analyzing the statistics and features of the RTN, we suggest that this noise is due to the random transition of defects between two metastable states, activated by inelastic scattering with conduction electrons. Our results indicate an important role of defect motions in the 1/f noise in CNTs.

  3. Process for separating metallic from semiconducting single-walled carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Sun, Ya-Ping (Inventor)

    2008-01-01

    A method for separating semiconducting single-walled carbon nanotubes from metallic single-walled carbon nanotubes is disclosed. The method utilizes separation agents that preferentially associate with semiconducting nanotubes due to the electrical nature of the nanotubes. The separation agents are those that have a planar orientation, .pi.-electrons available for association with the surface of the nanotubes, and also include a soluble portion of the molecule. Following preferential association of the separation agent with the semiconducting nanotubes, the agent/nanotubes complex is soluble and can be solubilized with the solution enriched in semiconducting nanotubes while the residual solid is enriched in metallic nanotubes.

  4. Growth of metal-catalyst-free nitrogen-doped metallic single-wall carbon nanotubes.

    PubMed

    Li, Jin-Cheng; Hou, Peng-Xiang; Zhang, Lili; Liu, Chang; Cheng, Hui-Ming

    2014-10-21

    Nitrogen-doped (N-doped) single-wall carbon nanotubes (SWCNTs) were synthesized by chemical vapor deposition using SiOx nanoparticles as a catalyst and ethylenediamine as the source of both carbon and nitrogen. The N-doped SWCNTs have a mean diameter of 1.1 nm and a narrow diameter range, with 92% of them having diameters from 0.7 to 1.4 nm. Multi-wavelength laser Raman spectra and temperature-dependent electrical resistance indicate that the SWCNT sample is enriched with metallic nanotubes. These N-doped SWCNTs showed excellent electrocatalytic activity for the oxygen reduction reaction and highly selective and sensitive sensing ability for dopamine detection. PMID:25189467

  5. Growth of metal-catalyst-free nitrogen-doped metallic single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Jin-Cheng; Hou, Peng-Xiang; Zhang, Lili; Liu, Chang; Cheng, Hui-Ming

    2014-09-01

    Nitrogen-doped (N-doped) single-wall carbon nanotubes (SWCNTs) were synthesized by chemical vapor deposition using SiOx nanoparticles as a catalyst and ethylenediamine as the source of both carbon and nitrogen. The N-doped SWCNTs have a mean diameter of 1.1 nm and a narrow diameter range, with 92% of them having diameters from 0.7 to 1.4 nm. Multi-wavelength laser Raman spectra and temperature-dependent electrical resistance indicate that the SWCNT sample is enriched with metallic nanotubes. These N-doped SWCNTs showed excellent electrocatalytic activity for the oxygen reduction reaction and highly selective and sensitive sensing ability for dopamine detection.Nitrogen-doped (N-doped) single-wall carbon nanotubes (SWCNTs) were synthesized by chemical vapor deposition using SiOx nanoparticles as a catalyst and ethylenediamine as the source of both carbon and nitrogen. The N-doped SWCNTs have a mean diameter of 1.1 nm and a narrow diameter range, with 92% of them having diameters from 0.7 to 1.4 nm. Multi-wavelength laser Raman spectra and temperature-dependent electrical resistance indicate that the SWCNT sample is enriched with metallic nanotubes. These N-doped SWCNTs showed excellent electrocatalytic activity for the oxygen reduction reaction and highly selective and sensitive sensing ability for dopamine detection. Electronic supplementary information (ESI) available: Additional information including Raman spectra, ORR polarization curves, CV curves, etc. See DOI: 10.1039/c4nr03172e

  6. Transition of single-walled carbon nanotubes from metallic to semiconducting in field-effect transistors by hydrogen plasma treatment.

    PubMed

    Zheng, Gang; Li, Qunqing; Jiang, Kaili; Zhang, Xiaobo; Chen, Jia; Ren, Zheng; Fan, Shoushan

    2007-06-01

    We report hydrogen plasma treatment results on converting the metallic single-walled carbon nanotubes to semiconducting single-walled carbon nanotubes. We found that the as-grown single-walled carbon nanotubes (SWNTs) can be sorted as three groups which behave as metallic, as-metallic, and semiconducting SWNTs. These three groups have different changes under hydrogen plasma treatment and successive annealing process. The SWNTs can be easily hydrogenated in the hydrogen plasma environment and the as-metallic SWNTs can be transformed to semiconducting SWNTs. The successive annealing process can break the C-H bond, so the conversion is reversible. PMID:17508771

  7. Endofullerenes with metal atoms inside as precursors of nuclei of single-walled carbon nanotubes.

    PubMed

    Krestinin, A V; Kislov, M B; Ryabenko, A G

    2004-04-01

    Thermodynamic estimations have been made which show that amorphous carbon cannot be the source of single-walled carbon nanotube growth during carbon/metal vapor condensation. Thus the source of carbon material for nanotube growth seems to be small carbon clusters into gas phase or clusters in the adsorbed state on the nanotube surface. Kinetic analysis of carbon/metal vapor condensation in the arc process was performed and showed that metal vapor becomes supersaturated at temperatures that are close to the temperature of the highest rate of fullerene shell formation. A new model of the nucleation of single-walled carbon nanotubes is proposed. In the model an endometallofullerene serves as the precursor of a nanotube nucleus, and the nucleus itself forms as an adduct arising after metal atoms attach to the endofullerene shell. The relative efficiencies of La/Ni, Gd/Ni, Ce/Ni, and Pr/Ni catalysts, in comparison with Y/Ni catalyst, were measured, and their high efficiency in buckytube formation was demonstrated. This fact was explained by the double action of a metal catalyst in buckytube nucleus formation. First, metal takes part in the formation of endometallofullerenes. Second, the metal atoms attach to the endofullerene shell to transform an endofullerene into a nanotube nucleus. The high performance of bimetallic catalysts lies in adjusting the values of two metal concentrations separately for each of these purposes. In accordance with observations, the proposed model predicts increasing size of endofullerenes with increasing concentration of the metal that controls endofullerene formation. PMID:15296228

  8. Characterizations of Enriched Metallic Single-Walled Carbon Nanotubes in Polymer Composite

    NASA Technical Reports Server (NTRS)

    Chen, Bin; Li, Jing; Lu, Yijiang; Cinke, Martin; Au, Dyng; Harmon, Julie P.; Muisener, Patricia Anne O.; Clayton, LaNetra; D'Angelo, John

    2003-01-01

    Using different processing conditions, we disperse the single-walled carbon nanotube (SWNT) into the polymethyl methacrylate (PMMA) to form composites. In the melt-blended sample, the SWNTs originally semiconducting - became predominantly metallic after dispersion into the melt-blended composite. The interaction of the PMMA and SWNT is investigated by the polarized Raman studies. The structure changes in the PMMA and SWNT shows that the anisotropic interactions are responsible for SWNT electronic density of states (DOS) changes. The increased metallic SWNT percentage is confirmed by the conductivity and dielectric constant measurements .

  9. Double Layer Charging for Conductivity Enhancement of Pure Metallic and Semiconducting Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Mayo, Nathanael; Kuznetsov, Alexander; Zakhidov, Anvar

    2011-03-01

    Injecting high electronic charge densities can profoundly change the optical, electrical, and magnetic properties of materials. Evidence suggests a possibility of significantly improving conductivity of carbon nanotubes through double layer charge injection. Double layer charge injection can prove to be a powerful method when applied to carbon nanotubes because of theirs high surface area and chemical stability. Investigation has commenced on the effect of charging on various types of carbon nanotubes, specifically 99% purified single wall semiconducting and single wall metallic tubes. An electrical double layer is electrochemically introduced upon a sheet of carbon nanotubes via application of potential (up to +/- 5 volts) to a sample immersed in ionic-liquid-based electrolyte. Resistance of carbon nanotube as a function of applied charging voltage is recorded to determine the effects of charge injection. Results show that the electrical double layer considerably reduces the resistance across both samples. ESR/LFMA studies combined with low temperature magnetic and transport measurements are conducted to search for charge injection induced superconductivity in carbon nanotubes. Supported by AFOSR grant FA 9550-09-1-0384.

  10. Electron-Phonon Scattering in Metallic Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Rosenblatt, Sami; Park, Ji-Yong; Yaish, Yuval; Sazonova, Vera; Ustunel, Hande; Braig, Stephan; Arias, Tomas A.; Brouwer, Piet; McEuen, Paul L.

    2004-03-01

    Electron scattering rates in metallic single-walled carbon nanotubes are studied using an atomic force microscope as an electrical probe. From scaling of the resistance of the same nanotube with length in the low and high bias regimes, the mean free paths for both regimes are inferred. The observed scattering rates are consistent with calculations for acoustic phonon scattering at low biases and zone boundary/optical phonon scattering at high biases. This presentation is sponsored by DCOMP. This work was supported by the NSF Center for Nanoscale Systems, the Packard Foundation, the MARCO/DARPA FRC-MSD, and the Cornell Center for Materials Research.

  11. Separated metallic and semiconducting single-walled carbon nanotubes: opportunities in transparent electrodes and beyond.

    PubMed

    Lu, Fushen; Meziani, Mohammed J; Cao, Li; Sun, Ya-Ping

    2011-04-19

    Ever since the discovery of single-walled carbon nanotubes (SWNTs), there have been many reports and predictions on their superior properties for use in a wide variety of potential applications. However, an SWNT is either metallic or semiconducting; these properties are distinctively different in electrical conductivity and many other aspects. The available bulk-production methods generally yield mixtures of metallic and semiconducting SWNTs, despite continuing efforts in metallicity-selective nanotube growth. Presented here are significant advances and major achievements in the development of postproduction separation methods, which are now capable of harvesting separated metallic and semiconducting SWNTs from different production sources with sufficiently high enrichment and quantities for satisfying at least the needs in research and technological explorations. Opportunities and some available examples for the use of metallic SWNTs in transparent electrodes and semiconducting SWNTs in various device nanotechnologies are highlighted and discussed. PMID:20942475

  12. Dynamic evolution of supported metal nanocatalyst/carbon structure during single-walled carbon nanotube growth.

    PubMed

    Gmez-Gualdrn, Diego A; McKenzie, Gilbert D; Alvarado, Juan F J; Balbuena, Perla B

    2012-01-24

    Single-walled carbon nanotubes (SCWNTs) have outstanding properties that depend on structural features such as their chirality. Thus, developing a strategy to control chirality during SWCNT synthesis is critical for the exploitation of nanotube-based technologies in fields such as electronics and biomedicine. In response to this need, tuning the nanocatalyst structure has been envisioned as a means to control the nanotube structure. We use reactive classical molecular dynamics to simulate nanotube growth on supported Ni(32), Ni(80), and Ni(160) nanoparticles at various metal/support interaction strengths (E(adh)). The initial carbon ring formation is shown to correlate to the nanoparticle surface structure, demonstrating the existence of a "template effect" through a dominant occupation of hollow sites. The E(adh) strength alters the dynamic/structural behavior of the nanoparticle, in turn influencing the interplay between nanotube and nanoparticle structures. For example, the contact region between the nanoparticle surface and the growing nanotube decreases as E(adh) increases because capillary forces that raise the metal into the nanotube are counteracted by the strong metal/support interaction. The nanoparticle mobility decreases as E(adh) increases, eliminating a possible inverse template effect but hindering defect annealing in detriment of the nanotube/nanoparticle structural correlation. On the other hand, the contact between the nanoparticle and the nanotube increases with nanoparticle size. However, the heterogeneity of the nanoparticle structure increases with size, reducing the structural correlation. These results suggest that an appropriate combination of nanoparticle size and strength of the catalyst/support interaction may enhance the desired template effect and bias formation of specific nanotube chiralities. PMID:22133430

  13. Selective etching of metallic single-wall carbon nanotubes with hydrogen plasma.

    PubMed

    Hassanien, A; Tokumoto, M; Umek, P; Vrbanič, D; Mozetič, M; Mihailović, D; Venturini, P; Pejovnik, S

    2005-02-01

    We present Raman scattering and scanning tunnelling microscopy (STM) measurements on hydrogen plasma etched single-wall carbon nanotubes (SWNTs). Interestingly, both the STM and Raman spectroscopy show that the metallic SWNTs are dramatically altered and highly defected by the plasma treatment. In addition, structural characterizations show that metal catalysts are detached from the ends of the SWNT bundles. For semiconducting SWNTs we observe no feature of defects or etching along the nanotubes. Raman spectra in the radial breathing mode region of plasma-treated SWNT material show that most of the tubes are semiconducting. These results show that hydrogen plasma treatment favours etching of metallic nanotubes over semiconducting ones and therefore could be used to tailor the electronic properties of SWNT raw materials. PMID:21727436

  14. Novel in-situ decoration of single-walled carbon nanotube transistors with metal nanoparticles.

    PubMed

    Zhou, Jianyun; Barbara, Paola; Paranjape, Makarand

    2010-06-01

    The carbon nanotube-metal nanoparticle complex has attracted a lot of research interest because of their potential applications in catalysis and gas sensing. Here we introduce a novel electrochemical method to realize in-situ decoration of single-walled carbon nanotube field effect transistors (CNT-FET) with metal nanoparticles using a sacrificial electrode. In this process, metal atoms are first ionized into an electrolyte solution by applying a potential difference between the sacrificial electrode and the grounded source/drain electrodes connecting the nanotube of the CNT-FET. The positive metal ions migrate under the influence of the electric field, and deposit on the grounded nanotube as metal nanoparticles. This method provides for better control over the quantity and size of the deposited nanoparticles compared to other decoration methods. We demonstrate successful deposition of Au and Ag nanoparticles on carbon nanotube field effect devices, with the quantity and size of the nanoparticles varying as a function of the applied potential. We show that the metal nanoparticle size can vary from 10 nm to over 300 nm, and the spatial distribution can change from very scarce decoration to a near continuous coating. Such metal nanoparticles have potential applications in chemical sensors, as they interact with gas molecules and generate an electrical signal in the nanotube, which can be detected. They can also be explored as biological anchoring sites for bio-functionalization of the nanotube, which is critical to developing highly sensitive and selective bio-sensors. PMID:20355385

  15. Transport of metal oxide nanoparticles and single-walled carbon nanotubes in human mucus

    PubMed Central

    Jachak, Ashish; Lai, Samuel K; Hida, Kaoru; Suk, Jung Soo; Markovic, Nina; Biswal, Shyam; Breysse, Patrick N.; Hanes, Justin

    2015-01-01

    Whether mucus layers lining entrance points into the body, including the lung airways, provide protection against the penetration of engineered nanoparticles remains poorly understood. We measured the diffusion coefficients of hundreds of individual nanoparticles of three different metal oxides (nMeOs) and two types of single-walled carbon nanotubes (SWCNTs) in undiluted human mucus. We found that the vast majority of these nanoparticles are efficiently trapped in human mucus and, further, that the mechanism of trapping is adhesive interactions as opposed to steric obstruction. However, a small fraction of zinc oxide (ZnO) nanoparticles moved at rates fast enough to penetrate airway mucus layers. We conclude that human mucus layers probably provide considerable protection for mucosal tissues from the penetration of most nMeOs and SWCNTs, and suggest that further investigation of the potential health risks of exposure to ZnO nanoparticles is warranted. PMID:21800953

  16. Potentiating toxicological interaction of single-walled carbon nanotubes with dissolved metals.

    PubMed

    Al-Shaeri, Majed; Ahmed, Dina; McCluskey, Fiona; Turner, Gavin; Paterson, Lynn; Dyrynda, Elisabeth A; Hartl, Mark G J

    2013-12-01

    The present study explored the ecotoxicology of single-walled carbon nanotubes (SWCNTs) and their likely interaction with dissolved metals, with a focus on the effect of in vivo exposure in marine mussels. Any nano-scale effects were negated by the tendency of uncoated SWCNTs to agglomerate in water, particularly with high ionic strength as is the case in estuarine and full-strength seawater. However, SWCNTs, in combination with natural organic matter, remained suspended in seawater for long enough to become available to filter-feeding mussels, leading to their concentration on and increased contact with gill epithelia during exposure. For the first time, the authors describe a potentiating toxicological effect, expressed as DNA strand breaks obtained using the comet assay, on divalent metals afforded by negatively charged SWCNT agglomerates in seawater at concentrations as low as 5 µg L⁻¹. This is supported by the observation that SWCNTs alone were only toxic at concentrations ≥100 µg L⁻¹ and that the SWCNT-induced DNA damage was correlated with oxidative stress only in the absence of metals. If these laboratory experiments are confirmed in the natural environment, the present results will have implications for the understanding of the role of carbon nanotubes in environmental metal dynamics, toxicology, and consequently, regulatory requirements. PMID:23982896

  17. The effect of single wall carbon nanotube metallicity on genomic DNA-mediated chirality enrichment

    NASA Astrophysics Data System (ADS)

    Kim, Steve S.; Hisey, Colin L.; Kuang, Zhifeng; Comfort, Donald A.; Farmer, Barry L.; Naik, Rajesh R.

    2013-05-01

    Achieving highly enriched single wall carbon nanotubes (SWNTs) is one of the major hurdles today because their chirality-dependent properties must be uniform and predictable for use in nanoscale electronics. Due to the unique wrapping and groove-binding mechanism, DNA has been demonstrated as a highly specific SWNT dispersion and fractionation agent, with its enrichment capabilities depending on the DNA sequence and length as well as the nanotube properties. Salmon genomic DNA (SaDNA) offers an inexpensive and scalable alternative to synthetic DNA. In this study, SaDNA enrichment capabilities were tested on SWNT separation with varying degrees of metallicity that were formulated from mixtures of commercial metallic (met-) and semiconducting (sem-) abundant SWNTs. The results herein demonstrate that the degree of metallicity of the SWNT sample has a significant effect on the SaDNA enrichment capabilities, and this effect is modeled based on deconvolution of the near-infrared (NIR) absorption spectra and verified with photoluminescence emission (PLE) measurements. Using molecular dynamics and circular dichroism, the preferential SaDNA mediated separation of the (6, 5) sem-tube is shown to be largely influenced by the presence of met-SWNTs.Achieving highly enriched single wall carbon nanotubes (SWNTs) is one of the major hurdles today because their chirality-dependent properties must be uniform and predictable for use in nanoscale electronics. Due to the unique wrapping and groove-binding mechanism, DNA has been demonstrated as a highly specific SWNT dispersion and fractionation agent, with its enrichment capabilities depending on the DNA sequence and length as well as the nanotube properties. Salmon genomic DNA (SaDNA) offers an inexpensive and scalable alternative to synthetic DNA. In this study, SaDNA enrichment capabilities were tested on SWNT separation with varying degrees of metallicity that were formulated from mixtures of commercial metallic (met-) and semiconducting (sem-) abundant SWNTs. The results herein demonstrate that the degree of metallicity of the SWNT sample has a significant effect on the SaDNA enrichment capabilities, and this effect is modeled based on deconvolution of the near-infrared (NIR) absorption spectra and verified with photoluminescence emission (PLE) measurements. Using molecular dynamics and circular dichroism, the preferential SaDNA mediated separation of the (6, 5) sem-tube is shown to be largely influenced by the presence of met-SWNTs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00458a

  18. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    NASA Astrophysics Data System (ADS)

    Cao, Zeyuan; Wei, Bingqing

    2015-05-01

    Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni))/single-walled carbon nanotube (SWNT) macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  19. Valley coupling in finite-length metallic single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Izumida, W.; Okuyama, R.; Saito, R.

    2015-06-01

    Degeneracy of discrete energy levels of finite-length, metallic single-wall carbon nanotubes depends on the type of nanotubes, boundary condition, length of nanotubes, and spin-orbit interaction. Metal-1 nanotubes, in which two nonequivalent valleys in the Brillouin zone have different orbital angular momenta with respect to the tube axis, exhibit nearly fourfold degeneracy and small lift of the degeneracy by the spin-orbit interaction reflecting the decoupling of two valleys in the eigenfunctions. In metal-2 nanotubes, in which the two valleys have the same orbital angular momentum, vernier-scale-like spectra appear for boundaries of orthogonal-shaped edge or cap termination reflecting the strong valley coupling and the asymmetric velocities of the Dirac states. Lift of the fourfold degeneracy by parity splitting overcomes the spin-orbit interaction in shorter nanotubes with a so-called minimal boundary. Slowly decaying evanescent modes appear in the energy gap induced by the curvature of nanotube surface. Effective one-dimensional lattice model reveals the role of boundary on the valley coupling in the eigenfunctions.

  20. Conversion of metallic single-walled carbon nanotube networks to semiconducting through electrochemical ornamentation.

    PubMed

    Asheghali, Darya; Vichchulada, Pornnipa; Lay, Marcus D

    2013-05-22

    Field-effect transistors (FETs) that incorporate single-walled carbon nanotube (SWNT) networks experience decreased on-off current ratios (I(on)/I(off)) due to the presence of metallic nanotubes. Herein, we describe a method to increase I(on)/I(off) without the need for either specialized SWNT growth methods or post growth processing steps to remove metallic nanotubes. SWNTs that were grown using conventional arc discharge methods were deposited from aqueous suspension. Then, the SWNTs in the network were decorated with Cu2O nanoparticles that acted as controllable valves that restricted current flow at positive gate voltages. This resulted in an unprecedented reduction in I(off), as the sub-10 nm sized nanoclusters acted as numerous tunable valves, providing greatly improved network sensitivity to gate voltages in the relatively small range of ±10 V, increasing I(on)/I(off) by up to 205-fold. Larger nanoclusters were found to increase the network conductivity but decrease I(on)/I(off). The ability to convert metallic SWNTs to semiconducting without removing them allows for enhanced I(on) and lower noise while still achieving greatly enhanced magnitudes of I(on)/I(off). PMID:23607878

  1. Thermal analysis for laser selective removal of metallic single-walled carbon nanotubes

    SciTech Connect

    Song, Jizhou; Li, Yuhang; Du, Frank; Xie, Xu; Rogers, John A.; Huang, Yonggang

    2015-04-28

    Single-walled carbon nanotubes (SWNTs) have been envisioned as one of the best candidates for future semiconductors due to their excellent electrical properties and ample applications. However, SWNTs grow as mixture of both metallic and semiconducting tubes and this heterogeneity hampers their practical applications. Laser radiation shows promises to remove metallic SWNTs (m-SWNTs) in air under an appropriate condition. We established a scaling law, validated by finite element simulations, for the temperature rise of m-SWNTs under a pulsed laser with a Gaussian spot. It is shown that the maximum normalized m-SWNT temperature rise only depends on two non-dimensional parameters: the normalized pulse duration time and the normalized interfacial thermal resistance. In addition, the maximum temperature rise is inversely proportional to the square of spot size and proportional to the incident laser power. These results are very helpful to understand the underlying physics associated with the removal process and provides easily interpretable guidelines for further optimizations.

  2. Thermal analysis for laser selective removal of metallic single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Song, Jizhou; Li, Yuhang; Du, Frank; Xie, Xu; Huang, Yonggang; Rogers, John A.

    2015-04-01

    Single-walled carbon nanotubes (SWNTs) have been envisioned as one of the best candidates for future semiconductors due to their excellent electrical properties and ample applications. However, SWNTs grow as mixture of both metallic and semiconducting tubes and this heterogeneity hampers their practical applications. Laser radiation shows promises to remove metallic SWNTs (m-SWNTs) in air under an appropriate condition. We established a scaling law, validated by finite element simulations, for the temperature rise of m-SWNTs under a pulsed laser with a Gaussian spot. It is shown that the maximum normalized m-SWNT temperature rise only depends on two non-dimensional parameters: the normalized pulse duration time and the normalized interfacial thermal resistance. In addition, the maximum temperature rise is inversely proportional to the square of spot size and proportional to the incident laser power. These results are very helpful to understand the underlying physics associated with the removal process and provides easily interpretable guidelines for further optimizations.

  3. Electrical percolation characteristics of metallic single-walled carbon nanotube networks by vacancy evolution.

    PubMed

    Kim, Do-Hyun; Jin, Jun Eon; Piao, Mingxing; Choi, Jun Hee; Kim, Gyu Tae

    2014-09-14

    In the present study, we demonstrate the effect of vacancy evolution on high-pure metallic single-walled carbon nanotube (m-SWCNT) networks by observing the electrical characteristics of the networks on the field-effect transistor (FET). By catalytic oxidation using Co catalyst, vacancy evolution was gradually realized in high-pure m-SWCNT formed as networks between source-drain electrodes of FET. The evolution of vacancy defects in the m-SWCNT networks gradually proceeded by heating FET several times at 250 C in air. Atomic force microscopic images showed the presence of the Co catalyst nanoparticles, which were evenly formed in the m-SWCNT networks between the electrodes of FET. Vacancy evolution was confirmed by monitoring the D- and G-bands in the Raman spectra measured from the networks after every step of the catalytic oxidation. With vacancy evolution in the networks, the D-band gradually increased, and the transconductance of m-SWCNT networks drastically decreased. In addition, the metallic behaviour of the m-SWCNT networks was converted into a semiconducting one with an on/off ratio of 2.7. PMID:25069594

  4. Gate-Free Electrical Breakdown of Metallic Pathways in Single-Walled Carbon Nanotube Crossbar Networks.

    PubMed

    Li, Jinghua; Franklin, Aaron D; Liu, Jie

    2015-09-01

    Aligned single-walled carbon nanotubes (SWNTs) synthesized by the chemical vapor deposition (CVD) method have exceptional potential for next-generation nanoelectronics. However, the coexistence of semiconducting (s-) and metallic (m-) SWNTs remains a considerable challenge since the latter causes significant degradation in device performance. Here we demonstrate a facile and effective approach to selectively break all m-SWNTs by stacking two layers of horizontally aligned SWNTs to form crossbars and applying a voltage to the crossed SWNT arrays. The introduction of SWNT junctions amplifies the disparity in resistance between s- and m-pathways, leading to a complete deactivation of m-SWNTs while minimizing the degradation of the semiconducting counterparts. Unlike previous approaches that required an electrostatic gate to achieve selectivity in electrical breakdown, this junction process is gate-free and opens the way for straightforward integration of thin-film s-SWNT devices. Comparison to electrical breakdown in junction-less SWNT devices without gating shows that this junction-based breakdown method yields more than twice the average on-state current retention in the resultant s-SWNT arrays. Systematic studies show that the on/off ratio can reach as high as 1.4 × 10(6) with a correspondingly high retention of on-state current compared to the initial current value before breakdown. Overall, this method provides important insight into transport at SWNT junctions and a simple route for obtaining pure s-SWNT thin film devices for broad applications. PMID:26263184

  5. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.

    2002-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.

  6. Structure and dynamics of metallic and carburized catalytic Ni nanoparticles: effects on growth of single-walled carbon nanotubes.

    PubMed

    Gomez-Ballesteros, Jose L; Balbuena, Perla B

    2015-06-14

    Understanding the evolution of the catalyst structure and interactions with the nascent nanotube under typical chemical vapor deposition (CVD) conditions for the synthesis of single-walled carbon nanotubes is an essential step to discover a way to guide growth toward desired chiralities. We use density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations on model metallic and carburized Ni clusters to explore changes in the fundamental features of the nanocatalyst: geometric and electronic structure, dynamics and stability of the carburized nanocatalyst, and interactions with nascent nanotube caps at two different temperatures (750 and 1000 K) and different carbon composition ratios. This allows us to gain insight about the evolution of these aspects during the pre-growth and growth stages of CVD synthesis of single-walled carbon nanotubes and their implications for reactivity and control of the nanotube structure. PMID:25989515

  7. Growth of vertically aligned single-walled carbon nanotubes with metallic chirality through faceted FePt-Au catalysts

    NASA Astrophysics Data System (ADS)

    Ohashi, Toshiyuki; Iwama, Hiroki; Shima, Toshiyuki

    2016-02-01

    Direct synthesis of vertically aligned metallic single-walled carbon nanotubes (m-SWCNT forests) is a difficult challenge. We have successfully synthesized m-SWCNT forests using faceted iron platinum-gold catalysts epitaxially grown on a single crystalline magnesium oxide substrate. The metallic content of the forests estimated by Raman spectroscopy reaches 90%. From the standpoint of growth rate of the forests, the growth mechanism is probably based on the catalyst of solid state. It is suggested that preferential growth of m-SWCNTs is achieved when both factors are satisfied, namely, {111} dominant octahedral facet and ideal size (fine particles) of FePt particles.

  8. Corrugation-induced metal-semiconductor transition in single-wall carbon nanotubes with a small radius

    NASA Astrophysics Data System (ADS)

    Lu, Hongxia; Wu, Jianbao; Zhang, Weiyi

    2013-07-01

    Armchair single-wall carbon nanotubes (SWCNTs) are theoretically predicted to be metallic in the simple zone-folding scheme and protected from the curvature effects. They are, however, found to be small-gap semiconductors, experimentally. Lacking the genuine band-gap opening mechanism for armchair SWCNTs, the Mott insulator concept was proposed previously for the nominally metallic carbon nanotubes. Using the ab initio local density approximation method, we show, in this paper, that the carbon nanotubes without corrugation are, in fact, not metastable. The corrugated structures are always lower in energy than those without corrugation. The size of corrugation increases rapidly with the nanotubes curvature and vanishes for flat graphene. The corrugation breaks the local symmetry between two types of carbon sites, and a true band gap starts to develop once graphene sheets are rolled up into nanotubes.

  9. Effect of first row transition metals on the conductivity of semiconducting single-walled carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Wang, Feihu; Itkis, Mikhail E.; Bekyarova, Elena B.; Tian, Xiaojuan; Sarkar, Santanu; Pekker, Aron; Kalinina, Irina; Moser, Matthew L.; Haddon, Robert C.

    2012-05-01

    We demonstrate the ability of first row transition metals to form electrically conducting interconnects between semiconducting single-walled carbon nanotubes (SWNTs) by constructive rehybridization between sidewall benzene rings as a result of the formation of bis-hexahapto-metal-bonds [(?6-SWNT)M(?6-SWNT)], which bridge adjacent SWNTs. Metal deposition on SWNT films enhances the conductivity by three distinct mechanisms: physisorption of gold leads to the formation of a non-interacting gold film and a monotonic conductivity increase; ionic chemisorption of lithium strongly increases the conductivity due to charge transfer to the SWNTs; covalent chemisorption of first row transition metals leads to an abrupt change in conductivity due to formation of (?6-SWNT)M(?6-SWNT) interconnects.

  10. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Cinke, Martin; Li, Jing; Chen, Bin; Wignarajah, Kanapathipillai; Pisharody, Suresh A.; Fisher, John W.; Delzeit, Lance; Meyyappan, Meyya; Partridge, Harry; Clark, Kimberlee

    2003-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Highly purified metal-impregnated carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake gaseous species based both on the nanotube s controlled pore size, high surface area, and ordered chemical structure that allows functionalization and on the nanotube s effectiveness as a catalyst support material for toxic contaminants removal. We present results on the purification of single walled carbon nanotubes (SWCNT) and efforts at metal impregnation of the SWCNT's.

  11. Rare-earth metal halogenide encapsulation-induced modifications in Raman spectra of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kharlamova, M. V.

    2015-01-01

    In the present work, a detailed Raman spectroscopy investigation on the single-walled carbon nanotubes (SWCNTs) filled with praseodymium chloride, terbium chloride and thulium chloride was performed. The salts were incorporated inside the SWCNTs by a capillary filling method using melts, and the high-resolution transmission electron microscopy data proved the high filling degree of the nanotube channels. A thorough analysis of the radial breathing mode and G-band of the Raman spectra of the pristine and filled SWCNTs showed that the encapsulated salts cause acceptor doping of the host nanotubes, and the doping efficiency depends on the compound. The incorporated thulium chloride has the strongest doping effect on the SWCNTs, whereas praseodymium chloride has the weakest effect. It was found that the encapsulated salts modify more significantly the electronic structure of metallic nanotubes than semiconducting SWCNTs.

  12. Discovery of surfactants for metal/semiconductor separation of single-wall carbon nanotubes via high-throughput screening.

    PubMed

    Tanaka, Takeshi; Urabe, Yasuko; Nishide, Daisuke; Kataura, Hiromichi

    2011-11-01

    We report novel surfactants that can be used for the separation of metallic (M) and semiconducting (S) single-wall carbon nanotubes (SWCNTs). Among the M/S separation methods using surfactants in an aqueous solution, sodium dodecyl sulfate plays a key role in density gradient ultracentrifugation (DGU) and agarose gel separations. In this study, we screened 100 surfactants for M/S separation using a high-throughput screening system. We identified five surfactants, which could be used for both DGU and agarose gel separations, suggesting that the basic principle of these separations is common. These surfactants have relatively low dispersibilities, which is likely due to their common structural features, i.e., straight alkyl tails and charged head groups, and appeared to enable M- and S-SWCNTs to be distinguished and separated. These surfactants should stimulate research in this field and extend the application of electrically homogeneous SWCNTs not only for electronics but also for biology and medicine. PMID:21980975

  13. Long-term colloidal stability and metal leaching of single wall carbon nanotubes: effect of temperature and extracellular polymeric substances.

    PubMed

    Adeleye, Adeyemi S; Keller, Arturo A

    2014-02-01

    Long term (90 day) stability, aggregation kinetics in the presence and absence of natural organic materials (NOM), and metal leaching of five commercial single wall carbon nanotubes (SWCNTs) in waters (e.g. freshwater, seawater, stormwater, wastewater, and groundwater) were studied, as well as the effect of temperature on SWCNT stability and metal leaching. Zeta (?) potential of SWCNT decreased in magnitude with increase in temperature. In wastewater, SWCNT sedimented from the water column to below detectable levels after 30 days when kept at 40C, but at 20C 19% suspension was still observed after the same exposure time. Addition of 0.1mg-CL(-1) EPS shifted the critical coagulation concentration (CCC) of SRNOM-stabilized SWCNT from 15mM to 54mM NaCl via additional electrostatic and possibly steric stabilization. Attachment efficiencies (?) of SWCNT in waters ranged from ?0.001 in DI with 10mgL(-1) SRNOM to 1 in seawater. However, sedimentation of SWCNT in seawater (and other high ionic strength conditions) was not as fast as expected due to improved buoyancy and/or drag. Purified forms of SWCNTs exhibited better dispersibility and stability in most waters, but as expected, the total metal leached out was higher in the raw variants. Metal leaching from CNT in these studies was controlled by metal and water chemistries, CNT pretreatment, leachable metal fraction, exposure time, and presence of NOM. PMID:24342047

  14. Impregnation of Catalytic Metals in Single-Walled Carbon Nanotubes for Toxic Gas Conversion in Life Support System

    NASA Technical Reports Server (NTRS)

    Li, Jing; Wignarajah, Kanapathipillai; Cinke, Marty; Partridge, Harry; Fisher, John

    2004-01-01

    Carbon nanotubes (CNTs) possess extraordinary properties such as high surface area, ordered chemical structure that allows functionalization, larger pore volume, and very narrow pore size distribution that have attracted considerable research attention from around the world since their discovery in 1991. The development and characterization of an original and innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches due to the ability to direct the selective uptake of gaseous species based on their controlled pore size, increased adsorptive capacity due to their increased surface area and the effectiveness of carbon nanotubes as catalyst supports for gaseous conversion. We present our recent investigation of using SWNTs as catalytic supporting materials to impregnate metals, such as rhodium (Rh), palladium (Pd) and other catalysts. A protocol has been developed to oxidize the SWNTs first and then impregnate the Rh in aqueous rhodium chloride solution, according to unique surface properties of SWNTs. The Rh has been successfully impregnated in SWNTs. The Rh-SWNTs have been characterized by various techniques, such as TGA, XPS, TEM, and FTIR. The project is funded by a NASA Research Announcement Grant to find applications of single walled nanocarbons in eliminating toxic gas Contaminant in life support system. This knowledge will be utilized in the development of a prototype SWNT KO, gas purification system that would represent a significant step in the development of high efficiency systems capable of selectively removing specific gaseous for use in regenerative life support system for human exploration missions.

  15. Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes.

    PubMed

    Bennett, Samuel W; Adeleye, Adeyemi; Ji, Zhaoxia; Keller, Arturo A

    2013-08-01

    Carbon nanotubes (CNTs) are exciting new materials that have been intensively researched and are becoming increasingly used in consumer products. With rapid growth in production and use of CNTs in many applications, there is the potential for emissions to the environment and thus research is needed to assess the risks associated with CNTs in the environment. Here we show that commercial CNTs differ in their stability, photoactivity, metal leachate, and toxicity to freshwater algae. The behavior between raw and purified variants of the CNTs differs considerably; for example purified CNTs are generally more photoactive, producing singlet oxygen and superoxide, while raw CNTs show little or no photoactivity. Residual metal catalysts differ based on synthesis method used to prepare CNTs and thus may be comprised of elements with varying degrees of toxic potential. Influenced by pH and other constituents of the natural waters, our work shows that metals can leach out from all the commercial CNTs studied, even purified versions, albeit at different levels in many natural waters. As much as 10% of the total residual nickel leached from a purified CNT after 72 h. Aqueous concentrations of molybdenum leached from a different purified CNT were nearly 0.060 mg L(-1) after 72 h. With little sample preparation, CNTs are dispersible in most freshwaters and stable for several days. Not all tested CNTs were toxic; for those CNTs that did induce toxicity we show that photoactivity, not metal leaching, contributes to the toxicity of commercial CNTs to freshwater algae, with growth rates significantly reduced by as much as 200%. PMID:23591109

  16. Ultralong single-wall carbon nanotubes.

    PubMed

    Zheng, L X; O'Connell, M J; Doorn, S K; Liao, X Z; Zhao, Y H; Akhadov, E A; Hoffbauer, M A; Roop, B J; Jia, Q X; Dye, R C; Peterson, D E; Huang, S M; Liu, J; Zhu, Y T

    2004-10-01

    Since the discovery of carbon nanotubes in 1991 by Iijima, there has been great interest in creating long, continuous nanotubes for applications where their properties coupled with extended lengths will enable new technology developments. For example, ultralong nanotubes can be spun into fibres that are more than an order of magnitude stronger than any current structural material, allowing revolutionary advances in lightweight, high-strength applications. Long metallic nanotubes will enable new types of micro-electromechanical systems such as micro-electric motors, and can also act as a nanoconducting cable for wiring micro-electronic devices. Here we report the synthesis of 4-cm-long individual single-wall carbon nanotubes (SWNTs) at a high growth rate of 11 microm s(-1) by catalytic chemical vapour deposition. Our results suggest the possibility of growing SWNTs continuously without any apparent length limitation. PMID:15359345

  17. Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shi, Zhiwen; Hong, Xiaoping; Bechtel, Hans A.; Zeng, Bo; Martin, Michael C.; Watanabe, Kenji; Taniguchi, Takashi; Shen, Yuen-Ron; Wang, Feng

    2015-08-01

    Surface plasmons, collective oscillations of conduction electrons, hold great promise for the nanoscale integration of photonics and electronics. However, nanophotonic circuits based on plasmons have been significantly hampered by the difficulty in achieving broadband plasmonic waveguides that simultaneously exhibit strong spatial confinement, a high quality factor and low dispersion. Quantum plasmons, where the quantum mechanical effects of electrons play a dominant role, such as plasmons in very small metal nanoparticles and plasmons affected by tunnelling effects, can lead to novel plasmonic phenomena in nanostructures. Here, we show that a Luttinger liquid of one-dimensional Dirac electrons in carbon nanotubes exhibits quantum plasmons that behave qualitatively differently from classical plasmon excitations. The Luttinger-liquid plasmons propagate at quantized velocities that are independent of carrier concentration or excitation wavelength, and simultaneously exhibit extraordinary spatial confinement and high quality factor. Such Luttinger-liquid plasmons could enable novel low-loss plasmonic circuits for the subwavelength manipulation of light.

  18. Separation of single-walled carbon nanotubes into metallic and semiconducting groups: a simple and large-scale method

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Maeda, Y.

    2006-03-01

    Separation of a large number of single-walled carbon nanotubes (SWNTs) into groups each with specifically metallic and semiconducting properties is an extremely important task for technology application. Even though effective methods (1, 2) have been devised, they suffer from drawbacks such as either the yield is low (3) or expense is high (4). In this work, we study the problem from a theoretical approach, we notice that based on the first principles calculations the binding strengths of methylamine to the semiconducting [13, 0] SWNT are only 3661% of that to the metallic [7, 7] SWNT, which suggests that the amines is much more attractive toward the pure metallic than the semiconducting SWNTs. Therefore starting from as-prepared SWNTs and with the assistance of amines, we achieved SWNTs with enriched metallic properties over semiconducting in a convenient and large-scale manner. References: (1) D. Chattopadhyay, L. Galeska, F. Papadimitrakopoulos, Journal of the American Chemical Society 125, 3370 (MAR 19, 2003). (2) H. P. Li et al., Journal of the American Chemical Society 126, 1014 (FEB 4, 2004). (3) R. Krupke, F. Hennrich, H. von Lohneysen, M. Kappes, SCIENCE 301, 344 (JUL 18, 2003). (4) M. Zheng et al., Science 302, 1545 (NOV 28, 2003).

  19. Effect of Lanthanide Metal Complexation on the Properties and Electronic Structure of Single-Walled Carbon Nanotube Films.

    PubMed

    Moser, Matthew L; Pekker, Aron; Tian, Xiaojuan; Bekyarova, Elena; Itkis, Mikhail E; Haddon, Robert C

    2015-12-30

    We spectroscopically analyze the effect of e-beam deposition of lanthanide metals on the electronic structure and conductivities of films of semiconducting (SC) single-walled carbon nanotubes (SWNTs) in high vacuum. We employ near-infrared and Raman spectroscopy to interpret the changes in the electronic structure of SWNTs on exposure to small amounts of the lanthanides (Ln = Sm, Eu, Gd, Dy, Ho, Yb), based on the behavior of the reference metals (M = Li, Cr) which are taken to exemplify ionic and covalent bonding, respectively. The analysis shows that while the lanthanides are more electropositive than the transition metals, in most cases they exhibit similar conductivity behavior which we interpret in terms of the formation of covalent bis-hexahapto bonds [(?(6)-SWNT)M(?(6)-SWNT), where M = La, Nd, Gd, Dy, Ho]. However, only M = Eu, Sm, Yb show the continually increasing conductivity characteristic of Li, and this supports our contention that these metals provide the first examples of mixed covalent-ionic bis-hexahapto bonds [(?(6)-SWNT)M(?(6)-SWNT), where M = Sm, Eu, Yb]. PMID:25902843

  20. Chirality assignment for metallic species via coherent phonon oscillations in arc-discharge single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shin, Seong-Il; Lim, Yong-Sik; Kim, Myung Jong

    2015-09-01

    We performed transient absorption measurements with sub-10-fs pulses to observe coherent phonon (CP) oscillations of species in a micelle-suspended arc-discharge single-walled carbon nanotube (SWNT) ensemble. We applied a spectral-resolved measurement scheme to investigate the photon-wavelength dependence of CP oscillations of the radial breathing mode (RBM) specific to each species, covering a broad photon wavelength range from 700 to 1000 nm (1.771 - 1.240 eV). With a linear prediction singular value decomposition (LPSVD) method as a robust alternative for resolving closely-overlapped vibration modes, we divided multiple RBM peaks into two components, the M 11-excited metallic species and the S 22-excited semiconducting species, respectively. We resolved the RBM peaks into 22 metallic and 29 semiconducting species. Resolved metallic tubes showed a wide distribution in diameters from 1.3 to 2.3 nm, forming a chirality distribution from (2 n + m) = 33 family to 51 family.

  1. Hydrogen Storage in metal-modified single-walled carbon nanotubes

    SciTech Connect

    Dr. Ahn

    2004-04-30

    It has been known for over thirty years that potassium-intercalated graphites can readily adsorb and desorb hydrogen at {approx}1 wt% at 77 K. These levels are much higher than can be attained in pure graphite, owing to a larger thermodynamic enthalpy of adsorption. This increased enthalpy may allow hydrogen sorption at higher temperatures. Potassium has other beneficial effects that enable the design of a new material: (a) Increased adsorption enthalpy in potassium-intercalated graphite compared to pure graphite reduces the pressure and increases the temperature required for a given fractional coverage of hydrogen adsorption. We expect the same effects in potassium-intercalated SWNTs. (b) As an intercalant, potassium separates c-axis planes in graphite. Potassium also separates the individual tubes of SWNTs ropes producing swelling and increased surface area. Increased surface area provides more adsorption sites, giving a proportionately higher capacity. The temperature of adsorption depends on the enthalpy of adsorption. The characteristic temperature is roughly the adsorption enthalpy divided by Boltzmann's constant, k{sub B}. For the high hydrogen storage capacity of SWNTs to be achieved at room temperature, it is necessary to increase the enthalpy of adsorption. Our goal for this project was to use metal modifications to the carbon surface of SWNTs in order to address both enhanced adsorption and surface area. For instance, the enthalpy of sorption of hydrogen on KC8 is 450 meV/H{sub 2}, whereas it is 38 meV/H{sub 2} for unmodified SWNTs. By adsorption thermodynamics we expect approximately that the same performance of SWNTs at 77 K will be achieved at a temperature of [450/38] 77 K = 900 K. This is a high temperature, so we expect that adsorption on nearly all the available sites for hydrogen will occur at room temperature under a much lower pressure. This pressure can be estimated conveniently, since the chemical potential of hydrogen is approximately proportional to the logarithm of the pressure. Using 300 K for room temperature, the 100 bar pressure requirement is reduced to exp(-900/300) 100 bar = 5 bar at room temperature. This is in the pressure range used for prior experimental work such as that of Colin and Herold in the late 1960's and early 1970's.

  2. Metal nanoparticles and DNA co-functionalized single-walled carbon nanotube gas sensors.

    PubMed

    Su, Heng C; Zhang, Miluo; Bosze, Wayne; Lim, Jae-Hong; Myung, Nosang V

    2013-12-20

    Metal/DNA/SWNT hybrid nanostructure-based gas sensor arrays were fabricated by means of ink jet printing of metal ion chelated DNA/SWNTs on microfabricated electrodes, followed by electroless deposition to reduce metal ions to metal. DNA served as a dispersing agent to effectively solubilize pristine SWNTs in water and as metal ion chelating centers for the formation of nanoparticles. Noble metals including palladium, platinum, and gold were used because the high binding affinity toward specific analytes enhances the selectivity and sensitivity. The sensitivity and selectivity of the gas sensors toward various gases such as H2, H2S, NH3, and NO2 were determined at room temperature. Sensing results indicated the enhancement of the sensitivity and selectivity toward certain analytes by functionalizing with different metal nanoparticles (e.g., Pd/DNA/SWNTs for H2 and H2S). The combined responses give a unique pattern or signature for each analyte by which the system can identify and quantify an individual gas. PMID:24284477

  3. Influence of uniaxial strain on the linear optical spectra in the metallic single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yu, Guili; Li, Guichen; Jia, Yonglei; Tang, Gang

    2015-12-01

    The linear absorption spectra of metallic zigzag single-walled carbon nanotubes (SWNTs) have been theoretically studied under the uniaxial strain by using the standard formulas of Orr and Ward. Due to the trigonal warping effect, the linear absorption spectra of M11 and M22 transitions are dominated by two major peaks, which come from the split Mii- and Mii+ excitons with different band index q. As the uniaxial strain is applied, it is interesting to find that the split peaks will overlap at one point of the uniaxial strain, and the splitting is zero at this point. Hence, we can also describe this variation tendency as the size of splitting, which first decreases to zero and then increases with increasing the uniaxial strain, based on which a supplemented tool is offered to detect the deformation degree of a metallic SWNT under uniaxial strain. In addition, the linear absorption spectra of the bands that nearest to the Fermi level have also been calculated, displaying an increase with the increase of the uniaxial strain, which can offer some useful information for the THz applications. The results obtained here are expected to be confirmed by the future experiment.

  4. Experimental and theoretical comparison of gas desorption energies on metallic and semiconducting single-walled carbon nanotubes.

    PubMed

    Mandeltort, Lynn; Chen, De-Li; Saidi, Wissam A; Johnson, J Karl; Cole, Milton W; Yates, John T

    2013-05-22

    Single-walled carbon nanotubes (SWNTs) exhibit high surface areas and precisely defined pores, making them potentially useful materials for gas adsorption and purification. A thorough understanding of the interactions between adsorbates and SWNTs is therefore critical to predicting adsorption isotherms and selectivities. Metallic (M-) and semiconducting (S-) SWNTs have extremely different polarizabilities that might be expected to significantly affect the adsorption energies of molecules. We experimentally and theoretically show that this expectation is contradicted, for both a long chain molecule (n-heptane) and atoms (Ar, Kr, and Xe). Temperature-programmed desorption experiments are combined with van der Waals corrected density functional theory, examining adsorption on interior and exterior sites of the SWNTs. Our calculations show a clear dependence of the adsorption energy on nanotube diameter but not on whether the tubes are conducting or insulating. We find no significant experimental or theoretical difference in adsorption energies for molecules adsorbed on M- and S-SWNTs having the same diameter. Hence, we conclude that the differences in polarizabilities between M- and S-SWNTs have a negligible influence on gas adsorption for spherical molecules as well as for highly anisotropic molecules such as n-heptane. We expect this conclusion to apply to all types of adsorbed molecules where van der Waals interactions govern the molecular interaction with the SWNT. PMID:23627526

  5. Intra- and inter-tube exciton relaxation dynamics in high purity semiconducting and metallic single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ichida, Masao; Saito, Shingo; Miyata, Yasumitsu; Yanagi, Kazuhiro; Kataura, Hiromichi; Ando, Hiroaki

    2013-02-01

    We have measured the exciton and carrier dynamics in the high purity semiconducting (S-) and metallic (M-) single-walled carbon nanotubes (SWNTs) in the isolated and aggregated (bundled) forms. The exciton relaxation decay times are measured by using the pump-probe spectroscopy. For bundled samples, the relaxation time becomes shorter than that for isolated SWNTs sample, because of the existence of inter-tube relaxation. We estimate the relaxation rates from S-SWNT to S-SWNT and S-SWNT to M-SWNT using the decay times for isolated SWNTs, high purity S-SWNTs bundle, and doped S-SWNTs in high purity M-SWNTs bundle. For S-SWNTs, inter-tube relaxation plays an important role in the relaxation dynamics. However, for M-SWNTs, the inter-tube relaxation is not so important, and the transition energy and intensity of exciton in M-SWNTs is strongly affected by the photoexcited carriers which plays like as photo doping.

  6. Electrically Robust Metal Nanowire Network Formation by In-Situ Interconnection with Single-Walled Carbon Nanotubes

    PubMed Central

    Woo, Jong Seok; Han, Joong Tark; Jung, Sunshin; Jang, Jeong In; Kim, Ho Young; Jeong, Hee Jin; Jeong, Seung Yol; Baeg, Kang-Jun; Lee, Geon-Woong

    2014-01-01

    Modulation of the junction resistance between metallic nanowires is a crucial factor for high performance of the network-structured conducting film. Here, we show that under current flow, silver nanowire (AgNW) network films can be stabilised by minimizing the Joule heating at the NW-NW junction assisted by in-situ interconnection with a small amount (less than 3 wt%) of single-walled carbon nanotubes (SWCNTs). This was achieved by direct deposition of AgNW suspension containing SWCNTs functionalised with quadruple hydrogen bonding moieties excluding dispersant molecules. The electrical stabilisation mechanism of AgNW networks involves the modulation of the electrical transportation pathway by the SWCNTs through the SWCNT-AgNW junctions, which results in a relatively lower junction resistance than the NW-NW junction in the network film. In addition, we propose that good contact and Fermi level matching between AgNWs and modified SWCNTs lead to the modulation of the current pathway. The SWCNT-induced stabilisation of the AgNW networks was also demonstrated by irradiating the film with microwaves. The development of the high-throughput fabrication technology provides a robust and scalable strategy for realizing high-performance flexible transparent conductor films. PMID:24763208

  7. Resonance enhancement of first- and second-order coherent phonons in metallic single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sato, K.; Tahara, K.; Minami, Y.; Katayama, I.; Kitajima, M.; Kawai, H.; Yanagi, K.; Takeda, J.

    2014-12-01

    High-frequency coherent phonons resonantly excited in metallic single-walled carbon nanotubes (M-SWCNTs) were investigated via spectrally resolved pump-probe spectroscopy using 7.5-fs laser pulses. In addition to first-order coherent phonons such as radial breathing mode (RBM) and M and G modes, we clearly observed second-order high-frequency coherent phonons of 2 D and 2 G modes, which can be regarded as squeezed phonons. We found that the amplitudes of the RBM, G and 2 D modes were resonantly enhanced at specific wavelengths: the maximum resides at a wavelength whose energy is smaller than that of the van Hove singularities in M-SWCNTs by an amount corresponding to the phonon energy. Furthermore, the 2 D mode has stronger enhancement than the other first-order Raman modes. These results indicate that the enhancement originates from a Stokes-stimulated Raman-scattering process at van Hove singularities and that efficient resonance enhancement occurs for the 2 D mode, possibly through double resonance due to the trigonal warping effect and strong electron-phonon coupling due to the Kohn anomaly.

  8. Surfactant free fractions of metallic and semiconducting single-walled carbon nanotubes via optimised gel chromatography

    SciTech Connect

    Lukaszczuk, Pawel; Ruemmeli, Mark H.; Knupfer, Martin; Kalenczuk, Ryszard J.; Borowiak-Palen, Ewa

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer The application of gel permeation chromatography technique in a field of SWCNT separation. Black-Right-Pointing-Pointer Non-commercial agarose gel used as a column filling. Black-Right-Pointing-Pointer Purification route is presented, quality and quantity estimation is shown. Black-Right-Pointing-Pointer Process is ready for high-scale separation of SWCNTs. -- Abstract: We report the procedure of sorting/purification of carbon nanotubes by electronic type using chromatographic column with sodium dodecylsulfate (SDS) and sodium deoxycholate (DOC) solutions as the eluents. The non-commercial agarose gel in different concentrations has been tested in the process. It was found that in optimal gel concentration the fractionation resulted in {approx}96.2% yield of semiconducting species. Importantly, to get surfactant-free fractions the post-separation purification procedure has been carried out. The UV-vis-NIR and Raman spectroscopy have been utilised for the samples analysis. High resolution transmission microscopy and thermogravimetric analysis allowed to study the sample morphology and purity, respectively.

  9. Transmittance of single wall carbon nanotubes

    SciTech Connect

    Holmes, W.; Hone, J.; Richards, P.L.; Zettl, A.

    2001-07-31

    The authors have measured the far infrared absorption of single wall carbon nanotube (SWNT) ropes at 1.5K and SWNT ropes in polyethylene (PE) over the range 1.5 < T < 300 K. A weak peak is observed at 28 cm{sup -1} at 1.5K for free standing SWNT samples. The frequency and temperature dependence of the peak is consistent with absorption by an E{sub 2g} symmetric, ''squash mode'', SWNT phonon, which is infrared active due to an adsorbate or disorder. The peak frequency for SWNT ropes in PE is at 40 cm{sup -1} and temperature dependent. They attribute the increase in the frequency of the peak for SWNT in PE to the effect of {approx} 0.2GPa of hydrostatic pressure exerted on the SWNT ropes due to the thermal contraction of PE when cooled to low temperatures. Using two independent methods, they estimate that the SWNT may radially buckle at this pressure. The buckling distortion may cause the pressure dependence of the peak frequency. They cannot rule out the possibility that the peak is an absorption onset from adsorbate modes extrinsic to the SWNT or from interband transitions at a small electronic band gap. An effective medium calculation of Drude metal grains in polyethylene gives a frequency dependence consistent with their data, but the model underestimates the strength of scattering by orders of magnitude.

  10. Electrochemical and in situ studies of the insertion of alkali metals in single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Claye, Agnes Sandrine

    2000-10-01

    In this thesis, we used electrochemistry and in-situ techniques to investigate the mechanism for alkali insertion in single wall carbon nanotubes (SWNT) and the properties of these doped compounds. SWNT were reversibly doped electrochemically with Li and K, up to stoichiometries of Li1.27C6 and KC24. No first order phase transition vs. composition was observed, distinguishing this new carbon guest-host system from graphite, C60 and polyacetylene. Ion insertion and removal proceed on a wide range of potentials, yielding steep voltage profiles characteristic of electrochemical capacitors. In-situ X-ray diffraction showed that alkali insertion in SWNT does not yield crystalline superlattices, but creates irreversible structural disorder in the rope lattice. We explain the absence of ordered phase in doped SWNT by the polydispersity in tube diameters and symmetries within a rope. The effect of alkali doping on the electronic properties of SWNT was investigated using in-situ conductivity, in-situ electron spin resonance and in-situ Raman scattering. All three methods showed a reversible charge transfer between the dopants and the host, similar to that in graphite intercalation compounds. The conductivity and spin susceptibility of SWNT increase monotonically and reversibly with alkali concentration, and the SWNT tangential phonon mode is downshifted in frequency upon doping. These phenomena are reversible upon de-doping, showing that SWNT constitute the newest generation of synthetic metals, analogous to GICs, fullerides and polyacetylene. Finally, electrochemical impedance spectroscopy was used to study the diffusion kinetics of alkalis in SWNT. An equivalent circuit was developed to model the complex impedance of SWNT electrodes. Three processes with different time constants were identified: charge transfer across the electrode/electrolyte interface, diffusion through mats of bulk SWNT, and diffusion inside SWNT ropes. The diffusion kinetics of alkalis in SWNT were found to be similar to those in polyacetylene films. Based on these results, we propose an inhomogeneous structural model for alkali-doped SWNT, in which alkalis decorate the external and internal surfaces of the ropes. We believe that alkali-doped SWNT consist of small fully doped domains embedded into undoped or very lightly doped regions. As doping proceeds the number and/or size of these saturated domains increases until saturation.

  11. Free vibrations of single walled carbon peapods

    NASA Astrophysics Data System (ADS)

    Firouz-Abadi, R. D.; Hojjati, M.; Rahmanian, M.

    2014-02-01

    In this paper the free vibration of single walled carbon nanopeapods encapsulating C60 molecules is considered. The nanopeapod is embedded in an elastic medium and clamped at both ends. The Euler-Bernoulli beam model is used for the carbon nanotube and the C60 molecules are considered as lumped masses attached to the beam. Based on the nonlocal elasticity theory the governing equation of motion is derived and the resonance frequencies of the nanopeapod are obtained. The effects of small scale, foundation stiffness and ratio of the fullerenes' mass to the nanotube's mass on the frequencies are studied and some conclusions are drawn.

  12. Cutting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ziegler, Kirk J.; Gu, Zhenning; Shaver, Jonah; Chen, Zheyi; Flor, Erica L.; Schmidt, Daniel J.; Chan, Candace; Hauge, Robert H.; Smalley, Richard E.

    2005-07-01

    A two-step process is utilized for cutting single-walled carbon nanotubes (SWNTs). The first step requires the breakage of carbon-carbon bonds in the lattice while the second step is aimed at etching at these damage sites to create short, cut nanotubes. To achieve monodisperse lengths from any cutting strategy requires control of both steps. Room-temperature piranha and ammonium persulfate solutions have shown the ability to exploit the damage sites and etch SWNTs in a controlled manner. Despite the aggressive nature of these oxidizing solutions, the etch rate for SWNTs is relatively slow and almost no new sidewall damage is introduced. Carbon-carbon bond breakage can be introduced through fluorination to ~C2F, and subsequent etching using piranha solutions has been shown to be very effective in cutting nanotubes. The final average length of the nanotubes is approximately 100 nm with carbon yields as high as 70-80%.

  13. Use of alkali metal salts to prepare high purity single-walled carbon nanotube solutions and thin films

    NASA Astrophysics Data System (ADS)

    Ashour, Rakan F.

    Single-walled carbon nanotubes (SWCNTs) display interesting electronic and optical properties desired for many advanced thin film applications, such as transparent conductive electrodes or thin-film transistors. Large-scale production of SWCNTs generally results in polydispersed mixtures of nanotube structures. Since SWCNT electronic character (conducting or semiconducting nature) depends on the nanotube structure, application performance is being held back by this inability to discretely control SWCNT synthesis. Although a number of post-production techniques are able to separate SWCNTs based on electronic character, diameter, or chirality, most still suffer from the disadvantage of high costs of materials, equipment, or labor intensity to be relevant for large-scale production. On the other hand, chromatographic separation has emerged as a method that is compatible with large scale separation of metallic and semiconducting SWCNTs. In this work, SWCNTs, in an aqueous surfactant suspension of sodium dodecyl sulfate (SDS), are separated by their electronic character using a gel chromatography process. Metallic SWCNTs (m-SWCNTs) are collected as initial fractions since they show minimum interaction with the gel medium, whereas, semiconducting SWCNTs (sc- SWCNTs) remain adsorbed to the gel. The process of sc-SWCNT retention in the gel is found to be driven by the packing density of SDS around the SWCNTs. Through a series of separation experiments, it is shown that sc-SWCNTs can be eluted from the gel simply by disturbing the configuration of the SDS/SWCNT micellar structure. This is achieved by either introducing a solution containing a co-surfactant, such as sodium cholate (SC), or solutions of alkali metal ionic salts. Analysis of SWCNT suspensions by optical absorption provides insights into the effect of changing the metal ion (M+ = Li+, Na+, and K+) in the eluting solution. Salts with smaller metal ions (e.g. Li+) require higher concentrations to achieve separation. By using salts with different anionic groups (cholate, Cl-, I-, and SCN-), it is concluded that the SWCNT separation using salt solutions is mainly driven by the cations in the solution. Additionally, different methods for depositing separated SWCNTs on glass substrates are described. In one method, SWCNTs are first isolated from their surfactant by introducing organic solvents such as methanol or acetone to aqueous suspensions of previously separated m- and/or sc-SWCNTs. Following the induced SWCNT dissolution, desired nanomaterials can be redispersed directly in another solvent, such as methanol, for deposition on substrates. In another method, separated SWCNTs are deposited on glass substrates by the process of evaporation driven self-assembly. Different morphologies on the substrate are formed by changing the viscosity of the evaporating SWCNT/SDS suspensions. The results are described using the Stokes-Einstein equation for diffusion in one dimension.

  14. Strain Sensitivity in Single Walled Carbon Nanotubes for Multifunctional Materials

    NASA Technical Reports Server (NTRS)

    Heath, D. M. (Technical Monitor); Smits, Jan M., VI

    2005-01-01

    Single walled carbon nanotubes represent the future of structural aerospace vehicle systems due to their unparalleled strength characteristics and demonstrated multifunctionality. This multifunctionality rises from the CNT's unique capabilities for both metallic and semiconducting electron transport, electron spin polarizability, and band gap modulation under strain. By incorporating the use of electric field alignment and various lithography techniques, a single wall carbon nanotube (SWNT) test bed for measurement of conductivity/strain relationships has been developed. Nanotubes are deposited at specified locations through dielectrophoresis. The circuit is designed such that the central, current carrying section of the nanotube is exposed to enable atomic force microscopy and manipulation in situ while the transport properties of the junction are monitored. By applying this methodology to sensor development a flexible single wall carbon nanotube (SWNT) based strain sensitive device has been developed. Studies of tensile testing of the flexible SWNT device vs conductivity are also presented, demonstrating the feasibility of using single walled HiPCO (high-pressure carbon monoxide) carbon nanotubes as strain sensing agents in a multi-functional materials system.

  15. Three dimensional single-walled carbon nanotubes.

    PubMed

    Lu, Jennifer; Yuan, Dongning; Liu, Jie; Leng, Weinan; Kopley, Thomas E

    2008-10-01

    We report a simple fabrication method of creating a three-dimensional single-walled carbon nanotube (CNT) architecture in which suspended CNTs are aligned parallel to each other along the conventionally unused third dimension at lithographically defined locations. Combining top-down lithography with the bottom-up block copolymer self-assembly technique and utilizing the excellent film forming capability of polymeric materials, highly uniform catalyst nanoparticles with an average size of 2.0 nm have been deposited on sidewalls for generating CNTs with 1 nm diameter. This three-dimensional platform is useful for fundamental studies as well as technological exploration. The fabrication method described herein is applicable for the synthesis of other very small 1D nanomaterials using the catalytic vapor deposition technique. PMID:18771331

  16. Is there a Difference in Van Der Waals Interactions between Rare Gas Atoms Adsorbed on Metallic and Semiconducting Single-Walled Carbon Nanotubes?

    SciTech Connect

    Chen, De-Li; Mandeltort, Lynn; Saidi, Wissam A.; Yates, John T.; Cole, Milton W.; Johnson, J. Karl

    2013-03-01

    Differences in polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals-corrected density functional theory (DFT) that binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programmed desorption of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected DFT are in good agreement with experiments.

  17. Highly efficient metal-free growth of nitrogen-doped single-walled carbon nanotubes on plasma-etched substrates for oxygen reduction.

    PubMed

    Yu, Dingshan; Zhang, Qiang; Dai, Liming

    2010-11-01

    We have for the first time developed a simple plasma-etching technology to effectively generate metal-free particle catalysts for efficient metal-free growth of undoped and/or nitrogen-doped single-walled carbon nanotubes (CNTs). Compared with undoped CNTs, the newly produced metal-free nitrogen-containing CNTs were demonstrated to show relatively good electrocatalytic activity and long-term stability toward oxygen reduction reaction (ORR) in an acidic medium. Owing to the highly generic nature of the plasma etching technique, the methodology developed in this study can be applied to many other substrates for efficient growth of metal-free CNTs for various applications, ranging from energy related to electronic and to biomedical systems. PMID:20929222

  18. Toxicity of single-walled carbon nanotubes.

    PubMed

    Ong, Li-Chu; Chung, Felicia Fei-Lei; Tan, Yuen-Fen; Leong, Chee-Onn

    2016-01-01

    Carbon nanotubes (CNTs) are an important class of nanomaterials, which have numerous novel properties that make them useful in technology and industry. Generally, there are two types of CNTs: single-walled nanotubes (SWNTs) and multi-walled nanotubes. SWNTs, in particular, possess unique electrical, mechanical, and thermal properties, allowing for a wide range of applications in various fields, including the electronic, computer, aerospace, and biomedical industries. However, the use of SWNTs has come under scrutiny, not only due to their peculiar nanotoxicological profile, but also due to the forecasted increase in SWNT production in the near future. As such, the risk of human exposure is likely to be increased substantially. Yet, our understanding of the toxicological risk of SWNTs in human biology remains limited. This review seeks to examine representative data on the nanotoxicity of SWNTs by first considering how SWNTs are absorbed, distributed, accumulated and excreted in a biological system, and how SWNTs induce organ-specific toxicity in the body. The contradictory findings of numerous studies with regards to the potential hazards of SWNT exposure are discussed in this review. The possible mechanisms and molecular pathways associated with SWNT nanotoxicity in target organs and specific cell types are presented. We hope that this review will stimulate further research into the fundamental aspects of CNTs, especially the biological interactions which arise due to the unique intrinsic characteristics of CNTs. PMID:25273022

  19. Improvements in Production of Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Balzano, Leandro; Resasco, Daniel E.

    2009-01-01

    A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to modification for conversion from batch to continuous production.

  20. Self-formation of highly aligned metallic, semiconducting and single chiral single-walled carbon nanotubes assemblies via a crystal template method

    NASA Astrophysics Data System (ADS)

    Kawai, Hideki; Hasegawa, Kai; Oyane, Ayako; Naitoh, Yasuhisa; Yanagi, Kazuhiro

    2014-09-01

    The fabrication of an aligned array of single-walled carbon nanotubes (SWCNTs) with a single chiral state has been a significant challenge for SWCNT applications as well as for basic science research. Here, we developed a simple, unique technique to produce assemblies in which metallic, semiconducting, and single chiral state SWCNTs were densely and highly aligned. We utilized a crystal of surfactant as a template on which mono-dispersed SWCNTs in solution self-assembled. Micro-Raman measurements and scanning electron microscopy measurements clearly showed that the SWCNTs were highly and densely aligned parallel to the crystal axis, indicating that approximately 70% of the SWCNTs were within 7 of being parallel. Moreover, the assemblies exhibited good field effect transistor characteristics with an on/off ratio of 1.3 105.

  1. Comparison of sample digestion techniques for the determination of trace and residual catalyst metal content in single-wall carbon nanotubes by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Grinberg, Patricia; Sturgeon, Ralph E.; Diehl, Liange de O.; Bizzi, Cezar A.; Flores, Erico M. M.

    2015-03-01

    A single-wall carbon nanotube material produced by laser ablation of renewable biochar in the presence of Ni and Co catalyst was characterized for residual catalyst (Co and Ni) as well as trace metal impurity content (Fe, Mo, Cr, Pb and Hg) by isotope dilution ICP-MS following sample digestion. Several matrix destruction procedures were evaluated, including a multi-step microwave-assisted acid digestion, dry ashing at 450 °C and microwave-induced combustion with oxygen. Results were benchmarked against those derived from neutron activation analysis and also supported by solid sampling continuum source GF-AAS for several of the elements. Although laborious to execute, the multi-step microwave-assisted acid digestion proved to be most reliable for recovery of the majority of the analytes, although content of Cr remained biased low for each approach, likely due to its presence as refractory carbide.

  2. Self-formation of highly aligned metallic, semiconducting and single chiral single-walled carbon nanotubes assemblies via a crystal template method

    SciTech Connect

    Kawai, Hideki; Hasegawa, Kai; Yanagi, Kazuhiro; Oyane, Ayako; Naitoh, Yasuhisa

    2014-09-01

    The fabrication of an aligned array of single-walled carbon nanotubes (SWCNTs) with a single chiral state has been a significant challenge for SWCNT applications as well as for basic science research. Here, we developed a simple, unique technique to produce assemblies in which metallic, semiconducting, and single chiral state SWCNTs were densely and highly aligned. We utilized a crystal of surfactant as a template on which mono-dispersed SWCNTs in solution self-assembled. Micro-Raman measurements and scanning electron microscopy measurements clearly showed that the SWCNTs were highly and densely aligned parallel to the crystal axis, indicating that approximately 70% of the SWCNTs were within 7° of being parallel. Moreover, the assemblies exhibited good field effect transistor characteristics with an on/off ratio of 1.3 × 10{sup 5}.

  3. Methods for Gas Sensing with Single-Walled Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor)

    2013-01-01

    Methods for gas sensing with single-walled carbon nanotubes are described. The methods comprise biasing at least one carbon nanotube and exposing to a gas environment to detect variation in temperature as an electrical response.

  4. Vapor Phase Filling of Single Wall Carbon Nanotubes with Cesium

    NASA Astrophysics Data System (ADS)

    Nemes, Norbert; Smith, Brian; Luzzi, David; Fischer, John

    2000-03-01

    Techniques for filling single wall carbon nanotubes (SWNTs) with alkali metals could enable the synthesis of a new family of functional materials. In this work, we investigate the filling of SWNTs with cesium using a vapor phase process. The method is a natural extension of the mechanism by which SWNTs are filled with C_60 molecules (B. W. Smith and D. E. Luzzi, submitted 1999). Observation by high resolution transmission electron microscopy (HRTEM) reveals the presence of cesium inside SWNTs. X-ray diffraction (XRD), electron spin resonance (ESR), and electronic transport measurements of this material are discussed.

  5. Metal-Organic Polymers Containing Discrete Single-Walled Nanotube as a Heterogeneous Catalyst for the Cycloaddition of Carbon Dioxide to Epoxides.

    PubMed

    Zhou, Zhen; He, Cheng; Xiu, Jinghai; Yang, Lu; Duan, Chunying

    2015-12-01

    The cycloaddition of carbon dioxide to epoxides to produce cyclic carbonates is quite promising and does not result in any side products. A discrete single-walled metal-organic nanotube was synthesized by incorporating a tetraphenyl-ethylene moiety as the four-point connected node. The assembled complex has a large cross-section, with an exterior wall diameter of 3.6 nm and an interior channel diameter of 2.1 nm. It features excellent activity toward the cycloaddition of carbon dioxide, with a turnover number of 17,500 per mole of catalyst and an initial turnover frequency as high as 1000 per mole of catalyst per hour. Only minimal decreases in the catalytic activity were observed after 70 h under identical reaction conditions, and a total turnover number as high as 35,000 was achieved. A simple comparison of relative porous MOFs suggested that the cross-section of the channels is an important factor influencing the transport of the substrates and products through the channel. PMID:26584402

  6. Center for Applications of Single-Walled Carbon Nanotubes

    SciTech Connect

    Resasco, Daniel E

    2008-02-21

    This report describes the activities conducted under a Congressional Direction project whose goal was to develop applications for Single-walled carbon nanotubes, under the Carbon Nanotube Technology Center (CANTEC), a multi-investigator program that capitalizes on OU’s advantageous position of having available high quality carbon nanotubes. During the first phase of CANTEC, 11 faculty members and their students from the College of Engineering developed applications for carbon nanotubes by applying their expertise in a number of areas: Catalysis, Reaction Engineering, Nanotube synthesis, Surfactants, Colloid Chemistry, Polymer Chemistry, Spectroscopy, Tissue Engineering, Biosensors, Biochemical Engineering, Cell Biology, Thermal Transport, Composite Materials, Protein synthesis and purification, Molecular Modeling, Computational Simulations. In particular, during this phase, the different research groups involved in CANTEC made advances in the tailoring of Single-Walled Carbon Nanotubes (SWNT) of controlled diameter and chirality by Modifying Reaction Conditions and the Nature of the catalyst; developed kinetic models that quantitatively describe the SWNT growth, created vertically oriented forests of SWNT by varying the density of metal nanoparticles catalyst particles, and developed novel nanostructured SWNT towers that exhibit superhydrophobic behavior. They also developed molecular simulations of the growth of Metal Nanoparticles on the surface of SWNT, which may have applications in the field of fuell cells. In the area of biomedical applications, CANTEC researchers fabricated SWNT Biosensors by a novel electrostatic layer-by-layer (LBL) deposition method, which may have an impact in the control of diabetes. They also functionalized SWNT with proteins that retained the protein’s biological activity and also retained the near-infrared light absorbance, which finds applications in the treatment of cancer.

  7. Three-Dimensional Flexible Complementary Metal-Oxide-Semiconductor Logic Circuits Based On Two-Layer Stacks of Single-Walled Carbon Nanotube Networks.

    PubMed

    Zhao, Yudan; Li, Qunqing; Xiao, Xiaoyang; Li, Guanhong; Jin, Yuanhao; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan

    2016-02-23

    We have proposed and fabricated stable and repeatable, flexible, single-walled carbon nanotube (SWCNT) thin film transistor (TFT) complementary metal-oxide-semiconductor (CMOS) integrated circuits based on a three-dimensional (3D) structure. Two layers of SWCNT-TFT devices were stacked, where one layer served as n-type devices and the other one served as p-type devices. On the basis of this method, it is able to save at least half of the area required to construct an inverter and make large-scale and high-density integrated CMOS circuits easier to design and manufacture. The 3D flexible CMOS inverter gain can be as high as 40, and the total noise margin is more than 95%. Moreover, the input and output voltage of the inverter are exactly matched for cascading. 3D flexible CMOS NOR, NAND logic gates, and 15-stage ring oscillators were fabricated on PI substrates with high performance as well. Stable electrical properties of these circuits can be obtained with bending radii as small as 3.16 mm, which shows that such a 3D structure is a reliable architecture and suitable for carbon nanotube electrical applications in complex flexible and wearable electronic devices. PMID:26768020

  8. Thermoelectric power of a single-walled carbon nanotubes rope.

    PubMed

    Yu, Fang; Hu, Lijun; Zhou, Haiqing; Qiu, Caiyu; Yang, Huaichao; Chen, Minjiang; Lu, Jianglei; Sun, Lianfeng

    2013-02-01

    In this work, a rope of single-walled carbon nanotubes is prepared by using a diamond wire drawing die. At atmospheric condition, the electrical conductance and the thermoelectric voltage of single-walled carbon nanotubes rope have been investigated with the hot-side temperature ranging from 292 to 380 K, and cold-side temperature at 292 K. For different temperatures in the range of 292 to 380 K at hot-side, the current-voltage curves are almost parallel to each other, indicating that the electrical conductance does not change. The dynamic characteristics of voltage at positive, zero and negative current bias demonstrate that a thermoelectric voltage is induced with a direction from hot- to cold-side. The induced thermoelectric voltage shows linear dependence on the temperature difference between hot- and cold-side. The thermoelectric power of single-walled carbon nanotubes rope is found to be positive and has a value about 17.8 +/- 1.0 microV/K. This result suggests the hole-like carriers in single-walled carbon nanotubes rope. This study will pave the way for single-walled carbon nanotubes based thermoelectric devices. PMID:23646631

  9. Single-Wall Carbon Nanotubes as Transparent Electrodes for Photovoltaics

    SciTech Connect

    Weeks, C.; Peltola, J.; Levitsky, I.; Glatkowski, P.; van de Lagemaat, J.; Rumbles, G.; Barnes, T.; Coutts, T.

    2006-01-01

    Transparent and electrically conductive coatings and films have a variety of uses in the fast-growing field of optoelectronic applications. Transparent electrodes typically include semiconductive metal oxides such as indium tin oxide (ITO), and conducting polymers such as poly(3,4-ethylenedioxythiophene), doped and stabilized with poly(styrenesulfonate) (PEDOT/PSS). In recent years, Eikos, Inc. has conceived and developed technologies to deliver novel alternatives using single-wall carbon nanotubes (SWNT). These technologies offer products having a broad range of conductivity, excellent transparency, neutral color tone, good adhesion, abrasion resistance as well as mechanical robustness. Additional benefits include ease of ambient processing and patterning capability. This paper reports our recent findings on achieving 2.6% and 1.4% efficiencies on nonoptimized organic photovoltaic cells employing SWNT as a transparent electrode.

  10. Single Wall Carbon Nanotube-Based Structural Health Sensing Materials

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Ingram, JoAnne L.; Jordan, Jeffrey D.; Wincheski, Russell A.; Smits, Jan M.; Williams, Phillip A.

    2004-01-01

    Single wall carbon nanotube (SWCNT)-based materials represent the future aerospace vehicle construction material of choice based primarily on predicted strength-to-weight advantages and inherent multifunctionality. The multifunctionality of SWCNTs arises from the ability of the nanotubes to be either metallic or semi-conducting based on their chirality. Furthermore, simply changing the environment around a SWCNT can change its conducting behavior. This phenomenon is being exploited to create sensors capable of measuring several parameters related to vehicle structural health (i.e. strain, pressure, temperature, etc.) The structural health monitor is constructed using conventional electron-beam lithographic and photolithographic techniques to place specific electrode patterns on a surface. SWCNTs are then deposited between the electrodes using a dielectrophoretic alignment technique. Prototypes have been constructed on both silicon and polyimide substrates, demonstrating that surface-mountable and multifunctional devices based on SWCNTs can be realized.

  11. Single-walled carbon nanotubes as excitonic optical wires.

    PubMed

    Joh, Daniel Y; Kinder, Jesse; Herman, Lihong H; Ju, Sang-Yong; Segal, Michael A; Johnson, Jeffreys N; Chan, Garnet K-L; Park, Jiwoong

    2011-01-01

    Although metallic nanostructures are useful for nanoscale optics, all of their key optical properties are determined by their geometry. This makes it difficult to adjust these properties independently, and can restrict applications. Here we use the absolute intensity of Rayleigh scattering to show that single-walled carbon nanotubes can form ideal optical wires. The spatial distribution of the radiation scattered by the nanotubes is determined by their shape, but the intensity and spectrum of the scattered radiation are determined by exciton dynamics, quantum-dot-like optical resonances and other intrinsic properties. Moreover, the nanotubes display a uniform peak optical conductivity of approximately 8 e(2)/h, which we derive using an exciton model, suggesting universal behaviour similar to that observed in nanotube conductance. We further demonstrate a radiative coupling between two distant nanotubes, with potential applications in metamaterials and optical antennas. PMID:21170038

  12. Purification Procedures for Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Gorelik, Olga P.; Nikolaev, Pavel; Arepalli, Sivaram

    2001-01-01

    This report summarizes the comparison of a variety of procedures used to purify carbon nanotubes. Carbon nanotube material is produced by the arc process and laser oven process. Most of the procedures are tested using laser-grown, single-wall nanotube (SWNT) material. The material is characterized at each step of the purification procedures by using different techniques including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Raman, X-ray diffractometry (XRD), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), and high-performance liquid chromatography (HPLC). The identified impurities are amorphous and graphitic carbon, catalyst particle aggregates, fullerenes, and hydrocarbons. Solvent extraction and low-temperature annealing are used to reduce the amount of volatile hydrocarbons and dissolve fullerenes. Metal catalysts and amorphous as well as graphitic carbon are oxidized by reflux in acids including HCl, HNO3 and HF and other oxidizers such as H2O2. High-temperature annealing in vacuum and in inert atmosphere helps to improve the quality of SWNTs by increasing crystallinity and reducing intercalation.

  13. Chemical Sensing with Polyaniline Coated Single-Walled Carbon Nanotubes

    SciTech Connect

    Ding, Mengning; Tang, Yifan; Gou, Pingping; Reber, Michael J; Star, Alexander

    2011-01-25

    Single-walled carbon nanotube/polyaniline (SWNT/PAni) nanocomposite with controlled core/shell morphology was synthesized by a noncovalent functionalization approach. Unique electron interactions between the SWNT core and the PAni shell were studied electrochemically and spectroscopically, and superior sensor performance to chemical gases and vapors was demonstrated.

  14. A Computational Experiment on Single-Walled Carbon Nanotubes

    ERIC Educational Resources Information Center

    Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the…

  15. A Computational Experiment on Single-Walled Carbon Nanotubes

    ERIC Educational Resources Information Center

    Simpson, Scott; Lonie, David C.; Chen, Jiechen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates single-walled carbon nanotubes (SWNTs) has been developed and employed in an upper-level undergraduate physical chemistry laboratory course. Computations were carried out to determine the electronic structure, radial breathing modes, and the influence of the nanotube's diameter on the

  16. Enhanced Raman Microprobe Imaging of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Hadjiev, V. G.; Arepalli, S.; Nikolaev, P.; Jandl, S.; Yowell, L.

    2003-01-01

    We explore Raman microprobe capabilities to visualize single wall carbon nanotubes (SWCNTs). Although this technique is limited to a micron scale, we demonstrate that images of individual SWCNTs, bundles or their agglomerates can be generated by mapping Raman active elementary excitations. We measured the Raman response from carbon vibrations in SWCNTs excited by confocal scanning of a focused laser beam. Carbon vibrations reveal key characteristics of SWCNTs as nanotube diameter distribution (radial breathing modes, RBM, 100-300 cm(exp -1)), presence of defects and functional groups (D-mode, 1300-1350 cm(exp -1)), strain and oxidation states of SWCNTs, as well as metallic or semiconducting character of the tubes encoded in the lineshape of the G-modes at 1520-1600 cm(exp - 1). In addition, SWCNTs are highly anisotropic scatterers. The Raman response from a SWCNT is maximal for incident light polarization parallel to the tube axis and vanishing for perpendicular directions. We show that the SWCNT bundle shape or direction can be determined, with some limitations, from a set of Raman images taken at two orthogonal directions of the incident light polarization.

  17. Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivram; Nikolaev, Pavel; Gorelik, Olga

    2010-01-01

    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized.

  18. Fluctuation theory of single-walled carbon nanotube formation

    NASA Astrophysics Data System (ADS)

    Vosel, Sergey V.; Onischuk, Andrei A.; Purtov, Peter A.; Nasibulin, Albert G.

    2013-11-01

    In the framework of classical fluctuation theory an analytical formula is derived for the reversible work of formation of just detached carbon cap on the surface of catalyst nanoparticle (NP). This cap is considered as single walled carbon nanotube (SWCNT) formation center. The work of cap formation depends on the source carbon chemical potential ?C. Using the derived formula for this work an expression for the rate of SWCNT formation is determined. From this expression the SWCNT diameter distributions can be obtained. The obtained distributions have sharp maxima. It is found that the modal SWCNT diameter dm increases weakly with ?C being in the narrow window of 1.0 < dm < 1.8 nm when changing the source carbon chemical potential in a wide range. The determined diameter distributions proved to be in a good agreement with the typical values of the SWCNT diameters as experimentally measured in the chemical vapor deposition process. The increase of dm is accompanied by the increase of the distribution width ?d. The selectivity dm/?d is a function of ?C, the higher values of ?C the worse selectivity is observed. Although the value of the SWCNT formation rate I cannot be calculated precisely the relationship between I and the system parameters, such as the NP radius RS, can be obtained. This relationship is derived for the solid-liquid-solid system. To determine the function I(RS) for nanotubes of a certain diameter d, formulas for catalyst/amorphous carbon mutual solubilities as functions of NP radius are derived in the framework of the rigorous Gibbs theory of interface. Using the derived formulas an expression giving the dependence I(RS) is obtained. The expression predicts an increase of I with the radius RS. The estimations carried out for the metal/carbon interface surface tension of 1000 mN/m show that the SWCNT formation rate increases by a few orders of magnitude with the radius increase from 1 to 10 nm.

  19. Thermionic Emission of Single-Wall Carbon Nanotubes Measured

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Krainsky, Isay L.; Bailey, Sheila G.; Elich, Jeffrey M.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2004-01-01

    Researchers at the NASA Glenn Research Center, in collaboration with the Rochester Institute of Technology, have investigated the thermionic properties of high-purity, single-wall carbon nanotubes (SWNTs) for use as electron-emitting electrodes. Carbon nanotubes are a recently discovered material made from carbon atoms bonded into nanometer-scale hollow tubes. Such nanotubes have remarkable properties. An extremely high aspect ratio, as well as unique mechanical and electronic properties, make single-wall nanotubes ideal for use in a vast array of applications. Carbon nanotubes typically have diameters on the order of 1 to 2 nm. As a result, the ends have a small radius of curvature. It is these characteristics, therefore, that indicate they might be excellent potential candidates for both thermionic and field emission.

  20. Structure of single-wall carbon nanotubes: a graphene helix.

    PubMed

    Lee, Jae-Kap; Lee, Sohyung; Kim, Jin-Gyu; Min, Bong-Ki; Kim, Yong-Il; Lee, Kyung-Il; An, Kay Hyeok; John, Phillip

    2014-08-27

    Evidence is presented in this paper that certain single-wall carbon nanotubes are not seamless tubes, but rather adopt a graphene helix resulting from the spiral growth of a nano-graphene ribbon. The residual traces of the helices are confirmed by high-resolution transmission electron microscopy and atomic force microscopy. The analysis also shows that the tubular graphene material may exhibit a unique armchair structure and the chirality is not a necessary condition for the growth of carbon nanotubes. The description of the structure of the helical carbon nanomaterials is generalized using the plane indices of hexagonal space groups instead of using chiral vectors. It is also proposed that the growth model, via a graphene helix, results in a ubiquitous structure of single-wall carbon nanotubes. PMID:24838196

  1. Chirality Characterization of Dispersed Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Williams, Phillip A.; Mayweather, Candis D.; Wincheski, Buzz; Park, Cheol; Namkung, Juock S.

    2005-01-01

    Raman scattering and optical absorption spectroscopy are used for the chirality characterization of HiPco single wall carbon nanotubes (SWNTs) dispersed in aqueous solution with the surfactant sodium dodecylbenzene sulfonate. Radial breathing mode (RBM) Raman peaks for semiconducting and metallic SWNTs are identified by directly comparing the Raman spectra with the Kataura plot. The SWNT diameters are calculated from these resonant peak positions. Next, a list of (n, m) pairs, yielding the SWNT diameters within a few percent of that obtained from each resonant peak position, is established. The interband transition energies for the list of SWNT (n, m) pairs are calculated based on the tight binding energy expression for each list of the (n, m) pairs, and the pairs yielding the closest values to the corresponding experimental optical absorption peaks are selected. The results reveal that (1, 11), (4, 11), and (0, 11) as the most probable chiralities of the semiconducting nanotubes. The results also reveal that (4, 16), (6, 12) and (8, 8) are the most probable chiralities for the metallic nanotubes. Directly relating the Raman scattering data to the optical absorption spectra, the present method is considered the simplest technique currently available. Another advantage of this technique is the use of the E(sup 8)(sub 11) peaks in the optical absorption spectrum in the analysis to enhance the accuracy in the results.

  2. Directed Assembly of Single Wall Carbon Nanotube Field Effect Transistors.

    PubMed

    Penzo, Erika; Palma, Matteo; Chenet, Daniel A; Ao, Geyou; Zheng, Ming; Hone, James C; Wind, Shalom J

    2016-02-23

    The outstanding electronic properties of single wall carbon nanotubes (SWCNTs) have made them prime candidates for future nanoelectronics technologies. One of the main obstacles to the implementation of advanced SWCNT electronics to date is the inability to arrange them in a manner suitable for complex circuits. Directed assembly of SWCNT segments onto lithographically patterned and chemically functionalized substrates is a promising way to organize SWCNTs in topologies that are amenable to integration for advanced applications, but the placement and orientational control required have not yet been demonstrated. We have developed a technique for assembling length sorted and chirality monodisperse DNA-wrapped SWCNT segments on hydrophilic lines patterned on a passivated oxidized silicon substrate. Placement of individual SWCNT segments at predetermined locations was achieved with nanometer accuracy. Three terminal electronic devices, consisting of a single SWCNT segment placed either beneath or on top of metallic source/drain electrodes were fabricated. Devices made with semiconducting nanotubes behaved as typical p-type field effect transistors (FETs), whereas devices made with metallic nanotubes had a finite resistance with little or no gate modulation. This scalable, high resolution approach represents an important step forward toward the potential implementation of complex SWCNT devices and circuits. PMID:26807948

  3. Production of single-walled carbon nanotube grids

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

    2013-12-03

    A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

  4. Theoretical elastic properties of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Alford, J. T.; Landis, B. A.; Mintmire, J. W.

    Carbon fiber nanotubes are a relatively new material with amazing physical and electrical properties. We report the results of the first-principles calculations for the elastic properties of several single-walled carbon nanotubes (SWNT) with diameters of 4-17 . We show that the torsional and axial strain potential energy curves can be well described in terms of the experimental elastic constants of bulk graphite.

  5. Spectroscopy-Based Characterization of Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Namkung, Juock S.; Wincheski, Russell A.; Seo, J.; Park, Cheol

    2003-01-01

    We present the initial results of our combined investigation of Raman scattering and optical absorption spectroscopy in a batch of single wall carbon nanotubes (SWNTs). The SWNT diameters are first estimated from the four radial breathing mode (RBM) peaks using a simple relation of omega(sub RBM) = 248/cm nm/d(sub t)(nm). The calculated diameter values are related to the optical absorption peaks through the expressions of first interband transition energies, i.e., E(sup S)(sub 11) = 2a gamma/d(sub t) for semiconducting and E(sup S)(sub 11) = 6a gamma/d(sub t) for metallic SWNTs, respectively, where a is the carbon-carbon bond length (0.144 nm) and gamma is the energy of overlapping electrons from nearest neighbor atoms, which is 2.9 eV for a SWNT. This analysis indicates that three RBM peaks are from semiconducting tubes, and the remaining one is from metallic tubes. The detailed analysis in the present study is focused on these three peaks of the first absorption band by determining the values of the representative (n,m) pairs. The first step of analysis is to construct a list of possible (n,m) pairs from the diameters calculated from the positions of the RBM peaks. The second step is to compute the first interband transition energy, E(sub 11), by substituting the constructed list of (n,m) into the expression of Reich and Thomsen, and Saito et al. Finally, the pairs with the energies closest to the experimental values are selected.

  6. Assessing the pulmonary toxicity of single-walled carbon nanohorns

    SciTech Connect

    Lynch, Rachel M; Voy, Brynn H; Glass-Mattie, Dana F; Mahurin, Shannon Mark; Saxton, Arnold; Donnel, Robert L.; Cheng, Mengdawn

    2007-01-01

    Previous studies have suggested that single-walled carbon nanotubes (SWCNTs) may be pose a pulmonary hazard. We investigated the pulmonary toxicity of single-walled carbon nanohorns (SWCNHs), a relatively new carbon-based nanomaterial that is structurally similar to SWCNTs. Mice were exposed to 30 g of surfactant-suspended SWCNHs by pharyngeal aspiration and sacrificed 24 hours or 7 days post exposure. Total and differential cell counts and cytokine analysis of bronchoalveolar lavage fluid demonstrated a mild inflammatory response which was mitigated by day 7 post exposure. Whole lung microarray analysis demonstrated that SWCNH-exposure did not lead to robust changes in gene expression. Finally, histological analysis showed no evidence of granuloma formation or fibrosis following SWCNH aspiration. These combined results suggest that SWCNH is a relatively innocuous nanomaterial when delivered to mice in vivo using aspiration as a delivery mechanism.

  7. Assessing the pulmonary toxicity of single-walled carbon nanohorns

    SciTech Connect

    Lynch, Rachel M; Voy, Brynn H; Glass-Mattie, Dana F; Mahurin, Shannon Mark; Saxton, Arnold; Donnel, Robert L.; Cheng, Mengdawn

    2007-01-01

    Previous studies have suggested that single-walled carbon nanotubes (SWCNTs) may pose a pulmonary hazard. We investigated the pulmonary toxicity of single-walled carbon nanohorns (SWCNHs), a relatively new carbon-based nanomaterial that is structurally similar to SWCNTs. Mice were exposed to 30 {micro}g of surfactant-suspended SWCNHs or an equal volume of vehicle control by pharyngeal aspiration and sacrificed 24 hours or 7 days post-exposure. Total and differential cell counts and cytokine analysis of bronchoalveolar lavage fluid demonstrated a mild inflammatory response which was mitigated by day 7 post-exposure. Whole lung microarray analysis demonstrated that SWCNH-exposure did not lead to robust changes in gene expression. Finally, histological analysis showed no evidence of granuloma formation or fibrosis following SWCNH aspiration. These combined results suggest that SWCNH is a relatively innocuous nanomaterial when delivered to mice in vivo using aspiration as a delivery mechanism.

  8. Synthesis, assembly, and applications of single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Ryu, Koungmin

    This dissertation presents the synthesis and assembly of aligned carbon nanotubes, and their applications in both nano-electronics such as transistor and integrated circuits and macro-electronics in energy conversion devices as transparent conducting electrodes. Also, the high performance chemical sensor using metal oxide nanowire has been demonstrated. Chapter 1 presents a brief introduction of carbon nanotube, followed by discussion of a new synthesis technique using nanosphere lithography to grow highly aligned single-walled carbon nanotubes atop quartz and sapphire substrates. This method offers great potential to produce carbon nanotube arrays with simultaneous control over the nanotube orientation, position, density, diameter and even chirality. Chapter 3 introduces the wafer-scale integration and assembly of aligned carbon nanotubes, including full-wafer scale synthesis and transfer of massively aligned carbon nanotube arrays, and nanotube device fabrication on 4 inch Si/SiO2 wafer to yield submicron channel transistors with high on-current density ˜ 20 muA/mum and good on/off ratio and CMOS integrated circuits. In addition, various chemical doping methods for n-type nanotube transistors are studied to fabricate CMOS integrated nanotube circuits such as inverter, NAND and NOR logic devices. Furthermore, defect-tolerant circuit design for NAND and NOR is proposed and demonstrated to guarantee the correct operation of logic circuit, regardless of the presence of mis-aligned or mis-positioned nanotubes. Carbon nanotube flexible electronics and smart textiles for ubiquitous computing and sensing are demonstrated in chapter 4. A facile transfer printing technique has been introduced to transfer massively aligned single-walled carbon nanotubes from the original sapphire/quartz substrates to virtually any other substrates, including glass, silicon, polymer sheets, and even fabrics. The characterization of transferred nanotubes reveals that the transferred nanotubes are highly conductive, transparent, and flexible as well. Based on transferred nanotube arrays on fabric, we have successfully demonstrated nanotube transistors with on/off ratios ˜ 105, and chemical sensors for low-concentration NO2 and 2,4,6-trinitrotoluene (TNT). In Chapter 5, I present the study of transparent conductive thin films made with two kinds of commercial carbon nanotubes: HiPCO and arc-discharge nanotubes. These films have been further exploited as hole-injection electrodes for organic light emitting diodes (OLEDs) on both rigid glass and flexible substrates. Our experiments reveal that films based on arc discharge nanotubes are overwhelmingly better than HiPCO-nanotube-based films in all the critical aspects, including the surface roughness, sheet resistance, and transparency. The optimized films show a typical sheet resistance of ˜160O/□ at 87% transparency and have been successfully used to make OLEDs with high stability and long lifetime. Lastly, I present the fast and scalable integration of nanowire chemical sensors with micromachined hotplates built on SiN membranes. These hotplates allowed nanowire chemical sensors to operate at elevated temperatures in order to enhance the sensitivity of chemical sensors to target gases. By applying different current through the platinum heating filament, we can easily vary the device temperature from room temperature to 350°C. These nanosensors with integrated hot plates have been exploited for the detection of ethanol, CO and hydrogen down to concentrations of 1 ppm, 10 ppm and 50 ppm, respectively.

  9. Optoelectronic properties of single-wall carbon nanotubes.

    PubMed

    Nanot, Sbastien; Hroz, Erik H; Kim, Ji-Hee; Hauge, Robert H; Kono, Junichiro

    2012-09-18

    Single-wall carbon nanotubes (SWCNTs), with their uniquely simple crystal structures and chirality-dependent electronic and vibrational states, provide an ideal laboratory for the exploration of novel 1D physics, as well as quantum engineered architectures for applications in optoelectronics. This article provides an overview of recent progress in optical studies of SWCNTs. In particular, recent progress in post-growth separation methods allows different species of SWCNTs to be sorted out in bulk quantities according to their diameters, chiralities, and electronic types, enabling studies of (n,m)-dependent properties using standard macroscopic characterization measurements. Here, a review is presented of recent optical studies of samples enriched in 'armchair' (n = m) species, which are truly metallic nanotubes but show excitonic interband absorption. Furthermore, it is shown that intense ultrashort optical pulses can induce ultrafast bandgap oscillations in SWCNTs, via the generation of coherent phonons, which in turn modulate the transmission of a delayed probe pulse. Combined with pulse-shaping techniques, coherent phonon spectroscopy provides a powerful method for studying exciton-phonon coupling in SWCNTs in a chirality-selective manner. Finally, some of the basic properties of highly aligned SWCNT films are highlighted, which are particularly well-suited for optoelectronic applications including terahertz polarizers with nearly perfect extinction ratios and broadband photodetectors. PMID:22911973

  10. Fabrication of stretchable single-walled carbon nanotube logic devices.

    PubMed

    Yoon, Jangyeol; Shin, Gunchul; Kim, Joonsung; Moon, Young Sun; Lee, Seung-Jung; Zi, Goangseup; Ha, Jeong Sook

    2014-07-23

    The fabrication of a stretchable single-walled carbon nanotube (SWCNT) complementary metal oxide semiconductor (CMOS) inverter array and ring oscillators is reported. The SWCNT CMOS inverter exhibits static voltage transfer characteristics with a maximum gain of 8.9 at a supply voltage of 5 V. The fabricated devices show stable electrical performance under the maximum strain of 30% via forming wavy configurations. In addition, the 3-stage ring oscillator demonstrates a stable oscillator frequency of ?3.5 kHz at a supply voltage of 10 V and the oscillating waveforms are maintained without any distortion under cycles of pre-strain and release. The strains applied to the device upon deformation are also analyzed by using the classical lamination theory, estimating the local strain of less than 0.6% in the SWCNT channel and Pd electrode regions which is small enough to keep the device performance stable under the pre-strain up to 30%. This work demonstrates the potential application of stretchable SWCNT logic circuit devices in future wearable electronics. PMID:24700788

  11. Probing Scattering in Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Rosenblatt, Sami

    2005-03-01

    Transport measurements and atomic force microscopy were used to study electron scattering rates in metallic single-walled carbon nanotubes. From scaling of the resistance of the same nanotube with length in the low and high bias regimes, the mean free paths for both regimes are inferred. The observed scattering rates are consistent with calculations for acoustic phonon scattering at low biases and zone boundary/optical phonon scattering at high biases. We have also developed techniques to probe the high frequency transport properties of nanotube transistors. We have used the nanotube transistor as a microwave mixer operating at frequencies up to 50 GHz. The long-term goal is to directly measure the fundamental excitations and scattering rates. The author would like to acknowledge Ji-Yong Park, Yuval Yaish, Vera Sazonova, Xinjian Zhou, Hao Lin, Hande Ustunel, Stephan Braig, T.A. Arias, Piet W. Brower, Sandip Tiwari and Paul L. McEuen of Cornell University for their contributions to this work.

  12. Synthesis of NiO/carbon shell/single-walled carbon nanotube composites as anode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Yufan; Sheng, Leimei; Zhao, Hongbin; An, Kang; Yu, Liming; Xu, Jiaqiang; Zhao, Xinluo

    2015-08-01

    In this study, NiO/carbon shell/single-walled carbon nanotube composites are prepared by heat treating the single-walled carbon nanotube samples synthesized by direct current arc discharge method. The morphology and nanostructure of the composites are affected by the heat treatment temperature according to the X-ray diffraction, Raman spectra and high-resolution transmission electron microscopy results. The electrochemical measurements are evaluated in coin-type cells versus metallic lithium. After heat treatment in H2 at 600 °C for 1 h and in air at 300 °C for 10 h, the NiO nanoparticles encapsulated by carbon shells are evenly distributed on the surface of web-like single-walled carbon nanotubes and a perfect NiO/carbon shell/single-walled carbon nanotube nanostructure is formed. This NiO/carbon shell/single-walled carbon nanotube composite shows a high reversible specific capacity of 758 mA h g-1 after 60 cycles at a current density of 100 mA g-1 and an excellent rate capacity of about 594 mA h g-1 even at a high current density of 1600 mA g-1. Therefore, the NiO/carbon shell/single-walled carbon nanotube composites have significant potential for applications in energy storage devices.

  13. Reinforcement of Epoxies Using Single Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Krishnamoorti, Ramanan; Sharma, Jitendra; Chatterjee, Tirtha

    2008-03-01

    The reinforcement of bisphenol-A and bisphenol-F epoxies using single walled carbon nanotubes has been approached experimentally by understanding the nature of interactions between the matrices and nanotubes. Unassisted dispersions of single walled carbon nanotubes in epoxies were studied by a combination of radiation scattering (elastic small angle scattering and inelastic scattering), DSC based glass transition determination, melt rheology and solid-state mechanical testing in order to understand and correlate changes in local and global dynamics to the tailoring of composite mechanical properties. Significant changes in the glass transition temperature of the matrix can successfully account for changes in the viscoelastic properties of the epoxy dispersions for concentrations below the percolation threshold, while above the percolation threshold the network superstructure formed by the nanotubes controls the viscoelastic properties.

  14. Titanium dioxide, single-walled carbon nanotube composites

    DOEpatents

    Yao, Yuan; Li, Gonghu; Gray, Kimberly; Lueptow, Richard M.

    2015-07-14

    The present invention provides titanium dioxide/single-walled carbon nanotube composites (TiO.sub.2/SWCNTs), articles of manufacture, and methods of making and using such composites. In certain embodiments, the present invention provides membrane filters and ceramic articles that are coated with TiO.sub.2/SWCNT composite material. In other embodiments, the present invention provides methods of using TiO.sub.2/SWCNT composite material to purify a sample, such as a water or air sample.

  15. Modified Single-Wall Carbon Nanotubes for Reinforce Thermoplastic Polyimide

    NASA Technical Reports Server (NTRS)

    Lebron-COlon, Marisabel; Meador, Michael A.

    2006-01-01

    A significant improvement in the mechanical properties of the thermoplastic polyimide film was obtained by the addition of noncovalently functionalized single-wall carbon nanotubes (SWNTs). Polyimide films were reinforced using pristine SWNTs and functionalized SWNTs (F-SWNTs). The tensile strengths of the polyimide films containing F-SWNTs were found to be approximately 1.4 times higher than those prepared from pristine SWNTs.

  16. Supramolecularly knitted tethered oligopeptide/single-walled carbon nanotube organogels.

    PubMed

    Zou, Jiong; He, Xun; Fan, Jingwei; Raymond, Jeffery E; Wooley, Karen L

    2014-07-14

    A facile polymerization of an allyl-functionalized N-carboxyanhydride (NCA) monomer is utilized to construct an A-B-A-type triblock structure containing β-sheet-rich oligomeric peptide segments tethered by a poly(ethylene oxide) chain, which are capable of dispersing and gelating single-walled carbon nanotubes (SWCNTs) noncovalently in organic solvents, resulting in significant enhancement of the mechanical properties of polypeptide-based organogels. PMID:24961389

  17. Band gap opening and semiconductor-metal phase transition in (n, n) single-walled carbon nanotubes with distinctive boron-nitrogen line defect.

    PubMed

    Qiu, Ming; Xie, Yuanyuan; Gao, Xianfeng; Li, Jianyang; Deng, Yelin; Guan, Dongsheng; Ma, Lulu; Yuan, Chris

    2016-02-01

    Band gap opening and modulating are critical in dictating the functionalities of single walled carbon nanotubes (SWCNTs) in a broad array of nano-devices. Using first-principles density functional theory calculations, a class of semiconducting armchair SWCNTs with a distinctive BN line defect are studied, showing a super capacity to open the band gap of (4, 4) SWCNT to as large as 0.86 eV, while the opened band gap are found decreasing with the increasing diameters of SWCNTs. The opened band gap of SWCNTs can also be successfully modulated through both mechanical and electrical approaches by applying compressive uniaxial strain and electric field. This study provides novel insights into the large band gap opening and modulating of SWCNTs and could be useful in facilitating future applications of SWCNTs in electronic, optical and thermoelectric devices. PMID:26794602

  18. Aligned arrays of single walled carbon nanotubes for transparent electronics

    NASA Astrophysics Data System (ADS)

    Du, Frank; Rogers, John A.

    2013-06-01

    Single walled carbon nanotubes have garnered substantial interest in the electronic materials research community due to their unparalleled intrinsic electrical properties. In addition, their mechanical robustness and thin geometries make SWNTs ideal candidates for transparent electronics. Aligned arrays of SWNTs grown via chemical vapor deposition (CVD) on quartz enable device uniformity and wafer scale integration with existing commercial semiconductor processing methods. A crucial roadblock in incorporation of SWNTs in commercial electronics has been the co-existence of metallic and semiconducting SWNTs. Demanding device metrics in high performance and complex integrated electrical devices, sensors, and other applications dictate the necessity of pristine, purely semiconducting arrays of SWNTs. By exploiting a novel process in nanoscale flow of thin film organic coatings, we have demonstrated a method to purify as-grown aligned arrays to produce such as result. Comparison with single nanotube statistics, characterization using a novel thermal scanning probe microscopy technique, as well as corroboration with thermal modeling validated the result. Thin film field effect transistors exhibiting mobilities exceeding ~1000cm2/Vs and on/off ratios exceeding 10,000 were fabricated using the purified semiconducting SWNTs. This manuscript reviews some of these results, which represent the first successful demonstration of purification of aligned arrays of SWNTs, in a robust and scalable scheme that allows integration of aligned arrays into complex, high performance electrical devices. We separately also describe new results on the advanced development of soft lithography techniques with the ability to transfer print aligned arrays of SWNTs onto transparent substrates after synthesis and processing, thereby completing a direct pathway to achieve complex, high performance, and highly integrated transparent SWNTs electronics, sensors, or other devices.

  19. Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution.

    PubMed

    Zhang, Feng; Hou, Peng-Xiang; Liu, Chang; Wang, Bing-Wei; Jiang, Hua; Chen, Mao-Lin; Sun, Dong-Ming; Li, Jin-Cheng; Cong, Hong-Tao; Kauppinen, Esko I; Cheng, Hui-Ming

    2016-01-01

    The growth of high-quality semiconducting single-wall carbon nanotubes with a narrow band-gap distribution is crucial for the fabrication of high-performance electronic devices. However, the single-wall carbon nanotubes grown from traditional metal catalysts usually have diversified structures and properties. Here we design and prepare an acorn-like, partially carbon-coated cobalt nanoparticle catalyst with a uniform size and structure by the thermal reduction of a [Co(CN)6](3-) precursor adsorbed on a self-assembled block copolymer nanodomain. The inner cobalt nanoparticle functions as active catalytic phase for carbon nanotube growth, whereas the outer carbon layer prevents the aggregation of cobalt nanoparticles and ensures a perpendicular growth mode. The grown single-wall carbon nanotubes have a very narrow diameter distribution centred at 1.7 nm and a high semiconducting content of >95%. These semiconducting single-wall carbon nanotubes have a very small band-gap difference of ∼0.08 eV and show excellent thin-film transistor performance. PMID:27025784

  20. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for...

  1. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for...

  2. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for...

  3. 40 CFR 721.10156 - Single-walled carbon nanotubes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Single-walled carbon nanotubes... Specific Chemical Substances § 721.10156 Single-walled carbon nanotubes (generic). (a) Chemical substance... single-walled carbon nanotubes (PMN P-08-328) is subject to reporting under this section for...

  4. Key roles of carbon solubility in single-walled carbon nanotube nucleation and growth

    NASA Astrophysics Data System (ADS)

    He, Maoshuai; Amara, Hakim; Jiang, Hua; Hassinen, Jukka; Bichara, Christophe; Ras, Robin H. A.; Lehtonen, Juha; Kauppinen, Esko I.; Loiseau, Annick

    2015-11-01

    Elucidating the roles played by carbon solubility in catalyst nanoparticles is required to better understand the growth mechanisms of single-walled carbon nanotubes (SWNTs). Here, we highlight that controlling the level of dissolved carbon is of key importance to enable nucleation and growth. We first performed tight binding based atomistic computer simulations to study carbon incorporation in metal nanoparticles with low solubilities. For such metals, carbon incorporation strongly depends on their structures (face centered cubic or icosahedral), leading to different amounts of carbon close to the nanoparticle surface. Following this idea, we then show experimentally that Au nanoparticles effectively catalyze SWNT growth when in a face centered cubic structure, and fail to do so when icosahedral. Both approaches emphasize that the presence of subsurface carbon in the nanoparticles is necessary to enable the cap lift-off, making the nucleation of SWNTs possible.Elucidating the roles played by carbon solubility in catalyst nanoparticles is required to better understand the growth mechanisms of single-walled carbon nanotubes (SWNTs). Here, we highlight that controlling the level of dissolved carbon is of key importance to enable nucleation and growth. We first performed tight binding based atomistic computer simulations to study carbon incorporation in metal nanoparticles with low solubilities. For such metals, carbon incorporation strongly depends on their structures (face centered cubic or icosahedral), leading to different amounts of carbon close to the nanoparticle surface. Following this idea, we then show experimentally that Au nanoparticles effectively catalyze SWNT growth when in a face centered cubic structure, and fail to do so when icosahedral. Both approaches emphasize that the presence of subsurface carbon in the nanoparticles is necessary to enable the cap lift-off, making the nucleation of SWNTs possible. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06045a

  5. Electrochemical Functionalization of Individual Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Burghard, M.; Kooi, S.; Schlecht, U.; Balasubramanian, K.; Kern, K.

    2002-10-01

    An electrochemical method is applied to attach functional groups to individual single-wall carbon nanotubes. This approach allows both the reductive and oxidative coupling of substituted phenyl groups. Due to polymerization of the reactive species formed at the nanotube/electrolyte interface, coatings with a thickness of up to 20 nm are obtained. The thickness of the deposited layer can be effectively controlled by the magnitude and duration of the potential applied. By choosing appropriate additional substituents in the coupling reagent, the presented method offers the possibility to tune the surface properties of the modified nanotubes over a wide range.

  6. Characterization of single-walled carbon nanotubes for environmental implications

    USGS Publications Warehouse

    Agnihotri, S.; Rostam-Abadi, M.; Rood, M.J.

    2004-01-01

    Adsorption capacities of N2 and various organic vapors (methyl-ethyl ketone (MEK), toluene, and cyclohexane) on select electric-arc and HiPco produced single walled carbon nanotubes (SWNT) were measured at 77 and 298 K, respectively. The amount of N2 adsorbed on a SWNT sample depended on the sample purity, methodology, and on the sample age. Adsorption capacities of organic vapors (100-1000 ppm vol) on SWNT in humid conditions were much higher than those for microporous activated carbons. These results established a foundation for additional studies related to potential environmental applications of SWNT. The MEK adsorption capacities of samples EA95 and CVD80 and mesoporous tire-derived activated carbon in humid conditions were lower than in dry conditions. This is an abstract of a paper presented at the AIChE Annual Meeting (Austin, TX 11/7-12/2004).

  7. Functionalization of Single Wall Carbon Nanotubes with Carboxylic Acids

    NASA Astrophysics Data System (ADS)

    Viswanathan, Sriram; Britt, Phillip F.; Ivanov, Ilia N.; Puretzky, Alex A.; Lance, Michael J.; Geohegan, David B.; Oak Ridge National Laboratory Collaboration

    2003-03-01

    The chemical functionalization of single-wall carbon nanotubes (SWNT) is necessary to solubilize the materials and to assist in the dispersion of the bundles for a variety of applications. One approach has been to derivatize the pendant carboxyl groups that are formed in the oxidative purification of the SWNT. Unfortunately, these carboxyl groups are found in low concentrations because the purification conditions also leads to decarboxylation. Thus, methods were investigated to increase the concentration of carboxylic acids on SWNT by chemical oxidation with a variety of reagents including potassium permanganate, sulfuric acid/nitric acid, and sulfuric acid/hydrogen peroxide. The concentration of carboxylic acids was analyzed by FTIR, and the samples were characterized by TGA, Raman spectroscopy, SEM, and TEM. Surprisingly, many of the oxidative methods lead to the formation of amorphous carbon and little if any increase in carboxyl content of the SWNT.

  8. Polymer-grafted single-walled carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Viswanathan, Gunaranjan; Chakrapani, Nirupama; Ajayan, Pulickel M.; Ryu, Chang Y.

    2003-03-01

    Carbon nanotube-polymer composites hold great promise but the dispersion of nanotubes and the interface between the nanotubes and the polymer matrix are issues critical to successful applications. Chemical functionalization of the nanotube surface is a feasible approach towards solving these problems. But the methods employed tend to alter the original structure of the nanotubes. We have a developed a novel route for grafting polystyrene chains onto pristine single-walled carbon nanotubes through a single-step anionic polymerization scheme, with the aim of improving the interface in these composites. The thermal properties of the composites are characterized using Differential Scanning Calorimetry and Thermogravimetric Analysis. The efficacy of the grafting mechanism is also evaluated.

  9. Oxidative Process for Cutting Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Shaver, Jonah

    2005-03-01

    Cut single-walled carbon nanotubes (SWNTs) are needed for many applications. An efficient way to produce bulk amounts of cut SWNTs is a two step process consisting of sidewall damage and oxidative exploitation. In these experiments sidewall damage is introduced by ozonation in a perfluoropolyether (PFPE) while monitoring the degree of functionalization with in-situ Raman spectroscopy. Use of PFPE allows for a high degree of sidewall functionalization at room temperature, mainly in the form of epoxides. These damaged SWNTs are exposed to piranha (4:1 96%H2SO4:H2O2) for one hour and then quenched. The piranha exposed samples are then functionalized with alkyl groups and spin cast on mica for length analysis. The cut samples are found to have significantly shorter lengths while maintaining a relatively high carbon yield.

  10. Single-Walled Carbon Nanotube / Semicrystalline Polymer Composite Fibers

    NASA Astrophysics Data System (ADS)

    Haggenmueller, Reto; Fischer, John E.; Winey, Karen I.

    2002-03-01

    Single-walled carbon nanotubes (SWNTs) have demonstrated far superior mechanical, thermal and electrical properties relative to carbon fibers. Similar properties are expected for polymer/SWNT nanocomposites. We have produced SWNT-thermoplastic composites with extraordinary alignment of the nanotubes via melt processing followed by fiber melt spinning. The improved mechanical properties depend on the alignment of the nanotubes, which is controlled by the draw ratio of the composite fibers. Alignment of the nanotubes seems to reduce the electrical conductivity, because the percolation threshold of the one-dimensional conductors is reduced for straight, aligned nanotubes. Semicrystalline polyethylene and various nylons are used as the matrix and the mechanical, electrical properties are measured. The effect of the nanotubes on the crystallinity and the melting point are determined. A key factor of the composite performance is the dispersion of the nanotubes in the polymer matrix, the characterization of which is explored.

  11. Size engineering of metal nanoparticles to diameter-specified growth of single-walled carbon nanotubes with horizontal alignment on quartz

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Ju; Lee, Byeong-Joo; Lee, Seung-Hwan; Jeong, Goo-Hwan

    2012-03-01

    The electronic, physical and optical properties of single-walled carbon nanotubes (SWNTs) are governed by their diameter and chirality, and thus much research has been focused on controlling the diameter and chirality of SWNTs. To date, control of the catalyst particle size has been thought to be one of the most promising approaches to control the diameter or chirality of SWNTs owing to the correlation between catalyst particle size and tube diameter. In this study, we demonstrate the size engineering of catalytic nanoparticles for the controlled growth of diameter-specified and horizontally aligned SWNTs on quartz substrates. Uniformly sized iron nanoparticles derived from ferritin molecules were used as a catalyst, and their size was intentionally decreased via thermal heat treatment at 900 °C under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates in order to elucidate the effect of the size of the nanoparticles on the tube diameter and the effect of catalyst size on the degree of parallel alignment on the quartz substrates. SWNTs grown by chemical vapor deposition using methane as feedstock exhibited a high degree of horizontal alignment when the particle density was low enough to produce individual SWNTs without bundling. Annealing for 60 min at 900 °C produced a reduction of nanoparticle diameter from 2.6 to 1.8 nm and a decrease in the mean tube diameter from 1.2 to 0.8 nm, respectively. Raman spectroscopy results corroborated the observation that prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distributions. The results of this work suggest that straightforward thermal annealing can be a facile way to obtain uniform-sized SWNTs as well as catalytic nanoparticles.

  12. Size engineering of metal nanoparticles to diameter-specified growth of single-walled carbon nanotubes with horizontal alignment on quartz.

    PubMed

    Kim, Jin-Ju; Lee, Byeong-Joo; Lee, Seung-Hwan; Jeong, Goo-Hwan

    2012-03-16

    The electronic, physical and optical properties of single-walled carbon nanotubes (SWNTs) are governed by their diameter and chirality, and thus much research has been focused on controlling the diameter and chirality of SWNTs. To date, control of the catalyst particle size has been thought to be one of the most promising approaches to control the diameter or chirality of SWNTs owing to the correlation between catalyst particle size and tube diameter.In this study, we demonstrate the size engineering of catalytic nanoparticles for the controlled growth of diameter-specified and horizontally aligned SWNTs on quartz substrates. Uniformly sized iron nanoparticles derived from ferritin molecules were used as a catalyst, and their size was intentionally decreased via thermal heat treatment at 900?C under atmospheric Ar ambient. ST-cut quartz wafers were used as growth substrates in order to elucidate the effect of the size of the nanoparticles on the tube diameter and the effect of catalyst size on the degree of parallel alignment on the quartz substrates. SWNTs grown by chemical vapor deposition using methane as feedstock exhibited a high degree of horizontal alignment when the particle density was low enough to produce individual SWNTs without bundling. Annealing for 60min at 900?C produced a reduction of nanoparticle diameter from 2.6 to 1.8nm and a decrease in the mean tube diameter from 1.2 to 0.8nm, respectively. Raman spectroscopy results corroborated the observation that prolonged heat treatment of nanoparticles yields thinner tubes with narrower size distributions. The results of this work suggest that straightforward thermal annealing can be a facile way to obtain uniform-sized SWNTs as well as catalytic nanoparticles. PMID:22362281

  13. Generalizing thermodynamic properties of bulk single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rodriguez, Kenneth R.; Malone, Marvin A.; Nanney, Warren A.; A. Maddux, Cassandra J.; Coe, James V.; Martnez, Hernn L.

    2014-12-01

    The enthalpy and Gibbs free energy thermodynamical potentials of single walled carbon nanotubes were studied of all types (armchairs, zig-zags, chirals (n>m), and chiral (n

  14. Generalizing thermodynamic properties of bulk single-walled carbon nanotubes

    SciTech Connect

    Rodriguez, Kenneth R. Nanney, Warren A.; Maddux, Cassandra J.A.; Martínez, Hernán L.; Malone, Marvin A.; Coe, James V.

    2014-12-15

    The enthalpy and Gibbs free energy thermodynamical potentials of single walled carbon nanotubes were studied of all types (armchairs, zig-zags, chirals (n>m), and chiral (n

  15. Radiation Protection Using Single-Wall Carbon Nanotube Derivatives

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Lu, Meng; Lucente-Schultz, Rebecca; Leonard, Ashley; Doyle, Condell Dewayne; Kosynkin, Dimitry V.; Price, Brandi Katherine

    2011-01-01

    This invention is a means of radiation protection, or cellular oxidative stress mitigation, via a sequence of quenching radical species using nano-engineered scaffolds, specifically single-wall carbon nanotubes (SWNTs) and their derivatives. The material can be used as a means of radiation protection by reducing the number of free radicals within, or nearby, organelles, cells, tissue, organs, or living organisms, thereby reducing the risk of damage to DNA and other cellular components (i.e., RNA, mitochondria, membranes, etc.) that can lead to chronic and/or acute pathologies, including but not limited to cancer, cardiovascular disease, immuno-suppression, and disorders of the central nervous system. In addition, this innovation could be used as a prophylactic or antidote for accidental radiation exposure, during high-altitude or space travel where exposure to radiation is anticipated, or to protect from exposure from deliberate terrorist or wartime use of radiation- containing weapons.

  16. Single Wall Carbon Nanotube-polymer Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2005-01-01

    Investigation of single wall carbon nanotube (SWNT)-polymer solar cells has been conducted towards developing alternative lightweight, flexible devices for space power applications. Photovoltaic devices were constructed with regioregular poly(3-octylthiophene)-(P3OT) and purified, >95% w/w, laser-generated SWNTs. The P3OT composites were deposited on ITO-coated polyethylene terapthalate (PET) and I-V characterization was performed under simulated AM0 illumination. Fabricated devices for the 1.0% w/w SWNT-P3OT composites showed a photoresponse with an open-circuit voltage (V(sub oc)) of 0.98 V and a short-circuit current density (I(sub sc)) of 0.12 mA/sq cm. Optimization of carrier transport within these novel photovoltaic systems is proposed, specifically development of nanostructure-SWNT complexes to enhance exciton dissociation.

  17. Single-walled carbon nanotubes based chemicapacitive sensors.

    PubMed

    Lim, Jae-Hong; Mulchandani, Ashok; Myung, Nosang V

    2012-02-01

    Carboxylated single-walled carbon nanotubes (SWNTs) based chemicapacitive gas sensors were fabricated by AC dielectrophoretically aligning SWNTs across microfabricated gold electrodes with controlled density/device resistance. Two different sensing configurations (i.e., horizontal/in-plane and vertical/out-of-plane) were utilized to compare their sensing performance. Upon exposure to water vapor at room temperature, the response (R = [(C--C0)/C0] x 100%) increased with an increase in water vapor concentration similar to that of resistance response. In horizontal configuration, the response was increased with an increase in device resistance which might be attributed to preferentially alignment of semiconducting SWNTs during initial phase of alignment. However, the response was independent of device resistance in vertical/out-of-plane configuration which indicated that the sensing mechanism is based on the change of dielectric constant of gate and atmosphere. PMID:22629991

  18. Vertical semiconducting single-walled carbon nanotube Schottky diode

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan

    2014-07-01

    This paper presents a vertical semiconducting single-walled carbon nanotube (sSWCNT)-based Schottky device. For the first time, the author successfully demonstrated a vertical s-SWCNT Schottky diode on an anodized aluminum oxide (AAO) template. In the vertical pores of an AAO template s-SWCNTs were vertically grown and aligned. The vertical growth of s-SWCNTs inside the pores was achieved by successfully isolating the catalyst at the bottom of the pores by using redeposition enabled angled ion milling. The ends of the grown s-SWCNTs were coated with palladium and titanium to form Schottky and Ohmic contacts, respectively. The I-V characteristics of the vertical s-SWCNT paths engaging the Schottky and Ohmic contacts well demonstrated Schottky diode rectification.

  19. Generalizing thermodynamic properties of bulk single-walled carbon nanotubes

    PubMed Central

    Rodriguez, Kenneth R.; Nanney, Warren A.; A. Maddux, Cassandra J.; Martnez, Hernn L.

    2014-01-01

    The enthalpy and Gibbs free energy thermodynamical potentials of single walled carbon nanotubes were studied of all types (armchairs, zig-zags, chirals (n>m), and chiral (n

  20. Multifunctional free-standing single-walled carbon nanotube films.

    PubMed

    Nasibulin, Albert G; Kaskela, Antti; Mustonen, Kimmo; Anisimov, Anton S; Ruiz, Virginia; Kivist, Samuli; Rackauskas, Simas; Timmermans, Marina Y; Pudas, Marko; Aitchison, Brad; Kauppinen, Marko; Brown, David P; Okhotnikov, Oleg G; Kauppinen, Esko I

    2011-04-26

    We report a simple and rapid method to prepare multifunctional free-standing single-walled carbon nanotube (SWCNT) films with variable thicknesses ranging from a submonolayer to a few micrometers having outstanding properties for a broad range of exceptionally performing devices. We have fabricated state-of-the-art key components from the same single component multifunctional SWCNT material for several high-impact application areas: high efficiency nanoparticle filters with a figure of merit of 147 Pa(-1), transparent and conductive electrodes with a sheet resistance of 84 ?/? and a transmittance of 90%, electrochemical sensors with extremely low detection limits below 100 nM, and polymer-free saturable absorbers for ultrafast femtosecond lasers. Furthermore, the films are demonstrated as the main components in gas flowmeters, gas heaters, and transparent thermoacoustic loudspeakers. PMID:21361334

  1. Thermally induced nonlinear vibration of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Koh, Heeyuen; Cannon, James J.; Shiga, Takuma; Shiomi, Junichiro; Chiashi, Shohei; Maruyama, Shigeo

    2015-07-01

    The thermally induced nonlinear vibration of single-walled carbon nanotubes (SWNTs) was investigated, focusing on the peak broadening and/or multiple peaks of the frequency spectra. From Poincaré maps of SWNT tip trajectories, we observed two distinguishable patterns of vibration: planar and nonplanar (whirling) motion which appeared repeatedly. The alternation of the pattern is sometimes accompanied by a change of rotational direction. Proposed approximate solutions of nonlinear beam equations can reproduce well the alternation of the patterns for both cantilevered and suspended SWNTs. By using this analytical approach, we have found that multiple peaks of experimentally observed frequency spectra are due to the repeated and sudden alternations of two modes, induced by nonlinear effects.

  2. Molecular Imaging with Single-Walled Carbon Nanotubes

    PubMed Central

    Hong, Hao; Gao, Ting; Cai, Weibo

    2011-01-01

    Nanoparticle-based molecular imaging has emerged as an interdisciplinary field which involves physics, chemistry, engineering, biology, and medicine. Single-walled carbon nanotubes (SWCNTs) have unique properties which make them suitable for applications in a variety of imaging modalities, such as magnetic resonance, near-infrared fluorescence, Raman spectroscopy, photoacoustic tomography, and radionuclide-based imaging. In this review, we will summarize the current state-of-the-art of SWCNTs in molecular imaging applications. Multifunctionality is the key advantage of nanoparticles over traditional approaches. Targeting ligands, imaging labels, therapeutic drugs, and many other agents can all be integrated into the nanoparticle to allow for targeted molecular imaging and molecular therapy by encompassing many biological and biophysical barriers. A multifunctional, SWCNT-based nanoplatform holds great potential for clinical applications in the future. PMID:21754949

  3. Efficient spectrofluorimetric analysis of single-walled carbon nanotube samples.

    PubMed

    Rocha, John-David R; Bachilo, Sergei M; Ghosh, Saunab; Arepalli, Sivaram; Weisman, R Bruce

    2011-10-01

    A new method and instrumentation are described for rapid compositional analysis of single-walled carbon nanotube (SWCNT) samples. The customized optical system uses multiple fixed-wavelength lasers to excite NIR fluorescence from SWCNTs individualized in aqueous suspensions. The emission spectra are efficiently captured by a NIR spectrometer with InGaAs multichannel detector and then analyzed by a computer program that consults a database of SWCNT spectral parameters. The identities and relative abundances of semiconducting SWCNTs species are quickly deduced and displayed in graphs and tables. Results are found to be consistent with those based on manual interpretation of full excitation-emission scans from a conventional spectrofluorometer. The new instrument also measures absorption spectra using a broadband lamp and multichannel spectrometers, allowing samples to be automatically characterized by their emission efficiencies. The system provides rapid data acquisition and is sensitive enough to detect the fluorescence of a few picograms of SWCNTs in ~50 ?L sample volumes. PMID:21866945

  4. Thermoelectric Power of Single-wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Romero, H.; Sumanasekera, G. U.; Pradhan, B. K.; Eklund, P. C.

    2001-03-01

    The interpretation of the large thermoelectric power of single-wall carbon nanotubes still remains controversial. Large positive thermopowers S> 30 μ V/K (at T ~300 K) are observed in mats when the tubes are O_2-doped, and large negative thermopowers are found for mat samples degassed in a vacuum, i.e., \\vert S\\vert >30μ V/K (at T ~300 K). We present an overview of the models reported to explain this anomalous data, including one in which an impurity band near the Fermi energy is responsible for the anomalous thermopower. New experimental studies of the effect of uniaxial pressure on both thermopower (S) and resistivity (ρ) will be presented and discussed in terms of these models. This work was supported by ONR (ONR # N00014-99-1-0619).

  5. Extracellular entrapment and degradation of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Farrera, Consol; Bhattacharya, Kunal; Lazzaretto, Beatrice; Andón, Fernando T.; Hultenby, Kjell; Kotchey, Gregg P.; Star, Alexander; Fadeel, Bengt

    2014-05-01

    Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials.Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials. Electronic supplementary information (ESI) available: Suppl. Fig. 1 - length distribution of SWCNTs; suppl. Fig. 2 - characterization of pristine vs. oxidized SWCNTs; suppl. Fig. 3 - endotoxin evaluation; suppl. Fig. 4 - NET characterization; suppl. Fig. 5 - UV-Vis/NIR analysis of biodegradation of oxidized SWCNTs; suppl. Fig. 6 - cytotoxicity of partially degraded SWCNTs. See DOI: 10.1039/c3nr06047k

  6. Growth and characterization of high-density mats of single-walled carbon nanotubes for interconnects

    SciTech Connect

    Robertson, J.; Zhong, G.; Telg, H.; Thomsen, C.; Warner, J. H.; Briggs, G. A. D.; Dettlaff-Weglikowska, U.; Roth, S.

    2008-10-20

    We grow high-density, aligned single wall carbon nanotube mats for use as interconnects in integrated circuits by remote plasma chemical vapor deposition from a Fe-Al{sub 2}O{sub 3} thin film catalyst. We carry out extensive Raman characterization of the resulting mats, and find that this catalyst system gives rise to a broad range of nanotube diameters, with no preferential selectivity of semiconducting tubes, but with at least 1/3 of metallic tubes.

  7. Dispersionless propagation of electron wavepackets in single-walled carbon nanotubes

    SciTech Connect

    Rosati, Roberto; Rossi, Fausto; Dolcini, Fabrizio

    2015-06-15

    We investigate the propagation of electron wavepackets in single-walled carbon nanotubes via a Lindblad-based density-matrix approach that enables us to account for both dissipation and decoherence effects induced by various phonon modes. We show that, while in semiconducting nanotubes the wavepacket experiences the typical dispersion of conventional materials, in metallic nanotubes its shape remains essentially unaltered, even in the presence of the electron-phonon coupling, up to micron distances at room temperature.

  8. Fast electron beam-plasma interaction in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2013-04-01

    A theoretical study on the plasmon-polariton modes coupled with a fast electron beam inside a metallic single-walled carbon nanotube is presented. The Maxwell's equations coupled with a linearized hydrodynamic model for the nanotube's charge oscillations are used. By considering the electron beam effects, general expression of dispersion relation of electromagnetic modes on nanotube's surface is obtained. It is shown numerically that by considering the electron beam effects, the polariton frequency shifts to lower values.

  9. Single-Wall Carbon Nanotube Anodes for Lithium Cells

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Raffaelle, Ryne; Gennett, Tom; Kumta, Prashant; Maranchi, Jeff; Heben, Mike

    2006-01-01

    In recent experiments, highly purified batches of single-wall carbon nanotubes (SWCNTs) have shown promise as superior alternatives to the graphitic carbon-black anode materials heretofore used in rechargeable thin-film lithium power cells. The basic idea underlying the experiments is that relative to a given mass of graphitic carbon-black anode material, an equal mass of SWCNTs can be expected to have greater lithium-storage and charge/discharge capacities. The reason for this expectation is that whereas the microstructure and nanostructure of a graphitic carbon black is such as to make most of the interior of the material inaccessible for intercalation of lithium, a batch of SWCNTs can be made to have a much more open microstructure and nanostructure, such that most of the interior of the material is accessible for intercalation of lithium. Moreover, the greater accessibility of SWCNT structures can be expected to translate to greater mobilities for ion-exchange processes and, hence, an ability to sustain greater charge and discharge current densities.

  10. Ab initio simulations of doped single-walled carbon nanotube sensors

    NASA Astrophysics Data System (ADS)

    Talla, Jamal A.

    2012-01-01

    The interactions between oxygen and nitrogen atoms with single-walled carbon nanotubes were investigated for nanotubes with two different geometrical configurations using first-principle calculations within the framework of the density functional theory. We introduced a new type of toxic gas sensor that can detect the presence of H 2, Cl 2, CO, and NO molecules. We also demonstrated that the sensitivity of this device can be controlled by the concentration of the dopants on the surface of the nanotube. In addition, the transport properties of the doped nanotube were studied for different concentrations of oxygen or nitrogen atoms that were randomly distributed on the surface of the single-walled carbon nanotube. We observed that small amounts of dopants can modify the electronic and transport properties of the nanotube and can lend metallic properties to the nanotube. Band-gap narrowing occurs when the nanotube is doped with either oxygen or nitrogen atoms.

  11. Controlled Patterning and Growth of Single Wall and Multi-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor)

    2005-01-01

    Method and system for producing a selected pattern or array of at least one of a single wall nanotube and/or a multi-wall nanotube containing primarily carbon. A substrate is coated with a first layer (optional) of a first selected metal (e.g., Al and/or Ir) and with a second layer of a catalyst (e.g., Fe, Co, Ni and/or Mo), having selected first and second layer thicknesses provided by ion sputtering, arc discharge, laser ablation, evaporation or CVD. The first layer and/or the second layer may be formed in a desired non-uniform pattern, using a mask with suitable aperture(s), to promote growth of carbon nanotubes in a corresponding pattern. A selected heated feed gas (primarily CH4 or C2Hn with n=2 and/or 4) is passed over the coated substrate and forms primarily single wall nanotubes or multiple wall nanotubes, depending upon the selected feed gas and its temperature. Nanofibers, as well as single wall and multi-wall nanotubes, are produced using plasma-aided growth from the second (catalyst) layer. An overcoating of a selected metal or alloy can be deposited, over the second layer, to provide a coating for the carbon nanotubes grown in this manner.

  12. Single-Walled Carbon Nanotube Transporter for Gene Delivery

    NASA Astrophysics Data System (ADS)

    Ke, Pu-Chun

    2005-03-01

    Recent studies have shown great promises in integrating nanomaterials in biomedicine. To explore the feasibility of using single-walled carbon nanotubes (SWNTs) as transporters for gene delivery, we have investigated the binding of SWNTs and RNA polymer poly(rU), and the diffusion and the translocation of the SWNT-poly(rU) complexes. Through single-molecule fluorescence imaging, we have found that the pi- stacking dominates the hydrophobic interactions between the carbon rings on tubes and the nitrogenous bases of RNA. Our diffusion study has further demonstrated the feasibility of tracking the motion of water soluble SWNT-poly(rU) complexes. The uptake of SWNT-poly(rU) by breast cancer cells MCF7 was observed using confocal scanning fluorescence microscopy. It was evident that the complexes could penetrate through cell membrane into cytoplasm and cell nucleus. Our cell culture, MTS assay, and radioisotope labeling showed the negligible cytotoxicity of surface modified SWNTs with RNA polymer and amino acids in cell growth medium. These studies have paved the way for gene transfection using SWNTs as transporters.

  13. Minimal inflammogenicity of pristine single-wall carbon nanotubes.

    PubMed

    Toyokuni, Shinya; Jiang, L I; Kitaura, Ryo; Shinohara, Hisanori

    2015-02-01

    Carbon nanotubes (CNTs) are a novel synthetic material comprising only carbon atoms. Based on its rigidity, its electrical and heat conductivity and its applicability to surface manufacturing, this material is expected to have numerous applications in industry. However, due to the material's dimensional similarity to asbestos fibers, its carcinogenicity was hypothesized during the last decade, and indeed, we have shown that multi-wall CNTs (MWCNTs) of 50 nm in diameter are potently carcinogenic to mesothelial cells after intraperitoneal injection. Additionally, we suggested that inflammogenicity after intraperitoneal injection can predict mesothelial carcinogenesis. However, few data have been published on the intraperitoneal inflammogenicity of single-wall CNTs (SWCNTs). Here, we conducted a series of studies on SWCNTs using both intraperitoneal injection into rats and MeT5A mesothelial cells. Intraperitoneal injection of 10 mg SWCNTs caused no remarkable inflammation in the abdominal cavity, and the exposure of MeT5A cells to up to 25 ?g/cm(2) SWCNTs did not alter proliferation. MWCNTs of 50 nm in diameter were used as a positive control, and tangled MWCNTs of 15 nm in diameter were used as a negative control. The results suggest that SWCNTs are a low-risk material with respect to mesothelial carcinogenesis. PMID:25797984

  14. Optical properties of single-walled carbon nanotube aerogels

    NASA Astrophysics Data System (ADS)

    Ostojic, Gordana

    2012-02-01

    A network of connected single-walled carbon nanotubes (SWNT) is created by a novel DNA-protein complex directed assembly. Due to a point-like nature of connectors, the SWNT aerogel represents a network of self-suspended nanotubes with a record ultra-low density of less 0.75 mg/cm^3. The assembly method and low density enables a direct comparison of optical properties of nanotubes in solvent and air to surfactant solubilized nanotubes. Optical properties of SWNT gels are investigated using optical absorption, photoluminescence and Raman spectroscopy. Gelled nanotubes in water and in the low population regime behave similar to solubilized nanotubes. In contrast, photoluminescence of SWNT aerogels exhibit nonlinear effects and a phonon-induced broadening. In addition, aerogels show a previously unobserved photoluminescence peak at 1.3 eV that corresponds to a phonon-assisted recombination of photoexcited charges. Raman spectra of carbon nanotube aerogels display narrow peaks due to the phonon decoupling of suspended SWNTs in air and a redistribution of G phonon population due to nonlinear effects.

  15. Thermomagnetic Measurements of Transport in Single Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Heremans, J. P.; Thrush, C. M.; Jovovic, V.; West, J.

    2007-03-01

    The thermomagnetic transport properties of single walled carbon nanotubes bundles and mats in high magnetic fields have been measured in vacuum and in the presence of noble gases. They are used to determine mechanism responsible for change in thermopower and resistivity in the presence of gases with respect to one measured in high vacuum. The thermopower and its change in a magnetic field is recorded in Ne, Ar, Xe atmospheres. The variation of the zero-field thermopower with the presence of noble gases is consistent with that observed recently [1]. The magnetothermopower in a saturating magnetic field is only 0.2% larger than the zero-field thermopower. As the magnetothermopower in high field is independent of the scattering mechanism, this result argues in favor of diffusion mechanism as responsible for variations in transport properties, and against the recently suggested concept that collisions between gas molecules and the nanotubes are responsible for the changes in thermopower. [1] H. E. Romero, K. Bolton, A. Tosen and P. C. Eklund, Atom Collision-induced Resistivity of Carbon Nanotubes, Science 307 89 (2005)

  16. Optical properties of armchair (7, 7) single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gharbavi, K.; Badehian, H.

    2015-07-01

    Full potential linearized augmented plane waves method with the generalized gradient approximation for the exchange-correlation potential was applied to calculate the optical properties of (7, 7) single walled carbon nanotubes. The both x and z directions of the incident photons were applied to estimate optical gaps, dielectric function, electron energy loss spectroscopies, optical conductivity, optical extinction, optical refractive index and optical absorption coefficient. The results predict that dielectric function, ? (?), is anisotropic since it has higher peaks along z-direction than x-direction. The static optical refractive constant were calculated about 1.4 (z-direction) and 1.1 (x- direction). Moreover, the electron energy loss spectroscopy showed a sharp ? electron plasmon peaks at about 6 eV and 5 eV for z and x-directions respectively. The calculated reflection spectra show that directions perpendicular to the tube axis have further optical reflection. Moreover, z-direction indicates higher peaks at absorption spectra in low range energies. Totally, increasing the diameter of armchair carbon nanotubes cause the optical band gap, static optical refractive constant and optical reflectivity to decrease. On the other hand, increasing the diameter cause the optical absorption and the optical conductivity to increase. Moreover, the sharp peaks being illustrated at optical spectrum are related to the 1D structure of CNTs which confirm the accuracy of the calculations.

  17. MINIMAL INFLAMMOGENICITY OF PRISTINE SINGLE-WALL CARBON NANOTUBES

    PubMed Central

    TOYOKUNI, SHINYA; JIANG, LI; KITAURA, RYO; SHINOHARA, HISANORI

    2015-01-01

    ABSTRACT Carbon nanotubes (CNTs) are a novel synthetic material comprising only carbon atoms. Based on its rigidity, its electrical and heat conductivity and its applicability to surface manufacturing, this material is expected to have numerous applications in industry. However, due to the materials dimensional similarity to asbestos fibers, its carcinogenicity was hypothesized during the last decade, and indeed, we have shown that multi-wall CNTs (MWCNTs) of 50 nm in diameter are potently carcinogenic to mesothelial cells after intraperitoneal injection. Additionally, we suggested that inflammogenicity after intraperitoneal injection can predict mesothelial carcinogenesis. However, few data have been published on the intraperitoneal inflammogenicity of single-wall CNTs (SWCNTs). Here, we conducted a series of studies on SWCNTs using both intraperitoneal injection into rats and MeT5A mesothelial cells. Intraperitoneal injection of 10 mg SWCNTs caused no remarkable inflammation in the abdominal cavity, and the exposure of MeT5A cells to up to 25 ?g/cm2 SWCNTs did not alter proliferation. MWCNTs of 50 nm in diameter were used as a positive control, and tangled MWCNTs of 15 nm in diameter were used as a negative control. The results suggest that SWCNTs are a low-risk material with respect to mesothelial carcinogenesis. PMID:25797984

  18. Multiscale Modeling of Functionalized Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Patnaik, Soumya; Duan, Xiaofeng; Akdim, Brahim

    2005-03-01

    Funtionalization of carbon nanotubes is significant for many reasons. Along with enhancing the processability of the nanotubes which can aid in applications such as nanotube reinforced composites, covalent chemical functionalization provides a means for better control over their electronic and mechanical properties. Functionalization of single-wall carbon nanotubes (SWCNTs) has been observed to exhibit diameter selectivity and proposed as a method for SWCNT purification [1]. In the present work, we report a multiscale modeling approach, combining atomistic molecular dynamics (MD) and first principles density functional theory (DFT) methods, to study the effects of SWCNTs carboxy functionalization. The MD simulations provide important information regarding intertube interactions upon functionalization. This was used in subsequent DFT calculations for a correct prediction of resonant Raman modes shifts in SWCNT bundles. The MD simulations, electronic structure calculations, and predicted Raman shifts in comparison with experiment [1] will be discussed in detail. [1] Kuzmany, H., Kukovecz, A., Simon, F., Holzweber, M., Kramberger, Ch., and Pichler, T., Syn. Met. 2004, 141, 113-122.

  19. Coarse-grained potentials of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhao, Junhua; Jiang, Jin-Wu; Wang, Lifeng; Guo, Wanlin; Rabczuk, Timon

    2014-11-01

    We develop the coarse-grained (CG) potentials of single-walled carbon nanotubes (SWCNTs) in CNT bundles and buckypaper for the study of the static and dynamic behaviors. The explicit expressions of the CG stretching, bending and torsion potentials for the nanotubes are obtained by the stick-spiral and the beam models, respectively. The non-bonded CG potentials between two different CG beads are derived from analytical results based on the cohesive energy between two parallel and crossing SWCNTs from the van der Waals interactions. We show that the CG model is applicable to large deformations of complex CNT systems by combining the bonded potentials with non-bonded potentials. Checking against full atom molecular dynamics calculations and our analytical results shows that the present CG potentials have high accuracy. The established CG potentials are used to study the mechanical properties of the CNT bundles and buckypaper efficiently at minor computational cost, which shows great potential for the design of micro- and nanomechanical devices and systems.

  20. Reinforced Thermoplastic Polyimide with Dispersed Functionalized Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Lebron-Colon, Marisabel; Meador, Michael A.; Gaier, James R.; Sola, Francisco; Scheiman, Daniel A.; McCorkle, Linda S.

    2010-01-01

    Molecular pi-complexes were formed from pristine HiPCO single-wall carbon nanotubes (SWCNTs) and 1-pyrene- N-(4- N'-(5-norbornene-2,3-dicarboxyimido)phenyl butanamide, 1. Polyimide films were prepared with these complexes as well as uncomplexed SWCNTs and the effects of nanoadditive addition on mechanical, thermal, and electrical properties of these films were evaluated. Although these properties were enhanced by both nanoadditives, larger increases in tensile strength and thermal and electrical conductivities were obtained when the SWCNT/1 complexes were used. At a loading level of 5.5 wt %, the Tg of the polyimide increased from 169 to 197 C and the storage modulus increased 20-fold (from 142 to 3045 MPa). The addition of 3.5 wt % SWCNT/1 complexes increased the tensile strength of the polyimide from 61.4 to 129 MPa; higher loading levels led to embrittlement and lower tensile strengths. The electrical conductivities (DC surface) of the polyimides increased to 1 x 10(exp -4) Scm(exp -1) (SWCNT/1 complexes loading level of 9 wt %). Details of the preparation of these complexes and their effects on polyimide film properties are discussed.

  1. Hypergolic fuel detection using individual single walled carbon nanotube networks

    SciTech Connect

    Desai, S. C.; Willitsford, A. H.; Sumanasekera, G. U.; Yu, M.; Jayanthi, C. S.; Wu, S. Y.; Tian, W. Q.

    2010-06-15

    Accurate and reliable detection of hypergolic fuels such as hydrazine (N{sub 2}H{sub 4}) and its derivatives is vital to missile defense, aviation, homeland security, and the chemical industry. More importantly these sensors need to be capable of operation at low temperatures (below room temperature) as most of the widely used chemical sensors operate at high temperatures (above 300 deg. C). In this research a simple and highly sensitive single walled carbon nanotube (SWNT) network sensor was developed for real time monitoring of hydrazine leaks to concentrations at parts per million levels. Upon exposure to hydrazine vapor, the resistance of the air exposed nanotubes (p-type) is observed to increase rapidly while that of the vacuum-degassed nanotubes (n-type) is observed to decrease. It was found that the resistance of the sample can be recovered through vacuum pumping and exposure to ultraviolet light. The experimental results support the electrochemical charge transfer mechanism between the oxygen redox couple of the ambient and the Fermi level of the SWNT. Theoretical results of the hydrazine-SWNT interaction are compared with the experimental observations. It was found that a monolayer of water molecules on the SWNT is necessary to induce strong interactions between hydrazine and the SWNT by way of introducing new occupied states near the bottom of the conduction band of the SWNT.

  2. On the Stability and Abundance of Single Walled Carbon Nanotubes

    PubMed Central

    Hedman, Daniel; Reza Barzegar, Hamid; Rosén, Arne; Wågberg, Thomas; Andreas Larsson, J.

    2015-01-01

    Many nanotechnological applications, using single-walled carbon nanotubes (SWNTs), are only possible with a uniform product. Thus, direct control over the product during chemical vapor deposition (CVD) growth of SWNT is desirable, and much effort has been made towards the ultimate goal of chirality-controlled growth of SWNTs. We have used density functional theory (DFT) to compute the stability of SWNT fragments of all chiralities in the series representing the targeted products for such applications, which we compare to the chiralities of the actual CVD products from all properly analyzed experiments. From this comparison we find that in 84% of the cases the experimental product represents chiralities among the most stable SWNT fragments (within 0.2 eV) from the computations. Our analysis shows that the diameter of the SWNT product is governed by the well-known relation to size of the catalytic nanoparticles, and the specific chirality is normally determined by the product’s relative stability, suggesting thermodynamic control at the early stage of product formation. Based on our findings, we discuss the effect of other experimental parameters on the chirality of the product. Furthermore, we highlight the possibility to produce any tube chirality in the context of recent published work on seeded-controlled growth. PMID:26581125

  3. On the Stability and Abundance of Single Walled Carbon Nanotubes.

    PubMed

    Hedman, Daniel; Reza Barzegar, Hamid; Rosn, Arne; Wgberg, Thomas; Andreas Larsson, J

    2015-01-01

    Many nanotechnological applications, using single-walled carbon nanotubes (SWNTs), are only possible with a uniform product. Thus, direct control over the product during chemical vapor deposition (CVD) growth of SWNT is desirable, and much effort has been made towards the ultimate goal of chirality-controlled growth of SWNTs. We have used density functional theory (DFT) to compute the stability of SWNT fragments of all chiralities in the series representing the targeted products for such applications, which we compare to the chiralities of the actual CVD products from all properly analyzed experiments. From this comparison we find that in 84% of the cases the experimental product represents chiralities among the most stable SWNT fragments (within 0.2?eV) from the computations. Our analysis shows that the diameter of the SWNT product is governed by the well-known relation to size of the catalytic nanoparticles, and the specific chirality is normally determined by the product's relative stability, suggesting thermodynamic control at the early stage of product formation. Based on our findings, we discuss the effect of other experimental parameters on the chirality of the product. Furthermore, we highlight the possibility to produce any tube chirality in the context of recent published work on seeded-controlled growth. PMID:26581125

  4. Bulk Mechanical Properties of Single Walled Carbon Nanotube Electrodes

    NASA Astrophysics Data System (ADS)

    Giarra, Matthew; Landi, Brian; Cress, Cory; Raffaelle, Ryne

    2007-03-01

    The unique properties of single walled carbon nanotubes (SWNTs) make them especially well suited for use as electrodes in power devices such as lithium ion batteries, hydrogen fuel cells, solar cells, and supercapacitors. The performances of such devices are expected to be influenced, at least in part, by the mechanical properties of the SWNTs used in composites or in stand alone ``papers.'' Therefore, the elastic moduli and ultimate tensile strengths of SWNT papers were measured as functions of temperature, SWNT purity, SWNT length, and SWNT bundling. The SWNTs used to produce the papers were synthesized in an alexandrite laser vaporization reactor at 1100^oC and purified using conventional acid-reflux conditions. Characterization of the SWNTs was performed using SEM, BET, TGA, and optical and Raman spectroscopy. The purified material was filtered and dried to yield papers of bundled SWNTs which were analyzed using dynamic mechanical analysis (DMA). It was observed that the mechanical properties of acid-refluxed SWNT papers were significantly improved by controlled thermal oxidation and strain-hardening. Elastic moduli of SWNT papers were measured between 3 and 6 GPa. Ultimate (breaking) tensile stresses were measured between 45 and 90 MPa at 1-3% strain. These results and their implications in regard to potential applications in power devices will be discussed.

  5. Hypergolic fuel detection using individual single walled carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Desai, S. C.; Willitsford, A. H.; Sumanasekera, G. U.; Yu, M.; Tian, W. Q.; Jayanthi, C. S.; Wu, S. Y.

    2010-06-01

    Accurate and reliable detection of hypergolic fuels such as hydrazine (N2H4) and its derivatives is vital to missile defense, aviation, homeland security, and the chemical industry. More importantly these sensors need to be capable of operation at low temperatures (below room temperature) as most of the widely used chemical sensors operate at high temperatures (above 300 °C). In this research a simple and highly sensitive single walled carbon nanotube (SWNT) network sensor was developed for real time monitoring of hydrazine leaks to concentrations at parts per million levels. Upon exposure to hydrazine vapor, the resistance of the air exposed nanotubes (p-type) is observed to increase rapidly while that of the vacuum-degassed nanotubes (n-type) is observed to decrease. It was found that the resistance of the sample can be recovered through vacuum pumping and exposure to ultraviolet light. The experimental results support the electrochemical charge transfer mechanism between the oxygen redox couple of the ambient and the Fermi level of the SWNT. Theoretical results of the hydrazine-SWNT interaction are compared with the experimental observations. It was found that a monolayer of water molecules on the SWNT is necessary to induce strong interactions between hydrazine and the SWNT by way of introducing new occupied states near the bottom of the conduction band of the SWNT.

  6. Potassium-Decorated, Single-Wall Carbon Nanotubes.

    NASA Astrophysics Data System (ADS)

    Rao, A. M.; Richter, E.; Menon, M.; Subbaswamy, K. R.; Eklund, P. C.; Thess, A.; Smalley, R. E.

    1997-03-01

    Crystalline ropes of single-wall carbon nanotubes have been reacted in sealed glass tubes with potassium vapor and Raman scattering has been used to monitor the vibrational modes as a function of reaction time. An overall broadening and downshifting of the Raman bands is observed. For example, huge downshifts (40 cm-1) in the high frequency tangential modes observed near 1593 cm-1 in the pristine tubes are detected. These downshifts are attributed to significant charge transfer of K 4s electrons into antibonding pz states of the nanotube which should expand the tube diameter and soften the lattice. Presumably, the potassium ions are chemisorbed onto the walls of the nanotubes, rather than inside the nanotube, although no structural information to support this model has yet been collected. Theoretical results on electron doped armchair symmetry nanotubes using the Generalized Tight Binding Molecular Dynamics model will also be presented to help explain experimental results. The Kentucky group was supported by the University of Kentucky Center for Applied Energy Research and NSF Grant No. OSR-94-52895 and DOE Contract No. DE-F22-90PC90029. The work at Rice was supported by the Office of Naval Research Contract N0014-91-J1794.

  7. Flow Kills Conductivity of Single Wall Carbon Nanotubes (SWNT) Composites

    NASA Astrophysics Data System (ADS)

    Bhatt, Sanjiv; Macosko, Christopher

    2006-03-01

    Most composites of polymer and single wall carbon nanotubes (SWNT) reported in the literature are made by solvent casting or simple compression molding. Commercial utility of these composites requires use of precision injection molding. We have observed a unique behavior wherein the SWNT composites made by injection molding or by extrusion are insulators but upon heating become electrically conductive. This behavior appears to be the result of a relaxation phenomenon in the SWNT composite. During flow into an injection mold or through an extrusion die the well-dispersed SWNT in the polymer matrix tend to align such that they are not in contact with each other and are farther than the minimum required distance, 5 nm (1), to achieve electrical percolation through electron hopping. Upon heating the SWNT relax and either touch each other or are at a distance less than or equal to 5 nm from each other to create a percolating. [1] Du, F., Scogna, R, C., Zhou, W., Brand, Stijn, Fischer, J. E., and Winey, K. I., Macromolecules 2004, 37, 9048-9055.

  8. Concentration of lysozyme/single-walled carbon nanotube dispersions.

    PubMed

    Horn, Daniel W; Davis, Virginia A

    2016-03-01

    The dispersion of single-walled carbon nanotubes (SWNT) in aqueous solutions of biological materials enables the production of bulk films and fibers that combine natural biological activity with SWNT's intrinsic mechanical, thermal, and electrical properties. In this work, we report the rheology and phase behavior of concentrated lysozyme (LSZ)/SWNT dispersions. Even at low concentration, the LSZ's globular structure causes a deviation from the rheological behavior expected of rigid rods such as SWNT. With increasing concentration, stabilized SWNT typically form lyotropic liquid crystalline phases. However, in this case, the LSZ results in depletion attraction and the formation of large dense SWNT aggregates surrounded by a LSZ network. At intermediate concentrations, the microstructure and rheological properties are a complex function of the initial dispersion state, the absolute concentrations, and the LSZ to SWNT ratio. The rheological effects of concentrating mixtures comprised of aggregates, a range of bundle sizes, and individual SWNT were compared to the effects of concentrating supernatants comprised solely of individual SWNT and small bundles. In general, lysozyme concentration has the greatest impact on dispersion viscoelasticity. However, the inherent viscosity was a function of SWNT concentration; data from both initial mixtures and supernatants spanning two orders of magnitude in concentration could be collapsed onto a single master curve. This work provides a foundation for exploring the behavior of other globular protein-SWNT dispersions. PMID:26722820

  9. Suspended single-walled carbon nanotube fluidic sensors.

    PubMed

    Son, B H; Park, Ji-Yong; Lee, Soonil; Ahn, Y H

    2015-10-01

    In this paper, we demonstrate the fabrication of liquid flow sensors employing partially suspended single-walled carbon nanotubes (SWNTs). We have found that the sign of the conductance change in SWNT flow sensors is not influenced by the direction of water flow for both supported and suspended devices. Therefore, the streaming potential is not the principal mechanism of the SWNT sensor response. Instead, the conductance change is more likely due to a reduction in the cation density in the electrical double layer, whose equilibrium conditions are determined by the liquid flow rate. More importantly, we have found that the sensitivity of suspended SWNT devices is more than 10 times greater than that of supported SWNT devices. A reduced screening effect and an increase in effective sensing volume are responsible for the enhanced sensitivity, which is consistent with the ion depletion model. We also have measured conductance as a function of gate bias at different flow rates and have determined the flow-rate dependent effective charge density, which influences the electrostatic configuration around SWNT devices. PMID:26335376

  10. Ultrathin single-walled carbon nanotube network framed graphene hybrids.

    PubMed

    Wang, Rui; Hong, Tu; Xu, Ya-Qiong

    2015-03-11

    Graphene and single-walled carbon nanotubes (SWNTs) have shown superior potential in electronics and optoelectronics because of their excellent thermal, mechanical, electronic, and optical properties. Here, a simple method is developed to synthesize ultrathin SWNT-graphene films through chemical vapor deposition. These novel two-dimensional hybrids show enhanced mechanical strength that allows them to float on water without polymer supporting layers. Characterizations by Raman spectroscopy and transmission electron microscopy indicate that SWNTs can interlace as a concrete backbone for the subsequent growth of monolayer graphene. Optical and electrical transport measurements further show that SWNT-graphene hybrids inherit high optical transparency and superior electrical conductivity from monolayer graphene. We also explore the local optoelectronic properties of SWNT-graphene hybrids through spatially resolved photocurrent microscopy and find that the interactions between SWNTs and graphene can induce a strong photocurrent response in the areas where SWNTs link different graphene domains together. These fundamental studies may open a door for engineering optoelectronic properties of SWNT-graphene hybrids by controlling the morphologies of the SWNT frames. PMID:25686199

  11. Observation and Modeling of Single Wall Carbon Nanotube Bend Junctions

    NASA Technical Reports Server (NTRS)

    Han, Jie; Anantram, M. P.; Jaffe, R. L.; Kong, J.; Dai, H.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Single wall carbon nanotube (SWNT) bends, with diameters from approx. 1.0 to 2.5 nm and bend angles from 18 deg. to 34 deg., are observed in catalytic decomposition of hydrocarbons at 600 - 1200 C. An algorithm using molecular dynamics simulation (MD) techniques is developed to model these structures that are considered to be SWNT junctions formed by topological defects (i.e. pentagon-heptagon pairs). The algorithm is used to predict the tube helicities and defect configurations for bend junctions using the observed tube diameters and bend angles. The number and arrangement of the defects at the junction interfaces are found to depend on the tube helicities and bend angle. The structural and energetic calculations using the Brenner potential show a number of stable junction configurations for each bend angle with the 34 deg. bends being more stable than the others. Tight binding calculations for local density of state (LDOS) and transmission coefficients are carried out to investigate electrical properties of the bend junctions.

  12. On the Stability and Abundance of Single Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Hedman, Daniel; Reza Barzegar, Hamid; Rosén, Arne; Wågberg, Thomas; Andreas Larsson, J.

    2015-11-01

    Many nanotechnological applications, using single-walled carbon nanotubes (SWNTs), are only possible with a uniform product. Thus, direct control over the product during chemical vapor deposition (CVD) growth of SWNT is desirable, and much effort has been made towards the ultimate goal of chirality-controlled growth of SWNTs. We have used density functional theory (DFT) to compute the stability of SWNT fragments of all chiralities in the series representing the targeted products for such applications, which we compare to the chiralities of the actual CVD products from all properly analyzed experiments. From this comparison we find that in 84% of the cases the experimental product represents chiralities among the most stable SWNT fragments (within 0.2 eV) from the computations. Our analysis shows that the diameter of the SWNT product is governed by the well-known relation to size of the catalytic nanoparticles, and the specific chirality is normally determined by the product’s relative stability, suggesting thermodynamic control at the early stage of product formation. Based on our findings, we discuss the effect of other experimental parameters on the chirality of the product. Furthermore, we highlight the possibility to produce any tube chirality in the context of recent published work on seeded-controlled growth.

  13. Single-walled carbon nanotube-induced mitotic disruption?

    PubMed Central

    Sargent, L.M.; Hubbs, A.F.; Young, S.-H.; Kashon, M.L.; Dinu, C.Z.; Salisbury, J.L.; Benkovic, S.A.; Lowry, D.T.; Murray, A.R.; Kisin, E.R.; Siegrist, K.J.; Battelli, L.; Mastovich, J.; Sturgeon, J.L.; Bunker, K.L.; Shvedova, A.A.; Reynolds, S.H.

    2015-01-01

    Carbon nanotubes were among the earliest products of nanotechnology and have many potential applications in medicine, electronics, and manufacturing. The low density, small size, and biological persistence of carbon nanotubes create challenges for exposure control and monitoring and make respiratory exposures to workers likely. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to 24, 48 and 96 ?g/cm2 single-walled carbon nanotubes (SWCNT). To investigate mitotic spindle aberrations at concentrations anticipated in exposed workers, primary and immortalized human airway epithelial cells were exposed to SWCNT for 2472 h at doses equivalent to 20 weeks of exposure at the Permissible Exposure Limit for particulates not otherwise regulated. We have now demonstrated fragmented centrosomes, disrupted mitotic spindles and aneuploid chromosome number at those doses. The data further demonstrated multipolar mitotic spindles comprised 95% of the disrupted mitoses. The increased multipolar mitotic spindles were associated with an increased number of cells in the G2 phase of mitosis, indicating a mitotic checkpoint response. Nanotubes were observed in association with mitotic spindle microtubules, the centrosomes and condensed chromatin in cells exposed to 0.024, 0.24, 2.4 and 24 ?g/cm2 SWCNT. Three-dimensional reconstructions showed carbon nanotubes within the centrosome structure. The lower doses did not cause cytotoxicity or reduction in colony formation after 24 h; however, after three days, significant cytotoxicity was observed in the SWCNT-exposed cells. Colony formation assays showed an increased proliferation seven days after exposure. Our results show significant disruption of the mitotic spindle by SWCNT at occupationally relevant doses. The increased proliferation that was observed in carbon nanotube-exposed cells indicates a greater potential to pass the genetic damage to daughter cells. Disruption of the centrosome is common in many solid tumors including lung cancer. The resulting aneuploidy is an early event in the progression of many cancers, suggesting that it may play a role in both tumorigenesis and tumor progression. These results suggest caution should be used in the handling and processing of carbon nanotubes. PMID:22178868

  14. Red-emitting π-conjugated oligomers infused single-wall carbon nanotube sheets

    NASA Astrophysics Data System (ADS)

    Fujimori, Toshihiko; Urita, Koki

    2016-04-01

    We demonstrate the one-step thermal fusion and infusion of pyrene molecules inside single-wall carbon nanotubes (SWCNTs). Despite the presence of metallic-SWCNTs, which behave as a quencher due to gapless electronic states, the nanohybrids consisting of pyrene and/or azupyrene oligomers infused SWCNT sheets exhibit red fluorescence by the ultraviolet, blue, and green light excitations. The wavelength-independent light-emitting behavior is explained by (1) infused PAH oligomers inside semiconducting-SWCNTs and (2) the peculiar π-π interaction through mixed π-conjugated state between the π-conjugated oligomers and non-armchair metallic-SWCNTs.

  15. Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kong, J.; Zhou, C.; Morpurgo, A.; Soh, H. T.; Quate, C. F.; Marcus, C.; Dai, H.

    High-quality single-walled carbon nanotubes (SWNTs) are synthesized by chemical vapor deposition (CVD) of methane on silicon-dioxide substrates at controlled locations using patterned catalytic islands. With the synthesized nanotube chips, microfabrication techniques are used to reliably contact individual SWNTs and obtain low contact resistance. The combined chemical synthesis and microfabrication approaches enable systematic characterization of electron transport properties of a large number of individual SWNTs. Results of electrical properties of representative semiconducting and metallic SWNTs are presented. The lowest two-terminal resistance for individual metallic SWNTs ( 5 ?m long) is 16.5 k? measured at 4.2 K.

  16. Electronic Durability of Flexible Transparent Films from Type-Specific Single-Wall Carbon Nanotubes

    SciTech Connect

    Harris, J; Iyer, S; Bernhardt, A; Huh, JY; Hudson, S; Fagan, J; Hobbie, E.

    2011-12-11

    The coupling between mechanical flexibility and electronic performance is evaluated for thin films of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) deposited on compliant supports. Percolated networks of type-purified SWCNTs are assembled as thin conducting coatings on elastic polymer substrates, and the sheet resistance is measured as a function of compression and cyclic strain through impedance spectroscopy. The wrinkling topography, microstructure and transparency of the films are independently characterized using optical microscopy, electron microscopy, and optical absorption spectroscopy. Thin films made from metallic SWCNTs show better durability as flexible transparent conductive coatings, which we attribute to a combination of superior mechanical performance and higher interfacial conductivity.

  17. Donor doping of single-walled carbon nanotubes by filling of channels with silver

    SciTech Connect

    Kharlamova, M. V.; Niu, J. J.

    2012-09-15

    The channels of single-walled carbon nanotubes (SWNTs) are filled with metallic silver. The synthesized nanocomposites are studied by Raman spectroscopy and optical absorption spectroscopy, and these data indicate a substantial modification of the electronic structure of the nanotubes upon their filling. Moreover, X-ray photoelectron spectroscopy shows that the incorporation of the metal leads to a change in the work function of SWNTs due to the Fermi level upshift and to the transfer of an electron density from inserted nanoparticles to the nanotube walls. Thus, the filling of the channels with silver results in donor doping of the nanotubes.

  18. Effects of single-walled carbon nanotubes on soil microorganisms

    NASA Astrophysics Data System (ADS)

    Jin, L.; Chung, H.; Son, Y.

    2011-12-01

    Single-walled carbon nanotubes (SWCNTs) are novel materials that have the potential to be used in various commercial fields due to their unique physicochemical properties. As a result of commercial development of nanotechnology, SWCNTs may be discharged to the soil environment with unknown consequences. However, there are as yet no data in the scientific literature that demonstrate the effects of SWCNTs on microbial function in soils. Therefore, we aimed to determine the effects of SWCNTs on soil microbial activity through a 2-week incubation study on urban soils supplemented with different concentrations of SWCNTs ranging from 0 to 1000 μg CNT/g soil. Fluorometric test using fluorogenic substrates were employed for the measurement of several enzyme activities in soil samples. More specifically, we determined the changes in the activities of cellobiohydrolase, β-1,4-glucosidase, β-1,4-xylosidase, β-1,4-N-acetylglucosaminidase, L-leucine aminopeptidase and acid phosphatase which play important roles in the carbon, nitrogen, and phosphorus cycles in response to the addition of SWCNTs. We found that microbial enzyme activities decreased as the concentrations of SWCNT added increased. The lowest enzyme activities were observed under 1000 μg CNT/g soil. The overall pattern shows that enzyme activities decreased slightly in the first 2-3 days and increased in the later stage of the incubation. Our results suggest that relatively high concentrations of SWCNTs can inhibit microbial activities, and this may be due to microbial cell membrane damage caused by SWCNTs. However, further study needs to be conducted to determine the mechanism responsible for inhibitory effect of SWCNTs on soil microbial activity. It can be concluded that changes in the activities of extracellular enzymes can indicate the effect of SWCNTs on soil microorganisms and nutrient cycling.

  19. Elastomer Filled With Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Files, Bradley S.; Forest, Craig R.

    2004-01-01

    Experiments have shown that composites of a silicone elastomer with single-wall carbon nanotubes (SWNTs) are significantly stronger and stiffer than is the unfilled elastomer. The large strengthening and stiffening effect observed in these experiments stands in contrast to the much smaller strengthening effect observed in related prior efforts to reinforce epoxies with SWNTs and to reinforce a variety of polymers with multiple-wall carbon nanotubes (MWNTs). The relative largeness of the effect in the case of the silicone-elastomer/SWNT composites appears to be attributable to (1) a better match between the ductility of the fibers and the elasticity of the matrix and (2) the greater tensile strengths of SWNTs, relative to MWNTs. For the experiments, several composites were formulated by mixing various proportions of SWNTs and other filling materials into uncured RTV-560, which is a silicone adhesive commonly used in aerospace applications. Specimens of a standard "dog-bone" size and shape for tensile testing were made by casting the uncured elastomer/filler mixtures into molds, curing the elastomer, then pressing the specimens from a "cookie-cutter" die. The results of tensile tests of the specimens showed that small percentages of SWNT filler led to large increases in stiffness and tensile strength, and that these increases were greater than those afforded by other fillers. For example, the incorporation of SWNTs in a proportion of 1 percent increased the tensile strength by 44 percent and the modulus of elasticity (see figure) by 75 percent. However, the relative magnitudes of the increases decreased with increasing nanotube percentages because more nanotubes made the elastomer/nanotube composites more brittle. At an SWNT content of 10 percent, the tensile strength and modulus of elasticity were 125 percent and 562 percent, respectively, greater than the corresponding values for the unfilled elastomer.

  20. Study on the Microwave Permittivity of Single-Walled Carbon Nanotube

    ERIC Educational Resources Information Center

    Liu, Xiaolai; Zhao, Donglin

    2009-01-01

    In this article, we studied the microwave permittivity of the complex of the single-walled carbon nanotube and paraffin in 2-18GHz. In the range, the dielectric loss of single-walled carbon nanotube is higher, and the real part and the imaginary part of the dielectric constant decrease with the increase of frequency, and the dielectric constant…

  1. Photovoltaic device using single wall carbon nanotubes and method of fabricating the same

    DOEpatents

    Biris, Alexandru S.; Li, Zhongrui

    2012-11-06

    A photovoltaic device and methods for forming the same. In one embodiment, the photovoltaic device has a silicon substrate, and a film comprising a plurality of single wall carbon nanotubes disposed on the silicon substrate, wherein the plurality of single wall carbon nanotubes forms a plurality of heterojunctions with the silicon in the substrate.

  2. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    PubMed

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. PMID:25676253

  3. Noncovalent functionalization of single-walled carbon nanotubes with porphyrins

    NASA Astrophysics Data System (ADS)

    Bassiouk, Mara; Basiuk, Vladimir A.; Basiuk, Elena V.; lvarez-Zauco, Edgar; Martnez-Herrera, Melchor; Rojas-Aguilar, Aaron; Puente-Lee, Ivn

    2013-06-01

    The covalent and noncovalent interactions of porphyrins and related tetraazamacrocyclic compounds with single-walled carbon nanotubes (SWNTs) is a subject of increasing research effort, directed toward the design of novel hybrid nanomaterials combining unique electronic and optical properties of both molecular species. In this report, we used different experimental techniques as well as molecular mechanics (MM) calculations to analyze the adsorption of meso-tetraphenylporphine (or 5,10,15,20-tetraphenyl-21H,23H-porphine, H2TPP) and its complexes with Ni(II) and Co(II) (NiTPP and CoTPP, respectively), as well as hemin (a natural porphyrin), onto the surface of SWNTs. Altogether, the results suggested that all four porphyrin species noncovalently interact with SWNTs, forming hybrid nanomaterials. Nevertheless, of all four porphyrin species, the strongest interaction with SWNTs occurs in the case of CoTPP, which is able to intercalate and considerably disperse SWNT bundles, and therefore absorb onto the surface of individual SWNTs. In contrast, NiTPP, CoTPP and hemin, due to a weaker interaction, are unable to do so and therefore are only capable to adsorb onto the surface of SWNT bundles. According to the scanning tunneling microscopy (STM) imaging and MM results, the adsorption of CoTPP onto SWNT sidewalls results in the formation of porphyrin arrays in the shape of long-period interacting helixes with variable periodicity, possibly due to different diameters and chiralities of SWNTs present in the samples. Since the remaining porphyrin species were found to adsorb onto the surface of SWNT bundles, the precise geometry of the corresponding porphyrin/SWNT complexes is difficult to characterize.

  4. Toroidal Single Wall Carbon Nanotubes in Fullerene Crop Circles

    NASA Technical Reports Server (NTRS)

    Han, Jie; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    We investigate energetics and structure of circular and polygonal single wall carbon nanotubes (SWNTs) using large scale molecular simulations on NAS SP2, motivated by their unusual electronic and magnetic properties. The circular tori are formed by bending tube (no net whereas the polygonal tori are constructed by turning the joint of two tubes of (n, n), (n+1, n-1) and (n+2, n-2) with topological pentagon-heptagon defect, in which n =5, 8 and 10. The strain energy of circular tori relative to straight tube decreases by I/D(sup 2) where D is torus diameter. As D increases, these tori change from buckling to an energetically stable state. The stable tori are perfect circular in both toroidal and tubular geometry with strain less than 0. 03 eV/atom when D greater than 10, 20 and 40 nm for torus (5,5), (8,8) and (10, 10). Polygonal tori, whose strain is proportional to the number of defects and I/D are energetically stable even for D less than 10 nm. However, their strain is higher than that of perfect circular tori. In addition, the local maximum strain of polygonal tori is much higher than that of perfect circular tori. It is approx. 0.03 eV/atom or less for perfect circular torus (5,5), but 0.13 and 0.21 eV/atom for polygonal tori (6,4)/(5,5) and (7,3)/(5,5). Therefore, we conclude that the circular tori with no topological defects are more energetically stable and kinetically accessible than the polygonal tori containing the pentagon-heptagon defects for the laser-grown SWNTs and Fullerene crop circles.

  5. Sequestration of Single-Walled Carbon Nanotubes in a Polymer

    NASA Technical Reports Server (NTRS)

    Bley, Richard A.

    2007-01-01

    Sequestration of single-walled carbon nanotubes (SWCNs) in a suitably chosen polymer is under investigation as a means of promoting the dissolution of the nanotubes into epoxies. The purpose of this investigation is to make it possible to utilize SWCNs as the reinforcing fibers in strong, lightweight epoxy-matrix/carbon-fiber composite materials. SWCNs are especially attractive for use as reinforcing fibers because of their stiffness and strength-to-weight ratio: Their Young s modulus has been calculated to be 1.2 TPa, their strength has been calculated to be as much as 100 times that of steel, and their mass density is only one-sixth that of steel. Bare SWCNs cannot be incorporated directly into composite materials of the types envisioned because they are not soluble in epoxies. Heretofore, SWCNS have been rendered soluble by chemically attaching various molecular chains to them, but such chemical attachments compromise their structural integrity. In the method now under investigation, carbon nanotubes are sequestered in molecules of poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) [PmPV]. The strength of the carbon nanotubes is preserved because they are not chemically bonded to the PmPV. This method exploits the tendency of PmPV molecules to wrap themselves around carbon nanotubes: the wrapping occurs partly because there exists a favorable interface between the conjugated face of a nanotube and the conjugated backbone of the polymer and partly because of the helical molecular structure of PmPV. The constituents attached to the polymer backbones (the side chains) render the PmPV-wrapped carbon nanotubes PmPV soluble in organic materials that, in turn, could be used to suspend the carbon nanotubes in epoxy precursors. At present, this method is being optimized: The side chains on the currently available form of PmPV are very nonpolar and unable to react with the epoxy resins and/or hardeners; as a consequence, SWCN/PmPV composites have been observed to precipitate out of epoxies while the epoxies were being cured. If the side chains of the PmPV molecules were functionalized to make them capable of reacting with the epoxy matrices, it might be possible to make progress toward practical applications. By bonding the side chains of the PmPV molecules to an epoxy matrix, one would form an PmPV conduit between the epoxy matrix and the carbon nanotubes sequestered in the PmPV. This conduit would transfer stresses from the epoxy matrix to the nanotubes. This proposed load-transfer mode is similar to that of the current practice in which silane groups are chemically bonded to both the epoxy matrices and the fibers (often glass fibers) in epoxymatrix/fiber composites.

  6. New Method Developed To Purify Single Wall Carbon Nanotubes for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Lebron, Marisabel; Meador, Michael A.

    2003-01-01

    Single wall carbon nanotubes have attracted considerable attention because of their remarkable mechanical properties and electrical and thermal conductivities. Use of these materials as primary or secondary reinforcements in polymers or ceramics could lead to new materials with significantly enhanced mechanical strength and electrical and thermal conductivity. Use of carbon-nanotube-reinforced materials in aerospace components will enable substantial reductions in component weight and improvements in durability and safety. Potential applications for single wall carbon nanotubes include lightweight components for vehicle structures and propulsion systems, fuel cell components (bipolar plates and electrodes) and battery electrodes, and ultra-lightweight materials for use in solar sails. A major barrier to the successful use of carbon nanotubes in these components is the need for methods to economically produce pure carbon nanotubes in large enough quantities to not only evaluate their suitability for certain applications but also produce actual components. Most carbon nanotube synthesis methods, including the HiPCO (high pressure carbon monoxide) method developed by Smalley and others, employ metal catalysts that remain trapped in the final product. These catalyst impurities can affect nanotube properties and accelerate their decomposition. The development of techniques to remove most, if not all, of these impurities is essential to their successful use in practical applications. A new method has been developed at the NASA Glenn Research Center to purify gram-scale quantities of single wall carbon nanotubes. This method, a modification of a gas phase purification technique previously reported by Smalley and others, uses a combination of high-temperature oxidations and repeated extractions with nitric and hydrochloric acid. This improved procedure significantly reduces the amount of impurities (catalyst and nonnanotube forms of carbon) within the nanotubes, increasing their stability significantly. The onset of decomposition of the purified nanotubes (determined by thermal gravimetric analysis in air) is more than 300 C higher than that of the crude nanotubes. Transmission electron microscopy analysis of nanotubes purified by this method reveals near complete removal of iron catalyst particles. Analysis of the nanotubes using inductively coupled plasma spectroscopy revealed that the iron content of the nanotubes was reduced from 22.7 wt% in the crude nanotubes to less than 0.02 wt%. X-ray photoelectron spectroscopy revealed a decrease in iron content after purification as well as an increase in oxygen content due to the formation of carboxylic acid groups on the surface of the nanotubes. Nanotubes purified by this improved method can be readily dispersed in common organic solvents, in particular N,N-dimethylformamide, using prolonged ultrasonic treatment. These dispersions can then be used to incorporate single wall carbon nanotubes into polymer films.

  7. Synthesis of Single-Walled Carbon Nanotubes in a Glow Discharge Fine Particle Plasma

    SciTech Connect

    Imazato, N.; Imano, M.; Hayashi, Y.

    2008-09-07

    Carbon fine particles were synthesized being negatively charged and confined in a glow discharge plasma. The deposited fine particles were analyzed by Raman spectroscopy and transmission electron microscopy (TEM) and were confirmed to include single-walled carbon nanotubes.

  8. Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports.

    PubMed

    Qin, Xiaojun; Peng, Fei; Yang, Feng; He, Xiaohui; Huang, Huixin; Luo, Da; Yang, Juan; Wang, Sheng; Liu, Haichao; Peng, Lianmao; Li, Yan

    2014-02-12

    The growth of semiconducting single-walled carbon nanotubes (s-SWNTs) on flat substrates is essential for the application of SWNTs in electronic and optoelectronic devices. We developed a flexible strategy to selectively grow s-SWNTs on silicon substrates using a ceria-supported iron or cobalt catalysts. Ceria, which stores active oxygen, plays a crucial role in the selective growth process by inhibiting the formation of metallic SWNTs via oxidation. The so-produced ultralong s-SWNT arrays are immediately ready for building field effect transistors. PMID:24392872

  9. Fast Characterization of Magnetic Impurities in Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Chen, Feng; Xue, Y. Y.; Hadijiev, Viktor G.; Chu, C. W.; Nikolaev, Pasha; Arepalli, Sivaram

    2003-01-01

    We have demonstrated that the magnetic susceptibility measurement is a non-destructive, fast and accurate method to determine the residual metal catalysts in a few microgram single-wall carbon nanotube (SWCNT) sample. We have studied magnetic impurities in raw and purified SWCNT by magnetic susceptibility measurements, transmission electron microscopy, and thermogravimetry. The data suggest that the saturation magnetic moment and the effective field, which is caused by the interparticle interactions, decreases and increases respectively with the decrease of the particle size. Methods are suggested to overcome the uncertainty associated.

  10. Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge

    SciTech Connect

    Keidar, Michael; Levchenko, Igor; Ostrikov, Kostya; Arbel, Tamir; Alexander, Myriam; Waas, Anthony M.

    2008-01-28

    It is demonstrated that a magnetic field has a profound effect on the length of a single-wall carbon nanotube (SWCNT) synthesized in the arc discharge. The average length of SWCNT increases by a factor of 2 in discharge with magnetic field as compared with the discharge without magnetic field, and the yield of long nanotubes with lengths above 5 {mu}m also increases. A model of SWCNT growth on metal catalyst in arc plasma was developed. Monte-Carlo simulations confirm that the increase of the plasma density in the magnetic field leads to an increase in the nanotube growth rate and thus leads to longer nanotubes.

  11. Controlling the doping of single-walled carbon nanotube networks by proton irradiation

    SciTech Connect

    Walker, D.; Mann, C. J.; Panetta, C. J.; Alaan, D. R.; Hopkins, A. R.; Liu, S. H.

    2012-09-03

    We demonstrate the controlled desorption of adventitious dopants on networks of single-walled carbon nanotubes (SWNTs) with 100 keV proton irradiation. Networks of sorted metallic, semiconducting SWNTs, and unsorted SWNTs were investigated. The removal of dopants was indicated by an increase in sheet resistances along with an increase in the absorption of the low energy absorption band of semiconducting SWNTs. Semiconducting and unsorted SWNT networks exhibited the largest change in their sheet resistance, which indicates the conductivity of unsorted SWNT networks is dominated by the tube-tube junctions of semiconducting SWNTs.

  12. Electrical Detection of ssDNA by Single Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Tung, Chih-Kuan; Zhang, Yuexing; Ong, Phuan; Cox, Edward

    2005-03-01

    We report conductance measurements of single-walled carbon nanotubes (SWNT) in the presense of single-stranded DNA (ssDNA). The characteristic I-V curves of our metallic SWNT samples changed from linear (ohmic) to non-ohmic in the presence of ssDNA dissolved in DI water, and remained so when the sample was dried. The results imply possible applications of SWNT in the electronic detection of ssDNA, detection of hybridization of ssDNA, and sequencing of DNA.

  13. Stabilities and mechanical and electronic properties on BN doped zigzag single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Vongachariya, Arthit; Parasuk, Vudhichai

    2015-12-01

    Electronic structures of undoped and BN doped zigzag (8,0) single-walled carbon nanotube (SWCNT) were investigated using density functional theoretical calculations. Their stabilities due to BN doping and spin states were considered and those with the shortest B-N distance and singlet spin is the most stable. The BN substitution also causes the reduction of the band gap energy. While the BN doping reduces the band gap energy from 0.606 to 0.183 eV, it has no effect on the Young's modulus value. The band gap energy of SWCNTs can be varied upon applying stress. At high stress ratio, SWCNT could become metallic.

  14. Carbonyl group generation on single-wall carbon nanotubes with nitric acid: A theoretical description

    NASA Astrophysics Data System (ADS)

    Da Silva, Antnio M.; Dos Santos, Hlio F.; Giannozzi, Paolo

    2013-09-01

    The initial steps of single-wall carbon nanotube (SWNT) oxidation in nitric acid were studied using a (6,6) supercell with a mono-vacancy defect and employing spin-polarised density functional theory. According to our results, the geometric changes that occur during the process are significantly localised around the vacancy. The carbonyl group generation does not change the metallic nature of the nanosystem. Vibrational thermal corrections calculated using full and partial Hessian vibrational analysis indicated a small contribution to the reaction energy. An overall favourable oxidation pathway is proposed and includes an initial NO2+ exothermic electrophilic attack followed by an endothermic oxaziridine formation.

  15. Structural characterization of macroscopic single-walled carbon nanotube materials

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    In this thesis, we studied the structural properties of macroscopic materials of single-walled carbon nanotubes (SWNTs) in the form of fibers, films and suspensions. We characterized the preferred orientations in partially aligned SWNT fibers and films, combining x-ray fiber diagram and polarized Raman scattering. Our texture model consists of an aligned fraction, characterized by the angular distribution width of tube axes, plus a completely unaligned fraction. For neat fibers extruded from SWNT/superacid suspensions through a small orifice, the distribution width and the aligned fraction both improve with decreasing orifice diameter. For magnetic field-aligned SWNT films deposited from surfactant suspensions, the aligning effects of deposition and external magnetic field force in the film plane are additive, the out-of-plane mosaic being narrower than the in-plane one. SWNTs dispersed in superacid or aqueous surfactant solutions are precursors for many applications. In oleum, SWNTs can be charged and protonated by H 2SO4 molecules. X-ray scattering indicates that H2SO 4 molecules align along nanotube axes to form cylindrical shells wrapped around nanotubes. This finding establishes the validity of a long-standing important but still debated physical chemistry concept, "structured solvent shells surrounding dissolved ions". Differential scanning calorimetry confirms that the partly ordered H2SO4 molecules are a new phase, with distinct freezing/melting behavior. X-ray scattering at low temperature further shows that crystallization of the bulk-like acid surrounding the structured shells is templated by the SWNTs. The specific orientation of the acid crystallites provides solid evidence for direct protonation of SWNT. We studied the morphologies of SWNT suspensions using small-angle neutron scattering. We observed rigid rod behavior from SWNTs dispersed in water using sodium dodecylbenzene sulfonate surfactant, suggesting that SWNTs exist mainly as individual tube and small ropes in the suspension. In many other surfactants and organic solvents, SWNTs form aggregates. In superacid, SWNTs dissolve as isolated individual tubes and small ropes at low concentration (00.01 wt%) while at high concentration, the tubes and ropes self-assemble into liquid crystalline strands of mobile solvated nanotube spaghettis, which exhibit a self-similar fractal-like structure.

  16. Optical and vibrational properties of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kennedy, W. Joshua

    This work is a study of the optical properties of single-wall carbon nanotubes (SWNTs) using continuous wave (CW) modulation spectroscopy and resonant Raman scattering. SWNTs comprise a nanoscale, quasi-1D system in which the electrons are strongly interacting, resulting in the photo-generation of excitons. Our optical studies have revealed the behavior of these excitons under a number of different perturbations to the system. We have used absorption, reflectance, electro-absorption (EA), photo-induced absorption (PA), charge-induced absorption (CIA), and resonant Raman scattering (RRS) on films of SWNTs. Our EA results provide strong evidence for the dominance of excitons in the optical absorption spectra of SWNT films. The absence of Franz-Keldysh oscillations and the presence of a derivative-like structure of the EA spectra indicate that the oscillator strength goes to the generation of excitons and not to interband electronic transitions. Furthermore, some of the photo-generated excitons are long-lived due to charge trapping in individual tubes within bundles, and this leads to a PA spectrum that is extraordinarily similar to the EA signal. When SWNTs are electrochemically doped we see that the exciton absorption is bleached due to k-space filling and screening of the excitons by the modified local dielectric, while there is very little shift in the exciton transition energies due to band-gap renormalization. Simultaneously the infrared absorption, which is due to Drude free-carriers absorption, is enhanced. A similar behavior is observed in the case of direct charge injection. The RRS of doped SWNT samples shows a frequency shift of many of the Raman-active modes that is commensurate with the macroscopic actuation observed in nanotube-based electrochemical devices. This indicates that doping-induced changes in the lattice are connected with softening and stiffening of the vibrational modes. Our results impact many proposed technologies that exploit the unique properties of SWNTs. Displays, batteries, and even photovoltaics that incorporate nanotubes are already in development. The performance and robustness of these devices could be improved when our results are taken into account.

  17. Antimicrobial Biomaterials based on Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Aslan, Seyma

    Biomaterials that inactivate bacteria are needed to eliminate medical device infections. We investigate the antimicrobial nature of single-walled carbon nanotubes (SWNT) incorporated within biomedical polymers. In the first part, we focus on SWNT dispersed in the common biomedical polymer poly(lactic-co-glycolic acid) (PLGA) as a potential antimicrobial biomaterial. We find Escherichia coli and Staphylococcus epidermidis viability and metabolic activity to be significantly diminished in the presence of SWNT-PLGA, and to correlate with SWNT length and concentration. Up to 98 % of bacteria die within one hour of SWNT-PLGA versus 15-20% on pure PLGA. Shorter SWNT are found to be more toxic, possibly due to an increased density of open tube ends. In the second part, we investigate the antimicrobial activity of SWNT layer-by-layer (LbL) assembled with the polyelectrolytes poly(L-lysine) (PLL) and poly(L-glutamic acid) (PGA). The dispersibility of SWNT in aqueous solution is significantly improved via the biocompatible nonionic surfactant polyoxyethylene(20)sorbitan monolaurate (Tween 20) and the amphiphilic polymer phospholipid-poly(ethylene glycol) (PL-PEG). Absorbance spectroscopy and transmission electron microscopy (TEM) show SWNT with either Tween 20 or PL-PEG in aqueous solution to be well dispersed. Quartz crystal microgravimetry with dissipation (QCMD) measurements show both SWNT-Tween and SWNT-PL-PEG to LbL assemble with PLL and PGA into multilayer films, with the PL-PEG system yielding the greater final SWNT content. Bacterial inactivation rates are significantly higher (up to 90%) upon 24 hour incubation with SWNT containing films, compared to control films (ca. 20%). In the third part, we study the influence of bundling on the LbL assembly of SWNT with charged polymers, and on the antimicrobial properties of the assembled film. QCMD measurements show the bundled SWNT system to adsorb in an unusually strong fashionto an extent three times greater than that of isolated SWNT. Scanning electron micrographs reveal Escherichia coli on bundled SWNT films to be essentially engulfed by the nanotubes, whereas the bacteria rest upon the isolated SWNT films. While both systems inactivate 90% of bacteria following 24 h, the bundled SWNT system is "fast-acting", reaching this inactivation rate in 1 hr. This thesis demonstrates the potential usefulness of SWNT/polymer thin films as antimicrobial biomaterials.

  18. Single Walled Carbon Nanohorns as Photothermal Cancer Agents

    SciTech Connect

    Whitney, John; Sarkar, Saugata; Zhang, Jianfei; Do, Thao; Manson, Mary kyle; Campbell, Tom; Puretzky, Alexander A; Rouleau, Christopher M; More, Karren Leslie; Geohegan, David B; Rylander, Christopher; Dorn, Harry C; Rylander, Nichole M

    2011-01-01

    Nanoparticles have significant potential as selective photo-absorbing agents for laser based cancer treatment. This study investigates the use of single walled carbon nanohorns (SWNHs) as thermal enhancers when excited by near infrared (NIR) light for tumor cell destruction. Absorption spectra of SWNHs in deionized water at concentrations of 0, 0.01, 0.025, 0.05, 0.085, and 0.1 mg/ml were measured using a spectrophotometer for the wavelength range of 200-1,400 nm. Mass attenuation coefficients were calculated using spectrophotometer transmittance data. Cell culture media containing 0, 0.01, 0.085, and 0.333 mg/ml SWNHs was laser irradiated at 1,064 nm wavelength with an irradiance of 40 W/cm{sup 2} for 0-5 minutes. Temperature elevations of these solutions during laser irradiation were measured with a thermocouple 8 mm away from the incident laser beam. Cell viability of murine kidney cancer cells (RENCA) was measured 24 hours following laser treatment with the previously mentioned laser parameters alone or with SWNHs. Cell viability as a function of radial position was determined qualitatively using trypan blue staining and bright field microscopy for samples exposed to heating durations of 2 and 6 minutes alone or with 0.085 mg/ml SWNHs. A Beckman Coulter Vi-Cell instrument quantified cell viability of samples treated with varying SWNH concentration (0, 0.01, 0.085, and 0.333 mg/ml) and heating durations of 0-6 minutes. Spectrophotometer measurements indicated inclusion of SWNHs increased light absorption and attenuation across all wavelengths. Utilizing SWNHs with laser irradiation increased temperature elevation compared to laser heating alone. Greater absorption and higher temperature elevations were observed with increasing SWNH concentration. No inherent toxicity was observed with SWNH inclusion. A more rapid and substantial viability decline was observed over time in samples exposed to SWNHs with laser treatment compared with samples experiencing laser heating or SWNH treatment alone. Samples heated for 6 minutes with 0.085 mg/ml SWNHs demonstrated increasing viability as the radial distance from the incident laser beam increased. The significant increases in absorption, temperature elevation, and cell death with inclusion of SWNHs in laser therapy demonstrate the potential of their use as agents for enhancing photothermal tumor destruction.

  19. Diffusion of single-walled carbon nanotube under physiological conditions.

    PubMed

    Judkins, John; Lee, Hyun Ho; Tung, Steve; Kim, Jin-Woo

    2013-06-01

    Single-walled carbon nanotube (SWNT) can be functionalized to target cells for drug delivery or cancer cells for their detection and therapy. Understanding their transport phenomena in vivo is a necessary step to unlock their medical potential. This work estimates the diffusion characteristics of SWNTs and their DNA-conjugated bio-hybrids under simulated or postulated physiological conditions using EPI-fluorescence microscopy (EFM). SWNT was shortened and dispersed in aqueous solution with the average length and diameter of 253 nm (+/-30.6 nm) and 1.6 nm (+/-0.34 nm), respectively, and tagged with a fluorophore, 1-pyrenebutanoic succinimidyl ester (PSE), through non-covalent pi stacking. DNA was attached to the PSE-SWNTs through carboxiimide based coupling procedure. Using the EFM, real-time videos were recorded under four different viscosities corresponding to four kinds of human body fluids: lymph (1.4 cP), bile (2.4 cP), blood (3-6 cP), and cytoplasm (10-30 cP), and processed to calculate diffusion coefficients based on random walk and speed. At 37 degreeC, diffusion coefficients of the SWNTs were estimated to be: 1.45 (+/-0.652) x 10(4) nm2/s (lymph), 0.91 (+/-0.205) x 10(4) nm2/s (bile), 0.59 (+/-0.179)x 10(4) nm2/s (blood), and 0.26 (+/-0.114)x 10(4) nm2/s (cytoplasm). Estimated diffusion coefficients of SWNT-DNA bio-hybrids were: 1.45 (+/-0.402) x 10(4) nm2/s (plasma), 0.62 (+/-0.212) x 10(4) nm2/s (bile), 0.41 (+/-0.142) x 10(4) nm2/s (blood), 0.38 (+/-0.257) x 10(4) nm2/s (cytoplasm). These outcomes should serve as key data for developing mathematical models of SWNT-based drug delivery, cell targeting, and its biodistribution. PMID:23858971

  20. Single-walled carbon nanotube networks for flexible and printed electronics

    NASA Astrophysics Data System (ADS)

    Zaumseil, Jana

    2015-07-01

    Networks of single-walled carbon nanotubes (SWNTs) can be processed from solution and have excellent mechanical properties. They are highly flexible and stretchable. Depending on the type of nanotubes (semiconducting or metallic) they can be used as replacements for metal or transparent conductive oxide electrodes or as semiconducting layers for field-effect transistors (FETs) with high carrier mobilities. They are thus competitive alternatives to other solution-processable materials for flexible and printed electronics. This review introduces the basic properties of SWNTs, current methods for dispersion and separation of metallic and semiconducting SWNTs and techniques to deposit and pattern dense networks from dispersion. Recent examples of applications of carbon nanotubes as conductors and semiconductors in (opto-)electronic devices and integrated circuits will be discussed.

  1. Direct imaging the subcellular localization of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Feifan; Xing, Da; Chen, Wei R.

    2011-03-01

    The development of single-walled carbon nanotubes (SWNTs) for various biomedical applications is an area of great promise. However, the contradictory data on the interaction of single-walled carbon nanotubes with cells highlight the need to study their uptake and cytotoxic effects in cells. Here, we use confocal microscopy to image the translocation of single-walled carbon nanotubes into cells and localization on the subcellular organelle. We also observe that single-walled carbon nanotubes do not affect the cellular condition and mitochondrial membrane potential. One intrinsic property of single-walled carbon nanotubes is their strong optical absorbance in the near-infrared (NIR) region. It could be used to selectively increase the thermal destructions in the target tumors. A specific type of SWNT by the CoMoCAT method has an intense absorption band at 980 nm. When irradiated with a 980-nm laser, the single-walled carbon nanotubes affect the cellular oxidation and destroy the mitochondrial membrane potential, and induce cell apoptosis. Thus, the single-walled carbon nanotubes appear to enter the cytoplasm without cytotoxic effects in cells, and can be used as effective and selective nanomaterials for cancer photothermal therapy.

  2. Single-Wall Carbon Nanotube Production by the Arc Process: A Parametric Study

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Gorelik, Olga; Proft, William J.

    2000-01-01

    Single wall carbon nanotubes are produced using the arc discharge process. Graphite anodes are filled with a mixture of nickel and yttrium metallic powders, then vaporized by creating a high current arc. By varying the current, gap distance, and ambient pressure it is shown that the best yield of single wall carbon nanotubes is obtained within a narrow range of conditions. The relative yield and purity of the product are indicated semi-quantitatively from scanning electric microscopy (SEM) and thermogravimetric analysis (TGA). Two types of anodes have been investigated. The first is hollow and filled with a powder mixture of graphite, nickel and yttrium. The second is filled with a paste made of a mixture of metal nitrates, graphite powder and carbon adhesive, then reduced in an argon atmosphere at high temperature. Product purity and yield will be compared for the two types of anodes. The graphite in the anodes may have hydrogen attached in the pores. To remove this impurity anodes have been baked up to 1400 - 1500 C. The effect of baking the anodes on impurities in the product will be given.

  3. Single-walled carbon nanotube buckypaper and mesophase pitch carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Park, Jin Gyu; Yun, Nam Gyun; Park, Young Bin; Liang, Richard; Lumata, Lloyd; Brooks, James; Zhang, Chuck; Wang, Ben; High-Performance Materials Institute, Fsu Collaboration; National High Magnetic Field Laboratory, Fsu Collaboration

    2011-03-01

    Carbon/carbon composites consisting of single-walled carbon nanotube (SWCNT) buckypaper (BP) and mesophase pitch resin have been produced through impregnation of BP with pitch using toluene as a solvent. Drying, stabilization and carbonization processes were performed sequentially, and repeated to increase the pitch content. Voids in the carbon/carbon composite samples decreased with increasing impregnation process cycles. Electrical conductivity and density of the composites increased with carbonization by two to three times that of pristine BP. These results indicate that discontinuity and intertube contact barriers of SWCNTs in the BP are partially overcome by the carbonization process of pitch. The temperature dependence of the Raman shift shows that mechanical strain is increased since carbonized pitch matrix surrounds the nanotubes. High-Performance Materials Institute, NSF DMR-0602859, NSF DMR-0654118.

  4. Structural modification of nanoporous carbon with single wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Yi, Bo

    A novel CC nanocomposite was synthesized by pyrolysis of well dispersed individual functionalized SWNTs in a thermosetting resin, poly(furfuryl alcohol) (PFA). Strong interaction between SWNT and nanoporous carbon derived from PFA (PFA-NPC) was obtained with this strategy and the integrity of SWNTs was maintained after heat treatment. Usually, it is challenging to separate SWNT bundles and disperse them in preparation of composites. 50 wt% SWNT/NPC composites prepared with solution blending showed mass transfer rate of ˜140% higher than the original NPC. The improvement was not significant due to poor dispersion and the bundle structure of SWNTs. Functionalization of SWNTs successfully separated the SWNT bundles and solved the problems of dispersion. In this process, the SWNTs were first functionalized with sulfonic acid groups (SA-SWNT) on sidewall. Then they were converted to PFA-grafted SWNT (PFA-SWNT) by in situ polymerization of furfuryl alcohol (FA). NPC/SWNT nanocomposite was generated by pyrolysis of PFA-SWNT at 600°C. The structural transformation of NPC/SWNT at high temperature was studied by heating it at temperatures from 1200 to 2000°C in vacuum and characterized with HRTEM and Raman spectra. It was found that NPC and SWNT coalesce upon heat treatment and NPC tended to graphitize along the axis of neighboring nanotubes at temperature higher than 1400°C. Complete graphitization of NPC and SWNTs was obtained at 2000°C, when the NPC transformed to graphitic nanoribbons (GNRs) and SWNT or DWNT collapsed within the confines of the GNR. The mass transfer rate in 0.05 wt% SWNT/NPC nanocomposite was ˜2 times higher than that in the pure NPC. Similar improvement required SWNT concentration of ˜60 wt% in the SWNT/NPC composites prepared by solution blending. SWNT/NPC nanocomposite fibers prepared from 0.1 wt% SA-SWNT/FA had ˜13% increase of Young's modulus over the pure NPC fibers when they were pyrolyzed at 400 -- 1600ºC. The augment was slightly higher than Halpin-Tsai's model prediction for composites with randomly dispersed fibers, indicating that the strong interaction between NPC and SWNT strengthened the material.

  5. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhan, Guo-Dong; Kuntz, Joshua D.; Wan, Julin; Mukherjee, Amiya K.

    2003-01-01

    The extraordinary mechanical, thermal and electrical properties of carbon nanotubes have prompted intense research into a wide range of applications in structural materials, electronics, chemical processing and energy management. Attempts have been made to develop advanced engineering materials with improved or novel properties through the incorporation of carbon nanotubes in selected matrices (polymers, metals and ceramics). But the use of carbon nanotubes to reinforce ceramic composites has not been very successful; for example, in alumina-based systems only a 24% increase in toughness has been obtained so far. Here we demonstrate their potential use in reinforcing nanocrystalline ceramics. We have fabricated fully dense nanocomposites of single-wall carbon nanotubes with nanocrystalline alumina (Al2O3) matrix at sintering temperatures as low as 1,150 C by spark-plasma sintering. A fracture toughness of 9.7 MPa m, nearly three times that of pure nanocrystalline alumina, can be achieved.

  6. A remote sensor for detecting methane based on palladium-decorated single walled carbon nanotubes.

    PubMed

    Liu, Jian; Li, Guomin

    2013-01-01

    The remote detection of the concentration of methane at room temperature is performed by a sensor that is configured by the combination of radio frequency identification (RFID), and functionalized carbon nanotubes (CNTs). The proposed sensor is schemed as a thin film RFID tag in a polyethylene substrate, on which a metal trace dipole, a metal trace T impedance matching networks, a 0.5 m-CMOS RF/DC rectifier chipset and a sensor head of palladium-decorated single walled carbon nanotubes (Pd-SWCNTs) are surface mounted in cascade. The performances of the sensor are examined and described by the defined parameters of the received signal strength index (RSSI) and the comparative analog identifier (?AID). Results validate the sensor's ability to detect molecules of methane at room temperature, showing that the RSSI can increase 4 dB and the ?AID can increase 3% in response to methane concentrations ranging from zero to 100 ppm. PMID:23845931

  7. A Remote Sensor for Detecting Methane Based on Palladium-Decorated Single Walled Carbon Nanotubes

    PubMed Central

    Liu, Jian; Li, Guomin

    2013-01-01

    The remote detection of the concentration of methane at room temperature is performed by a sensor that is configured by the combination of radio frequency identification (RFID), and functionalized carbon nanotubes (CNTs). The proposed sensor is schemed as a thin film RFID tag in a polyethylene substrate, on which a metal trace dipole, a metal trace T impedance matching networks, a 0.5 ?m-CMOS RF/DC rectifier chipset and a sensor head of palladium-decorated single walled carbon nanotubes (Pd-SWCNTs) are surface mounted in cascade. The performances of the sensor are examined and described by the defined parameters of the received signal strength index (RSSI) and the comparative analog identifier (?AID). Results validate the sensor's ability to detect molecules of methane at room temperature, showing that the RSSI can increase 4 dB and the ?AID can increase 3% in response to methane concentrations ranging from zero to 100 ppm. PMID:23845931

  8. Toxicity of Raw and Purified Single-Walled Carbon Nanotubes in Rat's Lung Epithelial and Cervical Cancer Cells.

    PubMed

    Goornavar, Virupaxi; Biradar, Santoshkumar; Ezeagwu, Christian; Ezeagwu, Dexter; Hall, Joseph C; Ramesh, Govindarajan T

    2015-03-01

    The increased applications of carbon nanotubes in the field of drug delivery, bioimaging and biosensors demand nanotubes to be of highest purity, free from metallic impurities and amorphous carbon. All of these sectors require a profound investigation about the toxic effects on human and the environment. Many attempts have been made to purify and surface modify the carbon nanotubes, however a detailed study on the raw and purified material has yet to be conducted. Here we present the toxicity studies of raw and the purified single-walled carbon nanotubes in rat's lung epithelial cell and cervical cancer cells (HeLa). These cells were treated with increasing concentration of 0.5 g/mL to 50 g/mL and the various biocompatibility assays were performed. The results showed an increased cell death with purified single-walled carbon nanotubes followed by the depletion of antioxidant levels and activation of the caspase cascade at a rapid rate compared to raw single-walled carbon nanotubes. This suggests that purified single walled carbon nanotubes are more toxic to the cells and exhibit ultra-fine particulate matter like toxicity. PMID:26413627

  9. Nickel-cobalt nanoparticles supported on single-walled carbon nanotubes and their catalytic hydrogenation activity.

    PubMed

    Lekgoathi, Mpho D S; Augustyn, Willem G; Heveling, Josef

    2011-08-01

    Single-walled carbon nanotubes were synthesized from graphite using the arc discharge technique. A nickel/yttrium/graphite mixture was used as the catalyst. After purification by sonication in a Triton X-100 solution, nickel-cobalt metal nanoparticles were deposited on the surface of the single-walled carbon nanotubes. The resulting material and/or the nanotubes themselves were characterized by physisorption, Raman spectroscopy, high-resolution transition electron microscopy and X-ray diffraction. Raman spectroscopy indicates that the nanotubes, prepared by the arc discharge technique, are semi-conducting with a diameter centering at 1.4 nm. The average nickel-cobalt particle size is estimated to be in the region of 8 nm. The catalytic activity of the material was examined for the hydrogenation of unsaturated fatty acid methyl esters obtained from avocado oil. The carbon nanotube supported nickel-cobalt particles effectively hydrogenate polyunsaturated methyl linoleate to monounsaturated methyl oleate. In contrast to a conventional nickel on kieselghur catalyst, further hydrogenation of methyl oleate to undesired methyl stearate was not observed. PMID:22103112

  10. Evidence for substitutional boron in doped single-walled carbon nanotubes

    SciTech Connect

    Ayala, P.; Pichler, T.; Reppert, J.; Rao, A. M.; Grobosch, M.; Knupfer, M.

    2010-05-03

    Precise determination of acceptors in the laser ablation grown B doped single-walled carbon nanotubes (SWCNTs) has been elusive. Photoemission spectroscopy finds evidence for subpercent substitutional B in this material, which leads to superconductivity in thin film SWNT samples.

  11. Synthesis, photochemistry, and electrochemistry of single-wall carbon nanotubes with pendent pyridyl groups and of their metal complexes with zinc porphyrin. Comparison with pyridyl-bearing fullerenes.

    PubMed

    Alvaro, Mercedes; Atienzar, Pedro; de la Cruz, Pilar; Delgado, Juan L; Troiani, Vincent; Garcia, Hermenegildo; Langa, Fernando; Palkar, Amit; Echegoyen, Luis

    2006-05-24

    A soluble, functionalized Py-SWNT has been synthesized and characterized by solution (1)H and (13)C NMR, FT-Raman, and electron microscopy. Experimental data indicate that Py-SWNT has short tubes with pentyl esters at the tips and pyridyl isoxazolino units along the walls. The synthesis of Py-SWNT is based on a 1,3-dipolar cycloaddition of a nitrile oxide on the SWNT walls, similar to 1,3-dipolar cycloadditions that are common for fullerene functionalization. The resulting Py-SWNT forms a complex with a zinc porphyrin (ZnPor) in a way similar to that reported for pyridyl-functionalized [60]-fullerenes. Formation of this metal-ligand complex was firmly established by a detailed electrochemical study. However, in contrast to the behavior observed for the ZnPor/Py-C(60) complex, photochemical excitation of the complex between ZnPor/Py-SWNT does not lead to electron transfer with the generation of charge-separated states. Fluorescence and laser flash studies indicate that the main process is energy transfer from the singlet ZnPor excited state to the Py-SWNT with observation of emission from Py-SWNT. Triplet ZnPor excited-state quenching by Py-SWNT is only observed in polar solvents such as DMF, but not in benzonitrile. PMID:16704263

  12. Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition.

    PubMed

    Min, Yo-Sep; Bae, Eun Ju; Oh, Byung Seok; Kang, Donghun; Park, Wanjun

    2005-09-14

    Preferential growth of pure single-walled carbon nanotubes (SWNTs) over multi-walled carbon nanotubes (MWNTs) was demonstrated at low temperature by water plasma chemical vapor deposition. Water plasma lowered the growth temperature down to 450 degrees C, and the grown nanotubes were single-walled without carbonaceous impurities and MWNTs. The preferential growth of pure SWNTs over MWNTs was proven with micro-Raman spectroscopy, high-resolution transmission electron microscopy, and electrical characterization of the grown nanotube networks. PMID:16144391

  13. Single-walled carbon nanotubes for spintronic and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Merchant, Christopher Ali

    Electron transport in carbon nanotubes (CNTs) is studied as it relates to both spintronic and photovoltaic devices. First, a new spintronic device is studied which we refer to as a spin diode. The spin diode consists of a single carbon nanotube quantum dot with one ferromagnetic and one normal-metal lead. Spin-dependent rectification of the current is observed for one direction of current flow through the device. This spin-based diode effect stems from the interplay between the spin accumulation and the Coulomb blockade on the quantum dot. Current rectification of up to 17% has been observed in our devices. Additional measurements show that the spin diode effect can be turned on and off through proper tuning of the gate voltage. Second, photocurrent generation in CNT films is studied. The magnitude of the photocurrent produced from these devices depends strongly on the position of illumination. The time response of the photocurrent generation is found to be unexpectedly slow, ranging from 0.3 to 5.5 seconds, and dependent on the electrode spacing of our devices. The slow time response is fit with a model based on charge carrier diffusion in the CNT network. The Schottky barriers at the CNT-metal interface are shown to be responsible for much of the behavior in these devices.

  14. Synthesis and Electronic Transport in Single-Walled Carbon Nanotubes of Known Chirality

    NASA Astrophysics Data System (ADS)

    Caldwell, Robert Victor

    Since their discovery in 1991, carbon nanotubes have proven to be a very interesting material for its physical strength, originating from the pure carbon lattice and strong covalent sp2 orbital bonds, and electronic properties which are derived from the lattice structure lending itself to either a metallic or semiconducting nature among its other properties. Carbon nanotubes have been researched with an eye towards industry applications ranging from use as an alloy in metals and plastics to improve physical strength of the resulting materials to uses in the semiconductor industry as either an interconnect or device layer for computer chips to chemical or biological sensors. This thesis focuses on both the synthesis of individual single-walled carbon nanotubes as well as the electrical properties of those tubes. What makes the work herein different from that of other thesis is that the research has been performed on carbon nanotubes of known chirality. Having first grown carbon nanotubes with a chemical vapor deposition growth in a quartz tube using ethanol vapor as a feedstock to grow long individual single-walled carbon nanotubes on a silicon chip that is also compatible with Rayleigh scattering spectroscopy to identify the chiral indices of the carbon nanotubes in question, those tubes were then transferred with a mechanical transfer process specially designed in our research lab onto a substrate of our choosing before an electrical device was made out of those tubes using standard electron beam lithography. The focus in this thesis is on the work that went into designing and testing this process as well as the initial results of the electronic properties of those carbon nanotubes of known chirality, such as the first known electrical measurements on single individual armchair carbon nanotubes as well as the first known electrical measurements of a single semiconducting carbon nanotube on thin hexagonal boron nitride to study the effects of the surface optical phonons from the boron nitride on the electrical properties of the carbon nanotube. Finally a few research projects are discussed in which carbon nanotubes of known chirality were used in conjunction with first electrical tests on molecules, secondly on a prefabricated complementary metal-oxide-semiconductor integrated circuit as an inverter and lastly to study the photoconductivity generated by a synchrotron laser source to identify the values for the low energy excitonic peak.

  15. Initial stage of growth of single-walled carbon nanotubes: modeling and simulations.

    PubMed

    Chaudhuri, I; Yu, Ming; Jayanthi, C S; Wu, S Y

    2014-03-19

    Because there are different pathways to grow carbon nanotubes (CNTs), a common mechanism for the synthesis of CNTs does not likely exist. However, after carbon atoms are liberated from carbon-containing precursors by catalysts or from pure carbon systems, a common feature, the nucleation of CNTs by electron mediation, does appear. We studied this feature using the initial stage of growth of single wall CNTs (SWCNTs) by transition metal nano-particle catalysts as the working example. To circumvent the bottleneck due to the size and simulation time, we used a model in which the metal droplet is represented by a jellium, and the effect of collisions between the carbon atoms and atoms of the catalyst is captured by charge transfers between the jellium and the carbon. The simulations were performed using a transferable semi-empirical Hamiltonian to model the interactions between carbon atoms in jellium. We annealed different initial configurations of carbon clusters in jellium as well as in a vacuum. We found that in jellium, elongated open tubular structures, precursors to the growth of SWCNTs, are formed. Our model was also shown to be capable of mimicking the continued growth when more atoms were placed near the open end of the tubular structure. PMID:24590119

  16. Formation of single-walled bimetallic coinage alloy nanotubes in confined carbon nanotubes: molecular dynamics simulations.

    PubMed

    Han, Yang; Zhou, Jian; Dong, Jinming; Yoshiyuki, Kawazoe

    2013-10-28

    The growth of single-walled bimetallic Au-Ag, Au-Cu and Ag-Cu alloy nanotubes (NTs) and nanowires (NWs) in confined carbon nanotubes (CNTs) has been investigated by using the classical molecular dynamics (MD) method. It is found that three kinds of single-walled gold-silver, gold-copper and silver-copper alloy NTs could indeed be formed in confined CNTs at any alloy concentration, whose geometric structures are less sensitive to the alloy concentration. And an extra nearly pure Au (Cu) chain will exist at the center of Au-Ag (Au-Cu and Ag-Cu) NTs when the diameters of the outside CNTs are big enough, thus producing a new type of tube-like alloy NWs. The bonding energy differences between the mono- and hetero-elements of the coinage metal atoms and the quasi-one-dimensional confinement from the CNT play important roles in suppressing effectively the "self-purification" effects, leading to formation of these coinage alloy NTs. In addition, the fluid-solid phase transition temperatures of the bimetallic alloy NTs are found to locate between those of the corresponding pure metal tubes. Finally, the dependences of the radial breathing mode (RBM) frequencies and the tube diameters of the alloy NTs on the alloying concentration were obtained, which will be very helpful for identifying both the alloying concentration and the alloy tube diameters in future experiments. PMID:24013729

  17. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration

    NASA Astrophysics Data System (ADS)

    Shelimov, Konstantin B.; Esenaliev, Rinat O.; Rinzler, Andrew G.; Huffman, Chad B.; Smalley, Richard E.

    1998-01-01

    An efficient method for purification of single-wall carbon nanotubes (SWNT) synthesized by the laser-vaporization process has been developed. Amorphous and crystalline carbon impurities and metal particles are removed from SWNT samples by ultrasonically-assisted microfiltration. Sample sonication during the filtration prevents filter contamination and provides for a fine nanotube-nanoparticle suspension throughout the purification process. The process generates SWNT material with purity of more than 90% and yields of 30-70%, depending on the quality of the starting material. Nanotubes in purified samples are shorter than in pristine samples due to some sonication-induced nanotube cutting. Nanotube bundles in purified samples are also substantially thicker due to spontaneous nanotube alignment.

  18. Oxidative enzymatic response of white-rot fungi to single-walled carbon nanotubes.

    PubMed

    Berry, Timothy D; Filley, Timothy R; Blanchette, Robert A

    2014-10-01

    Although carbon nanomaterials such as single-walled carbon nanotubes (SWCNT) are becoming increasingly prevalent in manufacturing, there is little knowledge on the environmental fate of these materials. Environmental degradation of SWCNT is hindered by their highly condensed aromatic structure as well as the size and aspect ratio, which prevents intracellular degradation and limits microbial decomposition to extracellular processes such as those catalyzed by oxidative enzymes. This study investigates the peroxidase and laccase enzymatic response of the saprotrophic white-rot fungi Trametes versicolor and Phlebia tremellosa when exposed to SWCNTs of different purity and surface chemistry under different growth conditions. Both unpurified, metal catalyst-rich SWCNT and purified, carboxylated SWCNTs promoted significant changes in the oxidative enzyme activity of the fungi while pristine SWCNT did not. These results suggest that functionalization of purified SWCNT is essential to up regulate enzymes that may be capable of decomposing CNT in the environment. PMID:25047356

  19. Lithium intercalation into single-walled carbon nanotubes network electrode: Storage mechanisms and impurity effects

    NASA Astrophysics Data System (ADS)

    Montoro, Luciano Andrey; Matsubara, Elaine Yoshiko; Rosolen, Jos Maurcio

    2014-07-01

    This is a detailed study of how impurities can affect the mechanisms of lithium storage in composite electrodes consisting of a three-dimensional single-walled carbon nanotube (SWCNT) bundles network. To remove impurities such as fullerenes, amorphous carbon, catalyst, and nanographite, we submitted the SWCNT bundles to an appropriate chemical treatment before using them to prepare the electrode. Then, we analyzed how this treatment influenced electrode potential, fading capacity, and specific capacity. Additionally, we evaluated the electrode prepared with high-purity SWNCT bundles by galvanostatic intermittent titration, to obtain lithium transport parameters under thermodynamic conditions. We achieved an intrinsic specific capacity of 400 mAh g-1 for the purified SWCNT bundles prepared by an arc-reactor method. The transport parameters revealed that the electrode underwent electronic transition of the semiconducting-metal type. The chemical diffusion coefficient ranged from 10-4 to 10-18 cm2 s-1 with decreasing electrode potential.

  20. Separation of surfactant functionalized single-walled carbon nanotubes via free solution electrophoresis method

    NASA Astrophysics Data System (ADS)

    Scheibe, Blazej; Rümmeli, Mark H.; Borowiak-Palen, Ewa; Kalenczuk, Ryszard J.

    2011-04-01

    This work presents the application of the free solution electrophoresis method (FSE) in the metallic / semiconductive (M/S) separation process of the surfactant functionalized single-walled carbon nanotubes (SWCNTs). The SWCNTs synthesized via laser ablation were purified through high vacuum annealing and subsequent refluxing processes in aqua regia solution. The purified and annealed material was divided into six batches. First three batches were dispersed in anionic surfactants: sodium dodecyl sulfate (SDS), sodium cholate (SC) and sodium deoxycholate (DOC). The next three batches were dispersed in cationic surfactants: cetrimonium bromide (CTAB), benzalkonium chloride (BKC) and cetylpyridinium chloride (CPC). All the prepared SWCNTs samples were subjected to FSE separation process. The fractionated samples were recovered from control and electrode areas and annealed in order to remove the adsorbed surfactants on carbon nanotubes (CNTs) surface. The changes of the van Hove singularities (vHS) present in SWCNTs spectra were investigated via UV-Vis-NIR optical absorption spectroscopy (OAS).

  1. Fabrication of single-walled carbon-nanotube-based pressure sensors.

    PubMed

    Stampfer, C; Helbling, T; Obergfell, D; Schberle, B; Tripp, M K; Jungen, A; Roth, S; Bright, V M; Hierold, C

    2006-02-01

    We report on the fabrication and characterization of bulk micromachined pressure sensors based on individual single-walled carbon nanotubes (SWNTs) as the active electromechanical transducer elements. The electromechanical sensor device consists of an individual electrically connected SWNT adsorbed on top of a 100-nm-thick atomic layer deposited (ALD) circular alumina (Al(2)O(3)) membrane with a radius in the range of 50-100 microm. A white light interferometer (WLI) was used to measure the deflection of the membrane due to differential pressure, and the mechanical properties of the device were characterized by bulge testing. Finally, we performed the first electromechanical measurements on strained metallic SWNTs adhering to a membrane and found a piezoresistive gauge factor of approximately 210 for metallic SWNTs. PMID:16464041

  2. Scanning tunneling microscopy and spectroscopy of single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lagoute, Jrme

    2010-03-01

    Carbon nanotubes (CNTs) are fascinating candidates for fundamental studies of one dimensional materials as well as for future molecular electronics applications. Their electronic structure is directly linked to their chirality which controls their semiconducting of metallic character. The link between local electronic and atomic structure is a crucial parameter which can be investigated in detail by using Scanning tunnelling microscopy (STM) and spectroscopy (STS). STS measurements are dominated by a series of Van Hove singularities (VHS) which are usually successfully described by a tight-binding model. The energy position of these singularities and the related wavefunctions which can be seen as the molecular orbitals of CNTs are two fundamental characteristics of CNTs which will be discussed in details here. The experimental visualization of the wavefunctions associated to the VHS will be presented. They exhibit a symmetry breaking in semiconducting and metallic tubes which is well described by a tight-binding model. The energy position of the VHS will then be discussed in details. The recent experimental evidence of the major role of excitons in the optical transitions in CNTs has enlightened the importance of many-body effects in the electronic structure of CNTs. In STS experiments, the electronic gaps of semiconducting tubes supported by a metallic substrate are close to the optical transitions although STS is not sensitive to the excitons and should exhibit much larger VHS separation. We will discuss this issue and show the importance of many-body effects and tube-substrate interaction in the electronic bandgaps of semiconducting tubes.

  3. Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film

    SciTech Connect

    Iyer, Ajai Liu, Xuwen; Koskinen, Jari; Kaskela, Antti; Kauppinen, Esko I.; Johansson, Leena-Sisko

    2015-06-14

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  4. Single walled carbon nanotube networkTetrahedral amorphous carbon composite film

    NASA Astrophysics Data System (ADS)

    Iyer, Ajai; Kaskela, Antti; Johansson, Leena-Sisko; Liu, Xuwen; Kauppinen, Esko I.; Koskinen, Jari

    2015-06-01

    Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTNta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp3 bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.

  5. Interfacing neurons through the patch membrane pierced with single-walled carbon nanotubes.

    PubMed

    Hayashida, Yuki; Kinoshita, Tomohiro; Motomura, Tamami

    2013-01-01

    The usability of single-walled carbon nanotubes (CNTs) as electrically conductive channels across the cell membrane was examined at the submicroscopic level. By using the patch-clamp technique, we found the surface-modified single-walled CNTs dispersed in the micropipette solution can provide an electrical access to the intracellular space across the patch of cell membrane in dissociated mammalian neurons, thereby enabling us to measure the membrane excitabilities in the 'pierced-patch' whole-cell mode. PMID:24110734

  6. Flexible thermoelectric rubber polymer composites based on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Nakano, Motohiro; Nonoguchi, Yoshiyuki; Nakashima, Takuya; Kawai, Tsuyoshi

    2015-04-01

    Flexible polymer composite materials are advantageous for future thermoelectrics. In this paper we report the controlled dispersion of single-walled carbon nanotubes into an elastic polymer matrix for efficient thermoelectric power generation capability. Optimized rubber composites with a 30 wt % loading level of single-walled carbon nanotubes showed a 15 W m-1 K-2 thermoelectric power factor, comparable to those of non-elastic carbon nanotube sheets, and larger than those of flexible composite films based on carbon nanotubes.

  7. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2008-10-07

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  8. Continuous growth of single-wall carbon nanotubes using chemical vapor deposition

    DOEpatents

    Grigorian, Leonid; Hornyak, Louis; Dillon, Anne C; Heben, Michael J

    2014-09-23

    The invention relates to a chemical vapor deposition process for the continuous growth of a carbon single-wall nanotube where a carbon-containing gas composition is contacted with a porous membrane and decomposed in the presence of a catalyst to grow single-wall carbon nanotube material. A pressure differential exists across the porous membrane such that the pressure on one side of the membrane is less than that on the other side of the membrane. The single-wall carbon nanotube growth may occur predominately on the low-pressure side of the membrane or, in a different embodiment of the invention, may occur predominately in between the catalyst and the membrane. The invention also relates to an apparatus used with the carbon vapor deposition process.

  9. Enhanced sidewall functionalization of single-wall carbon nanotubes using nitric acid.

    PubMed

    Tobias, Gerard; Shao, Lidong; Ballesteros, Belin; Green, Malcolm L H

    2009-10-01

    When a sample of as-made single-walled carbon nanotubes (SWNTs) is treated with nitric acid, oxidation debris are formed due to the functionalization (mainly carboxylation) of the amorphous carbon present in the sample and a continuous coating along the carbon nanotube walls is created preventing the sidewall functionalization of the SWNTs. This oxidation debris can be easily removed by an aqueous base wash leaving behind a sample with a low degree of functionality. After removal of the amorphous carbon (by steam purification) from a sample of as-made SWNTs, the resulting purified SWNTs are readily carboxylated on the walls by nitric acid treatment. The use of steam for the purification of SWNTs samples allows the removal of the amorphous carbon and graphitic layers coating the metal particles present in the sample without altering the tubular structure of the SWNTs. The exposed metal particles can then be easily removed by an acid wash. Comparison between the steam treatment and molten sodium hydroxide treatment is made. PMID:19908496

  10. The controlled growth of single walled carbon nanotubes from ordered substrates

    NASA Astrophysics Data System (ADS)

    Wang, Yuhuang; Kittrell, Carter; Kim, Myung Jong; Brinson, Bruce E.; Ripley, Steve; Ramesh, Sivarajan; Hauge, Robert H.; Smalley, Richard E.

    2003-03-01

    We explore a single walled carbon nanotube (SWNT) growth process starting with an ordered substrate similar to a "bed-of-nails" membrane of SWNTs. The membrane consists of closely packed SWNTs aligned along the normal of the substrate. Each nanotube end is etched open such that a nanometer sized metal particle can be docked to the open end to serve as the catalyst. We have successfully grown SWNTs following this general scheme. The conditions will be optimized to enhance the possibility of growing a continuous fiber with the aid of the van der Waals force between SWNTs. If successful this may present a first step toward the synthesis of continuous fibers of crystalline nanotube materials comprising long, parallel nanotubes in an ordered array that have all the same extraordinary mechanical, chemical, thermal, and electrical properties that SWNT exhibits on the nanometer scale.

  11. Ethanol sensor development using three-dimensional single-walled carbon nanotube networks

    NASA Astrophysics Data System (ADS)

    Chao, Wan-Jung

    2011-12-01

    A novel ethanol sensor using three-dimensional single-walled carbon nanotube networks (3D-SWNTs) with an alkaline electrolyte solution has been developed. A cyclic voltammetry was used to examine the electrochemical response of the sensor. The relationship between response currents and ethanol concentrations was found to be linear for the ethanol concentrations' range from 1 to 5%. The CV performance test showed the best sensitivity was 0.0024 mAmM -1cm-2 with the 3D-SWNT electrode having no Pt particle loading. The Pt-free electrode gave better performance than platinum-coated 3D-SWNTs electrodes did. Since the 3D-SWNTs electrode without using Pt metal loading detects ethanol concentrations (1--5%) with high sensitivity and accuracy, it can lower the fabrication cost for potential commercial application.

  12. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Pei, Xibo; Zeng, Yongxiang; He, Rui; Li, Zhongjie; Tian, Lingyang; Wang, Jian; Wan, Qianbing; Li, Xiaoyu; Bao, Hong

    2014-03-01

    Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants.

  13. All-printed and transparent single walled carbon nanotube thin film transistor devices

    NASA Astrophysics Data System (ADS)

    Sajed, Farzam; Rutherglen, Christopher

    2013-09-01

    We present fully transparent single-walled all-carbon nanotube thin film transistors (SWCNT TFT) fabricated using low-cost inkjet printing methods. Such a demonstration provides a platform towards low cost fully printed transparent electronics. The SWCNT TFTs were printed with metallic and semiconducting SWCNT using a room temperature printing process, without the requirement of expensive cleanroom facilities. The unoptimized SWCNT TFTs fabricated exhibited an Ion/off ratio of 92 and mobility of 2.27 cm2V-1s-1 and transmissivity of 82%. The combination of both high electrical performance and high transparency make all-SWCNT TFTs desirable for next generation transparent display backplanes and products such as Google Glass.

  14. X-ray Absorption Improvement of Single Wall Carbon Nanotube through Gadolinium Encapsulation

    NASA Astrophysics Data System (ADS)

    Alimin; Narsito, I.; Kartini; Santosa, S. J.

    2016-02-01

    X-ray absorption improvement of single-wall carbon nanotube (SWCNT) through gadolinium (Gd) encapsulation has been studied. The liquid phase adsorption using ethanol has been performed for the doping treatment. The Gd-doped SWCNT (Gd@SWCNT) was characterized by nitrogen adsorption isotherms, Raman spectroscopy, Transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA) techniques. A relatively high residual weight of Gd@SWCNT compared to non-doped SWCNT (n-SWCNT) indicated that Gd has been doped in the nanotube. Even though Gd nanoparticles could not be observed clearly by TEM image, however, a significant decrease of nitrogen uptakes at low pressure and RBM (Radial Breathing Mode) upshift of Raman spectra of Gd@SWCNT specimen suggest that the metal nanoparticles might be encapsulated in the internal tube spaces of the nanotube. It was found that Gd-doped in the SWCNT increased significantly mass attenuation coefficient of the nanotube.

  15. Temperature induced modification of the mid-infrared response of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shuba, Mikhail V.; Paddubskaya, Alesia G.; Kuzhir, Polina P.; Maksimenko, Sergey A.; Valusis, Gintaras; Poklonski, Nikolai A.; Bellucci, Stefano; Kenanakis, George; Kafesaki, Maria

    2016-03-01

    The temperature dependences of the absorbance spectra of thin free-standing single-walled carbon nanotube (SWCNT) films were studied in the infrared range (700-6200 cm-1) while heating the air from 300 to 575 K. The observed temperature variation in the infrared absorbance spectra has been explained by two different physical factors. The first one is the strong temperature dependence of the conductivity of p-type doped semiconducting SWCNTs. The second one is the temperature dependence of electron relaxation time of intraband electron transitions in metallic SWCNTs. The possibility of the separation of contributions from the interband and intraband transitions to the infrared spectra of SWCNT films has been demonstrated.

  16. Heteroepitaxial Growth of Single-Walled Carbon Nanotubes from Boron Nitride

    NASA Astrophysics Data System (ADS)

    Tang, Dai-Ming; Zhang, Li-Li; Liu, Chang; Yin, Li-Chang; Hou, Peng-Xiang; Jiang, Hua; Zhu, Zhen; Li, Feng; Liu, Bilu; Kauppinen, Esko I.; Cheng, Hui-Ming

    2012-12-01

    The growth of single-walled carbon nanotubes (SWCNTs) with predefined structure is of great importance for both fundamental research and their practical applications. Traditionally, SWCNTs are grown from a metal catalyst with a vapor-liquid-solid mechanism, where the catalyst is in liquid state with fluctuating structures, and it is intrinsically unfavorable for the structure control of SWCNTs. Here we report the heteroepitaxial growth of SWCNTs from a platelet boron nitride nanofiber (BNNF), which is composed of stacked (002) planes and is stable at high temperatures. SWCNTs are found to grow epitaxially from the open (002) edges of the BNNFs, and the diameters of the SWCNTs are multiples of the BN (002) interplanar distance. In situ transmission electron microscopy observations coupled with first principles calculations reveal that the growth of SWCNTs from the BNNFs follows a vapor-solid-solid mechanism. Our work opens opportunities for the control over the structure of SWCNTs by hetero-crystallographic epitaxy.

  17. Three-dimensional polymeric structures of single-wall carbon nanotubes.

    PubMed

    Lian, Chao-Sheng; Wang, Jian-Tao

    2014-05-28

    We explore by ab initio calculations the possible crystalline phases of polymerized single-wall carbon nanotubes (P-SWNTs) and determine their structural, elastic, and electronic properties. Based on direct cross-linking and intertube sliding-assisted cross-linking mechanisms, we have identified a series of stable three-dimensional polymeric structures for the zigzag nanotubes up to (10,0). Among proposed P-SWNT phases, the structures with favorable diamond-like sp(3) intertube bonding configuration and small tube cross-section distortion are found to be the most energetically stable ones. These polymeric crystalline phases exhibit high bulk and shear moduli superior to SWNT bundles, and show metallic or semiconducting properties depending on the diameter of constituent tubes. We also propose by hydrostatic pressure simulations that the intertube sliding between van der Waals bonded nanotubes may be an effective route to promote the polymerization of SWNTs under pressure. PMID:24880313

  18. Heteroepitaxial Growth of Single-Walled Carbon Nanotubes from Boron Nitride

    PubMed Central

    Tang, Dai-Ming; Zhang, Li-Li; Liu, Chang; Yin, Li-Chang; Hou, Peng-Xiang; Jiang, Hua; Zhu, Zhen; Li, Feng; Liu, Bilu; Kauppinen, Esko I.; Cheng, Hui-Ming

    2012-01-01

    The growth of single-walled carbon nanotubes (SWCNTs) with predefined structure is of great importance for both fundamental research and their practical applications. Traditionally, SWCNTs are grown from a metal catalyst with a vapor-liquid-solid mechanism, where the catalyst is in liquid state with fluctuating structures, and it is intrinsically unfavorable for the structure control of SWCNTs. Here we report the heteroepitaxial growth of SWCNTs from a platelet boron nitride nanofiber (BNNF), which is composed of stacked (002) planes and is stable at high temperatures. SWCNTs are found to grow epitaxially from the open (002) edges of the BNNFs, and the diameters of the SWCNTs are multiples of the BN (002) interplanar distance. In situ transmission electron microscopy observations coupled with first principles calculations reveal that the growth of SWCNTs from the BNNFs follows a vapor-solid-solid mechanism. Our work opens opportunities for the control over the structure of SWCNTs by hetero-crystallographic epitaxy. PMID:23240076

  19. Highly efficient exfoliation of individual single-walled carbon nanotubes by biocompatible phenoxylated dextran.

    PubMed

    Kwon, Taeyun; Lee, Gyudo; Choi, Hyerim; Strano, Michael S; Kim, Woo-Jae

    2013-08-01

    Highly efficient exfoliation of individual single-walled carbon nanotubes (SWNTs) was successfully demonstrated by utilizing biocompatible phenoxylated dextran, a kind of polysaccharide, as a SWNT dispersion agent. Phenoxylated dextran shows greater ability in producing individual SWNTs from raw materials than any other dispersing agent, including anionic surfactants and another polysaccharide. Furthermore, with this novel polymer, SWNT bundles or impurities present in raw materials are removed under much milder processing conditions compared to those of ultra-centrifugation procedures. There exists an optimal composition of phenoxy groups (?13.6 wt%) that leads to the production of high-quality SWNT suspensions, as confirmed by UV-vis-nIR absorption and nIR fluorescence spectroscopy. Furthermore, phenoxylated dextran strongly adsorbs onto SWNTs, enabling SWNT fluorescence even in solid-state films in which metallic SWNTs co-exist. By bypassing ultra-centrifugation, this low-energy dispersion scheme can potentially be scaled up to industrial production levels. PMID:23714851

  20. Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes

    SciTech Connect

    Diniz, Ginetom S. Ulloa, Sergio E.

    2014-07-14

    We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size and state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.

  1. Microfabrication and characterization of spray-coated single-wall carbon nanotube film strain gauges.

    PubMed

    Lee, Dongil; Hong, Hyun Pyo; Lee, Chul Jin; Park, Chan Won; Min, Nam Ki

    2011-11-11

    We present the design, fabrication, and characterization results of single-wall carbon nanotube (SWCNT) film strain gauges for potential applications as highly sensitive strain, weight, or pressure sensors on the macro-scale. A batch microfabrication process was developed for practical device construction and packaging using spray-coated SWCNTs and a conventional semiconductor process. The prototype was characterized using a commercial metal foil gauge with tensile and compressive testing on a binocular load cell. Our test results demonstrated that the proposed SWCNT film gauges have a linear relationship between resistance changes and externally applied strain. The gauge factor ranged from 7.0 to 16.4 for four different micro-grid configurations, indicating that the maximum strain sensitivity of the prototype was approximately eight times greater than that of commercial gauges. PMID:21993311

  2. Three-dimensional polymeric structures of single-wall carbon nanotubes

    SciTech Connect

    Lian, Chao-Sheng; Wang, Jian-Tao

    2014-05-28

    We explore by ab initio calculations the possible crystalline phases of polymerized single-wall carbon nanotubes (P-SWNTs) and determine their structural, elastic, and electronic properties. Based on direct cross-linking and intertube sliding-assisted cross-linking mechanisms, we have identified a series of stable three-dimensional polymeric structures for the zigzag nanotubes up to (10,0). Among proposed P-SWNT phases, the structures with favorable diamond-like sp{sup 3} intertube bonding configuration and small tube cross-section distortion are found to be the most energetically stable ones. These polymeric crystalline phases exhibit high bulk and shear moduli superior to SWNT bundles, and show metallic or semiconducting properties depending on the diameter of constituent tubes. We also propose by hydrostatic pressure simulations that the intertube sliding between van der Waals bonded nanotubes may be an effective route to promote the polymerization of SWNTs under pressure.

  3. Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants

    PubMed Central

    Nonoguchi, Yoshiyuki; Ohashi, Kenji; Kanazawa, Rui; Ashiba, Koji; Hata, Kenji; Nakagawa, Tetsuya; Adachi, Chihaya; Tanase, Tomoaki; Kawai, Tsuyoshi

    2013-01-01

    Thermoelectrics is a challenging issue for modern and future energy conversion and recovery technology. Carbon nanotubes are promising active thermoelectic materials owing to their narrow bandgap energy and high charge carrier mobility, and they can be integrated into flexible thermoelectrics that can recover any waste heat. We here report air-stable n-type single walled carbon nanotubes with a variety of weak electron donors in the range of HOMO level between ca. −4.4 eV and ca. −5.6 eV, in which partial uphill electron injection from the dopant to the conduction band of single walled carbon nanotubes is dominant. We display flexible films of the doped single walled carbon nanotubes possessing significantly large thermoelectric effect, which is applicable to flexible ambient thermoelectric modules. PMID:24276090

  4. Characterization of the radiation from single-walled zig-zag carbon nanotubes at terahertz range

    NASA Astrophysics Data System (ADS)

    Wu, Qun; Wang, Yue; Wu, Yu-Ming; Zhuang, Lei-Lei; Li, Le-Wei; Gui, Tai-Long

    2010-06-01

    This paper investigates the radiation characteristics of metal single-walled zig-zag carbon nanotubes as a dipole antenna at terahertz wave range. The current distribution, input impedance and mutual impedance are calculated for various geometrical parameters of vertically-aligned carbon nanotubes. The numerical results demonstrate the properties of the antenna depending strongly on the geometrical parameters such as the radius, the lengths of carbon nantobues, and the spacing between nanotubes. It is found that the zig-zag carbon nanotubes exhibit very high input impedance and the mutual impedances for antenna array applications. These unique high impedance properties are different from the conventional metal thin wire antenna. The far-field patterns and gain of antenna array are also calculated. The maximum gain of array of 100-element array is up to 20.0 dB, which is larger than the gain of 0.598 dB of single dipole antenna at distance d = 0.5?.

  5. Shape transition of unstrained flattest single-walled carbon nanotubes under pressure

    SciTech Connect

    Mu, Weihua E-mail: muwh@itp.ac.cn; Cao, Jianshu; Ou-Yang, Zhong-can

    2014-01-28

    Single walled carbon nanotube's (SWCNT's) cross section can be flattened under hydrostatic pressure. One example is the cross section of a single walled carbon nanotube successively deforms from the original round shape to oval shape, then to peanut-like shape. At the transition point of reversible deformation between convex shape and concave shape, the side wall of nanotube is flattest. This flattest tube has many attractive properties. In the present work, an approximate approach is developed to determine the equilibrium shape of this unstrained flattest tube and the curvature distribution of this tube. Our results are in good agreement with recent numerical results, and can be applied to the study of pressure controlled electric properties of single walled carbon nanotubes. The present method can also be used to study other deformed inorganic and organic tube-like structures.

  6. Dissolution of single-walled carbon nanotubes in alkanol-cholic acid mixtures

    NASA Astrophysics Data System (ADS)

    Dyshin, A. A.; Eliseeva, O. V.; Bondarenko, G. V.; Kiselev, M. G.

    2015-09-01

    A procedure for dispersing the single-walled carbon nanotubes (SWCNTs) for preparing stable suspensions with high concentrations of individual nanotubes in various alcohols was described. The obtained suspensions were studied by Raman spectroscopy. The solubility of the single-walled carbon nanotubes in alcohols was found to depend on the concentration of cholic acid. The ethanol-surfactant mixture was shown to be the best solvent for all alkanol-cholic acid mixtures (0.018 mol/kg) under study used for preparing time-stable suspensions of single-walled carbon nanotubes. The dissolving ability of aliphatic alcohols was found to decrease in the series: ethanol-isopropanol- tert-butanol-butanol-propanol.

  7. Shape transition of unstrained flattest single-walled carbon nanotubes under pressure

    NASA Astrophysics Data System (ADS)

    Mu, Weihua; Cao, Jianshu; Ou-Yang, Zhong-can

    2014-01-01

    Single walled carbon nanotube's (SWCNT's) cross section can be flattened under hydrostatic pressure. One example is the cross section of a single walled carbon nanotube successively deforms from the original round shape to oval shape, then to peanut-like shape. At the transition point of reversible deformation between convex shape and concave shape, the side wall of nanotube is flattest. This flattest tube has many attractive properties. In the present work, an approximate approach is developed to determine the equilibrium shape of this unstrained flattest tube and the curvature distribution of this tube. Our results are in good agreement with recent numerical results, and can be applied to the study of pressure controlled electric properties of single walled carbon nanotubes. The present method can also be used to study other deformed inorganic and organic tube-like structures.

  8. Investigation on vibration of single-walled carbon nanotubes by variational iteration method

    NASA Astrophysics Data System (ADS)

    Ahmadi Asoor, A. A.; Valipour, P.; Ghasemi, S. E.

    2016-02-01

    In this paper, the variational iteration method (VIM) has been used to investigate the non-linear vibration of single-walled carbon nanotubes (SWCNTs) based on the nonlocal Timoshenko beam theory. The accuracy of results is examined by the fourth-order Runge-Kutta numerical method. Comparison between VIM solutions with numerical results leads to highly accurate solutions. Also, the behavior of deflection and frequency in vibrations of SWCNTs are studied. The results show that frequency of single walled carbon nanotube versus amplitude increases by increasing the values of B.

  9. Fabrication of thermoelectric devices using precisely Fermi level-tuned semiconducting single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Oshima, Yuki; Kitamura, Yoshimasa; Maniwa, Yutaka; Yanagi, Kazuhiro

    2015-07-01

    Precisely Fermi level-tuned one-dimensional materials have great potential for highly efficient thermoelectric devices. Here, we report continuous control of thermoelectric power using precisely Fermi level-tuned thermoelectric devices, in which P-type and N-type single-wall carbon nanotube networks are connected electrically in series and thermally in parallel. We fabricated thermoelectric devices with two channels using semiconducting single-wall carbon nanotubes and tuned the Seebeck polarity of one side to the N-type using electric double-layer carrier injections and then enhanced the thermoelectric power of the device by tuning the gate voltage.

  10. Investigation on vibration of single-walled carbon nanotubes by variational iteration method

    NASA Astrophysics Data System (ADS)

    Ahmadi Asoor, A. A.; Valipour, P.; Ghasemi, S. E.

    2015-03-01

    In this paper, the variational iteration method (VIM) has been used to investigate the non-linear vibration of single-walled carbon nanotubes (SWCNTs) based on the nonlocal Timoshenko beam theory. The accuracy of results is examined by the fourth-order Runge-Kutta numerical method. Comparison between VIM solutions with numerical results leads to highly accurate solutions. Also, the behavior of deflection and frequency in vibrations of SWCNTs are studied. The results show that frequency of single walled carbon nanotube versus amplitude increases by increasing the values of B.

  11. NASA-JSC Protocol for the Characterization of Single Wall Carbon Nanotube Material Quality

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Hadjiev, Victor; Holmes, William; Devivar, Rodrigo; Files, Bradley; Yowell, Leonard

    2010-01-01

    It is well known that the raw as well as purified single wall carbon nanotube (SWCNT) material always contain certain amount of impurities of varying composition (mostly metal catalyst and non-tubular carbon). Particular purification method also creates defects and/or functional groups in the SWCNT material and therefore affects the its dispersability in solvents (important to subsequent application development). A number of analytical characterization tools have been used successfully in the past years to assess various properties of nanotube materials, but lack of standards makes it difficult to compare these measurements across the board. In this work we report the protocol developed at NASA-JSC which standardizes measurements using TEM, SEM, TGA, Raman and UV-Vis-NIR absorption techniques. Numerical measures are established for parameters such as metal content, homogeneity, thermal stability and dispersability, to allow easy comparison of SWCNT materials. We will also report on the recent progress in quantitative measurement of non-tubular carbon impurities and a possible purity standard for SWCNT materials.

  12. Polyglycerol-derived amphiphiles for single walled carbon nanotube suspension

    NASA Astrophysics Data System (ADS)

    Setaro, A.; Popeney, C. S.; Trappmann, B.; Datsyuk, V.; Haag, R.; Reich, S.

    2010-06-01

    Inspired by the commercially available SDS surfactant, a new polyglycerol-derived amphiphile has been synthesized for functionalizing carbon nanotubes. SDS' sulphate group was replaced by a polyglycerol dendron. The steric hindrance offered by the dendrons makes the compound much more efficient than SDS in isolating and stabilizing nanotubes in solution. Further amphiphiles have been synthesized by adding small aromatic moieties between head and tail groups. We show that this addition leads to selective interaction between surfactants and carbon nanotubes. Excitation photoluminescence and optical absorption spectroscopy analysis confirm the change in the distribution of nanotubes' chiralities in suspension, depending on the amphiphile.

  13. Molecular Dynamics Simulations of the Thermal Conductivity of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, M.; Srivastava, Deepak; Govindan,T. R. (Technical Monitor)

    2000-01-01

    Carbon nanotubes (CNT) have very attractive electronic, mechanical. and thermal properties. Recently, measurements of thermal conductivity in single wall CNT mats showed estimated thermal conductivity magnitudes ranging from 17.5 to 58 W/cm-K at room temperature. which are better than bulk graphite. The cylinderical symmetry of CNT leads to large thermal conductivity along the tube axis, additionally, unlike graphite. CNTs can be made into ropes that can be used as heat conducting pipes for nanoscale applications. The thermal conductivity of several single wall carbon nanotubes has been calculated over temperature range from l00 K to 600 K using non-equilibrium molecular dynamics using Tersoff-Brenner potential for C-C interactions. Thermal conductivity of single wall CNTs shows a peaking behavior as a function of temperature. Dependence of the peak position on the chirality and radius of the tube will be discussed and explained in this presentation.

  14. A new theory about single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tsai, Yao Yang; Fang, Shih Chung

    2014-07-01

    Since carbon nanotubes were discovered, till now no definitive formulation for computing the shear modulus of them was presented. To develop a theoretically rigorous and mathematically elegant expression for the shear modulus, thus, we initially propound a new small-strain theory in which merely small strain will arise when small-diameter carbon nanotubes are formed and thereby conclude the total potential energy including bond elongation and bond angle variation will suffice and the utilization of Quantum Mechanics and certain far complicated potential functions is unnecessary. Then based on it, a closed-form expression derived entirely from the "definition" of shear modulus, which was never published in all other literature, will be evolved. It should be noted that previously there was only one formula by which the shear moduli for all carbon nanotubes with diverse diameters and configurations could be predicted. By comparing the values calculated by the expression in this paper with those reckoned from the article mentioned above, it is obvious that both classes of quantities are similar to each other. It should also be noted that because the expression in this paper is the first (really having no precedent in related study fields) to be derived entirely according to the definition of shear modulus, perhaps this paper can be used as a useful theoretical tool for further study.

  15. Carbon Single-Wall Nanatube Growth in a Volumetrically Confined Arc Discharge System

    SciTech Connect

    Franz, K.J.; Alleman, J.L.; Jones, K.M.; Dillon, A.C.; Heben, M.J.

    2004-01-01

    Carbon nanotubes hold significant promise for a vast number of materials applications due to their unique mechanical, electrical, and gas storage properties. Although carbon single-wall nanotubes (SWNTs) have been synthesized since 1993 by the arc discharge method, and numerous other synthesis methods have since been developed, no method has yet produced 100% pure carbon nanotubes. Instead, a significant amount of impurities—various carbon structures and metal catalysts—are present in the raw soot. While arc discharge was the first method for SWNT synthesis, it also produces more impure raw soot in comparison to the more recently developed laser vaporization, which has produced the purest raw soot to date but is much slower. Geometry and thermal gradient are appreciably different between traditional arc discharge systems and laser vaporization systems. We report that, by incorporating some characteristics inherent to a laser vaporization system into an arc discharge system, improvement in the yield of SWNT raw soot may be achieved. This is accomplished by confining the arc within a 50 mm diameter quartz tube, similar to laser vaporization. We find through transmission electron microscopy and Raman spectroscopy that SWNTs are made in significant numbers in this confined arc discharge system, comparable to laser vaporization synthesized material. Further study is, however, required to prove reproducibility and attain an exact value for the purity of the produced raw soot.

  16. Chirally - Selective Growth of Single Walled Carbon Nanotube on Fe13 Nanocatalyst

    NASA Astrophysics Data System (ADS)

    Tefera, Anteneh; Mochena, Mogus

    2014-03-01

    Controlled growth of single - walled carbon nanotubes with desired chiral indices remains the holy grail of single walled carbon nanotube synthesis. We performed ab initio molecular dynamics calculation of the nucleation and early stage growth of (5,0) SWCNT in the low temperature range where the nanocatalyst is a solid. We show that a zigzag formation of carbon atoms is possible when the surface of the pentagonal pyramid of Fe13 icosahedron is exposed to ambient carbon atoms or carbon atoms and dimers or a ring of ten carbon atoms. The possibility of anomalous cap formation resulting from competing repulsive and attractive forces is presented. This work was supported by NSF grant: DMR-0804805. This research was supported in part by the NSF through TeraGrid resources provided by NCSA under grant number TG-DMR100055.

  17. Thermal transpiration through single walled carbon nanotubes and graphene channels

    SciTech Connect

    Thekkethala, Joe Francis; Sathian, Sarith P.

    2013-11-07

    Thermal transpiration through carbon nanotubes (CNTs) and graphene channels is studied using molecular dynamics (MD) simulations. The system consists of two reservoirs connected by a CNT. It is observed that a flow is developed inside the CNT from the low temperature reservoir to the high temperature reservoir when the two reservoirs are maintained at different temperatures. The influence of channel size and temperature gradient on the mean velocity is analysed by varying the CNT diameter and the temperature of one of the reservoirs. Larger flow rate is observed in the smaller diameter CNTs showing an increase in the mean velocity with increase in the temperature gradient. For the flow developed inside the CNTs, slip boundaries occur and the slip length is calculated using the velocity profile. We examine the effect of fluid-wall interaction strength (ε{sub fw}), diffusivity (D), and viscosity of the fluid (μ) on the temperature induced fluid transport through the CNTs. Similar investigations are also carried out by replacing the CNT with a graphene channel. Results show that the mean velocity of the fluid atoms in the graphene channel is lower than that through the CNTs. This can be attributed to the higher degree of confinement observed in the CNTs.

  18. Dispersion of Single Wall Carbon Nanotubes by in situ Polymerization Under Sonication

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Ounaies, Zoubeida; Watson, Kent A.; Crooks, Roy E.; Smith, Joseph, Jr.; Lowther, Sharon E.; Connell, John W.; Siochi, Emilie J.; Harrison, Joycelyn S.; St.Clair, Terry L.

    2002-01-01

    Single wall nanotube reinforced polyimide nanocomposites were synthesized by in situ polymerization of monomers of interest in the presence of sonication. This process enabled uniform dispersion of single wall carbon nanotube (SWNT) bundles in the polymer matrix. The resultant SWNT-polyimide nanocomposite films were electrically conductive (antistatic) and optically transparent with significant conductivity enhancement (10 orders of magnitude) at a very low loading (0.1 vol%). Mechanical properties as well as thermal stability were also improved with the incorporation of the SWNT.

  19. Ionic self-assembly provides dense arrays of individualized, aligned single-walled carbon nanotubes.

    PubMed

    Olivier, Jean-Hubert; Deria, Pravas; Park, Jaehong; Kumbhar, Amar; Andrian-Albescu, Maria; Therien, Michael J

    2013-12-01

    Wrap and stack: Polyanionic [arylene]ethynylene polymers that helically wrap single-walled carbon nanotubes (SWNTs) enable the production of functionalized SWNTs that are soluble in organic solvents. These SWNTs can assemble into structures featuring aligned nanotubes that maintain the optoelectronic properties of individual SWNTs. PMID:24130000

  20. Environmental Detection of Single-Walled Carbon Nanotubes Utilizing Near-Infrared Fluorescence

    EPA Science Inventory

    There are a growing number of applications for carbon nanotubes (CNT) in modern technologies and, subsequently, growth in production of CNT has expanded rapidly. Single-walled CNT (SWCNT) consist of a graphene sheet rolled up into a tube. With growing manufacture and use, the ...

  1. Aggregation Kinetics and Transport of Single-Walled CarbonNanotubes at Low Surfactant Concentrations

    EPA Science Inventory

    Little is known about how low levels of surfactants can affect the colloidal stability of single-walled carbon nanotubes (SWNTs) and how surfactant-wrapping of SWNTs can impact ecological exposures in aqueous systems. In this study, SWNTs were suspended in water with sodium ...

  2. Production of vertical arrays of small diameter single-walled carbon nanotubes

    DOEpatents

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  3. On the Likelihood of Single-Walled Carbon Nanotubes Causing Adverse Marine Ecological Effects

    EPA Science Inventory

    This brief article discusses the ecological effects of single-walled carbon nanotubes (SWNTs)in the marine environment. Based on new research and a review of the scientific literature, the paper concludes that SWNTs are unlikely to cause adverse ecological effects in the marine ...

  4. MICROWAVE-INDUCED RAPID CHEMICAL FUNCTIONALIZATION OF SINGLE-WALLED CARBON NANOTUBES (R830901)

    EPA Science Inventory


    Abstract

    The microwave-induced chemical functionalization of single-walled carbon nanotubes (SWNTs) is reported. The major advantage of this high-energy procedure is that it reduced the reaction time to the order of minutes and the number of steps in the reac...

  5. One-step synthesis of fluorescently labelled, single-walled carbon nanotubes.

    PubMed

    Guaragno, Michelle L; Gottardi, Riccardo; Fedorchak, Morgan V; Roy, Abhijit; Kumta, Prashant N; Little, Steven R

    2015-11-24

    Single-walled carbon nanotubes (SWNTs) can be labelled with functional moieties that endow them with a number of unique characteristics, which can be applicable to biomedical applications such as imaging. Herein we describe a facile, one-step esterification process to functionalize SWNT with fluorescein. PMID:26458421

  6. Gas sensors based on single-wall carbon nanotubes and polypyrrole-coated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chang, Young Wook; Oh, Je Seung; Yoo, Seung Hwan; Kim, Ji Hun; Choi, Hyang Hee; Yoo, Kyung-Hwa

    2007-03-01

    We have fabricated gas sensors based on single-wall carbon nanotubes and detected NH3 and NO2 gas. At the room temperature, the absorbed gas molecules are not easily detached from the CNT surface. So, we have testes the gas sensor at high temperatures and investigated the temperature dependences of electrical properties of CNTs above the room temperatures. Depending on the gas atmosphere and the temperature, large hysteresis has been observed. In addition, in order to improve the properties of gas sensor, we have electro-deposited polypyrrole onto CNTs and compared with SWNT without polypyrrole.

  7. Influence of electronic type purity on the lithiation of single-walled carbon nanotubes.

    PubMed

    Jaber-Ansari, Laila; Iddir, Hakim; Curtiss, Larry A; Hersam, Mark C

    2014-03-25

    Single-walled carbon nanotubes (SWCNTs) have emerged as one of the leading additives for high-capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. However, since as-grown SWCNTs possess a distribution of physical and electronic structures, it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Toward this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum-filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts, which is consistent with ab initio molecular dynamics and density functional theory calculations in the limit of isolated SWCNTs. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations that show increased lithiation of semiconducting SWCNTs in the limit of small SWCNT-SWCNT spacing. Overall, these results will inform ongoing efforts to utilize SWCNTs as conductive additives in nanocomposite lithium ion battery electrodes. PMID:24506489

  8. Doping single-walled carbon nanotubes through molecular charge-transfer: a theoretical study.

    PubMed

    Manna, Arun K; Pati, Swapan K

    2010-07-01

    We study the effect of the molecular charge transfer on the electronic structure of metallic (5,5) and semiconducting (8,0) single-walled carbon nanotubes (SWNTs) induced by surface adsorption of various organic donor-acceptor molecules of different affinities using ab initio density functional theory. Our results, obtained from first-principles spin-polarized calculations show that the adsorption of molecules with different affinities reflects the difference in interaction strength that measure the overall energy of adsorption. Moderate values of the binding energy of these surface adsorbed molecular charge-transfer complexes suggest that the nature of interaction is in the physisorption regime, and mainly governs by Coulombic forces. We also find that the large band gap of semiconducting (8,0) SWNT can be tuned through the surface adsorption of selective organic molecules which gives rise to mid-gap localized molecular levels near the Fermi energy with tuning of band gap region. Interestingly, we find that the metallic (5,5) SWNT and semiconducting (8,0) SWNT turn into semiconducting and metallic nanotubes respectively in presence of selective surface adsorbed molecules, corroborating recent experimental findings. We also suggest that these charge transfer effect can be probed through optical conductivity measurement, as the low-frequency profiles are affected by charge transfer. PMID:20648348

  9. Advantages of flattened electrode in bottom contact single-walled carbon nanotube field-effect transistor

    SciTech Connect

    Setiadi, Agung; Akai-Kasaya, Megumi Saito, Akira; Kuwahara, Yuji

    2014-09-01

    We fabricated single-walled carbon nanotube (SWNT) field-effect transistor (FET) devices on flattened electrodes, in which there are no height difference between metal electrodes and the substrate. SWNT-FET fabricated using bottom contact technique have some advantages, such that the SWNTs are free from electron irradiation, have direct contact with the desired metal electrodes, and can be functionalized before or after deposition. However, the SWNTs can be bent at the contact point with the metal electrodes leading to a different electrical characteristic of the devices. The number of SWNT direct junctions in short channel length devices is drastically increased by the use of flattened electrodes due to strong attractive interaction between SWNT and the substrate. The flattened electrodes show a better balance between their hole and electron mobility compared to that of the non-flattened electrodes, that is, ambipolar FET characteristic. It is considered that bending of the SWNTs in the non-flattened electrode devices results in a higher Schottky barrier for the electrons.

  10. Influence of Electronic Type Purity on the Lithiation of Single-Walled Carbon Nanotubes

    SciTech Connect

    Jaber-Ansari, Laila; Iddir, Hakim; Curtiss, Larry A.; Hersam, Mark C.

    2014-03-25

    Single-walled carbon nanotubes (SWCNTs) have emerged as one of the leading additives for high-capacity nanocomposite lithium ion battery electrodes due to their ability to improve electrode conductivity, current collection efficiency, and charge/discharge rate for high power applications. However, since as-grown SWCNTs possess a distribution of physical and electronic structures, it is of high interest to determine which subpopulations of SWCNTs possess the highest lithiation capacity and to develop processing methods that can enhance the lithiation capacity of underperforming SWCNT species. Toward this end, SWCNT electronic type purity is controlled via density gradient ultracentrifugation, enabling a systematic study of the lithiation of SWCNTs as a function of metal versus semiconducting content. Experimentally, vacuum-filtered freestanding films of metallic SWCNTs are found to accommodate lithium with an order of magnitude higher capacity than their semiconducting counterparts, which is consistent with ab initio molecular dynamics and density functional theory calculations in the limit of isolated SWCNTs. In contrast, SWCNT film densification leads to the enhancement of the lithiation capacity of semiconducting SWCNTs to levels comparable to metallic SWCNTs, which is corroborated by theoretical calculations that show increased lithiation of semiconducting SWCNTs in the limit of small SWCNT*SWCNT spacing. Overall, these results will inform ongoing efforts to utilize SWCNTs as conductive additives in nanocomposite lithium ion battery electrodes.

  11. Doping single-walled carbon nanotubes through molecular charge-transfer: a theoretical study

    NASA Astrophysics Data System (ADS)

    Manna, Arun K.; Pati, Swapan K.

    2010-07-01

    We study the effect of the molecular charge transfer on the electronic structure of metallic (5,5) and semiconducting (8,0) single-walled carbon nanotubes (SWNTs) induced by surface adsorption of various organic donor-acceptor molecules of different affinities using ab initio density functional theory. Our results, obtained from first-principles spin-polarized calculations show that the adsorption of molecules with different affinities reflects the difference in interaction strength that measure the overall energy of adsorption. Moderate values of the binding energy of these surface adsorbed molecular charge-transfer complexes suggest that the nature of interaction is in the physisorption regime, and mainly governs by Coulombic forces. We also find that the large band gap of semiconducting (8,0) SWNT can be tuned through the surface adsorption of selective organic molecules which gives rise to mid-gap localized molecular levels near the Fermi energy with tuning of band gap region. Interestingly, we find that the metallic (5,5) SWNT and semiconducting (8,0) SWNT turn into semiconducting and metallic nanotubes respectively in presence of selective surface adsorbed molecules, corroborating recent experimental findings. We also suggest that these charge transfer effect can be probed through optical conductivity measurement, as the low-frequency profiles are affected by charge transfer.

  12. Preparation and characterization of sulfonic acid-functionalized single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Adams, Luqman; Oki, Aderemi; Grady, Tony; McWhinney, Hylton; Luo, Zhiping

    2009-02-01

    A strategy for the functionalization of single-walled carbon nanotubes is reported. The synthesis involved the conversion of fluorinated single-walled carbon nanotubes to the thiolated derivative assisted by phosphorous pentasulfide. The thiol group is then quantitatively oxidized to the sulfonic acid group. The extent of oxidation of the thiol precursor is confirmed using X-ray photoelectron spectroscopy, which proved to be immensely useful to discriminate between the -SH and -SO 3H with a chemical shift for the sulfur 2p (approx. 5 eV). The functionalized carbon nanotubes were further characterized by infrared spectroscopy, thermogravimetric analysis, and transmission electron microscopy which revealed a significant change in morphology between the fluoro carbon nanotubes, the thiol and sulfonic acid-modified carbon nanotubes.

  13. Optical Spectroscopy of Single-Walled Carbon Nanotubes Under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Searles, Thomas A., Jr.

    Single-walled carbon nanotubes (SWNTs) are one of the leading candidate materials to realize novel nanoscale photonic devices. In order to assess their performance characteristics as optoelectronic materials, it is crucial to examine their optical properties in highly non-equilibrium situations such as high magnetic fields, low temperatures, and under high photoexcitation. Therefore, we present our latest result on the magnetic susceptibility anisotropy of metallic carbon nanotubes due to the Aharonov-Bohm effect. Here, we performed magnetic linear dichroism on a metallic-enriched HiPco SWNT sample utilizing a 35 T Hybrid Magnet to measure absorption with light polarization both perpendicular and parallel to the magnetic field. By relating these values with the nematic order parameter for alignment, we found that the metallic carbon nanotubes do not follow a strict diameter dependence across the 7 chiralities present in our sample. In addition to the studying the absorption properties exhibited at high magnetic field, we performed temperature-dependent (300 K to 11 K) photoluminescence (PL) on HiPco SWNTs embedded in an iota-carrageenan matrix utilizing intense fs pulses from a wavelength-tunable optical parametric amplifier. We found that for each temperature the PL intensity saturates as a function of pump fluence and the saturation intensity increases from 300 K to a moderate temperature around 100-150 K. Within the framework of diffusion-limited exciton-exciton annihilation (EEA), we successfully estimated the density of 1D excitons in SWNTs as a function of temperature and chirality. These results coupled with our results of magnetic brightening, or an increase in PL intensity as a function of magnetic flux through each SWNT due to the Aharonov-Bohm effect, yield great promise that in the presence of a high magnetic field the density of excitons can be further increased.

  14. Control of the Diameter and Chiral Angle Distributions during Production of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel

    2009-01-01

    Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.) Especially fascinating is the possibility of quantum conductors that require metallic armchair nanotubes. However, as produced SWCNT samples are polydisperse, with many (n,m) types present and typical approx.1:2 metal/semiconductor ratio. Nanotube nucleation models predict that armchair nuclei are energetically preferential due to formation of partial triple bonds along the armchair edge. However, nuclei can not reach any meaningful thermal equilibrium in a rapidly expanding and cooling plume of carbon clusters, leading to polydispersity. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The carbon vapor plume cooling rate was either increased by change in the oven temperature (expansion into colder gas), or decreased via "warm-up" with a laser pulse at the moment of nucleation. The effect of oven temperature and "warm-up" on nanotube type population was studied via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that reduced temperatures leads to smaller average diameters, progressively narrower diameter distributions, and some preference toward armchair structures. "Warm-up" shifts nanotube population towards arm-chair structures as well, but the effect is small. Possible improvement of the "warm-up" approach to produce armchair SWCNTs will be discussed. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) population. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.

  15. Nanoscale thermocapillarity enabled purification for horizontally aligned arrays of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jin, Sung Hun; Dunham, Simon; Xie, Xu; Rogers, John A.

    2015-09-01

    Among the remarkable variety of semiconducting nanomaterials that have been discovered over the past two decades, single-walled carbon nanotubes remain uniquely well suited for applications in high-performance electronics, sensors and other technologies. The most advanced opportunities demand the ability to form perfectly aligned, horizontal arrays of purely semiconducting, chemically pristine carbon nanotubes. Here, we present strategies that offer this capability. Nanoscale thermos-capillary flows in thin-film organic coatings followed by reactive ion etching serve as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous aligned arrays grown on quartz substrates. The low temperatures and unusual physics associated with this process enable robust, scalable operation, with clear potential for practical use. Especially for the purpose of selective joule heating over only metallic nanotubes, two representative platforms are proposed and confirmed. One is achieved by selective joule heating associated with thin film transistors with partial gate structure. The other is based on a simple, scalable, large-area scheme through microwave irradiation by using micro-strip dipole antennas of low work-function metals. In this study, based on purified semiconducting SWNTs, we demonstrated field effect transistors with mobility (> 1,000 cm2/Vsec) and on/off switching ratio (~10,000) with current outputs in the milliamp range. Furthermore, as one demonstration of the effectiveness over large area-scalability and simplicity, implementing the micro-wave based purification, on large arrays consisting of ~20,000 SWNTs completely removes all of the m-SWNTs (~7,000) to yield a purity of s-SWNTs that corresponds, quantitatively, to at least to 99.9925% and likely significantly higher.

  16. Computational and experimental studies of the interaction between single-walled carbon nanotubes and folic acid

    NASA Astrophysics Data System (ADS)

    Castillo, John J.; Rozo, Ciro E.; Castillo-Len, Jaime; Rindzevicius, Tomas; Svendsen, Winnie E.; Rozlosnik, Noemi; Boisen, Anja; Martnez, Fernando

    2013-03-01

    This Letter involved the preparation of a conjugate between single-walled carbon nanotubes and folic acid that was obtained without covalent chemical functionalization using a simple 'one pot' synthesis method. Subsequently, the conjugate was investigated by a computational hybrid method: our own N-layered Integrated Molecular Orbital and Molecular Mechanics (B3LYP(6-31G(d):UFF)). The results confirmed that the interaction occurred via hydrogen bonding between protons of the glutamic moiety from folic acid and ? electrons from the carbon nanotubes. The single-walled carbon nanotube-folic acid conjugate presented herein is believed to lead the way to new potential applications as carbon nanotube-based drug delivery systems.

  17. Single-walled Carbon Nanotube Generation by Laser-heated ACCVD Method

    NASA Astrophysics Data System (ADS)

    Chiashi, Shohei; Murakami, Yoichi; Miyauchi, Yuhei; Einarsson, Erik; Maruyama, Shigeo

    Single-walled carbon nanotubes (SWNTs) were synthesized by the laser-heated ACCVD method on the sample stage of an environmental AFM with Raman scattering measurement capabilities. Fe/Co or Co/Mo metal particles, which were supported on zeolite particles or silicon substrates, were used as catalyst, and ethanol vapor was used as the carbon source. The catalysts on the AFM sample stage were heated (to about 800°C) in ethanol vapor (0.01˜1 Torr) by Ar-ion laser irradiation, and SWNTs grew from the catalyst particles. Though this laser-heated ACCVD method was simple, Raman scattering spectra, AFM images, and SEM images showed that high-quality SWNTs were generated. By using the laser-heated ACCVD method, in-situ Raman scattering, which was caused by the heating laser irradiation, was measured during the entire CVD process. The G-band from SWNTs and the silicon peak appeared in in-situ Raman scattering spectra. The intensity of the G-band showed the growth of SWNTs, and the temperature dependence of the Raman shift of the silicon peak was used to determine the sample temperature. In-situ Raman scattering elucidated the lifetime of the catalyst and the existence of an incubation time before the onset of SWNT growth. SWNTs started to grow rapidly after the incubation time and the growth rate gradually decreased. The incubation time was strongly dependent on the pressure of the ethanol gas.

  18. Chirality-dependent vapor-phase epitaxial growth and termination of single-wall carbon nanotubes.

    PubMed

    Liu, Bilu; Liu, Jia; Tu, Xiaomin; Zhang, Jialu; Zheng, Ming; Zhou, Chongwu

    2013-09-11

    Structurally uniform and chirality-pure single-wall carbon nanotubes are highly desired for both fundamental study and many of their technological applications, such as electronics, optoelectronics, and biomedical imaging. Considerable efforts have been invested in the synthesis of nanotubes with defined chiralities by tuning the growth recipes but the approach has only limited success. Recently, we have shown that chirality-pure short nanotubes can be used as seeds for vapor-phase epitaxial cloning growth, opening up a new route toward chirality-controlled carbon nanotube synthesis. Nevertheless, the yield of vapor-phase epitaxial growth is rather limited at the present stage, due in large part to the lack of mechanistic understanding of the process. Here we report chirality-dependent growth kinetics and termination mechanism for the vapor-phase epitaxial growth of seven single-chirality nanotubes of (9, 1), (6, 5), (8, 3), (7, 6), (10, 2), (6, 6), and (7, 7), covering near zigzag, medium chiral angle, and near armchair semiconductors, as well as armchair metallic nanotubes. Our results reveal that the growth rates of nanotubes increase with their chiral angles while the active lifetimes of the growth hold opposite trend. Consequently, the chirality distribution of a nanotube ensemble is jointly determined by both growth rates and lifetimes. These results correlate nanotube structures and properties with their growth behaviors and deepen our understanding of chirality-controlled growth of nanotubes. PMID:23937554

  19. DNA mediated assembly of single walled carbon nanotubes: role of DNA linkers and annealing.

    PubMed

    Xu, Phyllis F; Noh, Hyunwoo; Lee, Ju Hun; Cha, Jennifer N

    2011-06-01

    With the high demand for nanoelectronic devices, extensive research has focused on the use of single walled carbon nanotubes (CNTs) due to their high electron carrier mobility, large tensile strength, and single nanometer dimensions. Despite their promise, however, their applicability has been greatly hindered by the inherent difficulties of both separating nanotubes of different chiralities and diameters and positioning them from metallic tubes and positioning them in a precise location on a surface. In recent years, single stranded DNA (ssDNA) has been identified as a potential solution for both of these problems since DNA can be used to both separate the different types of CNTs as well as direct their organization. We demonstrate here the first principles on how to guide CNT assembly directly on surfaces from solution by specific DNA hybridization. It was found that the specific DNA sequence used to disperse the carbon nanotubes greatly influences the adsorption and specificity of nanotube binding to the surface. Furthermore, we demonstrate here that thermal annealing can correct misaligned tubes or incorrect binding. These studies provide an excellent foundation for employing two-dimensional DNA templates for CNT organization for nanoelectronic logic and memory based applications. Furthermore, using a single biomaterial to both sort and place CNTs in minimal steps would greatly help the throughput, manufacturability, and cost of such devices. PMID:21336403

  20. Commercial single-walled carbon nanotubes effects in fibrinolysis of human umbilical vein endothelial cells.

    PubMed

    Rodrguez-Yez, Yury; Bahena-Uribe, Daniel; Chvez-Mungua, Bibiana; Lpez-Marure, Rebeca; Gonzlez-Monroy, Stuart; Cisneros, Bulmaro; Albores, Arnulfo

    2015-08-01

    Recent studies have demonstrated that carbon nanotubes (CNTs) induce platelet aggregation, endothelial dysfunction and vascular thrombosis. However, there is little information on the effects of CNTs on fibrinolysis. We investigated the role of pristine-commercial single-walled carbon nanotubes (SWCNTs) with <3% Co content in fibrinolysis and their contribution to the induction of pro-thrombotic processes in human vein endothelial cells (HUVEC). SWCNTs alone produced concentration-dependent oxidation, as measured by a dithiothreitol oxidation assay. Internalized SWCNTs were located in HUVEC treated with 25 ?g/ml using transmission electron microscopy, whereas treatment with 50 ?g/ml compromised cell viability, and oxidative stress increased significantly at 5 ?g/ml. The study showed that in HUVEC treated with 25 ?g SWCNT/ml, fibrinolysis-related gene expression and protein levels had increased by 3-12 h after treatment (serpine-1: 13-fold; PLAT: 11-fold and PLAU: 2-fold), but only the PAI-1 protein was increased (1.5-fold), whereas tissue and urokinase plasminogen activator proteins (tPA and uPA, respectively) tended to decrease. In summary, pristine SWCNTs treatment resulted in evident HUVEC damage caused by cell fiber contact, internalization, and oxidative stress due to contaminant metals. The generation of endothelial dysfunction, as shown by the altered expression of genes and proteins involved in fibrinolysis, suggest that SWCNTs display pro-thrombotic effects. PMID:25790727

  1. Ultra-short, Single-walled Carbon Nanotube Capsules for Diagnostic Imaging and Radiotherapy

    NASA Astrophysics Data System (ADS)

    Matson, Michael Lee

    This thesis is centered on the Gadonanotubes (GNTs), an ultra-high-performance magnetic resonance imaging (MRI) contrast agent material discovered in our laboratories in 2005. The GNTs are a new paradigm in MRI contrast agent design with small clusters of Gd3+ ions within ultra-short carbon nanocapsules (ca. 50 nm) cut from full-length single-walled carbon nanotubes. Here, the factors underlying the performance efficacy of the GNTs have been investigated for the first time by variable-field (-50,000 Oe to 50,000 Oe at 2K) and variable-temperature (2K to RT at 100 Oe) magnetic susceptibility measurements using a Magnetic Property Measurement System (MPMS, based on a SQUID magnetometer). Additionally, experiments focused on the effects of hydroxylation of the GNTs' exterior surface regarding water-solubility are examined. Finally, the use of the GNTs as potential replacements for traditional metal-chelating/sequestering agents is explored. More specifically, the internal Gd3+-ion clusters of the GNTs have been radiolabeled: (1) with 153Gd3+ ions to test Gd3+-ion stability to simulated biological challenge, (2) with 225Ac3+ ions to generate a new concept for a GNT-based agent for alpha-radiotherapy, and finally (3) with 64Cu2+ ions to produce the first bimodal MRI/PET (PET = positron emission tomography) imaging agent derived from the GNTs.

  2. Effect of gelatin on the water dispersion and centrifugal purification of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hanium Maria, Kazi; Mieno, Tetsu

    2016-01-01

    We report a convenient and effective procedure for the water dispersion and purification of single-walled carbon nanotubes (SWNTs). The purification procedure involves a combination of dispersion and centrifugation, in which gelatin; an environmentally friendly material is used as a dispersing agent. It has been found that an aqueous solution of gelatin effectively disperses SWNTs for more than a month. Another advantage of using gelatin as a dispersing agent is that it can be easily removed by washing with water and filtration. The centrifugation procedure employs a centrifugal force of about 2500 times the gravitational force to separate the particles. Although carbonaceous and metallic impurities usually have higher density than SWNTs in arc-produced carbon soot, the centrifugation can easily remove impurities leaving undamaged SWNTs in solution when appropriate centrifugal force and a centrifugation time are used. Centrifugation is carried out for three times to sufficiently remove impurities. Finally, the SWNTs are separated from the gelatin by heating in water and filtering.

  3. Optical Transmittance and Sheet Resistance of B-doped Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Romero, Hugo; Gutierrez, Humberto; Adu, Kofi; Eklund, Peter

    2007-03-01

    Thin films of carbon nanotubes have been reported to be a replacement for transparent conducting films of Indium-Tin-Oxide (ITO). Nanotube films can be deposited on flexible plastic and are predicted as a new technology for touch screens, solar cells, etc. Here we report results on thin films of boron-doped single-walled carbon nanotubes (B-SWNTs) obtained from CarboLex, Inc. Boron-doping is expected to raise the conductance of semiconducting nanotubes while not lowering significantly that of the metallic tubes. At room temperature, we have measured the four-probe sheet resistance and the optical transmission in the NIR-UV range to evaluate the performance of these chemically enhanced SWNT films. The structure in the optical spectrum is essentially the same as in pristine tubes, although the positions of optical absorption bands are slightly upshifted ( 50 meV) relative to pristine SWNTs. The B-loading, microstructure, bonding and defects of the B-doped SWNTs were characterized, respectively, by inelastic neutron scattering, transmission electron microscopy, electron energy loss spectroscopy and Raman spectroscopy. Our preliminary results on B-SWNTs show that the visible optical transmittance is higher and the sheet resistance is much lower than that of similar thickness SWNT films.

  4. Controllability of the arc plasma-based synthesis of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Jian; Volotskova, Olga; Shashurin, Alexey; Kundrapu, Madhusudhan; Keidar, Michael

    2010-11-01

    The focus of this work is to understand the mechanism of magnetic-field-enhanced plasma synthesis, further to establish the fundamental correlation between parameters of arc plasma and characteristics of single-walled carbon nanotubes (SWNT) and increase the controllability and flexibility of arc discharge method. The influence of magnetic field on SWNT parameters is demonstrated as following: (i) It can increase the length of SWNT by a factor of 2 and the population of long nanotubes with the length above 5 μm. (ii) It can result in substantial fractions of produced SWCNTs being of small diameter, less than 1.3 nm. (iii) It can change the chirality distribution of SWNT and the ratio of metallic to semiconducting SWNT. Additionally, the explanations of these findings are presented in the study of voltage-current characteristics of arc plasma, the analysis of size distribution of catalyst particles, the diffusion model of carbon adatom by Monte Carlo and numerical simulation of arc discharge ablation.

  5. Microwave purification of large-area horizontally aligned arrays of single-walled carbon nanotubes.

    PubMed

    Xie, Xu; Jin, Sung Hun; Wahab, Muhammad A; Islam, Ahmad E; Zhang, Chenxi; Du, Frank; Seabron, Eric; Lu, Tianjian; Dunham, Simon N; Cheong, Hou In; Tu, Yen-Chu; Guo, Zhilin; Chung, Ha Uk; Li, Yuhang; Liu, Yuhao; Lee, Jong-Ho; Song, Jizhou; Huang, Yonggang; Alam, Muhammad A; Wilson, William L; Rogers, John A

    2014-01-01

    Recent progress in the field of single-walled carbon nanotubes (SWNTs) significantly enhances the potential for practical use of this remarkable class of material in advanced electronic and sensor devices. One of the most daunting challenges is in creating large-area, perfectly aligned arrays of purely semiconducting SWNTs (s-SWNTs). Here we introduce a simple, scalable, large-area scheme that achieves this goal through microwave irradiation of aligned SWNTs grown on quartz substrates. Microstrip dipole antennas of low work-function metals concentrate the microwaves and selectively couple them into only the metallic SWNTs (m-SWNTs). The result allows for complete removal of all m-SWNTs, as revealed through systematic experimental and computational studies of the process. As one demonstration of the effectiveness, implementing this method on large arrays consisting of ~20,000 SWNTs completely removes all of the m-SWNTs (~7,000) to yield a purity of s-SWNTs that corresponds, quantitatively, to at least to 99.9925% and likely significantly higher. PMID:25387684

  6. All-Organic Actuator Fabricated with Single Wall Carbon Nanotube Electrodes

    NASA Technical Reports Server (NTRS)

    Lowther, Sharon E.; Harrison, Joycelyn S.; Kang, Jinho; Park, Cheol; Park, Chan Eon

    2008-01-01

    Compliant electrodes to replace conventional metal electrodes have been required for many actuators to relieve the constraint on the electroactive layer. Many conducting polymers have been proposed for the alternative electrodes, but they still have a problem of poor thermal stability. This article reports a novel all-organic actuator with single wall carbon nanotube (SWCNT) films as the alternative electrode. The SWCNT film was obtained by filtering a SWCNT solution through an anodized alumina membrane. The conductivity of the SWCNT film was about 280 S/cm. The performance of the SWCNT film electrode was characterized by measuring the dielectric properties of NASA Langley Research Center - Electroactive Polymer (LaRC-EAP) sandwiched by the SWCNT electrodes over a broad range of temperature (from 25 C to 280 C) and frequency (from 1 KHz to 1 MHz). The all-organic actuator with the SWCNT electrodes showed a larger electric field-induced strain than that with metal electrodes, under identical measurement conditions.

  7. Highly efficient exfoliation of individual single-walled carbon nanotubes by biocompatible phenoxylated dextran

    NASA Astrophysics Data System (ADS)

    Kwon, Taeyun; Lee, Gyudo; Choi, Hyerim; Strano, Michael S.; Kim, Woo-Jae

    2013-07-01

    Highly efficient exfoliation of individual single-walled carbon nanotubes (SWNTs) was successfully demonstrated by utilizing biocompatible phenoxylated dextran, a kind of polysaccharide, as a SWNT dispersion agent. Phenoxylated dextran shows greater ability in producing individual SWNTs from raw materials than any other dispersing agent, including anionic surfactants and another polysaccharide. Furthermore, with this novel polymer, SWNT bundles or impurities present in raw materials are removed under much milder processing conditions compared to those of ultra-centrifugation procedures. There exists an optimal composition of phenoxy groups (~13.6 wt%) that leads to the production of high-quality SWNT suspensions, as confirmed by UV-vis-nIR absorption and nIR fluorescence spectroscopy. Furthermore, phenoxylated dextran strongly adsorbs onto SWNTs, enabling SWNT fluorescence even in solid-state films in which metallic SWNTs co-exist. By bypassing ultra-centrifugation, this low-energy dispersion scheme can potentially be scaled up to industrial production levels.Highly efficient exfoliation of individual single-walled carbon nanotubes (SWNTs) was successfully demonstrated by utilizing biocompatible phenoxylated dextran, a kind of polysaccharide, as a SWNT dispersion agent. Phenoxylated dextran shows greater ability in producing individual SWNTs from raw materials than any other dispersing agent, including anionic surfactants and another polysaccharide. Furthermore, with this novel polymer, SWNT bundles or impurities present in raw materials are removed under much milder processing conditions compared to those of ultra-centrifugation procedures. There exists an optimal composition of phenoxy groups (~13.6 wt%) that leads to the production of high-quality SWNT suspensions, as confirmed by UV-vis-nIR absorption and nIR fluorescence spectroscopy. Furthermore, phenoxylated dextran strongly adsorbs onto SWNTs, enabling SWNT fluorescence even in solid-state films in which metallic SWNTs co-exist. By bypassing ultra-centrifugation, this low-energy dispersion scheme can potentially be scaled up to industrial production levels. Electronic supplementary information (ESI) available: Additional spectra (UV-vis-nIR absorption) demonstrating the effect of centrifugation speed, dextran chain length (molecular weight), and dextran concentration on the quality of SWNT suspensions in SDS or P-dextran, the SWNT re-suspension procedure, additional spectra (fluorescence) of fluorescent freeze-dried P-dextran-SWNT suspensions. See DOI: 10.1039/c3nr01352a

  8. Single Wall Carbon Nanotube Alignment Mechanisms for Non-Destructive Evaluation

    NASA Technical Reports Server (NTRS)

    Hong, Seunghun

    2002-01-01

    As proposed in our original proposal, we developed a new innovative method to assemble millions of single wall carbon nanotube (SWCNT)-based circuit components as fast as conventional microfabrication processes. This method is based on surface template assembly strategy. The new method solves one of the major bottlenecks in carbon nanotube based electrical applications and, potentially, may allow us to mass produce a large number of SWCNT-based integrated devices of critical interests to NASA.

  9. Dielectric constants of single-wall carbon nanotubes at various frequencies.

    PubMed

    Li, Yan-Huei; Lue, Juh-Tzeng

    2007-09-01

    A cylindrical rod composed of a uniform mixture of single-wall carbon nanotubes and alumina powders dissolved in paraffin was inserted in the center of a radio frequency cavity. The complex dielectric constant of carbon tubes at various frequencies was measured by a resistance-inductance-capacitance (RLC) meter and a microwave network analyzer. The cylindrical rod benefits the protection of the sample from adsorbing moisture and preventing the rod from filling with air, thus making accuracy experiment values. The real part and the imaginary part of the dielectric constants of single-wall carbon nanotubes are, respectively, increase and decrease in magnitudes as frequency increases satisfactorily in complying with the portray from the free electron Drude model. PMID:18019147

  10. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes.

    PubMed

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-12-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed. PMID:26729220

  11. Manifestation of Structure of Electron Bands in Double-Resonant Raman Spectra of Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Stubrov, Yurii; Nikolenko, Andrii; Gubanov, Viktor; Strelchuk, Viktor

    2016-01-01

    Micro-Raman spectra of single-walled carbon nanotubes in the range of two-phonon 2D bands are investigated in detail. The fine structure of two-phonon 2D bands in the low-temperature Raman spectra of the mixture and individual single-walled carbon nanotubes is considered as the reflection of structure of their π-electron zones. The dispersion behavior of 2D band fine structure components in the resonant Raman spectra of single-walled carbon nanotube mixture is studied depending on the energy of excitating photons. The role of incoming and outgoing electron-phonon resonances in the formation of 2D band fine structure in Raman spectra of single-walled carbon nanotubes is analyzed. The similarity of dispersion behavior of 2D phonon bands in single-walled carbon nanotubes, one-layer graphene, and bulk graphite is discussed.

  12. Cumulative and Continuous Laser Vaporization Synthesis of Single Wall Carbon Nanotubes and Nanohorns

    SciTech Connect

    Puretzky, Alexander A; Styers-Barnett, David J; Rouleau, Christopher M; Hu, Hui; Zhao, Bin; Ivanov, Ilia N; Geohegan, David B

    2008-01-01

    The conditions for the scaled synthesis of single wall carbon nanotubes (SWNTs) and single wall carbon nanohorns (SWNHs) by laser vaporization at high temperatures are investigated and compared using in situ diagnostics. An industrial Nd:YAG laser (600 W, 1-500 Hz repetition rate) with tunable pulse widths (0.5-50 ms) is utilized to explore conditions for high yield production. High-speed videography (50,000 frames/s) of the laser plume and pyrometry of the target surface are correlated with ex situ high resolution TEM analysis of the products for pure carbon targets and carbon/catalyst targets to understand the effects of the processing conditions on the resulting nanostructures. Carbon is shown to self-assemble into single-wall nanohorn structures at rates of ~ 1 nm/ms which is comparable to the catalystassisted SWNT growth rates. Two regimes of laser ablation, cumulative ablation by multiple pulses, and continuous ablation by individual pulses, were explored. Cumulative ablation with spatially overlapping 0.5 ms pulses is favorable for the high yield and production rate of SWNTs at ~ 6 g/h while continuous ablation by individual long laser pulses (~ 20 ms) at high temperatures results in the highest yield of SWNHs without graphitic impurities at ~ 10 g/h. Adjustment of the laser pulse width is shown to control SWNH morphology.

  13. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts.

    PubMed

    Yang, Feng; Wang, Xiao; Zhang, Daqi; Yang, Juan; Luo, Da; Xu, Ziwei; Wei, Jiake; Wang, Jian-Qiang; Xu, Zhi; Peng, Fei; Li, Xuemei; Li, Ruoming; Li, Yilun; Li, Meihui; Bai, Xuedong; Ding, Feng; Li, Yan

    2014-06-26

    Carbon nanotubes have many material properties that make them attractive for applications. In the context of nanoelectronics, interest has focused on single-walled carbon nanotubes (SWNTs) because slight changes in tube diameter and wrapping angle, defined by the chirality indices (n, m), will shift their electrical conductivity from one characteristic of a metallic state to one characteristic of a semiconducting state, and will also change the bandgap. However, this structure-function relationship can be fully exploited only with structurally pure SWNTs. Solution-based separation methods yield tubes within a narrow structure range, but the ultimate goal of producing just one type of SWNT by controlling its structure during growth has proved to be a considerable challenge over the last two decades. Such efforts aim to optimize the composition or shape of the catalyst particles that are used in the chemical vapour deposition synthesis process to decompose the carbon feedstock and influence SWNT nucleation and growth. This approach resulted in the highest reported proportion, 55 per cent, of single-chirality SWNTs in an as-grown sample. Here we show that SWNTs of a single chirality, (12, 6), can be produced directly with an abundance higher than 92 per cent when using tungsten-based bimetallic alloy nanocrystals as catalysts. These, unlike other catalysts used so far, have such high melting points that they maintain their crystalline structure during the chemical vapour deposition process. This feature seems crucial because experiment and simulation both suggest that the highly selective growth of (12, 6) SWNTs is the result of a good structural match between the carbon atom arrangement around the nanotube circumference and the arrangement of the catalytically active atoms in one of the planes of the nanocrystal catalyst. We anticipate that using high-melting-point alloy nanocrystals with optimized structures as catalysts paves the way for total chirality control in SWNT growth and will thus promote the development of SWNT applications. PMID:24965654

  14. Effect of Different Carbon Sources on the Growth of Single-Walled Carbon Nanotube from MCM-41 Containing Nickel

    SciTech Connect

    Chen,Y.; Wang, B.; Li, L.; Yang, Y.; Ciuparu, D.; Lim, S.; Haller, G.; Pfefferle, L.

    2007-01-01

    Chemical vapor deposition growth of single-walled carbon nanotubes (SWCNTs) was studied using three representative carbon source sources: CO, ethanol, and methane, and a catalyst of Ni ions incorporated in MCM-41. The resulting SWCNTs were compared for similar reaction conditions. Carbon deposits were analyzed by multi-excitation wavelength Raman, TGA, TEM and AFM. Catalytic particles in the Ni-MCM-41 catalysts were characterized by TEM and synchrotron light source X-ray absorption spectroscopy. Under similar synthesis conditions, SWCNTs produced from CO had a relatively smaller diameter, while those from ethanol had a larger diameter. Methane could not produce SWCNTs on Ni-MCM-41 under the conditions used in this research. These results demonstrate that three carbon sources affect the dynamic balances between metallic cluster formation and carbon deposition/precipitation on the metallic cluster surface. Controlling SWCNT diameter relies on precisely regulating this dynamic process. Using different carbon sources we are able to shift this dynamic balance and produce SWCNTs with different mean diameters.

  15. A structure-reactivity relationship for single walled carbon nanotubes reacting with 4-hydroxybenzene diazonium salt.

    PubMed

    Nair, Nitish; Kim, Woo-Jae; Usrey, Monica L; Strano, Michael S

    2007-04-01

    The first structure-reactivity relationship for electron-transfer reactions of single walled carbon nanotubes (SWNTs) has been derived and experimentally validated using 4-hydroxybenzene diazonium as a model electron acceptor. The model describes steady-state reaction data using an adsorption-controlled scheme, and electron transfer theories are used to explain the difference in reactivities between different nanotube chiralities. The formalism provides a mechanistic insight into electronically selective reactions. The influence of reagent concentration and external illumination (approximately 0.764 mW/cm2) on the reaction selectivity is described by the rate model, with quantitative descriptions of the changes in the UV-vis-nIR absorption spectra of nanotubes during reaction. Illumination was shown to decrease the selectivity of the reagent to metallic SWNTs over semiconducting SWNTs. We attribute this to the greater activity of the reagent in solution when exposed to light, resulting in greater extents of reaction for each SWNT and, hence, lower selectivity. PMID:17352473

  16. Raman spectroscopy of template grown single wall carbon nanotubes in zeolite crystals

    NASA Astrophysics Data System (ADS)

    Hulman, Martin; Kuzmany, Hans; Dubay, Orest; Kresse, Georg; Li, Ling; Tang, Z. K.

    2003-08-01

    Single wall carbon nanotubes with diameter 0.4 nm grown in the channels of AlPO4-5 crystals were studied by Raman spectroscopy and ab initio density functional calculations. In the experiment up to 19 different laser lines were used to characterize vibrational properties. Spectra depend strongly on the energy of the laser line used for excitation. Even though the observed Raman spectra were very rich on lines only two types of nanotubes with different chiralities, (5,0) and (4,2), were found to be responsible for the observed response. The frequencies of the radial breathing modes were reliably assigned. Even though the (5,0) is metallic, the A1g mode does not couple to the electronic continuum and the Peierls-type mechanism does not shift the mode toward lower frequencies. A strong response was also observed for frequencies around 1250 cm-1. The positions of two peaks assigned to the (5,0) do not depend on the laser energy whereas only one peak was observed for the (4,2) nanotube. Its frequency shifts with the laser energy like the D line of large diameter nanotubes, but the rate of the shift is only one half of the value known for the latter. These unexpected results could be traced back to the phonon dispersion of the narrow tubes.

  17. Raman Spectroscopy of Charge Transfer Interactions Between Single Wall Carbon Nanotubes and [FeFe] Hydrogenase

    SciTech Connect

    Blackburn, J. L. Svedruzic, D.; McDonald, T. J.; Kim, Y. H.; King, P. W.; Heben, M. J.

    2008-01-01

    We report a Raman spectroscopy study of charge transfer interactions in complexes formed by single-walled carbon nanotubes (SWNTs) and [FeFe] hydrogenase I (CaHydI) from Clostridium acetobutylicum. The choice of Raman excitation wavelength and sample preparation conditions allows differences to be observed for complexes involving metallic (m) and semiconducting (s) species. Adsorbed CaHydI can reversibly inject electronic charge into the LUMOs of s-SWNTs, while charge can be injected and removed from m-SWNTs at lower potentials just above the Fermi energy. Time-dependent enzymatic assays demonstrated that the reduced and oxidized forms of CaHydI are deactivated by oxygen, but at rates that varied by an order of magnitude. The time evolution of the oxidative decay of the CaHydI activity reveals different time constants when complexed with m-SWNTs and s-SWNTs. The correlation of enzymatic assays with time-dependent Raman spectroscopy provides a novel method by which the charge transfer interactions may be investigated in the various SWNT-CaHydI complexes. Surprisingly, an oxidized form of CaHydI is apparently more resistant to oxygen deactivation when complexed to m-SWNTs rather than s-SWNTs.

  18. Improved memory behaviour of single-walled carbon nanotubes charge storage nodes

    NASA Astrophysics Data System (ADS)

    Alba-Martin, Maria; Firmager, Timothy; Atherton, Joseph; Rosamond, Mark C.; Ashall, Daniel; Ghaferi, Amal Al; Ayesh, Ahmad; Gallant, Andrew J.; Mabrook, Mohammed F.; Petty, Michael C.; Zeze, Dagou A.

    2012-07-01

    To investigate their memory behaviours, single-walled carbon nanotubes (SWCNTs) were embedded in the floating gate of a hybrid metal-insulator-semiconductor structure using layer-by-layer deposition, and polymethylmethacrylate (PMMA) as the dielectric. Unlike longer SWCNT-based structures, shortened SWCNTs were shown to exhibit reliable and large memory windows by virtue of a better encapsulation which reduces charge leakage. The capacitance-voltage characteristics of the devices were consistent with electron injection into the SWCNT charge storage elements (in the floating) from the top electrode through the PMMA, using localized defects and crossing the PMMA energy barrier. In terms of material formulation, a combination of SWCNTs dispersed in sodium dodecyl sulfate and polyethyleneimine used as charge storage elements in the floating gate was shown to lead to repeatable and reliable memory characteristics. Fast switching and very large memory windows (7 V) exhibiting high charge density (2.6 1012 cm-2) and charge retention in excess of 76% were achieved under a 10 V sweep voltage range. These results suggest that SWCNTs could lead to improved memory behaviour with the potential for application in plastic electronics.

  19. Surface-enhanced Raman scattering on single-wall carbon nanotubes.

    PubMed

    Kneipp, Katrin; Kneipp, Harald; Dresselhaus, Mildred S; Lefrant, Serge

    2004-11-15

    Exploiting the effect of surface-enhanced Raman scattering (SERS), the Raman signal of single-wall carbon nanotubes (SWNTs) can be enhanced by up to 14 orders of magnitude when the tubes are in contact with silver or gold nanostructures and Raman scattering takes place predominantly in the enhanced local optical fields of the nanostructures. Such a level of enhancement offers exciting opportunities for ultrasensitive Raman studies on SWNTs and allows resonant and non-resonant Raman experiments to be done on single SWNTs at relatively high signal levels. Since the optical fields are highly localized within so-called "hot spots" on fractal silver colloidal clusters, lateral confinement of the Raman scattering can be as small as 5 nm, allowing spectroscopic selection of a single nanotube from a larger population. Moreover, since SWNTs are very stable "artificial molecules" with a high aspect ratio and a strong electron-phonon coupling, they are unique "test molecules" for investigating the SERS effect itself and for probing the "electromagnetic field contribution" and "charge transfer contribution" to the effect. SERS is also a powerful tool for monitoring the "chemical" interaction between the nanotube and the metal nanostructure. PMID:15482983

  20. One-dimensional superconductivity of 0.4 nm single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tang, Z. K.; Zhang, L. Y.; Wang, N.; Li, Z. M.; Zhang, X. X.; Wang, J. N.; Chan, C. T.; Sheng, P.

    2002-10-01

    Mono-sized ultra-small (0.4 nm in diameter) single-walled carbon nanotubes (SWNTs) were prepared by pyrolysis of tripropylamine molecules in the channels of porous zeolite AlPO4-5 (AFI) single crystals. These ultra-small nanotubes perhaps constitute the best example of one-dimensional (1D) quantum wires. Because these SWNTs are highly aligned and uniform in size, they show interesting electrical transport properties. Local density functional calculations indicate that when the diameter of the SWNT is smaller than 0.5 nm, strong curvature effects induce strong σ-π mixing of the unoccupied orbitals. In this regime, metallicity can no longer be predicted by the simple band-folding picture, and these small-radius SWNTs generally have finite density of states at the Fermi level. Investigation of the magnetic and transport properties of these SWNTs revealed that at temperatures below 20 K, the 0.4nm tubes exhibit superconducting behavior manifest as an anisotropic Meissner effect, with a superconducting gap and fluctuation supercurrent. The measured superconducting characteristics display smooth temperature variations owing to one-dimensional fluctuations, with a mean-field superconducting transition temperature of 15 K. Statistical mechanic calculations based on the Ginzburg-Landau free energy functional yield predictions that are in excellent agreement with the experiments.

  1. Review of Laser Ablation Process for Single Wall Carbon Nanotube Production

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram

    2003-01-01

    Different types of lasers are now routinely used to prepare single wall carbon nanotubes (SWCNTs). The original method developed by researchers at Rice University utilized a "double pulse laser oven" process. A graphite target containing about 1 atomic percent of metal catalysts is ablated inside a 1473K oven using laser pulses (10 ns pulse width) in slow flowing argon. Two YAG lasers with a green pulse (532 nm) followed by an IR pulse (1064 nm) with a 50 ns delay are used for ablation. This set up produced single wall carbon nanotube material with about 70% purity having a diameter distribution peaked around 1.4 nm. The impurities consist of fullerenes, metal catalyst clusters (10 to 100 nm diameter) and amorphous carbon. The rate of production with the initial set up was about 60 mg per hour with 10Hz laser systems. Several researchers have used variations of the lasers to improve the rate, consistency and study effects of different process parameters on the quality and quantity of SWCNTs. These variations include one to three YAG laser systems (Green, Green and IR), different pulse widths (nano to microseconds as well as continuous) and different laser wavelengths (Alexandrite, CO, CO2, free electron lasers in the near to far infrared). It is noted that yield from the single laser (Green or IR) systems is only a fraction of the two laser systems. The yield seemed to scale up with the repetition rate of the laser systems (10 to 60 Hz) and depended on the beam uniformity and quality of the laser pulses. The shift to longer wavelength lasers (free electron, CO and CO2) did not improve the quality, but increased the rate of production because these lasers are either continuous (CW) or high repetition rate pulses (kHz to MHz). The average power and the peak power of the lasers seem to influence the yields. Very high peak powers (MegaWatts per square centimeter) are noted to increase ablation of bigger particles with reduced yields of SWCNTs. Increased average powers seem to help the conversion of the carbon from target into vapor phase to improve formation of nanotubes. The use of CW far infrared lasers reduced the need for the oven, at the expense of controlled ablation. Some of these variations are tried with different combinations and concentrations of metal catalysts (Nickel with Cobalt, Iron, Palladium and Platinum) different buffer gases (e.g. Helium); with different oven temperatures (Room temperature to 1473K); under different flow conditions (1 to 1000 kPa) and even different porosities of the graphite targets. It is to be noted that the original Cobalt and Nickel combination worked best, possibly because of improved carbonization with stable crystalline phases. The mean diameter and yield seemed to increase with increasing oven temperatures. Thermal conductivity of the buffer gas and flow conditions dictate the quality as well as quantity of the SWCNTs. Faster flows, lower pressures and heavier gases seem to increase the yields. This review will attempt to cover all these variations and their relative merits. Possible growth mechanisms under these different conditions will also be discussed.

  2. G-quartet type self-assembly of guanine functionalized single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Singh, Prabhpreet; Venkatesh, V.; Nagapradeep, N.; Verma, Sandeep; Bianco, Alberto

    2012-03-01

    The simple strategy of linking guanine to single-walled carbon nanotubes (CNTs) through covalent functionalization permitted generation of the alignment of the nanotubes into lozenges reminiscent of guanine quartets (G-quartets) in the presence of potassium ions as observed by atomic force microscopy.The simple strategy of linking guanine to single-walled carbon nanotubes (CNTs) through covalent functionalization permitted generation of the alignment of the nanotubes into lozenges reminiscent of guanine quartets (G-quartets) in the presence of potassium ions as observed by atomic force microscopy. Electronic supplementary information (ESI) available: Experimental procedures for the synthesis and characterization of the precursors and MWCNT conjugates. See DOI: 10.1039/c2nr11849a

  3. Single Walled Carbon Nanotubes as Reporters for the Optical Detection of Glucose

    PubMed Central

    Barone, Paul W.; Strano, Michael S.

    2009-01-01

    This article reviews current efforts to make glucose sensors based on the inherent optical properties of single walled carbon nanotubes. The advantages of single walled carbon nanotubes over traditional organic and nanoparticle fluorophores for in vivo-sensing applications are discussed. Two recent glucose sensors made by our group are described, with the first being an enzyme-based glucose sensor that couples a reaction mediator, which quenches nanotube fluorescence, on the surface of the nanotube with the reaction of the enzyme. The second sensor is based on competitive equilibrium binding between dextran-coated nanotubes and concanavalin A. The biocompatibility of a model sensor is examined using the chicken embryo chorioallantoic membrane as a tissue model. The advantages of measuring glucose concentration directly, like most optical sensors, versus measuring the flux in glucose concentration, like most electrochemical sensors, is discussed. PMID:20144355

  4. Detection of tumor markers using single-walled carbon nanotube field effect transistors.

    PubMed

    Park, Dong-Won; Kim, Yo-Han; Kim, Beom Soo; So, Hye-Mi; Won, Keehoon; Lee, Jeong-O; Kong, Ki-Jeong; Chang, Hyunju

    2006-11-01

    We have developed a biosensor capable of detecting carcinoembryonic antigen (CEA) markers using single-walled carbon nanotube field effect transistors (SWNT-FETs). These SWNT-FETs were fabricated using nanotubes produced by a patterned catalyst growth technique, where the top contact electrodes were generated using conventional photolithography. For biosensor applications, SU-8 negative photoresist patterns were used as an insulation layer. CEA antibodies were employed as recognition elements to specific tumor markers, and were successfully immobilized on the sides of a single-walled carbon nanotube using CDI-Tween 20 linking molecules. The binding of tumor markers to these antibody-functionalized SWNT-FETs was then monitored continuously during exposure to dilute CEA solutions. The observed sharp decrease in conductance demonstrates the possibility of realizing highly sensitive, label-free SWNT-FET-based tumor sensors. PMID:17252798

  5. Absolute potential of the Fermi level of single-walled carbon nanotubes via hydrogenase complex formation.

    NASA Astrophysics Data System (ADS)

    McDonald, Timothy; Svedruzic, Drazenka; Kim, Yong-Hyun; Blackburn, Jeffrey; Zhang, Shengbai; King, Paul; Heben, Michael

    2007-03-01

    The absolute potential of the Fermi level of nanotubes as a function of nanotube type is not presently understood, and is important for many nanotube applications and sorting strategies. Here, we study complexes of recombinant [FeFe] hydrogenases and single-walled carbon nanotubes. We find evidence that novel charge-transfer complexes are formed and are stable, which enables further study and application of this system. The hydrogenase functions as a hydrogen electrode sensitizing the nanotubes to the redox half-reaction for hydrogen. Thus the potential can be altered by changing the molecular hydrogen concentration, and this tunability is utilized to bleach various semiconducting nanotube transitions. By observing which are bleached and which remain emissive, we determine the alignment of the potential of the Fermi level of semiconducting single-walled carbon nanotubes. The experimentally determined Fermi level alignment is confirmed theoretically by the first-principles DFT-PBE method.

  6. A black body absorber from vertically aligned single-walled carbon nanotubes

    PubMed Central

    Mizuno, Kohei; Ishii, Juntaro; Kishida, Hideo; Hayamizu, Yuhei; Yasuda, Satoshi; Futaba, Don N.; Yumura, Motoo; Hata, Kenji

    2009-01-01

    Among all known materials, we found that a forest of vertically aligned single-walled carbon nanotubes behaves most similarly to a black body, a theoretical material that absorbs all incident light. A requirement for an object to behave as a black body is to perfectly absorb light of all wavelengths. This important feature has not been observed for real materials because materials intrinsically have specific absorption bands because of their structure and composition. We found a material that can absorb light almost perfectly across a very wide spectral range (0.2200 ?m). We attribute this black body behavior to stem from the sparseness and imperfect alignment of the vertical single-walled carbon nanotubes. PMID:19339498

  7. Effects of nitrogenation on single-walled carbon nanotubes within density functional theory

    NASA Astrophysics Data System (ADS)

    Lim, San Hua; Li, Ruijiang; Ji, Wei; Lin, Jianyi

    2007-11-01

    The effects of nitrogenation on single-walled carbon nanotubes are investigated within the ab initio density functional theory. Four different types of nitrogenation have been considered: (i) direct substitution of nitrogen atoms, (ii) substitution with a formation of vacancy (pyridinelike doping), (iii) exohedral chemisorption of N adatoms, and (iv) sidewall covalent - NH2 functionalization. Structural deformations, electronic band structures, density of states, and ionization potential energies are calculated and compared among the different types of nitrogenated nanotubes. Magnetism is observed for chemisorbed single-walled carbon nanotubes (SWNTs) with magnetic moment of 0.7?B . In addition, the relaxed structures of SWNTs with two neighboring chemisorbed N adatoms are generally more complex than those of singly chemisorbed N adatom. The barrier energies needed to coalesce two N adatoms chemisorbed on SWNTs to form a free N2 molecule are higher than those for a graphene sheet.

  8. Length-dependent optical effects in single-wall carbon nanotubes.

    PubMed

    Fagan, Jeffrey A; Simpson, Jeffrey R; Bauer, Barry J; Lacerda, Silvia H De Paoli; Becker, Matthew L; Chun, Jaehun; Migler, Kalman B; Walker, Angela R Hight; Hobbie, Erik K

    2007-08-29

    Among the novel chemical and physical attributes of single-wall carbon nanotubes (SWCNTs), the optical properties are perhaps the most compelling. Although much is known about how such characteristics depend on nanotube chirality and diameter, relatively little is known about how the optical response depends on length, the next most obvious and fundamental nanotube trait. We show here that the intrinsic optical response of single-wall carbon nanotubes exhibits a strong dependence on nanotube length, and we offer a simple explanation that relates this behavior to the localization of a bound exciton along the length of a nanotube. The results presented here suggest that, for a given volume fraction, the longest nanotubes display significantly enhanced absorption, near-infrared fluorescence, and Raman scattering, which has important practical implications for potential applications that seek to exploit the unique optical characteristics of SWCNTs. PMID:17672462

  9. Synthesis of Single Wall Carbon Nanotubes by Plasma Arc: Role of Plasma Parameters

    NASA Technical Reports Server (NTRS)

    Farhart, Samir; Scott, Carl D.

    2000-01-01

    Single wall carbon nanotubes (SWNT) are porous objects on the molecular scale and have a low density, which gives them potential applications as adsorbent for molecular hydrogen. Their H2 absorption capacity published in the literature varies from 4 to 10% by mass according to the purity of the materials and storage conditions. Optimization of production methods of SWNTs should permit improving these new materials for storage of hydrogen. In this article, we show the potential of using SWNTs in hydrogen storage. In particular, we pose problems associated with synthesis, purification, and opening up of the nanotubes. We present an electric arc process currently used at laboratory scale to produce single wall carbon nanotubes. We discuss, in particular, operating conditions that permit growth of nanotubes and some plasma parameters that assure control of the material. Analysis of the process is carried out with the aid of local measurements of temperature and scanning and transmission electron microscopy of the materials.

  10. Self-assembly of semiconducting single-walled carbon nanotubes into dense, aligned rafts.

    PubMed

    Wu, Justin; Jiao, Liying; Antaris, Alexander; Choi, Charina L; Xie, Liming; Wu, Yingpeng; Diao, Shuo; Chen, Changxin; Chen, Yongsheng; Dai, Hongjie

    2013-12-20

    Highly pure semiconducting single-walled carbon nanotubes (SWNTs) are separated from bulk materials and self-assembled into densely aligned rafts. Microscopy and spectroscopy reveals ?100 SWNTs per micrometer within the rafts. Short channel field-effect transistors (FETs) from tens of purely semiconducting SWNTs within a submicrometer channel width achieve unprecedented on-currents (up to 121 ?A) with high on/off ratios. The results demonstrate densely aligned semiconducting SWNTs for high-performance nanoelectronics. PMID:23843273

  11. Below-gap excitation of semiconducting single-wall carbon nanotubes.

    PubMed

    Soavi, G; Grupp, A; Budweg, A; Scotognella, F; Hefner, T; Hertel, T; Lanzani, G; Leitenstorfer, A; Cerullo, G; Brida, D

    2015-11-21

    We investigate the optoelectronic properties of the semiconducting (6,5) species of single-walled carbon nanotubes by measuring ultrafast transient transmission changes with 20 fs time resolution. We demonstrate that photons with energy below the lowest exciton resonance efficiently lead to linear excitation of electronic states. This finding challenges the established picture of a vanishing optical absorption below the fundamental excitonic resonance. Our result points towards below-gap electronic states as an intrinsic property of semiconducting nanotubes. PMID:26488340

  12. Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles

    DOE PAGESBeta

    Márquez, Francisco; López, Vicente; Morant, Carmen; Roque-Malherbe, Rolando; Domingo, Concepción; Elizalde, Eduardo; Zamora, Félix

    2010-01-01

    Arrmore » ays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800°C. The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.« less

  13. Photochemistry of single wall carbon nanotubes embedded in a mesoporous silica matrix.

    PubMed

    Alvaro, Mercedes; Atienzar, Pedro; Bourdelande, José L; García, Hermenegildo

    2002-12-21

    By embedding single wall carbon nanotubes in a mesoporous silica matrix (SWNT@SiO2) the photochemical properties have been measured upon laser excitation at 266 nm; the SWNT@SiO2 exhibits long-lived emission (lambda em = 400 nm, tau = 0.95 microsecond), transient absorption (lambda max = 390 nm, tau = 11 microseconds) and is able to generate singlet oxygen in D2O. PMID:12536788

  14. Fabrication of Discrete Nanosized Cobalt Particles Encapsulated Inside Single-Walled Carbon Nanotubes

    SciTech Connect

    Zoican Loebick, C.; Majewska, M; Ren, F; Haller, G; Pfefferle, L

    2010-01-01

    Single-walled carbon nanotubes (SWNT) with encapsulated nanosized cobalt particles have been synthesized by a facile and scalable method. In this approach, SWNT were filled with a cobalt acetylacetonate solution in dichloromethane by ultrasonication. In a second step, exposure to hydrogen at different temperatures released discrete cobalt particles of controllable size inside the SWNT cavity. The SWNT-Co particles systems were characterized by transmission electron microscopy, X-ray absorption spectroscopy, Raman spectroscopy, and thermal gravimetric analysis.

  15. Dispersion of Single-Walled Carbon Nanotubes in Poly(E-caprolactone)

    SciTech Connect

    Mitchell,C.; Krishnamoorti, R.

    2007-01-01

    The dispersion of single-walled carbon nanotubes (SWNT) in poly({var_epsilon}-caprolactone) with the aid of a zwitterionic surfactant is reported. Melt rheology and electrical conductivity measurements indicate geometrical percolation and electrical percolation for nanocomposites with {approx}0.08 wt % SWNT, implying an effective anisotropy for the nanotubes of at least 600. Spectroscopic measurements and comparison of dispersion using other surfactants established that the excellent dispersion is a result of the compatibilizing effect of the zwitterionic surfactant.

  16. Toughening and reinforcing alumina matrix composite with single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fan, Jin-Peng; Zhuang, Da-Ming; Zhao, Da-Qing; Zhang, Gong; Wu, Min-Sheng; Wei, Fei; Fan, Zhuang-Jun

    2006-09-01

    The authors report an efficient way of incorporating single-wall carbon nanotubes (SWNTs) into alumina matrix with strong interfaces by heterocoagulation. The fracture toughness of SWNTs/Al2O3 composite reaches 6.400.3MPam1/2, which is twice as high as that of unreinforced alumina. The flexure strength of the composite also increases by 20%. The main toughening mechanism is crack bridging of SWNTs, and SWNT pullout takes effect also.

  17. Strain paint: noncontact strain measurement using single-walled carbon nanotube composite coatings.

    PubMed

    Withey, Paul A; Vemuru, Venkata Srivishnu M; Bachilo, Sergei M; Nagarajaiah, Satish; Weisman, R Bruce

    2012-07-11

    Composite coatings have been developed that reveal strains in underlying structural elements through noncontact optical measurement. Dilute individualized single-walled carbon nanotubes are embedded in a polymeric host and applied to form a thin coating. Strain in the substrate is transmitted through the polymer to the nanotubes, causing systematic and predictable spectral shifts of the nanotube near-infrared fluorescence peaks. This new method allows quick and precise strain measurements at any position and along any direction of the substrate. PMID:22694748

  18. Adsorption of Fe and Co Nanowires to (3,3) Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Kishi, Tomoya; David, Melanie; Di\\ {n}o, Wilson Agerico; Nakanishi, Hiroshi; Kasai, Hideaki

    2007-04-01

    We investigate the magnetic and electronic properties of Fe and Co nanowires adsorbed outside the wall of single-walled carbon nanotubes (SWNTs). We find that in Fe nanowire adsorption, the SWNT transforms into a diamond ring-like structure because of the charge transfer from the C-C bonds to the Fe-C bonds. In addition, the number of bands that crosses the Fermi level can be enhanced by adsorbing Fe and Co atoms.

  19. Thermal and electrical transport in ultralow density single-walled carbon nanotube networks.

    PubMed

    Zhang, Ke Jia; Yadav, Abhishek; Kim, Kyu Hun; Oh, Youngseok; Islam, Mohammad F; Uher, Ctirad; Pipe, Kevin P

    2013-06-01

    The thermal, electrical, and thermoelectric properties of aerogels of single-walled carbon nanotubes are characterized. Their ultralow density enables the transport properties of the junctions to be distinguished from those of the nanotubes themselves. Junction thermal and electrical conductances are found to be orders of magnitude larger than those found in typical dense SWCNT networks. In particular, the average junction thermal conductance is close to the theoretical maximum for a van der Waals bonded SWCNT junction. PMID:23606438

  20. The Effects of Single-Wall Carbon Nanotubes on the Shear Piezoelectricity of Biopolymers

    NASA Technical Reports Server (NTRS)

    Lovell, Conrad; Fitz-Gerald, James M.; Harrison, Joycelyn S.; Park, Cheol

    2008-01-01

    Shear piezoelectricity was investigated in a series of composites consisting of increased loadings of single-wall carbon nanotubes (SWCNTs) in poly (gamma-benzyl-L-glutamate), or PBLG. The effects of the SWCNTs on this material property in PBLG will be discussed. Their influence on the morphology of the polymer (degree of orientation and crystallinity), and electrical and dielectric properties of the composite will be reported

  1. Intense photoluminescence from dried double-stranded DNA and single-walled carbon nanotube hybrid

    SciTech Connect

    Ito, M.; Kobayashi, T.; Ito, Y.; Hayashida, T.; Nii, D.; Umemura, K.; Homma, Y.

    2014-01-27

    Semiconducting single-walled carbon nanotubes (SWNTs) show near-infrared photoluminescence (PL) when they are individually isolated. This was an obstacle to use photonic properties of SWNTs on a solid surface. We show that SWNTs wrapped with DNA maintain intense PL under the dry conditions. SWNTs are well isolated individually by DNA even when the DNA-SWNT hybrids are agglomerated. This finding opens up application of SWNTs to photonic devices.

  2. Supramolecularly-knitted Tethered Oligopeptide/Single-walled Carbon Nanotube Organogels

    PubMed Central

    Zou, Jiong; He, Xun; Fan, Jingwei; Raymond, Jeffery E.

    2014-01-01

    A facile polymerization of an allyl-functional N-carboxyanhydride (NCA) monomer is utilized to construct an A-B-A type triblock structure containing β-sheet-rich oligomeric peptide segments tethered by a poly(ethylene oxide) chain, which are capable of dispersing and gelating single-walled carbon nanotubes (SWCNTs) noncovalently in organic solvents, resulting in significant enhancement of the mechanical properties of polypeptide-based organogels. PMID:24961389

  3. Electron-ion quantum plasma excitations in single-walled carbon nanotubes.

    PubMed

    Moradi, Afshin

    2009-01-28

    The effect of a uniform static external magnetic field in the Voigt configuration on electron-ion quantum plasma oscillations in single-walled carbon nanotubes is discussed using the linearized quantum hydrodynamic model in conjunction with Maxwell's equations. Transverse magnetic waves which propagate parallel to the surface of the nanotubes, in the presence of an external magnetic field, yield a spectrum containing a quantum magnetosonic branch in addition to the magnetoplasmon branch. PMID:21715799

  4. Single-walled carbon nanotubes synthesis: a direct comparison of laser ablation and carbon arc routes.

    PubMed

    Bystrzejewski, M; Rmmeli, M H; Lange, H; Huczko, A; Baranowski, P; Gemming, T; Pichler, T

    2008-11-01

    Carbon arc and chemical vapor deposition are at present the most efficient methods for mass production of single-walled carbon nanotubes. However, laser ablation is renowned for high quality nanotubes with narrow diameter distributions and hence is also of great interest. The aim of this work was to compare both the carbon arc and laser ablation techniques with respect to the quality--and relative yield of the produced SWCNTs. For this comparative study we used Fe as the catalyst, which is known not to be very active in laser ablation. However, we show this is not the case when H2 is included in the reaction. The reactions for both synthesis routes were carried out in a N2-H2 (95-5% vol.) atmosphere. The same homogenous carbon rods with different iron contents, between 1 and 5 at.% were used as the carbon feedstock and catalyst supply in both synthesis routes. Additionally, two types of carbon rods containing 1 at.% Fe with different graphitization degrees were also investigated. In the arc-discharge case, the low-graphitized electrode produced a web-like product rich in SWCNTs, while the high-graphitized carbon rods yielded soot containing carbon-encapsulated iron nanocrystallites, amorphous carbon nanoparticles, and surprisingly a small fraction of SWCNTs. With laser ablation synthesis, the Fe content and the reactor temperature significantly influenced the SWCNTs yield. Carbon arc plasma diagnostics were also performed. By using optical emission and Absorption spectroscopy the plasma temperature, C2 and CN radical content in the arc zone were determined. PMID:19198361

  5. Method for separating single-wall carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E. (Inventor); Hauge, Robert H. (Inventor); Kittrell, W. Carter (Inventor); Sivarajan, Ramesh (Inventor); Strano, Michael S. (Inventor); Bachilo, Sergei M. (Inventor); Weisman, R. Bruce (Inventor)

    2006-01-01

    The invention relates to a process for sorting and separating a mixture of (n, m) type single-wall carbon nanotubes according to (n, m) type. A mixture of (n, m) type single-wall carbon nanotubes is suspended such that the single-wall carbon nanotubes are individually dispersed. The nanotube suspension can be done in a surfactant-water solution and the surfactant surrounding the nanotubes keeps the nanotube isolated and from aggregating with other nanotubes. The nanotube suspension is acidified to protonate a fraction of the nanotubes. An electric field is applied and the protonated nanotubes migrate in the electric fields at different rates dependent on their (n, m) type. Fractions of nanotubes are collected at different fractionation times. The process of protonation, applying an electric field, and fractionation is repeated at increasingly higher pH to separated the (n, m) nanotube mixture into individual (n, m) nanotube fractions. The separation enables new electronic devices requiring selected (n, m) nanotube types.

  6. Flavin-derived self-organization and chirality separation of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ju, Sang-Yong

    2008-07-01

    Formed by rolling up a two-dimensional sheet of one or more layer of graphite, graphene, carbon nanotubes (SWNTs) are the marvel materials of modern materials science. They are phenomenally strong and stiff, and have the unusual property of being excellent conductors of heat along the tube's axis, but good thermal insulators across it. But it is their electrical characteristics that excite the most interest. Especially, single-walled carbon nanotube (SWNTs), formed by one layer of cylindrical graphene, has better physical properties over multi-walled carbon nanotubes (MWNTs) having over two layer of graphene. Depending on the precise way they are rolled up, which is defined by ( n,m) vector, SWNTs can be made into either metals or semiconductors. So far, SWNTs can generally only be fabricated in batches that vary widely, both in the diameter of the individual tubes and in the orientation of their graphene lattice relative to the tube axis, the property known as chirality. Separating out these various conformations is a challenging, but one that must be solved if nanotubes are ever to fulfill their electrifying potential in devices. This thesis presents that flavin-based helical self-assembly can impart multi degrees of SWNTs separation (i.e., metallicity, diameter, chirality, and handedness). As opening chapters for carbon nanotube and flavin derivative, Chapter 1 provide the introduction of carbon nanotubes, especially single-walled tubes, and the current state-of-the-art nanotube separation. Also, Chapter 1 presents a variety of naturally-occurring flavin derivatives, their redox behavior, and their biological utilization as cofactors for various proteins. Motivated by chemoluminescence of flavin mononucleotide (FMN, phosphorylated form of Vitamin B2) with bacterial luciferase, Chapter 2 discuss about the synthesis and covalent attachment of flavin mononucleotide (FMN, phosphorylated form of Vitamin B2) analogue to oxidized SWNTs. Along with nine step synthesis of synthetic FMN, this study provided two findings: (i) isoalloxazine ring of FMN has strong interaction with the sidewalls of nanotubes and (ii) covalently-attached isoalloxazine ring onto nanotube can be either extended or collapsed by surfactant (long-term) and redox agents or sonication (short-term) from the nanotube surface. The aforementioned two findings lead to utilize strong pi-pi interaction of biologically-relevant FMN for nanotube dispersing agents. Chapter 3 discuss that FMN imparts effective dispersion of SWNTs via helical self-assembly of flavin moiety. This isoalloxazine self-assembly onto nanotube in aqueous media is held by (i) quadruple hydrogen-bonding along the adjacent uracil moiety of isoalloxazine rings, and (ii) concentric pi-pi interaction between isoalloxazine ring toward the underlying nanotube sidewall, and (iii) phosphate group of FMN imparting anionic dispersion and individualization of nanotube in water. In addition, precipitation-less replacement of FMN with sodium dodecyl benzene sulfate (SDBS) enable us to probe the relative binding constant of helical FMN self-organization on SWNTs. The significantly higher affinity of the FMN assembly for (8,6) nanotube results in an 85% chirality enrichment from a nanotube sample with broad diameter distribution. Chapter 4 revisits the surfactant amine-assisted semiconducting ( sem-) SWNTs separation in THF media. For this, we synthesized an asymmetric diacetylenic surfactant amine(57ECA), in which adequate chemical anisotropy was generated along its tail to probe the molecular dynamics in the presence and absence of nanotubes via NMR. This surfactant can simulate the similar sem-SWNTs separation, like ODA. This study suggests that the surfactant amine head is firmly immobilized onto the nanotube surface together with acidic water, while the aliphatic tail progressively gains larger mobility as it gets farther from the SWNT. The spectroscopic results indicate that the sem-enriched sample is populated mainly from small nanotube bundles containing three SWNTs. Molecular simulations in conjunct

  7. Evidence for large hydrogen storage capacity in single-walled carbon nanotubes encapsulated by electroplating Pd onto a Pd substrate

    SciTech Connect

    Lipson, A. G.; Lyakhov, B. F.; Saunin, E. I.; Tsivadze, A. Yu.

    2008-02-15

    We report a study of hydrogen storage in an alternative material, representing single-walled carbon nanotubes (SWCNTs) encapsulated by thin Pd layers onto a Pd substrate. A synergetic effect resulting in combination of the Pd and the SWCNTs properties with regards to hydrogen has been achieved. Adding SWCNTs increases the H{sub 2} capacity of the Pd-SWCNT composite by up to 25% relative to Pd metal alone under electrochemical loading. This results in a storage capacity of 8-12 wt %. with regard to the added SWCNTs.

  8. Covalent functionalization of single-walled carbon nanotubes through attachment of aromatic diisocyanate molecules from first principles

    NASA Astrophysics Data System (ADS)

    Goclon, Jakub; Kozlowska, Mariana; Rodziewicz, Pawel

    2015-01-01

    We performed first-principle calculations of the covalent functionalization of metallic (6,0) and semiconducting (10,0) single-walled carbon nanotubes (SWCNTs) with aromatic diisocyanate molecules, namely, 4,4?-methylene diphenyl diisocyanate (MDI) and toluene-2,4-diisocyanate (TDI). The corresponding binding energies of the attached molecules were scrutinized. We analyzed the changes in the electronic band structure of SWCNTs caused by the amide bond formation after the functionalization process. Furthermore, the MDI-MDI and TDI-TDI mutual interactions on the nanotube surface were investigated.

  9. Surface-enhanced and normal stokes and anti-stokes Raman spectroscopy of single-walled carbon nanotubes.

    PubMed

    Kneipp, K; Kneipp, H; Corio, P; Brown, S D; Shafer, K; Motz, J; Perelman, L T; Hanlon, E B; Marucci, A; Dresselhaus, G; Dresselhaus, M S

    2000-04-10

    Surface enhancement factors of at least 10(12) for the Raman scattering of single-walled carbon nanotubes in contact with fractal silver colloidal clusters result in measuring very narrow Raman bands corresponding to the homogeneous linewidth of the tangential C-C stretching mode in semiconducting nanotubes. Normal and surface-enhanced Stokes and anti-Stokes Raman spectra are discussed in the framework of selective resonant Raman contributions of semiconducting or metallic nanotubes to the Stokes or anti-Stokes spectra, respectively, of the population of vibrational levels due to the extremely strong surface-enhanced Raman process, and of phonon-phonon interactions. PMID:11019117

  10. Temperature and voltage dependent current-voltage behavior of single-walled carbon nanotube transparent conducting films

    NASA Astrophysics Data System (ADS)

    Zhang, Ze-Chen; Geng, Hong-Zhang; Wang, Yan; Yang, Hai-Jie; Da, Shi-Xun; Ding, Er-Xiong; Liu, Juncheng; Yu, Ping; Fu, Yun-Qiao; Li, Xu; Pan, Hui

    2015-11-01

    High purified single-walled carbon nanotubes (SWCNTs) were dispersed in water and transparent conducting films (TCFs) were fabricated by a spray coating. The produced uniform SWCNT-TCFs treated by nitric acid have a relatively low sheet resistance and high transmittance. The current-voltage (I-V) behaviors of the TCFs were measured at room to higher temperature during the heating or cooling process. It was found that the I-V behavior of TCFs strongly dependent on the temperature and applied voltage. The sheet resistance showed semiconductor behavior at low temperature and low voltage, while it showed metallic behavior at high temperature and high voltage.

  11. Influence of nanoparticle size to the electrical properties of naphthalenediimide on single-walled carbon nanotube wiring.

    PubMed

    Tanaka, Hirofumi; Hong, Liu; Fukumori, Minoru; Negishi, Ryota; Kobayashi, Yoshihiro; Tanaka, Daisuke; Ogawa, Takuji

    2012-06-01

    Nanoparticles of N,N'-bis(n-alkyl)tetracarbonatenaphthalenediimide (NDI) were adsorbed on single-walled carbon nanotube (SWNT) wires dispersed on a SiO(2) substrate. The electrical properties were measured along the long axis of the SWNTs, and in all cases through the nanoparticles showed rectification in semiconducting I-V curve. The plateau width of the I-V curve through the NDI nanoparticles on metallic SWNTs decreased as the particle size increased, while the rectification ratio increased. The conduction mechanism was changed from tunneling conduction to Schottky-like conduction and their boundary is at about 3 nm diameter. PMID:22551735

  12. Catalytic Growth of Single-Wall Carbon Nanotubes: An {ital Ab Initio} Study

    SciTech Connect

    Lee, Y.H.; Kim, S.G.; Tomanek, D.; Lee, Y.H.

    1997-03-01

    We propose a catalytic growth mechanism of single-wall carbon nanotubes based on density functional total energy calculations. Our results indicate nanotubes with an {open_quotes}armchair{close_quotes} edge to be energetically favored over {open_quotes}zigzag{close_quotes} nanotubes. We also suggest that highly mobile Ni catalyst atoms adsorb at the growing edge of the nanotube, where they catalyze the continuing assembly of hexagons from carbon feedstock diffusing along the nanotube wall. In a concerted exchange mechanism, Ni atoms anneal carbon pentagons that would initiate a dome closure of the nanotube. {copyright} {ital 1997} {ital The American Physical Society}

  13. A sonochemical route to single-walled carbon nanotubes under ambient conditions.

    PubMed

    Jeong, Soo-Hwan; Ko, Ju-Hye; Park, Jong-Bong; Park, Wanjun

    2004-12-15

    A chemical route to single-walled carbon nanotubes (SWCNTs) under ambient conditions has been developed. Silica powder was immersed in a mixture solution of ferrocene and p-xylene. After sonication at atmospheric pressure and room temperature, we obtained high-purity SWCNTs. Sonochemical effects may lead to producing high-purity SWCNTs. The process could be readily generalized to synthesize other forms of carbon-based materials, such as fullerenes, multiwalled nanotubes, carbon onions, and diamond, in liquid solution under ambient conditions. PMID:15584730

  14. Nano-Plasticity of Single-Wall Carbon Nanotubes Under Uniaxial Compression

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madu; Cho, Kyeongjae

    1999-01-01

    Nano-plasticity of thin single-wall carbon nanotubes under uniaxial compression is investigated through generalized tight-binding molecular dynamics (GTBMD) and ab-initio electronic structure methods. A novel mechanism of nano-plasticity of carbon nanotubes under uniaxial compression is observed in which bonding geometry collapses from a graphitic (sp(sup 2)) to a localized diamond like (sp(sup 3)) reconstruction. The computed critical stress (approximately equals 153 G Pa) and the shape of the resulting plastic deformation is in good agreement with recent experimental observation of collapse and fracture of compressed carbon nanotubes in polymer composites.

  15. Electron transport properties of a single-walled carbon nanotube in the presence of hydrogen cyanide: first-principles analysis.

    PubMed

    Srivastava, Anurag; Sharma, Vikash; Kaur, Kamalpreet; Khan, Md Shahzad; Ahuja, Rajeev; Rao, V K

    2015-07-01

    First-principles analysis based on density functional theory was performed to compute the electronic and transport properties of a single-walled carbon nanotube in the presence of hydrogen cyanide. A chiral (4,1) carbon nanotube was found to become less metallic as the number of hydrogen cyanide molecules nearby increased. When there were a sufficient number of hydrogen cyanide molecules close to the nanotube, it became semiconducting. This metallic to semiconducting transformation of the nanotube was verified by analyzing its conductance and current as a function of the number of molecules of hydrogen cyanide present. The conductivity of the carbon nanotube was very high when no hydrogen cyanide molecules were present, but decreased considerably when even just a single hydrogen cyanide molecule approached the surface of the nanotube. PMID:26072123

  16. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material.

    PubMed

    Maynard, Andrew D; Baron, Paul A; Foley, Michael; Shvedova, Anna A; Kisin, Elena R; Castranova, Vincent

    2004-01-01

    Carbon nanotubes represent a relatively recently discovered allotrope of carbon that exhibits unique properties. While commercial interest in the material is leading to the development of mass production and handling facilities, little is known of the risk associated with exposure. In a two-part study, preliminary investigations have been carried out into the potential exposure routes and toxicity of single-walled carbon nanotube material (SWCNT)--a specific form of the allotrope. The material is characterized by bundles of fibrous carbon molecules that may be a few nanometers in diameter, but micrometers in length. The two production processes investigated use-transition metal catalysts, leading to the inclusion of nanometer-scale metallic particles within unrefined SWCNT material. A laboratory-based study was undertaken to evaluate the physical nature of the aerosol formed from SWCNT during mechanical agitation. This was complemented by a field study in which airborne and dermal exposure to SWCNT was investigated while handling unrefined material. Although laboratory studies indicated that with sufficient agitation, unrefined SWCNT material can release fine particles into the air, concentrations generated while handling material in the field were very low. Estimates of the airborne concentration of nanotube material generated during handling suggest that concentrations were lower than 53 microg/m(3) in all cases. Glove deposits of SWCNT during handling were estimated at between 0.2 mg and 6 mg per hand. PMID:14668113

  17. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Blancon, Jean-Christophe; Paillet, Matthieu; Tran, Huy Nam; Than, Xuan Tinh; Guebrou, Samuel Aberra; Ayari, Anthony; Miguel, Alfonso San; Phan, Ngoc-Minh; Zahab, Ahmed-Azmi; Sauvajol, Jean-Louis; Fatti, Natalia Del; Vallée, Fabrice

    2013-09-01

    The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.

  18. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes.

    PubMed

    Blancon, Jean-Christophe; Paillet, Matthieu; Tran, Huy Nam; Than, Xuan Tinh; Guebrou, Samuel Aberra; Ayari, Anthony; San Miguel, Alfonso; Phan, Ngoc-Minh; Zahab, Ahmed-Azmi; Sauvajol, Jean-Louis; Del Fatti, Natalia; Vallée, Fabrice

    2013-01-01

    The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction. PMID:24071824

  19. Electrochemical determination of cadmium and lead on pristine single-walled carbon nanotube electrodes.

    PubMed

    Bui, Minh-Phuong Ngoc; Li, Cheng Ai; Han, Kwi Nam; Pham, Xuan-Hung; Seong, Gi Hun

    2012-01-01

    A flexible, transparent, single-walled carbon nanotube (SWCNT) film electrode was prepared by vacuum filtering methods, followed by photolithographic patterning of a photoresist polymer on the SWCNT surface. The morphology of the SWCNT film electrode surface was characterized using a field-emission scanning electron microscope coupled to an energy-dispersive X-ray spectrophotometer. The electrodes were successfully used as a mercury-free electrochemical sensor for individual and simultaneous detection of cadmium (Cd(2+)) and lead (Pb(2+)) in 0.02 M HCl by square-wave stripping voltammetry. Some important operational parameters, including deposition time, deposition potential, square-wave amplitude, and square wave-frequency were optimized for the detection of Cd(2+) and Pb(2+). The newly developed sensor showed good linear behavior in the examined concentration. For individual Cd(2+) and Pb(2+) ion detection, the linear range was found from 0.033 to 0.228 ppm with detection limits of 0.7 ppb (R(2) = 0.985) for Cd(2+) and 0.8 ppb (R(2) = 0.999) for Pb(2+). For simultaneous detection, the linear range was found from 0.033 to 0.280 ppm with a limit of detection of 2.2 ppb (R(2) = 0.976) and 0.6 ppb (R(2) = 0.996) for Cd(2+) and Pb(2+), respectively. SWCNT film electrodes offered favorable reproducibility of 5.4% and 4.3% for Cd(2+) and Pb(2+), respectively. The experiments demonstrated the applicability of carbon nanotubes, specifically in the preparation of SWCNT films. The results suggest that the proposed flexible SWCNT film electrodes can be applied as simple, efficient, cost-effective, and/or disposable electrodes for simultaneous detection of heavy metal ions. PMID:22790373

  20. Plasma-synthesized single-walled carbon nanotubes and their applications

    NASA Astrophysics Data System (ADS)

    Hatakeyama, R.; Kaneko, T.; Kato, T.; Li, Y. F.

    2011-05-01

    Plasma-based nanotechnology is a rapidly developing area of research ranging from physics of gaseous and liquid plasmas to material science, surface science and nanofabrication. In our case, nanoscopic plasma processing is performed to grow single-walled carbon nanotubes (SWNTs) with controlled chirality distribution and to further develop SWNT-based materials with new functions corresponding to electronic and biomedical applications. Since SWNTs are furnished with hollow inner spaces, it is very interesting to inject various kinds of atoms and molecules into their nanospaces based on plasma nanotechnology. The encapsulation of alkali-metal atoms, halogen atoms, fullerene or azafullerene molecules inside the carbon nanotubes is realized using ionic plasmas of positive and negative ions such as alkali-fullerene, alkali-halogen, and pair or quasipair ion plasmas. Furthermore, an electrolyte solution plasma with DNA negative ions is prepared in order to encapsulate DNA molecules into the nanotubes. It is found that the electronic and optical properties of various encapsulated SWNTs are significantly changed compared with those of pristine ones. As a result, a number of interesting transport phenomena such as air-stable n- and p-type behaviour, p-n junction characteristic, and photoinduced electron transfer are observed. Finally, the creation of an emerging SWNTs-based nanobioelectronics system is challenged. Specifically, the bottom-up electric-field-assisted reactive ion etching is proposed to control the chirality of SWNTs, unexplored SWNT properties of magnetism and superconductivity are aimed at being pioneered, and innovative biomedical-nanoengineering with encapsulated SWNTs of higher-order structure are expected to be developed by applying advanced gas-liquid interfacial plasmas.

  1. Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites

    NASA Astrophysics Data System (ADS)

    Koratkar, Nikhil A.; Suhr, Jonghwan; Joshi, Amit; Kane, Ravi S.; Schadler, Linda S.; Ajayan, Pulickel M.; Bartolucci, Steve

    2005-08-01

    In this study, single-walled carbon nanotube and bisphenol-A-polycarbonate composite beams were fabricated by a solution mixing process and dynamic (cyclic) load tests were performed to characterize energy dissipation. We report up to an order of magnitude (>1000%) increase in loss modulus of the polycarbonate system with the addition of 2% weight fraction of oxidized single-walled nanotube fillers. We show that the increase in damping is derived from frictional sliding at the nanotube-polymer interfaces. The nanoscale dimensions of the tubes not only result in large interfacial contact area, thereby generating high damping efficiency, but also enable seamless integration of the filler materials into the composite structure.

  2. Formation of alumina features and cadmium chalcogenide coatings of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Loscutova, Ryan

    Acetate- and methoxy(ethoxyethoxy)acetate-functionalized alumina nanoparticles (A-alumoxane and MEEA-alumoxane, respectively) have been investigated as processable, water soluble precursors to 3-dimensional (3D) ceramic features. The ceramic features can be formed by slip-casting aqueous solutions of the alumoxanes into polydimethylsiloxane molds, into which negative images of the desired features are molded. The ability to form features in the range from 50 to 450 mum in width and approximately 70 mum in depth have been investigated. The formation of the 'green body' upon drying of the alumoxane solution and its sintering to ceramic have been studied with regard to shrinkage and cracking. Physical mixtures of the two alumoxanes were investigated to determine optimum conditions for the controlled fabrication of ceramic features. Doping of MEEA-alumoxanes with metals is known to form mixed-metal phases of alumina, and the ability to form the corresponding aluminate ceramic was examined. Green body and ceramic samples were characterized by SEM, XRD, BET, and Vickers hardness measurements. Single-walled carbon nanotubes (SWNTs) and cadmium chalcogenides (CdE) are two classes of materials that have been extensively researched for applications in optoelectronics-based devices. The ability to use liquid-phase deposition (LPD) to create CdE-SWNT composites and CdE-SWNT thin coatings has been investigated in both organic and aqueous solvent systems. Raman spectroscopy has been performed on CdE-SWNT coating baths during the deposition process, to examine the effects of the combination of these two materials on the previously characterized fluorescence bands resulting from individually encased semiconducting nanotubes in micelles. Liquid-phase deposition of silica has been previously been shown to be seeded by the presence of fullerenols in solution under acidic conditions. The applicability of this mechanism towards LPD of CdS under basic conditions has been examined.

  3. Control of the Diameter and Chiral Angle Distributions during Production of Single-wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Nikolaev, Pavel; Holmes, William; Sosa, Edward; Boul, Peter; Arepalli, Sivaram; Yowell, Leonard

    2008-01-01

    Many applications of single wall carbon nanotubes (SWCNT), especially in microelectronics, will benefit from use of certain (n,m) nanotube types (metallic, small gap semiconductor, etc.). However, as produced SWCNT samples are polydispersed, with many (n,m) types present and typical approximate 1:2 metal/semiconductor ratio. It has been recognized that production of SWCNTs with narrow 'tube type populations' is beneficial for their use in applications, as well as for the subsequent sorting efforts. In the present work, SWCNTs were produced by a pulsed laser vaporization (PLV) technique. The nanotube type populations were studied with respect to the production temperature with two catalyst compositions: Co/Ni and Rh/Pd. The nanotube type populations were measured via photoluminescence, UV-Vis-NIR absorption and Raman spectroscopy. It was found that in the case of Co/Ni catalyst, decreased production temperature leads to smaller average diameter, exceptionally narrow diameter distribution, and strong preference toward (8,7) nanotubes. The other nanotubes present are distributed evenly in the 7-30 deg chiral angle range. In the case of Rh/Pd catalyst, a decrease in the temperature leads to a small decrease in the average diameter, with the chiral angle distribution skewed towards 30 o and a preference toward (7,6), (8,6) and (8,7) nanotubes. However, the diameter distribution remains rather broad. These results demonstrate that PLV production technique can provide at least partial control over the nanotube (n,m) populations. In addition, these results have implications for the understanding the nanotube nucleation mechanism in the laser oven.

  4. Electronic States of Alkali or Halogen Doped Single-walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ogata, Hironori; Kuno, Shogo; Saito, Yahachi

    2001-03-01

    Electronic states of alkali-metal or halogen doped Single-walled Carbon Nanotube aggregates (SWNTs) were studied by both ^13C-NMR and Raman spectroscopy. The effect of opening the ends of SWNTs on the intercalation level and the evolution of electronic states were also studied. Doping of alkali metals was performed for both pristine SWNTs(capped) and open-ended sample after heat treatment(uncapped) by two-bulb method, while doping of Br2 was for both samples by measureing the adsorption isotherm of Br2 in-situ to controll the doping level and obtain the information on the composition of the doped samples. Raman scattering spectra of the tangential modes were observed to downshift for K or Rb doped sample or upshift for Br2 doped sample by opening the ends of SWNTs. This result suggests that opening can achieve higher doping levels because dopants are also inside the tube space. Recovery of ^13C-magnetization for pristine SWNTs was found to be able to fit with a double-exponential function: approximately one-third of the ^13C-nuclear spins relaxes much faster than the other two-thirds. On the other hand, single exponential-like curve fitting could be reproduced the data points of ^13C-magnetization curve for both doped SWNTs samples. Furthermore, temperature dependence of ^13C-nuclear spin-lattice relaxation time for all doped samples found to follow a Korringa-like behavior in the temperature region between 5 K and 100 K. Details of the relationship between the compositions and the electronic states for both doner and accepter doped samples will be discussed.

  5. Simultaneous Synthesis of Single-walled Carbon Nanotubes and Graphene in a Magnetically-enhanced Arc Plasma

    PubMed Central

    Li, Jian; Shashurin, Alexey; Kundrapu, Madhusudhan; Keidar, Michael

    2012-01-01

    Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices1-4. Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT 5, narrow the diameter distribution of metallic catalyst particles and carbon nanotubes 6, and change the ratio of metallic and semiconducting carbon nanotubes 7, as well as lead to graphene synthesis 8. Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the arc conditions. PMID:22330847

  6. Simultaneous synthesis of single-walled carbon nanotubes and graphene in a magnetically-enhanced arc plasma.

    PubMed

    Li, Jian; Shashurin, Alexey; Kundrapu, Madhusudhan; Keidar, Michael

    2012-01-01

    Carbon nanostructures such as single-walled carbon nanotubes (SWCNT) and graphene attract a deluge of interest of scholars nowadays due to their very promising application for molecular sensors, field effect transistor and super thin and flexible electronic devices(1-4). Anodic arc discharge supported by the erosion of the anode material is one of the most practical and efficient methods, which can provide specific non-equilibrium processes and a high influx of carbon material to the developing structures at relatively higher temperature, and consequently the as-synthesized products have few structural defects and better crystallinity. To further improve the controllability and flexibility of the synthesis of carbon nanostructures in arc discharge, magnetic fields can be applied during the synthesis process according to the strong magnetic responses of arc plasmas. It was demonstrated that the magnetically-enhanced arc discharge can increase the average length of SWCNT (5), narrow the diameter distribution of metallic catalyst particles and carbon nanotubes (6), and change the ratio of metallic and semiconducting carbon nanotubes (7), as well as lead to graphene synthesis (8). Furthermore, it is worthwhile to remark that when we introduce a non-uniform magnetic field with the component normal to the current in arc, the Lorentz force along the J×B direction can generate the plasmas jet and make effective delivery of carbon ion particles and heat flux to samples. As a result, large-scale graphene flakes and high-purity single-walled carbon nanotubes were simultaneously generated by such new magnetically-enhanced anodic arc method. Arc imaging, scanning electron microscope (SEM), transmission electron microscope (TEM) and Raman spectroscopy were employed to analyze the characterization of carbon nanostructures. These findings indicate a wide spectrum of opportunities to manipulate with the properties of nanostructures produced in plasmas by means of controlling the arc conditions. PMID:22330847

  7. Molecular templated assembly of single-walled carbon nanotubes and their electrical characterization

    NASA Astrophysics Data System (ADS)

    Rao, Saleem Ghaffar

    We have developed a method for rapid, massively-parallel assembly and alignment of single walled carbon nanotubes (SWCNT) on a solid-state substrate. The results opened the possibility of production of SWCNT-based integrated circuits. In this strategy called "surface-templated assembly", SWCNTs from a solvent suspension are directed toward molecular patterns on the substrate and self-assemble onto specific locations with precise orientations. Since the method does not rely on any external forces or slow serial patterning techniques, it can be done in a completely parallel manner and is suitable for high-throughput applications. We have demonstrated the assembly of millions of individual SWCNTs and SWCNT-based circuit structures over 1cm2 size sample surface in a matter of minutes. The experiments were first carried out on patterned hybrid self-assembled monolayers (SAM) of polar molecules and nonpolar molecules. Polar molecules were patterned with SAM of nonpolar molecules, such as 1-octadecanethiol (ODT). The molecular templated substrates were used successfully to assemble SWCNT. Polar molecules with different tail groups, both positive and negative, were shown to be effective, in contrast to the prediction that only molecules with positive tails can be used to align SWCNTs. Furthermore, we observed that the interaction between SWCNTs and metal surfaces also can be used to align SWCNTs using only nonpolar molecular patterns. A series of controlled experiments showed that the number density of aligned SWCNTs depends upon the nature of polar molecules and metal surfaces. We have also assembled SWCNTs on patterns of Au nanoparticles. Au nanoparticle patterns were created on composite SAM templates of nonpolar (ODT) and dithiol (octanedithiol) molecules through self-assembly of Au nanopaticles onto the dithiol region. On such templates, we found very strong adhesion of SWCNTs on Au nanoparticles and no adhesion on the nonpolar regions. We also examined systematically the adhesion of SWCNT on nonpolar molecules with varying coverage of Au. We found no SWCNT attachment when Au coverage is significant but incomplete. Strong adhesion of SWCNT is observed only when the coverage of nonpolar regions by Au is almost complete. These results indicates that nonpolar molecules like ODT play an active role in the alignment of SWCNT on ODT/metal and polar SAMs/ODT hybrid structures. Metal nanoparticle patterns on SAM can also be created via simple metal deposition. With the deposition of a thin metal (Au, Ti, Cr, etc.) film, cluster formation was observed over microscale SAM of nonpolar molecules while for polar molecule patterns of comparable size no cluster formation was observed. (Abstract shortened by UMI.)

  8. Carbohydrate conjugation through microwave-assisted functionalization of single-walled carbon nanotubes using perfluorophenyl azides.

    PubMed

    Kong, Na; Shimpi, Manishkumar R; Ramstrm, Olof; Yan, Mingdi

    2015-03-20

    Carbohydrate-functionalized single-walled carbon nanotubes (SWNTs) were synthesized using microwave-assisted reaction of perfluorophenyl azide with the nanotubes. The results showed that microwave radiation provides a rapid and effective means to covalently attach carbohydrates to SWNTs, producing carbohydrate-SWNT conjugates for biorecognition. The carbohydrate-functionalized SWNTs were furthermore shown to interact specifically with cognate carbohydrate-specific proteins (lectins), resulting in predicted recognition patterns. The carbohydrate-presenting SWNTs constitute a new platform for sensitive protein- or cell recognition, which pave the way for glycoconjugated carbon nanomaterials in biorecognition applications. PMID:25746392

  9. Structure of single-wall carbon nanotubes purified and cut using polymer

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Yudasaka, M.; Koshio, A.; Jabs, C.; Ichihashi, T.; Iijima, S.

    2002-01-01

    Following on from our previous report that a monochlorobenzene solution of polymethylmethacrylate is useful for purifying and cutting single-wall carbon nanotubes (SWNTs) and thinning SWNT bundles, we show in this report that polymer and residual amorphous carbon can be removed by burning in oxygen gas. The SWNTs thus obtained had many holes (giving them a worm-eaten look) and were thermally unstable. Such severe damage caused by oxidation is unusual for SWNTs; we think that they were chemically damaged during ultrasonication in the monochlorobenzene solution of polymethylmethacrylate.

  10. The effect of imposed temperature difference on thermal conductivity in armchair single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Mehri, Ali; Jamaati, Maryam; Moradi, Moslem

    2015-02-01

    Thermal conductivity of carbon nanotubes depends on various factors. The simulation of heat transport in armchair single-walled carbon nanotube by direct nonequilibrium molecular dynamics (NEMD) method employing Tersoff-Brenner potential indicates that, thermal conductivity decreases with increase in temperature difference between two ends of the tube. Increasing the imposed temperature differential along the tube axis, leads to domination of Umklapp scattering and impacts the heat transport. The applied temperature difference does not influence the behavior of thermal conductivity vs. tube length, diameter and temperature, but changes its value.

  11. Determination of the acidic sites of purified single-walled carbon nanotubes by acid base titration

    NASA Astrophysics Data System (ADS)

    Hu, H.; Bhowmik, P.; Zhao, B.; Hamon, M. A.; Itkis, M. E.; Haddon, R. C.

    2001-09-01

    We report the measurement of the acidic sites in three different samples of commercially available full-length purified single-walled carbon nanotubes (SWNTs) - as obtained from CarboLex (CLI), Carbon Solutions (CSI) and Tubes@Rice (TAR) - by simple acid-base titration methods. Titration of the purified SWNTs with NaOH and NaHCO 3 solutions was used to determine the total percentage of acidic sites and carboxylic acid groups, respectively. The total percentage of acidic sites in full length purified SWNTs from TAR, CLI and CSI are about 1-3%.

  12. Effective permittivity of single-walled carbon nanotube composites: Two-fluid model

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin; Zangeneh, Hamid Reza; Moghadam, Firoozeh Karimi

    2015-12-01

    We develop an effective medium theory to obtain effective permittivity of a composite of two-dimensional (2D) aligned single-walled carbon nanotubes. Electronic excitations on each nanotube surface are modeled by an infinitesimally thin layer of a 2D electron gas represented by two interacting fluids, which takes into account different nature of the ? and ? electrons. Calculations of both real and imaginary parts of the effective dielectric function of the system are presented, for different values of the filling factor and radius of carbon nanotubes.

  13. Translocation of Single-Stranded DNA Through Single-Walled Carbon Nanotubes

    SciTech Connect

    Liu, Haitao; He, Jin; Tang, Jinyao; Liu, Hao; Pang, Pei; Cao, Di; Krstic, Predrag S; Joseph, Sony nmn; Lindsay, Stuart; Nuckolls, Colin

    2009-01-01

    We report the fabrication of devices in which one single-walled carbon nanotube spans a barrier between two fluid reservoirs, enabling direct electrical measurement of ion transport through the tube. A fraction of the tubes pass anomalously high ionic currents. Electrophoretic transport of small single-stranded DNA oligomers through these tubes is marked by large transient increases in ion current and was confirmed by polymerase chain reaction analysis. Each current pulse contains about 10{sup 7} charges, an enormous amplification of the translocated charge. Carbon nanotubes simplify the construction of nanopores, permit new types of electrical measurements, and may open avenues for control of DNA translocation.

  14. Carbohydrate Conjugation through Microwave-Assisted Functionalization of Single-Walled Carbon Nanotubes Using Perfluorophenyl Azides

    PubMed Central

    Kong, Na; Shimpi, Manishkumar R.; Park, Jae Hyeung

    2015-01-01

    Carbohydrate-functionalized single-walled carbon nanotubes (SWNTs) were synthesized using microwave-assisted reaction of perfluorophenyl azide with the nanotubes. The results showed that microwave radiation provides a rapid and effective means to covalently attach carbohydrates to SWNTs, producing carbohydrate-SWNT conjugates for biorecognition. The carbohydrate-functionalized SWNTs were furthermore shown to interact specifically with cognate carbohydrate-specific proteins (lectins), resulting in predicted recognition patterns. The carbohydrate-presenting SWNTs constitute a new platform for sensitive protein- or cell recognition, which pave the way for glycoconjugated carbon nanomaterials in biorecognition applications. PMID:25746392

  15. The interaction of N 2 with active sites of a single-wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Xu, Yi-Jun; Li, Jun-Qian

    2005-09-01

    The adsorption of N 2 at the edge of a single-wall carbon nanotube (SWNT) has been investigated employing an ONIOM approach. It was found that N 2 can be chemisorbed at the edge site of zigzag SWNT surface and the N-N bond is activated. However, the adsorption at the edge site of armchair SWNT surface is rather weak. This can be attributed to the crucial effect of local edge carbon atoms arrangement of the defect SWNT surface with open tips. Furthermore, our results strongly reinforce the viewpoint from recent experimental observations and theoretical studies that SWNTs with open tips exhibit larger adsorption capacity than closed-ended SWNTs.

  16. Advances in NO2 sensing with individual single-walled carbon nanotube transistors

    PubMed Central

    Muoth, Matthias; Roman, Cosmin; Haluska, Miroslav; Hierold, Christofer

    2014-01-01

    Summary The charge carrier transport in carbon nanotubes is highly sensitive to certain molecules attached to their surface. This property has generated interest for their application in sensing gases, chemicals and biomolecules. With over a decade of research, a clearer picture of the interactions between the carbon nanotube and its surroundings has been achieved. In this review, we intend to summarize the current knowledge on this topic, focusing not only on the effect of adsorbates but also the effect of dielectric charge traps on the electrical transport in single-walled carbon nanotube transistors that are to be used in sensing applications. Recently, contact-passivated, open-channel individual single-walled carbon nanotube field-effect transistors have been shown to be operational at room temperature with ultra-low power consumption. Sensor recovery within minutes through UV illumination or self-heating has been shown. Improvements in fabrication processes aimed at reducing the impact of charge traps have reduced the hysteresis, drift and low-frequency noise in carbon nanotube transistors. While open challenges such as large-scale fabrication, selectivity tuning and noise reduction still remain, these results demonstrate considerable progress in transforming the promise of carbon nanotube properties into functional ultra-low power, highly sensitive gas sensors. PMID:25551046

  17. Seed crystals and catalyzed epitaxy of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Yuhuang

    This thesis demonstrates the continued growth of single-walled carbon nanotubes (SWNTs) from seeded SWNTs in a way analogous to epitaxy or cloning; that is, the SWNTs grow as a seamless extension to the existing seeded SWNTs and have the same diameter and chirality as those of the SWNT seeds. The experiments were carried out in three key steps, including: (1) preparing a macroscopic array of open-ended SWNTs; (2) reductively docking transition metals as a catalyst to the nanometer-sized open ends; and then (3) heating the whole up to 700--850°C in the presence of a carbon feedstock such as ethanol or ethylene. The resulting SWNT ropes inherit the diameters and chirality from the seeded SWNTs, as indicated by the closely matched frequencies of Raman radial breathing modes before and after the growth. As a control, only sparse nanotubes grew from closed-ended SWNTs, ruling out spontaneous nucleation as a dominating mechanism in our experiments. This experiment proved for the first time the growth of SWNTs can be separated from the nucleation step. The ability to separate the typically inefficient nucleation step from the growth of SWNTs and to restart the growth opens the possibility of amplifying SWNTs with only the desired (n, m). The success in the continued growth was enabled with the creation of macroscopic arrays of open-ended SWNTs from a neat SWNT fiber. A variety of techniques including cryo-microtoming and surface etching chemistry have been developed to produce a macroscopic (˜1200mum2), aligned, and clean---largely free of amorphous carbon, oxides, and metal residuals---SWNT substrate with open-ended SWNTs aligned along the fiber axis. Alternatively, the fiber was milled perpendicular to the fiber axis with a gallium focused ion beam to produce a planar, free-standing, ultra-thin, "bed-of-nails" SWNT membrane---a single layer of parallel SWNTs densely packed and aligned along the normal of the membrane.

  18. Carbon nanotunnels form from single-walled carbon nanotubes interacting with a diamond (100)-(2 X 1) surface.

    SciTech Connect

    Horner, D. A.; Sternberg, M.; Zapol, P.; Curtiss, L. A.

    2011-08-01

    A quantum chemical study of the interaction of (5,5), (7,7), (9,9) and (8,0) single-walled carbon nanotubes with a clean (100)-(2 x 1) diamond surface is reported. Stable structures with covalent bonds at the interface were found for carbon nanotubes oriented parallel or perpendicular to the dimer rows on the reconstructed (100) surface. The binding energy of the most stable (5,5) nanotube-diamond structure is 1.7 eV/{angstrom}, and is attributed to strong covalent bonds formed between the carbon nanotube and the diamond surface. The structure of the nanotube is distorted by adsorption on the surface such that it adopts a tunnel-like geometry. Two other nanotunnel geometries were found for the (5,5) nanotube, with binding energies of 1.39 and 1.09 eV/{angstrom}. In the most stable (5,5) nanotube-diamond structure the interaction between the nanotube and the diamond surface produces a 0.6 eV band gap near the Fermi level, but the metallic character of the nanotube is maintained in the two other, less strongly bound nanotunnel structures. No charge transfer occurs between the diamond surface and the nanotunnels in any of the three orientations. Binding energies decrease with increases in tube diameter, to the extent that one of the three nanotunnel structures is not formed by (9,9) carbon nanotubes.

  19. Dithiafulvenyl-grafted phenylene ethynylene polymers as selective and reversible dispersants for single-walled carbon nanotubes.

    PubMed

    Mulla, Karimulla; Liang, Shuai; Shaik, Haseena; Younes, Eyad A; Adronov, Alex; Zhao, Yuming

    2015-01-01

    Phenylene ethynylene-based ?-conjugated polymers grafted with dithiafulvenyl groups on their side chains were found to be efficient in dispersing single-walled carbon nanotubes in a selective and controllable way. PMID:25388522

  20. Modulation of energy/electron transfer in gold nanoclusters by single walled carbon nanotubes and further consequences

    NASA Astrophysics Data System (ADS)

    Das, Tarasankar; Maity, Arnab; Mondal, Somen; Purkayastha, Pradipta

    2015-04-01

    Semiconductor or metallic character in single-walled carbon nanotubes (SWCNTs) is developed because of their chirality and diameter. Depending upon the extent of these characters in a particular sample of SWCNT, various electronic and mechanical applications are formulated. In this work we used protein protected red emitting gold nanoclusters (AuNCs) to enhance the metallic character in SWCNTs through electron transfer induced by photonic excitation. The AuNCs have been synthesized following a known protocol that generates Au+ protected Au0 clusters. Normal and carboxylic acid functionalized SWCNTs were obtained commercially for usage in the experiments. The non-functionalized SWCNTs facilitate intersystem electron transfer while the functionalized ones defer the phenomenon, which, in turn, affects the metallic character in the nanotubes. Steady state and time resolved fluorescence spectroscopy prove the dynamics and electrochemistry supports the intersystem electron transfer process.

  1. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Reid, Obadiah G.; Blackburn, Jeffrey L.; Rumbles, Garry

    2015-11-01

    Strong quantum confinement and low dielectric screening impart single-walled carbon nanotubes with exciton-binding energies substantially exceeding kBT at room temperature. Despite these large binding energies, reported photoluminescence quantum yields are typically low and some studies suggest that photoexcitation of carbon nanotube excitonic transitions can produce free charge carriers. Here we report the direct measurement of long-lived free-carrier generation in chirality-pure, single-walled carbon nanotubes in a low dielectric solvent. Time-resolved microwave conductivity enables contactless and quantitative measurement of the real and imaginary photoconductance of individually suspended nanotubes. The conditions of the microwave conductivity measurement allow us to avoid the complications of most previous measurements of nanotube free-carrier generation, including tube-tube/tube-electrode contact, dielectric screening by nearby excitons and many-body interactions. Even at low photon fluence (approximately 0.05 excitons per μm length of tubes), we directly observe free carriers on excitation of the first and second carbon nanotube exciton transitions.

  2. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes

    PubMed Central

    Park, Jaehong; Reid, Obadiah G.; Blackburn, Jeffrey L.; Rumbles, Garry

    2015-01-01

    Strong quantum confinement and low dielectric screening impart single-walled carbon nanotubes with exciton-binding energies substantially exceeding kBT at room temperature. Despite these large binding energies, reported photoluminescence quantum yields are typically low and some studies suggest that photoexcitation of carbon nanotube excitonic transitions can produce free charge carriers. Here we report the direct measurement of long-lived free-carrier generation in chirality-pure, single-walled carbon nanotubes in a low dielectric solvent. Time-resolved microwave conductivity enables contactless and quantitative measurement of the real and imaginary photoconductance of individually suspended nanotubes. The conditions of the microwave conductivity measurement allow us to avoid the complications of most previous measurements of nanotube free-carrier generation, including tube–tube/tube–electrode contact, dielectric screening by nearby excitons and many-body interactions. Even at low photon fluence (approximately 0.05 excitons per μm length of tubes), we directly observe free carriers on excitation of the first and second carbon nanotube exciton transitions. PMID:26531728

  3. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes.

    PubMed

    Park, Jaehong; Reid, Obadiah G; Blackburn, Jeffrey L; Rumbles, Garry

    2015-01-01

    Strong quantum confinement and low dielectric screening impart single-walled carbon nanotubes with exciton-binding energies substantially exceeding kBT at room temperature. Despite these large binding energies, reported photoluminescence quantum yields are typically low and some studies suggest that photoexcitation of carbon nanotube excitonic transitions can produce free charge carriers. Here we report the direct measurement of long-lived free-carrier generation in chirality-pure, single-walled carbon nanotubes in a low dielectric solvent. Time-resolved microwave conductivity enables contactless and quantitative measurement of the real and imaginary photoconductance of individually suspended nanotubes. The conditions of the microwave conductivity measurement allow us to avoid the complications of most previous measurements of nanotube free-carrier generation, including tube-tube/tube-electrode contact, dielectric screening by nearby excitons and many-body interactions. Even at low photon fluence (approximately 0.05 excitons per ?m length of tubes), we directly observe free carriers on excitation of the first and second carbon nanotube exciton transitions. PMID:26531728

  4. Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions

    NASA Astrophysics Data System (ADS)

    Huang, Limin; Cui, Xiaodong; Dukovic, Gordana; O'Brien, Stephen P.

    2004-11-01

    Very thin films of oriented and densely packed single-walled carbon nanotubes (SWNTs) can be self-assembled on substrates from surfactant sodium dodecyl sulfate (SDS-) coated SWNT suspensions at ambient conditions. The evaporation of water causes a concentration of the SDS-coated nanotubes above critical micelle concentrations for SDS, and it is believed that self-organization of the SDS molecules serves as a driving force for the oriented and dense assembly of the nanotubes. The high degree of alignment in the SWNT thin films was characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and polarized Raman spectroscopy.

  5. Thermoelectric properties of single-wall carbon nanotube films: Effects of diameter and wet environment

    NASA Astrophysics Data System (ADS)

    Hayashi, Daisuke; Ueda, Tomohiro; Nakai, Yusuke; Kyakuno, Haruka; Miyata, Yasumitsu; Yamamoto, Takahiro; Saito, Takeshi; Hata, Kenji; Maniwa, Yutaka

    2016-02-01

    The Seebeck coefficient S and the electrical resistivity ρ of single-wall carbon nanotube (SWCNT) films were investigated as a function of the SWCNT diameter and carrier concentration. The S and ρ significantly changed in humid environments through p-type carrier doping. Experiments, combined with theoretical simulations based on the non-equilibrium Green’s function theory, indicated that the power factor P can be increased threefold by the enrichment of semiconducting SWCNTs, but the nanotube diameter has little effect. The improvement of the film resistivity strongly enhances the film thermoelectric performance, manifested as increasing the value of P above 1200 µW/(m·K2).

  6. Midgap luminescence centers in single-wall carbon nanotubes created by ultraviolet illumination

    SciTech Connect

    Iakoubovskii, Konstantin; Minami, Nobutsugu; Kim, Yeji; Miyashita, Kanae; Kazaoui, Said; Nalini, Balakrishnan

    2006-10-23

    The authors report the effect of ultraviolet (UV) illumination on optical properties of single-wall carbon nanotubes (SWCNTs) isolated using various dispersants. It is demonstrated that even weak UV light ({approx}1 mW/cm{sup 2}) can irreversibly alter the SWCNT structure, thus resulting in the emergence of hitherto unknown, redshifted photoluminescence (PL) peaks with concomitant reduction in some of the original PL peaks. These UV-induced changes are characterized in detail and attributed to the creation of midgap PL centers.

  7. Molecular adsorption study of nicotine and caffeine on single-walled carbon nanotubes from first principles

    NASA Astrophysics Data System (ADS)

    Lee, Hyung-June; Kim, Gunn; Kwon, Young-Kyun

    2013-08-01

    Using first-principles calculations, we investigate the electronic structures and binding properties of nicotine and caffeine adsorbed on single-walled carbon nanotubes to determine whether CNTs are appropriate for filtering or sensing nicotine and caffeine molecules. We find that caffeine adsorbs more strongly than nicotine. The different binding characteristics are discussed by analyzing the modification of the electronic structure of the molecule-adsorbed CNTs. We also calculate the quantum conductance of the CNTs in the presence of nicotine or caffeine adsorbates and demonstrate that the influence of caffeine is stronger than nicotine on the conductance of the host CNT.

  8. Interaction of nucleic acid bases with single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Shukla, M. K.; Dubey, Madan; Zakar, Eugene; Namburu, Raju; Czyznikowska, Zaneta; Leszczynski, Jerzy

    2009-10-01

    Theoretical investigations at the M05-2X DFT level employing the 6-31G(d), 6-31G(d,p), 6-31+G(d,p) and cc-pVDZ basis sets show that all nucleic acid bases (NABs), guanine, adenine, cytosine, thymine and uracil form stable stacking complexes with the zigzag (7,0) single-walled carbon nanotube (SWCNT). The values of the BSSE corrected interaction energy suggested that among the bases guanine forms the most stable complex. The other bases generate complexes of similar stability with the considered SWCNT that are less stable than the guanine-SWCNT dimer.

  9. Electronic modulations in a single wall carbon nanotube induced by the Au(111) surface reconstruction

    NASA Astrophysics Data System (ADS)

    Clair, Sylvain; Shin, Hyung-Joon; Kim, Yousoo; Kawai, Maki

    2015-02-01

    The structural and electronic structure of single wall carbon nanotubes adsorbed on Au(111) has been investigated by low-temperature scanning tunneling microscopy and spectroscopy. The nanotubes were dry deposited in situ in ultrahigh vacuum onto a perfectly clean substrate. In some cases, the native herringbone reconstruction of the Au(111) surface interacted directly with adsorbed nanotubes and produced long-range periodic oscillations in their local density of states, corresponding to charge transfer modulations along the tube axis. This effect, however, was observed not systematically for all tubes and only for semiconducting tubes.

  10. Ultrafast spectroscopy of midinfrared internal exciton transitions in separated single-walled carbon nanotubes.

    PubMed

    Wang, Jigang; Graham, Matt W; Ma, Yingzhong; Fleming, Graham R; Kaindl, Robert A

    2010-04-30

    We report a femtosecond midinfrared study of the broadband low-energy response of individually separated (6,5) and (7,5) single-walled carbon nanotubes. Strong photoinduced absorption is observed around 200 meV, whose transition energy, oscillator strength, resonant chirality enhancement, and dynamics manifest the observation of quasi-one-dimensional intraexcitonic transitions. A model of the nanotube 1s-2p cross section agrees well with the signal amplitudes. Our study further reveals saturation of the photoinduced absorption with increasing phase-space filling of the correlated e-h pairs. PMID:20482139

  11. Ultrafast Spectroscopy of Midinfrared Internal Exciton Transitions in Separated Single-Walled Carbon Nanotubes

    SciTech Connect

    Ma, Yingzhong; Wang, Jigang; Graham, Matt; Fleming, Graham; Kaindl, Robert

    2010-01-01

    We report a femtosecond midinfrared study of the broadband low-energy response of individually separated (6,5) and (7,5) single-walled carbon nanotubes. Strong photoinduced absorption is observed around 200 meV, whose transition energy, oscillator strength, resonant chirality enhancement, and dynamics manifest the observation of quasi-one-dimensional intraexcitonic transitions. A model of the nanotube 1s-2p cross section agrees well with the signal amplitudes. Our study further reveals saturation of the photoinduced absorption with increasing phase-space filling of the correlated e-h pairs.

  12. Raman study of DNA-wrapped single-wall carbon nanotube hybrids under various humidity conditions

    NASA Astrophysics Data System (ADS)

    Kawamoto, H.; Uchida, T.; Kojima, K.; Tachibana, M.

    2006-11-01

    DNA-wrapped single-wall carbon nanotubes (DNA-SWNT hybrids) under various humidity conditions were investigated by Raman spectroscopy. The G band, especially Breit-Wigner-Fano (BWF) line, in the Raman spectra of DNA-SWNT hybrids strongly depends on the relative humidity. In the high humidity range above 55%, the BWF coupling increases with decreasing humidity. On the contrary, in the low humidity range below 55%, the BWF coupling decreases with decreasing humidity. The origin of such humidity dependence is discussed in the light of the behavior of the absorption of the water vapor on DNA in air.

  13. The compressive buckling and size effect of single-walled carbon nanotubes

    SciTech Connect

    Sun, Yuzhou Zhu, Yanzhi; Li, Dongxia

    2015-03-10

    A higher-order Bernoulli-Euler beam model is developed to investigate the compressive buckling and size effect of single-walled carbon nanotubes by using a higher-order continuum relationship that has been previously proposed by the present authors. The second-order deformation gradients with respect to the axial direction are also considered, and the beam parameters are obtained by calculating the constitutive response around the circumference. The critical compressive force is analytically provided, and the size effect is studied by estimating the contribution of the higher-order terms.

  14. Temperature Dependence of the Thermal Conductivity of Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Osman, Mohamed A.; Srivastava, Deepak

    2000-01-01

    The thermal conductivity of several single wall carbon nanotubes (CNT) has been calculated over a temperature range of 100-500 K using molecular dynamics simulations with Tersoff-Brenner potential for C-C interactions. In all cases, starting from similar values at 100K, thermal conductivities show a peaking behavior before falling off at higher temperatures. The peak position shifts to higher temperatures for nanotubes of larger diameter, and no significant dependence on the tube chirality is observed. It is shown that this phenomenon is due to onset of Umklapp scattering, which shifts to higher temperatures for nanotubes of larger diameter.

  15. Diameter grouping in bulk samples of single-walled carbon nanotubes from optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Jost, O.; Gorbunov, A. A.; Pompe, W.; Pichler, T.; Friedlein, R.; Knupfer, M.; Reibold, M.; Bauer, H.-D.; Dunsch, L.; Golden, M. S.; Fink, J.

    1999-10-01

    The influence of the synthesis parameters on the mean characteristics of single-wall carbon nanotubes in soot produced by the laser vaporization of graphite has been analyzed using optical absorption spectroscopy. The abundance and mean diameter of the nanotubes were found to be most influenced by the furnace temperature and the cobalt/nickel catalyst mixing ratio. Via an analysis of the fine structure in the optical spectra, the existence of preferred nanotube diameters has been established and their related fractional abundance could be determined. The results are consistent with nanotubes located mainly around the armchair axis.

  16. Enhanced thermoelectric power of single-wall carbon nanotube film blended with ionic liquid

    NASA Astrophysics Data System (ADS)

    Horike, Shohei; Misaki, Masahiro; Koshiba, Yasuko; Saito, Takeshi; Ishida, Kenji

    2016-03-01

    We have investigated the thermoelectric power of single-wall carbon nanotubes (SWCNTs) with an ionic liquid (IL). The SWCNT/IL films showed simultaneous increase in electrical conductivity and the Seebeck coefficient compared with the pristine SWCNT. No thermoelectric power was observed for the IL. The X-ray diffraction pattern and impedance diagram showed a unique behavior with the concentration of IL, which implies that the interaction between the SWCNTs and IL enhances the thermoelectric power of the SWCNTs. As a result of the simultaneous increase in these parameters, the power factor exhibited a 10-fold increase.

  17. Kr and 4He Adsorption on Individual Suspended Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Hao-Chun; Vilches, Oscar E.; Wang, Zenghui; Fredrickson, Erik; Morse, Peter; Roy, Richard; Dzyubenko, Boris; Cobden, David H.

    2012-12-01

    We report mass and conductance adsorption isotherms of Kr on individual, single-walled, suspended carbon nanotubes for 53 K< T<90 K for several devices, and of 4He for 5 K< T<8 K for two devices. Different nanotubes, probably of different diameter and/or chirality, yield different phase diagrams, full monolayer coverages, and partial wetting characteristics for Kr. The 4He results show, for one of the devices, a greatly reduced heat of adsorption as compared to the well studied system of 4He on graphite.

  18. Optical and electronic characteristics of single walled carbon nanotubes and silicon nanoclusters by tetrahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Altan, Hakan; Huang, Feng; Federici, John F.; Lan, Aidong; Grebel, Haim

    2004-12-01

    We have conducted visible pump-THz (THzterahertz) probe measurements on single wall carbon nanotubes deposited on quartz substrates. Our results suggest that the photoexcited nanotubes exhibit localized transport due to Lorentz-type photoinduced localized states from 0.2 to 0.7 THz. Upon modeling the THz transmission through the photoexcited layer with an effective dielectric constant given by Maxwell-Garnett theory we found that the data are best fit by a broad Lorentz state at 0.5 THz. These experiments were repeated for ion-implanted, 3-4 nm Si nanoclusters in quartz for which a similar behavior was observed.

  19. All printed edge-triggered register using single walled carbon nanotube-based thin film transistor.

    PubMed

    Noh, Jinsoo; Jung, Minhun; Jung, Kyunghwan; Lee, Gwangyong; Lim, Soyeon; Kim, Daae; Subramanian, Vivek; Cho, Gyoujin

    2012-05-01

    We have studied the fabrication of Single Walled Carbon Nanotube (SWNT)-based Thin Film Transistors (TFTs) using Roll-to-Roll (R2R) gravure printer and inkjet printer on PET foils to show the possibility of printed electronics in point of mass production and low cost. In this paper, for realization of all printed multi-bits digital circuit, all printed positive-edge triggered master-slave D flip-flop (DFF) was fabricated on PET foil using printed SWNT TFTs. The printed DFF, consists of 8 NAND gates and 4 inverters, exhibit propagation delay of 75 ms at the input clock signal of 5 Hz. PMID:22852386

  20. Stable Dispersion of Single Wall Carbon Nanotubes in Polyimide: the Role of Noncovalent Interactions

    SciTech Connect

    Wise, Kristopher; Park, Cheol; Siochi, Emilie J.; Harrison, Joycelyn S.

    2004-06-21

    Single wall carbon nanotubes (SWNTs) have been dispersed in a nitrile functionalized polyimide matrix and the resulting composite shows excellent stability with respect to reaggregation of the nanotubes. This contrasts with the behavior of structurally similar polyimides in which the dispersion is only stable for short periods of time. Shifts in certain characteristic FTIR and Raman peaks which indicate a charge transfer interaction between the nanotubes and polymer matrix are observed. A simple model for charge transfer stabilization is presented and shown to be consistent with the experimental observations.

  1. Fine Structure of the Low-Frequency Raman Phonon Bands of Single-Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Iliev, M. N.; Litvinchuk, A. P.; Arepalli, S.; Nikolaev, P.; Scott, C. D.

    1999-01-01

    The Raman spectra of singled-wall carbon nanotubes (SWNT) produced by laser and are process were studied between 5 and 500 kappa. The line width vs. temperature dependence of the low-frequency Raman bands between 150 and 200/ cm deviates from that expected for phonon decay through phonon-phonon scattering mechanism. The experimental results and their analysis provided convincing evidence that each of the low-frequency Raman lines is a superposition of several narrower Raman lines corresponding to tubes of nearly the same diameter. The application of Raman spectroscopy to probe the distribution of SWNT by both diameter and chirality is discussed.

  2. Controlled growth of single-walled carbon nanotubes on patterned substrates.

    PubMed

    Zhou, Xiaozhu; Boey, Freddy; Zhang, Hua

    2011-11-01

    Single-walled carbon nanotubes (SWCNTs) have attracted great interest in the last two decades because of their unique electrical, optical, thermal, mechanical properties, etc. One major research field of SWCNTs is the controlled growth of them from the patterned catalysts on substrates, since the integration of SWCNTs into nanoelectronics and other devices requires well-organized SWCNT arrays. This tutorial review describes the commonly used lithographic techniques to pattern catalysts used for controlled growth of SWCNTs, specifically confined to the horizontal direction. Advantages and disadvantages of each method will be briefly discussed. Applications of the SWCNT arrays grown from the catalyst patterns will also be introduced. PMID:21713267

  3. Multiterminal junctions formed by heating ultrathin single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Meng, F. Y.; Shi, S. Q.; Xu, D. S.; Yang, R.

    2004-09-01

    Ultra-thin single-walled carbon nanotubes can be welded by heating to form molecular multi-terminal junctions at elevated temperatures without initially introducing structural defects such as vacancies and interstitials. This was demonstrated by classical molecular dynamics simulations with an empirical Brenner II potential and quantum mechanics calculation with PM3. The dynamic formation pathway of the junctions between crossed nanotube pairs was simulated. Junctions were established by forming intertube sp3 -related covalent bonds and breaking of bonds in original nanotubes. The final configuration of junctions depends on the chirality of the crossed tube pairs and reaction temperature. Junction formation from nanotubes with larger diameters requires higher temperature.

  4. Transparent conductive thin films of single-wall carbon nanotubes encapsulating dopant molecules

    NASA Astrophysics Data System (ADS)

    Kishi, Naoki; Miwa, Ikuma; Okazaki, Toshiya; Saito, Takeshi; Mizutani, Toshihisa; Tsuchiya, Hiroaki; Soga, Tetsuo; Jimbo, Takashi

    2012-02-01

    Transparent conductive thin films of single-wall carbon nanotubes (SWCNTs) doped with organic dopant molecules encapsulated inside the SWCNTs are reported. Doping with tetrafluorotetracyano-p-quinodimethane encapsulated within the SWCNTs improved the ratio of direct current to optical conductivity in the SWCNT thin films by a factor of about 1.8. Thermal stability of the improvement in electrical conductivity by encapsulation doping is investigated as a function of annealing temperature. We found that encapsulation doping provides stable conductivity enhancement in transparent thin films of SWCNTs compared to doping by adsorbed dopant molecules outside the SWCNTs.

  5. Pore structure of raw and purified HiPco single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cinke, Martin; Li, Jing; Chen, Bin; Cassell, Alan; Delzeit, Lance; Han, Jie; Meyyappan, M.

    2002-10-01

    Very high purity single-walled carbon nanotubes (SWNTs) were obtained from HiPco SWNT samples containing Fe particles by a two-step purification process. The raw and purified samples were characterized using high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and thermogravimetric analysis (TGA). The purified sample consists of ˜0.4% Fe and the process does not seem to introduce any additional defects. The N 2 adsorption isotherm studies at 77 K reveal that the total surface area of the purified sample increases to 1587 m 2/g from 567 m 2/g for the raw material, which is the highest value reported for SWNTs.

  6. Evaluation of the drag force on single-walled carbon nanotubes in rarefied gases.

    PubMed

    Wong, Ross Y M; Liu, Chong; Wang, Jun; Chao, Christopher Y H; Li, Zhigang

    2012-03-01

    The drag force on carbon nanotubes (CNTs) in dilute gases has been previously derived. However, the drag force formulae involve collision integrals, which are complex functions of the gas-CNT interaction potential. The unavailability of the collision integrals and interaction potential makes the application of the theoretical drag force laws impossible. In this work, we develop a potential model for the interaction between a gas and single-walled CNT. The collision integrals are then calculated based on the potential and empirical expressions are proposed. Finally, the drag force is computed directly through molecular dynamics simulations and compared with the theoretical predictions. PMID:22755052

  7. Toward the suppression of cellular toxicity from single-walled carbon nanotubes.

    PubMed

    Gao, Zhenghong; Varela, Juan A; Groc, Laurent; Lounis, Brahim; Cognet, Laurent

    2016-01-26

    In the multidisciplinary fields of nanobiology and nanomedicine, single-walled carbon nanotubes (SWCNTs) have shown great promise due to their unique morphological, physical and chemical properties. However, understanding and suppressing their cellular toxicity is a mandatory step before promoting their biomedical applications. In light of the flourishing recent literature, we provide here an extensive review on SWCNT cellular toxicity and an attempt to identify the key parameters to be considered in order to obtain SWCNT samples with minimal or no cellular toxicity. PMID:26678092

  8. Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

    SciTech Connect

    Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.

    2009-02-16

    Free standing films of single-wall carbon nanotubes were irradiated with energetic N{sup +} and C{sup 4+} ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C{sup 4+} irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes.

  9. Near-infrared fluorescent single walled carbon nanotube-chitosan composite: Interfacial strain transfer efficiency assessment

    NASA Astrophysics Data System (ADS)

    Mol Menamparambath, Mini; Arabale, Girish; Nikolaev, Pavel; Baik, Seunghyun; Arepalli, Sivaram

    2013-04-01

    Effective load transfer at the single walled carbon nanotube (SWCNT)-polymer interface is most desirable for mechanically reinforced polymer composites. Versatile layer-by-layer assembly technique achieved dispersion and uniform distribution of sodium carboxymethylcellulose (CMC)-solubilized SWCNTs within the polymer matrix. Electrostatic interaction between positively charged chitosan and negatively charged CMC facilitates design of an optically active biocompatible nanocomposite. Interfacial strain transfer efficiency of SWCNT-chitosan nanocomposite was assessed via SWCNT Raman and photoluminescence band shifts under uniaxial strain. Photoluminescence peak shift rates of individual semiconducting SWCNTs were investigated and compared with tight binding model calculations.

  10. Sidewall fluorination and hydrogenation of single-walled carbon nanotubes: a density functional theory study

    NASA Astrophysics Data System (ADS)

    Yu, Li-Mei; Zhao, Ji-Jun; Qiu, Jie-Shan; Hao, Ce; Wang, Hai

    2009-09-01

    The fluorination and hydrogenation reactions on (6, 6) and (10, 0) single-walled carbon nanotubes (SWCNTs) have been examined via computing the reaction energy for the chemisorption. The examined nanotubes have comparable lengths and diameters, with or without Stone-Wales defects on the sidewall. The two fluorine or hydrogen atoms are anchored to the external walls of the SWCNTs. The computed chemisorption energies of these virtual reactions reveal that the fluorination and hydrogenation of the nanotubes are moderately sensitive to the nanotube chirality and the sidewall topology, and the (10, 0) SWCNT with Stone-Wales defect can be easily fluorinated and hydrogenated.

  11. Temperature effects in the Raman spectra of bundled single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Meletov, K. P.; Krestinin, A. V.; Arvanitidis, J.; Christofilos, D.; Kourouklis, G. A.

    2009-08-01

    Bundled single-walled carbon nanotubes (SWCNTs) were studied as a function of temperature by means of Raman spectroscopy. The Raman modes exhibit negative temperature shift, reversible for the G band and partially irreversible for the radial breathing modes (RBMs). The softening of the latter is larger for larger diameter tubes, resulting in a better separation of the RBMs after high temperature treatment (HTT). The RBM residual softening vs. treatment temperature demonstrates threshold-like behavior. The temperature-induced changes may be associated with an irreversible weakening of the tube-tube (intertube) interaction possibly due to adsorbent removal or destruction of random intertube C-C bonds.

  12. Interstitial nanopore change of single wall carbon nanohorn assemblies with high temperature treatment

    NASA Astrophysics Data System (ADS)

    Ohba, T.; Omori, T.; Kanoh, H.; Yudasaka, M.; Iijima, S.; Kaneko, K.

    2004-05-01

    Single wall carbon nanohorns (SWNHs) were treated in vacuum at different temperatures of 473 to 1073 K. The nanostructural change due to the heat-treatment was studied by adsorption of N 2 at 77 K and H 2O at 303 K. The determined particle density showed that gas is not adsorbed in internal pores, but in interstitial pores. The high temperature treatment (HTT) in vacuo changed water adsorption, but it gave almost no influence on N 2 adsorption. The maximum nanopore volume from H 2O adsorption was observed at 673 K, indicating the interstitial nanopore change due to a local orientational change of SWNH particles.

  13. Nanobioconjugates of Candida antarctica lipase B and single-walled carbon nanotubes in biodiesel production.

    PubMed

    Bencze, Lszl Csaba; Bartha-Vri, Judith H; Katona, Gabriel; To?a, Monica Ioana; Paizs, Csaba; Irimie, Florin-Dan

    2016-01-01

    Carboxylated single-walled carbon nanotubes (SWCNTCOOH) were used as support for covalent immobilization of Candida antarctica lipase B (CaL-B) using linkers with different lengths. The obtained nanostructured biocatalysts with low diffusional limitation were tested in batch mode in the ethanolysis of the sunflower oil. SWCNTCOOH-CaL-B proved to be a highly efficient and stable biocatalyst in acetonitrile (83.4% conversion after 4h at 35C, retaining >90% of original activity after 10 cycles). PMID:26590760

  14. Influence of cysteine doping on photoluminescence intensity from semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Karachevtsev, V. A.

    2015-03-01

    Photoluminescence (PL) from semiconducting single-walled carbon nanotubes can be applied for detection of cysteine. It is shown that cysteine doping (from 10-8 to 10-3 M) into aqueous suspension of nanotubes with adsorbed DNA leads to increase of PL intensity. The PL intensity was enhanced by 27% at 10-3 M cysteine concentration in suspension. Most likely, the PL intensity increases due to the passivation of p-defects on the nanotube by the cysteine containing reactive thiol group. The effect of doping with other amino acids without this group (methionine, serine, aspartic acid, lysine, proline) on the PL intensity is essentially weaker.

  15. En route toward high performance electronics based on single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cao, Qing

    2014-06-01

    Single-walled carbon nanotubes (SWNT) could replace silicon in high-performance electronics with their exceptional electrical properties and intrinsic ultra-thin body. During the past five years, the major focus of this field is gradually shifting from proof-of-concept prototyping in academia to technology development in industry with emphasis on manufacturability and integration issues. Here we will review some most significant recent advances, with focus on assembling high purity semiconducting SWNTs into well aligned arrays. Future challenges and research opportunities in this field will also be discussed.

  16. Resonance Raman Optical Activity Spectra of Single-Walled Carbon Nanotube Enantiomers.

    PubMed

    Magg, Martin; Kadria-Vili, Yara; Oulevey, Patric; Weisman, R Bruce; Brgi, Thomas

    2016-01-21

    We present experimental Raman optical activity (ROA) spectra of enantio-enriched single-walled carbon nanotubes (SWCNTs). Enantiomeric samples of (6,5) SWCNTs were prepared using nonlinear density gradient ultracentrifugation (DGU). Upon excitation at 2.33 eV, remarkably strong G-band signals are obtained due to strong resonance enhancement with the E22(S) transition of (6,5) SWCNTs. Enhancement allows measuring the vibrational optical activity (VOA) at unusually low concentrations. The obtained results are in good agreement with the single-excited-state theory (SES). To our knowledge, these are the first experimental VOA spectra of SWCNTs. PMID:26709444

  17. Simulation and vibrational analysis of thermal oscillations of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pine, Polina; Yaish, Yuval E.; Adler, Joan

    2011-04-01

    The first four flexural thermal vibrational modes of single-walled carbon nanotubes (SWCNTs) of various lengths and radii were studied using atomistic molecular dynamics within the framework of the Brenner interatomic potential and Fourier analysis. These simulations provide clear evidence for the failure of simplistic analytic models to accurately extract resonance frequencies as the ratio R/L between the tube radius and the length increases. They are in excellent agreement with the Timoshenko beam model, which includes the effect of both rotary inertia and of shearing deformation. In addition, our results partially resolve Yakobsons paradox and provide an upper cutoff estimate for the effective SWCNT thickness.

  18. Inkjet printing of aligned single-walled carbon-nanotube thin films

    NASA Astrophysics Data System (ADS)

    Takagi, Yuki; Nobusa, Yuki; Gocho, Shota; Kudou, Hikaru; Yanagi, Kazuhiro; Kataura, Hiromichi; Takenobu, Taishi

    2013-04-01

    We report a method for the inkjet printing of aligned single-walled carbon-nanotube (SWCNT) films by combining inkjet technology with the strong wettability contrast between hydrophobic and hydrophilic areas based on the patterning of self-assembled monolayers. Both the drying process control using the strong wettability boundary and the coffee-stain effect strongly promote the aggregation of SWCNTs along the contact line of a SWCNT ink droplet, thereby demonstrating our achievement of inkjet-printed aligned SWCNT films. This method could open routes for developing high-performance and environmentally friendly SWCNT printed electronics.

  19. Thermal relaxation kinetics of defects in single-wall carbon nanotubes

    SciTech Connect

    Uchida, Takashi; Tachibana, Masaru; Kojima, Kenichi

    2007-04-15

    The defects in single-wall carbon nanotubes irradiated with a 248 nm pulsed excimer laser were studied using Raman spectroscopy. The thermal relaxation kinetics of the laser-induced defects was examined at sample temperatures from 296 to 698 K. Two relaxation processes are revealed; one is the fast process with an activation energy of 0.4 eV and the other is the slow process with an activation energy of 0.7 eV. These two processes can correspond to vacancy-interstitial recombination and vacancy migration along the tube axis, respectively.

  20. Interaction between single-walled carbon nanotubes and chromatography gel during size separation

    NASA Astrophysics Data System (ADS)

    Kim, Duckjong; Li, Cheng Ai; Choi, Kwang-Min

    2015-01-01

    In this study, we investigate the underlying mechanism by which chromatography can be used for the separation of single-walled carbon nanotubes (SWNTs) on the basis of their diameter or length, with a view to optimizing this popular process. Using the knowledge gained through diffusion ordered spectroscopy nuclear magnetic resonance (DOSY NMR) analysis and chromatographic experiments, we demonstrate the feasibility of separating SWNTs on the basis of diameter and length simultaneously within the one chromatography column. These findings are of relevance not just to the understanding of SWNT separation processes, but also to the industrial use of size-separated SWNTs.

  1. Determination of electronic states of individually dissolved ( n, m) single-walled carbon nanotubes in solution

    NASA Astrophysics Data System (ADS)

    Tanaka, Yasuhiko; Hirayama, Kohei; Niidome, Yasuro; Nakashima, Naotoshi

    2009-11-01

    Solution redox chemistry is useful to understand the chirality-dependent electronic properties of single-walled carbon nanotubes (SWNTs). We have found that the electron transfer reactions of sodium dithionite with SWNTs cause photoluminescence (PL) quenching processes of 14 individually dissolved SWNTs in an aqueous micellar solution. Based on the analysis using the Nernst equation for the PL change, we have determined the conduction band ( c1) levels of the 14 isolated SWNTs. We have also estimated the valence band ( ?1) levels as well as the Fermi levels of the SWNTs using the reported bandgap values of the corresponding isolated SWNTs.

  2. Thermal buckling analysis of bridged single walled carbon nanotubes using molecular structural mechanics

    NASA Astrophysics Data System (ADS)

    Firouz-Abadi, R. D.; Badri-Kouhi, E.

    2015-03-01

    This paper is concerned with the stability analysis of bridged single walled carbon nanotubes (SWCNT) under temperature changes. A molecular structural mechanics model is utilized to investigate the free vibration frequencies and thermal buckling of SWCNT. In comparison with most of the previous studies, a temperature-variable thermal-expansion-coefficient is used that is negative under a certain temperature. Also thermal variation of Young's modulus of the CNTs is considered. Several studies are performed to investigate the critical temperature change due to heating and cooling of SWCNTs with different chiralities and slenderness ratios and the stability boundaries are determined.

  3. Lithium-doped endohedral single-walled carbon nanotubes can arise during tube growth

    NASA Astrophysics Data System (ADS)

    Matsubara, E. Y.; Luengo, C. A.; Rosolen, J. M.

    2013-12-01

    This Letter shows that it is possible to dope single-walled carbon nanotubes (SWCNT) with lithium during SWCNT growth in an arc reactor. Depending on the oxygen and lithium concentrations in the reactor, one can obtain endohedral Li@SWCNT after rinsing the product in water. Oxygen plays a decisive role in Li insertion during SWCNT growth and in the diameter distribution of the samples. Doping the tubes with Li produces end-closed SWCNT bundles that afford more stable dispersion in water as compared with non-doped tubes.

  4. Finite length and solvent analysis effects on the squash mode of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    de Frin, C.; Quirke, N.; Zerulla, D.

    2013-10-01

    Nanotube diameters (d) are usually characterized using the radial breathing mode d-1; the squash mode frequency (f) however is predicted to vary as d-2. We demonstrate using the MM+ forcefield that for lengths <9 nm the symmetric squash mode (SSM) and asymmetric squash mode (ASM) ((10,0) SWNT (single wall carbon nanotubes)) are non-degenerate with ?f ? 55 cm-1. In solution, the SWNT-water interaction upshifts the ASM by 20 cm-1 and the SSM by 10 cm-1. Such asymmetries could be used to simultaneously characterize the length and diameter of short nanotubes for applications including nanoresonators and biomedical probes.

  5. Single wall carbon nanohorn as a drug carrier for controlled release

    NASA Astrophysics Data System (ADS)

    Xu, Jianxun; Yudasaka, Masako; Kouraba, Sachio; Sekido, Mitsuru; Yamamoto, Yuhei; Iijima, Sumio

    2008-08-01

    A single wall carbon nanohorn (SWNH) is a new kind of single-graphene tubules with a diameter of 2-5 nm and a length 40-50 nm. In this work, we used oxidized SWNH (SWNHox) to incorporate vancomycin hydrochloride (VCM) for its controlled release by taking advantage of the interactions between VCM and SWNHox. Phospholipid-poly(ethylene glycol) was used to modify the hydrophobic surface of SWNHox to improve its dispersion in aqueous systems. In the release study using this complex, a stable release of VCM was achieved for an extended period.

  6. Raman-active modes in homogeneous and inhomogeneous bundles of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sbai, K.; Rahmani, A.; Chadli, H.; Sauvajol, J.-L.

    2009-01-01

    In the present work, the non-resonant Raman-active modes are calculated for several diameters, chiralities and sizes for homogeneous and inhomogeneous bundles of single-walled carbon nanotubes (BWCNTs), using the spectral moment's method (SMM). Additional intense Raman-active modes are present in the breathing-like modes (BLM) spectra of these systems in comparison with a single fully symmetric A1g mode characteristic of isolated nanotubes (SWCNTs). The dependence of the wavenumber of these modes in terms of diameters, lengths and number of tubes was investigated. We found that, for a finite (in)homogeneous bundle, additional breathing-like modes appear as a specific signature.

  7. Electronic modulations in a single wall carbon nanotube induced by the Au(111) surface reconstruction

    SciTech Connect

    Clair, Sylvain; Shin, Hyung-Joon; Kim, Yousoo E-mail: maki@riken.jp; Kawai, Maki E-mail: maki@riken.jp

    2015-02-02

    The structural and electronic structure of single wall carbon nanotubes adsorbed on Au(111) has been investigated by low-temperature scanning tunneling microscopy and spectroscopy. The nanotubes were dry deposited in situ in ultrahigh vacuum onto a perfectly clean substrate. In some cases, the native herringbone reconstruction of the Au(111) surface interacted directly with adsorbed nanotubes and produced long-range periodic oscillations in their local density of states, corresponding to charge transfer modulations along the tube axis. This effect, however, was observed not systematically for all tubes and only for semiconducting tubes.

  8. On the charge transfer between single-walled carbon nanotubes and graphene

    SciTech Connect

    Rao, Rahul Pierce, Neal; Dasgupta, Archi

    2014-08-18

    It is important to understand the electronic interaction between single-walled carbon nanotubes (SWNTs) and graphene in order to use them efficiently in multifunctional hybrid devices. Here, we deposited SWNT bundles on graphene-covered copper and SiO{sub 2} substrates by chemical vapor deposition and investigated the charge transfer between them by Raman spectroscopy. Our results revealed that, on both copper and SiO{sub 2} substrates, graphene donates electrons to the SWNTs, resulting in p-type doped graphene and n-type doped SWNTs.

  9. Purification of single-wall carbon nanotubes by using ultrafine gold particles

    NASA Astrophysics Data System (ADS)

    Nihey, Fumiyuki; Mizoguti, Eiji; Yudasaka, Masako; Iijima, Sumio; Ichihashi, Toshinari; Nakamura, Kazuo

    2000-03-01

    The purification of single-wall carbon nanotubes (SWNTs) is needed to enable detailed characterization and some application of this material. We report a purification method utilizing ultrafine gold particles as catalysts to selectively oxidize carbonaceous impurities in SWNT soot. The ultrafine gold particles with a diameter of 20 nm were dispersed in the soot in combination with benzalkonium chloride as surfactant. Thermogravimetric analyses and electron microscopy observations revealed that oxidation occured at about 330^circC for carbonaceous impurities and at about 410^circC for SWNTs. This selective oxidation enabled us to purify SWNTs and make the quantitative analyses of SWNTs.

  10. Synthesis and chemical modification of single-walled carbon nanotubes and inorganic nanowires

    NASA Astrophysics Data System (ADS)

    Zheng, Bo

    This dissertation describes the study of single-walled carbon nanotubes (SWNTs), inorganic nanowires, and carbon aerogels. A novel catalyst of iron/molybdenum nanoparticles supported on alumina aerogel was developed for CVD synthesis of SWNTs. Using this catalyst, the yield of SWNTs was enhanced by at least three times compared to previously reported best results. The highest yield of SWNTs was achieved when the reaction temperature was between 850C and 900C with CO (1000 sccm) as feeding gas. A combination of acid wash and mild oxidation processes was used to purify tire raw SWNT product. Transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) indicated that the majority (>90%) of the purified product was SWNTs. The purified SWNTs were fluorinated by diluted fluorine gas at 250C. It was found that F-SWNTs could be recovered at an annealing temperature as low as 100C. The thermal recovery behaviors of metallic and semiconducting SWNTs were very similar at annealing temperature ?150C, as suggested by 2D UV-Vis-NIR correlation spectroscopy. F-SWNTs were also added into poly(ethylene oxide) (PEO) to form a PEO/F-SWNT composite. Mechanical properties measurements showed that the F-SWNTs significantly increased the strength of the resulting composite. A highly efficient method of SWNT synthesis on surfaces was also developed. It was found that the combination of carbon monoxide and hydrogen as a feeding gas greatly enhanced the surface growth of SWNTs. This method showed a large window of optimal HZ concentration (20%--80%) and synthesis temperature (800--900C), so the result was very reproducible. In the second project, two novel methods of preparing silicon oxide and tungsten oxide nanowires, respectively, were developed. By using a millimeter-sized liquid gallium ball as a metal solvent at 920--940C, bulk quantities of ultralong, uniform and well-aligned silicon oxide nanowires were synthesized. XPS and EDX indicated that the atomic ratio of Si to O in the nanowires was 1:1.5. On the other hand, isolated tungsten oxide nanowires were directly grown on tungsten tips and plates by a simple oxidation procedure at elevated temperature. These nanowire preparation techniques are simple, fast and economical. The third project focused on the fabrication of carbon aerogel. Resorcinol and furfural were polymerized in isopropanol using HCl as a catalyst and an organic gel was formed. This gel was dried under the supercritical condition of isopropanol, followed by carbonization at 900C. Morphology study, surface area and resistance measurements indicated that the obtained carbon aerogel had similar properties to the one prepared under the supercritical condition of carbon oxide, which is a much longer process and requires much more energy.

  11. Flux-Dependent Growth Kinetics and Diameter Selectivity in Single-Wall Carbon Nanotube Arrays

    SciTech Connect

    Geohegan, David B; Puretzky, Alexander A; Jackson, Jeremy Joseph; Rouleau, Christopher M; Eres, Gyula; More, Karren Leslie

    2011-01-01

    The nucleation and growth kinetics of single-wall carbon nanotubes in aligned arrays have been measured using fast pulses of acetylene and in situ optical diagnostics in conjunction with low pressure chemical vapor deposition (CVD). Increasing the acetylene partial pressure is shown to decrease nucleation times by three orders of magnitude, permitting aligned nanotube arrays to nucleate and grow to microns lengths within single gas pulses at high (up to 7 micron/s) peak growth rates and short ~ 0.5 s times.Low-frequency Raman scattering (> 10 cm-1) and transmission electron microscopy measurements show that increasing the feedstock flux in both continuous-CVD and pulsed-CVD shifts the product distribution to large single-wall carbon nanotube diameters > 2.5 nm. Sufficiently high acetylene partial pressures in pulsed-CVD appear to temporarily terminate the growth of the fastest- growing, small-diameter nanotubes by overcoating the more catalytically-active, smaller catalyst nanoparticles within the ensemble with non-nanotube carbon in agreement with a growth model. The results indicate that subsets of catalyst nanoparticle ensembles nucleate, grow, and terminate growth within different flux ranges according to their catalytic activity.

  12. Theoretical calculations of thermophysical properties of single-wall carbon nanotube bundles

    NASA Astrophysics Data System (ADS)

    Miao, Ting-Ting; Song, Meng-Xuan; Ma, Wei-Gang; Zhang, Xing

    2011-05-01

    Carbon nanotube bundles are promising thermal interfacial materials due to their excellent thermal and mechanical characteristics. In this study, the phonon dispersion relations and density of states of the single-wall carbon nanotube bundles are calculated by using the force constant model. The calculation results show that the inter-tube interaction leads to a significant frequency raise of the low frequency modes. To verify the applied calculation method, the specific heat of a single single-wall carbon nanotube is calculated first based on the obtained phonon dispersion relations and the results coincide well with the experimental data. Moreover, the specific heat of the bundles is calculated and exhibits a slight reduction at low temperatures in comparison with that of the single tube. The thermal conductivity of the bundles at low temperatures is calculated by using the ballistic transport model. The calculation results indicate that the inter-tube interaction, i.e. van der Waals interaction, hinders heat transfer and cannot be neglected at extremely low temperatures. For (5, 5) bundles, the relative difference of the thermal conductivity caused by ignoring inter-tube effect reaches the maximum value of 26% around 17 K, which indicates the significant inter-tube interaction effect on the thermal conductivity at low temperatures.

  13. Changing chirality during single-walled carbon nanotube growth: a reactive molecular dynamics/Monte Carlo study.

    PubMed

    Neyts, Erik C; van Duin, Adri C T; Bogaerts, Annemie

    2011-11-01

    The growth mechanism and chirality formation of a single-walled carbon nanotube (SWNT) on a surface-bound nickel nanocluster are investigated by hybrid reactive molecular dynamics/force-biased Monte Carlo simulations. The validity of the interatomic potential used, the so-called ReaxFF potential, for simulating catalytic SWNT growth is demonstrated. The SWNT growth process was found to be in agreement with previous studies and observed to proceed through a number of distinct steps, viz., the dissolution of carbon in the metallic particle, the surface segregation of carbon with the formation of aggregated carbon clusters on the surface, the formation of graphitic islands that grow into SWNT caps, and finally continued growth of the SWNT. Moreover, it is clearly illustrated in the present study that during the growth process, the carbon network is continuously restructured by a metal-mediated process, thereby healing many topological defects. It is also found that a cap can nucleate and disappear again, which was not observed in previous simulations. Encapsulation of the nanoparticle is observed to be prevented by the carbon network migrating as a whole over the cluster surface. Finally, for the first time, the chirality of the growing SWNT cap is observed to change from (11,0) over (9,3) to (7,7). It is demonstrated that this change in chirality is due to the metal-mediated restructuring process. PMID:21923157

  14. Ideal dipole approximation fails to predict electronic coupling between semiconducting single wall carbon nanotubes

    SciTech Connect

    Tretiak, Sergei

    2008-01-01

    Single-walled carbon nanotubes (SWNTs) are highly conjugated carbon tubes that are a few nanometers in diameter and can be up to millimeters in length. The excited electronic states of semiconductor-type SWNTs are quasi-1D excitons. It is known that these spatially-extended electronic excitations can migrate among SWNTs that are bundled together, thus quenching the fluorescence owing to the presence of metallic SWNTs. Recent advances in purification and isolation have enabled studies of electronic energy transfer (EET) between SWNTs and molecular chromophores. Here we examine the electronic coupling among SWNTs in order to understand EET involving SWNTs. There are two main difficulties that need to be addressed when studying SWNT EET. The first is to obtain the electronic coupling matrix element that promotes EET. The most common method to calculate the electronic coupling between two molecules is the point dipole approximation (PDA) method, where the electronic coupling is described as the Coulombic interaction between transition dipole moments of D and A. In this approximation, each molecule is represented by a single dipole located at the center of mass for each molecule. It is well known that the PDA method fails at small separations in molecular systems. Owing to the size of SWNTs compared to typical donor-acceptor separations, it is likely that the PDA method will fail. Even when using the PDA method, however, it is difficult to obtain the dipole strength of the transition because the radiative lifetime is obscured by thermal population of dark states in the exciton band. The second difficulty is that there are a few closely spaced states associated with the lowest bright exciton transition (E{sub 11}), and each of these states might act as energy donors or acceptors. Here we will focus on the first of these challenges: the evaluation of electronic couplings between SWNTs, overcoming the limitations of the PDA method. In the last decade, sophisticated quantum-mechanical approaches to this problem have been developed which range from the calculation of the actual interaction between quantum-mechanically derived transition densities to more efficient but approximated strategies such as the distributed transition monopole approximation (TMA) method. Both these approaches are able to capture the shape of the transition density throughout the donor and the acceptor molecules, which is the origin of the well-known breakdown of the PDA method at close separations in molecular systems. Given the dimensions of the systems under study in this work, we adopt the TMA method to compute electronic couplings between SWNTs.

  15. Chemical vapor deposition growth of single-walled carbon nanotubes with controlled structures for nanodevice applications.

    PubMed

    Chen, Yabin; Zhang, Jin

    2014-08-19

    Single-walled carbon nanotubes (SWNTs), a promising substitute to engineer prospective nanoelectronics, have attracted much attention because of their superb structures and physical properties. The unique properties of SWNTs rely sensitively on their specific chiral structures, including the diameters, chiral angles, and handedness. Furthermore, high-performance and integrated circuits essentially require SWNT samples with well-aligned arrays, of single conductive type and of pure chirality. Although much effort has been devoted to chemical vapor deposition (CVD) growth of SWNTs, their structure control, growth mechanism, and structural characterizations are still the primary obstacles for the fabrication and application of SWNT-based nanodevices. In this Account, we focus on our established CVD growth methodology to fulfill the requirements of nanodevice applications. A rational strategy was successfully exploited to construct complex architectures, selectively enrich semiconducting (s) or metallic (m) SWNTs, and control chirality. First, well-aligned and highly dense SWNT arrays are beneficial for nanodevice integration. For the directed growth mode, anisotropic interactions between the SWNTs and the crystallographic structure of substrate are crucial for their growth orientation. Just as crystals possess various symmetries, SWNTs with controlled geometries have the corresponding turning angles. Their complex architectures come from the synergetic effect of lattice and gas flow directed modes. Especially, the aligned orientations of SWNTs on graphite are chirality-selective, and their chiral angles, handedness, and (n,m) index have been conveniently and accurately determined. Second, UV irradiation and sodium dodecyl sulfate (SDS) washing-off methods have been explored to selectively remove m-SWNTs, leaving only s-SWNT arrays on the surface. Moreover, the UV-assisted technique takes the advantages of low cost and high efficiency and it directly produces a high ratio of s-SWNT arrays. We also designed a smart scotch tape to sort out the s-SWNTs and m-SWNTs from the as-grown mixture with 3-aminopropyl-triethoxysilane and triethoxyphenylsilane as glues, respectively. This is analogous to the mechanical exfoliation of a graphene sheet. Third, the obtained SWNT intramolecular junctions obtained by temperature-mediated CVD indicate that temperature can seriously affect the SWNT's chirality during its growth. Importantly, the cloning method can validate the chirality-controlled growth of SWNTs, and the cloning efficiency is significantly improved on a quartz surface. Well-aligned SWNT arrays with a high density and controlled structures are highly desirable for carbon nanoelectronics. We hope that the advanced methodology used here will promote their controlled preparation and provide insights into the growth mechanism of SWNTs. PMID:24926610

  16. Optical Spectroscopy of Individual Single-Walled Carbon Nanotubes by Rayleigh Scattering

    NASA Astrophysics Data System (ADS)

    Heinz, Tony

    2005-03-01

    Optical spectroscopy of individual nanostructures has greatly enhanced our understanding of nanoscale physics. For single-wall carbon nanotubes (SWNTs), there is a particularly strong motivation for such techniques, since the properties of SWNTs vary enormously with their precise physical structure. To date, both fluorescence and Raman scattering have shown the sensitivity to probe individual SWNTs. While fluorescence is an excellent experimental method, it is limited to semiconducting nanotubes displaying reasonable fluorescence efficiency. Raman scattering provides complementary information, but is weak and requires the identification of an electronic resonance to observe a signal. In this paper, we describe a new spectroscopic approach for investigating individual SWNTs and other nanostructures.^1 The method is based on Rayleigh scattering. The approach has the advantage of relying on the ubiquitous linear polarizability of the material, a response present for fluorescing and non-fluorescing species alike and displaying resonances at the transition energies of the system. This method has yielded high-quality spectra over the visible and near-IR spectral range from both individual semiconducting and metallic SWNTs. A key element in the experiment is use of supercontinuum radiation as the light source. This source, produced by passing femtosecond laser pulses through a microstructured fiber, provides radiation with the broad spectrum of a light bulb, but with the brightness of a laser. The experiment also employs SWNTs suspended across slit structures and viewed in a dark-field configuration to eliminate background scattering. Rayleigh scattering spectra of electronic transitions in semiconducting and metallic nanotubes will be presented, as will be results on the polarization dependence of the transitions. The method will be shown to be appropriate for the characterization of different spatial segments of a given SWNT and for the examination of tube-tube interactions in small bundles of SWNTs. This work is supported by the NSF NSEC at Columbia University, NYSTAR, and the DOE-BES. It was performed in collaboration with Feng Wang, Matthew Y. Sfeir, Limin Huang, Chia-Chin Chuang, James C. Hone, Stephen P. O'Brien,^ and Louis E. Brus. ^1 M. Y. Sfeir, F. Wang, L. Huang, et al., Science 306, 1540 (2004).

  17. Spectroelectrochemical properties of the single walled carbon nanotubes functionalized with polydiphenylamine doped with heteropolyanions

    SciTech Connect

    Smaranda, I.; Baibarac, M.; Baltog, I.; Mevellec, J.Y.; Lefrant, S.

    2013-01-15

    A combined chemical-electrochemical method was used for covalent functionalization of single-walled carbon nanotube (SWNT) with polydiphenylamine (PDPA) doped with heteropolyanions of H{sub 3}PMo{sub 12}O{sub 40}{center_dot}xH{sub 2}O. The functionalization process induces in Raman spectra of SWNTs the following changes: (i) an increase in relative intensity of the D band, accompanied a gradual up-shift of the G band in the case of the semiconducting tubes and a decrease in the relative intensity of band peaked at 1540 cm{sup -1} is remarked in the case of the metallic tubes; (ii) in the anti-Stokes Raman spectrum an increase in the relative intensity of Raman line of metallic tubes peaked at -1560 cm{sup -1} is remarked when the cycles number increases. The additional down-shift of the FTIR bands belonging to H{sub 3}PMo{sub 12}O{sub 40} heteropolyanions (at 881, 943 and 1055 cm{sup -1}) and PDPA (at 688, 736 and 1016 cm{sup -1}) originates in hindrance steric effects induced the covalent functionalization of SWNTs with polymer molecules. Using Raman scattering and FTIR spectroscopy we demonstrate that chemical polymerization of diphenylamine in the presence of H{sub 3}PMo{sub 12}O{sub 40}{center_dot}xH{sub 2}O and SWNTs results in a composite of the type blend based on PDPA in un-doped state and SWNTs doped with H{sub 3}PMo{sub 12}O{sub 40} heteropolyanions. - Graphical abstract: Stokes and anti-Stokes Raman spectra of the SWNTs before (a) and after electrochemical functionalization with PDPA doped with heteropolyanions by 5 (b) and 25 (c) voltammeter cycles. Highlights: Black-Right-Pointing-Pointer A chemical-electrochemical method is used to functionalization of SWNTs. Black-Right-Pointing-Pointer Functionalization of wall-side of tube is evidenced by anti-Stokes Raman studies. Black-Right-Pointing-Pointer FTIR spectra proves insertion of heteropolyanions in polydiphenylamine matrix. Black-Right-Pointing-Pointer FTIR spectra of polymer functionalized SWNTs reveal hindrance steric effects.

  18. Simultaneous shunt protection and back contact formation for CdTe solar cells with single wall carbon nanotube layers

    NASA Astrophysics Data System (ADS)

    Phillips, Adam B.; Khanal, Rajendra R.; Song, Zhaoning; Watthage, Suneth C.; Kormanyos, Kenneth R.; Heben, Michael J.

    2015-12-01

    Thin film photovoltaic (PV) devices and modules prepared by commercial processes can be severely compromised by through-device low resistance electrical pathways. The defects can be due to thin or missing semiconductor material, metal diffusion along grain boundaries, or areas containing diodes with low turn-on potentials. We report the use of single wall carbon nanotube (SWCNT) layers to enable both protection against these defects and back contact formation for CdTe PV devices. Samples prepared with a SWCNT back contact exhibited good efficiency and did not require shunt protection, while devices prepared without shunt protection using a standard metal back contact performed poorly. We describe the mechanism by which the SWCNT layer functions. In addition to avoiding the need for shunt protection by other means, the SWCNT film also provides a route to higher short circuit currents.

  19. Electric field dependence of photoluminescence from individual single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Yasukochi, S.; Murai, T.; Shimada, T.; Chiashi, S.; Maruyama, S.; Kato, Y. K.

    2011-03-01

    Using suspended single-walled carbon nanotubes, we investigate electric field effects on photoluminescence. Trenches are fabricated on Si O2 /Si substrates, and Pt is deposited for electrical contacts. Carbon nanotubes are grown by patterned chemical vapor deposition. These devices operate as back-gate field effect transistors, allowing application of electric fields on as-grown ultraclean nanotubes. Individual suspended carbon nanotubes are identified by taking photoluminescence images using a home-built laser-scanning confocal microscope. After determining the chirality by photoluminescence excitation spectra, we measure gate voltage dependence of photoluminescence. We observe quenching of photoluminescence intensity and shifts of emission wavelength as gate voltages are applied. This work is supported by KAKENHI, Mizuho Foundation for the Promotion of Sciences, Research Foundation for Opto-Science and Technology, TEPCO Research Foundation, SCAT, SCOPE, and Photon Frontier Network Program of MEXT, Japan.

  20. Single-Walled Carbon Nanotubes Functionalized with Carboxylic Acid for Fabricating Polymeric Composite Microstructures.

    PubMed

    Otuka, Adriano Jos Galvani; Tribuzi, Vinicius; Cardoso, Marcos Roberto; de Almeida, Gustavo Foresto Brito; Zanatta, Antonio Ricardo; Corra, Daniel Souza; Mendona, Cleber Renato

    2015-12-01

    Carbon nanotube composites are promising materials for mechanical and electrical applications. However, methodologies to incorporate carbon nanotubes in polymeric matrices are on high demand, especially for fabricating devices in the micro-nanoscale. In this paper we show the fabrication of 3D polymeric microstructures with functionalized single-walled carbon nanotubes (SWCNT), by means of two-photon polymerization (2PP). We used a range of SWCNT concentrations (0.01-1 wt%) in the resin to fabricate the composite material. Scanning electron microscopy images show the fabricated microstructures surface quality. Raman spectroscopy was used to confirm the presence and evaluate the distribution of SWCNT in the microstructures. Atomic force microscopy was used to evaluate the mechanical properties of the fabricated microstructures. PMID:26682414

  1. Synthesis of single-walled carbon nanotubes by chemical vapor deposition using sodium chloride support

    NASA Astrophysics Data System (ADS)

    Teong Ooi, Jeremy Hor; Liu, Wei-Wen; Thota, Venugopal; Rahman Mohamed, Abdul; Chai, Siang-Piao

    2011-02-01

    Bundled single-walled carbon nanotubes (SWCNTs) together with multi-walled carbon nanotubes (MWCNTs) were directly grown on a water-soluble support catalyst that was prepared via sublimation of ferrocene on sodium chloride. The synthesis of nanotubes was carried out at a growth temperature of 700 C in a combined methane and nitrogen environment of 1:1 volumetric ratio at a total flowrate of 80 ml/min for 1 h in a vertical reactor. Characterization techniques such as scanning electron microscope, transmission electron microscope, thermogravimetric analysis, and Raman spectroscopy were employed to study the carbon deposits. Transmission electron microscope shows the presence of SWCNTs with an average diameter of ca. 1.18 nm on the catalyst. The radial breathing mode (RBM) of Raman for shifts below 350 cm -1 further confirmed the presence of SWCNTs and the diameters were calculated to be 0.93, 1.36, 1.5 and 1.85 nm.

  2. XPS Protocol for the Characterization of Pristine and Functionalized Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Sosa, E. D.; Allada, R.; Huffman, C. B.; Arepalli, S.

    2009-01-01

    Recent interest in developing new applications for carbon nanotubes (CNT) has fueled the need to use accurate macroscopic and nanoscopic techniques to characterize and understand their chemistry. X-ray photoelectron spectroscopy (XPS) has proved to be a useful analytical tool for nanoscale surface characterization of materials including carbon nanotubes. Recent nanotechnology research at NASA Johnson Space Center (NASA-JSC) helped to establish a characterization protocol for quality assessment for single wall carbon nanotubes (SWCNTs). Here, a review of some of the major factors of the XPS technique that can influence the quality of analytical data, suggestions for methods to maximize the quality of data obtained by XPS, and the development of a protocol for XPS characterization as a complementary technique for analyzing the purity and surface characteristics of SWCNTs is presented. The XPS protocol is then applied to a number of experiments including impurity analysis and the study of chemical modifications for SWCNTs.

  3. Ultra-sensitive analysis of a cantilevered single-walled carbon nanocone-based mass detector.

    PubMed

    Yan, J W; Liew, K M; He, L H

    2013-03-29

    The ultra-sensitivity of mass detectors using individual cantilevered single-walled carbon nanocone (SWCNC) resonators is first investigated. A higher-order gradient theory, derived at the atomic level, is applied for modeling SWCNC resonators. Numerical simulations using a mesh-free computational framework based on moving Kriging interpolation are conducted to investigate the mass sensitivity of cantilevered SWCNC resonators with extra mass loading as well as with equivalent single-walled carbon nanotube (SWCNT) resonators. Comparison of the magnitude of resonant frequency shifts, the key criterion for mass sensitivity, of these two kinds of resonators demonstrates a far higher mass sensitivity for SWCNC resonators than for SWCNT resonators, thus suggesting a new method for ultra-sensitive mass detection via SWCNC resonators. The dependence of the mass sensitivity of SWCNC resonators on height and top radii has been examined. A reduction in the height of SWCNC resonators gives rise to a considerable increase in mass sensitivity. The mass sensitivity of a 6nm high SWCNC resonator can even reach a level of 10(-22)g. It is noteworthy that the top radii of SWCNC resonators have a slight effect on frequency shifts. Another interesting observed phenomenon is that a deviation in the height of 19.2SWCNC resonators leads to little loss in precision of mass detection when the attached mass is smaller than 10(-20)g. This superior characteristic indicates that SWCNC-based mass detectors have great potential in practical applications. PMID:23459263

  4. On the characterization of the elastic properties of asymmetric single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ghadyani, Ghasem; Soufeiani, Leila; Öchsner, Andreas

    2016-02-01

    In order to characterize asymmetric single-walled carbon nanotubes, an algorithm has been developed based on numerical simulation to relate the physical geometry to the elastic properties of asymmetric single-walled carbon nanotubes (SWCNTs). A large number of finite element results for the stiffness of asymmetric SWCNTs has been used to develop a best surface fitting function to define the relationship between the geometry of SWCNTs and their stiffness. However, since the stiffness of asymmetric nanotubes depends upon the configuration parameters, n and m, it was impossible to define any diameter dependency. Based on the maximum reaction force concept and in order to account for the hidden mechanical behavior of asymmetric SWCNTs, the chiral factor (CF) has been employed in this study. The proposed CF converts any asymmetric geometry (n and m) into a value between 0 and 1. A group of the SWCNTs with the same applied boundary condition (n+m=30) and different range of the CF was also used for studying of the shear contribution. The chiral factor dependency, which is developed in this study, is applicable for characterising and selecting asymmetric SWCNTs in the design of advanced nanomaterials. Furthermore, the equation which is calculated in this study can be useful for finding the best criteria for selecting asymmetric SWCNTs.

  5. Selective uptake of single-walled carbon nanotubes by circulating monocytes for enhanced tumour delivery

    NASA Astrophysics Data System (ADS)

    Smith, Bryan Ronain; Ghosn, Eliver Eid Bou; Rallapalli, Harikrishna; Prescher, Jennifer A.; Larson, Timothy; Herzenberg, Leonore A.; Gambhir, Sanjiv Sam

    2014-06-01

    In cancer imaging, nanoparticle biodistribution is typically visualized in living subjects using `bulk' imaging modalities such as magnetic resonance imaging, computerized tomography and whole-body fluorescence. Accordingly, nanoparticle influx is observed only macroscopically, and the mechanisms by which they target cancer remain elusive. Nanoparticles are assumed to accumulate via several targeting mechanisms, particularly extravasation (leakage into tumour). Here, we show that, in addition to conventional nanoparticle-uptake mechanisms, single-walled carbon nanotubes are almost exclusively taken up by a single immune cell subset, Ly-6Chi monocytes (almost 100% uptake in Ly-6Chi monocytes, below 3% in all other circulating cells), and delivered to the tumour in mice. We also demonstrate that a targeting ligand (RGD) conjugated to nanotubes significantly enhances the number of single-walled carbon nanotube-loaded monocytes reaching the tumour (P < 0.001, day 7 post-injection). The remarkable selectivity of this tumour-targeting mechanism demonstrates an advanced immune-based delivery strategy for enhancing specific tumour delivery with substantial penetration.

  6. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    PubMed Central

    2011-01-01

    Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  7. Comparative Dynamics and Sequence Dependence of DNA and RNA Binding to Single Walled Carbon Nanotubes

    PubMed Central

    Landry, Markita P.; Vuković, Lela; Kruss, Sebastian; Bisker, Gili; Landry, Alexandra M.; Islam, Shahrin; Jain, Rishabh; Schulten, Klaus; Strano, Michael S.

    2015-01-01

    Noncovalent polymer-single walled carbon nanotube (SWCNT) conjugates have gained recent interest due to their prevalent use as electrochemical and optical sensors, SWCNT-based therapeutics, and for SWCNT separation. However, little is known about the effects of polymer-SWCNT molecular interactions on functional properties of these conjugates. In this work, we show that SWCNT complexed with related polynucleotide polymers (DNA, RNA) have dramatically different fluorescence stability. Surprisingly, we find a difference of nearly 2500-fold in fluorescence emission between the most fluorescently stable DNA-SWCNT complex, C30 DNA-SWCNT, compared to the least fluorescently stable complex, (AT)7A-(GU)7G DNA-RNA hybrid-SWCNT. We further reveal the existence of three regimes in which SWCNT fluorescence varies nonmonotonically with SWCNT concentration. We utilize molecular dynamics simulations to elucidate the conformation and atomic details of SWCNT-corona phase interactions. Our results show that variations in polynucleotide sequence or sugar backbone can lead to large changes in the conformational stability of the polymer SWCNT corona and the SWCNT optical response. Finally, we demonstrate the effect of the coronae on the response of a recently developed dopamine nanosensor, based on (GT)15 DNA- and (GU)15 RNA-SWCNT complexes. Our results clarify several features of the sequence dependence of corona phases produced by polynucleotides adsorbed to single walled carbon nanotubes, and the implications for molecular recognition in such phases. PMID:26005509

  8. Structural stability of transparent conducting films assembled from length purified single-wall carbon nanotubes

    SciTech Connect

    J. M. Harris; G. R. S. Iyer; D. O. Simien; J. A. Fagan; J. Y. Huh; J. Y. Chung; S. D. Hudson; J. Obrzut; J. F. Douglas; C. M. Stafford; E. K. Hobbie

    2011-01-01

    Single-wall carbon nanotube (SWCNT) films show significant promise for transparent electronics applications that demand mechanical flexibility, but durability remains an outstanding issue. In this work, thin membranes of length purified single-wall carbon nanotubes (SWCNTs) are uniaxially and isotropically compressed by depositing them on prestrained polymer substrates. Upon release of the strain, the topography, microstructure, and conductivity of the films are characterized using a combination of optical/fluorescence microscopy, light scattering, force microscopy, electron microscopy, and impedance spectroscopy. Above a critical surface mass density, films assembled from nanotubes of well-defined length exhibit a strongly nonlinear mechanical response. The measured strain dependence reveals a dramatic softening that occurs through an alignment of the SWCNTs normal to the direction of prestrain, which at small strains is also apparent as an anisotropic increase in sheet resistance along the same direction. At higher strains, the membrane conductivities increase due to a compression-induced restoration of conductive pathways. Our measurements reveal the fundamental mode of elasto-plastic deformation in these films and suggest how it might be suppressed.

  9. Adsorption kinetics of Escherichia coli and Staphylococcus aureus on single-walled carbon nanotube aggregates.

    PubMed

    Upadhyayula, Venkata K K; Deng, Shuguang; Mitchell, Martha C; Smith, Geoffrey B; Nair, Vinod K; Ghoshroy, Soumitra

    2008-01-01

    Batch adsorption studies to determine adsorption kinetics of Escherichia coli (E.coli) K12 and Staphylococcus aureus (S.aureus) SH 1000 bacterial cells on single-walled carbon nanotube aggregates were performed at two different initial concentrations. The diffusivity of E. coli cells in single-walled carbon nanotube aggregates obtained was 6.54 x 10(-9) and 8.98 x 10(-9) cm(2)/s, whereas that of S. aureus was between 1.00 x 10(-7) and 1.66 x 10(-7) cm(2)/s respectively. In addition to batch adsorption studies, electron microscopy studies were also conducted. The results suggest that diffusion kinetics of bacterial cells is concentration dependent as well as bacteria dependent. Diffusivity of S. aureus is two orders of magnitude greater than E. coli cells. This proves to be beneficial from an adsorption perspective where it is desired to filter microorganisms (water pretreatment and wastewater post treatment) and from nanotube biosensor perspective where it is desired to simultaneously capture and detect biothreat agents in a shorter span of time. PMID:18653952

  10. Single Walled Carbon Nanotubes Exhibit Dual-Phase Regulation to Exposed Arabidopsis Mesophyll Cells

    NASA Astrophysics Data System (ADS)

    Yuan, Hengguang; Hu, Shanglian; Huang, Peng; Song, Hua; Wang, Kan; Ruan, Jing; He, Rong; Cui, Daxiang

    2011-12-01

    Herein we are the first to report that single-walled carbon nanotubes (SWCNTs) exhibit dual-phase regulation to Arabidopsis mesophyll cells exposed to different concentration of SWCNTs. The mesophyll protoplasts were prepared by enzyme digestion, and incubated with 15, 25, 50, 100 μg/ml SWCNTs for 48 h, and then were observed by optical microscopy and transmission electron microscopy, the reactive oxygen species (ROS) generation was measured. Partial protoplasts were stained with propidium iodide and 4'-6- diamidino-2-phenylindole, partial protoplasts were incubated with fluorescein isothiocyanate-labeled SWCNTs, and observed by fluorescence microscopy. Results showed that SWCNTs could traverse both the plant cell wall and cell membrane, with less than or equal to 50 μg/ml in the culture medium, SWCNTs stimulated plant cells to grow out trichome clusters on their surface, with more than 50 μg/ml SWCNTs in the culture medium, SWCNTs exhibited obvious toxic effects to the protoplasts such as increasing generation of ROS, inducing changes of protoplast morphology, changing green leaves into yellow, and inducing protoplast cells' necrosis and apoptosis. In conclusion, single walled carbon nanotubes can get through Arabidopsis mesophyll cell wall and membrane, and exhibit dose-dependent dual-phase regulation to Arabidopsis mesophyll protoplasts such as low dose stimulating cell growth, and high dose inducing cells' ROS generation, necrosis or apoptosis.

  11. Functionalization of single-walled carbon nanotubes regulates their effect on hemostasis

    NASA Astrophysics Data System (ADS)

    Sokolov, A. V.; Aseychev, A. V.; Kostevich, V. A.; Gusev, A. A.; Gusev, S. A.; Vlasova, I. I.

    2011-04-01

    Applications of single-walled carbon nanotubes (SWNTs) in medical field imply the use of drug-coupled carbon nanotubes as well as carbon nanotubes functionalized with different chemical groups that change nanotube surface properties and interactions between nanotubes and cells. Covalent attachment of polyethylene glycol (PEG) to carboxylated single-walled carbon nanotubes (c-SWNT) is known to prevent the nanotubes from interaction with macrophages. Here we characterized nanotube's ability to stimulate coagulation processes in platelet-poor plasma (PPP), and evaluated the effect of SWNTs on platelet aggregation in platelet-rich plasma (PRP). Our study showed that PEG-SWNT did not affect the rate of clotting in PPP, while c-SWNT shortened the clot formation time five times compared to the control PPP. Since c-SWNT failed to accelerate coagulation in plasma lacking coagulation factor XI, it may be suggested that c-SWNT affects the contact activation pathway. In PRP, platelets responded to both SWNT types with irreversible aggregation, as evidenced by changes in the aggregate mean radius. However, the rate of aggregation induced by c-SWNT was two times higher than it was with PEG-SWNT. Cytological analysis also showed that c-SWNT was two times more efficient when compared to PEG-SWNT in aggregating platelets in PRP. Taken together, our results show that functionalization of nanoparticles can diminish their negative influence on blood cells. As seen from our data, modification of c-SWNT with PEG, when only a one percent of carbon atoms is bound to polymer (70 wt %), decreased the nanotube-induced coagulation in PRP and repelled the accelerating effect on the coagulation in PPP. Thus, when functionalized SWNTs are used for administration into bloodstream of laboratory animals, their possible pro-coagulant and pro-aggregating properties must be taken into account.

  12. Development of novel single-wall carbon nanotube epoxy composite ply actuators

    NASA Astrophysics Data System (ADS)

    Yun, Yeo-Heung; Shanov, Vesselin; Schulz, Mark J.; Narasimhadevara, Suhasini; Subramaniam, Srinivas; Hurd, Douglas; Boerio, F. J.

    2005-12-01

    This paper describes a carbon nanotube epoxy ply material that has electrochemical actuation properties. The material was formed by dispersing single-wall carbon nanotubes in a solvent and then solution casting a thin paper using a mold and vacuum oven. In order to take advantage of the high elastic modulus of carbon nanotubes for actuation, epoxy as a chemically inert polymer is considered. An epoxy layer was cast on the surface of the nanotube paper to make a two-layer ply. A wet electrochemical actuator was formed by placing the nanotube epoxy ply in a 2 M NaCl electrolyte solution. Electrochemical impedance spectroscopy and cyclic voltammetry were carried out to characterize the electrochemical properties of the actuator. The voltage-current relationship and power to drive the actuator material were also determined. Compared to previous single-wall carbon nanotube buckypaper tape actuators, which had poor adhesion between the nanotubes and tape, and other nanotube-thermal plastic polymer actuators, which could not provide high strength, the epoxy based actuator has a higher elastic modulus and strength, which will be useful for future structural applications. This demonstrates that a polymer layer can reinforce nanotube paper, which is an important step in building a new structural material that actuates. Further work is under way to develop a solid electrolyte to allow dry actuation. Finally, these actuator plies will be laminated to build a carbon nanocomposite material. This smart structural material will have potential applications that range from use in robotic surgical tools to use as structures that change shape.

  13. Optical and electrical studies of single walled carbon nanotubes for infrared sensing and photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Omari, Mones A.

    Carbon nanotubes are emerging as highly promising opto-electro-mechanical device components essential for the development of a variety of hybrid opto-electronic, electro-mechanical and bio-medical technologies on the nanoscale and have been a subject of continued research. In particular, single-walled carbon nanotubes are predicted to exhibit strong light absorption induced by photon-assisted electronic transitions, free carrier and plasmonic-based absorption. Single-walled carbon nanotubes have been confirmed to exhibit a strong photoconduction response in the infrared range, which can provide many new opportunities in engineering nano-photovoltaic and optoelectronic devices. At the same time, the use of strong chemical reagents has been long considered as one of the key processing steps for the separation and purification of single-walled carbon nanotube post-synthesis. In this work, optically-induced voltage in carbon nanotube bundles and thin-films configured as two-terminal resistive elements and operating as junctionless photo-cells in the infrared range as well as the time-dependent wet-processing of HiPCo nanotubes in phosphoric acid and its effect on the structural, transport, infrared light absorption, and photoconduction characteristics were studied. As the photo-voltage generated is found to appear only for asymmetric and off-contact illuminations, the effect is explained based on a photo-generated heat flow model. The engineered cell prototypes were found to yield electrical powers of 30 pW while demonstrating improved conversion efficiency under high-flux illumination. The cell is also shown to act as an uncooled infrared sensor, with its dark-to-photocurrent ratio improving as temperature increases. The wet-processing of HiPCo nanotubes was done for a nominal time intervals of 1, 2 and 3 hours. The treatment was found to be a two-step process that initially results in the removal and partial replacement of most pre-existing C-O, O-H and CHx groups with phosphorous oxy and carbonyl groups. According to the time dependent current-voltage measurements, the differential conductance, G, of the nanotubes varies with temperature given by G T? , with ? exhibiting a slight increase as a result of the treatment, attributed to a slight increase in the role of disorder. The nanotubes processed for three hours are also found to show an order of magnitude improvement in their photoconduction response time compared to untreated nanotubes, with their growth and decay characteristic time constants being in the sub-second range.

  14. Swift heavy ion induced modifications of single walled carbon nanotube thin films

    NASA Astrophysics Data System (ADS)

    Vishalli; Raina, K. K.; Avasthi, D. K.; Srivastava, Alok; Dharamvir, Keya

    2016-04-01

    Thin films of single walled carbon nanotubes (SWCNTs) were prepared by Langmuir-Blodgett method and irradiated with swift heavy ions, carbon and nickel each of energy 60 MeV. The ion beams have different electronic energy loss (Se) values and the samples were exposed to various irradiation doses. The irradiated films were characterized using Raman and optical absorption spectroscopy. Raman spectroscopy results indicate the competing processes of defect creation and healing (annealing) of SWCNTs at lower fluences, while at higher fluences defect creation or damage dominates. In UV-Vis-NIR spectroscopy we find that there is decrease in the intensity of characteristic peaks with every increasing fluence, indicating decrease in the optically active states with irradiation.

  15. Immobilizing shortened single-walled carbon nanotubes (SWNTs) on gold using a surface condensation method.

    PubMed

    Nan, Xiaolin; Gu, Zhennan; Liu, Zhongfan

    2002-01-15

    We propose a surface condensation method for assembling single-walled carbon nanotubes (SWNTs) on gold. The as-prepared long and randomly tangled SWNTs were cut into short pipes by chemical oxidation, allowing the nanotubes to be terminated by carboxyl functionalities. A surface condensation reaction was then performed by immersing an amino self-assembled monolayer (SAM)-modified gold substrate into the dimethylformamide suspension of carboxylic nanotubes with the aid of dicyclohexylcarbodiimide condensation agent. Raman spectroscopy and atomic force microscopy (AFM) results show that a highly aligned assembly of SWNTs has been formed on gold, with the nanotubes standing on the surface stable enough for a long ultrasonication. In combination with the microcontact printing (muCP) technique, we have fabricated patterned nanotube assemblies using this surface condensation method. Moreover, we found that the "giant" carbon nanotubes tend to form bundles on an amino-terminating surface, likely following a nucleation-growth model. PMID:16290365

  16. Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature

    NASA Astrophysics Data System (ADS)

    Endo, Takumi; Ishi-Hayase, Junko; Maki, Hideyuki

    2015-03-01

    We investigated the photoluminescence of individual air-suspended single-walled carbon nanotubes (SWNTs) from 6 to 300 K. Time-resolved and antibunching measurements over the telecommunication wavelength range were performed using a superconducting single-photon detector. We detected moderate temperature independent antibunching behavior over the whole temperature range studied. To investigate the exciton dynamics, which is responsible for the antibunching behavior, we measured excitation-power and temperature dependence of the photoluminescence spectra and lifetime decay curves. These measurements suggested an exciton confinement effect that is likely caused by high-dielectric amorphous carbon surrounding the SWNTs. These results indicate that SWNTs are good candidates for light sources in quantum communication technologies operating in the telecommunication wavelength range and at room temperature.

  17. Interfacial Surfactant Ordering in Thin Films of SDS-Encapsulated Single-Walled Carbon Nanotubes.

    PubMed

    Das, Sushanta K; Sengupta, Sanghamitra; Velarde, Luis

    2016-01-21

    The molecular self-assembly of surfactants on the surface of single-walled carbon nanotubes (SWCNT) is currently a common strategy for the tuning of nanotube properties and the stabilization of carbon nanotube dispersions. Here, we report direct measurements of the degree of interfacial ordering for sodium dodecyl sulfate (SDS) surfactants adsorbed on colloidal, single-chirality enriched, SWCNTs within a solid film and investigate the dependence of surface alkyl chain order on the surfactant concentration in the precursor solution. The degree of order for the SWCNT-bound SDS molecules, is probed by vibrational sum frequency generation (VSFG) spectroscopy. We find concrete evidence for the presence of highly ordered surface structures at sufficiently high SDS concentrations, attributed here to cylindrical-like micelle assemblies with the SWCNT at the core. As the SDS concentration decreases, the interfacial order is found to decrease as well, generating a more disordered or random adsorption of surfactants on the nanotube surfaces. PMID:26730991

  18. Multi-Fractal Hierarchy of Single-Walled Carbon Nanotube Hydrophobic Coatings

    NASA Astrophysics Data System (ADS)

    de Nicola, Francesco; Castrucci, Paola; Scarselli, Manuela; Nanni, Francesca; Cacciotti, Ilaria; de Crescenzi, Maurizio

    2015-02-01

    A hierarchical structure is an assembly with a multi-scale morphology and with a large and accessible surface area. Recent advances in nanomaterial science have made increasingly possible the design of hierarchical surfaces with specific and tunable properties. Here, we report the fractal analysis of hierarchical single-walled carbon nanotube (SWCNT) films realized by a simple, rapid, reproducible, and inexpensive filtration process from an aqueous dispersion, then deposited by drytransfer printing method on several substrates, at room temperature. Furthermore, by varying the thickness of carbon nanotube random networks, it is possible tailoring their wettability due to capillary phenomena in the porous films. Moreover, in order to describe the wetting properties of such surfaces, we introduce a two-dimensional extension of the Wenzel-Cassie-Baxter theory. The hierarchical surface roughness of SWCNT coatings coupled with their exceptional and tunable optical and electrical properties provide an ideal hydrophobic composite surface for a new class of optoelectronic and nanofluidic devices.

  19. Raman studies on 0.4 nm diameter single wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Righi, A.; Matinaga, F. M.; Dantas, M. S. S.; Pimenta, M. A.; Mendes Filho, J.; Li, Z. M.; Tang, Z. K.; Saito, R.

    2002-01-01

    We performed polarized Raman scattering studies on 0.4 nm diameter single wall carbon nanotubes (SWNTs) grown inside the pores of zeolite crystals, using several different laser lines (1.92⩽ Elaser⩽2.71 eV). The strong diameter-selective resonant behavior of typical SWNTs (1< dt<3 nm) is not observed. The Raman spectra instead show a complicated profile that reflects the sp 2 carbons phonon density of states superimposed on the characteristic SWNT Raman features. We show that the behavior of typical SWNTs can be used qualitatively to analyze the radial breathing mode (RBM), G-band and D-band spectra of the 0.4 nm diameter SWNTs.

  20. Second-Harmonic Generation of Aligned Single-Walled 0.4nm Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Wong, Kam Sing; Su, Huimin; Ye, Jianting; Tang, Zikang

    2007-03-01

    The second-harmonic generation (SHG) is measured for the first time from monosized and well-aligned single-walled carbon nanotubes (SWCNT) in the channel of aluminophosphate AlPO4-5 (AFI) zeolite. The SHG yield scales as quadratic function of the pump laser intensity. Due to the different polarization preference, we are able to discriminate the SHG contribution from the chiral (4,2) CNTs and those from the AFI template. The polarization direction and the anisotropic dependence of the SHG intensity on the excitation polarizations are investigated in the transmission geometry. In the case of normal incidence, the intensity of SHG is maximized when the excitation polarization is 45 degree against the tube axis and the SH radiation is linear-polarized on the plane perpendicular to the tube axis. The experiment results are in excellent agreement with the theoretical prediction of the second-order nonlinear optical process in chiral carbon nanotubes.

  1. Temperature-dependent thermal properties of single-walled carbon nanotube thin films

    NASA Astrophysics Data System (ADS)

    Duzynska, A.; Taube, A.; Korona, K. P.; Judek, J.; Zdrojek, M.

    2015-05-01

    We herein report the determination of the intrinsic thermal conductivity (?) and interfacial thermal conductance (g) of single-walled carbon nanotube thin films (50 nm) on top of a SiO2 substrate. The study was performed as a function of temperature (300-450 K) using the opto-thermal technique. The value of ? decreases nonlinearly by approximately 60% from a value of 26 Wm-1 K-1 at 300 K to a value of 9 Wm-1 K-1 at 450 K. This effect stems from the increase of multi-phonon scattering at higher temperatures. The g increases with temperature, reaching a saturation plateau at 410 K. These findings may contribute to a better understanding of the thermal properties of the supported carbon nanotube thin films, which are crucial for any heat dissipation applications.

  2. Multi-Fractal Hierarchy of Single-Walled Carbon Nanotube Hydrophobic Coatings

    PubMed Central

    De Nicola, Francesco; Castrucci, Paola; Scarselli, Manuela; Nanni, Francesca; Cacciotti, Ilaria; De Crescenzi, Maurizio

    2015-01-01

    A hierarchical structure is an assembly with a multi-scale morphology and with a large and accessible surface area. Recent advances in nanomaterial science have made increasingly possible the design of hierarchical surfaces with specific and tunable properties. Here, we report the fractal analysis of hierarchical single-walled carbon nanotube (SWCNT) films realized by a simple, rapid, reproducible, and inexpensive filtration process from an aqueous dispersion, then deposited by drytransfer printing method on several substrates, at room temperature. Furthermore, by varying the thickness of carbon nanotube random networks, it is possible tailoring their wettability due to capillary phenomena in the porous films. Moreover, in order to describe the wetting properties of such surfaces, we introduce a two-dimensional extension of the Wenzel-Cassie-Baxter theory. The hierarchical surface roughness of SWCNT coatings coupled with their exceptional and tunable optical and electrical properties provide an ideal hydrophobic composite surface for a new class of optoelectronic and nanofluidic devices. PMID:25716718

  3. A theoretical study on the interaction of amphetamine and single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hafizi, Hamid; Najafi Chermahini, Alireza; Mohammadnezhad, Gholamhossein; Teimouri, Abbas

    2015-02-01

    The adsorption of 1-phenyl-2-aminopropane (amphetamine) on the (4,4), (5,5), (6,6), and (7,7) single-walled carbon nanotubes (SWCNTs) has been theoretically investigated. The molecule has been located in different modes including parallel, perpendicular, and oblique on the outer surface of carbon nanotubes. The physisorption of amphetamine onto SWCNT sidewall is thermodynamically favored; as a consequence, it modulates the electronic properties of pristine nanotube in the vicinity of Fermi region. The adsorption energies for the parallel and oblique modes found in the range of -1.13 to -1.88 and -1.27 to -2.01 kcal/mol, respectively. Projected density of states (PDOS) and frontier orbital analysis in the vicinity of Fermi level region suggest the electronic states to be contributed from SWCNT rather than amphetamine molecule.

  4. Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature

    SciTech Connect

    Endo, Takumi Ishi-Hayase, Junko; Maki, Hideyuki

    2015-03-16

    We investigated the photoluminescence of individual air-suspended single-walled carbon nanotubes (SWNTs) from 6 to 300 K. Time-resolved and antibunching measurements over the telecommunication wavelength range were performed using a superconducting single-photon detector. We detected moderate temperature independent antibunching behavior over the whole temperature range studied. To investigate the exciton dynamics, which is responsible for the antibunching behavior, we measured excitation-power and temperature dependence of the photoluminescence spectra and lifetime decay curves. These measurements suggested an exciton confinement effect that is likely caused by high-dielectric amorphous carbon surrounding the SWNTs. These results indicate that SWNTs are good candidates for light sources in quantum communication technologies operating in the telecommunication wavelength range and at room temperature.

  5. Magnetic Property Measurements on Single Wall Carbon Nanotube-Polyimide Composites

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.; Wincheski, Russell A.; Park, Cheol

    2008-01-01

    Temperature and magnetic field dependent magnetization measurements were performed on polyimide nanocomposite samples, synthesized with various weight percentages of single wall carbon nanotubes. It was found that the magnetization of the composite, normalized to the mass of nanotube material in the sample, decreased with increasing weight percentage of nanotubes. It is possible that the interfacial coupling between the carbon nanotube (CNT) fillers and the polyimide matrix promotes the diamagnetic response from CNTs and reduces the total magnetization of the composite. The coercivity of the samples, believed to originate from the residual magnetic catalyst particles, was enhanced and had a stronger temperature dependence as a result of the composite synthesis. These changes in magnetic properties can form the basis of a new approach to investigate the interfacial properties in the CNT nanocomposites through magnetic property measurements.

  6. Films of bare single-walled carbon nanotubes from superacids with tailored electronic and photoluminescence properties.

    PubMed

    Saha, Avishek; Ghosh, Saunab; Weisman, R Bruce; Martí, Angel A

    2012-06-26

    The use of single-walled carbon nanotubes (SWCNTs) in fabricating macroscopic devices requires addressing the challenges of nanotube individualization and organization in the desired functional architectures. Previous success in depositing bare SWCNTs from chlorosulfonic acid onto silicon oxide microporous and mesoporous nanoparticles has motivated this study of their deposition onto fused silica substrates. A facile dip-coating method is reported that produces thin homogeneous films in which the carbon nanotubes are not covered by surfactants or shortened by sonication. Photophysical, electrical, chemical, and morphological properties of these SWCNT films have been characterized. When prepared at low densities, the films exhibit near-IR photoluminescence from individualized SWCNTs, whereas when prepared at high densities the films behave as transparent conductors. Sheet resistance of 471 ohm/sq has been achieved with film transmittance of ∼ 86%. PMID:22681339

  7. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes

    USGS Publications Warehouse

    Agnihotri, S.; Rood, M.J.; Rostam-Abadi, M.

    2005-01-01

    Gravimetric techniques were employed to determine the adsorption capacities of commercially available purified electric arc and HiPco single-walled carbon nanotubes (SWNTs) for organic compounds (toluene, methyl ethyl ketone (MEK), hexane and cyclohexane) at relative pressures, p/p0, ranging from 1 ?? 10-4 to 0.95 and at isothermal conditions of 25, 37 and 50 ??C. The isotherms displayed both type I and type II characteristics. Adsorption isotherm modeling showed that SWNTs are heterogeneous adsorbents, and the Freundlich equation best describes the interaction between organic molecules and SWNTs. The heats of adsorption were 1-4 times the heats of vaporization, which is typical for physical adsorption of organic vapors on porous carbons. ?? 2005 Elsevier Ltd. All rights reserved.

  8. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of the electron density for an individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closest neighbours reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  9. Energy Band Gap Study of Semiconducting Single Walled Carbon Nanotube Bundle

    NASA Technical Reports Server (NTRS)

    Elkadi, Asmaa; Decrossas, Emmanuel; El-Ghazaly, Samir

    2013-01-01

    The electronic properties of multiple semiconducting single walled carbon nanotubes (s-SWCNTs) considering various distribution inside a bundle are studied. The model derived from the proposed analytical potential function of electron density for na individual s-SWCNT is general and can be easily applied to multiple nanotubes. This work demonstrates that regardless the number of carbon nanotubes, the strong coupling occurring between the closet neighbors reduces the energy band gap of the bundle by 10%. As expected, the coupling is strongly dependent on the distance separating the s-SWCNTs. In addition, based on the developed model, it is proposed to enhance this coupling effect by applying an electric field across the bundle to significantly reduce the energy band gap of the bundle by 20%.

  10. Dispersion and characterization of arc discharge single-walled carbon nanotubes--towards conducting transparent films.

    PubMed

    Rsner, B; Guldi, D M; Chen, J; Minett, A I; Fink, R H

    2014-04-01

    This study addresses a combination of a well-developed and mild dispersion method and high-quality arc discharge single-walled carbon nanotubes (SWCNTs) as starting materials. Thus, we advance in fabrication of transparent, conducting films with extraordinary low material loss during SWCNT processing. The starting material was characterized by means of thermogravimetric analysis, high-resolution transmission electron microscopy and Raman spectroscopy. The quality of the starting material and produced dispersions was evaluated by ultraviolet and visible light absorption spectroscopy and Raman spectroscopy. A transparent conductive film was fabricated by drop-casting, whereas films were obtained with electrical to optical conductivity ratios (?DC/?Op) as high as 2.2, combined with a loss of nanotube material during processing well below 20 wt%. High pressure carbon monoxide conversion (HiPCO) SWCNTs, which are very well described in the literature, were used for comparison. PMID:24567084

  11. Activated sludge microbial community responses to single-walled carbon nanotubes: community structure does matter.

    PubMed

    Ma, Qiao; Qu, Yuanyuan; Shen, Wenli; Wang, Jingwei; Zhang, Zhaojing; Zhang, Xuwang; Zhou, Hao; Zhou, Jiti

    2015-01-01

    The ecological effects of carbon nanotubes (CNTs) have been a worldwide research focus due to their extensive release and accumulation in environment. Activated sludge acting as an important gathering place will inevitably encounter and interact with CNTs, while the microbial responses have been rarely investigated. Herein, the activated sludges from six wastewater treatment plants were acclimated and treated with single-walled carbon nanotubes (SWCNTs) under identical conditions. Illumina high-throughput sequencing was applied to in-depth analyze microbial changes and results showed SWCNTs differently perturbed the alpha diversity of the six groups (one increase, two decrease, three no change). Furthermore, the microbial community structures were shifted, and specific bacterial performance in each group was different. Since the environmental and operational factors were identical in each group, it could be concluded that microbial responses to SWCNTs were highly depended on the original community structures. PMID:25909735

  12. Hybrid Graphene and Single-Walled Carbon Nanotube Films for Enhanced Phase-Change Heat Transfer.

    PubMed

    Seo, Han; Yun, Hyung Duk; Kwon, Soon-Yong; Bang, In Cheol

    2016-02-10

    Nucleate boiling is an effective heat transfer method in power generation systems and cooling devices. In this letter, hybrid graphene/single-walled carbon nanotube (SWCNT), graphene, and SWCNT films deposited on indium tin oxide (ITO) surfaces were fabricated to investigate the enhancement of nucleate boiling phenomena described by the critical heat flux and heat transfer coefficient. The graphene films were grown on Cu foils and transferred to ITO surfaces. Furthermore, SWCNTs were deposited on the graphene layer to fabricate hybrid graphene/SWCNT films. We determined that the hybrid graphene/SWCNT film deposited on an ITO surface is the most effective heat transfer surface in pool boiling because of the interconnected network of carbon structures. PMID:26731547

  13. Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films

    PubMed Central

    Won, Yoonjin; Gao, Yuan; Panzer, Matthew A.; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W.; Cai, Wei; Goodson, Kenneth E.

    2013-01-01

    Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologiesfrom thermal solar to automotive waste heat recovery systemswhose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties. PMID:24309375

  14. Zipping, entanglement, and the elastic modulus of aligned single-walled carbon nanotube films.

    PubMed

    Won, Yoonjin; Gao, Yuan; Panzer, Matthew A; Xiang, Rong; Maruyama, Shigeo; Kenny, Thomas W; Cai, Wei; Goodson, Kenneth E

    2013-12-17

    Reliably routing heat to and from conversion materials is a daunting challenge for a variety of innovative energy technologies--from thermal solar to automotive waste heat recovery systems--whose efficiencies degrade due to massive thermomechanical stresses at interfaces. This problem may soon be addressed by adhesives based on vertically aligned carbon nanotubes, which promise the revolutionary combination of high through-plane thermal conductivity and vanishing in-plane mechanical stiffness. Here, we report the data for the in-plane modulus of aligned single-walled carbon nanotube films using a microfabricated resonator method. Molecular simulations and electron microscopy identify the nanoscale mechanisms responsible for this property. The zipping and unzipping of adjacent nanotubes and the degree of alignment and entanglement are shown to govern the spatially varying local modulus, thereby providing the route to engineered materials with outstanding combinations of mechanical and thermal properties. PMID:24309375

  15. Magnetic-field-induced diameter-selective synthesis of single-walled carbon nanotubes.

    PubMed

    Su, Yanjie; Zhang, Yaozhong; Wei, Hao; Zhang, Liling; Zhao, Jiang; Yang, Zhi; Zhang, Yafei

    2012-03-01

    We report a facile and scalable approach to synthesize single-walled carbon nanotubes (SWNTs) with selected diameter distribution by applying a magnetic field perpendicular to the electric field in the arc plasma region. It is found that this magnetic field-induced diameter-selectivity strategy enables the control of the SWNTs with different diameter distributions in different regions, and the diameter-selective efficiency could be enhanced by modifying the direction of magnetic field. Our results indicate that the motions of the catalysts with different particle sizes, positive carbon ions and electrons are significantly influenced by the magnetic field and electromagnetic force, resulting in the different nucleation and growth processes of SWNTs due to the collective interactions between the magnetic field and arc plasma. This approach would enable a viable route towards the synthesis of SWNTs with desired diameter through the tuning of arc parameters in the arc discharge process. PMID:22301844

  16. Electronic properties of optically transparent single-walled carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Hecht, David Samuel

    Single-walled carbon nanotube (SWNT) films of various densities were fabricated and the optoelectronic properties studied. Several deposition techniques were developed, including filtration, stamping, self-assembly, spraying, and slot coating. Film conductivity was studied as a function of several parameters. At sub-monolayer densities, close to the percolation threshold, the film conductance follows the expected 2D percolation behavior. For films just thicker than a monolayer, the conductivity weakly increases up to a critical thickness, due to interlayer tube coupling. The frequency dependence of the conductivity follows the ac universality power law predicted for disordered systems. Due to the large intertube barriers (relative to the intratube resistance), the film conductivity increases as a power law in the constituent tube length. DC conductivities up to 2400 S/cm were measured, and increased to 6000 S/cm upon exposure to various dopants; however the binding is not stable at room temperature. The overall electrical stability of SWNT films is considered under various conditions. Nanotube films thinner than 100 nm are transparent in the visible and infrared spectrum, with the transmission limited by absorption, rather than by reflection. The visible spectrum is relatively featureless, apart from a weak interband transition at 700 nm; therefore, the films have a neutral, "gray" color. The large ratio of DC to optical conductivity make SWNT films useful for several applications including displays, solar cells, and touch screens. A prototype organic solar cell using a SWNT anode as shown to have efficiencies comparable to cells using an indium tin oxide anode; integration with a metallic grid was demonstrated. Films were coated onto fabric and shown to impart electrical conductivity to the fabric. Films of various densities were fabricated as both the gate and the conducting channel of a field effect transistor (FET), making the first transparent and flexible transistor incorporating SWNTs. SWNT FETs non-covalently functionalized with a porphyrin derivative, were used to monitor the light induced electron transfer between nanotubes and porphyrin. The wavelength and intensity dependence of this process was measured, indicating that the optical changes in the porphyrin electronic structure are coupled to the charge transport through the network.

  17. Integration of aligned arrays of single-walled carbon nanotubes in electronic devices

    NASA Astrophysics Data System (ADS)

    Ho, Xinning

    Aligned arrays of single-walled carbon nanotubes (SWNTs) are an attractive format for macroelectronics and RF analog electronics with exceptional electrical, mechanical and optical properties. Unlike isolated SWNT, the presence of many SWNTs in the aligned arrays increases the current output and statistical averaging in many SWNTs is expected to reduce the device to device variations. The SWNTs in aligned arrays do not intersect one another, unlike in networks of SWNTs. Hence, tube/tube contacts, which limit the transport in SWNT networks due to tunneling barriers or electrostatic screening at the contacts to prevent effective gate modulation at those specific points, are absent. Nonetheless, challenges still remain for these aligned arrays of SWNTs before their successful integration into electronic devices for large scale commercial use. The main challenges include (1) selective elimination of m-SWNTs, (2) increasing the density of SWNTs, (3) achieving electronic uniformity across devices fabricated and (4) understanding their mode of operation and the role of contacts in their operation. In this dissertation, I present a study that aims to tackle the 3 rd and 4th challenges aforementioned. We integrated these arrays of SWNT thin films into field effect transistors to study the electronic uniformity of the devices. We examined the effect of variation in density and diameter distributions of the aligned arrays of SWNTs on the variation in the electrical performance of the transistors. We also analyzed the properties of the contacts at the SWNT/metal interface. We found Pd to be a good Ohmic contact and Ca to be a Schottky contact to the aligned arrays of SWNTs and went on to fabricate Schottky diodes. Using these Schottky diodes, we demonstrated light emitting diodes with aligned arrays of SWNTs which could be used in novel applications that require solid state and nano-scale infra-red emitters. Work done to selectively eliminate m-SWNTs (1st challenge) via selective laser ablation is also archived in this dissertation. These results represent important steps in understanding the device performance of transistors and Schottky diodes based on aligned arrays of SWNTs; which may have a large impact in large area RF analog electronics.

  18. Separation of Single-Walled Carbon Nanotubes with DEP-FFF

    NASA Technical Reports Server (NTRS)

    Schmidt, Howard K.; Peng, Haiqing; Alvarez, Noe; Mendes, Manuel; Pasquali, Matteo

    2011-01-01

    A process using a modified dielectrophoresis device separates single-walled carbon nanotubes (SWNTs) according to their polarizability in electric fields. This depends on the size and dielectric constant of individual nanotubes and easily separates metallic from semiconducting nanotubes. Separation by length has also been demonstrated. Partial separation (enrichment) according to bandgap (which is linked to polarizability) has also been shown and can be improved to full separation of individual types of semiconducting SWNTs with better control over operational parameters and the length of SWNT starting material. This process and device can be scaled affordably to generate useful amounts of semiconducting SWNTs for electronic device development and production. In this study, a flow injection dielectrophoresis technique was used with a modified dielectrophoresis device. The length, width, and height of the modified chamber were 28, 2.5, and 0.025 cm, respectively. On the bottom of the chamber, there are two arrays of 50-m-wide, 2-m-thick gold electrodes, which are connected to an AC voltage generator and are alternately arranged so that every electrode is adjacent to two electrodes of the opposite polar. There is an additional plate electrode on the top of the chamber that is negatively biased. During the experiment, a syringe pump constantly pumps in the mobile phase, 1-percent sodium dodecylbenzene sulfonate (SDBS) solution, into the chamber. The frequency and voltage are set to 1 MHz and 10 V peak-to-peak, respectively. About 150 micro-L of SWNTs in 1- percent SDBS decanted solution are injected to the mobile phase through a septum near the entrance of the chamber. The flow rate of the mobile phase is set to 0.02 cu cm/min. The injected SWNTs sample flows through the chamber before it is lead into a fluorescence flow-through cell and collected for further analysis. The flow-through cell has three windows, thus allowing the fluorometer to collect fluorescence spectrum and visible absorption spectrums simultaneously. Dielectrophoresis field-flow fractionation (DEP-FFF) generally depends on interaction of a sedimentation force and DEP force for particle separation, and SWNTs are neutrally buoyant in water. In this innovation, the third electrode was added to create a sedimentation force based on DC electrophoresis. This makes this particular device applicable to separations on any neutrally buoyant particles in solution and a more general process for a broad range of nanomaterials sorting and separations.

  19. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.

    PubMed

    Samanta, Suman Kalyan; Fritsch, Martin; Scherf, Ullrich; Gomulya, Widianta; Bisri, Satria Zulkarnaen; Loi, Maria Antonietta

    2014-08-19

    The future application of single-walled carbon nanotubes (SWNTs) in electronic (nano)devices is closely coupled to the availability of pure, semiconducting SWNTs and preferably, their defined positioning on suited substrates. Commercial carbon nanotube raw mixtures contain metallic as well as semiconducting tubes of different diameter and chirality. Although many techniques such as density gradient ultracentrifugation, dielectrophoresis, and dispersion by surfactants or polar biopolymers have been developed, so-called conjugated polymer wrapping is one of the most promising and powerful purification and discrimination strategies. The procedure involves debundling and dispersion of SWNTs by wrapping semiflexible conjugated polymers, such as poly(9,9-dialkylfluorene)s (PFx) or regioregular poly(3-alkylthiophene)s (P3AT), around the SWNTs, and is accompanied by SWNT discrimination by diameter and chirality. Thereby, the ?-conjugated backbone of the conjugated polymers interacts with the two-dimensional, graphene-like ?-electron surface of the nanotubes and the solubilizing alkyl side chains of optimal length support debundling and dispersion in organic solvents. Careful structural design of the conjugated polymers allows for a selective and preferential dispersion of both small and large diameter SWNTs or SWNTs of specific chirality. As an example, with polyfluorenes as dispersing agents, it was shown that alkyl chain length of eight carbons are favored for the dispersion of SWNTs with diameters of 0.8-1.2 nm and longer alkyls with 12-15 carbons can efficiently interact with nanotubes of increased diameter up to 1.5 nm. Polar side chains at the PF backbone produce dispersions with increased SWNT concentration but, unfortunately, cause reduction in selectivity. The selectivity of the dispersion process can be monitored by a combination of absorption, photoluminescence, and photoluminescence excitation spectroscopy, allowing identification of nanotubes with specific coordinates [(n,m) indices]. The polymer wrapping strategy enables the generation of SWNT dispersions containing exclusively semiconducting nanotubes. Toward the applications in electronic devices, until now most applied approach is a direct processing of such SWNT dispersions into the active layer of network-type thin film field effect transistors. However, to achieve promising transistor performance (high mobility and on-off ratio) careful removal of the wrapping polymer chains seems crucial, for example, by washing or ultracentrifugation. More defined positioning of the SWNTs can be accomplished in directed self-assembly procedures. One possible strategy uses diblock copolymers containing a conjugated polymer block as dispersing moiety and a second block for directed self-assembly, for example, a DNA block for specific interaction with complementary DNA strands. Another strategy utilizes reactive side chains for controlled anchoring onto patterned surfaces (e.g., by interaction of thiol-terminated alkyl side chains with gold surfaces). A further promising application of purified SWNT dispersions is the field of organic (all-carbon) or hybrid solar cell devices. PMID:25025887

  20. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping.

    TOXLINE Toxicology Bibliographic Information

    Samanta SK; Fritsch M; Scherf U; Gomulya W; Bisri SZ; Loi MA

    2014-08-19

    The future application of single-walled carbon nanotubes (SWNTs) in electronic (nano)devices is closely coupled to the availability of pure, semiconducting SWNTs and preferably, their defined positioning on suited substrates. Commercial carbon nanotube raw mixtures contain metallic as well as semiconducting tubes of different diameter and chirality. Although many techniques such as density gradient ultracentrifugation, dielectrophoresis, and dispersion by surfactants or polar biopolymers have been developed, so-called conjugated polymer wrapping is one of the most promising and powerful purification and discrimination strategies. The procedure involves debundling and dispersion of SWNTs by wrapping semiflexible conjugated polymers, such as poly(9,9-dialkylfluorene)s (PFx) or regioregular poly(3-alkylthiophene)s (P3AT), around the SWNTs, and is accompanied by SWNT discrimination by diameter and chirality. Thereby, the ?-conjugated backbone of the conjugated polymers interacts with the two-dimensional, graphene-like ?-electron surface of the nanotubes and the solubilizing alkyl side chains of optimal length support debundling and dispersion in organic solvents. Careful structural design of the conjugated polymers allows for a selective and preferential dispersion of both small and large diameter SWNTs or SWNTs of specific chirality. As an example, with polyfluorenes as dispersing agents, it was shown that alkyl chain length of eight carbons are favored for the dispersion of SWNTs with diameters of 0.8-1.2 nm and longer alkyls with 12-15 carbons can efficiently interact with nanotubes of increased diameter up to 1.5 nm. Polar side chains at the PF backbone produce dispersions with increased SWNT concentration but, unfortunately, cause reduction in selectivity. The selectivity of the dispersion process can be monitored by a combination of absorption, photoluminescence, and photoluminescence excitation spectroscopy, allowing identification of nanotubes with specific coordinates [(n,m) indices]. The polymer wrapping strategy enables the generation of SWNT dispersions containing exclusively semiconducting nanotubes. Toward the applications in electronic devices, until now most applied approach is a direct processing of such SWNT dispersions into the active layer of network-type thin film field effect transistors. However, to achieve promising transistor performance (high mobility and on-off ratio) careful removal of the wrapping polymer chains seems crucial, for example, by washing or ultracentrifugation. More defined positioning of the SWNTs can be accomplished in directed self-assembly procedures. One possible strategy uses diblock copolymers containing a conjugated polymer block as dispersing moiety and a second block for directed self-assembly, for example, a DNA block for specific interaction with complementary DNA strands. Another strategy utilizes reactive side chains for controlled anchoring onto patterned surfaces (e.g., by interaction of thiol-terminated alkyl side chains with gold surfaces). A further promising application of purified SWNT dispersions is the field of organic (all-carbon) or hybrid solar cell devices.

  1. High performance electronics based on aligned arrays of single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kocabas, Coskun

    This dissertation describes a new approach for generating large area homogenous parallel array of single walled carbon nanotubes. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on single crystal quartz substrates. The anisotropic interaction associated with lattice structure of the quartz between SWNT and quartz surface guides SWNT during the deposition process. We have optimized CVD conditions that can produce arrays of individual single walled carbon nanotubes in horizontal configurations with perfect linear shapes, to within experimental uncertainties, and with levels of alignment >99.9%. We took the method one step further by printing these SWNT arrays on unusual substrate such as plastic. Using the developed printing technique, we can fabricate multilayer superstructures of single-walled carbon nanotubes (SWNTs) on a wide range of substrates. In order to understand charge transport through SWNT networks, we studied the scaling behaviours SWNT transistors by systematically varying degrees of alignment and coverage in transistors with a range of channel lengths and orientations perpendicular and parallel to the direction of alignment. We have modelled our experimental results using a first principles stick-percolation based transport model which provides a simple framework to interpret the sometimes counter-intuitive transport parameters measured in these devices. We have used dense, perfectly aligned arrays of long, perfectly linear SWNTs as an effective thin film semiconductor suitable for integration into transistors and other classes of electronic devices. These types of devices show excellent electric performance with mobilities and scaled transconductances approaching 2,000 cm2 V-1 s-1 and 3,000 S m-1, respectively. MOS and CMOS logic gates and mechanically flexible transistors on plastic were also demonstrated. Finally we have studied the high frequency performance of transistors that use aligned SWNT arrays. For the first time we have observed power gain from SWNT transistors. This achievement allows us to build all of the key functions of analog electronics, including resonant antennas, fixed RF amplifiers, RF mixers and audio amplifiers. Combining these components we have built the first carbon nanotube radio. These results represent important first steps to practical implementation of SWNTs in high speed analog circuits.

  2. Ion Transport Characteristics of Individual Single-walled Carbon Nanotubes Mimic Those of Biological Ion Channels

    NASA Astrophysics Data System (ADS)

    Amiri, Hasti; Shepard, Kenneth; Nuckolls, Colin

    2014-03-01

    Transmembrane ionic channels play a crucial role in vital cellular activities by regulating the transport of ions and fluid across the cell membrane. Their structural complexity and flexibility as well as their many unique operational features, however, make their investigation extremely difficult. The simple, atomically smooth and well-defined structure of carbon nanotubes (CNTs) provides an excellent template for studying molecular transport at nanoscale. Additionally, CNTs have been suggested as analogues to biological pores since they share several common features such as nanometer size diameter, hydrophobic core and ultrafast water flow. Functionalizing the nanotube entrance can also mimic the selectivity filter of ion channels. In this work, we experimentally study ionic transport through individual single-walled CNTs connecting two fluid reservoirs as a function of pore properties and electrolyte type and concentration. We provide strong evidence that the electrostatic potentials arising from the ionized carboxyl groups at the pore entrance significantly influence the ion permeation in a manner consistent with a simple electrostatic mechanism. Lastly, the similarities of ionic transport mechanisms between individual single-walled CNTs and protein ion channels are discussed.

  3. Mechanism of Synthesis of Ultra-Long Single Wall Carbon Nanotubes in Arc Discharge Plasma

    SciTech Connect

    Keidar, Michael

    2013-06-23

    In this project fundamental issues related to synthesis of single wall carbon nanotubes (SWNTs), which is relationship between plasma parameters and SWNT characteristics were investigated. Given that among plasma-based techniques arc discharge stands out as very advantageous in several ways (fewer defects, high flexibility, longer lifetime) this techniques warrants attention from the plasma physics and plasma technology standpoint. Both experimental and theoretical investigations of the plasma and SWNTs synthesis were conducted. Experimental efforts focused on plasma diagnostics, measurements of nanostructures parameters, and nanoparticle characterization. Theoretical efforts focused to focus on multi-dimensional modeling of the arc discharge and single wall nanotube synthesis in arc plasmas. It was demonstrated in experiment and theoretically that controlling plasma parameters can affect nanostucture synthesis altering SWNT properties (length and diameter) and leading to synthesis of new structures such as a few-layer graphene. Among clearly identified parameters affecting synthesis are magnetic and electric fields. Knowledge of the plasma parameters and discharge characteristics is crucial for ability to control synthesis process by virtue of both magnetic and electric fields. New graduate course on plasma engineering was introduced into curriculum. 3 undergraduate students were attracted to the project and 3 graduate students (two are female) were involved in the project. Undergraduate student from Historically Black University was attracted and participated in the project during Summer 2010.

  4. Effects of single-walled carbon nanotubes on the bioavailability of PCBs in field-contaminated sediments

    EPA Science Inventory

    Adsorption of hydrophobic organic contaminants (HOCs) to black carbon is a well studied phenomenon. One emerging class of engineered black carbon materials are single-walled carbon nanotubes (SWNT). Little research has investigated the potential of SWNT to adsorb and sequester HO...

  5. Single-walled metal oxide nanotubes and nanotube membranes for molecular separations

    NASA Astrophysics Data System (ADS)

    Kang, Dun-Yen

    Single-walled nanotubes have been considered essential building-blocks in nanotechnology and emerging materials for molecular recognition-based applications, such as molecular sensing, catalysis, and separations. Two critical obstacles in the development of functional nanotube-based devices are: (a) the difficulty of creating diverse functionality at the interior surfaces of single-walled nanotubes, and (b) the lack of effective approaches for fabricating scalable technological platforms with nanotube materials. This thesis describes my work addressing key fundamental issues in nanotube science and technology; particularly regarding the synthesis, characterization, and functionalization of single-walled metal oxide nanotubes (SWNTs) (Chapters 2, 3, 4),and approaches for applying SWNTs in scalable separation platforms for potentially achieving high performance (Chapters 5, 6, 7). The above, rather ambitious, objectives were addressed in a step-wise manner in this work. First, I acquired a detailed fundamental understanding of the inner surface properties of aluminosilicate SWNTs (Chapter 2). The investigations included elucidating molecular level details of dehydration and dehydroxylation phenomena in aluminosilicate single-walled nanotubes with a combination of several temperature-dependent solid-state characterization techniques. Critical information from this study enables a number of subsequent processes such as interior modification, molecular transport, and controlled delivery of molecules. In Chapter 3, a successful post-synthesis interior functionalization methodology is discussed, with the appropriately dehydrated or dehydroxylated nanotubes as the starting materials. Through surface reactions involving organosilane precursors and the inner wall of the nanotube, diverse organic entities can be immobilized at the inner surface of aluminosilicate nanotubes and thereby the hydrophilicity and interior surface properties can be tailored. This study was the first unambiguous demonstration of covalent modification of the interior of single-walled nanotube materials. The investigations in Chapter 4 reveal a direct (in situ) route for synthesizing organic-functionalized alumino-silicate nanotubes via the use of organosilanes with functional groups in the synthesis itself (as opposed to post-synthesis modification). This work creates a one-step route for the incorporation of functional groups at the interior of nanotubes, thus bypassing the limitations of the low functional group loading as well as additional processing steps in the post-synthesis functionalization methodology of Chapter 3. The two functionalization methods developed (post-synthesis and direct functionalization) together may enable a range of applications of nanotube materials, including separations, catalysis, and molecular capture/encapsulation/storage. The direction of the work then turned to the fabrication of nanotube-containing membranes. In view of the absence of a good predictive model for the performance of nanotube-containing membranes, Chapter 5 describes the development of analytical models for quantitatively predicting the separation properties of composite membranes containing (nano)tubular fillers. These models provide useful guidance for evaluating/optimizing existing nanotube-based membranes as well as preparing nanotube-based membranes with novel device architectures and enhanced separation performance. In Chapter 6, the fabrication and characterization of free-standing nanotube/ polymer composite membranes with good organic-inorganic interface adhesion and good nanotube dispersion is discussed. A detailed investigation of the structure and propreties of these membranes (at nano-, micro-, and macro- length scales) is presented. It is shown that hese nanocomposite membranes could be effectively used to construct scalable membrane separation devices. This work is the first demonstration of a defect-free membrane containing well-dispersed nanotube materials. Molecular level insights on the morphological changes of polymer chains due to

  6. Replacement of Transparent Conductive Oxides by Single-Wall Carbon Nanotubes in Cu(In,Ga)Se2-Based Solar Cells

    SciTech Connect

    Contreras, M. A.; Barnes, T.; van de Lagemaat, J.; Rumbles, G.; Coutts, T. J.; Weeks, C.; Glatkowski, P.; Levitsky, I.; Peltola, J.; Britz, D. A.

    2007-01-01

    Thin films of single-wall carbon nanotubes were used as the transparent top electrical contact in Cu(In,Ga)Se{sub 2}- based solar cells. Specifically, we demonstrate that thin layers of carbon nanotubes in combination with insulating polymer layers can effectively replace the metal oxide layers typically used in polycrystalline thin-film solar cells. Replacing the standard n-type ZnO layer with a thin film of carbon nanotubes yielded energy conversion efficiencies up to 13%. The optical and electrical transport properties of the single-wall carbon nanotubes suggest that suitable applications for these materials include multiple-junction solar cells, thermophotovoltaics, and other applications benefiting from a p-type transparent conductor with high near-infrared transmission.

  7. Single-walled carbon nanotube-based polymer monoliths for the enantioselective nano-liquid chromatographic separation of racemic pharmaceuticals.

    PubMed

    Ahmed, Marwa; Yajadda, Mir Massoud Aghili; Han, Zhao Jun; Su, Dawei; Wang, Guoxiu; Ostrikov, Kostya Ken; Ghanem, Ashraf

    2014-09-19

    Single-walled carbon nanotubes were encapsulated into different polymer-based monolithic backbones. The polymer monoliths were prepared via the copolymerization of 20% monomers, glycidyl methacrylate, 20% ethylene glycol dimethacrylate and 60% porogens (36% 1-propanol, 18% 1,4-butanediol) or 16.4% monomers (16% butyl methacrylate, 0.4% sulfopropyl methacrylate), 23.6% ethylene glycol dimethacrylate and 60% porogens (36% 1-propanol, 18% 1,4-butanediol) along with 6% single-walled carbon nanotubes aqueous suspension. The effect of single-walled carbon nanotubes on the chiral separation of twelve classes of pharmaceutical racemates namely; α- and β-blockers, antiinflammatory drugs, antifungal drugs, dopamine antagonists, norepinephrine-dopamine reuptake inhibitors, catecholamines, sedative hypnotics, diuretics, antihistaminics, anticancer drugs and antiarrhythmic drugs was investigated. The enantioselective separation was carried out under multimodal elution to explore the chiral recognition capabilities of single-walled carbon nanotubes using reversed phase, polar organic and normal phase chromatographic conditions using nano-liquid chromatography. Baseline separation was achieved for celiprolol, chlorpheniramine, etozoline, nomifensine and sulconazole under multimodal elution conditions. Satisfactory repeatability was achieved through run-to-run, column-to-column and batch-to-batch investigations. Our findings demonstrate that single-walled carbon nanotubes represent a promising stationary phase for the chiral separation and may open the field for a new class of chiral selectors. PMID:25130087

  8. Ordered assembly of sorted single-walled carbon nanotubes by drying an aqueous droplet on a meshed substrate.

    PubMed

    Lu, Ganhua; Yu, Kehan; Chen, Junhong

    2012-09-01

    We report on the ordered assembly of sorted single-walled carbon nanotubes (SWCNTs) (95% semiconducting tubes) by drying aqueous droplets on meshed grids with an enhanced evaporation rate. Besides the commonly observed "coffee ring" deposit of aligned SWCNTs on the droplet contact line after water evaporation, tubes self-organized in the central area of a grid and covered up to -1/3 of the whole surface area of a grid. In addition, parallel-aligned and straightened SWCNTs were seen to span across cracks in the SWCNT-surfactant film. The evaporation-driven assembly of sorted SWCNTs has the potential to produce ordered SWCNT structures that are attractive for the fabrication of electronic devices comprising mostly semiconducting or metallic tubes. PMID:23035422

  9. Thin-film transistors using DNA-wrapped semiconducting single-wall carbon nanotubes with selected chiralities

    NASA Astrophysics Data System (ADS)

    Kuwahara, Yuki; Nihey, Fumiyuki; Ohmori, Shigekazu; Saito, Takeshi

    2015-10-01

    Selected semiconducting chiralities, (7,5), (7,6), and (8,4), of DNA-wrapped single-wall carbon nanotubes (DNA-SWCNTs) were used for thin-film transistors (TFTs). Chirality separation was carried out by ion exchange chromatography (IEX) with the ssDNA of the (TAT)4 sequence. An on/off ratio of 3.8 106 with a carrier mobility of 11 cm2/(Vs) was successfully achieved in the fabricated SWCNT-TFTs. The comparison between the on/off ratios obtained before (101-102) and after IEX (104-107) indicated that the IEX separation process sufficiently improves the performance of SWCNT-TFTs because of the reducing metallic SWCNT pathways in the TFT channel.

  10. First-principles study of structural and work function properties for nitrogen-doped single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shao, Xiji; Li, Detian; Cai, Jianqiu; Luo, Haijun; Dong, Changkun

    2016-04-01

    The structural and electronic properties of the capped (5, 5) single-walled carbon nanotube (SWNT), including the structural stability, the work function, and the charge transfer performance, are investigated for the substitutional nitrogen atom doping under different concentrations by first-principles density functional theory. The geometrical structure keeps almost intact with single or two N atom doping, while Csbnd N bonds may break up with serious defects for N concentrations of 23.3 at.% and above. The SWNT remains metallic and the work function drops after doping due to the upward shift of Fermi level, leading to the increase of the electrical conductivity. N doping enhances the oxygen reduction activity stronger than N adsorption because of higher charge transfers.

  11. First principles studies on hydrogen storage in single-walled carbon nanotube functionalized with TiO2

    NASA Astrophysics Data System (ADS)

    Kanmani, M.; Lavanya, R.; Silambarasan, D.; Iyakutti, K.; Vasu, V.; Kawazoe, Y.

    2014-04-01

    In this first principles study, hydrogen storage capacity of armchair single-walled carbon nanotube (10, 10) functionalized with TiO2 has been investigated. The functionalized TiO2 molecules are found to be chemisorbed on CNT (10, 10) with the binding energy of 3.54 eV. The functionalized CNT binds up to six hydrogen molecules. The first hydrogen adsorption is dissociative with the binding energy of 1.51 eV and the further adsorbed hydrogen are weakly chemisorbed on the functionalized system with the elongated bond length of hydrogen. The storage capacity of functionalized SWCNT, desorption temperature and binding energy of hydrogen molecules are evaluated. The system exhibits a maximum storage capacity of 3.64 wt%. The band structure, density of states (DOS) and partial density of states (PDOS) are calculated for the functionalized and hydrogenated SWCNTs. DOS studies reveal that, functionalization and hydrogenation does not affect the metallic nature of CNT.

  12. Extraction of semiconducting single-walled carbon nanotubes encapsulating fullerenes by poly(9,9-dioctylfluorene-alt-benzothiadiazole)

    NASA Astrophysics Data System (ADS)

    Tange, Masayoshi; Kwon, Jin Kyoung; Okazaki, Toshiya; Iijima, Sumio

    2014-04-01

    Single-walled carbon nanotubes (SWCNTs) encapsulating fullerenes, the so-called nanopeapods (NPDs), are expected as building blocks in future nanoelectronics because the mechanical and electronic properties of SWCNTs frequently undergo considerable modification with the encapsulation of molecules at a nanometer scale. The separation of semiconducting species from metallic counterparts is the next step in the application of NPDs in electronics and photonics. Here, semiconducting NPDs are successfully extracted in toluene using a fluorene-based polymer, poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT). Although F8BT shows a high extraction selectivity for (15, 4) SWCNTs, such a high selectivity disappears in the obtained photoluminescence excitation (PLE) map of NPDs. The change in electronic energy level by the encapsulation of C60 may induce the loss of the selectivity.

  13. Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Xie, Xu; Wahab, Muhammad A.; Li, Yuhang; Islam, Ahmad E.; Tomic, Bojan; Huang, Jiyuan; Burns, Branden; Seabron, Eric; Dunham, Simon N.; Du, Frank; Lin, Jonathan; Wilson, William L.; Song, Jizhou; Huang, Yonggang; Alam, Muhammad A.; Rogers, John A.

    2015-04-01

    Aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) represent ideal configurations for use of this class of material in high performance electronics. Development of means for removing the metallic SWNTs (m-SWNTs) in as-grown arrays represents an essential challenge. Here, we introduce a simple scheme that achieves this type of purification using direct, selective current injection through interdigitated electrodes into the m-SWNTs, to allow their complete removal using processes of thermocapillarity and dry etching. Experiments and numerical simulations establish the fundamental aspects that lead to selectivity in this process, thereby setting design rules for optimization. Single-step purification of arrays that include thousands of SWNTs demonstrates the effectiveness and simplicity of the procedures. The result is a practical route to large-area aligned arrays of purely s-SWNTs with low-cost experimental setups.

  14. Single-walled carbon nanotube/metalloporphyrin composites for the chemiresistive detection of amines and meat spoilage.

    PubMed

    Liu, Sophie F; Petty, Alexander R; Sazama, Graham T; Swager, Timothy M

    2015-05-26

    Chemiresistive detectors for amine vapors were made from single-walled carbon nanotubes by noncovalent modification with cobalt meso-arylporphyrin complexes. We show that through changes in the oxidation state of the metal, the electron-withdrawing character of the porphyrinato ligand, and the counteranion, the magnitude of the chemiresistive response to ammonia could be improved. The devices exhibited sub-ppm sensitivity and high selectivity toward amines as well as good stability to air, moisture, and time. The application of these chemiresistors in the detection of various biogenic amines (i.e. putrescine, cadaverine) and in the monitoring of spoilage in raw meat and fish samples (chicken, pork, salmon, cod) over several days was also demonstrated. PMID:25867821

  15. Direct current injection and thermocapillary flow for purification of aligned arrays of single-walled carbon nanotubes

    SciTech Connect

    Xie, Xu; Islam, Ahmad E.; Seabron, Eric; Dunham, Simon N.; Du, Frank; Lin, Jonathan; Wilson, William L.; Rogers, John A.; Wahab, Muhammad A.; Alam, Muhammad A.; Li, Yuhang; Tomic, Bojan; Huang, Jiyuan; Burns, Branden; Song, Jizhou; Huang, Yonggang

    2015-04-07

    Aligned arrays of semiconducting single-walled carbon nanotubes (s-SWNTs) represent ideal configurations for use of this class of material in high performance electronics. Development of means for removing the metallic SWNTs (m-SWNTs) in as-grown arrays represents an essential challenge. Here, we introduce a simple scheme that achieves this type of purification using direct, selective current injection through interdigitated electrodes into the m-SWNTs, to allow their complete removal using processes of thermocapillarity and dry etching. Experiments and numerical simulations establish the fundamental aspects that lead to selectivity in this process, thereby setting design rules for optimization. Single-step purification of arrays that include thousands of SWNTs demonstrates the effectiveness and simplicity of the procedures. The result is a practical route to large-area aligned arrays of purely s-SWNTs with low-cost experimental setups.

  16. 0.8 nm single wall carbon nanotubes for wideband ultrafast pulse generation

    NASA Astrophysics Data System (ADS)

    Kang, Z.; Xu, Y.; Jia, Z. X.; Qin, G. S.; Qin, W. P.

    2016-04-01

    We demonstrate wideband ultrafast optical pulse generation at 1, 1.56 and 2 μm by using single polymer composite saturable absorber (SA) based on 0.8 nm single wall carbon nanotubes (SWCNTs). The SWCNTs were mixed with sodium carboxymethylcellulose (NaCMC) to form SWCNT SA films. The film then integrated into ytterbium-(Yb-), erbium-(Er-) and thulium-(Tm-) doped ring fiber laser cavities. Using this film, we achieve 380 ps, 830 fs, and 1.24 ps mode-locked pulses at 1035, 1560, and 1933 nm, respectively. These results suggest that 0.8 nm SWCNTs are potentially useful as optical elements in wideband fiber lasers.

  17. Photoluminescence enhancement of aligned arrays of single-walled carbon nanotubes by polymer transfer.

    PubMed

    Schweiger, Manuel; Zakharko, Yuriy; Gannott, Florentina; Grimm, Stefan B; Zaumseil, Jana

    2015-10-28

    The photoluminescence of as-grown, aligned single-walled carbon nanotubes (SWNTs) on quartz is strongly quenched and barely detectable. Here we show that transferring these SWNTs to another substrate such as clean quartz or glass increases their emission efficiency by up to two orders of magnitude. By statistical analysis of large nanotube arrays we show at what point of the transfer process the emission enhancement occurs and how it depends on the receiving substrate and the employed transfer polymer. We find that hydrophobic polystyrene (PS) as the transfer polymer results in higher photoluminescence enhancement than the more hydrophilic poly(methyl methacrylate) (PMMA). Possible mechanisms for this enhancement such as strain relief, disruption of the strong interaction of SWNTs with the substrate and localized emissive states are discussed. PMID:26400227

  18. Self-assembly of ordered nanowires in biological suspensions of single-wall carbon nanotubes.

    PubMed

    Hobbie, Erik K; Fagan, Jeffrey A; Becker, Matthew L; Hudson, Steven D; Fakhri, Nikta; Pasquali, Matteo

    2009-01-27

    We investigate the self-assembly of ordered nanowires from length-purified single-wall carbon nanotubes (SWCNTs) in aqueous suspensions of the biological surfactant sodium deoxycholate. Macroscopically straight and nearly periodic linear arrangements of aligned individual SWCNTs are found to self-assemble in two-dimensional geometries from nanotube suspensions that are otherwise stable in the bulk, which we attribute to a dominance of surface effects under strong confinement. Directed self-assembly is explored through surface patterning, opening up new potential routes to nanotube manipulation for optical diagnostics and applications that require ordered arrangements of mutually aligned SWCNTs. The stability of these structures to thermal fluctuations and changes in solution chemistry are surveyed with near-infrared fluorescence microscopy. PMID:19206266

  19. Vertically oriented single-wall carbon nanotube/enzyme on silicon as biosensor electrode

    NASA Astrophysics Data System (ADS)

    Wang, Yubing; Iqbal, Zafar

    2005-06-01

    Thin films of vertically aligned individual single-wall carbon nanotubes (SWNTs) were deposited on silicon using a chemical vapor deposition (CVD) process. Oriented SWNT growth was achieved by employing two methods of catalyst precursor self-assembly followed by ethanol CVD. Using the silicon substrate as the working electrode in an electrochemical cell and the enzyme ?-NAD (nicotinamide adenine dinucleotide) synthetase dissolved in a buffered electrolyte solution, the enzyme was attached at the nanotube ends. This was shown using scanning electron microscopy and cyclic voltammetry. Enzyme immobilization on the 1 nm to 2 nm diameter tube ends of the individual SWNTs will allow for dense packing of the enzyme and utilization of the electrode as an enzymatic sensor in a biofuel cell configuration.

  20. Electrical and mechanical characterisation of single wall carbon nanotubes based composites for tissue engineering applications.

    PubMed

    Whulanza, Yudan; Battini, Elena; Vannozzi, Lorenzo; Vomero, Maria; Ahluwalia, Arti; Vozzi, Giovanni

    2013-01-01

    This paper presents the realisation of conductive matrices for application to tissue engineering research. We used poly(L-lactide (PLLA)), poly(epsilon-caprolactone) (PCL), and poly(lactide-co-glycolide) (PLGA) as polymer matrix, because they are biocompatible and biodegradable. The conductive property was integrated to them by adding single wall carbon nanotubes (SWNTs) into the polymer matrix. Several SWNTs concentrations were introduced aiming to understand how they influence and modulate mechanical properties, impedance features and electric percolation threshold of polymer matrix. It was observed that a concentration of 0.3% was able to transform insulating matrix into conductive one. Furthermore, a conductive model of the SWNT/polymer was developed by applying power law of percolation threshold. PMID:23646716

  1. Chirality Separation of Single-Wall Carbon Nanotubes using Aqueous Two-Phase Extraction

    NASA Astrophysics Data System (ADS)

    Fagan, Jeffrey

    2014-03-01

    Aqueous two-phase extraction (ATPE) was recently demonstrated to enable the separation of individual species of single-wall carbon nanotubes (SWCNTs) across the separated phases. In this presentation I will describe the use of a dextran - polyethylene glycol aqueous two-phase system along with a separation scheme of varying surfactant concentrations to enable isolation at high purity of specific small diameter SWCNT species. Separation by ATPE is rapid and robust, with a remarkable tunability that allows isolation of most single nanotube chiralities at high purity. Choice of surfactant(s), temperature, polymer concentrations, and the addition of small molecule salts can all be used to tune the exact partitioning of single SWCNT species between the two phases.

  2. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio

    NASA Astrophysics Data System (ADS)

    Yue, Sheng-Ying; Ouyang, Tao; Hu, Ming

    2015-10-01

    The effects of temperature, tube length, defects, and surface functionalization on the thermal conductivity (?) of single-walled carbon nanotubes (SWCNTs) were well documented in literature. However, diameter dependence of thermal conductivity of SWCNTs received less attentions. So far, diverse trends of the diameter dependence have been discussed by different methods and all the previous results were based on empirical interatomic potentials. In this paper, we emphasize to clarify accurate ? values of SWCNTs with different diameters and in-plane ? of graphene. All the studies were under the framework of anharmonic lattice dynamics and Boltzmann transport equation (BTE) based on first principle calculations. We try to infer the right trend of diameter dependent thermal conductivity of SWCNTs. We infer that graphene is the limitation as SWCNT with an infinite diameter. We analyzed the thermal conductivity contributions from each phonon mode in SWCNTs to explain the trend. Meanwhile, we also identify the extremely low thermal conductivity of ultra-thin SWCNTs.

  3. Diameter Dependence of Lattice Thermal Conductivity of Single-Walled Carbon Nanotubes: Study from Ab Initio.

    PubMed

    Yue, Sheng-Ying; Ouyang, Tao; Hu, Ming

    2015-01-01

    The effects of temperature, tube length, defects, and surface functionalization on the thermal conductivity (?) of single-walled carbon nanotubes (SWCNTs) were well documented in literature. However, diameter dependence of thermal conductivity of SWCNTs received less attentions. So far, diverse trends of the diameter dependence have been discussed by different methods and all the previous results were based on empirical interatomic potentials. In this paper, we emphasize to clarify accurate ? values of SWCNTs with different diameters and in-plane ? of graphene. All the studies were under the framework of anharmonic lattice dynamics and Boltzmann transport equation (BTE) based on first principle calculations. We try to infer the right trend of diameter dependent thermal conductivity of SWCNTs. We infer that graphene is the limitation as SWCNT with an infinite diameter. We analyzed the thermal conductivity contributions from each phonon mode in SWCNTs to explain the trend. Meanwhile, we also identify the extremely low thermal conductivity of ultra-thin SWCNTs. PMID:26490342

  4. Preparation of cluster states with endohedral fullerenes in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Hu, Y. M.; Chen, C. Y.; Yang, W. L.; Feng, M.

    2012-05-01

    We propose two scalable methods for generation of cluster states with arrays of endohedral fullerenes 15N@C60 residing in single-walled carbon nanotubes (SWCNTs) using direct and indirect methods, respectively. The direct method makes use of a series of controlled-phase flip (CPF) gates by electron spin resonance pulses of selective frequencies and durations, where the CPF gates are realized by magnetic-dipole couplings between the electron spins of the nearest-neighbour fullerenes in SWCNTs. The indirect method resorts to auxiliary mobile electron as the flying qubit, which transfers quantum information from one site to another. This greatly releases the requirements for the distance between fullerenes in SWCNTs. The decoherence effect and experimental feasibility are also discussed based on currently available technology.

  5. Fabrication of single-walled carbon nanohorns containing iodine and cesium

    NASA Astrophysics Data System (ADS)

    Cho, J. H.; Lim, S. T.; Huh, S. R.; Kim, G. H.

    2012-02-01

    Iodine and cesium atoms were encapsulated in single-walled carbon nanohorns (SWCNHs). Atom encapsulation was carried out with sequential plasma aided procedures which consisted of opening SWCNH tips with an oxygen plasma, atom insertion in an iodine-mixed or cesium-mixed argon plasma, and closing the open tip in an argon plasma. Results reveal that oxidation plays a role in the tip opening procedure, and capillary forces are the driving force for the permeation of the atoms through the open tip of the SWCNHs. The open tip of the atom inserted SWCNH can be closed under the ion irradiation. It demonstrated the fabrication process of encapsulating atoms in SWCNH by using the sequential plasma assisted processes.

  6. Mechanical characterization of suspended strips of meshed single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Bo; Hao, Ji; Jung, Yung Joon; Wan, Kai-tak

    2016-01-01

    A thin film of single walled carbon nanotube (SWCNT) mesh has good potential to integrate the existing electromechanical functions with flexible devices. In this paper, SWCNT mats are transferred to a patterned polymer SU-8 substrate using a wet contact print method, forming a suspended bridge over a groove in the substrate. The front edge of a tipless AFM cantilever loads the suspension at the centerline, causing it to deform into a V-shape by mixed bending and stretching. The mechanical response of load versus AFM displacement is fitted to a linear elastic model to extract the average elastic modulus. Reversible loading-unloading shows little or no permanent damage due to mechanical loads.

  7. Charge Manipulation in Molecules Encapsulated Inside Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yanagi, Kazuhiro; Moriya, Rieko; Cuong, Nguyen Thanh; Otani, Minoru; Okada, Susumu

    2013-02-01

    We report clear experimental evidence for the charge manipulation of molecules encapsulated inside single-wall carbon nanotubes (SWCNTs) using electrochemical doping techniques. We encapsulated β-carotene (Car) inside SWCNTs and clarified electrochemical doping characteristics of their Raman spectra. C=C streching modes of encapsulated Car and a G band of SWCNTs showed clearly different doping behaviors as the electrochemical potentials were shifted. Electron extraction from encapsulated Car was clearly achieved. However, electrochemical characteristics of Car inside SWCNTs and doping mechanisms elucidated by calculations based on density-functional theory indicate the difficulty of charge manipulation of molecules inside SWCNTs due to the presence of strong on-site Coulomb repulsion energy at the molecules.

  8. Single-walled carbon nanotube sensors for monitoring partial discharge induced dissociation of SF6.

    PubMed

    Jung, Sehun; Choi, Jaeboong; Kim, Youngjin; Lee, Jongchul; Chang, Yongmoo; Baik, Seunghyun

    2009-12-01

    We proposed to use a miniature single-walled carbon nanotube (SWNT) sensor, fabricated by alternating current dielectrophoresis, to detect dissociated and oxidized sulfur hexafluoride (SF6) gas species generated by partial discharge (PD) activity in a concealed chamber such as gas-insulated switchgear (GIS). The SWNT sensor did not react with pure SF6 gas but sensitively responded to the dissociated and oxidized SF6 species. Also, the SWNT sensor could be regenerated by purging with fresh air since the transduction was based on the physisorption of analytes. Therefore, the SWNT sensor is a promising device for the detection of the dissociated and oxidized SF6 species and for the monitoring of the PD activity inside GIS. PMID:19908783

  9. Structural and mechanical properties of single-wall carbon nanotube fibers

    SciTech Connect

    Pichot, V.; Albouy, P. A.; Launois, P.; Badaire, S.; Zakri, C.; Poulin, P.

    2006-12-15

    We report quantitative experimental study correlating the structure and mechanical properties of fibers made from single-walled carbon nanotubes (SWNTs) and polyvinyl alcohol (PVA). A post-synthesis solvent drawing treatment is used to vary nanotube alignment, whose detailed understanding is a prerequisite for fiber development. Quantitative analysis of nanotube alignment within the fibers with different draw ratios is performed using x-ray scattering. The method is described in detail, and we also show that the improvement of nanotube alignment with draw ratio can be understood within a model of induced orientation at constant volume. Young's modulus and tensile strength increase with nanotube alignment. This is modeled using continuum mechanics in qualitative agreement with experiment, however quantitative differences show that nanotube alignment is not the only parameter controlling the fiber mechanical properties. We suggest that interaction between the SWNTs and PVA chains should also play a significant role.

  10. Interaction of single-walled carbon nanotubes with poly(propyl ether imine) dendrimers

    SciTech Connect

    Jayamurugan, G.; Rajesh, Y. B. R. D.; Jayaraman, N.; Vasu, K. S.; Kumar, S.; Sood, A. K.; Vasumathi, V.; Maiti, P. K.

    2011-03-14

    We study the complexation of nontoxic, native poly(propyl ether imine) dendrimers with single-walled carbon nanotubes (SWNTs). The interaction was monitored by measuring the quenching of inherent fluorescence of the dendrimer. The dendrimer-nanotube binding also resulted in the increased electrical resistance of the hole doped SWNT, due to charge-transfer interaction between dendrimer and nanotube. This charge-transfer interaction was further corroborated by observing a shift in frequency of the tangential Raman modes of SWNT. We also report the effect of acidic and neutral pH conditions on the binding affinities. Experimental studies were supplemented by all atom molecular dynamics simulations to provide a microscopic picture of the dendrimer-nanotube complex. The complexation was achieved through charge transfer and hydrophobic interactions, aided by multitude of oxygen, nitrogen, and n-propyl moieties of the dendrimer.

  11. Photoinduced transient mid-infrared absorption in single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Murakami, Yoichi; Rice, William; Kono, Junichiro

    2007-03-01

    We have performed optical pump - mid-infrared (MIR) probe spectroscopy on single-walled carbon nanotubes (SWNTs). The second excitonic absorption band (E22) of (6,5) SWNTs was resonantly excited and the resulting photoinduced absorption was monitored in the MIR range (3.5 -- 5.5 ?m) in a time range up to several hundred ps. Carrageenan films containing individualized CoMoCAT SWNTs formed on sapphire substrates were used for the measurement. This sample is optically transparent in the 3.5 -- 6 ?m region, where the transition of E11 excitons from the lowest dark state (1g) to the second bright state (2u) is expected to be observed. Our preliminary data shows the existence of photoinduced absorption in the investigated range. The origin of the observed transient absorption will be discussed.

  12. Photoluminescence Imaging of Oxygen Doped Individual Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Yalcin, Sibel Ebru; Yamaguchi, Hisato; Galande, Charudatta; Crochet, Jared J.; Mohite, Aditya D.; Gupta, Gautam; Ma, Xuedan; Htoon, Han; Doorn, Stephen K.; Los Alamos National Laboratory Collaboration; Rice University Collaboration

    2014-03-01

    Semiconducting single-walled carbon nanotubes (SWNTs) are attractive candidates for near-IR optoelectronic applications. But they show low fluorescence quantum yield. Recent oxygen doping studies have shown that the quantum yield of the excitons can be enhanced by an order of magnitude due to the formation of local 0D sites on the SWNT surface. However, these studies have been limited to ensemble measurements. Understanding the dopant site, exciton migration and trapping dynamics on individual SWNTs is critical for controllably tuning the photo-physical behavior. We have studied ozonated individual (6,5) nanotubes as a function of progressive ozonation. We spatially resolved the pristine and doped state using visible and NIR sensitive cameras. We demonstrate PL imaging as a probe of the emission dynamics as a function of dopant concentration. The spectral studies show the red-shifted emission in the PL of the NTs due to the ozonated site.

  13. Chemical engineering of the single-walled carbon nanotube-nylon 6 interface.

    PubMed

    Gao, Junbo; Zhao, Bin; Itkis, Mikhail E; Bekyarova, Elena; Hu, Hui; Kranak, Verina; Yu, Aiping; Haddon, Robert C

    2006-06-14

    We report an approach to the chemical engineering of the single-walled carbon nanotube (SWNT)-polymer interfacial interaction in a nylon 6 graft copolymer composite which is based on the degree of SWNT functionality. Continuous fibers are drawn from composites fabricated from the in situ polymerization of caprolactam with SWNTs possessing a range of carboxylic acid (SWNT-COOH) and amide (SWNT-CONH(2)) functionalities. Mechanical performance evaluation of the composite fibers shows that a high concentration of the carboxylic acid functional groups leads to a stronger SWNT-nylon interfacial interaction, as reflected in greater values of the Young's modulus and mechanical strength. Replacement of the COOH group by CONH(2) in the SWNT starting material changes the grafting polymerization chemistry, thereby leading to the covalent attachment of longer graft copolymer chains to the SWNTs, and alters the composite morphology while increasing the composite flexibility and toughness. PMID:16756303

  14. A Microrheological Study of the Time Dependent Gelation of Single Wall Carbon Nanotube Suspensions.

    NASA Astrophysics Data System (ADS)

    Hough, L. A.

    2005-03-01

    Single wall carbon nanotubes (SWNTs) dispersed in water using an anionic surfactant, sodium dodecylbenzene sulfonate (NaDDBS) form reversible gels because of the bonding between the individual nanotubes (L.A. Hough, M.F. Islam, P.A. Janmey and A. G. Yodh Phys. Rev. Lett. 93, 168102 (2004)). In this talk, we present a microrheology study of the time dependence of this reversible gelation. We embed fluorescent tracer particles in SWNT suspensions and use optical microscopy tracking techniques to measure the mean-squared displacement during gelation. We then apply a time-cure superposition to obtain a master curve for the viscoelasticity that extends over several decades in frequency. We compare high frequency dynamics of the SWNTs solutions to those expected for semiflexible and rigid rod polymer systems. This work has been partially supported by the NSF through Grants DMR 00-79909 (MRSEC) and DMR-0203378, and by NASA Grant NAG8-2172.

  15. Single-Walled Carbon Nanotubes Decorated with Polypyrrole-TiO2 Nanocomposites.

    PubMed

    Radha, Gosala; Samanta, Debasis; Balakumar, Subramanian; Mandal, Asit Baran; Jaisankar, Sellamuthu N

    2015-05-01

    Nanomaterials decorated with polypyrrole were synthesized using two types of oxidants by chemical oxidative polymerization method. The interaction and influence of the addition of single-walled carbon nanotubes (SWCNTs) and titanium dioxide (TiO2) nanoparticles in polypyrrole (PPy) were studied using Fourier transform infrared spectroscopy and Raman spectroscopy. Thermal stability has been observed by using thermogravimetric analysis. Electrochemical properties were calculated by using Cyclic Voltammetry to study comparative analysis between samples. Particle size measurements and morphology were determined by Field emission transmission electron microscopy. All the nanocomposites exhibit better thermal and electrochemical properties than native polymer. The size of the polypyrrole particles were in the range of 50 nm to 60 nm. PMID:26505018

  16. Induced hydroelectric energy generated by compressing a single-walled carbon nanotube hydrogel

    NASA Astrophysics Data System (ADS)

    Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Hashishin, Takeshi; Ohara, Satoshi

    2014-07-01

    Using single-walled carbon nanotubes (SWCNTs) for energy harvesting and storage have attracted much attention recently because SWCNTs have supercapacity performance. In this paper, we report a simple electromechanical approach for the generation of induced electrical potential by the compression of a SWCNT-triggered sodium deoxycholate hydrogel. This hydrogel enhances the electrical potential generated under compression, and this is mainly because of the generation of hydroelectric power by the flow of water over the SWCNTs. The induced voltage was 63.1 mV upon the compression of a 4% SWCNT hydrogel to a compression ratio of 50%, which is superior to values reported previously. The enhancement in hydroelectric potential increased with SWCNT loading in the hydrogel and with the compression ratio because of an enhancement of the impact frequency between water molecules and the SWCNTs.

  17. Effect of parametric variation on the performance of single wall carbon nanotube based field effect transistor

    NASA Astrophysics Data System (ADS)

    Kumar, Avshish; Husain, Mubashshir; Khan, Ayub; Husain, Mushahid

    2014-11-01

    The effects of dielectric constant and gate insulator thickness on the performance of single wall carbon nanotube field effect transistors (CNTFETs) have been analyzed using a mathematical model based on FETToy simulator. Both the parameters are found to have significant effect on the device performance, particularly the on-current; while the on-current (ION) increases on scaling down the gate oxide thickness, the level of leakage current (IOFF) is not considerably affected. This is an advantage of CNTFET over conventional MOSFETs where the thickness of thin oxide layer causes drastic increase in gate leakage current. Our analysis results show that thinner gate oxide and larger CNT improve the performance of CNTFETs. Therefore, the performance of our simulated CNTFETs using this model has clear lead over those of conventional MOSFETs.

  18. Photophysical properties of zinc phthalocyanine-uridine single walled carbon nanotube--conjugates.

    PubMed

    Ogbodu, Racheal O; Amuhaya, Edith K; Mashazi, Philani; Nyokong, Tebello

    2015-10-01

    The photophysical properties of the conjugate of uridine and zinc mono carboxy phenoxy phthalocyanine (ZnMCPPc-uridine, 4) are reported in this work. The conjugate was also adsorbed onto single walled carbon nanotubes (ZnMCPPc-uridine-SWCNT, 5). The X-ray photoelectron spectroscopy of 4 showed three N 1s peaks while that of 5 showed four N 1s peak, a new peak at 399.4 eV of 5 was assigned to pyrrolidonic nitrogen, due to the interaction of the pyrrolic nitrogen of 4 with the oxygen moiety of SWCNT-COOH in 5. The triplet lifetime, triplet and singlet oxygen quantum yields of the zinc mono carboxy phenoxy phthalocyanine increased by over 40% in the presence of uridine. SWCNTs resulted in only a small quenching of the triplet state parameters of 4. PMID:25965170

  19. Laser images recording on aerosol-synthesized single-walled carbon nanotube films

    NASA Astrophysics Data System (ADS)

    Mikheev, G. M.; Mikheev, K. G.; Anoshkin, I. V.; Nasibulin, A. G.

    2015-09-01

    It is shown that images on semitransparent conducting films of aerosol-synthesized single-walled carbon nanotubes (SWCNTs) can be recorded using focused low-power radiation of a He-Ne laser operating at a wavelength of 632.8 nm. Both free-standing films and those deposited on glass or polymer substrates can be used. Laser recording of images on the polymer-supported films is possible due to their transparency increased as a result of chemical reactions between iron nanoparticles encapsulated in SWCNTs and the products of local thermal decomposition of the polymer. Recording on the free-standing SWCNT films and those supported on glass substrates was performed upon acid treatment of the film surface.

  20. Single-walled carbon nanotube transistors fabricated by advanced alignment techniques utilizing CVD growth and dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Kim, S.; Xuan, Y.; Ye, P. D.; Mohammadi, S.; Lee, S. W.

    2008-08-01

    Single-walled carbon nanotube field effect transistors (SWNT-FETs) are fabricated by two different alignment techniques. The first technique is based on direct synthesis of an aligned SWNTs array on quartz wafer using chemical vapor deposition. The transistor with three SWNTs and atomic layer deposited (ALD) Al2O3 gate oxide shows a contact resistance of 280 K?, a maximum on-current of -7 ?A, and a high Ion/Ioff ratio (>103). The second technique is based on room temperature self-assembly of SWNT bundles using dielectrophoresis. By applying AC electric fields, we have aligned nanotube bundles between drain and source contact patterns of a transistor at room temperature. Transistors based on twisted bundle of SWNTs show high contact resistance (M? range) and low current drive in the order of tens of nA.

  1. Hierarchical morphology of carbon single-walled nanotubes during sonication in an aliphatic diamine

    SciTech Connect

    Brown, Janis M.; Anderson, David P.; Justice, Ryan S.; Lafdi, Khalid; Belfor, Max; Strong, Karla L.; Schaefer, Dale W.

    2010-07-13

    Dispersion of single-walled carbon nanotubes (SWNTs) by sonication into diamine curing agents is studied as a means to improve the dispersion of SWNTs in cured epoxy. Cured and uncured specimens are analyzed by light microscopy, electron microscopy, light scattering (LS), ultra small-angle X-ray scattering (USAXS), electrical conductivity and Raman spectroscopy. A flexible diamine (D2000) forms a stable SWNT suspension leading to good homogeneity in both the diamine and the cured epoxy. High resolution transmission electron microscopy (TEM) shows that small ropes of SWNTs (mostly under 15 nm) are present despite the sample's visual homogeneity. Further morphological investigation of cured and uncured D2000 resins using light and small-angle X-ray scattering indicates that the SWNTs are networked into fractal clusters that electrically percolate at low SWNTs loadings (0.05 wt%).

  2. On the Interfacial Properties of Polymers/Functionalized Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Ajori, S.

    2016-03-01

    Molecular dynamics (MD) simulations is used to study the adsorption of polyethylene (PE) and poly(ethylene oxide) (PEO) on the functionalized single-walled carbon nanotubes (SWCNTs). The effects of functionalization factor weight percent on the interaction energies of polymer chains with nanotubes are studied. Besides, the influences of different functionalization factors on the SWCNT/polymer interactions are investigated. It is shown that for both types of polymer chains, the largest interaction energies associates with the random O functionalized nanotubes. Besides, increasing temperature results in increasing the nanotube/polymer interaction energy. Considering the final shapes of adsorbed polymer chains on the SWCNTs, it is observed that the adsorbed conformations of PE chains are more contracted than those of PEO chains.

  3. Interaction of [FeFe]-hydrogenases with single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Svedruzic Chang, Drazenka; McDonald, Timothy J.; Kim, Yong-Hyun; Blackburn, Jeffrey L.; Heben, Michael J.; King, Paul W.

    2007-09-01

    Single-walled carbon nanotubes (SWNT) are promising candidates for use in energy conversion devices as an active photo-collecting elements, for dissociation of bound excitons and charge-transfer from photo-excited chromophores, or as molecular wires to transport charge. Hydrogenases are enzymes that efficiently catalyze the reduction of protons from a variety of electron donors to produce molecular hydrogen. Hydrogenases together with SWNT suggest a novel biohybrid material for direct conversion of sunlight into H II. Here, we report changes in SWNT optical properties upon addition of recombinant [FeFe] hydrogenases from Clostridium acetobutylicum and Chlamydomonas reinhardtii. We find evidence that novel and stable charge-transfer complexes are formed under conditions of the hydrogenase catalytic turnover, providing spectroscopic handles for further study and application of this hybrid system.

  4. Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes.

    PubMed

    Chernov, Alexander I; Fedotov, Pavel V; Talyzin, Alexandr V; Suarez Lopez, Inma; Anoshkin, Ilya V; Nasibulin, Albert G; Kauppinen, Esko I; Obraztsova, Elena D

    2013-07-23

    We report the photoluminescence (PL) from graphene nanoribbons (GNRs) encapsulated in single-walled carbon nanotubes (SWCNTs). New PL spectral features originating from GNRs have been detected in the visible spectral range. PL peaks from GNRs have resonant character, and their positions depend on the ribbon geometrical structure in accordance with the theoretical predictions. GNRs were synthesized using confined polymerization and fusion of coronene molecules. GNR@SWCNTs material demonstrates a bright photoluminescence both in infrared (IR) and visible regions. The photoluminescence excitation mapping in the near-IR spectral range has revealed the geometry-dependent shifts of the SWCNT peaks (up to 11 meV in excitation and emission) after the process of polymerization of coronene molecules inside the nanotubes. This behavior has been attributed to the strain of SWCNTs induced by insertion of the coronene molecules. PMID:23795665

  5. Directed Assembly of End-Functionalized Single Wall Carbon Nanotube Segments.

    PubMed

    Penzo, Erika; Palma, Matteo; Wang, Risheng; Cai, Haogang; Zheng, Ming; Wind, Shalom J

    2015-10-14

    A key impediment to the implementation of a nanoelectronics technology based on single wall carbon nanotubes (SWCNTs) is the inability to arrange them in a manner suitable for integration into complex circuits. As a step toward addressing this problem, we explore the binding of fixed-length, end-functionalized SWCNT segments to lithographically defined nanoscale anchors, such that individual SWCNTs can be placed with control over position and orientation. Both monovalent and bivalent bindings are explored using covalent and noncovalent binding chemistries. Placement efficiency is assessed in terms of overall yield of SWCNT binding, as well as binding specificity and the degree of nonspecific binding. Placement yields as high as 93% and 79% are achieved, respectively, for covalent binding and for binding through DNA hybridization. Orientational control of the SWCNT segments is achieved with 95% and 51% efficiency for monovalent and bivalent bindings, respectively. This represents a new approach that could pave the way toward complex SWCNT devices and circuits. PMID:26340414

  6. Single-walled carbon nanotube film-silicon heterojunction radioisotope betavoltaic microbatteries

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Chang, Yiyang; Zhang, Jinwen

    2014-05-01

    Ever since the appearance of nanomaterials and nanotechnologies, they have been used in almost every type of microbattery except for nuclear ones. Here we present a radioisotope betavoltaic (BV) microbattery based on a single-walled carbon nanotube (SWCNT) film that acts as a carrier separator. SWCNT film also provides a shortcut for carrier transportation. The energy conversion efficiency of a BV microbattery can reach up to 0.15% after the subtraction of the energy loss of beta particles in air and SWCNT film, proving that the SWCNT film-silicon heterojunction presents a promising configuration suitable for use in radioisotope BV microbatteries. Tracing the particle route, we achieved a charge collection rate of 59.9%, indicating that our device could potentially achieve higher performance. Primary strategies to improve the performance of the BV microbattery are discussed.

  7. Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes

    SciTech Connect

    Tsetseris, Leonidas; Pantelides, Sokrates T

    2009-01-01

    Point defects play a role in the functionalization, chemical activation, carrier transport, and nano-engineering of graphitic systems. Here, we use first-principles calculations to describe several processes that alter the properties of graphene and single-wall carbon nanotubes (SWCNTs) in the presence of self-interstitials (SI's). We find that, while two or four SI's are stabilized in hillock-like structures that stay idle unless the system is heated to very high temperatures, clustering of three C adatoms leads to the formation of mobile protrusions on graphene and large enough SWCNTs. For different SI concentrations and SWCNT size, the interplay between mobile and immobile species may favor one of the two competing processes, self-healing or formation of adatom superstructures.

  8. Thermal vibration of single-walled carbon nanotubes with quantum effects

    PubMed Central

    Wang, Lifeng; Hu, Haiyan

    2014-01-01

    The thermal vibration of a single-walled carbon nanotube (SWCNT) is investigated by using the models of Euler beam and Timoshenko beam with quantum effects taken into consideration when the law of energy equipartition is unreliable. The relation between temperature and the root of mean-squared (RMS) amplitude of thermal vibration at any cross section of the SWCNT is derived via the beam models in simply supported case and cantilevered case. The RMS amplitude of thermal vibration of SWCNT predicted by using Timoshenko beam is higher than that predicted by using Euler beam. The RMS amplitude of thermal vibration of an SWCNT predicted by the quantum theory is lower than that predicted by the law of energy equipartition. The quantum effect is more important for the thermal vibration of an SWCNT in the cases of higher-order modes, short length and low temperature. PMID:25104907

  9. Non-radiative Exciton Decay in Single-walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Harrah, Mark; Swan, Anna

    2010-03-01

    Experiments have shown step-wise changes in the fluorescence intensity from single-walled carbon nanotubes [1,2]. It has been proposed that the underlying mechanism for the step-wise changes is diffusion-limited quenching of excitons at defects [1]. This property has been used to demonstrate single-molecule detection for biological applications [3]. We perform a Monte-Carlo simulation of nanotube fluorescence with a diffusion-limited quenching model. The fluorescence intensity is seen to depend on the mean-square distance between defects, implying a nonlinear dependence on the number of defects. The intensity for consecutive defect counts can overlap depending on the positions of the defects. [4pt] [1] Cognet, L. et al. Science 316, 1465-1468 (2007).[0pt] [2] Jin, H. et al. Nano Lett. 8, 4299-4304 (2008).[0pt] [3] Heller, D. A. et al. Nature Nanotech. 4, 114-120 (2009).

  10. Electrical properties of single-wall carbon nanotube-polymer composite films

    NASA Astrophysics Data System (ADS)

    Kymakis, Emmanuel; Amaratunga, Gehan A. J.

    2006-04-01

    The electrical properties of single-walled carbon nanotubes (SWNTs) embedded in a poly(3-octylthiophene) matrix have been investigated as a function of SWNT concentration. The electrical conductivity and its temperature dependence were measured as a function of the SWNT concentration. As the nanotube concentration increased from 0 to 20 wt %, the conductivity of the resulting films is dramatically increased by six orders of magnitude. The enhancement in conductivity can be explained by means of a three dimension simple percolation path theory, resulting in an estimated threshold of 4 wt %. The temperature dependence of the SWNT conductivity mat obeys a three-dimensional variable range hopping. In contrast, the polymer-nanotube composite conductivity follows a fluctuation induced tunneling model. The main divergence is that in the polymer-nanotube composite, the nanotubes are coated with polymer, which acts a barrier in bundle to bundle hopping.

  11. Novel Materials Containing Single-Wall Carbon Nanotubes Wrapped in Polymer Molecules

    NASA Technical Reports Server (NTRS)

    Smalley, Richard E.; O'Connell, Michael J.; Smith, Kenneth; Colbert, Daniel T.

    2009-01-01

    In this design, single-wall carbon nanotubes (SWNTs) have been coated in polymer molecules to create a new type of material that has low electrical conductivity, but still contains individual nanotubes, and small ropes of individual nanotubes, which are themselves good electrical conductors and serve as small conducting rods immersed in an electrically insulating matrix. The polymer is attached through weak chemical forces that are primarily non-covalent in nature, caused primarily through polarization rather than the sharing of valence electrons. Therefore, the electronic structure of the SWNT involved is substantially the same as that of free, individual (and small ropes of) SWNT. Their high conductivity makes the individual nanotubes extremely electrically polarizable, and materials containing these individual, highly polarizable molecules exhibit novel electrical properties including a high dielectric constant.

  12. Investigation of Aromatic/Aliphatic Polyimides as Dispersants for Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delozier, Donavon M.; Watson, Kent A.; Smith, Joseph G., Jr.; Clancy, Thomas C.; Connell, John W.

    2006-01-01

    Novel aromatic/aliphatic polyimides were prepared from 2,7-diamino-9,9'- dioctylfluorene (AFDA) and aromatic dianhydrides. Upon investigating the effectiveness of these polyimides for dispersing single wall carbon nanotubes (SWNTs) in solution, three were discovered to disperse SWNTs in N,N-dimethylacetamide (DMAc). Two of these polyimides, one from 3,3',4,4'-oxydiphthalic anhydride (ODPA) and one from symmetric 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA), were used to prepare nanocomposites. Homogeneous polyimide/SWNT suspensions from both polymers were used in the preparation of films and fibers containing up to 1 wt% SWNTs. The samples were thermally treated to remove residual solvent and the films were characterized for SWNT dispersion by optical and high resolution scanning electron microscopy (HRSEM). Electrical and mechanical properties of the films were also determined. Electrospun fibers were examined by HRSEM to characterize SWNT alignment and orientation.

  13. Atomic configuration of nitrogen-doped single-walled carbon nanotubes.

    PubMed

    Arenal, Raul; March, Katia; Ewels, Chris P; Rocquefelte, Xavier; Kociak, Mathieu; Loiseau, Annick; Stphan, Odile

    2014-10-01

    Having access to the chemical environment at the atomic level of a dopant in a nanostructure is crucial for the understanding of its properties. We have performed atomically resolved electron energy-loss spectroscopy to detect individual nitrogen dopants in single-walled carbon nanotubes and compared with first-principles calculations. We demonstrate that nitrogen doping occurs as single atoms in different bonding configurations: graphitic-like and pyrrolic-like substitutional nitrogen neighboring local lattice distortion such as Stone-Thrower-Wales defects. We also show that the largest fraction of nitrogen amount is found in poly aromatic species that are adsorbed on the surface of the nanotube walls. The stability under the electron beam of these nanotubes has been studied in two different cases of nitrogen incorporation content and configuration. These findings provide key information for the applications of these nanostructures. PMID:25157857

  14. Optical characterization of highly conductive single-wall carbon-nanotube transparent electrodes

    NASA Astrophysics Data System (ADS)

    Barnes, T. M.; van de Lagemaat, J.; Levi, D.; Rumbles, G.; Coutts, T. J.; Weeks, C. L.; Britz, D. A.; Levitsky, I.; Peltola, J.; Glatkowski, P.

    2007-06-01

    We report on a complete characterization of the optical dispersion properties of conducting thin films of single-wall carbon nanotubes (SWCNTs). The films studied exhibit sheet resistances between 50 and 1000?/sq and optical transparencies between 65% and 95% on glass and quartz substrates. These films have the potential to replace transparent conducting oxides in applications such as photovoltaics and flat-panel displays; however, their optical properties are not sufficiently well understood. The SWCNT films are shown to be hole conductors, potentially enabling their use as hole-selective contacts and allowing alternative device designs. The fundamental optical, morphological, and electrical characteristics of the films are presented here, and a phenomenological optical model that accurately describes the optical behavior of the films is introduced. Particular attention is paid to ellipsometry measurements and thorough evaluation of the reflection and absorption spectra of the films.

  15. Extinction properties of single-walled carbon nanotubes: Two-fluid model

    SciTech Connect

    Moradi, Afshin

    2014-03-15

    The extinction spectra of a single-walled carbon nanotube are investigated, within the framework of the vector wave function method in conjunction with the hydrodynamic model. Both polarizations of the incident plane wave (TE and TM with respect to the x-z plane) are treated. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of a two-dimensional electron gas represented by two interacting fluids, which takes into account the different nature of the σ and π electrons. Numerical results show that strong interaction between the fluids gives rise to the splitting of the extinction spectra into two peaks in quantitative agreement with the π and σ + π plasmon energies.

  16. Dissociation of electrolytes in a nano-aqueous system within single-wall carbon nanotubes.

    PubMed

    Zhang, M; Yudasaka, M; Iijima, S

    2005-04-01

    Research on material incorporation within single-wall carbon nanotubes (SWNTs) through aqueous solutions of various electrolytes is performed for the purpose of providing a foundation for future application of SWNTs to, for example, drug delivery systems. We have determined that the optical spectra of SWNTs were significantly affected when SWNTs that had opened holes or removed caps were treated through immersion in an aqueous solution of electrolytes, followed by drying at room temperature; however, the spectra of SWNTs without opened holes or removed caps were not subjected to such treatment. We infer that when the sucked solutions remained inside the tubes, even after drying (the nano-aqueous system), the electrolyte was dissociated into ions, which was likely to change the electronic states of SWNTs. On the other hand, when the SWNTs were well-dried under vacuum, no remarkable changes in their optical spectra were observed. PMID:16851661

  17. Charge trapping in aligned single-walled carbon nanotube arrays induced by ionizing radiation exposure

    SciTech Connect

    Esqueda, Ivan S.; Cress, Cory D.; Che, Yuchi; Cao, Yu; Zhou, Chongwu

    2014-02-07

    The effects of near-interfacial trapping induced by ionizing radiation exposure of aligned single-walled carbon nanotube (SWCNT) arrays are investigated via measurements of gate hysteresis in the transfer characteristics of aligned SWCNT field-effect transistors. Gate hysteresis is attributed to charge injection (i.e., trapping) from the SWCNTs into radiation-induced traps in regions near the SWCNT/dielectric interface. Self-consistent calculations of surface-potential, carrier density, and trapped charge are used to describe hysteresis as a function of ionizing radiation exposure. Hysteresis width (h) and its dependence on gate sweep range are investigated analytically. The effects of non-uniform trap energy distributions on the relationship between hysteresis, gate sweep range, and total ionizing dose are demonstrated with simulations and verified experimentally.

  18. Localization of the electronic excitations in single-walled carbon nanotubes with embedded line impurities

    NASA Astrophysics Data System (ADS)

    Komorowski, P. G.; Cottam, M. G.

    2016-01-01

    A matrix operator formalism is used to study the excitations in long, single-walled carbon nanotubes with the dynamic electronic properties described by a tight-binding model where the interactions between atoms take place via nearest-neighbour hopping. Defects in the form of substitutional impurity atoms are introduced to study the localized electronic modes of the nanotube as well as the propagating modes of the pure (host) material. The impurities are assumed to have the form of one or more line defects parallel to the nanotube axis. Two geometric configurations are investigated corresponding to the longitudinal axis of the nanotube being parallel to either a zigzag or an armchair direction of the graphene lattice. A tridiagonal matrix technique is employed to solve the electronic operator equations that provide a description of the frequencies of the discrete modes of the system and their spatial amplitudes. Numerical examples are presented for different nanotube diameters and spatial configurations of the impurity lines.

  19. Molecular interactions on single-walled carbon nanotubes revealed by high-resolution transmission microscopy

    PubMed Central

    Umeyama, Tomokazu; Baek, Jinseok; Sato, Yuta; Suenaga, Kazu; Abou-Chahine, Fawzi; Tkachenko, Nikolai V.; Lemmetyinen, Helge; Imahori, Hiroshi

    2015-01-01

    The close solid-state structure–property relationships of organic π−aromatic molecules have attracted interest due to their implications for the design of organic functional materials. In particular, a dimeric structure, that is, a unit consisting of two molecules, is required for precisely evaluating intermolecular interactions. Here, we show that the sidewall of a single-walled carbon nanotube (SWNT) represents a unique molecular dimer platform that can be directly visualized using high-resolution transmission electron microscopy. Pyrene is chosen as the π−aromatic molecule; its dimer is covalently linked to the SWNT sidewalls by aryl addition. Reflecting the orientation and separation of the two molecules, the pyrene dimer on the SWNT exhibits characteristic optical and photophysical properties. The methodology discussed here—form and probe molecular dimers—is highly promising for the creation of unique models and provides indispensable and fundamental information regarding molecular interactions. PMID:26173983

  20. Molecular interactions on single-walled carbon nanotubes revealed by high-resolution transmission microscopy.

    PubMed

    Umeyama, Tomokazu; Baek, Jinseok; Sato, Yuta; Suenaga, Kazu; Abou-Chahine, Fawzi; Tkachenko, Nikolai V; Lemmetyinen, Helge; Imahori, Hiroshi

    2015-01-01

    The close solid-state structure-property relationships of organic π-aromatic molecules have attracted interest due to their implications for the design of organic functional materials. In particular, a dimeric structure, that is, a unit consisting of two molecules, is required for precisely evaluating intermolecular interactions. Here, we show that the sidewall of a single-walled carbon nanotube (SWNT) represents a unique molecular dimer platform that can be directly visualized using high-resolution transmission electron microscopy. Pyrene is chosen as the π-aromatic molecule; its dimer is covalently linked to the SWNT sidewalls by aryl addition. Reflecting the orientation and separation of the two molecules, the pyrene dimer on the SWNT exhibits characteristic optical and photophysical properties. The methodology discussed here—form and probe molecular dimers—is highly promising for the creation of unique models and provides indispensable and fundamental information regarding molecular interactions. PMID:26173983