Science.gov

Sample records for metallised polymer film

  1. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  2. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  3. Ar plasma treated and Al metallised polycarbonate: a XPS, mass spectroscopy and SFM study

    NASA Astrophysics Data System (ADS)

    Seidel, C.; Kopf, H.; Gotsmann, B.; Vieth, T.; Fuchs, H.; Reihs, K.

    1999-08-01

    Ar plasma etched and Al metallised bisphenol A carbonate was analysed by mass spectroscopy, photoelectron spectroscopy (XPS), and scanning force microscopy (SFM). We mainly used a technical polymer (Makrolon 2808, Bayer) made by injection-moulding, as well as spin coated bisphenol A carbonate ( n=1) and polycarbonate (PC) ( n=115). The mass spectroscopy during the etching process shows the degradation of the PC in the form of carbon monoxide, carbon dioxide and methyl groups. The photoelectron spectroscopy shows in detail the surface modification after Ar plasma treatment and metallisation. The plasma induces a reduction of the carboxylic carbon (C 1s), a strong reduction of singly bonded oxygen (O 1s) and also a slight reduction of doubly bonded oxygen. After Al metallisation, a reaction of Al with the oxygen groups and an interaction with the aromatic system is documented. Ar plasma etching increases the chemical interaction of Al mainly with the aromatic carbon. The X-ray photoelectron spectroscopy of metallised PC under different initial conditions shows a strong influence of incorporated water in the PC bulk that cannot be seen by XPS on uncoated PC. The O 1s signal increases during metallisation and results in an oxidation of Al probably caused by the fact that the hydrophobic surfaces becomes hydrophillic. Temperature-dependent XPS was done on technical PC samples and on spin coated samples ( n=1, n=115) and supports the influence of the bulk state for the Al-PC interface. For n=1 carbonate, a diffusion of Al into the PC volume was observed. The SFM measurements showed a roughening effect on the nanometer scale even after short treatment times. Al can be seen as a weakly bound cluster on the virgin PC, and if a pre-etching is done, Al seems to grow as a good wetting film. The adhesion force of Al films on PC without any influence of the volume can be explained by the chemical bonding of Al to the carboxylic and aromatic systems. The adhesion can be increased

  4. Thin film-coated polymer webs

    DOEpatents

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  5. Polymer film composite transducer

    DOEpatents

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  6. Acid diffusion through polymer films

    NASA Astrophysics Data System (ADS)

    Zhang, P. Linda; Eckert, Andrew R.; Willson, C. Grant; Webber, Stephen E.; Byers, Jeffrey D.

    1997-07-01

    In order to perform 0.2 micrometer processes, one needs to study the diffusion of photoacid generators within the photoresist system, since diffusion during post exposure bake time has an influence on the critical dimension (CD). We have developed a new method to study the diffusion of photoacid generators within a polymer film. This new method is based on monitoring the change of the fluorescence intensity of a pH- sensitive fluorescent dye caused by the reaction with photoacid. A simplified version of this experiment has been conducted by introducing acid vapor to quench the fluorescence intensity of this pH sensor. A thin polymer film is spin cast onto the sensor to create a barrier to the acid diffusion process. During the acid diffusion process, the fluorescence intensity of this pH sensor is measured in situ, using excitation and emission wavelengths at 466 nm and 516 nm, respectively. Fluoresceinamine, the pH sensitive fluorescent dye, is covalently bonded onto the treated quartz substrate to form a single dye layer. Poly(hydroxystyrene) (Mn equals 13k, Tg equals 180 degrees Celsius) in PGMEA (5% - 18% by weight) is spin cast onto this quartz substrate to form films with varying thickness. The soft bake time is 60 seconds at 90 degrees Celsius and a typical film has a thickness of 1.4 micrometers. Trifluoroacetic acid is introduced into a small chamber while the fluorescence from this quartz window is observed. Our study focuses on finding the diffusion constant of the vaporized acid (trifluoroacetic acid) in the poly(hydroxystyrene) polymer film. By applying the Fick's second law, (It - Io)/(I(infinity ) - Io) equals erfc [L/(Dt)1/2] is obtained. The change of fluorescence intensity with respect to the diffusion time is monitored. The above equation is used for the data analysis, where L represents the film thickness and t represents the average time for the acid to diffuse through the film. The diffusion constant is calculated to be at the order of 10

  7. Preparation of patterned ultrathin polymer films.

    PubMed

    Yang, Huige; Su, Meng; Li, Kaiyong; Jiang, Lei; Song, Yanlin; Doi, Masao; Wang, Jianjun

    2014-08-12

    Though patterned ultrathin polymer films (<100 nm) are of great importance in the fields of sensors and nanoelectronic devices, the fabrication of patterned ultrathin polymer films remains a great challenge. Herein, patterned ultrathin polymer films are fabricated facilely on hydrophobic substrates with different hydrophilic outline patterns by the pinning of three-phase contact lines of polymer solution on the hydrophilic outlines. This method is universal for most of the water-soluble polymers, and poly(vinyl alcohol) (PVA) has been selected as a model polymer due to its biocompatibility and good film-forming property. The results indicate that the morphologies of ultrathin polymer films can be precisely adjusted by the size of the hydrophilic outline pattern. Specifically, patterned hydrophilic outlines with sizes of 100, 60, and 40 μm lead to the formation of concave-shaped ultrathin PVA films, whereas uniform ultrathin PVA films are formed on 20 and 10 μm patterned substrates. The controllabilities of morphologies can be interpreted through the influences of the slip length and coffee ring effect. Theoretical analysis shows that when the size of the hydrophilic outline patterns is smaller than a critical value, the coffee ring effect disappears and uniform patterned ultrathin polymer films can be formed for all polymer concentrations. These results provide an effective methodology for the fabrication of patterned ultrathin polymer films and enhance the understanding of the coffee ring effect. PMID:25066958

  8. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  9. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  10. Liquid film/polymer interfaces

    SciTech Connect

    Allara, David L.

    2003-06-12

    The objectives were: (1) Through experimental studies, advance the fundamental understanding of the principles that govern adsorption and wetting phenomena at polymer and organic surfaces. (2) Establish a firm scientific basis for improving the design of coatings for metal fin cooling surfaces used to control the wetting of water condensate for optimum energy efficiency. Several important findings were: (1) water adsorbed at hydrophobic surfaces has a liquid-like structure, in contrast to the generally held view of an ordered structure; (2) Correlations of large amounts of contact angle wetting data of grafted alkyl chain compounds showed a distinct link between the contact angle and the conformational ordering of the chains; (3) water adsorption at long chain alkysiloxane films showed a strong pH dependence on the film stability, which can be attributed to interfacial chemical effects on the siloxane network.

  11. High temperature polymer dielectric film insulation

    NASA Technical Reports Server (NTRS)

    Jones, Robert J.

    1994-01-01

    PFPI polymers were invented in the late 1970's. Assessment of emerging requirements has dictated that 300 C performance is the goal for next generation wire insulation. TRW PFPI as superior 300 C polymer candidates is presented. Included is a comparison of promising PFPI film properties with Kapton. Also included are the promising bulk polymer or coating properties.

  12. Spray forming polymer membranes, coatings and films

    DOEpatents

    McHugh, K.M.; Watson, L.D.; McAtee, R.E.; Ploger, S.A.

    1993-10-12

    A method is described for forming a polymer film having controlled physical and chemical characteristics, wherein a plume of nebulized droplets of a polymer or polymer precursor is directed toward a substrate from a converging/diverging nozzle having a throat at which the polymer or a precursor thereof is introduced and an exit from which the nebulized droplets of the polymer or precursor thereof leave entrained in a carrier gas. Relative movement between the nozzle and the substrate is provided to form a polymer film. Physical and chemical characteristics can be controlled by varying the deposition parameters and the gas and liquid chemistries. Semipermeable membranes of polyphosphazene films are disclosed, as are a variety of other polymer systems, both porous and non-porous. 4 figures.

  13. Spray forming polymer membranes, coatings and films

    DOEpatents

    McHugh, Kevin M.; Watson, Lloyd D.; McAtee, Richard E.; Ploger, Scott A.

    1993-01-01

    A method of forming a polymer film having controlled physical and chemical characteristics, wherein a plume of nebulized droplets of a polymer or polymer precursor is directed toward a substrate from a converging/diverging nozzle having a throat at which the polymer or a precursor thereof is introduced and an exit from which the nebulized droplets of the polymer or precursor thereof leave entrained in a carrier gas. Relative movement between the nozzle and the substrate is provided to form a polymer film. Physical and chemical characteristics can be controlled by varying the deposition parameters and the gas and liquid chemistries. Semipermeable membranes of polyphosphazene films are disclosed, as are a variety of other polymer systems, both porous and non-porous.

  14. Polymer-assisted deposition of films

    DOEpatents

    McCleskey, Thomas M.; Burrell; Anthony K.; Jia; Quanxi; Lin; Yuan

    2009-10-20

    A polymer assisted deposition process for deposition of metal oxide films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films and the like. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  15. Polymer-assisted deposition of films

    DOEpatents

    McCleskey, Thomas M.; Burrell, Anthony K.; Jia, Quanxi; Lin, Yuan

    2008-04-29

    A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  16. Polymer-assisted deposition of films

    DOEpatents

    McCleskey,Thomas M.; Burrell,Anthony K.; Jia,Quanxi; Lin,Yuan

    2012-02-28

    A polymer assisted deposition process for deposition of metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be conformal on a variety of substrates including non-planar substrates. In some instances, the films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  17. Supramolecular structure of electroactive polymer thin films

    NASA Astrophysics Data System (ADS)

    Kornilov, V. M.; Lachinov, A. N.; Karamov, D. D.; Nabiullin, I. R.; Kul'velis, Yu. V.

    2016-05-01

    This paper presents the results of an experimental investigation of the supramolecular structure of polydiphenylenephthalide thin films that exhibit effects of resistive switching. The supramolecular structure of the polymer has been investigated using small-angle neutron scattering in conjunction with atomic force microscopy. It has been found that the internal structure of polymer films consists of structural elements in the form of spheroids. The sizes of the structural elements, which were obtained from the neutron scattering data and analysis of the atomic force microscopy images, correlate well with each other. A model of the formation of polymer layers has been proposed. The observed structural elements in polymer films are formed due to the association of macromolecules in the initial polymer solution.

  18. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, Israel; Gottesfeld, Shimshon; Sabatani, Eyal

    1992-01-01

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventioonally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

  19. Morphology in electrochemically grown conducting polymer films

    DOEpatents

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1992-04-28

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol. 2 figs.

  20. Contact cleaning of polymer film solar reflectors

    NASA Astrophysics Data System (ADS)

    Sansom, Christopher; Fernández-García, Aránzazu; Sutter, Florian; Almond, Heather; King, Peter

    2016-05-01

    This paper describes the accelerated ageing of polymer film reflecting surfaces under the conditions to be found during contact cleaning of Concentrating Solar Power (CSP) collectors in the presence of dust and sand particles. In these situations, contact cleaning using brushes and water is required to clean the reflecting surfaces. Whilst suitable for glass reflectors, this paper discusses the effects of existing cleaning processes on the optical and visual properties of polymer film surfaces, and then describes the development of a more benign but effective contact cleaning process for cleaning polymer reflectors. The effects of a range of cleaning brushes are discussed, with and without the presence of water, in the presence of sand and dust particles from selected representative locations. Reflectance measurements and visual inspection shows that a soft cleaning brush with a small amount of water can clean polymer film reflecting surfaces without inflicting surface damage or reducing specular reflectance.

  1. Mesoscale morphologies in polymer thin films.

    SciTech Connect

    Ramanathan, M.; Darling, S. B.

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  2. Patterned cholesteric liquid crystal polymer film.

    PubMed

    Hsu, Wei-Liang; Ma, Ji; Myhre, Graham; Balakrishnan, Kaushik; Pau, Stanley

    2013-02-01

    Herein, the ability to create arbitrarily patterned circular polarized optical devices is demonstrated by using cholesteric liquid crystal polymer. Photoalignment with polarized ultraviolet light is utilized to create aligned cholesteric liquid crystal films. Two different methods, thermal annealing and solvent rinse, are utilized for patterning cholesteric liquid crystal films over large areas. The patterned cholesteric liquid crystal films are measured using a Mueller matrix imaging polarimeter, and the polarization properties, including depolarization index, circular diattenuation (CD), and circular retardance are derived. Patterned nonlinearly polarized optical devices can be fabricated with feature sizes as small as 20 μm with a CD of 0.812±0.015. Circular polarizing filters based on polymer cholesteric liquid crystal films have applications in three-dimensional displays, medical imaging, polarimetry, and interferometry. PMID:23456060

  3. Antimicrobial polymer films for food packaging

    NASA Astrophysics Data System (ADS)

    Concilio, S.; Piotto, S.; Sessa, L.; Iannelli, P.; Porta, A.; Calabrese, E. C.; Galdi, M. R.; Incarnato, L.

    2012-07-01

    New antimicrobial polymeric systems were realized introducing new antimicrobial azo compounds in PP and LDPE matrices. The polymeric materials containing different percentage of azo compounds were mold-casted and the obtained film were tested in vitro against Gram+ and Gram- bacteria and fungi. These results hold promise for the fabrication of bacteria-resistant polymer films by means of simple melt processing with antimicrobial azo-dyes.

  4. Oriented thin films of perylenetetracarboxylic diimide on frictiontransferred polymer films

    NASA Astrophysics Data System (ADS)

    Tanigaki, Nobutaka; Heck, Claire; Mizokuro, Toshiko

    Perylenetetracarboxylic diimide (PTCDI) is a promising material for application in organic electronics. In this study we report on the preparation of oriented thin films of PTCDI on the surface of oriented polymer substrates, which were prepared by friction transfer method. Two polymers, poly(tetrafluoroethylene) (PTFE) and poly(p-phenylene) (PPP) were used as the orienting substrate for PTCDI for comparison studies. Characterization by polarized UV-vis absorption shows that the orienting ability of PPP is larger than that of PTFE substrate. Furthermore, polarization-sensitive photoelectric conversion devices were fabricated by using the oriented PTCDI thin film on the PPP substrate.

  5. Directed Assembly of Nanofilled Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Karim, Alamgir

    Facile directed self-assembly (DSA) of multicomponent thin films is important for potential technological applications. This requires a fine control of a complex interplay of processing parameters that need to be properly optimized for different organized structures. This talk will discuss some of our recent success towards realizing tunable DSA of soft matter multicomponent systems involving a dispersion of polymer-grafted nanoparticles in block copolymer or homopolymer matrices. DSA methods for such multicomponent films will be discussed. These include the use of zone-annealing with soft-shear to create highly anisotropic nanoparticle arrays, while direct immersion annealing (DIA) has been used to order nanoparticle filled films by dipping the films into controlled solvent quality solvent mixtures. A recently observed phenomena of confinement driven entropic order and phase segregation of polymer grafted nanoparticles in similar and dissimilar polymer matrices in melt state will be discussed. A high density of nano particles of different types ranging from metallic to inorganic to organic were patterned almost exclusively into channels via topographical soft confinement using entropic forces. Enthalpic interactions between the nanoparticle grafted layer and the polymer matrix could be used as a further handle to tune the directed assembly of the nanoparticles. The phenomena will be discussed in terms of confinement parameters, partition coefficient, free energy gain and entropic versus enthalpic interactions.

  6. Deformation propagation in responsive polymer network films

    NASA Astrophysics Data System (ADS)

    Ghosh, Surya K.; Cherstvy, Andrey G.; Metzler, Ralf

    2014-08-01

    We study the elastic deformations in a cross-linked polymer network film triggered by the binding of submicron particles with a sticky surface, mimicking the interactions of viral pathogens with thin films of stimulus-responsive polymeric materials such as hydrogels. From extensive Langevin Dynamics simulations we quantify how far the network deformations propagate depending on the elasticity parameters of the network and the adhesion strength of the particles. We examine the dynamics of the collective area shrinkage of the network and obtain some simple relations for the associated characteristic decay lengths. A detailed analysis elucidates how the elastic energy of the network is distributed between stretching and compression modes in response to the particle binding. We also examine the force-distance curves of the repulsion or attraction interactions for a pair of sticky particles in the polymer network film as a function of the particle-particle separation. The results of this computational study provide new insight into collective phenomena in soft polymer network films and may, in particular, be applied to applications for visual detection of pathogens such as viruses via a macroscopic response of thin films of cross-linked hydrogels.

  7. Porous Polyolefin Films via Polymer Blends

    NASA Astrophysics Data System (ADS)

    Macosko, Chris

    Porous polymer films have broad application including battery separators, membrane supports and filters. Polyolefins are attractive for these applications because of their solvent resistance, low electrical and thermal conductivity, easy fabrication and cost. We will describe fabrication of porous films using cocontinuous blends of a polyolefin with another polymer which can be readily removed with a solvent. Methods to image and control the cocontinuous morphology will be presented.Bell, J. R., K. Chang, C. R. Lopez-Barron, C. W. Macosko, and D. C. Morse, ''Annealing of cocontinuous polymer blends: effect of block copolymer molecular weight and architecture,'' Macromolecules 43, 5024-5032 (2010).Lopez-Barron, C. R., and C. W. Macosko, ''Direct measurement of interface anisotropy of bicontinuous structures via 3D image analysis,'' Langmuir 26, 14284-14293 (2010).Trifkovic, M., A. T. Hedegaard, K. Huston, M. Sheikhzadeh, and C. W. Macosko, ''Porous films via PE/PEO cocontinuous blends,'' Macromolecules 45, 6036-6044 (2012).Hedegaard, A.T., L.L. Gu and C. W. Macosko, ``Effect of Extensional Viscosity on Cocontinuity of Immiscible Polymer Blends'' J. Rheol. 59, 1397-1417 (2015).

  8. MISSE 6 Polymer Film Tensile Experiment

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.; Dever, Joyce A.; Banks, Bruce A.; Waters, Deborah L.; Sechkar, Edward; Kline, Sara

    2010-01-01

    The Polymer Film Tensile Experiment (PFTE) was flown as part of Materials International Space Station Experiment 6 (MISSE 6). The purpose of the experiment was to expose a variety of polymer films to the low Earth orbital environment under both relaxed and tension conditions. The polymers selected are those commonly used for spacecraft thermal control and those under consideration for use in spacecraft applications such as sunshields, solar sails, and inflatable and deployable structures. The dog-bone shaped samples of polymers that were flown were exposed on both the side of the MISSE 6 Passive Experiment Container (PEC) that was facing into the ram direction (receiving atomic oxygen, ultraviolet (UV) radiation, ionizing radiation, and thermal cycling) and the wake facing side (which was supposed to have experienced predominantly the same environmental effects except for atomic oxygen which was present due to reorientation of the International Space Station). A few of the tensile samples were coated with vapor deposited aluminum on the back and wired to determine the point in the flight when the tensile sample broke as recorded by a change in voltage that was stored on battery powered data loggers for post flight retrieval and analysis. The data returned on the data loggers was not usable. However, post retrieval observation and analysis of the samples was performed. This paper describes the preliminary analysis and observations of the polymers exposed on the MISSE 6 PFTE.

  9. Membranes and Films from Polymers.

    ERIC Educational Resources Information Center

    Blumberg, Avrom A.

    1986-01-01

    Provides background information on polymeric films and membranes including production methods, special industrial and medical applications, laboratory preparation, and an experimental investigation of a porous cellulose acetate membrane. Presents a demonstration to distinguish between high- and low-density polyethylene. (JM)

  10. Dynamics of polymer thin films and surfaces

    NASA Astrophysics Data System (ADS)

    Fakhraai, Zahra

    2007-12-01

    The dynamics of thin polymer films display many differences from the bulk dynamics. Different modes of motions in polymers are affected by confinement in different ways. The enhancement in the dynamics of some modes of motion can cause anomalies in the glass transition temperature (Tg) of thin films, while other modes of motion such as diffusion can be substantially slowed down due to the confinement effects. In this thesis, different modes of dynamics are probed using different techniques. The interface healing of two identical polymer surfaces is used as a probe of segmental motion in the direction normal to the plane of the films and it is shown that this mode of motion is slowed down at temperatures above bulk glass transition, while the glass transition itself is decreased indicating that the type of motion responsible for the glass transition is enhanced. The glass transition measurements at different cooling rates indicate that this enhancement only happens at temperatures close to or below bulk glass transition temperature and it is not expected to be detected at higher temperatures where the system is in the melt state. It is shown that the sample preparation technique is not a factor in observing this enhanced dynamics, while the existence of the free surface can be important in observed reductions in the glass transition temperature. The dynamics near the free surface is further studied using a novel nano-deformation technique, and it is shown that the dynamics near the free surface is in fact enhanced compared to the bulk dynamics and this enhancement is increased as the temperature is decreased further below Tg. It is also shown that this mode of relaxation is much different from the bulk modes of relaxations, and a direct relationship between this enhanced motion and Tg reduction in thin films can be established. The results presented in this thesis can lead to a possible universal picture that can resolve the behavior of different modes of motions in

  11. High-Temperature Capacitor Polymer Films

    NASA Astrophysics Data System (ADS)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  12. Nanoscale lubricating film formation by linear polymer in aqueous solution

    NASA Astrophysics Data System (ADS)

    Liu, Shuhai; Guo, Dan; Xie, Guoxin

    2012-11-01

    Film-forming properties of polymer in aqueous solution flowing through a nanogap have been investigated by using a thin film interferometry. The film properties of linear polymer in aqueous solution flowing through a confined nanogap depend on the ratio of water film thickness to averaged radius of polymer chains H0/RPolymer. It was found that the lubrication film thickness of linear polymer in aqueous solution decreases as the polymer molecular weight increasing when H0/RPolymer < 2 ˜ 3. A new lubrication map was proposed, which includes the lubrication regime of weak confinement influence, the lubrication regime of strong confinement influence (LRSCI), and the transition regime of confinement influence. It is very difficult to increase the lubrication film thickness using the higher molecule weight in the LRSCI regime. The lubrication mechanism inferred from our experimental results may help to better understand the dynamic film properties of linear polymer in aqueous solution flowing through a nanogap.

  13. Germanium films by polymer-assisted deposition

    SciTech Connect

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  14. Fluorescence Recovery after Photobleaching in Confined Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Gray, Laura A. G.; Brangwynne, Clifford P.; Priestley, Rodney D.

    Over the past twenty years many studies have shown a reduction in the glass transition temperature (Tg) of thin polymer films confined on the nanoscale when supported on non-attractive substrates or free-standing. The depth dependence of Tg has been measured using thin layers of fluorescently tagged polymer to localize the dye within a larger polymer film stack, revealing a decrease in local Tg tens of nanometers into the film. These results have been explained by the propagation of enhanced mobility from the free-surface into the polymer film. Fewer direct measurements of molecular mobility have been made in confined polymer systems. Here, we present the results of fluorescence recovery after photobleaching (FRAP) experiments investigating the mobility of fluorescently doped and labeled methacrylate-based polymers confined in thin film geometries. Bleaching and recovery was monitored using a laser-scanning confocal microscope that enabled us to bleach arbitrary micron-sized shapes to monitor diffusion in polymer melts.

  15. Scanning Tunneling Microscopy analysis of space-exposed polymer films

    NASA Technical Reports Server (NTRS)

    Kalil, Carol R.; Young, Philip R.

    1993-01-01

    The characterization of the surface of selected space-exposed polymer films by Scanning Tunneling Microscopy (STM) is reported. Principles of STM, an emerging new technique for materials analysis, are reviewed. The analysis of several films which received up to 5.8 years of low Earth orbital (LEO) exposure onboard the NASA Long Duration Exposure Facility (LDEF) is discussed. Specimens included FEP Teflon thermal blanket material, Kapton film, and several experimental polymer films. Ultraviolet and atomic oxygen-induced crazing and erosion are described. The intent of this paper is to demonstrate how STM is enhancing the understanding of LEO space environmental effects on polymer films.

  16. Nanoscale imaging of nonequilibrium polymer films

    NASA Astrophysics Data System (ADS)

    King, John; Granick, Steve

    2015-03-01

    In recent years there have been exciting advances in sub-diffraction limited imaging based on fluorescence microscopy. While most applications of super-resolution microscopy focus on static biological imaging, we are interested in extending these techniques to the study of polymer dynamics. To this end, we couple stimulated emission depletion (STED) with spectroscopic detection, relying on spectral features of fluorescence emission to serve as the imaging contrast agent. We aim to adapt fluorescent dyes responsive to environmental properties (polarity, mobility, current, temperature, ect.) to STED imaging. Using the fluorescent spectral response as a contrast agent allows for nanoscopic environments to be directly imaged without the need for specific labeling. Rapid acquisition of images allows for slow dynamic processes in nonequilibrium polymer films to be imaged in real time. We demonstrate the power of super-resolution spectroscopic imaging by directly imaging several topical problems in materials science.

  17. Polymer compositions, polymer films and methods and precursors for forming same

    DOEpatents

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  18. Slow-Positron Generator For Studying Polymer Films

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; St. Clair, Terry L.; Eftekhari, Abe

    1992-01-01

    Aspects of molecular structures probed by positron-annihilation spectroscopy (PAS). Slow-positron-beam generator suitable for PAS measurements in thin polymer films. Includes Na22 source of positrons and two moderators made of well-annealed tungsten foil. With proper choice of voltage, positrons emitted by inward-facing surfaces of moderators made to stop in polymer films tested.

  19. Hot pen and laser writable photonic polymer films

    NASA Astrophysics Data System (ADS)

    Moirangthem, Monali; Stumpel, Jelle E.; Alp, Baran; Teunissen, Pit; Bastiaansen, Cees W. M.; Schenning, Albertus P. H. J.

    2016-03-01

    An orange-reflecting photonic polymer film has been fabricated based on a hydrogen-bonded cholesteric liquid crystalline (CLC) polymer consisting of non-reactive (R)-(+)-3-methyladipic acid as the chiral dopant. This polymer film can be patterned easily by evaporating the chiral dopant at specific locations with a hot pen or a laser beam. Removal of chiral dopant leads to a decrease in the helical pitch at the heat treated areas leading to a change in color from orange to green revealing a high contrast pattern. The photonic patterns are irreversible and stable at ambient conditions. This makes such a CLC polymer film interesting as writable photonic paper.

  20. Selective Template Wetting Routes to Hierarchical Polymer Films: Polymer Nanotubes from Phase-Separated Films via Solvent Annealing.

    PubMed

    Ko, Hao-Wen; Cheng, Ming-Hsiang; Chi, Mu-Huan; Chang, Chun-Wei; Chen, Jiun-Tai

    2016-03-01

    We demonstrate a novel wetting method to prepare hierarchical polymer films with polymer nanotubes on selective regions. This strategy is based on the selective wetting abilities of polymer chains, annealed in different solvent vapors, into the nanopores of porous templates. Phase-separated films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), two commonly used polymers, are prepared as a model system. After anodic aluminum oxide (AAO) templates are placed on the films, the samples are annealed in vapors of acetic acid, in which the PMMA chains are swollen and wet the nanopores of the AAO templates selectively. As a result, hierarchical polymer films containing PMMA nanotubes can be obtained after the AAO templates are removed. The distribution of the PMMA nanotubes of the hierarchical polymer films can also be controlled by changing the compositions of the polymer blends. This work not only presents a novel method to fabricate hierarchical polymer films with polymer nanotubes on selective regions, but also gives a deeper understanding in the selective wetting ability of polymer chains in solvent vapors. PMID:26831764

  1. Precursors for the polymer-assisted deposition of films

    DOEpatents

    McCleskey, Thomas M.; Burrell, Anthony K.; Jia, Quanxi; Lin, Yuan

    2013-09-10

    A polymer assisted deposition process for deposition of metal oxide films is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures to yield metal oxide films. Such films can be epitaxial in structure and can be of optical quality. The process can be organic solvent-free.

  2. Preparation of redox polymer cathodes for thin film rechargeable batteries

    DOEpatents

    Skotheim, Terje A.; Lee, Hung S.; Okamoto, Yoshiyuki

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  3. Metalizable Polymer Thin Films in Supercritical Carbon Dioxide

    SciTech Connect

    Koga,T.; Jerome, J.; Rafailovich, M.; Sokolov, J.; Gordon, C.

    2005-01-01

    We report an environmentally 'green' method to improve adhesion at a polymer/metal interface by using supercritical carbon dioxide (scCO 2 ). Spun-cast polystyrene (PS) and poly(methyl methacrylate) (PMMA) thin films on cleaned Si wafers were used for this study. Film thicknesses of both polymer films were prepared in the range of 100 Angstroms to 1600 Angstroms. We exposed the films to scCO 2 in the pressure-temperature (P-T) range corresponding to the density-fluctuation ridge, where the excess swelling of both polymer films occurred, and then froze the swollen structures by quick evaporation of CO2. A chromium (Cr) layer with film thickness of 300-400 Angstroms was deposited onto the exposed film by using an E-beam evaporator. X-ray reflectivity (XR) measurements showed that the interfacial width between the Cr and exposed polymer layers increased by a factor of about two compared with that without exposure to scCO 2. In addition, the large interfacial broadening was found to occur irrespective of the thickness of both polymer films. After the XR measurements, the dewetting structures of the PS/Cr films induced by additional annealing were characterized by using atomic force microscopy, showing improved surface morphology in the exposed films. Contact angle measurements showed that a decrease in interfacial tension with exposure to scCO 2 accompanied the increase in interfacial width.

  4. Slip effects in polymer thin films.

    PubMed

    Bäumchen, O; Jacobs, K

    2010-01-27

    Probing the fluid dynamics of thin films is an excellent tool for studying the solid/liquid boundary condition. There is no need for external stimulation or pumping of the liquid, due to the fact that the dewetting process, an internal mechanism, acts as a driving force for liquid flow. Viscous dissipation, within the liquid, and slippage balance interfacial forces. Thus, friction at the solid/liquid interface plays a key role towards the flow dynamics of the liquid. Probing the temporal and spatial evolution of growing holes or retracting straight fronts gives, in combination with theoretical models, information on the liquid flow field and, especially, the boundary condition at the interface. We review the basic models and experimental results obtained during the last several years with exclusive regard to polymers as ideal model liquids for fluid flow. Moreover, concepts that aim to explain slippage on the molecular scale are summarized and discussed. PMID:21386275

  5. New paradigm for stabilization of liquid polymer films on solids

    NASA Astrophysics Data System (ADS)

    Koga, Tad; Jiang, Naisheng; Wang, Jiaxun; di, Xiaoyu; Cheung, Justin; Endoh, Maya

    2015-03-01

    We report that wetting/dewetting behavior of liquid polymer films on solids can be controlled by nanoscale architectures of polymer chains irreversibly adsorbed on the impenetrable surfaces. Monodisperse polystyrene (PS) ultrathin films (20 nm in thickness) with different molecular weights on silicon (Si) substrates with a natural amorphous Si dioxide layer were used as models. The PS thin films were annealed at high temperatures at T>Tg (Tg is the bulk glass transition temperature) for several days, and the surface structures were studied by using optical and atomic force microscopes. At the same time, the annealed PS films were further leached with a good solvent and the residue films (i.e., irreversibly adsorbed layers) were characterized by x-ray reflectivity. The experimental data reveals a strong correlation between the conformations of the adsorbed polymer chains and the stability of the liquid films on top. T. K. acknowledges the partial financial support from NSF Grant No. CMMI-1332499.

  6. Self-lubricating polymer composites and polymer transfer film lubrication for space applications

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1990-01-01

    The use of self-lubricating polymers and polymer composites in space is somewhat limited today. In general, they are only used when other methods are inadequate. There is potential, however, for these materials to make a significant impact on future space missions if properly utilized. Some of the different polymers and fillers used to make self-lubricating composites are surveyed. The mechanisms of composite lubrication and wear, the theory behind transfer film lubricating mechanisms, and some factors which affect polymer composite wear and transfer are examined. In addition, some of the current space tribology application areas for self-lubricating polymer composites and polymer transfer are mentioned.

  7. Dispersing nanoparticles in a polymer film via solvent evaporation

    DOE PAGESBeta

    Cheng, Shengfeng; Grest, Gary S.

    2016-05-19

    Large-scale molecular dynamics simulations are used to study the dispersion of nanoparticles (NPs) in a polymer film during solvent evaporation. As the solvent evaporates, a dense polymer-rich skin layer forms at the liquid/vapor interface, which is either NP rich or poor depending on the strength of the NP/polymer interaction. When the NPs are strongly wet by the polymer, the NPs accumulate at the interface and form layers. However, when the NPs are only partially wet by the polymer, most NPs are uniformly distributed in the bulk of the polymer film, with the dense skin layer serving as a barrier tomore » prevent the NPs from moving to the interface. Furthermore, our results point to a possible route to employ less favorable NP/polymer interactions and fast solvent evaporation to uniformly disperse NPs in a polymer film, contrary to the common belief that strong NP/polymer attractions are needed to make NPs well dispersed in polymer nanocomposites.« less

  8. Development of polymer film solar collectors: A status report

    NASA Astrophysics Data System (ADS)

    Wilhelm, W. G.; Andrews, J. W.

    1982-08-01

    Solar energy collector panels using polymer film and laminate technology were developed which demonstrate low cost and high thermal performance for residential and commercial applications. This device uses common water in the absorber/heat exchanger which is constructed with polymer film adhesively laminated to aluminum foil as the outer surfaces. Stressed polymer films are also used for the outer window and back surface of the panel forming a high strength structural composite. Rigid polymer foam complements the design by contributing insulation and structural definition. This design resulted in very low weight (3.5 kg/m(2)), potentially very low manufacturing cost (aprox. $11/m(2)), and high thermal performance. The development of polymer materials for this technology will be a key to early commercial success.

  9. Structures and Elastic Moduli of Polymer Nanocomposite Thin Films

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2014-03-01

    Polymeric thin films generally possess unique mechanical and thermal properties due to confinement. In this study we investigated structures and elastic moduli of polymer nanocomposite thin films, which can potentially find wide applications in diverse areas such as in coating, permeation and separation. Conventional thermoplastics (PS, PMMA) and biopolymers (PLA, PCL) were chosen as polymer matrices. Various types of nanoparticles were used including nanoclay, fullerene and functionalized inorganic particles. Samples were prepared by solvent-mixing followed by spin-coating or flow-coating. Film structures were characterized using X-ray scattering and transmission electron microscopy. Elastic moduli were measured by strain-induced elastic buckling instability for mechanical measurements (SIEBIMM), and a strengthening effect was found in certain systems due to strong interaction between polymers and nanoparticles. The effects of polymer structure, nanoparticle addition and film thickness on elastic modulus will be discussed and compared with bulk materials.

  10. Elements of adaptive optics based on metallized polymer films

    NASA Astrophysics Data System (ADS)

    Voliak, T. B.; Krasiuk, I. K.; Pashinin, P. P.

    Results of an experimental study of the stability of metallized polymer films exposed to laser radiation at wavelengths of 1.06 and 10.6 microns are reported, and methods for fabricating variable-curvature mirrors from these films are discussed. Formulas are presented for calculating the shape of film mirrors as a function of the pressure acting on the film, mounting contour, and film properties. The performance of film mirrors is investigated experimentally in a pulsed CO2 laser with stable and unstable resonators.

  11. Atomic-force microscopy of submicron films of electroactive polymer

    NASA Astrophysics Data System (ADS)

    Karamov, D. D.; Kornilov, V. M.; Lachinov, A. N.; Kraikin, V. A.; Ionova, I. A.

    2016-07-01

    Atomic-force microscopy is used to study the supramolecular structure of submicron films of electroactive thermally stable polymer (polydiphenylenephthalide (PDP)). It has been demonstrated that PDP films produced using centrifuging are solid homogeneous films with thicknesses down to several nanometers, which correspond to two or three monomolecular layers. The film volume is structurized at thicknesses greater than 100 nm. The study of the rheological properties of solutions used for film production yields a crossover point that separates the domains of strongly diluted and semidiluted solutions. A transition from the globular structure to the associate structure is observed in films that are produced using solutions with a boundary concentration. A model of the formation of polymer film that involves the presence of associates in the original solution is discussed.

  12. In situ polarization of polymer films in microsensors

    NASA Astrophysics Data System (ADS)

    Kranz, M.; Allen, M. G.; Hudson, T.

    2012-04-01

    Electret and polymer piezoelectric films have been previously integrated into Micro Electro Mechanical System (MEMS) acoustic sensors and energy harvesters. Common techniques employed in MEMS polymer integration include corona discharge [1] and backlighted thyratron [2], followed by macro-scale assembly of the polymer into the micro device. In contrast, this paper reports a method for post-fabrication in-situ polarization of polymer films embedded within the MEMS device itself. The method utilizes microplasma discharges with self-aligned charging grids integrated within the device to charge fluoropolymer films in a fashion similar to the common corona discharge technique. This in-situ approach enables the integration of uncharged polymer films into MEMS and subsequent post-fabrication and post-packaging polarization, simultaneously enabling the formation of buried or encapsulated electrets as well as eliminating the need to restrict fabrication and packaging processes that might otherwise discharge pre-charged materials. Using the in situ approach, a microscale charging grid structure is fabricated and suspended a short distance above the polymer film. After fabrication of the charging grid, standard microfabrication steps are performed to build MEMS sensors. After completing the entire fabrication and packaging flow, the polarization process is performed. When energized by a high voltage, the sharp metal edges of the charging grid lead to high dielectric fields that ionize the air in the gap and force electric charge onto the polymer surface. This paper presents modeling and results for this in situ polarization process.

  13. Stability of Grafted Polymer Nanoscale Films toward Gamma Irradiation.

    PubMed

    Borodinov, Nikolay; Giammarco, James; Patel, Neil; Agarwal, Anuradha; O'Donnell, Katie R; Kucera, Courtney J; Jacobsohn, Luiz G; Luzinov, Igor

    2015-09-01

    The present article focuses on the influence of gamma irradiation on nanoscale polymer grafted films and explores avenues for improvements in their stability toward the ionizing radiation. In terms of applications, we concentrate on enrichment polymer layers (EPLs), which are polymer thin films employed in sensor devices for the detection of chemical and biological substances. Specifically, we have studied the influence of gamma irradiation on nanoscale poly(glycidyl methacrylate) (PGMA) grafted EPL films. First, it was determined that a significant level of cross-linking was caused by irradiation in pure PGMA films. The cross-linking is accompanied by the formation of conjugated ester, carbon double bonds, hydroxyl groups, ketone carbonyls, and the elimination of epoxy groups as determined by FTIR. Polystyrene, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl, dimethylphenylsilanol, BaF2, and gold nanoparticles were incorporated into the films and were found to mitigate different aspects of the radiation damage. PMID:26259102

  14. Rapid synthesis of flexible conductive polymer nanocomposite films

    NASA Astrophysics Data System (ADS)

    Blattmann, C. O.; Sotiriou, G. A.; Pratsinis, S. E.

    2015-03-01

    Polymer nanocomposite films with nanoparticle-specific properties are sought out in novel functional materials and miniaturized devices for electronic and biomedical applications. Sensors, capacitors, actuators, displays, circuit boards, solar cells, electromagnetic shields and medical electrodes rely on flexible, electrically conductive layers or films. Scalable synthesis of such nanocomposite films, however, remains a challenge. Here, flame aerosol deposition of metallic nanosliver onto bare or polymer-coated glass substrates followed by polymer spin-coating on them leads to rapid synthesis of flexible, free-standing, electrically conductive nanocomposite films. Their electrical conductivity is determined during their preparation and depends on substrate composition and nanosilver deposition duration. Accordingly, thin (<500 nm) and flexible nanocomposite films are made having conductivity equivalent to metals (e.g. 5 × 104 S cm-1), even during repetitive bending.

  15. Rapid synthesis of flexible conductive polymer nanocomposite films.

    PubMed

    Blattmann, C O; Sotiriou, G A; Pratsinis, S E

    2015-03-27

    Polymer nanocomposite films with nanoparticle-specific properties are sought out in novel functional materials and miniaturized devices for electronic and biomedical applications. Sensors, capacitors, actuators, displays, circuit boards, solar cells, electromagnetic shields and medical electrodes rely on flexible, electrically conductive layers or films. Scalable synthesis of such nanocomposite films, however, remains a challenge. Here, flame aerosol deposition of metallic nanosliver onto bare or polymer-coated glass substrates followed by polymer spin-coating on them leads to rapid synthesis of flexible, free-standing, electrically conductive nanocomposite films. Their electrical conductivity is determined during their preparation and depends on substrate composition and nanosilver deposition duration. Accordingly, thin (<500 nm) and flexible nanocomposite films are made having conductivity equivalent to metals (e.g. 5  × 10(4) S cm(-1)), even during repetitive bending. PMID:25736387

  16. The total chemical synthesis of polymer/graphene nanocomposite films.

    PubMed

    Salvatierra, Rodrigo V; Cava, Carlos E; Roman, Lucimara S; Oliveira, Marcela M; Zarbin, Aldo J G

    2016-01-28

    A versatile and room temperature synthesis of thin films of polymer/graphene is reported. Drastically differing from other methods, not only the polymer but also the graphene are completely built from their simplest monomers (thiophene and benzene) in a one-pot polymerization reaction at a liquid-liquid interface. The materials were characterized and electronic properties are presented. PMID:26658554

  17. Fracture and fatigue of ultrathin nanoporous polymer films

    NASA Astrophysics Data System (ADS)

    Kearney, Andrew V.

    Nanoporous polymer layers are being considered for a range of emerging nanoscale applications, from low permittivity materials for interlayer dielectrics in microelectronics and anti-reflective coatings in optical technologies, to biosensors and size-selective membranes for biological applications. Polymer thin films have inherently low elastic modulus, strength and hardness, but exhibit fracture properties that are higher than those reported for glass, ceramic, and even some metal layers. However, constraint of a ductile polymer between two elastic layers is expected to affect the local plasticity ahead of a crack tip and its contribution to the film adhesion with films below a micron in thickness. Additionally, nanoporosity would be expected to have a deleterious effect on mechanical properties, producing materials and layers that are structurally weaker than fully dense versions they replace. Therefore, the integration of these nanoporous polymer layer at nanometer thicknesses would present significantly processing and mechanical reliability challenges. In this dissertation, surprising evidence is presented that nanoporous polymer films exhibit increasing fracture energy with increasing porosity. Such behavior is in stark contrast to a wide range of reported behavior for porous solids. A ductile nano-void growth and coalescence fracture mechanics-based model is presented to rationalize the increase in fracture toughness of the voided polymer film. The model is shown to explain the behavior in terms of a specific scaling of the size of the pores with pore volume fraction. It is demonstrated that the pore size must increase with close to a linear dependence on the volume fraction in order to increase rather than decrease the fracture energy. Independent characterization of the pore size as a function of volume fraction is shown to confirm predictions made by the model. The fracture behavior of these constrained polymer films are also examined with film thickness

  18. Special Polymer/Carbon Composite Films for Detecting SO2

    NASA Technical Reports Server (NTRS)

    Homer, Margie; Ryan, Margaret; Yen, Shiao-Pin; Kisor, Adam; Jewell, April; Shevade, Abhijit; Manatt, Kenneth; Taylor, Charles; Blanco, Mario; Goddard, William

    2008-01-01

    A family of polymer/carbon films has been developed for use as sensory films in electronic noses for detecting SO2 gas at concentrations as low as 1 part per million (ppm). Most previously reported SO2 sensors cannot detect SO2 at concentrations below tens of ppm; only a few can detect SO2 at 1 ppm. Most of the sensory materials used in those sensors (especially inorganic ones that include solid oxide electrolytes, metal oxides, and cadmium sulfide) must be used under relatively harsh conditions that include operation and regeneration at temperatures greater than 100 C. In contrast, the present films can be used to detect 1 ppm of SO2 at typical opening temperatures between 28 and 32 C and can be regenerated at temperatures between 36 and 40 C. The basic concept of making sensing films from polymer/carbon composites is not new. The novelty of the present family of polymer/carbon composites lies in formulating the polymer components of these composites specifically to optimize their properties for detecting SO2. First-principles quantum-mechanical calculations of the energies of binding of SO2 molecules to various polymer functionalities are used as a guide for selecting polymers and understanding the role of polymer functionalities in sensing. The polymer used in the polymer-carbon composite is a copolymer of styrene derivative units with vinyl pyridine or substituted vinyl pyridine derivative units. To make a substituted vinyl pyridine for use in synthesizing such a polymer, poly(2-vinyl pyridine) that has been dissolved in methanol is reacted with 3-chloropropylamine that has been dissolved in a solution of methanol. The methanol is then removed to obtain the copolymer. Later, the copolymer can be dissolved in an appropriate solvent with a suspension of carbon black to obtain a mixture that can be cast and then dried to obtain a sensory film.

  19. Improved morphology in electrochemically grown conducting polymer films

    SciTech Connect

    Rubinstein, I.; Gottesfeld, S.; Sabatani, E.

    1990-12-31

    A conducting polymer film with an improved space filling is formed on a metal electrode surface. A self-assembling monolayer is formed directly on the metal surface where the monolayer has a first functional group that binds to the metal surface and a second chemical group that forms a chemical bonding site for molecules forming the conducting polymer. The conducting polymer is then conventionally deposited by electrochemical deposition. In one example, a conducting film of polyaniline is formed on a gold electrode surface with an intermediate monolayer of p-aminothiophenol.

  20. Oriented Liquid Crystalline Polymer Semiconductor Films with Large Ordered Domains.

    PubMed

    Xue, Xiao; Chandler, George; Zhang, Xinran; Kline, R Joseph; Fei, Zhuping; Heeney, Martin; Diemer, Peter J; Jurchescu, Oana D; O'Connor, Brendan T

    2015-12-01

    Large strains are applied to liquid crystalline poly(2,5-bis(3-tetradecylthiophen-2yl)thieno(3,2-b)thiophene) (pBTTT) films when held at elevated temperatures resulting in in-plane polymer alignment. We find that the polymer backbone aligns significantly in the direction of strain, and that the films maintain large quasi-domains similar to that found in spun-cast films on hydrophobic surfaces, highlighted by dark-field transmission electron microscopy imaging. The highly strained films also have nanoscale holes consistent with dewetting. Charge transport in the films is then characterized in a transistor configuration, where the field effect mobility is shown to increase in the direction of polymer backbone alignment, and decrease in the transverse direction. The highest saturated field-effect mobility was found to be 1.67 cm(2) V(-1) s(-1), representing one of the highest reported mobilities for this material system. The morphology of the oriented films demonstrated here contrast significantly with previous demonstrations of oriented pBTTT films that form a ribbon-like morphology, opening up opportunities to explore how differences in molecular packing features of oriented films impact charge transport. Results highlight the role of grain boundaries, differences in charge transport along the polymer backbone and π-stacking direction, and structural features that impact the field dependence of charge transport. PMID:26552721

  1. Polymer-assisted aqueous deposition of metal oxide films

    DOEpatents

    Li, DeQuan; Jia, Quanxi

    2003-07-08

    An organic solvent-free process for deposition of metal oxide thin films is presented. The process includes aqueous solutions of necessary metal precursors and an aqueous solution of a water-soluble polymer. After a coating operation, the resultant coating is fired at high temperatures to yield optical quality metal oxide thin films.

  2. Microporous polymer films and methods of their production

    DOEpatents

    Aubert, J.H.

    1995-06-06

    A process is described for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquefied gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase. 9 figs.

  3. Composite membranes from photochemical synthesis of ultrathin polymer films

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Martin, Charles R.

    1991-07-01

    THERE has recently been a resurgence of interest in synthetic membranes and membrane-based processes1-12. This is motivated by a wide variety of technological applications, such as chemical separations1-7, bioreactors and sensors8,9, energy conversion10,11 and drug-delivery systems12. Many of these technologies require the ability to prepare extremely thin, defect-free synthetic (generally polymeric) films, which are supported on microporous supports to form composite membranes. Here we describe a method for producing composite membranes of this sort that incorporate high-quality polymer films less than 50-nm thick. The method involves interfacial photopolymerization of a thin polymer film on the surface of the microporous substrate. We have been able to use this technique to synthesize a variety of functionalized ultrathin films based on electroactive, photoactive and ion-exchange polymers. We demonstrate the method here with composite membranes that show exceptional gas-transport properties.

  4. Ion-Conducting Polymer Films as Chemical Sensors

    SciTech Connect

    Hughes, R.C.; Patel, S.V.; Pfeifer, K.B.; Yelton, W.G.

    1999-05-03

    Solid Polymer Electrolytes (SPE) are widely used in batteries and fuel cells because of the high ionic conductivity that can be achieved at room temperature. The ions are usually Li or protons, although other ions can be shown to conduct in these polymer films. There has been very little work on using these films as chemical sensors. We have found that thin films of polymers like polyethyleneoxide (PEO) are very sensitive to low concentrations of volatile organic compounds (VOCS) like common solvents. We will present impedance spectroscopy of PEO films in the frequency range 0.01 Hz to 1 MHz for different concentrations of VOCS. We find that the measurement frequency is important for distinguishing ionic conductivity from the double layer capacitance and parasitic capacitances.

  5. Deviations from Liquidlike Behavior in Molten Polymer Films at Interfaces

    NASA Astrophysics Data System (ADS)

    Seo, Young-Soo; Koga, T.; Sokolov, J.; Rafailovich, M. H.; Tolan, M.; Sinha, S.

    2005-04-01

    We have performed x-ray specular and diffuse scattering on liquid polymer films and analyzed the spectra as a function of film thickness and molecular weight. The results show that films whose molecular weight is close to the entanglement length behave as simple liquids except that the shortest wavelength is determined by the radius of gyration (Rg) rather than the monomer-monomer distance. When the molecular weight is higher than the entanglement length, the strong deviations from liquidlike behavior are observed. We find that the long wavelength cutoff vector, ql,c, scales with film thickness, d as d-1.1±0.1 rather than the usual d-2 expected for simple liquids. If we assume that these deviations are due to surface pinning of the polymer chains, then our results are consistent with the formalism developed by Fredrickson et al. to explain the capillary wave spectrum that can propagate in a polymer brush.

  6. Controlled release of tocopherols from polymer blend films

    NASA Astrophysics Data System (ADS)

    Obinata, Noe

    Controlled release packaging has great potential to increase storage stability of foods by releasing active compounds into foods continuously over time. However, a major limitation in development of this technology is the inability to control the release and provide rates useful for long term storage of foods. Better understanding of the factors affecting active compound release is needed to overcome this limitation. The objective of this research was to investigate the relationship between polymer composition, polymer processing method, polymer morphology, and release properties of active compounds, and to provide proof of principle that compound release is controlled by film morphology. A natural antioxidant, tocopherol was used as a model active compound because it is natural, effective, heat stable, and soluble in most packaging polymers. Polymer blend films were produced from combination of linear low density polyethylene (LLDPE) and high density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) with 3000 ppm mixed tocopherols using conventional blending method and innovative blending method, smart blending with a novel mixer using chaotic advection. Film morphologies were visualized with scanning electron microscopy (SEM). Release of tocopherols into 95% ethanol as a food simulant was measured by UV/Visible spectrophotometry or HPLC, and diffusivity of tocopherols in the polymers was estimated from this data. Polymer composition (blend proportions) and processing methods have major effects on film morphology. Four different types of morphologies, dispersed, co-continuous, fiber, and multilayer structures were developed by either conventional extrusion or smart blending. With smart blending of fixed polymer compositions, different morphologies were progressively developed with fixed polymer composition as the number of rod rotations increased, providing a way to separate effects of polymer composition and morphology. The different morphologies

  7. Vacuum deposited polymer/metal films for optical applications

    SciTech Connect

    Affinito, J.D.; Martin, P.M.; Gross, M.E.; Coronado, C.; Greenwell, E.

    1995-04-01

    Vacuum deposited Polymer/Silver/Polymer reflectors and Tantalum/Polymer/Aluminum Fabry-Perot interference filters were fabricated in a vacuun web coating operation on polyester substrates with a new, high speed deposition process. Reflectivities were measured in the wavelength range from 0.3 to 0.8{mu}m. This new vacuum processing technique has been shown to be capable of deposition line speeds in excess of 500 linear meters/minute. Central to this technique is a new position process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process -- for Polymer Multi-Layer. Also, vacuum deposited, index matched, polymer/CaF{sub 2} composites were fabricated from monomer slurries that were subsequently cured with LTV light. This second technique is called the Liquid Multi-Layer (or LML) process. Each of these polymer processes is compatible with each other and with conventional vacuum deposition processes such as sputtering or evaporation.

  8. Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix.

    PubMed

    Grabowski, Christopher A; Fillery, Scott P; Westing, Nicholas M; Chi, Changzai; Meth, Jeffrey S; Durstock, Michael F; Vaia, Richard A

    2013-06-26

    The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic-polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure-performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdown-field exclusion and agglomeration-have been mitigated in this experiment to focus on what impact the polymer and polymer-nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5-15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica. PMID:23639183

  9. Simulated Space Vacuum Ultraviolet (VUV) Exposure Testing for Polymer Films

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Pietromica, Anthony J.; Stueber, Thomas J.; Sechkar, Edward A.; Messer, Russell K.

    2002-01-01

    Vacuum ultraviolet (VUV) radiation of wavelengths between 115 and 200 nm produced by the sun in the space environment can cause degradation to polymer films producing changes in optical, mechanical, and chemical properties. These effects are particularly important for thin polymer films being considered for ultra-lightweight space structures, because, for most polymers, VUV radiation is absorbed in a thin surface layer. NASA Glenn Research Center has developed facilities and methods for long-term ground testing of polymer films to evaluate space environmental VUV radiation effects. VUV exposure can also be used as part of sequential simulated space environmental exposures to determine combined damaging effects. This paper will describe the effects of VUV on polymer films and the necessity for ground testing. Testing practices used at Glenn Research Center for VUV exposure testing will be described including characterization of the VUV radiation source used, calibration procedures traceable to the National Institute of Standards and Technology (NIST), and testing techniques for VUV exposure of polymer surfaces.

  10. Patterning Thin Polymer Films by Photodirecting the Marangoni Effect

    NASA Astrophysics Data System (ADS)

    Ellison, Christopher; Kim, Chae Bin; Janes, Dustin; Katzenstein, Joshua

    2014-03-01

    New methodologies for patterning micro- and nano- scale features in polymer thin films are desired because of their high technological relevance to a range of applications, including microelectronics fabrication. A new non-contact strategy for high-speed patterning of arbitrary shapes in polymer films that involves photochemically directing the Marangoni effect will be described. The Marangoni effect drives the formation of thin film topography by causing liquid flow in response to surface energy gradients. In this approach, a topographical pattern can be preprogrammed and stored in a smooth glassy film using light activated chemistry to pattern surface energy gradients. The topography can be later revealed by heating the film to the liquid state without use of a wet or dry etch step, unlike traditional photoresist methods. The use of grafting reactions from small molecule photosensitizers to change the surface energy locally in polymers that do not intrinsically undergo photochemical reactions will also be discussed. Judicious selection of the photosensitizing compound in an otherwise transparent polymer expands the use of this method to more readily available light sources. We believe this methodology will be potentially useful as a facile and ubiquitous patterning technique for many polymers.

  11. Lattice cluster theory for dense, thin polymer films

    NASA Astrophysics Data System (ADS)

    Freed, Karl F.

    2015-04-01

    While the application of the lattice cluster theory (LCT) to study the miscibility of polymer blends has greatly expanded our understanding of the monomer scale molecular details influencing miscibility, the corresponding theory for inhomogeneous systems has not yet emerged because of considerable technical difficulties and much greater complexity. Here, we present a general formulation enabling the extension of the LCT to describe the thermodynamic properties of dense, thin polymer films using a high dimension, high temperature expansion. Whereas the leading order of the LCT for bulk polymer systems is essentially simple Flory-Huggins theory, the highly non-trivial leading order inhomogeneous LCT (ILCT) for a film with L layers already involves the numerical solution of 3(L - 1) coupled, highly nonlinear equations for the various density profiles in the film. The new theory incorporates the essential "transport" constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and as implemented in self-consistent theories of polymer adsorption at interfaces. The ILCT is illustrated by presenting examples of the computed profiles of the density, the parallel and perpendicular bonds, and the chain ends for free standing and supported films as a function of average film density, chain length, temperature, interaction with support, and chain stiffness. The results generally agree with expected general trends.

  12. Lattice cluster theory for dense, thin polymer films

    SciTech Connect

    Freed, Karl F.

    2015-04-07

    While the application of the lattice cluster theory (LCT) to study the miscibility of polymer blends has greatly expanded our understanding of the monomer scale molecular details influencing miscibility, the corresponding theory for inhomogeneous systems has not yet emerged because of considerable technical difficulties and much greater complexity. Here, we present a general formulation enabling the extension of the LCT to describe the thermodynamic properties of dense, thin polymer films using a high dimension, high temperature expansion. Whereas the leading order of the LCT for bulk polymer systems is essentially simple Flory-Huggins theory, the highly non-trivial leading order inhomogeneous LCT (ILCT) for a film with L layers already involves the numerical solution of 3(L − 1) coupled, highly nonlinear equations for the various density profiles in the film. The new theory incorporates the essential “transport” constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and as implemented in self-consistent theories of polymer adsorption at interfaces. The ILCT is illustrated by presenting examples of the computed profiles of the density, the parallel and perpendicular bonds, and the chain ends for free standing and supported films as a function of average film density, chain length, temperature, interaction with support, and chain stiffness. The results generally agree with expected general trends.

  13. Electrochemical formation of a composite polymer-aluminum oxide film

    NASA Astrophysics Data System (ADS)

    Runge-Marchese, Jude Mary

    1997-10-01

    The formation of polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer is of great interest to the coatings and electronics industries as a means for creating electrically conductive and corrosion resistant finishes. One of these polymers, polyamino-benzene (polyaniline), has been studied for this purpose for over ten years. This material undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base type reaction. Review of prior studies dealing with polyaniline and working knowledge of aluminum anodization has led to the development of a unique process whereby composite polymer-aluminum oxide films are formed. The basis for the process is a modification of the anodizing electrolyte which results in the codeposition of polyaniline during aluminum anodization. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline was also developed. The formation of these composite films is documented through experimental processing, and characterized by way of scientific analysis and engineering tests. Analysis results revealed the formation of unique dual phase anodic films with fine microstructures which exhibited full intrusion of the columnar aluminum oxide structure with polyaniline, indicating the polymer was deposited as the metal oxidation proceeded. An aromatic amine derivative of polyaniline with aluminum sulfate was determined to be the reaction product within the aluminum oxide phase of the codeposited films. Scientific characterization determined the codeposition process yields completely chemically and metallurgically bound composite films. Engineering studies determined the films, obtained through a single step, exhibited superior wear and corrosion resistance to conventionally anodized and sealed films processed through two steps, demonstrating the increased manufacturing process efficiency that can be realized with the modification of the

  14. Detecting Airborne Mercury by Use of Polymer/Carbon Films

    NASA Technical Reports Server (NTRS)

    Shevade, Abhijit; Ryan, Margaret; Homer, Margie; Kisor, Adam; Jewell, April; Yen, Shiao-Pin; Manatt, Kenneth; Blanco, Mario; Goddard, William

    2009-01-01

    Films made of certain polymer/carbon composites have been found to be potentially useful as sensing films for detecting airborne elemental mercury at concentrations on the order of tens of parts per billion or more. That is to say, when the polymer/carbon composite films are exposed to air containing mercury vapor, their electrical resistances decrease by measurable amounts. Because airborne mercury is a health hazard, it is desirable to detect it with great sensitivity, especially in enclosed environments in which there is a risk of a mercury leak from lamps or other equipment. The present effort to develop polymerbased mercury-vapor sensors complements the work reported in NASA Tech Briefs Detecting Airborne Mercury by Use of Palladium Chloride (NPO- 44955), Vol. 33, No. 7 (July 2009), page 48 and De tecting Airborne Mer cury by Use of Gold Nanowires (NPO-44787), Vol. 33, No. 7 (July 2009), page 49. Like those previously reported efforts, the present effort is motivated partly by a need to enable operation and/or regeneration of sensors under relatively mild conditions more specifically, at temperatures closer to room temperature than to the elevated temperatures (greater than 100 C ) needed for regeneration of sensors based on noble-metal films. The present polymer/carbon films are made from two polymers, denoted EYN1 and EYN2 (see Figure 1), both of which are derivatives of poly-4-vinyl pyridine with amine functional groups. Composites of these polymers with 10 to 15 weight percent of carbon were prepared and solution-deposited onto the JPL ElectronicNose sensor substrates for testing. Preliminary test results showed that the resulting sensor films gave measurable indications of airborne mercury at concentrations on the order of tens of parts per billion (ppb) or more. The operating temperature range for the sensing films was 28 to 40 C and that the sensor films regenerated spontaneously, without heating above operating temperature (see Figure 2).

  15. Polymer crystallization in thin films: morphology and physical properties

    NASA Astrophysics Data System (ADS)

    Kelly, Giovanni; Albert, Julie

    Polymer crystallization has been studied both computationally and experimentally for decades, elucidating many of the mysteries surrounding crystallization kinetics and thermodynamics. However, many unanswered questions remain pertaining to the relationships between crystallization phenomena and material properties needed for specific applications that range from drug delivery and tissue engineering to optical devices and mechanically robust membranes. One of the especially interesting facets of polymer crystallization is the behavior observed when these long chain molecules are spatially confined in thin and ultrathin films. Confined geometry leads to chain configurations, and therefore thermal, mechanical, and optical properties, sometimes far removed from reported bulk values. This project aims to study the phenomena exhibited by linear semi-crystalline polymers in thin films as well as the way in which blending with homopolymers, block copolymers, and novel polymer chain architectures affect morphology, biodegradation, optical, thermal, and mechanical properties.

  16. Sensors employing Functionalized Conducting Polymer Thin Film Transistors

    NASA Astrophysics Data System (ADS)

    Tanese, M. C.; Torsi, L.; Cioffi, N.; Sabbatini, L.; Zambonin, P. G.

    2003-12-01

    Functionalized conducting polymers are employed as active layers in sensors with a thin film transistor (TFT) device structure. Such devices can work as multi-parameter sensors with responses that are fast, repeatable and reversible at room temperature. In this work, a strategy is proposed to enhance the chemical selectivity of organic TFT sensors, by selecting active layers that are made of conducting polymers bearing chemically different substituents. A modulation of the devices sensitivity towards analytes such as alcohols and ketones is demonstrated.

  17. Spatial confinement effects on ultrathin semiconducting polymer heterojunction thin films

    SciTech Connect

    Xuejun Zhang; Jenekhe, S.A.

    1996-12-31

    Thin and ultrathin films of electroactive and photoactive polymers are of growing interest for applications in electronic and optoelectronic devices such as thin film transistors, light emitting diodes, solar cells, and xerographic photoreceptors. Although spatial confinement effects on the electronic, optical, optoelectronic, magnetic, and mechanical properties of inorganic semiconductors, metals, oxides, and ceramics are well known and understood, very little is currently known about nanoscale size effects in electroactive and photoactive polymers. Therefore, we recently initiated studies aimed at the understanding of spatial confinement effects on electroactive and photoactive nanostructured polymers and related thin film devices. We have extensively investigated layered nanoscale semiconducting polymer heterojunctions by applying several experimental techniques including photoluminescence, optical absorption, transient absorption, electroluminescence, cyclic voltammetry, and current-voltage measurements. Our findings reveal clear evidence of spatial confinement effects, including: dramatic enhancement of photoconductivity in ultrathin films; enhancement of electroluminescence efficiency and performance characteristics in nanoscale heterojunction devices; observation of novel phenomena in nanoscale devices. These spatial confinement effects in nanostructured semiconducting polymers can be understood in terms of classical charge transport and interfacial processes without invoking quantum size effects.

  18. Air shear driven flow of thin perfluoropolyether polymer films

    NASA Astrophysics Data System (ADS)

    Scarpulla, Michael A.; Mate, C. Mathew; Carter, Malika D.

    2003-02-01

    We have studied the wind driven movement of thin perfluoropolyether (PFPE) polymer films on silicon wafers and CNx overcoats using the blow-off technique. The ease with which a liquid polymer film moves across a surface when sheared is described by a shear mobility χS, which can be interpreted both in terms of continuum flow and in terms of wind driven diffusion. Generally, we find that the movement of PFPE films can be described as a flow process with an effective viscosity, even when the film thickness is smaller than the polymer's diameter of gyration. Only in the special case of sparse coverage of a polymer with neutral end groups is the motion better described by a wind driven diffusion process. The addition of alcohol end groups to the PFPE polymer chain results in strong interactions with the substrate, creating a restricted layer having an effective viscosity an order of magnitude larger than the mobile layer that sits on top of the restricted layer.

  19. Simulation of conductivity of polymer films on metal surface

    NASA Astrophysics Data System (ADS)

    Maksimova, O. G.; Maksimov, A. V.; Baidganov, A. R.

    2015-09-01

    In this paper, protective properties of polymer films are analyzed. The simulation is performed by means of the Monte-Carlo method on the basis of three-dimensional lattice model of polymer system with orientational interactions [1]. Initially, configuration of polymer system is calculated by the Metropolis algorithm taking into account the characteristics of the internal structure (constants of intermolecular interactions etc.), temperature regime and metal quality. Further, for the study of conductivity, the motion of charged particles within the proposed lattice model is investigated on the basis of the calculated configuration. The interaction energy of the oxygen atom with eight neighboring links of polymer chains and electric double layer on the metallic surface is accounted. The direction of movement of charged particles is calculated by the Monte-Carlo method according to the energy advantage of its position. This method allows to calculate the number of charged particles passing through the polymer film and reaching the metal sheet surface. The dependences of conductivity on temperature, film thickness, and distance between molecular layers are obtained. It is shown that there is an optimum density for the given film thickness at which it possesses protective properties. The adequacy of the developed mathematical models and calculated dependences are verified by comparison with laboratory data and production testing.

  20. Swelling Behavior of Ultrathin Polymer Films in Supercritical Ethane

    NASA Astrophysics Data System (ADS)

    Ji, Yuan; Koga, Tadanori; Seo, Young-Soo; Rafailovich, Miriam; Sokolov, Jonathan; Satija, Sushil

    2003-03-01

    Swelling behavior of ultrathin polymer films in supercritical ethane (T_c=32^oC, P_c=4.86MPa) was investigated by using in situ neutron reflectivity (NR). The polymers used in this study were deuterated polystyrene(dPS), deuterated styrene-butadiene copolymer(dSBR), deuterated polymethylmethacrylate(dPMMA), deuterated polybutadiene(dPB) and the films were spun cast on the HF etched cleaned silicon wafers. NR experiments were conducted with the pressure range of 0.1-15 MPa at T=37^oC by using NG7 reflectometer at NIST. As a result, we found that all the polymers used showed anomalous peak in the linear dilation (S_f) curve at P=5.5MPa, i.e., the density fluctuation ridge of ethane while the Sf values for the rubbery polymers were significantly larger (0.8) than those of glassy polymers (0.3). In this presentation, we will also discuss about the universality in the swelling behavior of the polymer thin films in the presence of the supercritical fluids.

  1. New Molecular Theory for Dense, Thin Polymer Films

    NASA Astrophysics Data System (ADS)

    Freed, Karl

    2015-03-01

    The development of a molecular theory for dense polymer systems ranks among the most challenging problems in the statistical mechanics of complex matter. These difficulties become compounded when considering the influence of molecular details on thermodynamic properties of thin polymer films, properties deviating from those of the bulk phases. A new theory of dense polymer films is developed as a significant generalization of methods used to devise the lattice cluster theory, an extension of Flory-Huggins theory that include details of monomer structure and short range correlations (neglected in FH theory) and that has successfully been applied to a wide range of polymer systems. The new theory incorporates the essential ``transport'' constraints of Helfand and focuses on the strict imposition of excluded volume constraints, appropriate to dense polymer systems, rather than the maintenance of chain connectivity as appropriate for lower densities and implemented in self-consistent theories of polymer adsorption at interfaces. The theory is illustrated by presenting examples of the computed density and chain end profiles for free standing films as a function of bulk density, chain length, temperature, and chain semi-flexibility.

  2. Reversible thermochromic polymer film embedded with fluorescent organogel nanofibers.

    PubMed

    Kim, Hyungwoo; Chang, Ji Young

    2014-11-18

    We report a reversible thermochromic nanocomposite polymer film composed of fluorescent organogel fibers and a highly cross-linked polymer matrix. A series of cyano-substituted oligo(p-phenylenevinylene) (CN-OPV) derivatives were synthesized by the reaction of dialdehydes with phenyl or naphthyl acetonitrile under basic conditions. Among the CN-OPV derivatives, NA-DBA having naphtyl moieties and dodecyloxy chains formed a stable organogel in a cross-linkable monomeric solvent (ethylene glycol dimethacrylate). The organogel showed a thermoreversible sol-gel transition, accompanying the emission color change. A nanocomposite polymer film obtained by photopolymerization of the organogel between two quartz plates also exhibited reversible thermochromism. Under 365 nm irradiation, the orange color of the film at 25 °C became yellowish green at 120 °C. The fluorescence spectroscopy, DSC, and microscopy results determined that the thermally reversible self-assembly of NA-DBA occurred in the polymer matrix, resulting in reversible thermochromism. The melted gelator molecules at 120 °C did not diffuse into the polymer matrix probably because of poor interactions of the gelator molecules with the polymer matrix. The NA-DBA molecules dispersed in poly(methyl methacrylate), without forming a supramolecular structure, did not show thermochromism. PMID:25340308

  3. Polymer thin film instability from a patterned edge

    NASA Astrophysics Data System (ADS)

    Guo, Yunlong; Zhang, Chuan; Priestley, Rodney D.

    2014-07-01

    Patterning of polymer thin films with nanoscale features is a critical step in nanoscale technologies. Here, we investigate the dewetting process from both a mechanically patterned edge (ME) and a hole edge of a thin polymer film, as a means to assess the influence of residual stresses induced during patterning on stability. At low temperature in which hole nucleation is not observed dewetting can still proceed from the ME. Under conditions in which dewetting proceeded from both edges that from the ME exhibited a crossover to a dramatically reduced dewetting velocity. These results suggest mechanical stress concentrated along the ME remarkably depresses the dewetting process by decreasing the rim growth rate.

  4. Probing nano-rheology in thin polymer films

    NASA Astrophysics Data System (ADS)

    Dalnoki-Veress, Kari

    2013-03-01

    In this talk I will summarize our recent work on using stepped films to uncover some of the physics relevant to polymer rheology on length scales comparable to the size of polymer molecules. The work presented will focus on the efforts of a larger collaboration (Elie Raphael's theory group in Paris and James Forrest's group in Waterloo). The simple geometry of a polymer film on a substrate with a step at the free surface is unfavourable due to the excess interface induced by the step. Laplace pressure will drive flow within the film which can be studied with optical and atomic force microscopies. Because of the excellent agreement between theory and experiment when we probe ``bulk-like'' properties, these studies provide an opportunity to study how such systems transition from the bulk to confined. Starting with some of the results of levelling experiments on simple stepped films as well as the levelling of polymer droplets on thin films, I will finish with a discussion on our more recent efforts to elucidate confinement effects.

  5. Patterning dewetting in thin polymer films by spatially directed photocrosslinking.

    PubMed

    Carroll, Gregory T; Turro, Nicholas J; Koberstein, Jeffrey T

    2010-11-15

    In this report we examine the dewetting of spin-cast poly (styrene) films in a confined geometry. We designed a platform for laterally confining PS by photo-patterning crosslinks in spin-coated thin films. Heating the patterned film above the glass transition temperature of PS results in localized dewetting patterns in regions that were not crosslinked, while the crosslinked pattern serves as a rigid barrier that confines the retraction of the uncrosslinked polymer in micron-sized domains. The barriers also provide a favorable surface that the liquid PS wets onto, forming a rim at the boundary of crosslinked and uncrosslinked polymer. The resulting patterns are shown to be dependent on the irradiation and annealing time, the dimensions of the uncrosslinked region and the thickness of the film. PMID:20728089

  6. Vacuum deposited polymer films: Past, present, and future applications

    SciTech Connect

    Affinito, J.; Martin, P.; Gross, M.; Bennett, W.

    1994-11-01

    Two extremely high rate processes have been developed for the vacuum deposition of polymer thin films. Dubbed the PML (for Polymer Multi-Layer) and LML (for Liquid Multi-Layer) processes, the PML technique was originally developed for the manufacture of polymer/aluminum surface mount capacitors while the LML method arose from a need to fabricate lithium polymer batteries. These processes have since been found to be compatible with most other vacuum deposition techniques in, integrated, in-line coating processes. Battelle has developed an extensive program, and a great deal of hardware, to pursue a wide variety of PML and LML applications which integrate these two process technologies with other, conventional, vacuum deposition methods. The historical development of the technologies is reviewed and the Battelle PML/LML facilities are described. Current Battelle work involving solar thermal control films, PML QWOTs, and polymer/metal high reflectors are also discussed. Battelle PML work that is just starting, involving non-linear optical materials/devices, lithium polymer battery fabrication, electrochromic devices, and polymer/oxide multilayers, is discussed as well.

  7. Nanowear on polymer films of different architecture.

    PubMed

    Berger, R; Cheng, Y; Förch, R; Gotsmann, B; Gutmann, J S; Pakula, T; Rietzler, U; Schärtl, W; Schmidt, M; Strack, A; Windeln, J; Butt, H-J

    2007-03-13

    In this paper, we describe atomic force microscope (AFM) friction experiments on different polymers. The aim was to analyze the influence of the physical architecture of the polymer on the degree and mode of wear and on the wear mode. Experiments were carried out with (1) linear polystyrene (PS) and cycloolefinic copolymers of ethylene and norbornene, which are stabilized by entanglements, (2) mechanically stretched PS, (3) polyisoprene-b-polystyrene diblock copolymers, with varying composition, (4) brush polymers consisting of a poly(methyl methacrylate) (PMMA) backbone and PS side chains, (5) PMMA and PS brushes grafted from a silicon wafer, (6) plasma-polymerized PS, and (7) chemically cross-linked polycarbonate. For linear polymers, wear depends critically on the orientation of the chains with respect to the scan direction. With increasing cross-link density, wear was reduced and ripple formation was suppressed. The cross-linking density was the dominating material parameter characterizing wear. PMID:17279781

  8. Consequences of Residual Stresses in Thin Polymer Films

    NASA Astrophysics Data System (ADS)

    Reiter, Guenter

    2010-03-01

    In our quest for making functional devices smaller, the thickness of polymer films has reached values even smaller than the diameter of the unperturbed molecule. However, despite enormous efforts over the last decade, our understanding of the origin of some puzzling properties of such thin films is still not satisfactory and several peculiar observations remain rather mysterious. In this context, we explore the consequences of the transition from a dilute polymer solution to the glassy state with respect to the properties of polymers in thin films. This transition is likely to result in residual stresses, arising from out-of-equilibrium chain conformations due to rapid solvent loss. Consequently, depending on thermal history and ageing time, such films exhibit significant changes even in the glassy state ^ which we quantify by performing detailed studies of viscoelastic dewetting of thin polystyrene films on solid substrates. We explored relaxation times, residual stresses, and temporal changes of the stability of non-equilibrated thin films as they progress toward stable equilibrium behaviors. To do so, we have focused primarily on times shorter than the reptation time of the polymer. The number of spontaneously nucleated holes per unit area is seen to decrease as the films were aged below the glass transition, showing the meta-stability of the system. The ratio of stress over elastic modulus was found to increase strongly with decreasing film thickness and increasing chain length. Full equilibration of chain conformations required long times comparable to bulk reptation times. However, for chains longer than about 3000 monomers, the residual stress relaxed faster, at a rate independent of chain length. We present some tentative ideas on the relation between these observed atypical mechanical and relaxational behaviors and meta-stable states introduced by sample preparation.

  9. Acoustic resonant spectroscopy for characterization of thin polymer films

    NASA Astrophysics Data System (ADS)

    Tohmyoh, Hironori; Imaizumi, Takuya; Saka, Masumi

    2006-10-01

    An acoustic resonant spectroscopy technique for measuring the acoustic impedance, ultrasonic velocity, and density of micron-scale polymer films is developed. The method, which is based on spectral analysis, observes the acoustic resonance between water, the film, and a tungsten plate with high acoustic impedance in the frequency range of 20-70MHz. The interface between the film being examined and the plate is vacuum sealed, enabling us to characterize the low-density polyethylene film with acoustic impedances as low as about 1.9MNm-3s and the poly(vinyl chloride) film as thin as about 8μm. The error in the film density measurements is found to be less than 1%, and the validity of the technique is verified.

  10. Simple push coating of polymer thin-film transistors.

    PubMed

    Ikawa, Mitsuhiro; Yamada, Toshikazu; Matsui, Hiroyuki; Minemawari, Hiromi; Tsutsumi, Jun'ya; Horii, Yoshinori; Chikamatsu, Masayuki; Azumi, Reiko; Kumai, Reiji; Hasegawa, Tatsuo

    2012-01-01

    Solution processibility is a unique advantage of organic semiconductors, permitting the low-cost production of flexible electronics under ambient conditions. However, the solution affinity to substrate surfaces remains a serious dilemma; liquid manipulation is more difficult on highly hydrophobic surfaces, but the use of such surfaces is indispensable for improving device characteristics. Here we demonstrate a simple technique, which we call 'push coating', to produce uniform large-area semiconducting polymer films over a hydrophobic surface with eliminating material loss. We utilize a poly(dimethylsiloxane)-based trilayer stamp whose conformal contact with the substrate enables capillarity-induced wetting of the surface. Films are formed through solvent sorption and retention in the stamp, allowing the stamp to be peeled perfectly from the film. The planar film formation on hydrophobic surfaces also enables subsequent fine film patterning. The technique improves the crystallinity and field-effect mobility of stamped semiconductor films, constituting a major step towards flexible electronics production. PMID:23132026

  11. Measuring the Thickness and Elastic Properties of Electroactive Thin-Film Polymers Using Platewave Dispersion Data

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; El-Azab, A.; Mal, Ajit K.

    1996-01-01

    Electroactive thin-film polymers are candidate sensors and actuators materials. They are also finding significant potential in muscle mechanisms and microelectromechanical systems (MEMS). In these applications, polymer thin films of thickness varying between 20 and 300 micrometers are utilized. The authors are currently studying the potential use of platewave dispersion curve measurements as an effective gauging tool for electroactive thin-film polymers.

  12. Process optimization of ultrasonic spray coating of polymer films.

    PubMed

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films. PMID:23631433

  13. Electrically conducting novel polymer films containing pi-stacks

    NASA Astrophysics Data System (ADS)

    Duan, Robert Gang

    1997-12-01

    The primary focus of this thesis is to expand our knowledge of ion radicals of π-dimers and π- stacks in solutions and apply these insights in the development and understanding of new electrically conducting polymers. Two types of the conducting polymers were investigated. The first is the conducting polymer composites embedded with π-stacks of ion radicals. Flexible and air stable n-typed conducting thin films were prepared from imide/poly(vinyl alcohol) aqueous solutions. Conducting thin films of terthiophene/poly(methyl methacrylate) were cast from hexafluoro-2-propanol. Effects of casting conditions on the morphology and conductivity of the films were investigated. These films were fully characterized by UV- vis, NIR, IR, XRD, SEM and ESR. In the second type of conducting polymer system, PAMAM dendrimers generation 1 through 5 were peripherally modified with cationically substituted naphthalene diimide anion radicals. NMR, UV, IR, CV and Elemental Analysis were used to characterize modified dendrimers. Reduction with sodium dithionite in solution showed anion radicals were aggregated into π-dimers and π- stacks. Formamide was used to cast conducting dendrimer films. ESCA, SEM and optical microscope were used to study the composition and the morphology of the films. XRD showed complete amorphous nature of these films. NIR revealed that the π-stack aggregation depend strongly on the casting temperature and the degree of reduction. Four- probe co-liner conductivity of the films is on the order of 10-2 to 10-1/ S/ cm-1. ESR and conductivity measurements also revealed the isotropic nature of the conductivity. Conductivity/humidity relationship was discovered by accidental breathing over the films. Using a home-made controlled humidity device and PACERTM hygrometer, the conductivity of the films can be varied quickly and reversibly within two orders of a magnitude. This phenomenon was probed with NIR, XRD and quartz crystal microbalance techniques. These

  14. Static properties of equilibrium polymers confined in ultrathin films

    NASA Astrophysics Data System (ADS)

    Cavallo, Anna; Wittmer, Joachim P.; Johner, Albert; Baschnagel, Joerg

    2008-03-01

    The static properties of equilibrium polymer melts confined in ultrathin films are studied by means of Monte Carlo simulations of a lattice model: the bond fluctuation model. In this work we focus on the effects of ultrathin film confinement between two parallel and neutral walls on chain size and molecular weight distribution. We compare our numerical results to analytical calculations by Semenov and Johner [Eur. Phy. J. E, 12, 469 (2003)] who predicted for ultrathin films, logarithmic corrections to the leading mean-field behavior. Our simulation data are compatible with the theoretical results.

  15. Co-polymer Films for Sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  16. Co-polymer films for sensors

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2010-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  17. Simultaneous Vapor Deposition and Phase Separation of Polymer Films

    NASA Astrophysics Data System (ADS)

    Tao, Ran; Anthamatten, Mitchell

    2012-02-01

    Initiated chemical vapor deposition (iCVD) is a solventless, free radical technique used predominately to deposit homogeneous films of linear and crosslinked polymers directly from gas phase feeds. The major goal of this research is to force and arrest phase separation of deposited species by co-depositing non-reactive molecules (porogens) with reactive monomers and crosslinkers. We introduce these species during iCVD to force and quench polymer induced phase separation (PIPS) during film growth as a step toward tunable pore-size, density, and morphology. Polymerization, crosslinking and PIPS are intended to occur simultaneously on the substrate, resulting in a vitrified microstructure. Cahn-Hilliard theory predicts that the length scale of phase separation depends on the polymer-porogen interaction energy, the polymerization rate and the species' mobility. A series of films were grown by varying deposition rate, porogen type, and reagent flowrates. Crosslinkers were introduced to limit the growth of phase separated domains and to provide mechanical support during porogen removal. To elucidate how phase separation competes with polymerization and film growth, deposited films were studied using a combination of electron microscopy, profilometry and spectroscopic techniques.

  18. Transparent lithiated polymer films for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Mabe, Andrew N.; Auxier, John D.; Urffer, Matthew J.; Penumadu, Dayakar; Schweitzer, George K.; Miller, Laurence F.

    2013-09-01

    Novel water-soluble 6Li loaded copolymer scintillation films have been designed and fabricated to detect thermal neutrons. Styrene and maleic anhydride were copolymerized to form an alternating copolymer, then the anhydride functionality was hydrolyzed using 6Li hydroxide. The resulting poly(styrene-co-lithium maleate) was mixed with salicylic acid as a fluor and cast as a thin film from water. The maximum 6Li loading obtained that resulted in a transparent film was 4.36% by mass (6Li to polymer). The optimum fluorescence output was obtained for 11.7% salicylic acid by mass, presumably in the form of lithium salicylate, resulting in an optimum film containing 3.85% by mass of 6Li. A facile and robust synthesis method, film fabrication protocol, photoluminescence results, and scintillation responses are reported herein.

  19. Nanomolding the Surface of Polymer Films.

    PubMed

    Foschini, Mauricio; Da Silva, Silésia Fátima Curcino; Tozoni, José Roberto; Zadra-Armond, Raigna Augusta Da Silva; Oliveira, Osvaldo N; Marletta, Alexandre

    2015-08-01

    Slight changes in the experimental procedures of the micro contact printing (ACP) technique are introduced here, which allow for using polymers soluble in distinct solvents to fabricate submicrometric 2D periodic structures. Highly reproducible secondary and tertiary poly(dimethylsiloxane) (PDMS) molds could be produced, as demonstrated in atomic force microscopy images and light diffraction experiments. The replication of tertiary molds with no residues of PDMS demonstrates the feasibility of large-scale production with distinct polymers. The plane wave propagation along the tertiary poly(3,4-ethylenedioxythiophene) with poly(hydrogen 4-styrene sulfonate) molds was simulated with a finite-difference time-domain algorithm. A strong wave propagation was observed in the region containing the structures acting as a wave guide, in agreement with the results from the experimental absorption measurements. Furthermore, we show that the optical properties of the molds and their roughness can be tuned by choosing the polymers (including biopolymers) for printing pillars and tracks, thus bringing new possibilities for nanomolding of polymer surfaces for photonics, organic electronics and bioelectronics. PMID:26369185

  20. Thin film conductive polymer for microactuator and micromuscle applications

    SciTech Connect

    Lee, A.P.; Hong, K.; Trevino, J.; Northrup, M.A.

    1994-04-14

    Conductive polymer/polyimide bimorphic microcantilevers have been actuated vertically (out-of-plane) upon the volumetric changes induced by electrochemical doping of the polymer. The microcantilevers that are 200-500 {mu}m in length and 50-100 {mu}m in width can be fully extended from a circularly-curled geometry, and thus generate more than 100 {mu}m displacement. Dynamically the microcantilevers have been driven as fast as 1.2 Hz and the polymer was stable for over a week stored in air and light. Residual stresses in the polymer film is estimated to be as high as 254 MPa, and actuation stresses are as high as 50 MPa.

  1. Drying of polymer films: study of demixing phenomena

    NASA Astrophysics Data System (ADS)

    Fichot, Julie; Heyd, Rodolphe; Saboungi, Marie-Louise; Josserend, Christophe; Combard, Emilie; Tranchant, Jean Francois

    2011-03-01

    Understanding the mechanisms that control the stability of polymeric films is important in beauty care. We have prepared films starting from a water-soluble organic polymer, a preservative and water. We study the drying of these films as a function of several physicochemical parameters that control their interfaces such as temperature, humidity and the nature of the support. The viscoelastic properties of the solutions before spreading out are analyzed with a rheometer in order to adjust the temperature. The topography of the films is observed by optical microscopy and the evolution of the drying is determined with a precision gravimetric balance. The behavior of the films on a nanometric scale is followed by AFM. During the drying process, droplets appear on the surface of the film, made up of water surrounded by a shell of preservative. As the films dries, the water evaporates from the droplets and the preservative spreads on the surface of the film, leading to the formation of craters on the surface of the dried film. The dimensions and numbers of the craters depend strongly on the type and concentration of the preservative employed.

  2. Updated evaluation of polymer films for electrical insulation

    SciTech Connect

    McCoy, H.E. Jr.

    1990-08-01

    Several types of tests have been run on polymer film materials that could be useful for electrical insulation. The polymers studied were polyethylene terephtalate, polycarbonate, polysulfone, polyetherimide, ultrahigh-molecular-weight polyethylene, polyimide, polybutylene terephthalate, and a laminate of Kraft paper and polypropylene. Thermal aging tests were run to 60,000 h on several of the polymers, and the samples were evaluated by tensile tests, electrical breakdown tests, and immersion density measurements. Because of the wide range of potential service conditions, tensile tests were run on as-received materials over the temperature range of {minus}196 to 200{degree}C. Polyimide is probably the only material suitable for the extremes of this temperature range, but many of the other polymers would be suitable for intermediate temperatures. Creep tests were run in nitrogen and transformer oil at 90{degree}C. It was found that some polymers are weaker and less ductile in oil than in nitrogen and that other polymers have equivalent properties in the two environments. A means of applying mechanical, thermal, and electrical stresses simultaneously to polymer samples was developed. Tests were run at 90{degree}C in transformer oil on polyethylene terephthalate, polyimide, and polyethersulfone. Tests thus far do not indicate that the creep rate is affected by the application of a 5 kV dc potential. 7 refs., 30 figs., 16 tabs.

  3. A Conducting Polymer Film Stronger Than Aluminum

    NASA Astrophysics Data System (ADS)

    Shi, Gaoquan; Jin, Shi; Xue, Gi; Li, Cun

    1995-02-01

    Polythiophene (Pth) was electrochemically deposited onto stainless steel substrate from freshly distilled boron fluoride-ethyl ether containing 10 millimoles of thiophene per liter. The free-standing Pth film obtained at an applied potential of 1.3 volts (versus Ag/AgCl) had a conductivity of 48.7 siemens per centimeter. Its tensile strength (1200 to 1300 kilograms per square centimeter) was greater than that of aluminium (1000 to 1100 kilograms per square centimeter). This Pth film behaves like a metal sheet and can be easily cut into various structures with a knife or a pair of scissors.

  4. Deformation Hysteresis of Electrohydrodynamic Patterning on a Thin Polymer Film.

    PubMed

    Yang, Qingzhen; Li, Ben Q; Tian, Hongmiao; Li, Xiangming; Shao, Jinyou; Chen, Xiaoliang; Xu, Feng

    2016-07-13

    Electrohydrodynamic patterning is a technique that enables micro/nanostructures via imposing an external voltage on thin polymer films. In this investigation, we studied the electrohydrodynamic patterning theoretically and experimentally, with special interest focused on the equilibrium state. It is found that the equilibrium structure height increases with the voltage. In addition, we have observed, and believe it to be the first time, a hysteresis phenomenon exists in the relationship between the voltage and structure height. With an increase in the voltage, a critical value (the first critical voltage) is noticed, above which the polymer film would increase dramatically until it comes into contact with the template. However, with a decrease in the voltage, a smaller voltage (the second critical voltage) is needed to detach the polymer from the template. The mismatch of the first and second critical voltages distorts the voltage-structure height curve into an "S" shape. Such a phenomenon is verified for three representative templates and also by experiments. Furthermore, the effects of some parameters (e.g., polymer film thickness and dielectric constant) on this hysteresis phenomenon are also discussed. PMID:27326791

  5. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    NASA Astrophysics Data System (ADS)

    Schaubroeck, David; De Smet, Jelle; Willems, Wouter; Cools, Pieter; De Geyter, Nathalie; Morent, Rino; De Smet, Herbert; Van Steenbeerge, Geert

    2016-07-01

    Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  6. Inorganic-polymer-derived dielectric films

    DOEpatents

    Brinker, C.J.; Keefer, K.D.; Lenahan, P.M.

    1985-02-25

    A method is disclosed for coating a substrate with a thin film of a predetermined porosity. The method comprises: depositing the thin film on the substrate from a non-gelled solution comprising at least one metal alkoxide of a polymeric network forming cation, water, an alcohol compatible with the hydrolysis and the polymerization of the metal alkoxide, and an acid or a base; prior to said depositing step, controlling the porosity and structure of said coating for a given composition of said solution exclusive of the acid or base component and the water component, by adjusting each of the water content, the pH, the temperature and the time of standing of said solution, increasing/descreasing the water content or the pH to increase/decrease the pore size of said coating, and increasing/decreasing the temperature or time of standing of said solution to increase/decrease the pore size of said coating; and curing said deposited film at a temperature effective for curing whereby there is obtained a thin film coating of a predetermined porosity on the substrate.

  7. Interactions H.I.F.U. / polymer films

    NASA Astrophysics Data System (ADS)

    Hallez, L.; Touyeras, F.; Hihn, J.-Y.; Bailly, Y.

    2010-01-01

    In order to obtain the modification of a defined volume of a polymer layer, preliminary tests of sonication (HIFU 0.75 and 3 MHz) were carried out to obtain an accurate characterization of the acoustic fields as well as convective flow velocities measured close to the surface by Particle Image Velocimetry and luminol mapping. Then, sonication of a delimited zone of an acrylic resin deposited upon a stainless steel thin substrate highlighted a strong dependence of the polymerization or reticulation degree, with different exposure times and different power thresholds for the same final modification. The point was to examine the ability of the thin polymer film to absorb ultrasonic energy or to act as a perfect reflector which induces asymmetric cavitation and therefore violent collapses to take place close to the surface. In the first case, the wave absorption by the film is converted into heat and then acts for the polymer alteration under the high convective flow velocities. For the highest acoustic intensities and for the hardest films, cavitation occurs and the produced microbubbles oscillated and grow close to the surface. Then, the shocks resulting of the bubble collapse eroded mechanically the film.

  8. Manufacturing polymer thin films in a micro-gravity environment

    NASA Technical Reports Server (NTRS)

    Vera, Ivan

    1987-01-01

    This project represents Venezuela's first scientific experiment in space. The apparatus for the automatic casting of two polymer thin films will be contained in NASA's Payload No. G-559 of the Get Away Special program for a future orbital space flight in the U.S. Space Shuttle. Semi-permeable polymer membranes have important applications in a variety of fields, such as medicine, energy, and pharmaceuticals and in general fluid separation processes, such as reverse osmosis, ultrafiltration, and electrodialysis. The casting of semi-permeable membranes in space will help to identify the roles of convection in determining the structure of these membranes.

  9. Dynamic Mechanical Characterization of Thin Film Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Herring, Helen M.; Gates, Thomas S. (Technical Monitor)

    2003-01-01

    Many new materials are being produced for aerospace applications with the objective of maximizing certain ideal properties without sacrificing others. Polymer composites in various forms and configurations are being developed in an effort to provide lighter weight construction and better thermal and electrical properties and still maintain adequate strength and stability. To this end, thin film polymer nanocomposites, synthesized for the purpose of influencing electrical conductivity using metal oxide particles as filler without incurring losses in mechanical properties, were examined to determine elastic modulus and degree of dispersion of particles. The effects of various metal oxides on these properties will be discussed.

  10. Droplet manipulation on a liquid crystal and polymer composite film

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Tsou, Yu-Shih; Chu, Ting-Yu; Chen, Jun-Lin

    2010-08-01

    A droplet manipulation on a switchable surface using a liquid crystal and polymer composite film (LCPCF) based on phase separation is developed recently. The wettability of LCPCF is electrically tunable because of the orientation of liquid crystal directors anchored among the polymer grains. A droplet on LCPCF can be manipulated owning to the wettability gradient induced by spatially orientation of LC directors. We discuss the droplet manipulation on LCPCF and demonstrate several applications of LCPCF, such as polarizer-free displays, and human semen sensing.

  11. Phase Separation Dynamics of Polymer Blend Films Containing Polymer-Grafted Nanoparticles

    NASA Astrophysics Data System (ADS)

    Chung, H.-J.; Ohno, K.

    2005-03-01

    Polymer blends containing nanoparticles (NP) are important in advanced technologies including opto-electronic and biosensor devices. Upon adding methyl-terminated silica NP's [22nm (NPA)] at dilute concentrations, PMMA:SAN (50:50) films (650nm) undergo early, intermediate and late stages of morphology development, similar to a PMMA:SAN film (Wang & Composto, JCP (2000)). NP's partition into the PMMA-rich phase, and slow down the kinetics of domain growth. This result is consistent with a coalescence model that predicts ξ˜ (1 / η)^1/3 t^1/3, where ξ and η are the correlation length and PMMA viscosity, respectively (Chung et al., EPL (2004)). Although the bulk η agrees with this model, a microscopic understanding of the phase separation mechanism requires knowledge of polymer-NP and NP-NP interactions. To address this issue, well-characterized silica NP's (15 nm) with densely grafted PMMA [Mw = 1.8K (NPB) and 21K (NPC)] are employed as non-interacting fillers in the PMMA-rich phase. The impact of PMMA-grafted NP on the phase separation dynamics in films, as well as the rheology of PMMA/NP composites, is investigated. Specifically, phase separation was slowest for NPB relative to films containing NPA and NPC. These studies show that wetting and domain coarsening in polymer blend films can be controlled by the judicial addition of surface modified NP.

  12. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    NASA Astrophysics Data System (ADS)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  13. Effect of absorbents on water vapor transmission of free and applied polymer films.

    PubMed

    Amann, A H

    1976-04-01

    The influence of different types of absorbents on moisture transmission through free (cast films) and applied (coated tablets) polymer films was investigated. In free film studies, lubricated granulations were considered to be the absorbent. The compressed tablet was considered to be the absorbent in applied film studies. The results suggested that, using the same film formulation and film thickness in all cases, the polymer film reduced moisture absorption to the same degree, independent of the absorbent used, suggesting a constant moisture permeation. The results of the free film studies also simulated those of the applied films, allowing the correlation of the data. PMID:1271250

  14. Dewetting dynamics of stressed viscoelastic thin polymer films.

    PubMed

    Ziebert, Falko; Raphaël, Elie

    2009-03-01

    Ultrathin polymer films that are produced, e.g., by spin coating are believed to be stressed since polymers are "frozen in" into out-of-equilibrium configurations during this process. In the framework of a viscoelastic thin-film model, we study the effects of lateral residual stresses on the dewetting dynamics of the film. The temporal evolution of the height profiles and the velocity profiles inside the film as well as the dissipation mechanisms are investigated in detail. Both the shape of the profiles and the importance of frictional dissipation vs viscous dissipation inside the film are found to change in the course of dewetting. The interplay of the nonstationary profiles, the relaxing initial stress, and the changes in the dominance of the two dissipation mechanisms caused by nonlinear friction with the substrate is responsible for the rich behavior of the system. In particular, our analysis sheds a different light on the occurrence of the unexpected maximum in the rim width obtained recently in experiments on polystyrene-polydimethylsiloxane systems. PMID:19391952

  15. Large and Reversible Plasmon Tuning using Ultrathin Responsive Polymer film

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srikanth; Nergiz, Saide

    2011-03-01

    We demonstrate reversible linear and branched aggregation of gold nanoparticles adsorbed on an ultrathin responsive polymer ((poly(4-vinyl pyridine), P4VP) film. P4VP is a weak cationic polymer, which exhibits a reversible coil to globule transition with change in external pH. Atomic force microscopy revealed that in the coiled state (below the isoelectric point of the polymer) of the polymer chains, gold nanoparticles adsorbed on the polymer layer existed as primarily individual nanoparticles. On the other hand, lowering the pH caused the polymer chains to transition from coil to globule state, resulting in aggregation of the nanoparticles into linear and branched chains. Reversible aggregation of the nanoparticles results in a dramatic change in the optical properties of the metal nanostructures. Apart from the large redistribution of the intensity between the individual (530 nm) and coupled (650 nm) plasmon bands, the coupled plasmon band exhibits a shift of nearly 60 nm with change in external pH. The pH triggered aggregation of the nanoparticles and the dramatic change in the optical properties associated with the same can form an excellent platform for colorimetric sensing. The work reported here is supported by the Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine.

  16. Study of ordered macroporous polymer films by templating breath figures

    NASA Astrophysics Data System (ADS)

    Song, Lulu

    2005-11-01

    Macroporous films with highly ordered pore patterns have many potential applications. Some examples include microstructured electrode surfaces, photonic band gap materials and filters for cell sorting and bio-interfaces. In this dissertation we discuss a "moist-casting" method to prepare hexagonally-ordered macroporous films with pore sizes in the range of sub-micron to several microns, where condensed water droplets ("breath figures") work as templates. Compared with other templating methods, this one is fast and simple. Well-ordered porous films can be obtained in tens of seconds and the pore size can be easily tailored and dynamically controlled by adjusting the casting conditions. More importantly, there is no need to remove the templates; water droplets just evaporate when the casting processes are finished. This study was carried out with the intention of characterizing the structures, understanding film-formation processes and exploring special properties and possible applications. For the structural characterization, film morphology was studied in detail by normal optical microscopy and laser scanning confocal microscopy (LSCM). Several interesting features have been revealed. Meanwhile, the degree of the order of the porous structures were characterized both in real space via Voronoi diagram and bond-orientational correlation function, and in reciprocal space via Fraunhofer diffraction pattern. To further understand the mechanism, the evaporation of the polymer solutions during the film formation was studied by monitoring their mass over time. Besides, the evolution of breath figures formed on the evaporating polymer solutions was in-situ recorded via a high-speed camera coupled to an optical microscope. Combined with the information on the film structures obtained via LSCM, explanations for some detailed features have been attempted. Wetting property of these films was studied in some detail. The films exhibited "lotus effect", mimicking natural non

  17. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones.

    PubMed

    Voortman, Thomas P; Chiechi, Ryan C

    2015-12-30

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or hydrophobic-hydrophobic, form smooth, structured, homogeneous films from water (ionic) or tetrahydrofuran (hydrophobic). Mismatched conjugated polymers, by contrast, form inhomogeneous films with rough topologies. The polymers with ionic backbone chains are conjugated polyions (conjugated polymers with closed-shell charges in the backbone), which are semiconducting materials with tunable bad-gaps, not unlike uncharged conjugated polymers. PMID:25723354

  18. Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film

    SciTech Connect

    Linde, Felix; Sekhar Yadavalli, Nataraja; Santer, Svetlana

    2013-12-16

    We report on conductivity behavior of very thin gold layer deposited on a photosensitive polymer film. Under irradiation with light interference pattern, the azobenzene containing photosensitive polymer film undergoes deformation at which topography follows a distribution of intensity, resulting in the formation of a surface relief grating. This process is accompanied by a change in the shape of the polymer surface from flat to sinusoidal together with a corresponding increase in surface area. The gold layer placed above deforms along with the polymer and ruptures at a strain of 4%. The rupturing is spatially well defined, occurring at the topographic maxima and minima resulting in periodic cracks across the whole irradiated area. We have shown that this periodic micro-rupturing of a thin metal film has no significant impact on the electrical conductivity of the films. We suggest a model to explain this phenomenon and support this by additional experiments where the conductivity is measured in a process when a single nanoscopic scratch is formed with an AFM tip. Our results indicate that in flexible electronic materials consisting of a polymer support and an integrated metal circuit, nano- and micro cracks do not alter significantly the behavior of the conductivity unless the metal is disrupted completely.

  19. Conductivity behavior of very thin gold films ruptured by mass transport in photosensitive polymer film

    NASA Astrophysics Data System (ADS)

    Linde, Felix; Sekhar Yadavalli, Nataraja; Santer, Svetlana

    2013-12-01

    We report on conductivity behavior of very thin gold layer deposited on a photosensitive polymer film. Under irradiation with light interference pattern, the azobenzene containing photosensitive polymer film undergoes deformation at which topography follows a distribution of intensity, resulting in the formation of a surface relief grating. This process is accompanied by a change in the shape of the polymer surface from flat to sinusoidal together with a corresponding increase in surface area. The gold layer placed above deforms along with the polymer and ruptures at a strain of 4%. The rupturing is spatially well defined, occurring at the topographic maxima and minima resulting in periodic cracks across the whole irradiated area. We have shown that this periodic micro-rupturing of a thin metal film has no significant impact on the electrical conductivity of the films. We suggest a model to explain this phenomenon and support this by additional experiments where the conductivity is measured in a process when a single nanoscopic scratch is formed with an AFM tip. Our results indicate that in flexible electronic materials consisting of a polymer support and an integrated metal circuit, nano- and micro cracks do not alter significantly the behavior of the conductivity unless the metal is disrupted completely.

  20. Intricacies of Polymer Dewetting: Nanoscaled Architectures for the Tailored Control of Polystyrene Thin Film Stability

    NASA Astrophysics Data System (ADS)

    Cheung, Justin; Sen, Mani; Chen, Zhizhao; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori; Satija, Sushil

    Recently, structural properties of polymer thin films have garnered attention for their relevance in the fields of organic photovoltaics and biosensors. The dewetting of polymer films poses an obstacle in the face of widespread implementation. For this study, we show that adsorbed polymer chains on a substrate surface play crucial roles in film stability. Polystyrene (PS) thin films (20 nm in thickness) with different molecular weights (Mw) on silicon (Si) substrates were used as a model. The PS films were annealed at high temperatures for several days, and Mw dependence on film stability was evidenced. At the same time, the annealed PS films were leached with a good solvent and the residue films (i.e., irreversibly adsorbed layers) were characterized by x-ray reflectivity (XR). We reveal strong correlation between film stability and two different interfacial structures of the adsorbed polymer chains: their opposing wettability against chemically identical free polymer chains results in a wetting-dewetting transition at the adsorbed polymer-free polymer interface. This is a unique aspect of polymer thin film stability and may be generalizable to other polymer systems regardless of the magnitude of solid-polymer attractive interactions. We acknowledge the financial support of NSF Grant (CMMI-1332499).

  1. Electrooptic Kerr effect of porphyrin H-aggregates in polymer films: Polymer specific spectral blue shift

    NASA Astrophysics Data System (ADS)

    Suzuki, Masaya; Nakata, Kazuaki; Kuroda, Reiko; Kobayashi, Takayoshi; Tokunaga, Eiji

    2016-05-01

    J- and H-aggregates of porphyrin molecules (TPPS4) in spin-coated polymer films have been studied by electroabsorption and circular dichroism (CD) spectroscopy. A spectral blue shift of the H-band due to the electrooptic Kerr effect was observed for the first time. This occurs only for a polyvinylpyrrolidone (PVP) film, with negligibly small spectral shift observed in polyvinyl alcohol (PVA), polyvinyl sulfate (PVS), and polyacrylic acid (PAA) films, in contrast to the red shift of the J-band which is commonly observed for any host polymers. Accordingly, the CD activity in both of J- and H-bands is more enhanced in PVP films than in PVA films. The mechanism of the blue and red shifts of the respective H- and J-bands is discussed by invoking a helical structure in micro-aggregates, which is compatible with the CD spectra, based on the molecular rearrangement model. It is proved that blue- and red-shifts occur evenly to cancel each other in the H-band if a simple helical structure is assumed, in good agreement with no spectral shifts in the H-band in PVA, PVS, and PAA films.

  2. Localized entrapment of green fluorescent protein within nanostructured polymer films

    NASA Astrophysics Data System (ADS)

    Ankner, John; Kozlovskaya, Veronika; O'Neill, Hugh; Zhang, Qiu; Kharlampieva, Eugenia

    2012-02-01

    Protein entrapment within ultrathin polymer films is of interest for applications in biosensing, drug delivery, and bioconversion, but controlling protein distribution within the films is difficult. We report on nanostructured protein/polyelectrolyte (PE) materials obtained through incorporation of green fluorescent protein (GFP) within poly(styrene sulfonate)/poly(allylamine hydrochloride) multilayer films assembled via the spin-assisted layer-by-layer method. By using deuterated GFP as a marker for neutron scattering contrast we have inferred the architecture of the films in both normal and lateral directions. We find that films assembled with a single GFP layer exhibit a strong localization of the GFP without intermixing into the PE matrix. The GFP volume fraction approaches the monolayer density of close-packed randomly oriented GFP molecules. However, intermixing of the GFP with the PE matrix occurs in multiple-GFP layer films. Our results yield new insight into the organization of immobilized proteins within polyelectrolyte matrices and open opportunities for fabrication of protein-containing films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.

  3. Polymer Substrates For Lightweight, Thin-Film Solar Cells

    NASA Technical Reports Server (NTRS)

    Lewis, Carol R.

    1993-01-01

    Substrates survive high deposition temperatures. High-temperature-resistant polymers candidate materials for use as substrates of lightweight, flexible, radiation-resistant solar photovoltaic cells. According to proposal, thin films of copper indium diselenide or cadmium telluride deposited on substrates to serve as active semiconductor layers of cells, parts of photovoltaic power arrays having exceptionally high power-to-weight ratios. Flexibility of cells exploited to make arrays rolled up for storage.

  4. Microwave absorption of free carriers in doped conjugated polymer films

    NASA Astrophysics Data System (ADS)

    Rumbles, Garry

    Flash photolysis time-resolved microwave conductivity (fp-TRMC) is a powerful spectroscopic tool for the detection of mobile charges in organic systems, such as conjugated polymers. We will report on a study of charge carrier generation in a number of polymer systems where the solid-state microstructure (SSM) of the thin films can be controlled using both molecular structure and processing conditions. By incorporating a low concentration of molecular acceptors, such as metallo-phthalocyanines, as well as substituted fullerenes and perylenes, the driving force for photoinduced electron transfer can be controlled through the excited state energy and the reduction potential. Our results indicate the importance of the crystalline phase of the polymer to stabilise and reduce the rate of recombination of the holes with the electrons that remain trapped on the acceptor. In addition, the role that the SSM plays on the stabilization of bound electron-hole pairs, or charge-transfer (CT) states will be examined.

  5. Photonic multilayer sensors from photo-crosslinkable polymer films

    NASA Astrophysics Data System (ADS)

    Chiappelli, Maria; Hayward, Ryan C.

    2012-02-01

    Photo-crosslinkable copolymers containing pendent benzophenone (BP) groups provide a convenient means to fabricate multilayer polymer films. We describe the preparation of alternating multilayers of photo-crosslinkable poly(N-isopropylacrylamide) (PNIPAM), a water-swellable, temperature sensitive polymer, and poly(para-methylstyrene) (PpMS), a non-swellable polymer, by sequential spin-coating and photo-crosslinking. This route provides well-defined layered structures with minimal interfacial broadening between layers and uniformity of thickness from layer to layer as determined by dynamic secondary ion mass spectrometry (d-SIMS). Appropriate choices of layer thicknesses yield 1-D photonic gel sensors. The reflectance peak is shifted through the visible spectrum upon swelling or de-swelling of the PNIPAM layers in water, providing an accessible means for colorimetric temperature sensing.

  6. Molecular modeling of responsive polymer films

    SciTech Connect

    Tagliazucchi, Mario; Calvo, Ernesto J; Szleifer, Igal

    2010-06-29

    In this perspective, we have shown three different cases of responsive polymers at surfaces where the properties of the surface can be varied in response to cues from the bulk solution or in the presence of an external field. The most important conclusion in all three cases is that the chemical reaction equilibrium, physical interactions and molecular organization are strongly coupled, and it is imperative to consider the global and local changes that occur to the surface structure and properties due to this coupling. In particular acid-base and redox equilibrium are very different in polymer-modified surfaces than in the corresponding bulk solutions. Moreover, the definition of ‘‘apparent redox potentials’’ and ‘‘apparent pKa’’results from the averaging over highly inhomogeneous values,and, therefore, they do not necessarily represent the state of the layer and the local values and their variation are very important for the design of functional surfaces. The very large variation on chemical equilibrium results from the optimization of all the interactions. The picture that emerges is that trying to deduce what the final state of the system is by looking at the individual optimization of each contribution leads to qualitative incorrect assumptions and only the minimization of the complete free energy leads to the proper behavior in these complex systems.In the cases where domain formation is possible in grafted weak polyacid layers charge regulation may lead to regimes of coexistence between aggregates with relatively low fraction of charged polymer segments surrounded by highly stretched chains that have a relatively high fraction of charged groups.Therefore, one can control the state of charge, local electrostatic potential and local pH in all three dimensions with im-portant gradients on length scales of nanometers. For hydrophobic redox polymers we show how the application of an electrode potential can lead to changes in the structure

  7. Chemical vapor deposition of conformal, functional, and responsive polymer films.

    PubMed

    Alf, Mahriah E; Asatekin, Ayse; Barr, Miles C; Baxamusa, Salmaan H; Chelawat, Hitesh; Ozaydin-Ince, Gozde; Petruczok, Christy D; Sreenivasan, Ramaswamy; Tenhaeff, Wyatt E; Trujillo, Nathan J; Vaddiraju, Sreeram; Xu, Jingjing; Gleason, Karen K

    2010-05-11

    Chemical vapor deposition (CVD) polymerization utilizes the delivery of vapor-phase monomers to form chemically well-defined polymeric films directly on the surface of a substrate. CVD polymers are desirable as conformal surface modification layers exhibiting strong retention of organic functional groups, and, in some cases, are responsive to external stimuli. Traditional wet-chemical chain- and step-growth mechanisms guide the development of new heterogeneous CVD polymerization techniques. Commonality with inorganic CVD methods facilitates the fabrication of hybrid devices. CVD polymers bridge microfabrication technology with chemical, biological, and nanoparticle systems and assembly. Robust interfaces can be achieved through covalent grafting enabling high-resolution (60 nm) patterning, even on flexible substrates. Utilizing only low-energy input to drive selective chemistry, modest vacuum, and room-temperature substrates, CVD polymerization is compatible with thermally sensitive substrates, such as paper, textiles, and plastics. CVD methods are particularly valuable for insoluble and infusible films, including fluoropolymers, electrically conductive polymers, and controllably crosslinked networks and for the potential to reduce environmental, health, and safety impacts associated with solvents. Quantitative models aid the development of large-area and roll-to-roll CVD polymer reactors. Relevant background, fundamental principles, and selected applications are reviewed. PMID:20544886

  8. Recent Advances in the Improvement of Polymer Electret Films

    NASA Astrophysics Data System (ADS)

    Erhard, Dominik P.; Lovera, Deliani; von Salis-Soglio, Cosima; Giesa, Reiner; Altstädt, Volker; Schmidt, Hans-Werner

    Polymer electret materials are electrically charged dielectric polymers capable of quasi-permanently retaining their electric field. However, environmental influences such as temperature and humidity reduce their charge stability and restrict applications. Therefore it is of great importance to provide a broad pool of polymer electret materials and to enhance further the charge storage behavior. In this context we report on concepts, measures, and solutions to improve the electret performance of commodity and high performance thermoplastic polymers, which was carried out at the University of Bayreuth in recent years. It is demonstrated that the commodity polymer polypropylene can be manufactured into excellent electret films when certain trisamide additives are incorporated in very low concentrations. Polypropylene can be employed at temperatures up to its continuous service temperature of 70 ∘C. To achieve higher temperature windows we investigated the commodity blend system of poly(phenylene ether) (PPE) and polystyrene (PS). We demonstrate that especially PPE/PS blend films with a composition of 75/25 exhibit remarkably good charge storage retention during the isothermal surface decay (ITPD) tests at 120 ∘C. In addition, the commercially available high performance thermoplastic polyetherimide (PEI) resin containing special phosphorus(III) additives shows very good electret properties at elevated temperatures. These properties can be further enhanced by physical aging; resulting in a charge retention after 24 h at 120 ∘C as high as 95%. The same beneficial effect of physical aging can be used to advance PPE and PPE/PS blends. Polymer electret materials with such charge storage properties have the potential to be employed in microphones, sensor devices, and electret filters.

  9. Graphene film formation on insulating substrates using polymer films as carbon source

    NASA Astrophysics Data System (ADS)

    Takami, T.; Seino, R.; Yamazaki, K.; Ogino, T.

    2014-03-01

    Graphene films were formed on sapphire surfaces using polymethylmethacrylate (PMMA) polymer films as a carbon source and characterized by Raman spectroscopy. For large-scale, uniform growth, a spin-on-glass (SOG)/Cu-catalyst/PMMA/sapphire layered structure was annealed in Ar-H2 flow at atmospheric pressure. We found that the SOG cover layer is effective to suppress evaporation and agglomeration of the Cu film. We also confirmed that morphology and quality of grown graphene films are dramatically improved by hydrogen etching of buried bulky carbon produced by the polymer pyrolysis at the Cu/sapphire interfaces. Quality of graphene films grown at the catalyst-layer/sapphire interface was compared with that on the catalyst surface using Ni/PMMA, PMMA/Ni and Ni/PMMA/Ni layered structures. Quality of graphene films grown at the Ni/sapphire interfaces was found to be lower than that on the Ni surfaces, suggesting that strain engineering at the buried Ni/graphene/sapphire interfaces and/or etching technique to remove the wastes of polymer pyrolysis should be improved.

  10. Nanomechanical study of thin film nanocomposite and PVD thin films on polymer substrates for optical applications

    NASA Astrophysics Data System (ADS)

    Moghal, Jonathan; Bird, Andrew; Harris, Adrian H.; Beake, Ben D.; Gardener, Martin; Wakefield, Gareth

    2013-12-01

    The mechanical properties of ultrathin (<120 nm) films differ substantially from the bulk properties of the material and are also strongly substrate dependent. We compare the properties of two differing film systems; a high particle loading nanocomposite of silica and a multiple layer physical vapour deposition (PVD) coating by nanoindentation, nano-scratch and nano-impact followed by structural analysis. The work is undertaken on hardcoated polymer substrates and uses two types of anti-reflection coatings as test systems. The nanocomposite film comprises of a high (>50%) loading of silica nanoparticles in an inorganic binder, which demonstrates significant flex and elastic recovery whereas PVD films are subject to brittle failure even at low applied loads. Failure of the nanocomposite film, with the exception of minor plastic deformation, does not occur until the underlying substrate fails. Although the PVD film has a greater hardness than the nanocomposite, failure occurs at lower loads due to a number of toughness reducing factors including reduced modulus, modulus mismatch with the substrate and film thickness. The resistance of ultrathin films to external mechanical stresses is therefore related to a number of factors and not simply to film hardness, the most important of which are film structure and film mechanical matching to the substrate.

  11. Characterization of polymer films retrieved from LDEF

    NASA Technical Reports Server (NTRS)

    Letton, Alan; Rock, Neil I.; Williams, Kevin D.; Strganac, Thomas W.; Farrow, Allan

    1992-01-01

    One of the trays aboard LDEF was an experiment having the objective of assessing the effects of long term exposure of candidate balloon films, tapes, and lines to the hostile environment of space. The fortuitous location of these materials on LDEF minimized direct impact by atomic oxygen thus providing an opportunity to study the effects of low earth orbit environments on polymeric materials without the worry of atomic oxygen abrasion. The resulting chemical, morphological, and thermomechanical changes for polyethylene specimens are reviewed. In addition, preliminary data for fluorinated ethylene/propylene copolymers used for thermal blankets is presented. Polyethylene is observed to crosslink and branch from exposure to atomic oxygen and/or ultraviolet with a decrease in crystallinity.

  12. Reduced Viscosity of Free Surface in Entangled Polymer Melt Films

    NASA Astrophysics Data System (ADS)

    Koga, Tad; Li, C.; Endoh, M.; Koo, J.; Rafailovich, M.; Narayanan, S.; Lee, D.; Lurio, L.; Sinha, S.

    2010-03-01

    The dynamics of polymer chains near the surface of a melt and within thin films remains a subject of inquiry along with the nature of the glass transition in these systems. By embedding ``dilute'' gold nanoparticles in single polystyrene thin films as ``markers'', we could probe the local viscosity of the free surface at temperatures far above the glass transition temperature (Tg). The technique used was X-ray photon correlation spectroscopy with resonance-enhanced X-ray scattering. The results clearly showed the viscosity was about 30 % lower than the rest of the film. We found that this reduction is strongly associated with chain entanglements at the free surface rather than the reduction in Tg.

  13. Viscoelastic dewetting of a polymer film on a liquid substrate.

    PubMed

    Bodiguel, H; Fretigny, C

    2006-02-01

    The Dewetting of thin polymer films (60-300 nm) on a non-wettable liquid substrate has been studied in the vicinity of their glass transition temperature. In our experiment, we observe a global contraction of the film while its thickness remains uniform. We show that, in this case, the strain corresponds to simple extension, and we verify that it is linear with the stress applied by the surface tension. This allows direct measurement of the stress/strain response as a function of time, and thus permits the measurement of an effective compliance of the thin films. It is, however, difficult to obtain a complete viscoelastic characterization, as the short time response is highly dependant on the physical age of the sample. Experimental results underline the effects of residual stress and friction when dewetting is analyzed on rigid substrates. PMID:16491310

  14. Simple push coating of polymer thin-film transistors

    PubMed Central

    Ikawa, Mitsuhiro; Yamada, Toshikazu; Matsui, Hiroyuki; Minemawari, Hiromi; Tsutsumi, Jun'ya; Horii, Yoshinori; Chikamatsu, Masayuki; Azumi, Reiko; Kumai, Reiji; Hasegawa, Tatsuo

    2012-01-01

    Solution processibility is a unique advantage of organic semiconductors, permitting the low-cost production of flexible electronics under ambient conditions. However, the solution affinity to substrate surfaces remains a serious dilemma; liquid manipulation is more difficult on highly hydrophobic surfaces, but the use of such surfaces is indispensable for improving device characteristics. Here we demonstrate a simple technique, which we call ‘push coating’, to produce uniform large-area semiconducting polymer films over a hydrophobic surface with eliminating material loss. We utilize a poly(dimethylsiloxane)-based trilayer stamp whose conformal contact with the substrate enables capillarity-induced wetting of the surface. Films are formed through solvent sorption and retention in the stamp, allowing the stamp to be peeled perfectly from the film. The planar film formation on hydrophobic surfaces also enables subsequent fine film patterning. The technique improves the crystallinity and field-effect mobility of stamped semiconductor films, constituting a major step towards flexible electronics production. PMID:23132026

  15. The local segmental dynamics of polymer thin films

    NASA Astrophysics Data System (ADS)

    Roland, C. M.; Casalini, Riccardo; Prevosto, Daniele; Labardi, Massimiliano; Zhu, Lei; Baer, Eric

    The local segmental dynamics of poly(methyl methacrylate) (PMMA) in multi-layered films with polycarbonate was investigated using dielectric spectroscopy. The segmental relaxation time decreased with layer thickness down to 4 nm. However, two measures of the cooperativity of the dynamics, the breadth of the relaxation dispersion and the dynamic correlation volume, were unaffected by the film thickness. This absence of an effect of geometric confinement on the cooperativity, even when the confinement length scale approaches the correlation length scale, requires an asymmetric correlation volume; i.e., correlating regions having a string-like nature. To further probe the effect of layering on the segmental dynamics, we measured the segmental dynamics of poly(vinylacetate) thin films in contact with variously an aluminum interface, an incompatible polymer, and air (free surface). From local dielectric relaxation measurements using an AFM tip, the dynamics were observed to be faster in all thin film configurations compared to the bulk. However, no differences were observed for the various interfaces; capping the thin films with a rigid material accelerated the segmental motions equivalently to that for an air interface. This insensitivity of the dynamics to the nature of the interface affords a means to engineer thin films while maintaining desired mechanical properties. Work at NRL supported by the Office of Naval Research.

  16. Glass transition dynamics of stacked thin polymer films

    NASA Astrophysics Data System (ADS)

    Fukao, Koji; Terasawa, Takehide; Oda, Yuto; Nakamura, Kenji; Tahara, Daisuke

    2011-10-01

    The glass transition dynamics of stacked thin films of polystyrene and poly(2-chlorostyrene) were investigated using differential scanning calorimetry and dielectric relaxation spectroscopy. The glass transition temperature Tg of as-stacked thin polystyrene films has a strong depression from that of the bulk samples. However, after annealing at high temperatures above Tg, the stacked thin films exhibit glass transition at a temperature almost equal to the Tg of the bulk system. The α-process dynamics of stacked thin films of poly(2-chlorostyrene) show a time evolution from single-thin-film-like dynamics to bulk-like dynamics during the isothermal annealing process. The relaxation rate of the α process becomes smaller with increase in the annealing time. The time scale for the evolution of the α dynamics during the annealing process is very long compared with that for the reptation dynamics. At the same time, the temperature dependence of the relaxation time for the α process changes from Arrhenius-like to Vogel-Fulcher-Tammann dependence with increase of the annealing time. The fragility index increases and the distribution of the α-relaxation times becomes smaller with increase in the annealing time for isothermal annealing. The observed change in the α process is discussed with respect to the interfacial interaction between the thin layers of stacked thin polymer films.

  17. Characterization of Local Mechanical Properties of Polymer Thin Films and Polymer Nanocomposites via AFM indentations

    NASA Astrophysics Data System (ADS)

    Cheng, Xu

    AFM indentation has become a tool with great potential in the characterization of nano-mechanical properties of materials. Thanks to the nanometer sized probes, AFM indentation is capable of capturing the changes of multiple properties within the range of tens of nanometers, such task would otherwise be difficult by using other experiment instruments. Despite the great potentials of AFM indentation, it operates based on a simple mechanism: driving the delicate AFM probe to indent the sample surface, and recording the force-displacement response. With limited information provided by AFM indentation, efforts are still required for any practice to successfully extract the desired nano-scale properties from specific materials. In this thesis, we focus on the mechanical properties of interphase between polymer and inorganic materials. It is known that in nanocomposites, a region of polymer exist around nanoparticles with altered molecular structures and improved properties, which is named as interphase polymer. The system with polymer thin films and inorganic material substrates is widely used to simulate the interphase effect in nanocomposites. In this thesis, we developed an efficient and reliable method to process film/substrate samples and characterize the changes of local mechanical properties inside the interphase region with ultra-high resolution AFM mechanical mapping technique. Applying this newly developed method, the interphase of several film/substrate pairs were examined and compared. The local mechanical properties on the other side of the polymer thin film, the free surface side, was also investigated using AFM indentation equipped with surface modified probes. In order to extract the full spectrum of local elastic modulus inside the surface region in the range of only tens of nanometers, the different contact mechanics models were studied and compared, and a Finite Element model was also established. Though the film/substrate system has been wide used as

  18. Evolution of non-equilibrium entanglement networks in spincast thin polymer films

    NASA Astrophysics Data System (ADS)

    Dalnoki-Veress, Kari; McGraw, Joshua; Fowler, Paul

    2012-02-01

    Measuring the rheology of non-equilibrium thin polymer films has received significant attention recently. Experiments are typically performed on thin polymer films that inherit their structure from spin coating. While the results of several rheological experiments paint a clear picture, details of molecular configurations in spincast polymer films are still unknown. Here we present the results of crazing measurements which demonstrate that the effective entanglement density of thin polymer films changes as a function of annealing toward a stable equilibrium value. The effective entanglement density plateaus with a time scale on the same order as the bulk reptation time.

  19. Laser-induced porous graphene films from commercial polymers

    PubMed Central

    Lin, Jian; Peng, Zhiwei; Liu, Yuanyue; Ruiz-Zepeda, Francisco; Ye, Ruquan; Samuel, Errol L. G.; Yacaman, Miguel Jose; Yakobson, Boris I.; Tour, James M.

    2014-01-01

    Synthesis and patterning of carbon nanomaterials cost effectively is a challenge in electronic and energy storage devices. Here report a one-step, scalable approach for producing and patterning porous graphene films with 3-dimensional networks from commercial polymer films using a CO2 infrared laser. The sp3-carbon atoms are photothermally converted to sp2-carbon atoms by pulsed laser irradiation. The resulting laser-induced graphene (LIG) exhibits high electrical conductivity. The LIG can be readily patterned to interdigitated electrodes for in-plane microsupercapacitors with specific capacitances of >4 mF·cm−2 and power densities of ~9 mW·cm−2. Theoretical calculations partially suggest that enhanced capacitance may result from LIG’s unusual ultra-polycrystalline lattice of pentagon-heptagon structures. Combined with the advantage of one-step processing of LIG in air from commercial polymer sheets, which would allow the employment of a roll-to-roll manufacturing process, this technique provides a rapid route to polymer-written electronic and energy storage devices. PMID:25493446

  20. Reversible structuring of azobenzene polymer films by surface plasmons

    NASA Astrophysics Data System (ADS)

    Koenig, Tobias; Santer, Svetlana

    2010-03-01

    It should be possible to move adsorbed nano-objects with relative ease, in large number and simultaneously. The essential idea is not to put more effort in fighting against the prevailing surface forces but rather to utilize them - in clear contrast to current techniques of nano-manipulation with atomic force microscopy [Santer, Adv Mat 2006]. For this, the topography should be reversible switching between different states by changing the morphology at the scale of objects to be moved. In this work, we choose light for changing the polymer topography. Here we present azo thin films [Seki, Chem Soc Jpn 2007] with integrated optically active elements supposed to support and steer the response of polymer films to external illumination by acting as nano-scale antennas. During irradiation surface plasmon (SP) waves are generated on a metallic mask. The interaction of the SP waves with azo polymers results in printing of near field intensity distributions into topography with the pattern size below the diffraction limit. We found that the topography can be driven reversible by changing polarization or wavelength. We also examine how the structuring process depends on the size of the metallic patterns. The results are confirmed by FTDT simulations and compared with imprints of photolithographic mask.

  1. Selectively Patterning Polymer Opal Films via Microimprint Lithography

    PubMed Central

    Ding, Tao; Zhao, Qibin; Smoukov, Stoyan K; Baumberg, Jeremy J

    2014-01-01

    Large-scale structural color flexible coatings have been hard to create, and patterning color on them is key to many applications, including large-area strain sensors, wall-size displays, security devices, and smart fabrics. To achieve controlled tuning, a micro-imprinting technique is applied here to pattern both the surface morphology and the structural color of the polymer opal films (POFs). These POFs are made of 3D ordered arrays of hard spherical particles embedded inside soft shells. The soft outer shells cause the POFs to deform upon imprinting with a pre-patterned stamp, driving a flow of the soft polymer and a rearrangement of the hard spheres within the films. As a result, a patterned surface morphology is generated within the POFs and the structural colors are selectively modified within different regions. These changes are dependent on the pressure, temperature, and duration of imprinting, as well as the feature sizes in the stamps. Moreover, the pattern geometry and structural colors can then be further tuned by stretching. Micropattern color generation upon imprinting depends on control of colloidal transport in a polymer matrix under shear flow and brings many potential properties including stretchability and tunability, as well as being of fundamental interest. PMID:26167447

  2. Laser-induced porous graphene films from commercial polymers.

    PubMed

    Lin, Jian; Peng, Zhiwei; Liu, Yuanyue; Ruiz-Zepeda, Francisco; Ye, Ruquan; Samuel, Errol L G; Yacaman, Miguel Jose; Yakobson, Boris I; Tour, James M

    2014-01-01

    The cost effective synthesis and patterning of carbon nanomaterials is a challenge in electronic and energy storage devices. Here we report a one-step, scalable approach for producing and patterning porous graphene films with three-dimensional networks from commercial polymer films using a CO2 infrared laser. The sp(3)-carbon atoms are photothermally converted to sp(2)-carbon atoms by pulsed laser irradiation. The resulting laser-induced graphene (LIG) exhibits high electrical conductivity. The LIG can be readily patterned to interdigitated electrodes for in-plane microsupercapacitors with specific capacitances of >4 mF cm(-2) and power densities of ~9 mW cm(-2). Theoretical calculations partially suggest that enhanced capacitance may result from LIG's unusual ultra-polycrystalline lattice of pentagon-heptagon structures. Combined with the advantage of one-step processing of LIG in air from commercial polymer sheets, which would allow the employment of a roll-to-roll manufacturing process, this technique provides a rapid route to polymer-written electronic and energy storage devices. PMID:25493446

  3. Piezoelectric characteristics of PZT thin films on polymer substrate

    NASA Astrophysics Data System (ADS)

    Kang, Min-Gyu; Do, Younh-Ho; Oh, Seung-Min; Rahayu, Rheza; Kim, Yiyein; Kang, Chong-Yun; Nahm, Sahn; Yoon, Seok-Jin

    2012-02-01

    The goal of piezoelectric energy harvesting is to improve the power efficiency of devices. One of the approaches for the improvement of power efficiency is to apply the large strain on the piezoelectric materials and then many scientists approached using thin films or nano-structured piezoelectric materials to obtain flexibility. However, the conventional thin film processes available for the fabrication of piezoelectric materials as PbZr0.52Ti0.48O3 (PZT) are not compatible with flexible electronics because they require high processing temperatures (>700^oC) to obtain piezoelectricity. Excimer laser annealing (ELA) is attractive heat process for the low-temperature crystallization, because of its material selectivity and short heating time. In this study, the amorphous PZT thin films were deposited on polymer substrate by rf-sputtering. To crystallize the amorphous films, the ELA was carried out with various conditions as function of the applied laser energy density, the number of pulse, and the repetition rate. To evaluate the piezoelectric characteristics, piezoelectric force microscopy (PFM) and electrometer are used. As a result, we obtained the crystallized PZT thin film on flexible substrate and obtained flexible piezoelectric energy harvester.

  4. Nanostructuring thin polymer films with optical near fields.

    PubMed

    Martín-Fabiani, Ignacio; Siegel, Jan; Riedel, Stephen; Boneberg, Johannes; Ezquerra, Tiberio A; Nogales, Aurora

    2013-11-13

    In the present work, we report on the application of optical near fields to nanostructuring of poly(trimethylene terephthalate) (PTT) thin films. By exposure to a single ultraviolet nanosecond laser pulse, the spatial intensity modulation of the near-field distribution created by a silica microsphere is imprinted into the films. Setting different angles of incidence of the laser, elliptical or circular periodic ring patterns can be produced with periods as small as half the laser wavelength used. These highly complex patterns show optical and topographical contrast and can be characterized by optical microscopy (OM) and atomic force microscopy (AFM). We demonstrate the key role of the laser wavelength and coherence length in achieving smooth, extended patterns in PTT by using excimer laser (193 nm) and Nd:YAG laser (266 nm) pulses. Reference experiments performed in Ge2Sb2Te5 (GST) demonstrate that nanopatterning in PTT is triggered by ablation as opposed to GST, in which nanopatterning originates from laser-induced phase change, accompanied by a small topographical contrast. The experiments presented in this work demonstrate the suitability of optical near fields for structuring polymer films, opening up new possibilities for nanopatterning and paving the way for potential applications where optical near fields and polymer nanostructures are involved. PMID:24127989

  5. Dynamics of polymer film formation during spin coating

    SciTech Connect

    Mouhamad, Y.; Clarke, N.; Jones, R. A. L.; Geoghegan, M.; Mokarian-Tabari, P.

    2014-09-28

    Standard models explaining the spin coating of polymer solutions generally fail to describe the early stages of film formation, when hydrodynamic forces control the solution behavior. Using in situ light scattering alongside theoretical and semi-empirical models, it is shown that inertial forces (which initially cause a vertical gradient in the radial solvent velocity within the film) play a significant role in the rate of thinning of the solution. The development of thickness as a function of time of a solute-free liquid (toluene) and a blend of polystyrene and poly(methyl methacrylate) cast from toluene were fitted to different models as a function of toluene partial pressure. In the case of the formation of the polymer blend film, a concentration-dependent (Huggins) viscosity formula was used to account for changes in viscosity during spin coating. A semi-empirical model is introduced, which permits calculation of the solvent evaporation rate and the temporal evolution of the solute volume fraction and solution viscosity.

  6. Deformation in Thin Glassy Polymer Films from Surface towards Interior

    NASA Astrophysics Data System (ADS)

    Chowdhury, Mithun; de Silva, Johann P.; Cross, Graham L. W.

    Polymer thin glassy films occupy an important place in last two decades of condensed matter research, concerning its surprising surface mobility and spatially dependent structural relaxation. However, ranges of cleverly designed indirect measurements on confined polymer glassy films already probed its mechanical properties; it is still a challenging task to directly probe such small confined volume through conventional mechanical testing. We have designed confined layer compression testing with a precisely designed and aligned flat probe during nanoindentation, which was further accompanied with atomic force microscopy. Due to natural confinement from the surrounding material, we show that a state of `uniaxial strain' is created beneath the probe under small axial strains. By this methodology we are able to directly probe uniaxial flows under both anelastic and plastic conditions while doing controlled creep studies at different positions in the film starting from surface towards interior. Depending on the extent of deformation, we found ranges of effects, such as densification, anelastic yield, and plastic yield. Enhanced creep rate upon deformation supports the idea of `deformation induced mobility'. Work performed at Trinity College Dublin.

  7. Dynamics of polymer film formation during spin coating

    NASA Astrophysics Data System (ADS)

    Mouhamad, Y.; Mokarian-Tabari, P.; Clarke, N.; Jones, R. A. L.; Geoghegan, M.

    2014-09-01

    Standard models explaining the spin coating of polymer solutions generally fail to describe the early stages of film formation, when hydrodynamic forces control the solution behavior. Using in situ light scattering alongside theoretical and semi-empirical models, it is shown that inertial forces (which initially cause a vertical gradient in the radial solvent velocity within the film) play a significant role in the rate of thinning of the solution. The development of thickness as a function of time of a solute-free liquid (toluene) and a blend of polystyrene and poly(methyl methacrylate) cast from toluene were fitted to different models as a function of toluene partial pressure. In the case of the formation of the polymer blend film, a concentration-dependent (Huggins) viscosity formula was used to account for changes in viscosity during spin coating. A semi-empirical model is introduced, which permits calculation of the solvent evaporation rate and the temporal evolution of the solute volume fraction and solution viscosity.

  8. Electrodeposited polymer encapsulated nickel sulphide thin films: frequency switching material

    NASA Astrophysics Data System (ADS)

    Jana, Sumanta; Mukherjee, Nillohit; Chakraborty, Biswajit; Mitra, Bibhas Chandra; Mondal, Anup

    2014-05-01

    Polyvinylpyrrolidone (PVP) encapsulated nickel sulfide (NiS) thin films have been synthesized electrochemically from aqueous solution of hydrated nickel chloride (NiCl2, 6H2O), thioacetamide (CH3C(S) NH2) (TAA) and polyvinylpyrrolidone (PVP). Surface modification of nickel sulfide (NiS) thin films was achieved by this polymer encapsulation. X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), field emission scanning electron microscopy (FESEM) and Energy dispersive X-radiation (EDAX) techniques were used for the characterization of thin films. Infrared spectroscopy (IR) confirmed the formation of polymer encapsulated semiconductor. Frequency switching generation study shows that the encapsulated material could be used as a frequency switching device that generates a frequency ∼ 50 Hz under 1 Sun illumination. Encapsulation with PVP causes surface modification that reduces the surface states and barrier height. As a result, the width of the depletion region decreases. So the number of electron-hole pairs increases. Consequently, the number of excitons and exciton related emission increases and this leads to reduction of recombination process and shows photo induced frequency switching phenomenon.

  9. Entanglement Density Changes in Free-Standing Thin Polymer Films

    NASA Astrophysics Data System (ADS)

    Stanzione, Joseph; Wool, Richard

    2013-03-01

    The entanglement molecular weight Me is obtained when a random walk chain crosses a plane three times to form a loop (R.P. Wool '83) such that for polymers with structure -CH2-CHX- where X is the side group, it is found that Me = 31 C∞ Mo/j, where C∞ is the characteristic ratio, Mo is the monomer mol weight and j =2 is the number of bonds per monomer. In thin films of thickness d < 2Rg, Me behaves as Me ~ d and this behavior is confirmed by computer simulation of random walks in thin films with reflecting boundary conditions. Thus, the entanglement density v ~ 1/Me increases as d decreases and rheological properties such as plateau modulus change as GNo ~ 1/d and plateau creep compliance Jo ~ d. The mechanical stiffening of thin films is in accord with recent experiments of McKenna et al (2012). The results are also in accord with the Packing model (Lin, Kavassil, Fetters 1983) where Me = 354 p3 in which p = Mo j/[C∞ bo2].The packing model is exactly derived from the Wool entanglement model for these polymers since C∞ = 1.36 [Mo/j]1/2. The empirical packing model with its excellent data correlation Me ~ p3 has been misinterpreted by many and such suggestions that v decreases due to nanoconfinement and GNo ~ d are incorrect.

  10. Electroless plating of honeycomb and pincushion polymer films prepared by self-organization.

    PubMed

    Yabu, Hiroshi; Hirai, Yuji; Shimomura, Masatsugu

    2006-11-01

    This report describes the fabrication and electroless plating of regular porous and pincushion-like polymer structures prepared by self-organization. Honeycomb-patterned films were prepared by simple casting of polymer solution under applied humid air and pincushion structures by peeling off the top layer of the former films. Silver-deposited honeycomb-patterned films and pincushion films were obtained by simple electroless plating of the respective original structures. XPS revealed Ag deposition on the honeycomb-patterned film. After thermal decomposition or solvent elution of the template polymer, unique metal mesoscopic structures were obtained. PMID:17073508

  11. Biodegradability of regenerated cellulose films coated with polyurethane/natural polymers interpenetrating polymer networks

    SciTech Connect

    Zhang, L.; Zhou, J.; Huang, J.; Gong, P. Zhou, Q.; Zheng, L.; Du, Y.

    1999-11-01

    Interpenetrating polymer network (IPN) coatings synthesized from castor-oil-based polyurethane (PU) with chitosan, nitrocellulose, or elaeostearin were coated on regenerated cellulose (RC) film for curing at 80--100 C for 2--5 min, providing biodegradable, water-resistant cellulose films coded, respectively, as RCCH, RCNC, and RCEs. The coated films were buried in natural soil for decaying and inoculated with a spore suspension of fungi on the agar medium, respectively, to test biodegradability. The viscosity-average molecular weight, M{sub {eta}}, and the weight of the degraded films decreased sharply with the progress of degradation. The degradation half-lifes, t{sub 1/2}, of the films in soil at 30 C were found to be 19 days for RC, 25 days for RCNC, 32 days for RCCH, and 45 days for the RCEs films. Scanning electron microscopy (SEM) showed that the extent of decay followed in the order RC {gt} RCNC {gt} RCCH {gt} RCEs. SEM, infrared (IR), high-performance liquid chromatography (HPLC), and CO{sub 2} evolution results indicated that the microorganisms directly attacked the water-resistant coating layer and then penetrated into the cellulose to speedily metabolize, while accompanying with producing CO{sub 2}, H{sub 2}O, glucose cleaved from cellulose, and small molecules decomposed from the coatings.

  12. Detection of Carbon Monoxide Using Polymer-Carbon Composite Films

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Ryan, Margaret A.; Lara, Liana M.

    2011-01-01

    A carbon monoxide (CO) sensor was developed that can be incorporated into an existing sensing array architecture. The CO sensor is a low-power chemiresistor that operates at room temperature, and the sensor fabrication techniques are compatible with ceramic substrates. Sensors made from four different polymers were tested: poly (4-vinylpryridine), ethylene-propylene-diene-terpolymer, polyepichlorohydrin, and polyethylene oxide (PEO). The carbon black used for the composite films was Black Pearls 2000, a furnace black made by the Cabot Corporation. Polymers and carbon black were used as received. In fact, only two of these sensors showed a good response to CO. The poly (4-vinylpryridine) sensor is noisy, but it does respond to the CO above 200 ppm. The polyepichlorohydrin sensor is less noisy and shows good response down to 100 ppm.

  13. Reactions of atomic oxygen /O(3P)/ with polymer films

    NASA Technical Reports Server (NTRS)

    Golub, Morton A.

    1992-01-01

    The reactions of polymer films with oxygen atoms are reviewed focusing on laboratory tests on polybutadienes with different amount of 1,4 or 1,2 double bonds and their polyalkenamer homologues, polyimide (Kapton), and a series of polyolefines with increasing fluorine content. It is found that etch rates increase with decrease in -CH=CH- unsaturation, starting with 1,4 -polybutadiene and reaching the maximum rate with polyethylene or ethylene-propylene rubber. IN polybutadienes with both 1,4 and 1,2 double bonds, the rate of O(3P)-induced etching is lower the higher the 1,2 content. The reactions are confined to the polymer surface.

  14. Fiber-Optic Sensor Would Monitor Growth of Polymer Film

    NASA Technical Reports Server (NTRS)

    Beamesderfer, Michael

    2005-01-01

    A proposed optoelectronic sensor system would measure the increase in thickness of a film of parylene (a thermoplastic polymer made from para-xylene) during growth of the film in a vapor deposition process. By enabling real-time monitoring of film thickness, the system would make it possible to identify process conditions favorable for growth and to tailor the final thickness of the film with greater precision than is now possible. The heart of the sensor would be a pair of fiber-optic Fabry-Perot interferometers, depicted schematically in the figure. (In principle, a single such interferometer would suffice. The proposal calls for the use of two interferometers for protective redundancy and increased accuracy.) Each interferometer would include a light source, a fiber-optic coupler, and photodetectors in a control box outside the deposition chamber. A single-mode optical fiber for each interferometer would run from inside the control box to a fused-silica faceplate in a sensor head. The sensory tips of the optical fibers would be polished flush with the free surface of the faceplate. In preparation for use, the sensor head would be mounted with a hermetic seal in a feed-through port in the deposition chamber, such that free face of the faceplate and the sensory tips of the optical fibers would be exposed to the deposition environment. During operation, light would travel along each optical fiber from the control box to the sensor head. A small portion of the light would be reflected toward the control box from the end face of each fiber. Once growth of the parylene film started, a small portion of the light would also be reflected toward the control box from the outer surface of the film. In the control box, the two reflected portions of the light beam would interfere in one of the photodetectors. The difference between the phases of the interfering reflected portions of the light beam would vary in proportion to the increasing thickness of the film and the known

  15. Photoluminescence quenching in films of conjugated polymers by electrochemical doping

    NASA Astrophysics Data System (ADS)

    van Reenen, S.; Vitorino, M. V.; Meskers, S. C. J.; Janssen, R. A. J.; Kemerink, M.

    2014-05-01

    An important loss mechanism in organic electroluminescent devices is exciton quenching by polarons. Gradual electrochemical doping of various conjugated polymer films enabled the determination of the doping density dependence of photoluminescence quenching. Electrochemical doping was achieved by contacting the film with a solid electrochemical gate and an injecting contact. A sharp reduction in photoluminescence was observed for doping densities between 1018 and 1019 cm-3. The doping density dependence is quantitatively modeled by exciton diffusion in a homogeneous density of polarons followed by either Förster resonance energy transfer or charge transfer. Both mechanisms need to be considered to describe polaron-induced exciton quenching. Thus, to reduce exciton-polaron quenching in organic optoelectronic devices, both mechanisms must be prevented by reducing the exciton diffusion, the spectral overlap, the doping density, or a combination thereof.

  16. Soap opera : polymer-surfactant interactions on thin film surfaces /

    SciTech Connect

    Ozer, B. H.; Johal, M. S.; Wang, H. L.; Robinson, J. M.

    2001-01-01

    Surfactants are macromolecules with unique properties. They commonly contain a polar head group with a nonpolar hydrocarbon chain. These properties allow surfactants to solubilize greases and other nonpolar molecules. One particular way that this is accomplished is through the formation of micelles. Micelles are formed at the critical micelle concentration (cmc), which varies depending upon the nature of the surfactant and also the media in which the surfactant resides. These micelles can take a variety of shapes, but are generally characterized by surrounding the grease with the nonpolar hydrocarbon chains, exposing only the polarized head groups to the media, usually water. This property of easy solubilization has made surfactants a very attractive industrial agent, They are used most conventionally as industrial cleaning agents and detergents. However, they also have lesser-known applications in conjunction with polymers and other macromolecular mixtures, often creating a system with novel properties, such as increased solubilization and smoother mixture consistency. A recently developed field has investigated the self-assembly of polymers and polyelectrolytes onto thin film surfaces. There are many reasons for studying this process, such as for second harmonic generation purposes and bioassays. In this study, the interaction between the anionic polyelectrolyte poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and two surfactants of opposite charge, Sodium Dodecyl Sulfate (SDS) and Dodecyl Trimethyl Ammonium Bromide (DTAB), in their assembly onto thin film surfaces was investigated. The kinetics of adsorbance onto the thin films was examined, followed by construction of 10-bilayer films using an alternating layer of the cationic polyelectrolyte poly(ethylenimine) (PEI) to provide the electrostatic means for the PAZO/surfactant combination to assemble onto the thin film. The kinetics of adsorption is being

  17. Wrinkling, folding, and snapping instabilities in polymer films

    NASA Astrophysics Data System (ADS)

    Holmes, Douglas Peter

    This work focuses on understanding deformation mechanisms and responsiveness associated with the wrinkling, folding, and snapping of thin polymer films. We demonstrated the use of elastic instabilities in confined regimes, such as the crumpling and snapping of surface attached sheets. We gained fundatmental insight into a thin film's ability to localize strain. By taking advantage of geometric strain localization we were able to develop new strategies for responsive surfaces that will have a broad impact on adhesive, optical, and patterning applications. Using the rapid closure of the Venus flytrap's leaflets as dictated by the onset of a snap instability as motivation, we created surfaces with patterned structures to transition through a snap instability at a prescribed stress state. This mechanism causes surface topography to change over large lateral length scales and very short timescales. Changes in the stress state can be related to triggers such as chemical swelling, light-induced architecture transitions, mechanical pressure, or voltage. The primary advantages of the snap transition are that the magnitude of change, the rate of change, and the sensitivity to change can be dictated by a balance of materials properties and geometry. The patterned structures that exhibit these dynamics are elastomeric shells that geometrically localize strain and can snap between concave and convex curvatures. We have demonstrated the control of the microlens shell geometry and that the transition time follows scaling relationships presented for the Venus flytrap. Furthermore, the microlens arrays have been demonstrated as surfaces that can alter wettability. Using a similar novel processing technique, microarrays of freestanding elastomeric plates were placed in equibiaxial compression to fabricate crumpled morphologies with strain localized regions that are difficult to attain through traditional patterning techniques. The microstructures that form can be initially described

  18. π-Conjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions

    PubMed Central

    Gu, Cheng; Huang, Ning; Chen, Youchun; Qin, Leiqiang; Xu, Hong; Zhang, Shitong; Li, Fenghong; Ma, Yuguang; Jiang, Donglin

    2015-01-01

    Conjugated microporous polymers are a unique class of polymers that combine extended π-conjugation with inherent porosity. However, these polymers are synthesized through solution-phase reactions to yield insoluble and unprocessable solids, which preclude not only the evaluation of their conducting properties but also the fabrication of thin films for device implementation. Here, we report a strategy for the synthesis of thin films of π-conjugated microporous polymers by designing thiophene-based electropolymerization at the solution–electrode interface. High-quality films are prepared on a large area of various electrodes, the film thickness is controllable, and the films are used for device fabrication. These films are outstanding hole conductors and, upon incorporation of fullerenes into the pores, function as highly efficient photoactive layers for energy conversions. Our film strategy may boost the applications in photocatalysis, energy storage, and optoelectronics. PMID:26418672

  19. Adhesion between polymers and evaporated gold and nickel films

    NASA Technical Reports Server (NTRS)

    Yamada, Y.; Wheeler, D. R.; Buckley, D. H.

    1984-01-01

    To obtain information on the adhesion between metal films and polymeric solids, the adhesion force was measured by means of a tensile pull test. It was found that the adhesion strengths between polymeric solids and gold films evaporated on polymer substrates were (1.11 + or - 0.53) multiplied by 10(6) N/M(2) on PTFE, about 5.49 multiplied by 10(6) N/m(2) on UHMWPE, and 6.54x10(6) on 6/6 nylon. The adhesion strengths for nickel films evaporated on PTFE, UHMWPE, and 6/6 nylon were found to be a factor of 1.7 higher than those for the gold coated PTFE, UHMWPE, and 6/6 nylon. To confirm quantitatively the effect of electron irradiation on the adhesion strength between a PTFE solid and metal films, a tensile pull test was performed on the irradiated PTFE specimens, which were prepared by evaporating nickel or gold on PTFE surfaces irradiated by 2-keV electrons for various times. After irradiation, the adhesion strength increased to (4.92 + or - 0.92)x10(6) N/m(2) for nickel coated PTFE and (1.82 + or - 0.48)x10(6) N/m(2) for gold coated PTFE. The improvement in adhesion for nickel is higher than that for gold.

  20. Solid mesostructured polymer-surfactant films at the air-liquid interface.

    PubMed

    Pegg, Jonathan C; Eastoe, Julian

    2015-08-01

    Pioneering work by Edler et al. has spawned a new sub-set of mesostructured materials. These are solid, self-supporting films comprising surfactant micelles encased within polymer hydrogel; composite polymer-surfactant films can be grown spontaneously at the air-liquid interface and have defined and controllable mesostructures. Addition of siliconalkoxide to polymer-surfactant mixtures allows for the growth of mesostructured hybrid polymer-surfactant silica films that retain film geometry after calcinations and exhibit superior mechanical properties to typically brittle inorganic films. Growing films at the air-liquid interface provides a rapid and simple means to prepare ordered solid inorganic films, and to date the only method for generating mesostructured films thick enough (up to several hundred microns) to be removed from the interface. Applications of these films could range from catalysis to encapsulation of hydrophobic species and drug delivery. Film properties and mesostructures are sensitive to surfactant structure, polymer properties and polymer-surfactant phase behaviour: herein it will be shown how film mesostructure can be tailored by directing these parameters, and some interesting analogies will be drawn with more familiar mesostructured silica materials. PMID:25127447

  1. Impact of polymer film thickness and cavity size on polymer flow during embossing : towards process design rules for nanoimprint lithography.

    SciTech Connect

    Schunk, Peter Randall; King, William P. (Georgia Institute of Technology, Atlanta, GA); Sun, Amy Cha-Tien; Rowland, Harry D.

    2006-08-01

    This paper presents continuum simulations of polymer flow during nanoimprint lithography (NIL). The simulations capture the underlying physics of polymer flow from the nanometer to millimeter length scale and examine geometry and thermophysical process quantities affecting cavity filling. Variations in embossing tool geometry and polymer film thickness during viscous flow distinguish different flow driving mechanisms. Three parameters can predict polymer deformation mode: cavity width to polymer thickness ratio, polymer supply ratio, and Capillary number. The ratio of cavity width to initial polymer film thickness determines vertically or laterally dominant deformation. The ratio of indenter width to residual film thickness measures polymer supply beneath the indenter which determines Stokes or squeeze flow. The local geometry ratios can predict a fill time based on laminar flow between plates, Stokes flow, or squeeze flow. Characteristic NIL capillary number based on geometry-dependent fill time distinguishes between capillary or viscous driven flows. The three parameters predict filling modes observed in published studies of NIL deformation over nanometer to millimeter length scales. The work seeks to establish process design rules for NIL and to provide tools for the rational design of NIL master templates, resist polymers, and process parameters.

  2. IR laser welding of thin polymer films as a fabrication method for polymer MEMS

    NASA Astrophysics Data System (ADS)

    Beck, William A.; Huang, Michelle; Ketterl, Joe; Hughes, Thayer

    2003-09-01

    MEMS (Micro Electro-Mechanical Systems) continue to be something of a solution looking for a problem. Even as the glamour has moved on to the smaller realm of nano technologies and devices, progress continues towards making micro-scale devices more useful and manufacturable. One avenue this work is taking is into the realm of polymer MEMS, shifting from the expensive, complicated methods of semiconductor processing to the much simpler methods of plastics processing. Polymeric materials are rugged, lightweight and low cost, and their use in manufacturing has a long history. While many bulk polymer manufacturing processes such as molding, machining and adhesive bonding are adaptable to the micro realm, their use in MEMS devices often requires development of specialized processing methods. Here we report on development of laser welding as a bonding method for thin polymer films, including automation of the welding process, steps towards standardization of that process, preparation of standardized test samples, and development of specialized test methods used to evaluate the strength of polymer welds. Our initial results show a direct correlation between welding parameters and weld strengths.

  3. An electrochromic film device to teach polymer electrochemical physics

    NASA Astrophysics Data System (ADS)

    Huang, Mei-Rong; Tao, Tao; Li, Xin-Gui; Gong, Qian-Cheng

    2007-09-01

    We discuss the background associated with an electrochromic device that can reversibly change its color and optical density at a specific potential. We discuss the underlying science needed to make a new polyaniline (PAN)/polyvinyl alcohol(PVA) electrochromic composite film on an indium-tin oxide (ITO) conducting glass by electropolymerization and describe a reversible redox transition of the PAN. The experiment gives students an opportunity to fabricate an electrochromic device containing PAN, one of the most important conducting polymers. The experimental conditions are flexible so that each group of students can construct their own electrochromic device with particular behavior. Two techniques for polymerizing the PAN and three methods of demonstrating the electrochromism are given, depending on the available apparatus. A sophisticated three-electrode potentiostat or a crude apparatus containing a battery, wire, a variable resistor, and a voltage meter is used to synthesize the PAN deposit. The electrochromic property is repetitively observed by reversibly changing the applied potentials on the device. A potentiostatic apparatus, a single flashlight battery, or a flashlight battery accompanied by a variable resistor allows students to observe multicolor electrochromism. The experiments significantly enhance students' understanding of polymer chemicophysics principles and their appreciation of novel variable colorful films. The experiments are safe and easy to perform, provided that appropriate precautions are taken.

  4. Slippage and nanorheology of thin liquid polymer films.

    PubMed

    Bäumchen, Oliver; Fetzer, Renate; Klos, Mischa; Lessel, Matthias; Marquant, Ludovic; Hähl, Hendrik; Jacobs, Karin

    2012-08-15

    Thin liquid films on surfaces are part of our everyday life; they serve, e.g., as coatings or lubricants. The stability of a thin layer is governed by interfacial forces, described by the effective interface potential, and has been subject of many studies in recent decades. In recent years, the dynamics of thin liquid films has come into focus since results on the reduction of the glass transition temperature raised new questions on the behavior of especially polymeric liquids in confined geometries. The new focus was fired by theoretical models that proposed significant implication of the boundary condition at the solid/liquid interface on the dynamics of dewetting and the form of a liquid front. Our study reflects these recent developments and adds new experimental data to corroborate the theoretical models. To probe the solid/liquid boundary condition experimentally, different methods are possible, each bearing advantages and disadvantages, which will be discussed. Studying liquid flow on a variety of different substrates entails a view on the direct implications of the substrate. The experimental focus of this study is the variation of the polymer chain length; the results demonstrate that inter-chain entanglements and in particular their density close to the interface, originating from non-bulk conformations, govern the liquid slip of a polymer. PMID:22647885

  5. Irradiation resistant Carbon nanotube/polymer nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Najafi, Ebrahim; Shin, Kwanwoo; Kim, Jae-Yong

    2004-03-01

    Degradation of Poly (methyl methacrylate)-multi-walled carbon nanotube (MWNT) nanocomposite thin films, using a UV-ozone and an e-beam radiation as a function of MWNT concentration was studied. We have shown that the addition of MWNT fillers can have a dramatic reinforcement effect on the nature of degradation by both high-energy radiations, where polymer free radicals are mainly responsible for the proliferation of degradation. In addition, MWNT networks can effectively disperse the radiation. The saturation in the reinforcement effect was observed when a concentration of MWNT was approximately 0.5 wt interpreted in terms of a critical concentration for percolation of the MWNT network, and the result was consistent with the sheet resistivity measurement for which physical contact between MWNT fibers was evident. Thermal stability of these films was also studied and higher activation energies for thermal degradation of the polymer matrix were observed as a function of MWNT concentration. Part of this work was supported by the Ministry of Science and Technology of Korea through Proton Accelerator User Program (No. M102KS010001-02K1901-01810).

  6. Laser Ablative Deposition of Polymer Films: A Promise for Sensor Fabrication

    NASA Astrophysics Data System (ADS)

    Blazevska-Gilev, Jadranka; Kupčík, Jaroslav; Šubrt, Jan; Pola, Josef

    There is a continuing interest in the use of polymer films as insulating components of sensors; a number of such films have been prepared by polymer sputtering or vacuum deposition processes involving gas phase pyrolysis/photolysis and by plasma decomposition of monomers. An attractive and rather new technique for the deposition of novel polymer films is IR laser ablation of polymers containing polar groups. We have recently studied this process with poly(vinyl chloride) (PVC), poly(vinyl acetate) (PVAc) and poly(vinyl chloride-co-vinyl acetate) P(VC/VAc) to establish its specific features and differences to conventional pyrolysis.

  7. Modeling thin-film piezoelectric polymer ultrasonic sensors.

    PubMed

    González, M G; Sorichetti, P A; Santiago, G D

    2014-11-01

    This paper presents a model suitable to design and characterize broadband thin film sensors based on piezoelectric polymers. The aim is to describe adequately the sensor behavior, with a reasonable number of parameters and based on well-known physical equations. The mechanical variables are described by an acoustic transmission line. The electrical behavior is described by the quasi-static approximation, given the large difference between the velocities of propagation of the electrical and mechanical disturbances. The line parameters include the effects of the elastic and electrical properties of the material. The model was validated with measurements of a poly(vinylidene flouride) sensor designed for short-pulse detection. The model variables were calculated from the properties of the polymer at frequencies between 100 Hz and 30 MHz and at temperatures between 283 K and 313 K, a relevant range for applications in biology and medicine. The simulations agree very well with the experimental data, predicting satisfactorily the influence of temperature and the dielectric properties of the polymer on the behavior of the sensor. Conversely, the model allowed the calculation of the material dielectric properties from the measured response of the sensor, with good agreement with the published values. PMID:25430142

  8. Simulation of bipolar charge transport in nanocomposite polymer films

    NASA Astrophysics Data System (ADS)

    Lean, Meng H.; Chu, Wei-Ping L.

    2015-03-01

    This paper describes 3D particle-in-cell simulation of bipolar charge injection and transport through nanocomposite film comprised of ferroelectric ceramic nanofillers in an amorphous polymer matrix. The classical electrical double layer (EDL) model for a monopolar core is extended (eEDL) to represent the nanofiller by replacing it with a dipolar core. Charge injection at the electrodes assumes metal-polymer Schottky emission at low to moderate fields and Fowler-Nordheim tunneling at high fields. Injected particles migrate via field-dependent Poole-Frenkel mobility and recombine with Monte Carlo selection. The simulation algorithm uses a boundary integral equation method for solution of the Poisson equation coupled with a second-order predictor-corrector scheme for robust time integration of the equations of motion. The stability criterion of the explicit algorithm conforms to the Courant-Friedrichs-Levy limit assuring robust and rapid convergence. The model is capable of simulating a wide dynamic range spanning leakage current to pre-breakdown. Simulation results for BaTiO3 nanofiller in amorphous polymer matrix indicate that charge transport behavior depend on nanoparticle polarization with anti-parallel orientation showing the highest leakage conduction and therefore lowest level of charge trapping in the interaction zone. Charge recombination is also highest, at the cost of reduced leakage conduction charge. The eEDL model predicts the meandering pathways of charge particle trajectories.

  9. Polymer film deposition on agar using a dielectric barrier discharge jet and its bacterial growth inhibition

    NASA Astrophysics Data System (ADS)

    Tsai, T.-C.; Cho, J.; Mcintyre, K.; Jo, Y.-K.; Staack, D.

    2012-08-01

    Polymer film deposition on agar in ambient air was achieved using the helium dielectric barrier discharge jet (DBD jet) fed with polymer precursors, and the bacterial growth inhibition due to the deposited film was observed. The DBD jet with precursor addition was more efficient at sterilization than a helium-only DBD jet. On the areas where polymer films cover the agar the bacterial growth was significantly inhibited. The inhibition efficacy showed dependence on the film thickness. The DBD jet without precursor also created a modified agar layer, which may slow the growth of some bacterial strains.

  10. Polarization and piezoelectricity in polymer films with artificial void structure

    NASA Astrophysics Data System (ADS)

    Sun, Zhuanlan; Zhang, Xiaoqing; Xia, Zhongfu; Qiu, Xunlin; Wirges, Werner; Gerhard, Reimund; Zeng, Changchun; Zhang, Chuck; Wang, Ben

    2011-10-01

    Laminated polymer-film systems with well-defined void structures were prepared from fluoroethylenepropylene (FEP) and polytetrafluoroethylene (PTFE) layers. First the PTFE films were patterned and then fusion-bonded with the FEP films. The laminates were subjected to either corona or contact charging in order to obtain the desired piezoelectricity. The build-up of the "macro-dipoles" in the laminated films was studied by recording the electric hysteresis loops. The resulting electro-mechanical properties were investigated by means of dielectric resonance spectroscopy (DRS) and direct measurements of the stress-strain relationship. Moreover, the thermal stability of the piezoelectric d 33 coefficient was investigated at elevated temperatures and via thermally stimulated discharge (TSD) current measurements in short circuit. For 150 μm thick laminated films, consisting of one 25 μm thick PTFE layer, two 12.5 μm thick FEP layers, and a void of 100 μm height, the critical voltage necessary for the build-up of the "macro-dipoles" in the inner voids was approximately 1400 V, which agrees with the value calculated from the Paschen Law. A quasi-static piezoelectric d 33 coefficient up to 300 pC/N was observed after corona charging. The mechanical properties of the film systems are highly anisotropic. At room temperature, the Young's moduli of the laminated film system are around 0.37 MPa in the thickness direction and 274 MPa in the lateral direction, respectively. Using these values, the theoretical shape anisotropy ratio of the void was calculated, which agrees well with experimental observation. Compared with films that do not exhibit structural regularity, the laminates showed improved thermal stability of the d 33 coefficients. The thermal stability of d 33 can be further improved by pre-aging. E.g., the reduction of the d 33 value in the sample pre-aged at 150°C for 5 h was less than 5% after annealing for 30 h at a temperature of 90°C.

  11. Formation and performance of polymer dispersed liquid crystal films

    NASA Astrophysics Data System (ADS)

    Chan, Philip Kwok-Kiou

    Polymer dispersed liquid crystals (PDLC's) are novel composite materials consisting of micron-size liquid crystalline droplets dispersed uniformly in a solid polymer matrix. PDLC's are formed by spinodal decomposition induced by thermal quenching or polymerization. These materials have excellent magneto-optical properties, and have great potential in applications that require efficient light scattering. Present commercial applications include switchable windows for privacy control and large-scale billboards. The optical properties depend on the droplet size, shape and positional order, which are determined during the formation stage, and reorientation dynamics of the liquid crystalline molecules confined within the droplets which occurs during product use. In this thesis, new complex mathematical models that describe the formation and performance of PDLC's are successfully developed, implemented, solved and validated. The nonequilibrium thermodynamic formation model takes into account initial thermal fluctuations computed using Monte Carlo simulations and realistic arbitrary boundary conditions. The performance model is based on classical nematic liquid crystalline magneto-viscoelastic theories, and incorporates transient viscoelastic boundary conditions. The simulations are able to reproduce successfully all the experimentally observed significant dynamical and morphological features of film formation as well as all the dynamical stages observed during the use of these thin optical films. In addition, the sensitivity of the phase separating morphology to processing conditions and material parameters is elucidated. Furthermore, a new scaling method is introduced to describe the phase separation phenomena during the early and intermediate stages of spinodal decomposition induced by thermal quenching. The droplet size selection mechanism for the polymerization-induced phase separation method of forming PDLC films is identified and explained for the first time. Lastly

  12. Polymer films as planarization and sacrificial layers for uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Liu, Weiguo; Cai, Changlong; Zhou, Shun

    2010-10-01

    This paper presents a planarization procedure using polymer films to achieve a flat CMOS surface of Readout Integrated Circuit (ROIC) for the integration between uncooled infrared focal plane arrays and ROIC. At the same time, the polymer film is also used as the sacrificial layers. After amorphous Silicon (a-Si) film was deposited using plasma enhanced chemical vapor deposition (PECVD), and patterned using inductively coupled plasma (ICP), the polymer sacrificial layer should be removed to form a-Si self-supporting micro-bridge structure. So the thickness of polymer film determine the height of the micro-bridge; the soft curing temperature determines if the contact hole can be etched by developer during the first photolithography; and the rate of dry etching determines whether the sacrificial layers of the structure can be released successfully. In this paper, the curing temperature, surface roughness, etching process of polymer films are systematically researched. On this basis, polymer film as planarization successfully reduces the 2μm height of the bumps on ROIC to less than 83 nm, over the planarized polymer mesas, bolometer arrays are fabricated. Then the polymer film as sacrificial are removed by ICP and 160x120 self-supporting micro-bridge structure arrays are successfully fabricated.

  13. Polymer films as planarization and sacrificial layers for uncooled infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Liu, Weiguo; Cai, Changlong; Zhou, Shun

    2011-02-01

    This paper presents a planarization procedure using polymer films to achieve a flat CMOS surface of Readout Integrated Circuit (ROIC) for the integration between uncooled infrared focal plane arrays and ROIC. At the same time, the polymer film is also used as the sacrificial layers. After amorphous Silicon (a-Si) film was deposited using plasma enhanced chemical vapor deposition (PECVD), and patterned using inductively coupled plasma (ICP), the polymer sacrificial layer should be removed to form a-Si self-supporting micro-bridge structure. So the thickness of polymer film determine the height of the micro-bridge; the soft curing temperature determines if the contact hole can be etched by developer during the first photolithography; and the rate of dry etching determines whether the sacrificial layers of the structure can be released successfully. In this paper, the curing temperature, surface roughness, etching process of polymer films are systematically researched. On this basis, polymer film as planarization successfully reduces the 2μm height of the bumps on ROIC to less than 83 nm, over the planarized polymer mesas, bolometer arrays are fabricated. Then the polymer film as sacrificial are removed by ICP and 160x120 self-supporting micro-bridge structure arrays are successfully fabricated.

  14. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  15. Controlling the adhesion of conducting polymer films with patterned self-assembled monolayers

    SciTech Connect

    Rozsnyai, L.F.; Wrighton, M.S.

    1996-02-01

    A photosensitive self-assembled monolayer (SAM) is selectively irradiated to fabricate a pattern on an Au electrode, and a thin film of aniline or 3-methylthiophene is deposited on it by electopolymerization. Adhesion of the polymer films can be controlled by the monolayer terminal group. Applying tape to the sample and peeling it away selectively removes the conducting polymer film to the tape in a near-micron resolution pattern. 14 refs., 1 fig.

  16. Buckling instabilities of nanoscale polymer films and colloidal particle layers

    NASA Astrophysics Data System (ADS)

    Gurmessa, Bekele Jemama

    Nanoscale polymer films have numerous potential applications such as protective coatings, flexible electronics, energy harvesting devices, and drug delivery systems. For realization of these potential applications, the mechanical properties of these materials and the underlying physics need to be understood. This dissertation focuses on understanding the responses of nanoscale films to mechanical deformations. In this regard, an elastic instability was exploited to locally bend and impart a local tensile stress in a nanoscale polystyrene film, and directly measure the resulting residual stress caused by the bending. Our results indicate that the onset of permanent deformation for thin polystyrene films is an order of magnitude smaller than what has been reported for the bulk value. In addition, not only is the onset of failure strain found to be small but also it increases with increased confinement. Using similar processing techniques, the yield strain of a more complex material---poly(styrene-b-divinylpyridine)---was studied. Similar to the polystyrene films, failure in polystyrene-b-poly(2-vinylpyridine) is also initiated at extremely low strain and is influenced by thin film confinement effects. In addition, we have demonstrated that internal nanostructure of self-assembled polystyrene-b-poly(2-vinylpyridine) affects the onset of failure strain. Having introduced an idealized heterogeneity to a sample through ultraviolet/ozone treatment, we have created samples ranging from continuous thin films to sets of isolated plates. We demonstrated that, when subjected to mechanical deformation, the unbounded plates form isotropic undulations that persist even beyond high strain. In contrast, isolated plates undergo non-isotropic undulations in the range of high strains. The non-isotropic undulation shape has been described through a simple numerical modeling subjected to controlled boundary conditions. The agreement between experiment and numerical modeling is

  17. ITO-MgF2 Film Development for PowerSphere Polymer Surface Protection

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.; Kerslake, Thomas W.; Waters, Deborah L.

    2004-01-01

    Multi-kilogram class microsatellites with a PowerSphere electric power system are attractive for fulfilling a variety of potential NASA missions. However, PowerSphere polymer surfaces must be coated with a film that has suitable electrical sheet resistivity for electrostatic discharge control, be resistant to atomic oxygen attack, be transparent to ultraviolet light for composite structure curing and resist ultraviolet light induced darkening for efficient photovoltaic cell operation. In addition, the film must be tolerant of polymer layer folding associated with launch stowage of PowerSphere inflatable structures. An excellent film material candidate to meet these requirements is co-sputtered, indium oxide (In2O3) - tin oxide (SnO2), known as 'ITO', and magnesium fluoride (MgF2). While basic ITO-MgF2 film properties have been the subject of research over the last decade, further research is required in the areas of film durability for space-inflatable applications and precise film property control for large scale commercial production. In this paper, the authors present film durability results for a folded polymer substrate and film resistance to vacuum UV darkening. The authors discuss methods and results in the area of film sheet resistivity measurement and active control, particularly dual-channel, plasma emission line measurement of ITO and MgF2 plasma sources. ITO-MgF2 film polymer coupon preparation is described as well as film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed microscopically and electrically. Results show that an approx. 500A ITO-18vol% MgF2 film is a promising candidate to protect PowerSphere polymer surfaces for Earth orbit missions. Preliminary data also indicate that in situ film measurement methods are promising for active film resistivity control in future large scale production. Future film research plans are also

  18. Integrated optical components in thin films of polymers

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey; Abdeldayem, Hossin; Venkateswarlu, Putcha; Teague, Zedric

    1995-01-01

    The results will be reported on the study of integrated optical components based on nonlinear optical polymeric films. Polymers poly(methyl methacrylate) (PMMA) and polyimide (PI) doped with organic laser dyes 4-dicyanomethylene-2-methyl-6-p dimethylaminostyryl-4H pyran (DCM) and 1, 3, 5, 7, 8 - pentamethyl-2,6 -diethyl-pyrromethene -BF2-complex (Pyrommethene 567, PM-567) were selected as materials for light guiding films. Additionally, UV polymerized polydiacetylene (PDA) on glass substrate was used as a waveguide material. Optical waveguides were fabricated using spin coating of preoxidized silicon wafers (1.5 micrometer silicon oxide layer) with organic dye/polymer solution followed by soft baking. the modes in slab waveguides were studied using prism coupling techniques. Measured values of mode coupling angles in multimode waveguides were used to calculate film thickness and refractive index for different polarizations. Refractive index anisotropy was found in PDA waveguide. The optimal conditions of spin coating for single mode waveguide fabrication were estimated. Propagation losses were measured by collecting the light scattered from the trace of a propagating mode either by scanning photo detector or by CCD camera. Different types of light coupling techniques were used including end-dire coupling, prism and grating coupling. Mechanical printing technique was developed for coupling grating fabrication resulting in gratings with 4% diffraction efficiency. The gratings demonstrated good stability with diffraction efficiency relaxation rate 2.4 dB/hour at a temperature approximately 15-20 C below glass transition point. Dye doped waveguides were transversally pumped with frequency doubled Nd:YAG Q-switched laser producing intensive light emission with apparent 6 kW/sq cm pump threshold and spectrum narrowing near 617 nm peak in the case of DCM doped waveguide. PM-567 doped waveguide pumped with CW Ar(+) laser (514 nm wavelength) far below threshold (0.1 W

  19. Effect of Polymer Deposition Method on Thermoresponsive Polymer Films and Resulting Cellular Behavior

    PubMed Central

    Reed, JA; Love, SA; Lucero, AE; Haynes, CL; Canavan, HE

    2013-01-01

    Poly(N-isopropyl acrylamide) or pNIPAM is a thermoresponsive polymer that is widely studied for use in bioengineering applications. The interest in this polymer lies in the polymer’s unique capability to undergo a sharp property change near physiological temperatures, which aids in the spontaneous release of biological cells from substrates. Currently, there are many methods to deposit pNIPAM onto substrates, including atom transfer radical polymerization (ATRP) and electron beam ionization. Each method yields pNIPAM coated substrates with different surface characteristics which can influence cell behavior. In this work, we compare two methods of pNIPAM deposition: plasma deposition and co-deposition with a sol gel. The resulting pNIPAM films were analyzed for use as substrates for mammalian cell culture based on surface characterization (XPS, ToF-SIMS, AFM, contact angles), cell attachment/detachment studies, and an analysis of exocytosis function using carbon-fiber microelectrode amperometry (CFMA). We find that, although both methods are useful for the deposition of functional pNIPAM films, plasma deposition is much preferred for cell-sheet engineering applications due to the films’ thermoresponse, minimal change in cell density, and maintenance of supported cell exocytosis function. PMID:21506526

  20. The Impact of Polymer Dynamics on Photoinduced Carrier Formation in Films of Semiconducting Polymers.

    PubMed

    Ogata, Yudai; Kawaguchi, Daisuke; Tanaka, Keiji

    2015-12-01

    A better understanding of the carrier formation process in photosemiconducting polymers is crucial to design and construct highly functionalized thin film organic photodevices. Almost all studies published focus on the effect of structure on the photoinduced carrier formation process. Here, we study the dynamics of polymer chain impacts on the carrier formation process for a series of poly(3-alkylthiophene)s (P3ATs) with different alkyl side-chain lengths. The formation of polarons (P) from polaron pairs (PP) was accelerated at a temperature at which the twisting motion of thiophene rings occurs. Among all P3ATs employed, in P3AT with hexyl groups, or poly(3-hexylthiophene) (P3HT), it was easiest to twist the thiophene rings and generate P from PP. The activation energy for P formation was proportional to that of thiophene ring motion. This makes it clear that chain dynamics, in addition to the crystalline structure, is a controlling factor for the carrier formation process in photosemiconducting polymers. PMID:26574654

  1. Formation of polymer thin films and interface control by physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Usui, Hiroaki

    2009-08-01

    Some strategies of physical vapor deposition (PVD) of polymer thin films have been proposed. Direct vapor deposition can be applied for simple polymers like polyethylene and Teflon. Coevaporation of bifunctional monomers can be achieved to deposit polyimide, polyurea etc., while chain polymerization assisted by ultraviolet or electron irradiation can be used to form vinyl or acryl polymers from single evaporation source. Surface-initiated deposition polymerization, which combines the self-assembled monolayer and vapor deposition, is another unique method to grow polymer thin films that are chemically bound to the substrate surface. The last method is also effective in controlling the interface between polymer films and inorganic substrates. The solvent-free nature of PVD is convenient for the formation of nanometer-thick films and especially multilayers that are required for device fabrication. Application of vapor deposition polymerization for fabrication of organic light-emitting diode is also described.

  2. Thermally Induced Charge Reversal of Layer-by-Layer Assembled Single-Component Polymer Films.

    PubMed

    Richardson, Joseph J; Tardy, Blaise L; Ejima, Hirotaka; Guo, Junling; Cui, Jiwei; Liang, Kang; Choi, Gwan H; Yoo, Pil J; De Geest, Bruno G; Caruso, Frank

    2016-03-23

    Temperature can be harnessed to engineer unique properties for materials useful in various contexts and has been shown to affect the layer-by-layer (LbL) assembly of polymer thin films and cause physical changes in preassembled polymer thin films. Herein we demonstrate that exposure to relatively low temperatures (≤ 100 °C) can induce physicochemical changes in cationic polymer thin films. The surface charge of polymer films containing primary and secondary amines reverses after heating (from positive to negative), and different characterization techniques are used to show that the change in surface charge is related to oxidation of the polymer that specifically occurs in the thin film state. This charge reversal allows for single-polymer LbL assembly to be performed with poly(allylamine) hydrochloride (PAH) through alternating heat/deposition steps. Furthermore, the negative charge induced by heating reduces the fouling and cell-association of PAH-coated planar and particulate substrates, respectively. This study highlights a unique property of thin films which is relevant to LbL assembly and biofouling and is of interest for the future development of thin polymer films for biomedical systems. PMID:26953514

  3. Microcontact printing for patterning carbon nanotube/polymer composite films with electrical conductivity.

    PubMed

    Ogihara, Hitoshi; Kibayashi, Hiro; Saji, Tetsuo

    2012-09-26

    Patterned carbon nanotube (CNT)/acrylic resin composite films were prepared using microcontact printing (μCP). To prepare ink for μCP, CNTs were dispersed into propylene glycol monomethyl ether acetate (PGMEA) solution in which acrylic resin and a commercially available dispersant (Disperbyk-2001) dissolved. The resulting ink were spin-coated onto poly(dimethylsiloxane) (PDMS) stamps. By drying solvent components from the ink, CNT/polymer composite films were prepared over PDMS stamps. Contact between the stamps and glass substrates provided CNT/polymer composite patternings on the substrates. The transfer behavior of the CNT/polymer composite films depended on the thermal-treatment temperature during μCP; thermal treatment at temperatures near the glass-transition temperature (T(g)) of the acrylic resin was effective to form uniform patternings on substrates. Moreover, contact area between polymer and substrates also affect the transfer behavior. The CNT/polymer composite films showed high electrical conductivity, despite the nonconductivity of polymer components, because CNTs in the films were interconnected. The electrical conductivity of the composite films increased as CNT content in the film became higher; as a result, the composite patternings showed almost as high electrical conductivity as previously reported CNT/polymer bulk composites. PMID:22900673

  4. Properties of solid polymer electrolyte fluorocarbon film. [used in hydrogen/oxygen fuel cells

    NASA Technical Reports Server (NTRS)

    Alston, W. B.

    1973-01-01

    The ionic fluorocarbon film used as the solid polymer electrolyte in hydrogen/oxygen fuel cells was found to exhibit delamination failures. Polarized light microscopy of as-received film showed a lined region at the center of the film thickness. It is shown that these lines were not caused by incomplete saponification but probably resulted from the film extrusion process. The film lines could be removed by an annealing process. Chemical, physical, and tensile tests showed that annealing improved or sustained the water contents, spectral properties, thermo-oxidative stability, and tensile properties of the film. The resistivity of the film was significantly decreased by the annealing process.

  5. Polyamide 66 microspheres metallised with in situ synthesised gold nanoparticles for a catalytic application

    PubMed Central

    2012-01-01

    A simple concept is proposed to metallise polyamide 66 (PA66) spherulite structures with in situ synthesised gold nanoparticles (Au NPs) using a wet chemical method. This cost-effective approach, applied to produce a PA66/Au NP hybrid material, offers the advantages of controlling the nanoparticle size, the size distribution and the organic-inorganic interactions. These are the key factors that have to be controlled to construct consistent Au nanostructures which are essential for producing the catalytic activities of interest. The hybrid materials obtained are characterised by means of scanning electron microscopy, transmission electron microscopy, attenuated total reflection-Fourier transform infrared spectrometry and X-ray diffraction spectrometry. The results show that PA66 microspheres obtained via the crystallisation process are coated with Au NPs of 13 nm in size. It was found that controlling the metal coordination is the key parameter to template the Au NPs on the spherulite surfaces. The preparation processes and the key factors leading to the formation of PA66 spherulites coated with Au NPs are discussed. Moreover, the efficiency of the coated spherulites as a potential catalyst is proved by demonstrating the reduction of methylene blue via UV-visible spectrometry. PMID:22401661

  6. Absorption modulation enhancement of Azo-polymer film induced by plasmonic field

    NASA Astrophysics Data System (ADS)

    Wang, Xiangxian; Zhang, Douguo; Fu, Qiang; Ming, Hai; Wu, Wenxuan; Zhang, Qijin

    2012-11-01

    A thin photochromic film on top of the resist layer can be used as a virtual mask to fabricate super-resolution lithography patterns. In this letter, based on the azobenzene polymer, the absorption intensity of the 365nm LED is effectively modulated by 532nm laser, the modulation degree reaches to 87%.When the silver nanocubes are dropped onto the surface of the polymer film, the modulation degree is significantly higher than that without the nanoparticles in the same intensity of 532nm laser due to the field enhancement of excitation of surface plasmons. The absorption modulation features of the polymer film are favorable for the further smaller line width nanolithography.

  7. Nanometer voids prevent crack growth in polymer thin films

    NASA Astrophysics Data System (ADS)

    Yokoyama, Hideaki; Dutriez, Cedric; Satoh, Kotaro; Kamigaito, Masami

    2007-03-01

    Macroscopic voids initiate cracks and cause catastrophic failure in brittle materials. The effect of micrometer voids in the mechanical properties of polymeric materials was studied in 1980's and 90's with the expectation that such small voids may initiate crazing, the toughening mechanism in polymer solids, similar to dispersed rubber particles widely used in industry. However, the micrometer voids showed only limited resistance against crack growth, and it was concluded that much smaller voids are necessary for the drastic change in mechanical properties. We have recently succeeded the nondestructive introduction of nanometer voids (30--70 nm) in polymeric materials using block copolymer template and carbon dioxide (CO2) by partitioning CO2 in CO2-philic nanodomains of block copolymers. The reduction of Young's modulus with such nanometer voids was minimal (2 to 1 GPa) due to the (short-range) ordered spherical voids. While the unprocessed copolymer films failed in brittle manner at around 2 % of tensile strain, the processed copolymer films with nanometer voids did not break up to at least 60 %. A microscopic observation under strain of the crack tip revealed that the nanometer voids were deformed under strain and directly converted into the networked fibrils near the crack tip similar to crazing and thus prevented the crack growth.

  8. Microscopy of thin polymer blend films of polystyrene and poly-n-butyl-methacrylate

    NASA Astrophysics Data System (ADS)

    Schmitt, T.; Guttmann, P.; Schmidt, O.; Müller-Buschbaum, P.; Stamm, M.; Schönhense, G.; Schmahl, G.

    2000-05-01

    The structure of thin polymer blend films of polystyrene (PS) and poly-n-butyl-methacrylate (PnBMA) was examined with Transmission X-ray Microscopy (TXM), Scanning Force Microscopy (SFM), X-Ray Photoemission Electron Microscopy (X-PEEM) and Optical Microscopy (OM). Thin films were prepared by spin casting of a toluene solution of the polymer mixture onto silicon wafers retaining the native oxide. Depending on blend composition and annealing conditions smooth films with and without holes or films with well pronounced surface features (ribbons or islands) were produced. By TXM measurements a high lateral resolution study of the as cast and the annealed polymer blend samples was performed. The contrast in TXM is due to different absorption of x-radiation of the used polymers and due to variation in thickness. With X-PEEM the lateral distribution of the two polymers near the surface was mapped by employing the characteristic Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of the polymers. The TXM technique is a microscopic method integrating over the total film thickness, whereas the X-PEEM technique is a highly surface sensitive method. TXM and X-PEEM are therefore complementary methods which provide important information on the structure of thin polymer blend films additional to the standard techniques SFM and OM.

  9. Rewritable Optical Storage with a Spiropyran Doped Liquid Crystal Polymer Film.

    PubMed

    Petriashvili, Gia; De Santo, Maria Penelope; Devadze, Lali; Zurabishvili, Tsisana; Sepashvili, Nino; Gary, Ramla; Barberi, Riccardo

    2016-03-01

    Rewritable optical storage has been obtained in a spiropyran doped liquid crystal polymer films. Pictures can be recorded on films upon irradiation with UV light passing through a grayscale mask and they can be rapidly erased using visible light. Films present improved photosensitivity and optical contrast, good resistance to photofatigue, and high spatial resolution. These photochromic films work as a multifunctional, dynamic photosensitive material with a real-time image recording feature. PMID:26864876

  10. Development of environmentally friendly piezoelectric polymer film actuator having multilayer structure

    NASA Astrophysics Data System (ADS)

    Tajitsu, Yoshiro

    2016-04-01

    We designed a new soft piezoelectric polymer actuator with a multilayer structure using the environmentally friendly polymer poly(lactic acid) (PLA). PLA is a chiral polymer having two isomers. One is poly(l-lactide) (PLLA) and the other is poly(d-lactide) (PDLA). PLLA and PDLA exhibit piezoelectric constants with opposite signs owing to their chirality. On the basis of their piezoelectric characteristics, we were able to realize a PDLA and PLLA multilayer film (PDLA/PLLA multilayer) with a simple structure. The PDLA/PLLA multilayer film of centimeter-order size exhibited a large piezoelectric resonance and its piezoelectric performance was equivalent to that of a practical piezoelectric ceramic. In this paper, as a first step toward realizing a new film actuator using the PDLA/PLLA multilayer film, we introduce the piezoelectric characteristics of a PLLA film and the concept of an actuation system using a PLLA film. Next, the fabrication process of the PDLA/PLLA multilayer film and its piezoelectric characteristics are summarized. Finally, typical examples of developed piezoelectric polymer actuation systems using a PDLA/PLLA multilayer film are described to demonstrate the potential application of piezoelectric polymer actuation systems.

  11. Measuring the Thickness and Elastic Properties of Electroactive Thin-film Polymers Using Platewave Dispersion Data

    NASA Technical Reports Server (NTRS)

    El-Azab, A.; Mal, A. K.; Bar-Cohen, Y.; Lih, S.

    1996-01-01

    Electroactive thin-film polymers are candidate sensors and actuators materials [1,2]. They are also finding a significant potential for applications in muscle mechanisms and micro-electro-mechanical systems (MEMS).

  12. Characteristics and Mechanisms in Ion-Conducting Polymer Films as Chemical Sensors

    SciTech Connect

    HUGHES,ROBERT C.; YELTON,WILLIAM G.; PFEIFER,KENT B.; PATEL,SANJAY V.

    2000-07-12

    Solid Polymer Electrolytes (SPE) are widely used in batteries and fuel cells because of the high ionic conductivity that can be achieved at room temperature. The ions are usually Li or protons, although other ions can be shown to conduct in these polymer films. There has been very little published work on SPE films used as chemical sensors. The authors have found that thin films of polymers like polyethylene oxide (PEO) are very sensitive to low concentrations of volatile organic compounds (VOCs) such as common solvents. Evidence of a new sensing mechanism involving the percolation of ions through narrow channels of amorphous polymer is presented. They present impedance spectroscopy of PEO films in the frequency range 0.0001 Hz to 1 MHz for different concentrations of VOCs and relative humidity. They find that the measurement frequency is important for distinguishing ionic conductivity from the double layer capacitance and the parasitic capacitance.

  13. Nanoparticles for suppression of dewetting of thin polymer films for use in chemical sensors.

    SciTech Connect

    Giunta, Rachel Knudsen; Mackay, Michael E.; Holmes, Melissa A.

    2004-08-01

    Addition of fullerenes (C60 or buckyballs) to a linear polymer has been found to eliminate dewetting when a thin (?50 nm) film is exposed to solvent vapor. Based on neutron reflectivity measurements, it is found that the fullerenes form a coherent layer approximately 2 nm thick at the substrate--polymer film interface during the spin-coating process. The thickness and relative fullerene concentration (?29 vol%) is not altered during solvent vapor annealing and it is thought this layer forms a solid-like buffer shielding the adverse van der Waals forces promoted by the underlying substrate. Several polymer films produced by spin- or spray-coating were tested on both silicon wafers and live surface acoustic wave sensors demonstrating fullerenes stabilize many different polymer types, prepared by different procedures and on various surfaces. Further, the fullerenes drastically improve sensor performance since dewetted films produce a sensor that is effectively inoperable.

  14. Mechanothermally induced conformational switch of a porphyrin dimer in a polymer film.

    PubMed

    Doan, Hung; Raut, Sangram L; Yale, David; Balaz, Milan; Dzyuba, Sergei V; Gryczynski, Zygmunt

    2016-07-21

    Stretching a polymer film induces a conformational change (from the twisted to planar state) in the embedded porphyrin dimer, as evidenced by steady-state and time-resolved emission spectra. PMID:27294828

  15. Auger analysis of films formed on metals in sliding contact with halogenated polymers

    NASA Technical Reports Server (NTRS)

    Pepper, S. V.

    1974-01-01

    The use of Auger electron spectroscopy (AES) to search for transferred polymer must contend with the fact that there has been no published work on Auger analysis of polymers. Since this is a new area for AES, the Auger spectra of polymers and of halogenated polymers in particular is discussed. It is shown that the Auger spectra of halogenated polymers have certain characteristics that permit an assessment of whether a polymeric transfer film has been established by sliding contact. The discussion is general and the concepts should be useful in considering the Auger analysis of any polymer. The polymers chosen for this study are the halogenated polymers polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), and polychlorotrifluorethylene (PCTFE).

  16. Photoluminescence quenching in a polymer thin-film field-effect luministor

    NASA Astrophysics Data System (ADS)

    Dyreklev, P.; Inganas, O.; Paloheimo, J.; Stubb, H.

    1992-03-01

    Photoluminescence quenching is observed in thin films of poly(3-hexylthiophene) and Langmuir-Blodgett films of poly(3-hexylthiophene)/arachidic acid due to the injection of positive charges in the polymer. Charge injection was made in a polymer field-effect transistor. The quenching is discussed in terms of polarons/bipolarons acting as recombination centra for the excitons and suppress the photoluminescence. The inverse phenomenon, luminescence enhancement by depletion of charges, is also achieved.

  17. Measurement of desorbed products during organic polymer thin film etching by plasma beam irradiation

    SciTech Connect

    Kurihara, Kazuaki; Karahashi, Kazuhiro; Egami, Akihiro; Nakamura, Moritaka

    2006-11-15

    The authors investigated the etching characteristics of three kinds of methacrylate polymer films, which have the same main chain but with different side chains, using a plasma beam irradiation apparatus. The polymers are polytbutylmethacrylate, polybenzylmethacrylate, and polycyclohexylmethacrylate. The major desorbed products during nitrogen plasma beam etching were found to be HCN and C{sub 2}N{sub 2} for all methacrylate polymer films. The desorbed products originating from the polymer structure, namely, the main chain and the side chain, were hardly observed. The energy distributions of desorbed products were mainly composed of Maxwell-Boltzmann distribution with a small component of collision cascade distribution for all three polymers and were slightly dependent on the ion energy. It is concluded that chemical sputtering, which can be defined as the production of weakly bound species by ion bombardment, followed by thermal desorption, is the significant ion induced mechanism of organic polymer etching.

  18. Soft-shear induced phase-separated nanoparticle string-structures in polymer thin films.

    PubMed

    Zhang, Ren; Lee, Bongjoon; Bockstaller, Michael R; Al-Enizi, Abdullah M; Elzatahry, Ahmed; Berry, Brian C; Karim, Alamgir

    2016-04-12

    Application of shear stress has been shown to unidirectionally orient the microstructures of block copolymers and polymer blends. In the present work, we study the phase separation of a novel nanoparticle (NP)-polymer blend thin film system under shear using a soft-shear dynamic zone annealing (DZA-SS) method. The nanoparticles are densely grafted with polymer chains of chemically dissimilar composition from the matrix polymer, which induces phase separation upon thermal annealing into concentrated nanoparticle domains. We systematically examine the influence of DZA-SS translation speed and thus the effective shear rate on nanoparticle domain elongation and compare this with the counterpart binary polymer blend behavior. Unidirectionally aligned nanoparticle string-domains are fabricated in the presence of soft-shear in confined thin film geometry. We expect this DZA-SS method to be applicable to various NP-polymer blends towards unidirectionally aligned nanoparticle structures, which are important to functional nanoparticle structure fabrication. PMID:26814827

  19. Polymer-grafted gold nanorods in polymer thin films: Dispersion and plasmonic coupling

    NASA Astrophysics Data System (ADS)

    Hore, Michael-Jon Ainsley

    This dissertation describes complementary experimental and theoretical studies to deter- mine the thermodynamic factors that affect the dispersion of polymer-grafted Au nanorods within polymer thin films. Au nanorods exhibit a uniform dispersion with a regular spacing for favorable brush / matrix interactions, such as poly(ethylene glycol) (PEG)-Au / poly(methyl methacrylate) (PMMA) and polystyrene (PS)-Au / poly(2,6-dimethyl-p-phenylene oxide) (PPO). For PEG-Au / PMMA, the nanorods are locally oriented and their dispersion is independent of the ratio of the degree of polymerization of the matrix (P) to that of the brush (N), α = P/N, whereas for chemically similar brush / matrix combinations, such as PS-Au / PS and PEG-Au / poly(ethylene oxide) (PEO), nanorods are randomly dispersed for α 2. For aggregated systems (α > 2), nanorods are found primarily within aggregates containing side-by-side aligned nanorods with a spacing that scales with N. UV-visible spectroscopy and discrete dipole approximation (DDA) calculations demonstrate that coupling between surface plasmons within the aggregates leads to a blue shift in the optical absorption as α increases, indicating the sensitivity of spectroscopy for determining nanorod dispersion in polymer nanocomposite films. Self-consistent field theory (SCFT) calculations and Monte Carlo (MC) simulations show that the aggregation of nanorods for α > 2 can be attributed to depletion-attraction forces caused by autophobic dewetting of the brush and matrix. Finally, miscible blends of PS and PPO are investigated as a route to control depletion-attraction interactions between PS-Au nanorods. Initially, nanorods aggregate in matrices having 50 vol. % PPO and then gradually disperse as PPO becomes the majority component. The brush and matrix density profiles, determined by SCFT, show that PPO segregates into the PS brush, and acts as a compatibilizer, which improves dispersion. As dispersion improves, coupling between surface

  20. Impact of molecular orientation on thermal conduction in linear-chain polymer films

    SciTech Connect

    Kurabayashi, K.; Goodson, K.E.

    1999-07-01

    Polymer films are serving as passive regions in fast logic circuits and as active regions in organic optoelectronic devices, such as light-emitting diodes. Recent data illustrated the strong anisotropy in the thermal conductivity of polyimide films of thickness near one micrometer, with the in-plane value larger by a factor of approximately five. This manuscript extends previous theoretical work on heat conduction in stretched bulk polymers to model the conductivity anisotropy in linear-chain polymer films. Predictions are based on the standard deviation of the angle of molecular orientation with respect to the film in-plane direction, which can be investigated using birefringence data, and the expected conductivity anisotropy in a material with perfectly-aligned strands. The modeling and previous data indicate that the anisotropy factor could increase to a value larger than 10 for polyimide films much thinner than 1 micrometer.

  1. Nanoporous thin-film membranes from block-polymers : using self-consistent field theory calculations to guide polymer synthesis.

    SciTech Connect

    Cordaro, Joseph Gabriel

    2010-12-01

    The controlled self-assembly of polymer thin-films into ordered domains has attracted significant academic and industrial interest. Most work has focused on controlling domain size and morphology through modification of the polymer block-lengths, n, and the Flory-Huggins interaction parameter, {chi}. Models, such as Self-Consistent Field Theory (SCFT), have been successful in describing the experimentally observed morphology of phase-separated polymers. We have developed a computational method which uses SCFT calculations as a predictive tool in order to guide our polymer synthesis. Armed with this capability, we have the ability to select {chi} and then search for an ideal value of n such that a desired morphology is the most thermodynamically favorable. This approach enables us to synthesize new block-polymers with the exactly segment lengths that will undergo self-assembly to the desired morphology. As proof-of-principle we have used our model to predict the gyroidal domain for various block lengths using a fixed {chi} value. To validate our computational model, we have synthesized a series of block-copolymers in which only the total molecular length changes. All of these materials have a predicted thermodynamically favorable gyroidal morphology based on the results of our SCFT calculations. Thin-films of these polymers are cast and annealed in order to equilibrate the structure. Final characterization of the polymer thin-film morphology has been performed. The accuracy of our calculations compared to experimental results is discussed. Extension of this predictive ability to tri-block polymer systems and the implications to making functionalizable nanoporous membranes will be discussed.

  2. Modeling the mechanics of graphene-based polymer composite film measured by the bulge test

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Jun; Sun, You-yi; Li, Dian-sen; Cao, Yang; Wang, Zuo; Ma, Jing; Zhao, Gui-Zhe

    2015-10-01

    Graphene-based polymer composite films have wide-ranging potential applications, such as in sensors, electromagnetic shielding, absorbing materials, corrosion resistance and so on. In addition, the practical applications of graphene-based polymer composite films are closely related to their mechanical properties. However, the mechanical properties of graphene-based polymer composite films are difficult to characterize with tensile tests. In this paper, the bugle test was used to investigate the mechanical properties of graphene-based polymer composite films. The experimental results show that the Young’s modulus of polymer composite films increases non-linearly with an increase in the doping content of graphene, and viscoelastic deformation is induced under cyclic loading conditions. Moreover, in order to describe their mechanical behavior, an ‘Arruda-Boyce’ finite-strain constitutive model (modified BPA model), based on the strain amplification hypothesis, and a traditional ‘Arruda-Boyce’ model was proposed, which incorporated many of the features of previous theories. The numerical treatment of the modified BPA model associated with finite element analysis is also discussed. This new model is shown to be able to predict the experimentally observed mechanical behavior of graphene based polymer composite films measured by the bugle test effectively.

  3. Chain conformation near the substrate interface in nanoparticle stabilized polymer thin films

    NASA Astrophysics Data System (ADS)

    Barkley, Deborah; Sen, Mani; Jiang, Naisheng; Endoh, Maya; Koga, Tadanori; Yuan, Guangcui; Satija, Sushil; Zhang, Yugang; Gang, Oleg; Karim, Alamgir

    When nanoparticles (NPs) are added to polymer thin films, they often migrate to the film-substrate interface and form a ``diffused immobile interfacial layer'', which serves to screen the polymer-substrate interaction and suppress dewetting. The fundamental, but unsolved question is how the conformations of the polymer chains in the layer are affected by the NPs and how that impacts the enhancement of film stability. To address the question, we used dodecane thiol-functionalized gold NPs (2.4 nm diameter) and polystyrene (PS, Mw =30kDa). We found that the critical concentration of the Au NPs to induce complete dewetting suppression of 20 nm-thick PS/Au thin films on cleaned Si substrates is 5 wt% (wt of particle/wt of polymer). To investigate the interfacial structures at the polymer-solid interface, we rinsed the annealed PS/Au thin films with toluene and characterized the residual interfacial layers by using various x-ray and neutron scattering techniques. The results indicate that the conformation of the polymer chains closer to the substrate becomes less flattened with the addition of gold NPs, allowing chains at the substrate to entangle more effectively with free chains comprising the bulk film. The detailed mechanism will be discussed. T.K. acknowledges funding from NSF Grant (CMMI-1332499).

  4. Nonfouling tunable βCD dextran polymer films for protein applications.

    PubMed

    Städe, Lars W; Nielsen, Thorbjørn T; Duroux, Laurent; Hinge, Mogens; Shimizu, Kyoko; Gurevich, Leonid; Kristensen, Peter K; Wingren, Christer; Larsen, Kim L

    2015-02-25

    Polymeric β-cyclodextrin (βCD) films tunable with respect to thickness and βCD content were prepared in order to develop a suitable platform, allowing for inclusion of nonpolar guest molecules in the βCD cavity, while suppressing nonspecific protein adsorption. The βCD films were synthesized from linear βCD dextran polymers, and grafted onto silicon oxide surfaces by "click" chemistry. Topographic and morphological characteristics are controllable by reaction conditions and polymer type, with average film heights from 2.5 to 12.5 nm. Reversible introduction of electrostatic charges in the βCD dextran by complex formation with 1-adamantanecarboxylic acid prior to surface grafting resulted in a thinner and denser film, presumably by decompaction of the polymers. Total internal reflection fluorescence spectroscopy (TIRF) was employed to evaluate the accessibility of βCD cavities to the fluorescent probe 2-anilinonaphthalene-6-sulfonic acid. Only a minor fraction of the βCD cavities was accessible in the thicker and less dense films; however, accessibility was largely improved with increased ionic strength using NaCl up to 1 M. Antifouling properties of the βCD dextran polymer films were assessed by TIRF real-time monitoring, using bovine serum albumin as a model protein, and showed a 5- to 10-fold reduction in nonspecific adsorption as compared to a bare quartz surface with the degree of reduction reflecting film thickness and interfacial polymer density. PMID:25639169

  5. Multi-Stimuli-Responsive Polymer Materials: Particles, Films, and Bulk Gels.

    PubMed

    Cao, Zi-Quan; Wang, Guo-Jie

    2016-06-01

    Stimuli-responsive polymers have received tremendous attention from scientists and engineers for several decades due to the wide applications of these smart materials in biotechnology and nanotechnology. Driven by the complex functions of living systems, multi-stimuli-responsive polymer materials have been designed and developed in recent years. Compared with conventional single- or dual-stimuli-based polymer materials, multi-stimuli-responsive polymer materials would be more intriguing since more functions and finer modulations can be achieved through more parameters. This critical review highlights the recent advances in this area and focuses on three types of multi-stimuli-responsive polymer materials, namely, multi-stimuli-responsive particles (micelles, micro/nanogels, vesicles, and hybrid particles), multi-stimuli-responsive films (polymer brushes, layer-by-layer polymer films, and porous membranes), and multi-stimuli-responsive bulk gels (hydrogels, organogels, and metallogels) from recent publications. Various stimuli, such as light, temperature, pH, reduction/oxidation, enzymes, ions, glucose, ultrasound, magnetic fields, mechanical stress, solvent, voltage, and electrochemistry, have been combined to switch the functions of polymers. The polymer design, preparation, and function of multi-stimuli-responsive particles, films, and bulk gels are comprehensively discussed here. PMID:27153184

  6. Gain properties of dye-doped polymer thin films

    NASA Astrophysics Data System (ADS)

    Gozhyk, I.; Boudreau, M.; Haghighi, H. Rabbani; Djellali, N.; Forget, S.; Chénais, S.; Ulysse, C.; Brosseau, A.; Pansu, R.; Audibert, J.-F.; Gauvin, S.; Zyss, J.; Lebental, M.

    2015-12-01

    Hybrid pumping appears as a promising compromise in order to reach the much coveted goal of an electrically pumped organic laser. In such configuration the organic material is optically pumped by an electrically pumped inorganic device on a chip. This engineering solution requires therefore an optimization of the organic gain medium under optical pumping. Here, we report a detailed study of the gain features of dye-doped polymer thin films. In particular we introduce the gain efficiency K , in order to facilitate comparison between different materials and experimental conditions. The gain efficiency was measured with a variety of experimental methods (pump-probe amplification, variable stripe length method, laser thresholds) in order to study several factors which modify the actual gain of a layer, namely the confinement factor, the pump polarization, the molecular anisotropy, and the re-absorption. For instance, for a 600-nm-thick 5-wt % DCM doped poly(methyl methacrylate) (PMMA) layer, the different experimental approaches give a consistent value of K ≃ 80 -cm MW-1 . On the contrary, the usual model predicting the gain from the characteristics of the material leads to an overestimation by two orders of magnitude, which raises a serious problem in the design of actual devices. In this context, we demonstrate the feasibility to infer the gain efficiency from the laser threshold of well-calibrated devices. Temporal measurements at the picosecond scale were carried out to support the analysis.

  7. Subdiffraction-Resolution Optical Measurements of Molecular Transport in Thin Polymer Films.

    PubMed

    Pahal, Suman; Raichur, Ashok M; Varma, Manoj M

    2016-06-01

    The measurement of molecular transport within polymer films yields information about the internal structural organization of the films and is useful in applications such as the design of polymeric capsules for drug delivery. Layer-by-layer assembly of polyelectrolyte multilayer films has been widely used in such applications where the multilayer structure often exhibits anisotropic transport resulting in different diffusivities in the lateral (parallel to the film) and transverse (normal to the film) directions. Although lateral transport can be probed using techniques such as fluorescence recovery after photobleaching (FRAP), it cannot be applied to probing transverse diffusivity in polymer films smaller than the diffraction limit of light. Here we present a technique to probe the transport of molecules tagged with fluorphores in polymer films thinner than the optical diffraction limit using the modulation of fluorescence emission depending on the distance of the tagged molecules from a metal surface. We have used this technique to probe the diffusion of proteins biotin and bovine serum albumin (BSA) in polyelectrolyte multilayer films. We also studied the interdiffusion of chains in multilayer films using this technique. We observed a 3 order of magnitude increase in interdiffusion as a function of the ionic strength of the medium. This technique, along with FRAP, will be useful in studying anisotropic transport in polymer films, even those thinner than the diffraction limit, because the signal in this technique arises only from transverse and not lateral transport. Finally, this technique is also applicable to studying the diffusion of chromophore-labeled species within a polymer film. We demonstrate this aspect by measuring the transverse diffusion of methylene blue in the PAH-PAA multilayer system. PMID:27175850

  8. Gelatin/hydroxypropyl methylcellulose matrices - Polymer interactions approach for oral disintegrating films.

    PubMed

    Tedesco, Marcela P; Monaco-Lourenço, Carla A; Carvalho, Rosemary A

    2016-12-01

    Oral disintegrating film represents an optimal alternative for delivery system of active compounds. The choice of film-forming polymer is the first step in the development of oral disintegrating films and the knowledge of molecular interactions in this matrix is fundamental to advance in this area. Therefore, this study aimed to characterize gelatin and hydroxypropyl methylcellulose (HPMC) films and their blends as matrices of oral disintegrating films. The films were produced by casting technique and were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, mechanical properties, contact angle, time disintegration and bioadhesive strength. Differential scanning calorimetry showed that enthalpy of fusion and melting temperatures of the blends films were lower than those of the gelatin film, which may be associated with the lack of intra-chain interactions also observed in the Fourier transform infrared spectra. In blends, a less compact cross-section structure was observed in scanning electron microscopy images compared with isolated polymer films. The addition of HPMC increased the elongation, hydrophilicity and in vitro bioadhesive force and decreased in vitro disintegration time, important properties in the development of oral disintegrating films. Although the mixture of the polymers showed no synergistic behavior, this study may contribute to the development of new applications for polymeric matrices in the pharmaceutical industry. PMID:27612760

  9. The Film Formation of Polymer Particles in Drying Thin Films of Aqueous Acrylic Latices.

    PubMed

    van Tent A; te Nijenhuis K

    2000-12-15

    The aim of this study is to determine the factors that contribute to the process of film formation of binder particles in drying aqueous dispersion coatings, based on acrylic polymers. It is known that concentrated latices of uniform size show iridescent, colored light patterns. These colors are caused by interparticle interference, and they are only present when the latex particles are ordered in a regular structure. The interparticle interference can be characterized by measuring the transmission as a function of wavelength of the incident light. It appeared that the changes of the interparticle interference of a drying latex film can be related to changes in the interparticle distance and displacement. It was also found that the interparticle distance becomes "negative" upon coalescence of the latex particles. This means that from this point on, the change in interparticle interference is directly related to the indentation or deformation of the latex particles. It became clear that the coalescence process differs from deformation mechanisms accepted in the literature. It seems that the deformation of the particles follows a biaxial mechanism. This means that the particles deform only in one direction, perpendicular to the film surface. Copyright 2000 Academic Press. PMID:11097771

  10. Mechanical testing and characterization of PVDF, a thin film piezoelectric polymer

    SciTech Connect

    Vinogradov, A.M.; Holloway, F.

    1997-10-01

    Mechanical properties of the thin film piezoelectric polymer PVDF are examined experimentally. The developed program comprising static, creep and dynamic (oscillatory) tests provides a consistent empirical data base for material characterization of the polymer: The results of the study indicate that PVDF thin films are orthotropic materials. The constitutive equations of linear hereditary viscoelasticity are shown to accurately represent the time-dependent response of PVDF over a wide range of stresses, temperatures and frequencies. The experiments indicate that the polymer exhibits thermorheologically simple behavior governed by the temperature-frequency correspondence principle.

  11. POLYMER FILM STANDARDS FOR X-RAY FLUORESCENCE SPECTROMETERS (JOURNAL VERSION)

    EPA Science Inventory

    Sets of thin polymer films were developed to serve as standards for XRF analysis of the following 18 elements in aerosol particle samples: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge, As, Rb, Sr, Zr, Cd, Sb, Ba, and Pb. Each film contains a pair of elements having non-interfering x-ray...

  12. Influence of film structure on the dewetting kinetics of thin polymer films in the solvent annealing process.

    PubMed

    Zhang, Huanhuan; Xu, Lin; Lai, Yuqing; Shi, Tongfei

    2016-06-28

    On a non-wetting solid substrate, the solvent annealing process of a thin polymer film includes the swelling process and the dewetting process. Owing to difficulties in the in situ analysis of the two processes simultaneously, a quantitative study on the solvent annealing process of thin polymer films on the non-wetting solid substrate is extremely rare. In this paper, we design an experimental method by combining spectroscopic ellipsometry with optical microscopy to achieve the simultaneous in situ study. Using this method, we investigate the influence of the structure of swollen film on its dewetting kinetics during the solvent annealing process. The results show that for a thin PS film with low Mw (Mw = 4.1 kg mol(-1)), acetone molecules can form an ultrathin enriched layer between the PS film and the solid substrate during the swelling process. The presence of the acetone enriched layer accounts for the exponential kinetic behavior in the case of a thin PS film with low Mw. However, the acetone enriched layer is not observed in the case of a thin PS film with high Mw (Mw = 400 kg mol(-1)) and the slippage effect of polymer chains is valid during the dewetting process. PMID:27254136

  13. Durability of ITO-MgF2 Films for Space-Inflatable Polymer Structures

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Waters, Deborah L.; Schieman, David A.; Hambourger, Paul D.

    2003-01-01

    This paper presents results from ITO-MgF2 film durability evaluations that included tape peel, fold, thermal cycle, and AO exposure testing. Polymer coupon preparation is described as well as ITO-MgF2 film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed visually, microscopically, and electrically. Results show that at 500 ITO - 9 vol% MgF2 film is suitable to protect polymer surfaces, such as those used in space-inflatable structures of the PowerSphere microsatellite concept, during a 1-year Earth orbiting mission. Future plans for ground-based and orbital testing of this film are also discussed.

  14. Microstructural and electrical properties of CoCl2 doped HPMC/PVP polymer blend films

    NASA Astrophysics Data System (ADS)

    Somashekarappa, H.; Prakash, Y.; Mahadevaiah, Hemalatha, K.; Somashekar, R.

    2013-02-01

    Solid polymer electrolyte (SPE) based on Hydroxypropylemethylcellulose (HPMC) and Polyvinylpyrrolidone (PVP) polymer blend films complexed with different weight ratio of CoCl2 were prepared using solution casting method and investigated using X-ray line profile analysis. An attempt has been made to study the changes in crystal imperfection parameters in HPMC/PVP blend films with the increase in concentration of CoCl2. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductivity measurements in these films show that the conductivity increases as the concentration of CoCl2 increases. These films were suitable for electro chemical applications.

  15. Growth and characterization of CdS thin films on polymer substrates for photovoltaic applications.

    PubMed

    Park, Yongseob; Kim, Eung Kwon; Lee, Suho; Lee, Jaehyeong

    2014-05-01

    In this work, cadmium sulfide (CdS) films were deposited on flexible polymer substrates such as polycarbonate (PC) and polyethylene terephthalate (PET). The r.f. magnetron sputtering, which is cost-effective scalable technique, was used for the film deposition. The structural and optical properties of the films grown at different sputtering pressures were investigated. When the CdS film was deposited at lower pressure, the crystallinity and the preferred orientation toward c-axis in hexagonal phase was improved. However, the optical transmittance was reduced as the sputtering pressure was decreased. Compared with the glass substrate, CdS films grown on polymer substrates were exhibited some wore structural and optical characteristics. CdTe thin film solar cell applied to sputtered CdS as a window layer showed a maximum efficiency of 11.6%. PMID:24734656

  16. Stability of ultrathin nanocomposite polymer films controlled by the embedding of gold nanoparticles.

    PubMed

    Amarandei, George; Clancy, Ian; O'Dwyer, Colm; Arshak, Arousian; Corcoran, David

    2014-12-10

    Thin and ultrathin polymer films combined with nanoparticles (NPs) are of significant interest as they are used in a host of industrial applications. In this paper we describe the stability of such films (hpoly ≤ 30 nm) to dewetting, specifically, how the development of a spinodal instability in a composite NP-polymer layer is controlled by the embedding of Au NPs. At working temperatures (T = 170 °C) above the polymer glass transition temperature (Tg ≈ 100 °C) the absence of Au NPs leads to film rupture by nucleation dewetting, while their presence over a large surface area enhances the development of a spinodal instability without destroying the film continuity. When the NPs embed, the surface undulations are suppressed. The dynamics change from an unstable to a stable state, and the thin composite NP-polymer layer returns to a flat configuration, while the wavelength of the pattern remains constant. Moreover, we demonstrate from a thermodynamic perspective that NPs will remain on the surface or embed in the polymer film depending on their free energy, which is determined by the NP interactions with the underlying polymer, the native SiOx layer, and the Si substrate. PMID:25491070

  17. Co-assembly of polymer covered cyclic peptide nanotubes and block copolymer in thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Lazzara, Thomas; Li, Changyi; Helmes, Brett; Xu, Ting

    2013-03-01

    Nanotubular structures have gained prevalent interest for their unique hollow structures and high aspect ratio and their potential applications ranging from molecular separation to nanocomposite membranes. We used nanotube forming cyclic peptide (CP) as the structural motif and studied the self-assembly of polymer conjugated CPs in block copolymer (BCP) matrix in thin films. The co-assembly process is mainly driven by thermodynamic quantities, namely Flory-Huggins polymer-polymer interactions that governs the interaction between CP and BCP, interfacial interactions that affects polymer chain orientation, and thin film commensurability. In addition, due to the dynamic nature of the nanotube formation, the co-assembly process is also pathway-dependent. Thus, processing conditions are critical in co-assembling CP nanotubes and BCP in thin films. Our result shows that the initial aggregation state of polymer covered CP nanotubes determines the pathway the system takes and hence the final morphology of the films. The co-assembly of polymer-conjugated CPs and BCPs demonstrates the feasibility of assembling 1D nanotubes in supramolecular thin films and opens up a new avenue for the generation of novel nanotubular structures.

  18. Spreading of Polymer Films at the Molecular Scale: Conformation, Orientation, and Fractionation.

    NASA Astrophysics Data System (ADS)

    Barrett, Michael; Nese, Alper; Matyjaszewski, Krzysztof; Sheiko, Sergei

    2009-03-01

    Previously, we have reported that comb-like polymer macromolecules undergo a plug-flow with an insignificant contribution of molecular diffusion (Phys. Rev. Lett. 93, 206103, 2004). It was also suggested that the composition of the flowing polymer melt was the same both inside the fluid reservoir (drop) and in the precursor film. This work called into question the macroscopic picture of polymer spreading. Through molecular imaging by AFM, we observe that macromolecules spread at different velocities depending on their size. We show that flow causes the molecules to align perpendicular to the flow direction We have also identified specific molecular conformations, such as hairpins, that become more abundant in spreading films. Lastly, we demonstrate that chain entanglements hinder permeation of long macromolecules from the drop to precursor film. These findings shed light on the molecular mechanism of spreading of polymer melts on natural, i.e. heterogeneous, substrates.

  19. Synthesis and characterization of nanoscale polymer films grafted to metal surfaces

    NASA Astrophysics Data System (ADS)

    Galabura, Yuriy

    Anchoring thin polymer films to metal surfaces allows us to alter, tune, and control their biocompatibility, lubrication, friction, wettability, and adhesion, while the unique properties of the underlying metallic substrates, such as magnetism and electrical conductivity, remain unaltered. This polymer/metal synergy creates significant opportunities to develop new hybrid platforms for a number of devices, actuators, and sensors. This present work focused on the synthesis and characterization of polymer layers grafted to the surface of metal objects. We report the development of a novel method for surface functionalization of arrays of high aspect ratio nickel nanowires/micronails. The polymer "grafting to" technique offers the possibility to functionalize different segments of the nickel nanowires/micronails with polymer layers that possess antagonistic (hydrophobic/hydrophilic) properties. This method results in the synthesis of arrays of Ni nanowires and micronails, where the tips modified with hydrophobic layer (polystyrene) and the bottom portions with a hydrophilic layer (polyacrylic acid). The developed modification platform will enable the fabrication of switchable field-controlled devices (actuators). Specifically, the application of an external magnetic field and the bending deformation of the nickel nanowires and micronails will make initially hydrophobic surface more hydrophilic by exposing different segments of the bent nanowires/micronails. We also investigate the grafting of thin polymer films to gold objects. The developed grafting technique is employed for the surface modification of Si/SiO2/Au microprinted electrodes. When electronic devices are scaled down to submicron sizes, it becomes critical to obtain uniform and robust insulating nanoscale polymer films. Therefore, we address the electrical properties of polymer layers of poly(glycidyl methacrylate) (PGMA), polyacrylic acid (PAA), poly(2-vinylpyridine) (P2VP), and polystyrene (PS) grafted to

  20. Super gas barrier of transparent polymer-clay multilayer ultrathin films.

    PubMed

    Priolo, Morgan A; Gamboa, Daniel; Holder, Kevin M; Grunlan, Jaime C

    2010-12-01

    Flexible and transparent polymeric "superbarrier" packaging materials have become increasingly important in recent years. Layer-by-layer assembly offers a facile technique for the fabrication of layered, polymer-clay superbarrier thin films. At only 51 nm thick, these nanocomposite thin films, comprised of 12 polymer and 4 clay layers, exhibit an oxygen permeability orders of magnitude lower than EVOH and SiOx. Coupling high flexibility, transparency, and barrier protection, these films are good candidates for a variety packaging applications. PMID:21047123

  1. Change in the waveform of broadband ultrasound reflected back from a sample via a polymer film

    NASA Astrophysics Data System (ADS)

    Tohmyoh, Hironori; Mukaimine, Shota

    2016-07-01

    This paper deals with the changes in the reflected waveform obtained from a sample after covering the sample with a polymer film. First, a theoretical model to predict the waveform obtained from the sample via the film was developed and the validity of the model was verified by experiments in which the ultrasound was transmitted from water into steel samples via a polymer film. Although the present model is based on plane wave theory, it was confirmed experimentally that the model is applicable for focused ultrasonic transducers.

  2. Synthesis and Characterization of Thin Film Lithium-Ion Batteries Using Polymer Electrolytes

    NASA Technical Reports Server (NTRS)

    Maranchi, Jeffrey P.; Kumta, Prashant N.; Hepp, Aloysius F.; Raffaelle, Ryne P.

    2002-01-01

    The present paper describes the integration of thin film electrodes with polymer electrolytes to form a complete thin film lithium-ion battery. Thin film batteries of the type, LiCoO2 [PAN, EC, PC, LiN(CF3SO2)2] SnO2 have been fabricated. The results of the synthesis and characterization studies will be presented and discussed.

  3. Spin-Casting Polymer Brush Films for Stimuli-Responsive and Anti-Fouling Surfaces.

    PubMed

    Xu, Binbin; Feng, Chun; Hu, Jianhua; Shi, Ping; Gu, Guangxin; Wang, Lei; Huang, Xiaoyu

    2016-03-01

    Surfaces modified with amphiphilic polymers can dynamically alter their physicochemical properties in response to changes of their environmental conditions; meanwhile, amphiphilic polymer coatings with molecular hydrophilic and hydrophobic patches, which can mitigate biofouling effectively, are being actively explored as advanced coatings for antifouling materials. Herein, a series of well-defined amphiphilic asymmetric polymer brushes containing hetero side chains, hydrophobic polystyrene (PS) and hydrophilic poly(ethylene glycol) (PEG), was employed to prepare uniform thin films by spin-casting. The properties of these films were investigated by water contact angle, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and quartz crystal microbalance (QCM). AFM showed smooth surfaces for all films with the roughness less than 2 nm. The changes in water contact angle and C/O ratio (XPS) evidenced the enrichment of PEG or PS chains at film surface after exposed to selective solvents, indicative of stimuli- responsiveness. The adsorption of proteins on PEG functionalized surface was quantified by QCM and the results verified that amphiphilic polymer brush films bearing PEG chains could lower or eliminate protein-material interactions and resist to protein adsorption. Cell adhesion experiments were performed by using HaCaT cells and it was found that polymer brush films possess good antifouling ability. PMID:26905980

  4. Water Vapor Permeation of Metal Oxide/Polymer Coated Plastic Films

    NASA Astrophysics Data System (ADS)

    Numata, Yukihiro; Oya, Toshiyuki; Kuwahara, Mitsuru; Ito, Katsuya

    Barrier performance to water vapor permeation of ceramic coated layers deposited on flexible polymer films is of great interest to food packaging, medical device packaging and flat panel display industries. In this study, a new type film in which a ceramic layer is deposited on a polymer coated film was proposed for lower water vapor permeation. It is important how to control interfacial properties between each layer and film for good barrier performance. Several kinds of polymer coated materials were prepared for changing surface free energy of the films before and after depositing the ceramic layer. The ceramic layer, which is composed of mixed material of SiO2 and Al2O3, was adopted under the same conditions. The following results were obtained; 1) Water vapor permeation is not related to the surface energy of polymer coated films, 2) After depositing the ceramic layer, however, a strong correlation is observed between the water vapor permeation and surface free energy. 3) The phenomenon is considered that the polarity of the polymer layers plays a key role in changing the structure of ceramic coated layers.

  5. Influence of macromolecular architecture on necking in polymer extrusion film casting process

    SciTech Connect

    Pol, Harshawardhan; Banik, Sourya; Azad, Lal Busher; Doshi, Pankaj; Lele, Ashish; Thete, Sumeet

    2015-05-22

    Extrusion film casting (EFC) is an important polymer processing technique that is used to produce several thousand tons of polymer films/coatings on an industrial scale. In this research, we are interested in understanding quantitatively how macromolecular chain architecture (for example long chain branching (LCB) or molecular weight distribution (MWD or PDI)) influences the necking and thickness distribution of extrusion cast films. We have used different polymer resins of linear and branched molecular architecture to produce extrusion cast films under controlled experimental conditions. The necking profiles of the films were imaged and the velocity profiles during EFC were monitored using particle tracking velocimetry (PTV) technique. Additionally, the temperature profiles were captured using an IR thermography and thickness profiles were calculated. The experimental results are compared with predictions of one-dimensional flow model of Silagy et al{sup 1} wherein the polymer resin rheology is modeled using molecular constitutive equations such as the Rolie-Poly (RP) and extended Pom Pom (XPP). We demonstrate that the 1-D flow model containing the molecular constitutive equations provides new insights into the role of macromolecular chain architecture on film necking.{sup 1}D. Silagy, Y. Demay, and J-F. Agassant, Polym. Eng. Sci., 36, 2614 (1996)

  6. Stabilization of metal-metal oxide surfaces using electroactive polymer films

    SciTech Connect

    Deng, Z.; Smyrl, W.H.; White, H.S. . Corrosion Research Center)

    1989-08-01

    Charge coupling of the catalyzed reduction of O/sub 2/ on platinized poly(3-methylthiophene) (P(3-MT)) films to the anodic dissolution of Ti is reported. Specifically, the redox polymer with Pt catalyst is used in these studies to mediate electrons generated by Ti dissolution and consumed by O/sub 2/ reduction. Due to the large redox polymer capacity ({ge}55 F/cm/sup 3/) of P(3-MT), these reactions occur at a stable potential approximately equal to the reversible oxidation potential of the polymer. Data presented support the conclusion that O/sub 2/ reduction on the polymer film can replenish polymer charge consumed by metal dissolution, thereby stabilizing the potential of Ti within the passive potential range and minimizing the rate of metal dissolution.

  7. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    NASA Astrophysics Data System (ADS)

    Jarad, Amer N.; Ibrahim, Kamarulazizi; Ahmed, Nasser M.

    2016-07-01

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10-5 (Ω.cm)-1, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  8. Fabrication of Superhydrophobic and Luminescent Rare Earth/Polymer complex Films.

    PubMed

    Wang, Zefeng; Ye, Weiwei; Luo, Xinran; Wang, Zhonggang

    2016-01-01

    The motivation of this work is to create luminescent rare earth/polymer films with outstanding water-resistance and superhydrophobicity. Specifically, the emulsion polymerization of styrene leads to core particles. Then core-shell-structured polymer nanoparticles are synthesized by copolymerization of styrene and acrylic acid on the core surface. The coordination reaction between carboxylic groups and rare earth ions (Eu(3+) and Tb(3+)) generates uniform spherical rare earth/polymer nanoparticles, which are subsequently complexed with PTFE microparticles to obtain micro-/nano-scaled PTFE/rare earth films with hierarchical rough morphology. The films exhibit large water contact angle up to 161° and sliding angle of about 6°, and can emit strong red and green fluorescence under UV excitation. More surprisingly, it is found that the films maintain high fluorescence intensity after submersed in water and even in aqueous salt solution for two days because of the excellent water repellent ability of surfaces. PMID:27086735

  9. Metal-Enhanced Fluorescence: Ultrafast Energy Transfer from Dyes in a Polymer Film to Metal Nanoparticles.

    PubMed

    Lee, Jaebeom; Pang, Yoonsoo

    2016-02-01

    Fluorescence from dye molecules dispersed in thin polymer layers increases by 20-25 times when a silver island film exists beneath the layer. Polymer layers of <100 nm thick cover the silver island film to minimize emission quenching from direct contact and also keep the dye molecules in close proximity to the metal nanosurface for possible fluorescence enhancements by silver island film. We report an ultrafast radiation process of ~400 ps lifetime from the surface plasmons of silver nanoparticles observed in time-resolved fluorescence of rhodamine 6G and DCM in thin polymer films coated on silver island surface. The ultrafast energy transfer and fluorescence from metal nanoparticles might be strongly related to the efficiency of metal-enhanced fluorescence. PMID:27433635

  10. Microstructured Films Formed on Liquid Substrates via Initiated Chemical Vapor Deposition of Cross-Linked Polymers.

    PubMed

    Bradley, Laura C; Gupta, Malancha

    2015-07-28

    We studied the formation of microstructured films at liquid surfaces via vapor phase polymerization of cross-linked polymers. The films were composed of micron-sized coral-like structures that originate at the liquid-vapor interface and extend vertically. The growth mechanism of the microstructures was determined to be simultaneous aggregation of the polymer on the liquid surface and wetting of the liquid on the growing aggregates. We demonstrated that we can increase the height of the microstructures and increase the surface roughness of the films by either decreasing the liquid viscosity or decreasing the polymer deposition rate. Our vapor phase method can be extended to synthesize functional, free-standing copolymer microstructured thin films for potential applications in tissue engineering, electrolyte membranes, and separations. PMID:26176742

  11. Viewing angle compensation of various LCD modes by using a liquid crystalline polymer film

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuya; Nishimura, Suzushi

    2013-09-01

    The authors have developed liquid crystalline retardation films to improve certain aspects of LCD image quality such as viewing angle performance and coloration. We have successfully created several types of optical retardation films using a rod-like liquid crystalline polymer. The resulting liquid crystalline polymer films have several advantages over conventional uni- or biaxially stretched retardation films. Precisely controlled structures such as twisted nematic, homogeneous nematic, hybrid nematic and homeotropic structures can provide ideal compensation of various LCD types, such as STN, TN, ECB, VA and IPS-LCDs. Twisted nematic film effectively prevents coloration of STN-LCDs, which is a critical flaw affecting color representation. Short pitch cholesteric film, which utilizes said rod-like liquid crystalline polymer and is the optical equivalent of a negative C-plate, can expand the viewing angle of VA-LCDs. Hybrid nematic film is quite unique in that the film functions not only as a wave plate but also as a viewing angle compensator for TN and ECB-LCDs. Homeotropic film, which acts as a positive-C plate, greatly improves the viewing angle performance of IPS and CPVA-LCDs. Our homeotropically aligned liquid crystalline film, called "NV film", is the world's thinnest retardation film. The thickness of the liquid crystalline layer is a mere 1 micrometer. Homeotropic film can be used to expand the viewing angle not only of LCDs but also OLED displays. And NV film, when used in in combination with a quarter wavelength plate, can expand the viewing angles of the circular polarizers used to prevent reflection in OLED displays.

  12. Photophysics and photochemistry of xanthene dyes in polymer solutions and films

    SciTech Connect

    Kamat, P.V.; Fox, M.A.

    1984-05-24

    The singlet and triplet lifetimes of erythrosin B and rose bengal, two representative xanthene dyes, are significantly increased by enclosing the dye in a cage of poly(4-vinylpyridine) (PVP). The fluorescence yield, controlled by the rate of intersystem crossing, is also increased by such encapsulation. Parallel effects are observed upon adding the polymer to an ethanolic solution of the xanthene or upon loading the dye into a polymer matrix dispersed on a metal oxide surface. The effect of the polymer on static quenching of the excited dye and the implications of dye-loaded polymer films in solar energy conversion are discussed.

  13. Electron-beam-deposited thin polymer films - Electrical properties vs bombarding current.

    NASA Technical Reports Server (NTRS)

    Babcock, L. E.; Christy, R. W.

    1972-01-01

    Polymer films about 150 A thick, deposited on glass substrates by electron bombardment of tetramethyltetraphenyltrisiloxane, were studied, after being sandwiched between evaporated aluminum electrodes, the top one semitransparent. The capacitance, conductance, and photoconductance of the sandwiches were measured at room temperature as a function of the electron bombarding current which formed the polymer. The polymer thickness was obtained independently from Christy's (1960) empirical formula for the rate of formation. The obtained results indicate that, with increasing bombarding current, the polymer undergoes an increase in both crosslinking bonds and dangling bonds. Exposure to air drastically reduces the density of dangling bonds, but does not affect the crosslinking.

  14. Thin metal film-polymer composite for efficient optoacoustic generation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Taehwa; Guo, L. Jay

    2016-03-01

    Photoacoustic (PA) conversion of metal film absorbers is known to be inefficient because of their low thermal expansion and high light reflectance, as compared to polymeric materials containing light absorbing fillers. Specifically, the PA signal for metal films is typically an order of magnitude lower than those for PDMS-based composites consisting of carbon materials such as carbon blacks, carbon nanotubes, and carbon fibers. However, the carbon-PDMS composites have several disadvantages, e.g., difficulty in controlling film thickness, aggregation of the carbon fillers, and poor patternablility. To overcome these issues and achieve comparable PA amplitudes, a polymer-metal film composite was developed consisting of a thin metal absorber and adjacent transparent polymer layers. The proposed structure shows efficient PA conversion. The measured PA amplitude of the metal film composite is an order of magnitude higher than that of metal-only samples, and comparable to those of the carbon-PDMS composites. The enhanced PA conversion is accomplished by using metal film of a few tens of nanometers, which greatly facilitates heat transfer from the metal film to the surrounding polymers. Moreover, integrating the metal film composite with a photonic cavity can compensate light absorption loss of the thinner metal film. Theoretical and experimental analysis is conducted for understanding the mechanism behind such improvement. This strategy could be implemented for spatial PA signal patterns, especially for deep tissue PA imaging of implants or image-guiding tools. Furthermore, this approach also provides a guideline for designing photoacoustic transmitters and contrast agents.

  15. Design of molecularly imprinted conducting polymer protein-sensing films via substrate-dopant binding.

    PubMed

    Komarova, Elena; Aldissi, Matt; Bogomolova, Anastasia

    2015-02-21

    Addressing the challenge of protein biosensing using molecularly imprinted polymers (MIP), we have developed and tested a novel approach to creating sensing conducive polymer films imprinted with a protein substrate, ricin toxin chain A (RTA). Our approach for creating MIP protein sensing films is based on a concept of substrate-guided dopant immobilization with subsequent conducting polymer film formation. In this proof-of-concept work we have tested three macromolecular dopants with strong protein affinity, Ponceau S, Coomassie BB R250 and ι-Carrageenan. The films were formed using sequential interactions of the substrate, dopant and pyrrole, followed by electrochemical polymerization. The films were formed on gold array electrodes allowing for extensive data acquisition. The thickness of the films was optimized to allow for efficient substrate extraction, which was removed by a combination of protease and detergent treatment. The MIP films were tested for substrate rebinding using electrochemical impedance spectroscopy (EIS). The presence of macromolecular dopants was essential for MIP film specificity. Out of three dopants tested, RTA-imprinted polypyrrole films doped with Coomassie BB performed with highest specificity towards detection of RTA with a level of detection (LOD) of 0.1 ng ml(-1). PMID:25574520

  16. Engineering the Crystalline Morphology of Polymer Thin Films via Physical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Jeong, Hyuncheol; Arnold, Craig; Priestley, Rodney

    Thin-film growth via physical vapor deposition (PVD) has been successfully exploited for the delicate control of film structure for molecular and atomic systems. The application of such a high-energetic process to polymeric film growth has been challenged by chemical degradation. However, recent development of Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique opened up a way to deposit a variety of macromolecules in a PVD manner. Here, employing MAPLE technique to the growth of semicrystalline polymer thin films, we show the engineering of crystalline film morphology can be achieved via manipulation of substrate temperature. This is accomplished by exploiting temperature effect on crystallization kinetics of polymers. During the slow film growth crystallization can either be permitted or suppressed, and crystal thickness can be tuned via temperature modulation. In addition, we report that the crystallinity of polymer thin films may be significantly altered with deposition temperature in MAPLE processing. We expect that this ability to manipulate crystallization kinetics during polymeric film growth will open the possibility to engineer structure in thin film polymeric-based devices in ways that are difficult by other means.

  17. Measuring Exciton Diffusion in Conjugated Polymer Films with Super-resolution Microscopy

    NASA Astrophysics Data System (ADS)

    Penwell, Samuel; Ginsberg, Lucas; Noriega Manez, Rodrigo; Ginsberg, Naomi

    2015-03-01

    Conjugated polymers are highly tunable organic semiconductors, which can be solution processed to form thin films, making them prime candidates for organic photovoltaic devices. One of the most important parameters in a conjugated polymer solar cell is the exciton diffusion length, which depends on intermolecular couplings, and is typically on the order of 10 nm. This mean exciton migration can vary dramatically between films and within a single film due to heterogeneities in morphology on length scales of 10's to 100's nm. To study the variability of exciton diffusion and morphology within individual conjugated polymer films, we are adapting stimulated emission depletion microscopy. STED is typically used in biology with well-engineered fluorescent labels or on NV-centers in diamond. I will, however, describe how we have demonstrated STED in conjugated polymer films of MEH-PPV and CN-PPV by taking care to first understand the film's photophysical properties. This new approach provides a way to study exciton diffusion by utilizing subdiffraction optical excitation volumes. In this way, we will obtain a spatiotemporal map of exciton distributions that will help to correlate the energetic landscape to film morphology at the nanoscale. This research is supported in part by the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under Contract No. DE-AC05-06.

  18. Deposition of Tungsten Thin Films on Flexible Polymer Substrates by Direct-Current Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Huo, Zhenxuan; Jiao, Xiangquan; Zhong, Hui; Shi, Yu

    2015-11-01

    We have investigated thin tungsten films deposited on polymer substrates by direct-current magnetron sputtering under different conditions. Unlike tungsten films deposited on rigid substrates, films on polymer substrates grew at appropriate sputtering power, low sputtering pressure, and low substrate temperature. High sputtering power results in tungsten films with good crystal orientation, compact microstructure, and low electrical resistivity. However, high-power sputtering damages the polymer substrates. Enhancing sputtering pressure substantially degrades tungsten orientation and increases electrical resistivity. Furthermore, a slight increase in substrate temperature results in tungsten films with good crystal orientation, a dense microstructure, and low electrical resistivity. Nonetheless, a high substrate temperature results in soft and deformed polymer substrates; this degrades tungsten crystal orientation and substantially roughens tungsten films. On the basis of this study, compact and flat tungsten films with low electrical resistivity can be obtained at a sputtering power of 69 W, a sputtering pressure of 1 Pa, a substrate temperature of 100°C, and a distance between target and substrate of 60 mm.

  19. Boundary-induced segregation in nanoscale thin films of athermal polymer blends.

    PubMed

    Teng, Chih-Yu; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2016-05-18

    The surface segregation of binary athermal polymer blends confined in a nanoscale thin film was investigated by dissipative particle dynamics. The polymer blend included linear/linear, star/linear, bottlebrush/linear, and rod-like/linear polymer systems. The segregation was driven by purely entropic effects and two different mechanisms were found. For the linear/linear and star/linear polymer blends, the smaller sized polymers were preferentially segregated to the boundary because their excluded volumes were smaller than those of the matrix polymers. For the bottlebrush/linear and rod-like/linear polymer blends, the polymers with a larger persistent length were preferentially segregated to the boundary because they favored staying in the depletion zone by alignment with the wall. Our simulation outcome was consistent with experimental results and also agreed with theoretical predictions - that is, a surface excess dictated by the chain ends for the branch/linear system. These consequences are of great importance in controlling the homogeneity and surface properties of polymer blend thin films. PMID:27108653

  20. Synthesis of novel electrically conducting polymers: Potential conducting Langmuir-Blodgett films and conducting polymers on defined surfaces

    NASA Technical Reports Server (NTRS)

    Zimmer, Hans

    1993-01-01

    Based on previous results involving thiophene derived electrically conducting polymers in which it was shown that thiophene, 3-substituted thiophenes, furans, and certain oligomers of these compounds showed electrical conductivity after polymerization. The conductivity was in the order of up to 500 S/cm. In addition, these polymers showed conductivity without being doped and most of all they were practically inert toward ambient conditions. They even could be used in aqueous media. With these findings as a guide, a number of 3-long-chain-substituted thiophenes and 1-substituted-3-long-chain substituted pyrrols were synthesized as monomers for potential polymeric electrically conducting Langmuir-Blodgett films.

  1. Anomalous Drag Reduction and Hydrodynamic Interactions of Nanoparticles in Polymer Nanocomposite Thin Films

    NASA Astrophysics Data System (ADS)

    Basu, Jaydeep; Begam, Nafisa; Chandran, Sivasurender; Sprung, Michael

    2015-03-01

    One of the central dogma of fluid physics is the no-slip boundary condition whose validity has come under intense scrutiny, especially in the fields of micro and nanofluidics. Although various studies show the violation of the no-slip condition its effect on flow of colloidal particles in viscous media has been rarely explored. Here we report unusually large reduction of effective drag experienced by polymer grafted nanoparticles moving through a highly viscous film of polymer, well above its glass transition temperature. The extent of drag reduction increases with decreasing temperature and polymer film thickness. We also observe apparent divergence of the wave vector dependent hydrodynamic interaction function of these nanoparticles with an anomalous power law exponent of ~ 2 at the lowest temperatures and film thickness. Such strong hydrodynamic interactions are not expected in polymer melts where these interactions are known to be screened to molecular dimensions. We provide evidence for the presence of large hydrodynamic slip at the nanoparticle-polymer interface and demonstrate its tunability with temperature and confinement. Our study suggests novel physics emerging in dynamics nanoparticles due to confinement and interface wettability in thin films of polymer nanocomposites.

  2. Engineering polymer-fullerene thin films and solar cells with external fields

    NASA Astrophysics Data System (ADS)

    Cabral, Joao

    2014-03-01

    Trace amounts of nanoparticles, including fullerenes, can impart stability to thin polymer films against dewetting by the combined effects of pinning the contact lines of dewetting holes and by effectively altering the polymer-substrate interaction. Polymer nanocomposite (meta)stable thin films can yield well-defined morphologies from uniform to spinodal-like, via spontaneous polymer-nanoparticle phase separation and crystallization. Confinement breaks the structural isotropy and generally causes (partial) segregation of components orthogonally to the film surface. Surface energy patterning can thus modulate composition and morphology, both in plane and normal to the surface. Further, UV-visible, and even background, light exposure, in both solutions and melts, is shown to tune the solution stucture and morphology of dewetting and phase separating polymer-fullerene thin films. Neutron reflectivity allows us to locate the various constituents within the film. We find a coupling of fullerene photo-sensitivity and both self-assembly processes which results in controlled pattern formation, and we illustrate the potential with a model polymer-fullerene circuit pattern. We then translate this approach into the directed assembly of energy harvesting bulk heterojunctions thin films. Indeed, a key challenge to the commercialization of organic solar cells remains the achievement of morphological stability, particularly under thermal stress conditions. The directed assembly a blend polymer:PC60BM solar cells via a simple light processing step results in a 10-100 fold increase in device thermal stability and, under certain conditions, enhanced device performance. The enhanced stability is linked to the light-induced oligomerisation of PC60BM that effectively hinders diffusion and crystallization in blends. This effect appears to be general and promises to be an effective and cost-effective strategy to optimize fullerene-based solar cell performance.

  3. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films.

    PubMed

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A

    2015-12-30

    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer. PMID

  4. Fundamental Study on Vibration in Edge Face of Piezoelectric Chiral Polymer Film

    NASA Astrophysics Data System (ADS)

    Takarada, Jun; Kataoka, Takuya; Yamamoto, Ken; Nakiri, Takuo; Kato, Atsuko; Yoshida, Tetsuo; Tajitsu, Yoshiro

    2013-09-01

    We evaluate the vibration in the edge face of a poly(L-lactic acid) (PLLA) film from the propagated signal of an ultrasonic wave generated by the excitation force of the edge. Although the excitation area is too small to drive the edge face, the vibration can be measured only using the fixing method that does not suppress the resonance and the equipment with a high signal-to-noise ratio. This is considered to be due to the fact that the theoretically calculated force of the PLLA film is more than 10 times larger than that of a well-known ferroelectric polymer film, poly(vinylidene fluoride). We confirm that the film functions as a resonator and can be applied to a resonated transducer. In spite of the vibration in the edge face of the polymer film, we observe compliant responses to excitations by burst or rectangular waves. The practicality of a resonator can be suggested.

  5. Experimental evidence of ultrathin polymer film stratification by AFM force spectroscopy.

    PubMed

    Delorme, Nicolas; Chebil, Mohamed Souheib; Vignaud, Guillaume; Le Houerou, Vincent; Bardeau, Jean-François; Busselez, Rémi; Gibaud, Alain; Grohens, Yves

    2015-06-01

    By performing Atomic Force Microscopy measurements of pull-off force as a function of the temperature, we were able to probe the dynamic of supported thin polystyrene (PS) films. Thermal transitions induce modifications in the surface energy, roughness and surface modulus that are clearly detected by AFM and related to PS chain relaxation mechanisms. We demonstrated the existence of three transition temperatures that can be associated to the relaxation of polymer chains located at different depth regions within the polymer film. Independently of the film thickness, we have confirmed the presence of a region of high mobility for the polymer chains at the free interface. The thickness of this region is estimated to be above 7nm. The detection of a transition only present for film thicker than the gyration radius Rg is linked to the dynamics of polymer chains in a bulk conformation (i.e. not in contact with the free interface). We claim here that our results demonstrate, in agreement with other techniques, the stratification of thin polymer film depth profile in terms of relaxation behavior. PMID:26087914

  6. The Parametric Study of Focused Laser-Induced Marangoni Dewetting for Patterning Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Singer, Jonathan; Ma, Tianxing; Kooi, Steven; Thomas, Edwin

    Highly-localized focused laser spike (FLaSk) heating of polymer thin films is a resist- and developer-free alternative to 2D laser direct write for creating patterns on the single micron or, by exploiting overlap effects, submicron scale. The massive temporal and spatial thermal gradients and resulting thermal Marangoni stresses generated by FLaSk are an effective means for the directed dewetting and patterning of such films. Here, the general applicability of this technique to glassy amorphous polymer thin film systems is investigated through systematic investigation of film thickness, glass transition temperature, and polymer mobility. The results reveal that the important parameters are the film thickness (coupled to the optical heating effects through anti-reflection coating effects) and the high-temperature polymer melt mobility, allowing for generation of single features with linewidths of down to 1 μm. Further, the introduction of spatial mobility variations by using polymer brushes, bilayers, and microphase separated block copolymers leads to additional profile manipulation effects (i . e . spontaneous 2D pattern generation and flattened top profiles).

  7. Local, real-time measurement of drying films of aqueous polymer solutions using active microrheology.

    PubMed

    Komoda, Yoshiyuki; Leal, L Gary; Squires, Todd M

    2014-05-13

    Oscillatory microdisk rheometry was applied to evaluate the evolution of the viscoelastic properties at the surface of a film of an aqueous solution of poly(vinyl alcohol) (PVA) during drying. The drying rate was measured concurrently, based upon measurements of the variation of film thickness. A fully hydrolyzed PVA solution shows a constant drying rate, while a less hydrolyzed PVA solution exhibits a decreased drying rate in the latter part of the drying process, which occurred at the same time as an increase of the elastic modulus. We suggest that this difference in behavior is a consequence of the fact that both the configuration of the PVA molecule and the strength of interaction with water depend on the degree to which the PVA is hydrolyzed. The polymer concentration at the film surface can be estimated from the measured viscosity at the surface for the fully hydrolyzed PVA solution, and this result then can be compared with two theoretical calculations: one in which the polymer concentration is assumed to remain uniform throughout the film, and the other in which the polymer concentration distribution is determined via a one-dimensional diffusion model. This comparison suggests that the polymer is first concentrated locally near the surface but later in the drying process the distribution of polymer becomes increasingly uniform, possibly due to a spontaneously generated convective flow inside the film. PMID:24725080

  8. Engineering the Crystalline Morphology of Polymer Thin Films at a Molecular Level via Matrix Assisted Pulsed Laser Evaporation

    NASA Astrophysics Data System (ADS)

    Jeong, Hyuncheol; Arnold, Craig; Priestley, Rodney

    2015-03-01

    Controlling the crystalline morphology of polymeric thin films at a molecular level has been increasingly important due to their potential as the active layer in organic electronics. Typically, the crystalline morphology in films is achieved via thermal annealing or melt-crystallization of spin-cast polymers. This approach often leads to a spherulitic morphology where the crystalline lamellae grow in all directions. Here, we introduce an alternative approach to make crystalline polymer films via Matrix Assisted Pulsed Laser Evaporation (MAPLE). Using polyethylene oxide (PEO) as a model polymer, we show that the preferential orientation of polymer crystals can be controlled during the film growth. By laser-ablating a frozen dilute solution of the desired polymer, MAPLE provides a non-destructive means for the deposition of polymer films. Due to the liquid nature of as-deposited polymers confined in nanodroplets, this technique can exploit the substrate effect on the crystal nucleation and growth of nano-confined polymers during the film growth. Mimicking the epitaxial growth of metallic films, this novel polymer deposition technique may enable the engineering of film properties in a way not achievable in bulk.

  9. Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.

    PubMed

    Samant, Saumil P; Grabowski, Christopher A; Kisslinger, Kim; Yager, Kevin G; Yuan, Guangcui; Satija, Sushil K; Durstock, Michael F; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-01

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials. PMID:26942835

  10. Microstructured polymer films by X-ray lithographic exposure and grafting

    NASA Astrophysics Data System (ADS)

    Gürsel, Selmiye A.; Padeste, Celestino; Solak, Harun H.; Scherer, Günther G.

    2005-07-01

    Recently we reported on a new technique to generate micro- and nanostructured polymer materials by the combination of selective irradiation of polymer substrates with X-rays and subsequent grafting of a second polymer. Here we focus on the spatially defined grafting throughout the thickness of poly(ethylene-alt-tetrafluoroethylene) (ETFE) and poly (tetrafluoroethylene-co-hexafluoropropylene) (FEP) films using X-ray irradiation through a metal mask, followed by grafting with styrene. Calculations of the transmission of X-rays through the polymer as a function of the wavelength have revealed that energy deposition within the substrate material, which should control the density of created radicals, can be selected in a wide range. Depending on the used wavelength the radicals are created either near the surface or in the bulk of the sample. First experiments demonstrated spatially defined grafting through a 100 μm thick ETFE film and 25 μm thick FEP film. The achieved graft level depends on the irradiation dose as well as on the grafting parameters such as concentration, temperature and time. The precision of structure definition within the film depends on the properties of the X-ray source, the metal mask and the grafting process. The presented process allows controlled grafting through fluoropolymer films with micrometer resolution and local modification of the properties of the films, such as ion conductivity, diffusion of specific molecules or optical properties.