Science.gov

Sample records for metarhizium anisopliae metschnikoff

  1. [Variability in esterases of Metarhizium anisopliae].

    PubMed

    Estrada-Martínez, M E; Piñón, D R; Capote, M C

    1997-03-01

    The variability in esterases of the entomogenous fungus Metarhizium anisopliae was determined electrophoretically on 8.5% polyacrylamide gel. Ten isolates from diverse taxonomic groups of insects were analyzed. The electrophoretic analysis showed differences and similarities between these isolates and it was possible to distinguish six different patterns. The results obtained show a great polymorphism for the esterase system of M. anisopliae. PMID:15482022

  2. Pathogenicity of Metarhizium anisopliae (Deuteromycetes) and permethrin to Ixodes scapularis (Acari: Ixodidae) nymphs

    USGS Publications Warehouse

    Hornbostel, V.L.; Zhioua, E.; Benjamin, M.A.; Ginsberg, H.S.; Ostfeld, R.S.

    2005-01-01

    Effectiveness of the entomopathogenic fungus Metarhizium anisopliae, for controlling nymphal Ixodes scapularis, was tested in laboratory and field trials. In the laboratory, M. anisopliae (Metschnikoff) Sorokin strain ESC1 was moderately pathogenic, with an LC50 of 107 spores/ml and induced 70% mortality at 109 spores/ml. In a field study, however, 109 spores/ml M. anisopliae did not effectively control questing I. scapularis nymphs, and significant differences were not detected in pre- and post-treatment densities. For nymphs collected and returned to the laboratory for observation, mortality was low in treatment groups, ranging from 20 to 36%. To assess whether a chemical acaricide would synergistically enhance pathogenicity of the fungus, we challenged unfed nymphal I. scapularis with combinations of M. anisopliae and permethrin, a relatively safe pyrethroid acaricide, in two separate bioassays. Significant interactions between M. anisopliae and permethrin were not observed, supporting neither synergism nor antagonism.

  3. PROTEOMIC ANALYSIS OF ALLERGENS FROM METARHIZIUM ANISOPLIAE

    EPA Science Inventory

    Introduction

    The goal of this project is the identification and characterization of allergens from the fungus Metarhizium anisopliae, using mass spectrometry (MS). The US EPA, under the "Children at Risk" program, is currently addressing the problem of indoor fungal bioaer...

  4. INFECTIVITY OF METARHIZIUM ANISOPLIAE IN GRASS SHRIMP EMBRYOS

    EPA Science Inventory

    Developing embryos of the estuarine grass shrimp, Palaemonetes pugio, were exposed to Metarhizium anisopliae conidiospores. Attachment of conidiospores was often followed by germination and outgrowth on embryo surface. Penetration of the embryonic envelopes by M. anisopliae allow...

  5. Beauveria bassiana, Metarhizium anisopliae, and Metarhizium anisopliae var. acridum conidia: tolerance to imbibitional damage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When dry fungal cells are immersed in water, rapid imbibition (water uptake) may compromise the plasma membrane, killing the cell. This study investigated the impact of imbibitional damage (measured in terms of reduced viability) on Beauveria bassiana (Bb), Metarhizium anisopliae (Ma) and M. anisop...

  6. A multilocus phylogeny of the Metarhizium anisopliae lineage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metarhizium anisopliae, the type species of the anamorph entomopathogenic genus Metarhizium, is currently composed of four varieties and has been demonstrated to be closely associated with M. taii, M. pingshaense, and M. guizhouense. In this study we evaluate the phylogenetic relationships within t...

  7. Potential nontarget effects of Metarhizium anisopliae (Deuteromycetes) used for biological control of ticks (Acari: Ixodidae)

    USGS Publications Warehouse

    Ginsberg, H.S.; LeBrun, R.A.; Heyer, K.; Zhioua, E.

    2002-01-01

    The potential for nontarget effects of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin, when used for biological control of ticks, was assessed in laboratory trials. Fungal pathogenicity was studied against convergent ladybird beetles, Hippodamia convergens Gue??rin-Me??neville, house crickets, Acheta domesticus (L.), and the milkweed bugs Oncopeltus fasciatus (Dallas). Fungal spores applied with a spray tower produced significant mortality in H. convergens and A. domesticus, but effects on O. fasciatus were marginal. Placing treated insects with untreated individuals resulted in mortality from horizontal transmission to untreated beetles and crickets, but not milkweed bugs. Spread of fungal infection in the beetles resulted in mortality on days 4-10 after treatment, while in crickets mortality was on day 2 after treatment, suggesting different levels of pathogenicity and possibly different modes of transmission. Therefore, M. anisopliae varies in pathogenicity to different insects. Inundative applications can potentially affect nontarget species, but M. anisopliae is already widely distributed in North America, so applications for tick control generally would not introduce a novel pathogen into the environment. Pathogenicity in lab trials does not, by itself, demonstrate activity under natural conditions, so field trials are needed to confirm these results and to assess methods to minimize nontarget exposure.

  8. Potential nontarget effects of Metarhizium anisopliae (Deuteromycetes) used for biological control of ticks (Acari: Ixodidae)

    USGS Publications Warehouse

    Ginsberg, H.S.; LeBrun, R.A.; Heyer, K.; Zhioua, E.

    2002-01-01

    The potential for nontarget effects of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin, when used for biological control of ticks, was assessed in laboratory trials. Fungal pathogenicity was studied against convergent ladybird beetles, Hippodamia convergens Guerin-Meneville, house crickets, Acheta domesticus (L.), and milkweed bugs, Oncopeltus fasciatus (Dallas). Fungal spores applied with a spray tower produced significant mortality in H. convergens and A. domesticus, but effects on O. fasciatus were marginal. Treated insects placed with untreated individuals resulted in mortality from horizontal transmission to untreated beetles and crickets, but not milkweed bugs. Spread of fungal infection in the beetles resulted in mortality on days 4-10 after treatment, while in crickets mortality was on day 2 after treatment, suggesting different levels of pathogenicity and possibly different modes of transmission. Therefore, M. anisopliae varies in pathogenicity to different insects. Inundative applications can potentially affect nontarget species, but M. anisopliae is already widely distributed in North America, so applications for tick control generally would not introduce a novel pathogen into the environment. Pathogenicity in lab trials does not, by itself, demonstrate activity under natural conditions, so field trials are needed to confirm these results and to assess methods to minimize nontarget exposure.

  9. IDENTIFICATION OF ALLERGENS FROM METARHIZIUM ANISOPLIAE USING MASS SPECTROMETRY

    EPA Science Inventory

    Background
    The U.S. EPA, under the "Children at Risk" Program, is currently addressing the problem of indoor fungal bioaerosol contamination. The fungus Metarhizium Anisopliae has been used as a bio-pesticide for insect control since the 1800's. Recent studies have shown t...

  10. Serinocyclins A and B, Cyclic Heptapeptides from Metarhizium anisopliae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two new cyclic heptapeptides, serinocyclins A (1) and B (2), were isolated from conidia of the entomopathogenic fungus Metarhizium anisopliae. Structures were elucidated by a combination of mass spectrometric, NMR, and X-ray diffraction techniques. Serinocyclin A (1) contains three serine units, a...

  11. Horizontal Transmission of Beauveria bassiana (Hypocreales: Cordycipitaceae) and Metarhizium anisopliae (Hypocreales: Clavicipitaceae) in Musca domestica (Diptera: Muscidae).

    PubMed

    Cárcamo, M C; Felchicher, F; Duarte, J P; Bernardi, E; Ribeiro, P B

    2015-08-01

    Beauveria bassiana Vuillemin and Metarhizium anisopliae (Metschnikoff) Sorokin are fungi with potential for controlling Musca domestica L. However, the impact on this dipteral may vary depending on the fungal isolates and the methodology used. This study evaluated the pathogenicity of direct application and horizontal transmission of B. bassiana (CG240) and M. anisopliae (CG34) on adult M. domestica individuals. The impact of B. bassiana and M. anisopliae on M. domestica was evaluated at the concentrations 2 × 10(4), 2 × 10(5), 2 × 10(6), and 2 × 10(7) conidia/ml. Horizontal transmission was also estimated between sexes at different infection periods of the vector insect. The mortality of adult M. domestica individuals directly infected with B. bassiana was above 90%, and the mortality of those infected with M. anisopliae ranged from 25.50 to 97.78%. Horizontal transmission of B. bassiana caused the death of 100% of individuals, in turn, that of M. anisopliae killed 55% of male and 100% of female individuals. Horizontal transmission of fungi was negatively influenced by time. This study shows the potential of these fungi for controlling M. domestica, both with the direct implementation strategy and horizontal transmission. However, field studies are needed to evaluate the capacity to decrease the M. domestica population using these alternatives. PMID:26470298

  12. Susceptibility of Adults of the Cerambycid Beetle Hedypathes betulinus to the Entomopathogenic Fungi Beauveria bassiana, Metarhizium anisopliae, and Purpureocillium Lilacinum

    PubMed Central

    Schapovaloff, M. E.; Alves, L. F. A.; Fanti, A. L.; Alzogaray, R. A.; Lastra, C. C. López

    2014-01-01

    The cerambycid beetle Hedypathes betulinus (Klug) (Coleoptera: Cerambycidae) causes severe damage to yerba mate plants (Ilex paraguariensis (St. Hilaire) (Aquifoliales: Aquifoliaceae)), which results in large losses of production. In this study, the pathogenicity of entomopathogenic fungi of the species Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Hypocreales: Cordycipitaceae), Metarhizium anisopliae sensu lato (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae), and Purpureocillium lilacinum (Thom) Luangsa-ard, Hywel-Jones, Houbraken and Samson (Hypocreales: Ophiocordycipitaceae) on yerba mate were evaluated. Fifteen isolates of B. bassiana, two of M. anisopliae, and seven of P. lilacinum on H. betulinus adults were analyzed under laboratory conditions. The raw mortality rate caused by B. bassiana isolates varied from 51.1 to 86.3%, and their LT50 values varied between 8.7 and 13.6 d. The isolates of M. anisopliae caused 69.6–81.8% mortality, and their LT50 values varied between 7.4 and 7.9 d. In contrast, isolates of P. lilacinum were not pathogenic. M. anisopliae and B. bassiana isolates were pathogenic against H. betulinus adults, suggesting that they may be useful in biological control programs for insect pests of yerba mate. PMID:25368071

  13. Selection of indigenous isolates of entomopathogenic soil fungus Metarhizium anisopliae under laboratory conditions.

    PubMed

    Skalický, Aleš; Bohatá, Andrea; Šimková, Jana; Osborne, Lance S; Landa, Zdeněk

    2014-07-01

    Eight native isolates of the entomopathogenic fungus Metarhizium anisopliae (Metschnikoff) Sorokin were obtained by monitoring soils cultivated in a conventional manner. These isolates were compared in three areas: (a) conidial germination, (b) radial growth and sporulation and (c) ability of conidia to infect Tenebrio molitor larvae. All bioassays were carried out at constant temperatures of 10, 15, and 20 °C. Conidia of individual isolates demonstrated differences in germination after a 24-h long incubation at all evaluated temperatures. At 20 °C, the germination ranged from 67 to 100 % and at 15 °C from 5.33 to 46.67 %. At 10 °C, no germination was observed after 24 h; nevertheless, it was 8.67-44.67 % after 48 h. In terms of radial growth, the culture diameters and the associated production of spores of all isolates increased with increasing temperature. At 10 °C, sporulation was observed in three isolates while all remaining cultures appeared sterile. Three weeks post-inoculation, conidia of all assessed isolates caused 100 % cumulative mortality of treated larvae of T. molitor at 15 and 20 °C with the exception of isolate 110108 that induced 81.33 % mortality at 15 °C. At 10 °C, larval cumulative mortality ranged from 6.67 to 85.33 % depending on the isolate. Isolates 110108 and 110111 showed significantly slower outset and a much lower rate of infection at all temperatures compared to other tested isolates of M. anisopliae. The bioassays were carried out with the purpose to sort and select indigenous isolates of M. anisopliae useful as biocontrol agents in their original habitat. PMID:24338078

  14. First unusual case of keratitis in Europe due to the rare fungus Metarhizium anisopliae.

    PubMed

    Dorin, Josephine; Debourgogne, Anne; Zaïdi, Mohamed; Bazard, Marie-Christine; Machouart, Marie

    2015-05-01

    Metarhizium anisopliae is a fungus utilized worldwide for insect-pest biocontrol. Few M. anisopliae infections have been reported previously. Here, M. anisopliae was isolated from a corneal ulcer in a healthy man. It is the first ocular case in France and Europe of this extremely rare fungus in humans. PMID:25813244

  15. Susceptibility of Agrilus planipennis (Coleoptera: Buprestidae) to Beauveria bassiana and Metarhizium anisopliae.

    PubMed

    Liu, Houping; Bauer, Leah S

    2006-08-01

    The susceptibility of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) to selected strains of the entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschnikoff) Sorokin was evaluated through bioassays with direct immersion or foliar exposure under laboratory conditions. Results showed that A. planipennis adults were susceptible to B. bassiana and M. anisoplae. Significant time-mortality response was found for each isolates. Isolate B. bassiana GHA killed A. planipennis adults at a faster rate compared with other isolates tested, with the lowest average time-to-death values. The LC50 values estimated under direct immersion method ranged from 1.7 x 10(5) to 1.9 x 10(7), 3.5 x 10(4) to 5.3 x 10(5), and 4.1 x 10(3) to 2.9 x 10(5) conidia/ml for B. basissiana and from 3.2 x 10(6) to 1.1 x 10(7), 4.5 x 10(3) to 4.5 x 10(5), and 1.4 x 10(2) to 1.2 x 10(5) conidia/ml for M. anisopliae at 4, 5, and 6 d after treatment, respectively. By days 5 and 6, B. bassiana GHA outperformed all other isolates tested except ARSEF 7234, followed by ARSEF 7152, 6393, and 7180. Significant concentration-mortality response was also observed for two B. bassiana GHA formulations, BotaniGard ES and Mycotrol O, and M. anisopliae F52 when insects were treated through foliar exposure. The LC50 values ranged from 114.5 to 309.6, 18.4 to 797.3, and 345.3 to 362.0 conidia/cm2 for BotaniGard, Mycotrol, and M. anisopliae F52, respectively. Based on the results of these bioassays, the efficacy of both B. bassiana GHA formulations and M. anisopliae F52 were similar against adult A. planipennis. The potential use of entomopathogenic fungi for management of A. planipennis in North America is discussed. PMID:16937660

  16. Exposure of Bed Bugs to Metarhizium anisopliae at Different Humidities.

    PubMed

    Ulrich, Kevin R; Feldlaufer, Mark F; Kramer, Matthew; St Leger, Raymond J

    2014-12-01

    Bed bugs Cimex lectularius L. were exposed to conidia (spores) of the entomopathogenic fungus Metarhizium anisopliae by feeding, aerosol spray, or contact with a treated surface. Feeding experiments demonstrated that bed bugs were innately susceptible to this fungus. However, only at 98% humidity were mortality rates high, regardless of whether bed bugs were sprayed with a fungal solution or contacted a treated surface. Mortality in treated bed bugs at ambient humidity did not increase when these bed bugs were kept in aggregation with other bed bugs that had recently blood fed to repletion. Based on these laboratory studies, we conclude that M. anisopliae is a poor pathogen for use in control of bed bugs, particularly at humidities that would likely be encountered under field conditions. PMID:26470085

  17. Altered Immunity in Crowded Locust Reduced Fungal (Metarhizium anisopliae) Pathogenesis

    PubMed Central

    Wang, Yundan; Yang, Pengcheng; Cui, Feng; Kang, Le

    2013-01-01

    The stress of living conditions, similar to infections, alters animal immunity. High population density is empirically considered to induce prophylactic immunity to reduce the infection risk, which was challenged by a model of low connectivity between infectious and susceptible individuals in crowded animals. The migratory locust, which exhibits polyphenism through gregarious and solitary phases in response to population density and displays different resistance to fungal biopesticide (Metarhizium anisopliae), was used to observe the prophylactic immunity of crowded animals. We applied an RNA-sequencing assay to investigate differential expression in fat body samples of gregarious and solitary locusts before and after infection. Solitary locusts devoted at least twice the number of genes for combating M. anisopliae infection than gregarious locusts. The transcription of immune molecules such as pattern recognition proteins, protease inhibitors, and anti-oxidation proteins, was increased in prophylactic immunity of gregarious locusts. The differentially expressed transcripts reducing gregarious locust susceptibility to M. anisopliae were confirmed at the transcriptional and translational level. Further investigation revealed that locust GNBP3 was susceptible to proteolysis while GNBP1, induced by M. anisopliae infection, resisted proteolysis. Silencing of gnbp3 by RNAi significantly shortened the life span of gregarious locusts but not solitary locusts. By contrast, gnbp1 silencing did not affect the life span of both gregarious and solitary locusts after M. anisopliae infection. Thus, the GNBP3-dependent immune responses were involved in the phenotypic resistance of gregarious locusts to fungal infection, but were redundant in solitary locusts. Our results indicated that gregarious locusts prophylactically activated upstream modulators of immune cascades rather than downstream effectors, preferring to quarantine rather than eliminate pathogens to conserve energy

  18. Impact of Fungicides on Metarhizium anisopliae in the Rhizosphere, Bulk Soil and In Vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The entomopathogenic fungus Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae) is registered in the United States and the Netherlands for black vine weevil, Otiorhynchus sulcatus (Coleoptera: Curculionidae) control in container-grown ornamentals. These studies were conducte...

  19. Differential allergy responses to Metarhizium anisopliae fungal component extracts in BALB/c mice

    EPA Science Inventory

    Intratracheal aspiration (IA) exposure to Metarhizium anisopliae crude antigen (MACA), which is composed of equal protein amounts of mycelium (MYC), conidia (CON) and inducible proteases/chitinases (IND) extracts/filtrates, has resulted in responses characteristic of human allerg...

  20. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae were investigated to determine if endophytic colonization could be achieved in cassava. An inoculation method based on drenching the soil around cassava stems using conidial suspensions resulted in endophytic colonization of ca...

  1. Pathogenicity of entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) to Ixodes scapularis (Acari: Ixodidae)

    USGS Publications Warehouse

    Zhioua, E.; Browning, M.; Johnson, P.W.; Ginsberg, H.S.; LeBrun, R.A.

    1997-01-01

    The entomopathogenic fungus Metarhizium anisopliae is highly pathogenic to the black-legged tick, Ixodes scapularis. Spore concentrations of 108/ml for engorged larvae and 107/ml for engorged females resulted in 100% tick mortality, 2 wk post-infection. The LC50 value for engorged larvae (concentration to kill 50% of ticks) was 107 spores/ml. Metarhizium anisopliae shows considerable potential as a microbial control agent for the management of Ixodes scapularis.

  2. Cuticle Fatty Acid Composition and Differential Susceptibility of Three Species of Cockroaches to the Entomopathogenic Fungi Metarhizium anisopliae (Ascomycota, Hypocreales).

    PubMed

    Gutierrez, Alejandra C; Gołębiowski, Marek; Pennisi, Mariana; Peterson, Graciela; García, Juan J; Manfrino, Romina G; López Lastra, Claudia C

    2015-04-01

    Differences in free fatty acids (FFAs) chemical composition of insects may be responsible for susceptibility or resistance to fungal infection. Determination of FFAs found in cuticular lipids can effectively contribute to the knowledge concerning insect defense mechanisms. In this study, we have evaluated the susceptibility of three species of cockroaches to the entomopathogenic fungi Metarhizium anisopliae (Metschnikoff) Sorokin by topical application. Mortality due to M. anisopliae was highly significant on adults and nymphs of Blattella germanica L. (Blattodea: Blattellidae). However, mortality was faster in adults than in nymphs. Adults of Blatta orientalis L. (Blattodea: Blattidae) were not susceptible to the fungus, and nymphs of Blaptica dubia Serville (Blattodea: Blaberidae) were more susceptible to the fungus than adults. The composition of cuticular FFAs in the three species of cockroaches was also studied. The analysis indicated that all of the fatty acids were mostly straight-chain, long-chain, saturated or unsaturated. Cuticular lipids of three species of cockroaches contained 19 FFAs, ranging from C14:0 to C24:0. The predominant fatty acids found in the three studied species of cockroaches were oleic, linoleic, palmitic, and stearic acid. Only in adults of Bl. orientalis, myristoleic acid, γ-linolenic acid, arachidic acid, dihomolinoleic acid, and behenic acid were identified. Lignoceric acid was detected only in nymphs of Bl. orientalis. Heneicosylic acid and docosahexaenoic acid were identified in adults of Ba. dubia. PMID:26470187

  3. Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites.

    PubMed

    Hussain, A; Ahmed, S; Shahid, M

    2011-01-01

    The efficacy of the Metarhizium anisopliae strain ARSEF 6911 was determined in the laboratory and field against two sugarcane pests, Microtermes obesi Holmgren and Odontotermes obesus Rambur (Termitidae: Isoptera). The susceptibility of both termite species to different conidial suspensions (1 × 10(10), 1 × 10(8), 1 × 10(6) and 1 × 10(4) conidia/ml) was determined in laboratory. All conidial suspensions were able to induce mortality. Termite mortality caused by the fungal suspensions was dose dependent. There were no significant differences in the LT50 values between species. Field evaluation of M. anisopliae alone or in combination with diesel oil and thiamethoxam was carried out in two growing seasons (autumn 2005 and spring 2006) at two sites located in Punjab, Pakistan. Dipping the sugarcane setts in these suspensions was tried to determine their effects on germination and percentage of bud damage to sugarcane setts. All treatments significantly reduced termite infestation compared to the untreated control. The combined treatment of M. anisopliae and diesel oil significantly reduced insect damage by attaining higher germination > 55% and lower bud damage < 5.50% at both sites in both seasons. The results suggest that the application of M. anisopliae and diesel oil in combination might be a useful treatment option for the management of termites in sugarcane. PMID:21584407

  4. Production of microsclerotia of the entomopathogenic fungus Metarhizium anisopliae in liquid culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study was the development of a liquid culture method for producing stable, infective propagules of the entomopathogenic fungus Metarhizium anisopliae for control of soil-dwelling insect pests. Three strains of M. anisopliae, F52, TM109, and MA1200, were evaluated using aerated, liq...

  5. Production of Microsclerotia of Metarhizium anisopliae Using Deep-Tank Liquid Fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The entomopathogenic fungus Metarhizium anisopliae is a pathogen of numerous soil-dwelling insects and has been registered in the United States and other countries as a bioinsecticide. Recent studies using various strains of M. anisopliae showed that small sclerotia (microsclerotia) were produced i...

  6. ASSESSMENT OF A CRUDE FUNGAL (METARHIZIUM ANISOPLIAE) EXTRACT AND IT'S COMPONENTS FOR ALLERGENICITY

    EPA Science Inventory

    ASSESSMENT OF A CRUDE FUNGAL (METARHIZIUM ANISOPLIAE) EXTRACT AND IT'S COMPONENTS FOR ALLERGENICITY. M D W Ward1, M E Viana2, L B Copeland1, and MJ K Selgrade1. 1US EPA, ORD, NHEERL, RTP, NC, USA. 2NCSU, College of Veterinary Medicine, Raleigh, NC, USA.
    Metarhizium anisopli...

  7. Reduction in fitness of female Asian longhorned beetle (Anoplophora glabripennis) infected with Metarhizium anisopliae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassays were conducted to document the effects of Metarhizium anisopliae infection of adult female Anoplophora glabripennis on reproduction before female death and subsequent survival of offspring. The effect of infection on fecundity was evaluated for both newly eclosed females and females alread...

  8. THE PESTICIDE METARHIZIUM ANISOPLIAE HAS AN ADJUVANT EFFECT ON THE ALLERGIC RESPONSE TO OVALBUMIN IN MICE

    EPA Science Inventory

    Metarhizium anisopliae is a parasitic fungus employed as a biological control agent against vermin and used in the US for indoor control of cockroaches. Sensitization to cockroach allergens is associated with development of asthma. This pesticide is non-pathogenic for humans and ...

  9. THE IDENTIFICATION AND CHARACTERIZATION OF AN IGE-INDUCING PROTEIN IN METARHIZIUM ANISOPLIAE EXTRACT

    EPA Science Inventory

    The Identification and Characterization of an IgE-Inducing Protein in Metarhizium anisopliae Extract

    Marsha D.W. Ward1, Lisa B. Copeland1, Maura J. Donahue2, and Jody A. Shoemaker3
    1ORD, NHEERL, US EPA, RTP, NC; 2Oak Ridge Institute for Science and Education, Cincinnati...

  10. Promise versus performance: Working toward the use of Metarhizium anisopliae as a biological control for wireworms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Canadian isolate of Metarhizium anisopliae has shown promise as a biological control for wireworms based on repeated success in laboratory and greenhouse studies but field efficacy has been inconsistent. Laboratory experiments designed to explain these mixed results have pointed to certain biotic...

  11. Challenges in Using Metarhizium anisopliae for Biocontrol of Sugarbeet Root Maggot, Tetanops myopaeformis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metarhizium anisopliae is under development as a microbial pest control agent of the Ulidiid fly, Tetanops myopaeformis (Sugarbeet Root Maggot), the most serious sugar beet pest in the United States. The fungus can be deployed by several means to create a “minefield” of infectious spores in the habi...

  12. Soil Persistence of Metarhizium anisopliae Applied to Manage Sugarbeet Root Maggot in a Cover Crop Microenvironment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarbeet root maggot, Tetanops myopaeformis (Röder), is a major insect pest of sugarbeet, Beta vulgaris L., in North Dakota, Minnesota, and Idaho. Three field trials using the insect pathogen Metarhizium anisopliae (Metch.) Sorok. ATCC 62176 in conjunction with cover crops were conducted in 200...

  13. Metarhizium anisopliae for controlling Rhipicephalus microplus ticks under field conditions.

    PubMed

    Camargo, Mariana G; Nogueira, Michel R S; Marciano, Allan F; Perinotto, Wendell M S; Coutinho-Rodrigues, Caio J B; Scott, Fábio B; Angelo, Isabele C; Prata, Márcia C A; Bittencourt, Vânia R E P

    2016-06-15

    Metarril SP Organic is a product based on the fungus Metarhizium anisopliae, which was developed for controlling agricultural pests. The present study evaluated the effect of Metarril SP Organic plus 10% mineral oil, for controlling Rhipicephalus microplus under field conditions. Three groups were formed: Control group, which received no treatment; Oil control group, which was bathed only with water, Tween 80 and mineral oil; and Metarril group, bathed in the oil-based formulation Metarril SP Organic. Two treatments per group were performed and to verify the effect of the treatments, all R. microplus ticks between 4.5 and 8.0mm in length on the left side of the cattle were counted on days +7, +14 and +21 after each treatment, and a sample of engorged females was collected for evaluation of biological parameters. The Metarril SP Organic oil formulation showed efficacy ranging from 8.53 to 90.53%. The average efficacy of the oil-based formulation of Metarril SP Organic was 75.09 and 46.59% compared with the groups Control and Oil control, respectively. There were no significant changes in biological parameters of engorged R. microplus females collected from animals. Although there was no significant difference in the amount of ticks between the Oil control and Metarril groups, it is believed that the association of mineral oil with Metarril SP Organic product is effective in R. microplus tick control in field. Thus, this association has potential to be used in strategic control programs of cattle tick. PMID:27198775

  14. Evaluation of Metarhizium anisopliae, Beauveria bassiana and Paecilomyces fumosoroseus as entomopathogens of the cactus moth, Cactoblastis cactorum (Lepidoptera:Pyralidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal pathogens Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae), Paecilomyces fumosoroseus (Wize) Brown & Smith (Deuteromycotina: Hyphomycetes), and Beauveria bassiana (Bals.-Criv.) Vuill. (Hypocreales: Clavicipitaceae) were evaluated as potential biological control ...

  15. THE FUNGAL BIOPESTICIDE METARHIZIUM ANISOPLIAE HAS AN ADJUVANT EFFECT ON THE ALLERGIC RESPONSE TO OVALBUMIN IN MICE

    EPA Science Inventory

    Background: Sensitisation to cockroaches is associated with asthma and hence, the elimination of this vermin is of interest. Metarhizium anisopliae is a parasitic fungus used as a pesticide to control cockroach infestation indoors. Previously M. anisopliae has been shown to cause...

  16. Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

    PubMed Central

    Shang, Yanfang; Duan, Zhibing; Hu, Xiao; Xie, Xue-Qin; Zhou, Gang; Peng, Guoxiong; Luo, Zhibing; Huang, Wei; Wang, Bing; Fang, Weiguo; Wang, Sibao; Zhong, Yi; Ma, Li-Jun; St. Leger, Raymond J.; Zhao, Guo-Ping; Pei, Yan; Feng, Ming-Guang; Xia, Yuxian; Wang, Chengshu

    2011-01-01

    Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains

  17. Conidia of the insect pathogenic fungus, Metarhizium anisopliae, fail to adhere to mosquito larval cuticle

    PubMed Central

    Greenfield, Bethany P. J.; Lord, Alex M.; Dudley, Ed; Butt, Tariq M.

    2014-01-01

    Adhesion of conidia of the insect pathogenic fungus, Metarhizium anisopliae, to the arthropod host cuticle initially involves hydrophobic forces followed by consolidation facilitated by the action of extracellular enzymes and secretion of mucilage. Gene expression analysis and atomic force microscopy were used to directly quantify recognition and adhesion between single conidia of M. anisopliae and the cuticle of the aquatic larval stage of Aedes aegypti and a representative terrestrial host, Tenebrio molitor. Gene expression data indicated recognition by the pathogen of both hosts; however, the forces for adhesion to the mosquito were approximately five times lower than those observed for Tenebrio. Although weak forces were recorded in response to Aedes, Metarhizium was unable to consolidate firm attachment. An analysis of the cuticular composition revealed an absence of long-chain hydrocarbons in Aedes larvae which are thought to be required for fungal development on host cuticle. This study provides, to our knowledge, the first evidence that Metarhizium does not form firm attachment to Ae. aegypti larvae in situ, therefore preventing the normal route of invasion and pathogenesis from occuring. PMID:26064542

  18. Metarhizium anisopliae infection alters feeding and trophallactic behavior in the ant Solenopsis invicta.

    PubMed

    Qiu, Hua-Long; Lu, Li-Hua; Zalucki, M P; He, Yu-Rong

    2016-07-01

    In social insects, social behavior may be changed in a way that preventing the spread of pathogens. We infected workers of the ant Solenopsis invicta with an entomopathogenic fungus Metarhizium anisopliae and then videotaped and/or measured worker feeding and trophallactic behavior. Results showed that fungal infected S. invicta enhanced their preference for bitter alkaloid chemical quinine on 3days after inoculation, which might be self-medication of S. invicta by ingesting more alkaloid substances in response to pathogenic infection. Furthermore, infected ants devoted more time to trophallactic behavior with their nestmates on 3days post inoculation, in return receiving more food. Increased interactions between exposed ants and their naive nestmates suggest the existence of social immunity in S. invicta. Overall, our study indicates that S. invicta may use behavioral defenses such as self-medication and social immunity in response to a M. anisopliae infection. PMID:27234423

  19. Laboratory evaluation of Beauveria bassiana and Metarhizium anisopliae in the control of Haemaphysalis qinghaiensis in China.

    PubMed

    Ren, Qiaoyun; Chen, Ze; Luo, Jin; Liu, Guangyuan; Guan, Guiquan; Liu, Zhijie; Liu, Aihong; Li, Youquan; Niu, Qingli; Liu, Junlong; Yang, Jifei; Han, Xueqing; Yin, Hong; Luo, Jianxun

    2016-06-01

    Haemaphysalis qinghaiensis, a prevalent tick species in China, is an ectoparasite that preferentially infests small ruminants and can transmit Theileria sp. and Babesia sp. In this study, we evaluated the pathogenicity of individual and mixed infections of the fungi Beauveria bassiana and Metarhizium anisopliae to H. qinghaiensis nymphs. The estimated LC50 for ticks immersed in solutions of B. bassiana, M. anisopliae and a mixture thereof were: 5.88056 × 10(4), 2.65 × 10(4), and 2.85 × 10(4) conidia mL(-1) respectively, and the nymphal mortality ranged from 52 to 100 %. Thus, these results suggest a potential approach for the biocontrol of H. qinghaiensis. PMID:27071674

  20. Flexible metabolism in Metarhizium anisopliae and Beauveria bassiana: role of the glyoxylate cycle during insect pathogenesis.

    PubMed

    Padilla-Guerrero, Israel Enrique; Barelli, Larissa; González-Hernández, Gloria Angélica; Torres-Guzmán, Juan Carlos; Bidochka, Michael J

    2011-01-01

    Insect pathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have an increasing role in the control of agricultural insect pests and vectors of human diseases. Many of the virulence factors are well studied but less is known of the metabolism of these fungi during the course of insect infection or saprobic growth. Here, we assessed enzyme activity and gene expression in the central carbon metabolic pathway, including isocitrate dehydrogenase, aconitase, citrate synthase, malate synthase (MLS) and isocitrate lyase (ICL), with particular attention to the glyoxylate cycle when M. anisopliae and B. bassiana were grown under various conditions. We observed that ICL and MLS, glyoxylate cycle intermediates, were upregulated during growth on 2-carbon compounds (acetate and ethanol) as well as in insect haemolymph. We fused the promoter of the M. anisopliae ICL gene (Ma-icl) to a marker gene (mCherry) and showed that Ma-icl was upregulated when M. anisopliae was grown in the presence of acetate. Furthermore, Ma-icl was upregulated when fungi were engulfed by insect haemocytes as well as during appressorium formation. Addition of the ICL inhibitor 3-nitroproprionate delayed conidial germination and inhibited appressorium formation. These results show that these insect pathogenic fungi have a flexible metabolism that includes the glyoxylate cycle as an integral part of germination, pathogenesis and saprobic growth. PMID:20929953

  1. Effect of temperature on vegetative growth among isolates of Metarhizium anisopliae and M. flavoviride.

    PubMed

    Ouedraogo, A; Fargues, J; Goettel, M S; Lomer, C J

    1997-01-01

    Effects of temperature on vegetative growth on a semi-synthetic medium of 22 isolates of Metarhizium anisopliae and 14 isolates of M. flavoviride were determined. The majority of isolates of both species grew between 11 and 32 degrees C; several isolates grew at 8 and 37 degrees C. None of the isolates grew at 40 degrees C. Relative growth rate, calculated from the maximum growth rate for each isolate, was significantly affected by temperature and isolate, with significant isolate * temperature interactions. The maximum absolute growth rates among the isolates ranged from 2.5 mm to 5.9 mm/day. Optimal temperatures were generally between 25 and 32 degrees C with several isolates exhibiting optimal growth at temperatures as high as 32 degrees C. Overall, relative growth rates were greater in isolates of M. anisopliae than M. flavoviride at temperatures of 25 degrees C or lower; conversely mean relative growth rates were greater in M. flavoviride than M. anisopliae at temperatures higher than 25 degrees C. However, the two most cold tolerant isolates at 8 degrees C were M. flavoviride and the three most heat tolerant at 35 degrees C were M. anisopliae. Since temperature growth responses varied considerably between isolates, strain selection according to thermal tolerance may be warranted when choosing a strain for development as a microbial control agent. PMID:16284806

  2. Comparative studies of Metarhizium anisopliae and Tolypocladium cylindrosporum as pathogens of mosquito larvae.

    PubMed

    Riba, G; Keita, A; Soares, G G; Ferron, P

    1986-12-01

    Mosquito fungal pathogens, Metarhizium anisopliae and Tolypocladium cylindrosporum, were compared with regard to virulence against the larvae of Aedes aegypti, Anopheles stephensi and Culex pipiens. Culex pipiens larvae were much more susceptible to M. anisopliae conidia than An. stephensi or Ae. aegypti. But Ae. aegypti and Cx. pipiens larvae were equally susceptible to T. cylindrosporum propagules which weakly attack An. stephensi. Using a high concentration conidial suspension (10(7) sp/ml) of M. anisopliae no. 139, Ae. aegypti larvae were killed immediately within 1.1 days, before intrahemocoelian invasion; but at lower concentrations (10(6) and 10(5) sp/ml), typical mycosis occurred. However, T. cylindrosporum no. 3 blastospores were much more pathogenic to Ae. aegypti larvae than conidia. Conidial suspension of 10(7) spores/ml killed 68% fourth-instar larvae, relative to the 96% invaded by blastospores under the same conditions. Presoaked conidia virulence appeared still intermediate between conidia and blastospores. At low temperatures, 15 degrees C, virulence of M. anisopliae highly decreased, while at the same temperature, T. cylindrosporum blastospores were still virulent. PMID:2906985

  3. Unveiling chemical defense in the rice stalk stink bug against the entomopathogenic fungus Metarhizium anisopliae.

    PubMed

    da Silva, Rodrigo Alves; Quintela, Eliane Dias; Mascarin, Gabriel Moura; Pedrini, Nicolás; Lião, Luciano Moraes; Ferri, Pedro Henrique

    2015-05-01

    Eggs, nymphs (1st-5th instar) and adults of Tibraca limbativentris were challenged by conidial suspensions of its major fungal pathogen Metarhizium anisopliae in order to assess their susceptibility. The role of chemical defensive compounds from exocrine secretions produced by both nymphs and adults were examined for their participation on M. anisopliae infection. Although insect susceptibility to M. anisopliae followed a dose-dependent manner, adults followed by older nymphs displayed the highest resistance. Eggs were highly susceptible showing >96% fungal infection. Crude extracts isolated from metathoracic scent gland and dorsal abdominal glands of adults and nymphs, respectively, showed fungistatic effects by impairing spore germination, vegetative growth and sporulation. Gas chromatography-mass spectrometry analysis of these extracts revealed that the major components were short-chain hydrocarbons (C10-13) and unsaturated aldehydes. In vitro tests with the corresponding synthetic standards indicated compounds with greater antifungal activity including (E)-2-hexenal, (E)-2-octenal, and (E)-2-decenal, with the latter being the most deleterious to fungal fitness. We demonstrated that differential susceptibility of the rice stalk stink bug to M. anisopliae infection is age-specific and partly mediated by fungistatic properties of aldehydes, which are produced by scent glands of both nymphs and adults. PMID:25805519

  4. Metarhizium anisopliae pathogenesis of mosquito larvae: a verdict of accidental death.

    PubMed

    Butt, Tariq M; Greenfield, Bethany P J; Greig, Carolyn; Maffeis, Thierry G G; Taylor, James W D; Piasecka, Justyna; Dudley, Ed; Abdulla, Ahmed; Dubovskiy, Ivan M; Garrido-Jurado, Inmaculada; Quesada-Moraga, Enrique; Penny, Mark W; Eastwood, Daniel C

    2013-01-01

    Metarhizium anisopliae, a fungal pathogen of terrestrial arthropods, kills the aquatic larvae of Aedes aegypti, the vector of dengue and yellow fever. The fungus kills without adhering to the host cuticle. Ingested conidia also fail to germinate and are expelled in fecal pellets. This study investigates the mechanism by which this fungus adapted to terrestrial hosts kills aquatic mosquito larvae. Genes associated with the M. anisopliae early pathogenic response (proteinases Pr1 and Pr2, and adhesins, Mad1 and Mad2) are upregulated in the presence of larvae, but the established infection process observed in terrestrial hosts does not progress and insecticidal destruxins were not detected. Protease inhibitors reduce larval mortality indicating the importance of proteases in the host interaction. The Ae. aegypti immune response to M. anisopliae appears limited, whilst the oxidative stress response gene encoding for thiol peroxidase is upregulated. Cecropin and Hsp70 genes are downregulated as larval death occurs, and insect mortality appears to be linked to autolysis through caspase activity regulated by Hsp70 and inhibited, in infected larvae, by protease inhibitors. Evidence is presented that a traditional host-pathogen response does not occur as the species have not evolved to interact. M. anisopliae retains pre-formed pathogenic determinants which mediate host mortality, but unlike true aquatic fungal pathogens, does not recognise and colonise the larval host. PMID:24349111

  5. Metarhizium anisopliae Pathogenesis of Mosquito Larvae: A Verdict of Accidental Death

    PubMed Central

    Butt, Tariq M.; Greenfield, Bethany P. J.; Greig, Carolyn; Maffeis, Thierry G. G.; Taylor, James W. D.; Piasecka, Justyna; Dudley, Ed; Abdulla, Ahmed; Dubovskiy, Ivan M.; Garrido-Jurado, Inmaculada; Quesada-Moraga, Enrique; Penny, Mark W.; Eastwood, Daniel C.

    2013-01-01

    Metarhizium anisopliae, a fungal pathogen of terrestrial arthropods, kills the aquatic larvae of Aedes aegypti, the vector of dengue and yellow fever. The fungus kills without adhering to the host cuticle. Ingested conidia also fail to germinate and are expelled in fecal pellets. This study investigates the mechanism by which this fungus adapted to terrestrial hosts kills aquatic mosquito larvae. Genes associated with the M. anisopliae early pathogenic response (proteinases Pr1 and Pr2, and adhesins, Mad1 and Mad2) are upregulated in the presence of larvae, but the established infection process observed in terrestrial hosts does not progress and insecticidal destruxins were not detected. Protease inhibitors reduce larval mortality indicating the importance of proteases in the host interaction. The Ae. aegypti immune response to M. anisopliae appears limited, whilst the oxidative stress response gene encoding for thiol peroxidase is upregulated. Cecropin and Hsp70 genes are downregulated as larval death occurs, and insect mortality appears to be linked to autolysis through caspase activity regulated by Hsp70 and inhibited, in infected larvae, by protease inhibitors. Evidence is presented that a traditional host-pathogen response does not occur as the species have not evolved to interact. M. anisopliae retains pre-formed pathogenic determinants which mediate host mortality, but unlike true aquatic fungal pathogens, does not recognise and colonise the larval host. PMID:24349111

  6. Virulence of Entomopathogenic Fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the Microbial Control of Spodoptera exigua

    PubMed Central

    Han, Ji Hee; Jin, Byung Rae; Lee, Sang Yeob

    2014-01-01

    The beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) is difficult to control using chemical insecticides because of the development of insecticide resistance. Several pest control agents are used to control the beet armyworm. Entomopathogenic fungi are one of the candidates for eco-friendly pest control instead of chemical control agents. In this study, among various entomopathogenic fungal strains isolated from soil two isolates were selected as high virulence pathogens against larva of beet armyworm. Control efficacy of fungal conidia was influenced by conidia concentration, temperature, and relative humidity (RH). The isolates Metarhizium anisopliae FT83 showed 100% cumulative mortality against second instar larvae of S. exigua 3 days after treatment at 1 × 107 conidia/mL and Paecilomyces fumosoroseus FG340 caused 100% mortality 6 days after treatment at 1 × 104 conidia/mL. Both M. anisopliae FT83 and P. fumosoroseus FG340 effectively controlled the moth at 20~30℃. M. anisopliae FT83 was significantly affected mortality by RH: mortality was 86.7% at 85% RH and 13.4% at 45% RH. P. fumosoroseus FG340 showed high mortality as 90% at 45% RH and 100% at 75% RH 6 days after conidia treatments. These results suggest that P. fumosoroseus FG340 and M. anisopliae FT83 have high potential to develop as a biocontrol agent against the beet armyworm. PMID:25606011

  7. [Evaluation of the biological control potential of Metarhizium anisopliae toward Boophilus microplus in pen trials].

    PubMed

    Bahiense, Thiago C; Fernandes, Everton K K; Angelo, Isabele da C; Perinotto, Wendell M de S; Bittencourt, Vãnia R E P

    2007-01-01

    The aim of the present study was to evaluate the capacity of the fungus Metarhizium anisopliae to control Boophilus microplus tick in pen trials. Infested calves were held in individual pen and treated with fungus suspension through aspersion bath. The results were evaluated based on ticks' mortality rate for 28 days after treatment, and on the analysis of biology of tick's samples which were transferred to an incubation chamber. It was reported 33% of mortality during the total period analyzed, and the production of eggs and nutritional rates were decreased only for a short period after treatment. PMID:18373901

  8. Computed tomography of granulomatous pneumonia with oxalosis in an American alligator (Alligator mississippiensis) associated with Metarhizium anisopliae var anisopliae.

    PubMed

    Hall, Natalie H; Conley, Kenneth; Berry, Clifford; Farina, Lisa; Sigler, Lynne; Wellehan, James F X; Roehrl, Michael H A; Heard, Darryl

    2011-12-01

    An 18-yr-old, male, albino, American alligator (Alligator mississippiensis) was evaluated for decreased appetite and abnormal buoyancy. Computed tomography (CT) of the coelomic cavity showed multifocal mineral and soft tissue attenuating pulmonary masses consistent with pulmonary fungal granulomas. Additionally, multifocal areas of generalized, severe emphysema and pulmonary and pleural thickening were identified. The alligator was euthanized and necropsy revealed severe fungal pneumonia associated with oxalosis. Metarhizium anisopliae var. anisopliae was cultured from lung tissue and exhibited oxalate crystal formation in vitro. Crystals were identified as calcium oxalate monohydrate by X-ray powder defractometry. Fungal identification was based on morphology, including tissue sporulation, and DNA sequence analysis. This organism is typically thought of as an entomopathogen. Clinical signs of fungal pneumonia in nonavian reptiles are often inapparent until the disease is at an advanced stage, making antemortem diagnosis challenging. This case demonstrates the value of CT for pulmonary assessment and diagnosis of fungal pneumonia in the American alligator. Fungal infection with associated oxalosis should not be presumed to be aspergillosis. PMID:22204066

  9. Efficacy of Metarhizium anisopliae as a Curative Application for Black Vine Weevil (Otiorhynchus sulcatus) Infesting Container-Grown Nursery Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The black vine weevil (BVW), Otiorhynchus sulcatus (F.), is a serious pest of nursery crops. The fungus, Metarhizium anisopliae (F52), is registered by the US Environmental Protection Agency for BVW control. The objective of this study was to determine the efficacy of a curative drench application...

  10. Exposure of bed bugs to metarhizium anisopliae, and the effect of defensive secretions on fungal growth in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bed bugs Cimex lectularius were treated with conidia of the entomopathogenic fungus Metarhizium anisopliae by topical, spray, and contact exposure. One week post-exposure, inconsistent mortalities were observed, averaging 30% across all treatment groups and replicates. Microscopic examination of top...

  11. Laboratory mortality and mycosis of adult Curculio caryae (Coleoptera: Curculionidae) following application of Metarhizium anisopliae in the laboratory and field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pecan weevil, Curculio caryae, is a key pest of pecans. Our objective was to determine the potential of Metarhizium anisopliae to control emerging C. caryae adults. First, a laboratory test was conducted to compare four Beauveria bassiana strains (Bb GA2, BbLA3, BbMS1, and GHA) and three M. an...

  12. Cover crop and conidia delivery system impacts on soil persistence of Metarhizium anisopliae (Hypocreales:Clavicipitaceae) in sugarbeet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugarbeet root maggot, Tetanops myopaeformis (Röder), is a major North American pest of sugarbeet, Beta vulgaris L. Previous research suggests moderate field efficacy of the fungal entomopathogen Metarhizium anisopliae (Metch.) Sorok. against T. myopaeformis larvae. We conducted three-years of f...

  13. Diatomaceous earth and oil enhance effectiveness of Metarhizium anisopliae against Triatoma infestans.

    PubMed

    Luz, Christian; Rodrigues, Juscelino; Rocha, Luiz F N

    2012-04-01

    Entomopathogenic fungi, especially Metarhizium anisopliae, have potential for integrated control of peridomestic triatomine bugs. However, the high susceptibility of these vectors to fungal infection at elevated ambient humidities decreases in the comparatively dry conditions that often prevail in their microhabitats. A formulation adapted to this target pest that induces high and quick mortality can help to overcome these drawbacks. In the present study diatomaceous earth, which is used against pests of stored grains or as an additive to mycoinsecticides, delayed but did not reduce in vitro germination of M. anisopliae s.l. IP 46 conidia after >24h agitation without affecting viability, and did not hamper the survival of Triatoma infestans nymphs exposed to treated surfaces. The settling behavior of nymphs on a treated surface in choice tests depended on the concentration of diatomaceous earth and ambient light level. Conidia formulated with diatomaceous earth and a vegetable oil synergized the insecticidal effect of the fungus in nymphs, and quickly killed all treated insects, even at 75% relative humidity (LT(90) 8.3 days) where unformulated conidia caused only 25% mortality after a 25 days exposure. The improved performance of a combined oil and desiccant dust formulation of this Metarhizium isolate raises the likelihood for its successful mycoinsecticidal use for triatomine control and, apparently, against other domestic insect pests. PMID:22155570

  14. MALDI-TOF mass spectrometry applied to identifying species of insect-pathogenic fungi from the Metarhizium anisopliae complex.

    PubMed

    Lopes, Rogério Biaggioni; Faria, Marcos; Souza, Daniela Aguiar; Bloch, Carlos; Silva, Luciano P; Humber, Richard A

    2014-01-01

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has proven to be a powerful tool for taxonomic resolution of microorganisms. In this proof-of-concept study, we assessed the effectiveness of this technique to track the current gene sequence-based phylogenetic classification of species in the Metarhizium anisopliae complex. Initially the phylogenetic analysis of 5' strains by sequencing of the 59' end of the TEF-1α gene region revealed seven species within M. anisopliae sensu lato and two varieties outside this complex. Because initial studies on MS profiles from different cell types showed that mycelial fragments or conidia produced on nutrient-poor medium may yield too much background noise, all subsequent spectrometric analyses were performed with acidhydrolyzed conidia from 10-12 d old PDA cultures. The initial MALDI-TOF reference library included protein spectral profiles from nine taxonomically distinct, molecularly identified isolates sharing high genetic homology with the ex-type or ex-epitype isolates of these taxa in Metarhizium. A second reference library added one isolate each for M. anisopliae sensu stricto and M. robertsii. The second, larger reference library (including 11 taxa) allowed nearly perfect MALDI-TOF matching of DNA-based species identification for the 40 remaining isolates molecularly recognized as M. anisopliae sensu stricto (n = 19), M. robertsii (n = 6), M. majus (n = 3), M. lepidiotae (n = 1), M. acridum (n = 3), M. flavoviride var. pemphigi (n = 1), plus seven unidentified strains (six of them phylogenetically close to M. anisopliae sensu stricto and one outside the Metarhizium pingshaense-anisopliae-robertsii-brunneum clade). Due to the increasing frequency of phylogenetically (genomically) based taxonomic revisions of fungi, this approach is especially useful for culture collections, because once the protein profiles of Metarhizium isolates are obtained taxonomic updating of MALDI

  15. Optimization of compatible non-ionic surfactant for formulation development of hydrophobic conidia of entomopathogenic fungi, Beauveria bassiana (Hypocreales:Cordycipitaceae) and Metarhizium anisopliae Hypocreales:Clavicipita

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerial conidia, especially dried conidia of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae are hydrophobic, and therefore surfactants are needed for developing water-based formulations in laboratory studies, greenhouse bioassays, and field trials as well as commercial product ...

  16. The Impact of Culture Age, Aeration, and Agitation on the Production of Microsclerotia of the Entomopathogenic Fungus Metarhizium anisopliae Using 100-Liter Fermentors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsclerotia are desiccation-tolerant, compact hyphal aggregates produced by numerous fungi as overwintering structures. We recently discovered that the entomopathogenic fungus Metarhizium anisopliae produced microsclerotia during liquid culture fermentation. When air-dried microsclerotial granu...

  17. Effect of Infection by Beauveria bassiana and Metarhizium anisopliae on the Feeding of Uvarovistia zebra

    PubMed Central

    Mohammadbeigi, A.; Port, G.

    2015-01-01

    To identify the susceptibility of long-horned grasshoppers to entomopathogenic fungi, the effect of infection with the fungi Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae) and Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae) on food consumption by Uvarovistia zebra (Uvarov) (Orthoptera: Tettigoniidae) was investigated. Preliminary results showed that both fungi had a negative effect on food consumption of the insects. For both fungi a significant reduction of food consumption and faeces production by insects were observed between the highest spore concentration (5 × 106 spores/ml) and other treatments. Compared with control insects, the insects treated with 5 × 106 spores/ml of B. bassiana and M. anisopliae showed 60 and 63% reduction in mean food consumption/insect, respectively. The corrected cumulative percent mortality of the insects treated with the highest concentration of B. bassiana and M. anisopliae were 57.7 and 55.5%, respectively. This was the first account of these entomopathogenic fungi being used against a species from this family, therefore based on the results obtained from this research, it could be said that the fungi have pathogenicity effect on U. zebra as a long-horned grasshopper.

  18. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen).

    PubMed

    Jia, Miao; Cao, Guangchun; Li, Yibo; Tu, Xiongbing; Wang, Guangjun; Nong, Xiangqun; Whitman, Douglas W; Zhang, Zehua

    2016-01-01

    We challenged Locusta migratoria (Meyen) grasshoppers with simultaneous doses of both the insecticide chlorantraniliprole and the fungal pathogen, Metarhizium anisopliae. Our results showed synergistic and antagonistic effects on host mortality and enzyme activities. To elucidate the biochemical mechanisms that underlie detoxification and pathogen-immune responses in insects, we monitored the activities of 10 enzymes. After administration of insecticide and fungus, activities of glutathione-S-transferase (GST), general esterases (ESTs) and phenol oxidase (PO) decreased in the insect during the initial time period, whereas those of aryl acylamidase (AA) and chitinase (CHI) increased during the initial period and that of acetylcholinesterase (AChE) increased during a later time period. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased at a later time period post treatment. Interestingly, treatment with chlorantraniliprole and M. anisopliae relieved the convulsions that normally accompany M. anisopliae infection. We speculate that locust mortality increased as a result of synergism via a mechanism related to Ca(2+) disruption in the host. Our study illuminates the biochemical mechanisms involved in insect immunity to xenobiotics and pathogens as well as the mechanisms by which these factors disrupt host homeostasis and induce death. We expect this knowledge to lead to more effective pest control. PMID:27328936

  19. Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen)

    PubMed Central

    Jia, Miao; Cao, Guangchun; Li, Yibo; Tu, Xiongbing; Wang, Guangjun; Nong, Xiangqun; Whitman, Douglas W.; Zhang, Zehua

    2016-01-01

    We challenged Locusta migratoria (Meyen) grasshoppers with simultaneous doses of both the insecticide chlorantraniliprole and the fungal pathogen, Metarhizium anisopliae. Our results showed synergistic and antagonistic effects on host mortality and enzyme activities. To elucidate the biochemical mechanisms that underlie detoxification and pathogen-immune responses in insects, we monitored the activities of 10 enzymes. After administration of insecticide and fungus, activities of glutathione-S-transferase (GST), general esterases (ESTs) and phenol oxidase (PO) decreased in the insect during the initial time period, whereas those of aryl acylamidase (AA) and chitinase (CHI) increased during the initial period and that of acetylcholinesterase (AChE) increased during a later time period. Activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased at a later time period post treatment. Interestingly, treatment with chlorantraniliprole and M. anisopliae relieved the convulsions that normally accompany M. anisopliae infection. We speculate that locust mortality increased as a result of synergism via a mechanism related to Ca2+ disruption in the host. Our study illuminates the biochemical mechanisms involved in insect immunity to xenobiotics and pathogens as well as the mechanisms by which these factors disrupt host homeostasis and induce death. We expect this knowledge to lead to more effective pest control. PMID:27328936

  20. Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores.

    PubMed

    Wassermann, Marion; Selzer, Philipp; Steidle, Johannes L M; Mackenstedt, Ute

    2016-07-01

    The entomopathogenic fungus Metarhizium anisopliae is used as a biological pest control agent against various arthropod species, including ticks. However, the efficacy depends on tick species, tick stage and fungus strain. We studied the effect of M. anisopliae on engorged larvae and nymphs of Ixodes ricinus, the most abundant tick species in Europe, under laboratory and semi-field conditions. A significant reduction of engorged larvae and nymphs could be shown under laboratory as well as under semi-field conditions. Only 3.5% of the larvae treated in the lab and only 18.5% kept under semi-field conditions were able to develop into nymphs compared to the recovered nymphs of the control groups, which were regarded as 100%. Only 7.1% of nymphs were recovered as adult ticks after fungal treatment under semi-field conditions compared to the control (100%). The efficacy of blastospores of M. anisopliae against engorged larvae and nymphs of I. ricinus under semi-field conditions was demonstrated in this study, showing their high potential as a biological control agent of ticks. Further studies will have to investigate the effect of this agent against other stages of I. ricinus as well as other tick species before its value as a biological control agent against ticks can be fully assessed. PMID:27005430

  1. Mmc, a gene involved in microcycle conidiation of the entomopathogenic fungus Metarhizium anisopliae.

    PubMed

    Liu, Jing; Cao, Yueqing; Xia, Yuxian

    2010-10-01

    Microcycle conidiation is a survival mechanism for some fungi encountering unfavorable conditions, in which asexual spores germinate secondary spores directly without formation of mycelium. Here, we isolated a microcycle conidiation associated gene, Mmc, from Metarhizium anisopliae and obtained its full length of cDNA and DNA sequence. To clarify its roles in conidiation, we constructed an Mmc RNA interference (RNAi) vector with dual promoter system to knockdown Mmc transcript level, and then analyzed RNAi mutant phenotypes. On microcycle conidiation medium, the RNAi mutant performed normal conidiation instead of microcycle conidiation with significantly reduced growth speed and conidia yield of 5.29-fold and 3.18-fold lower, respectively, than that of the wild-type. Meanwhile, on normal conidiation medium, no significant difference was found in conidiation speed and total yield between the wild-type and RNAi mutant. These data demonstrated that the Mmc gene regulated microcycle conidiation but did not affect normal conidiation. In addition, results of heat treatment, UV-B radiation and bioassays of RNAi mutant indicated that Mmc was also involved in heat resistance but irrelevant to UV-B tolerance and virulence of M. anisopliae. This study helped understanding the regulation of sporulation of the entomopathogenic fungus M. anisopliae. PMID:20546749

  2. Beauveria bassiana and Metarhizium anisopliae endophytically colonize cassava roots following soil drench inoculation

    PubMed Central

    Greenfield, Melinda; Gómez-Jiménez, María I.; Ortiz, Viviana; Vega, Fernando E.; Kramer, Matthew; Parsa, Soroush

    2016-01-01

    We investigated the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae to determine if endophytic colonization could be achieved in cassava. An inoculation method based on drenching the soil around cassava stem cuttings using conidial suspensions resulted in endophytic colonization of cassava roots by both entomopathogens, though neither was found in the leaves or stems of the treated cassava plants. Both fungal entomopathogens were detected more often in the proximal end of the root than in the distal end. Colonization levels of B. bassiana were higher when plants were sampled at 7–9 days post-inoculation (84%) compared to 47–49 days post-inoculation (40%). In contrast, the colonization levels of M. anisopliae remained constant from 7–9 days post-inoculation (80%) to 47–49 days post-inoculation (80%), which suggests M. anisopliae is better able to persist in the soil, or as an endophyte in cassava roots over time. Differences in colonization success and plant growth were found among the fungal entomopathogen treatments. PMID:27103778

  3. [Bahaviour of Solenopsis invicta workers to protect pupae from infection by Metarhizium anisopliae].

    PubMed

    Qiu, Hua-Long; Lü, Li-Hua; Zhang, Chun-Yang; He, Yu-Rong

    2014-09-01

    Previous studies have focused on how ants deal with workers infected by pathogens but how pupae are protected from infection by fungi is not well understood. The behavioral mechanisms adopted by Solenopsis invicta (red imported fire ants, RIFA) adult workers to protect pupae against Metarhizium anisopliae infection were studied. We observed the behavioral changes of M. anisopliae infected adult workers in the brood chamber as well as the behavioral changes of healthy workers to fungus exposed pupae. The time of fungus infected workers spent in the pupal chamber reduced significantly from 103.4 s on the first day to 38.5 s on the third day. Moreover, the percentage of time spending on brood care in the pupal chamber reduced significantly from 13.6% on the first day to 3.5% on the third day. When pupae were infected by M. anisopliae, workers performed 5.3 times more grooming to fungus exposed pupae than controls, and the duration of each grooming bout to fungus exposed pupae was 5.2 times longer than controls. Grooming did remove many conidia on the surface of fungus exposed pupae. The mean numbers of conidia on the surface of pupae were 103.1, 51.6 and 31.3 when no workers, two workers and ten workers accompanied a pupa, respectively. The presence of workers resulted in a lower germination rate of conidia on the surface of pupae. The mean germination rates of conidia after 20 h of inoculation on the surface of pupae were 95.1%, 80.4% and 59.9%, in the treatments with no worker, two workers and ten workers respectively. There was a positive correlation between the emergence rate of pupae and the number of accompanying workers. RIFA protect their pupae from infection by M. anisopliae through social be- haviors which enable the sustainable development of their population. PMID:25757319

  4. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsclerotia (MS), overwintering structures produced by many plant pathogenic fungi, have not been described for Metarhizium anisopliae. Three strains of M. anisopliae – F52, TM109, and MA1200 – formed MS in shake flask cultures using media with varying carbon concentrations and carbon-to-nitroge...

  5. Field applications of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae F52 (Hypocreales: Clavicipitaceae) for the control of Ixodes scapularis (Acari: Ixodidae).

    PubMed

    Stafford, Kirby C; Allan, Sandra A

    2010-11-01

    Two commercial formulations of Beauveria bassiana (Balsamo-Crivelli) Vuillemin were applied to residential sites in Old Lyme, CT, for the control of nymphs of the blacklegged tick, Ixodes scapularis, in 1999 and 2000. The pyrethroid bifenthrin was applied to other premises for comparison with B. bassiana. A wood chip barrier was installed and maintained at six of the treated properties. In 1999, control of I. scapularis nymphs ranged from 74.5 to 83.0% on lawns without wood chips and from 88.9 to 90% on lawns with wood chip barriers. As a control check, no ticks (n = 23) collected at pretreatment or control sites died from B. bassiana, although 15 of 18 nymphs from treated lawns developed mycoses. Control of I. scapularis on the lawns in 2000 with the two B. bassiana products was lower, as follows: 38.0 and 58.7% without the barrier and 56.9 and 55.1% with the wood chip barrier. Posttreatment differences in nymphal numbers between treatments and control were significant (P = 0.005 and P = 0.039, 1999 and 2000, respectively). The bifenthrin provided 86 and 87% control each year, respectively. The application of Metarhizium anisopliae (Metschnikoff) Sorokin strain F52 to 9 residential sites in Westport and Weston, CT, in 2002 provided significant (P = 0.034; P = 0.039) reductions in nymphal tick abundance with 55.6 and 84.6% fewer ticks on lawn and woodland plots, respectively. These results suggest the application of entomopathogenic fungi could provide another approach for the control of I. scapularis nymphs in residential or similar landscapes. PMID:21175060

  6. Differentially-expressed glycoproteins in Locusta migratoria hemolymph infected with Metarhizium anisopliae.

    PubMed

    Wang, Chutao; Cao, Yueqing; Wang, Zhongkang; Yin, Youping; Peng, Guoxiong; Li, Zhenlun; Zhao, Hua; Xia, Yuxian

    2007-11-01

    Glycoproteins play important roles in insect physiology. Infection with pathogen always results in the differential expression of some glycoproteins, which may be involved in host-pathogen interactions. In this report, differentially-expressed glycoproteins from the hemolymph of locusts infected with Metarhizium anisopliae were analyzed by two-dimensional electrophoresis (2-DE) and PDQuest software. The results showed that 13 spots were differentially expressed, of which nine spots were upregulated and four were downregulated. Using MS/MS with de novo sequencing and NCBI database searches, three upregulated proteins were identified as locust transferrin, apolipoprotein precursor, and hexameric storage protein 3. These proteins have been reported to be involved in the insect innate immune response to microbial challenge. Due to the limited available genome information and protein sequences of locusts, the possible functions of the other 10 differentially-expressed spots remain unknown. PMID:17658547

  7. Biocontrol of pigeon tick Argas reflexus (Acari: Argasidae) by entomopathogenic fungus Metarhizium Anisopliae (Ascomycota: Hypocreales)

    PubMed Central

    Tavassoli, Mosa; Pourseyed, Seyed Hassan; Ownagh, Abdulghaffar; Bernousi, Iraj; Mardani, Karim

    2011-01-01

    The pigeon tick Argas reflexus is a pathogen-transmitting soft tick that typically feeds on pigeons, but can also attack humans causing local and systemic reactions. Chemical control is made difficult due to environmental contamination and resistance development. As a result, there is much interest in increasing the role of other strategies like biological control. In this study, the efficacy of three strains (V245, 685 and 715C) of entomopathogenic fungus Metarhizium anisopliae for biological control of three life stages of pigeon tick A. reflexus including eggs, larvae, engorged and unfed adults was investigated under laboratory conditions. Five concentrations of different strains of M. anisopliae ranging from 103 to 107 conidia/ml were used. All fungal strains significantly decreased hatchability of A. reflexus eggs. Strain V245 was the most effective strain on the mortality of larval stage with nearly 100% mortality at the lowest concentration (103 conidia/ml) at 10 days post-inoculation. The mortality rate of both engorged and unfed adult ticks were also increased significantly exposed to different conidial concentrations compared to the control groups (P < 0.05) making this fungus a potential biological control agent of pigeon tick reducing the use of chemical acaricides. PMID:24031777

  8. Safety and acquisition potential of Metarhizium anisopliae in entomovectoring with bumble bees, Bombus terrestris.

    PubMed

    Smagghe, Guy; De Meyer, Laurens; Meeus, Ivan; Mommaerts, Veerle

    2013-02-01

    In the context of integrated pest management with biological control and reduced pesticide use, dissemination of entomopathogenic fungi with insects has the potency to protect crops and specifically their flowers against pests and diseases. But before implementation of such entomovectoring system, a measurement of risks of the microbial biocontrol agent toward the vectoring insect is crucial. The essential contributions of this project are that 1) exposure of bumble bees, Bombus terrestris (L.) to powder containing 10(7) spores of the commercial biocontrol agent Metarhizium anisopliae strain F52 (Biol020) per gram, was safe; and 2) that when bumble bees had walked through this spore concentration (10(7) spores per gram) in a dispenser, their body carried 9.3 +/- 1 x 10(6) spores/bumble bee, and this was still 2.6 10(6) spores after a flight of 60 s, representing the average time to fly from the dispenser to the crop flowers. 3) In contrast, a 100-fold higher spore concentration (10(9) spores per gram powder) was highly toxic and the acquisition on the bumble bee body was only 2.5 times higher. Based on these data, future studies can start investigating the protection efficacy of this entomovector system with M. anisopliae and bumble bees without harming the vector and with a loading of the vector considered enough to obtain a good inoculation into and protection of the flowers. PMID:23448041

  9. Bioassay assessment of metarhizium anisopliae (metchnikoff) sorokin (deuteromycota: hyphomycetes) against Oncometopia facialis (signoret) (hemiptera: cicadellidae)

    PubMed Central

    Pria Júnior, Wolney Dalla; Lacava, Paulo Teixeira; Messias, Claudio Luiz; Azevedo, João Lúcio; Lacava, Pedro Magalhães

    2008-01-01

    Citrus Variegated Chlorosis (CVC) is an economically important, destructive disease in Brazil and is caused by Xylella fastidiosa and transmitted by sharpshooter insects. In this study, the efficacy of the fungus Metarhizium anisopliae in controlling the sharpshooter Oncometopia facialis was studied by bioassay conditions. In the bioassay, insects were sprayed with a suspension containing 5 X 107 conidia mL-1. Adults captured in the field were treated in groups of 10 in a total of 11 replications per treatment. Significant differences between the natural mortality and the mortality of insects treated with the fungus were observed 6 days after inoculations (P<0.05). These significant differences increased until 10 days after treatment. The fungus caused 87.1% mortality, with the LT50 varying from 5 to 6 days. The LC50 was 1.2 X 106 conidia mL-1, varying from 7.7 X 105 to 2 X 106 conidia mL-1. The results showed that the sharpshooter O. facialis was susceptible to the entomopathogenic action of M. anisopliae in controlled condition during bioassay. PMID:24031192

  10. Evaluation of Metarhizium anisopliae strain F52 (Hypocreales: Clavicipitaceae) for control of Ixodes scapularis (Acari: Ixodidae).

    PubMed

    Bharadwaj, Anuja; Stafford, Kirby C

    2010-09-01

    Field efficacy of an emulsifiable concentrate formulation of the entomopathogenic fungus Metarhizium anisopliae strain F52 for the control of Ixodes scapularis nymphs was evaluated at residential sites in northwestern Connecticut in 2007. Two spray applications with two rates, 3.2 x 10(5) and 1.3 x 10(6) spores/cm2, were made: the first on 8-9 May, 2-3 wk before nymphal activity, and the second on 29 June or 2 July when ticks were active. There was no significant difference in nymphal abundance between the three treatment groups (P = 0.490) after the first application, indicating that preseason or early applications are not effective, despite a bioasaay with yellow mealworms that showed spores in the treated areas was infective for at least 1 mo postapplication. By contrast, there was a significant difference in the number of nymphs collected between the treatments and control 3 wk (F = 16.928, df = 2, P < 0.001) and 5 wk (F = 6.627, df = 2, P = 0.002) after the second application. During the 3 wk after the second application, 87.1 and 96.1% fewer ticks were collected from lower and higher rate-treated sites, respectively, and after 5 wk, tick reductions were 53.2 and 73.8%, respectively. Over one- third (36.4% of 173) of the nymphs collected from the treated sites developed mycosis from M. anisopliae. The application of M. anisopliae strain F52 could provide another tool for the integrated approach to managing ticks in the residential landscape. PMID:20939382

  11. Inhibition of hepatitis B virus gene expression & replication by crude destruxins from Metarhizium anisopliae var. dcjhyium

    PubMed Central

    Dong, Cong; Yu, Jiuru; Zhu, Ying; Dong, Changjin

    2013-01-01

    Background & objectives: Destruxin A, destruxin B and destruxin E isolated from entomopathogenic fungus Metarhizium anisopliae showed a strong suppressive effect on the replication of hepatitis B virus (HBV) in human hepatoma cells. In this study, the anti-HBV effects of the crude destruxins extracted from M. anisopliae var. dcjhyium were detected both in vitro and in vivo. Methods: HepG2.2.15 cells were cultured to observe the inhibitory effects of the crude destruxins on the gene expression and replication of HBV by radioimmunoassay detection and real-time quantitative PCR. In vivo, duck HBV (DHBV)-infected ducks were treated with the crude destruxins at 2.0, 4.0, 6.0 μg/kg once a day for 15 days, DHBV DNA was examined by real-time quantitative PCR. Results: The crude destruxins suppressed the replication of HBV-DNA and the production of HBsAg and HBeAg with IC50 of about 1.2 and 1.4 μg/ml. Transcript of viral mRNA was significantly suppressed by the crude destruxins in HepG2.2.15 cells. In vivo, the duck serum DHBV-DNA levels were markedly reduced in the group of the crude destruxins. Interpretation & conclusions: The crude destruxins inhibited the gene expression and replication of HBV both in vitro and in vivo, and their anti-HBV effect was stronger than that with destruxin B. Our results indicate that the crude destruxins from M.anisopliae var. dcjhyium may be potential antivirus agents. Further studies need to be done to confirm these findings. PMID:24521644

  12. Effects of Metarhizium anisopliae conidia mixed with soil against the eggs of Aedes aegypti.

    PubMed

    Leles, Renan Nunes; D'Alessandro, Walmirton Bezerra; Luz, Christian

    2012-04-01

    The effectiveness of Metarhizium anisopliae IP 46 conidia mixed with soil was tested against Aedes aegypti eggs. Mycelium and new conidia developed first on eggs between 4.8 and 15 days respectively after incubation of fungus-treated soils at 3.3 × 10(3) up to 3.3 × 10(5) conidia/g soil at 25°C and relative humidities close to saturation. After 15-day incubation, 53.3% of the eggs exposed to soil with 3.3 × 10(5) conidia/g showed external development of mycelium and conidia. Fungus-inoculated soils (but not untreated controls) showed some mycelial growth and sporulation apart from the eggs. Some eggs on treated soils hatched; those larvae died and eventually showed fungal development on their bodies. The cumulative relative eclosion of larvae after submersion of treated eggs in water decreased from 52.2% at 3.3 × 10(3) conidia/g to 25.3% at 3.3 × 10(5) conidia/g. These findings clearly showed that A. aegypti eggs can be infected by M. anisopliae when deposited on fungus-contaminated soil. The effectiveness of M. anisopliae against gravid females, larvae, and also eggs of A. aegypti underscored the possible usefulness of this fungus as a mycoinsecticide, whether naturally occurring or artificially applied, in the breeding sites of this mosquito. PMID:21984368

  13. Spinosad interacts synergistically with the insect pathogen Metarhizium anisopliae against the exotic wireworms Agriotes lineatus and Agriotes obscurus (Coleoptera: Elateridae).

    PubMed

    Ericsson, Jerry D; Kabaluk, J Todd; Goettel, Mark S; Myers, Judith H

    2007-02-01

    We determined that spinosad interacts synergistically with the biocontrol agent Metarhizium anisopliae (Metch) Sorokin to increase the mortality of two wild-collected wireworm species, Agriotes lineatus (L.), and Agriotes obscurus (L.). Bioassays were performed using a M. anisopliae isolate originally acquired from a local wireworm cadaver. M. anisopliae was applied as a soil drench at 3.3 x 10(2) and 10(4) conidia per gram sand, respectively. Soil drenches also were prepared using a commercial formulation of the actinomycete toxins spinosyn-A and spinosyn-D (common name spinosad) at sublethal doses of 1.5, 3, and 6 ppm active ingredient per gram sand. Combined treatments of spinosad and M. anisopliae were synergistic in causing mortality for all spinosad concentrations. Wireworm feeding activity was reduced after exposure to both spinosad and M. anisopliae and was found to be concentration dependent. The high mortality and reduced rate of wireworm feeding suggest that spinosad and M. anisopliae treatment combinations should be tested in the field. PMID:17370806

  14. Conidial attachment of metarhizium anisopliae and beauveria bassiana to the larval cuticle of diaprepes abbreviatus (Coleoptera: curculionidae) treated with imidacloprid

    PubMed

    Quintela; McCoy

    1998-11-01

    A series of experiments was conducted to determine the effect of imidacloprid on the number of Metarhizium anisopliae and Beauveria bassiana conidia found on the cuticle of first instar Diaprepes abbreviatus following different treatments. Larvae treated with M. anisopliae conidia and imidacloprid by dipping removed significantly fewer conidia from their cuticle when in contact with soil or a food source compared with fungal-treated larvae alone. In addition, more M. anisopliae and B. bassiana conidia were found on the cuticle of larvae treated with imidacloprid while exposed to soil at 7 and 14% moisture resulting in higher larval mortality and mycosis. Conidial attachment to cuticles of untreated larvae was higher at <1% compared with 7 and 14% soil moistures. M. anisopliae conidia were distributed uniformly over the pleural membrane of the larval cuticle of both untreated and imidacloprid-treated larvae. However, fewer conidia were attached to specific sites such as setae and setal sockets of treated larvae. At 12 h after treatment, imidacloprid-treated larvae had fewer conidia removed from exposed cuticle, setae, and spiracles than did untreated larvae. Cuticular exposure to imidacloprid at doses >0.01% (AI) affected conidial attachment of M. anisopliae negatively. Conidial number decreased sevenfold at 0.1% (AI). Comparative data on the effect of imidacloprid formulation on conidial attachment showed that components of the inert ingredient were responsible for lower conidial attachment on larval cuticle at higher insecticidal doses. Copyright 1998 Academic Press. PMID:9784344

  15. Allergic responses to the biopesticide Metarhizium anisopliae in Balb/c mice.

    PubMed

    Ward, M D; Sailstad, D M; Selgrade, M K

    1998-10-01

    Metarhizium anisopliae is used as a microbial pesticide to control cockroaches and other insects. M. anisopliae has demonstrated neither infectivity nor toxicity in mammals. However, allergenicity has not been assessed. M. anisopliae is a prototype for other organisms released into the environment for pesticide or other beneficial applications. Hence this study is part of an effort to develop methods for screening such organisms for allergenic potential. Soluble factors from fungal components were combined in equal protein amounts to form a crude fungal antigen (MACA). Balb/c mice were intratracheally (IT) challenged with 25 micrograms fungal antigen 13 days post intraperitoneal sensitization with the fungal antigen in alhydrogel adjuvant. Additionally, mice were sensitized with adjuvant alone or chitin media in adjuvant as experimental controls. Serum and bronchoalveolar lavage fluid (BALF) were harvested prior to challenge and at 1 and 7 days post IT challenge (DPIT). These mice exhibited immune and pulmonary inflammatory responses to MACA characteristic of allergy. Total serum IgE for antigen-sensitized animals increased 7.6- and 14.7-fold over that for chitin media and adjuvant controls, respectively, at 7 DPIT. Less striking increases were seen at 24 DPIT and prior to challenge. BALF IL-4 was dramatically elevated only in MACA-sensitized and challenged mice and only at 1 DPIT. Additionally, there was a dose-dependent increase in BALF eosinophils from MACA-sensitized mice at both 1 and 7 DPIT. While lymphocyte counts were increased for all treatment groups at 1 DPIT, by 7 DPIT lymphocyte counts for MACA-sensitized mice only were significantly elevated compared to controls. Pulmonary inflammation, edema, and cell damage were apparent at 1 DPIT (25 micrograms MACA), as indicated by a neutrophilic influx and elevated levels of total protein and LDH, in both sensitized and control groups. These effects were significantly decreased, but not eliminated by reduction

  16. Allergen-triggered airway hyperresponsiveness and lung pathology in mice sensitized with the biopesticide Metarhizium anisopliae.

    PubMed

    Ward, M D; Madison, S L; Sailstad, D M; Gavett, S H; Selgrade, M K

    2000-02-21

    Metarhizium anisopliae is an entomopathogenic fungus recently licensed for indoor control of cockroaches, a major source of allergens. While M. anisopliae has been shown to be non-infectious and non-toxic to mammals there has been only limited research on potential allergenicity. Using a mouse model, we previously demonstrated allergic immune and inflammatory responses to this agent. The present study was designed to determine whether these responses were associated with changes in pulmonary responses, lung pathology, and the cytokine profile in bronchoalveolar lavage fluid (BALF). Soluble factors from fungal components were combined in equal protein amounts to form M. anisopliae crude antigen (MACA). BALB/C mice were intratracheally (i.t.) challenged with 10 microg MACA 14 days post intraperitoneal sensitization with 25 microg fungal antigen in aluminum hydroxide adjuvant. Physiological and cellular changes were examined. The mice were tested for airway hyperresponsiveness before (No Chal) and after (1, 3, and 8 days post challenge (DPIT)) MACA IT challenge. Subsequently, serum, BALF and the lungs were harvested. All treatment groups concurrently demonstrated significant non-specific pulmonary inflammation (neutrophil influx) and increased pulmonary sensitivity to methacholine (Mch) at 1 DPIT MACA challenge. Where as both adjuvant treated and naïve mice airway responses had returned to near normal levels by 3 DPIT, mice which were previously sensitized with MACA were still hyperresponsive to Mch challenge at 3 and 8 DPIT. This hyperresponsiveness correlates with eosinophil and lymphocyte influx, which is maximal at 3 DPIT and still elevated at 8 DPIT. Interleukin (IL) 5 was elevated for all treatment groups at 1 DPIT but only the MACA sensitized mice maintained elevated levels for both 3 and 8 DPIT. Furthermore, MACA sensitized mice had a more extensive inflammatory histopathology at all examined time points with peribronchial and perivascular infiltrates, like

  17. Molecular cloning, characterisation, and expression of a neutral trehalase from the insect pathogenic fungus Metarhizium anisopliae.

    PubMed

    Xia, Yuxian; Gao, Meiying; Clarkson, John; Charnley, A

    2002-06-01

    A neutral trehalase gene (NTH1) was isolated from a lambdaEMBL3 genomic library of the insect pathogenic fungus Metarhizium anisopliae. Sequencing of the gene revealed extensive homology with other fungal neutral trehalases. The NTH1 gene exists as a single copy in the genome. Two STREs exist in the 5'UTR of NTH1, which may mediate transcriptional activation of the NTH1 gene in response to various stresses. The NTH1 gene encodes a protein of 737 amino acids with a calculated M(r) of 83.1kDa. A cyclic adenosine 3',5'-monophosphate-dependent phosphorylation consensus site and a putative calcium binding site were found in the amino-terminal domain of NTH1, consistent with a regulatory enzyme. Expression of the trehalase cDNA was achieved in Saccharomyces cerevisiae. Southern blot analysis of RT-PCR products indicated that the neutral trehalase gene is transcribed in vitro in cell-free haemolymph of the tobacco hornworm Manduca sexta and in vivo in the early stage of infection. PMID:12383437

  18. Production of Conidia by the Fungus Metarhizium anisopliae Using Solid-State Fermentation.

    PubMed

    Loera-Corral, Octavio; Porcayo-Loza, Javier; Montesinos-Matias, Roberto; Favela-Torres, Ernesto

    2016-01-01

    This chapter describes the production of conidia by Metarhizium anisopliae using solid-state fermentation. Before production of conidia, procedures for strains conservation, reactivation, and propagation are essential in order to provide genetic stability of the strains. The strain is conserved in freeze-dried vials and then reactivated through insect inoculation. Rice is used as a substrate for the conidia production in two different bioreactors: plastic bags and tubular bioreactor. The CO2 production in the tubular bioreactors is measured with a respirometer; this system allows calculating indirect growth parameters as lag time (tlag) (25-35 h), maximum rate of CO2 production (rCO2 max) (0.5-0.7 mg/gdm h), specific rate of CO2 production (μ) (0.10-0.15 1/h), and final CO2 production (CO2) (100-120 mg/gdm). Conidial yield per gram of dry substrate (gdm) should be above 1 × 10(9) conidia/gdm after 10 days of incubation. Germination and viability of conidia obtained after 10 days of incubation should be above 80 % and 75 %, respectively. Bioassays using of Tenebrio molitor as a host insect should yield a final mortality above 80 %. PMID:27565492

  19. Optimization of different process variables for the production of an indolizidine alkaloid, swainsonine from Metarhizium anisopliae.

    PubMed

    Singh, Digar; Kaur, Gurvinder

    2012-10-01

    Swainsonine is a polyhydroxylated indolizidine alkaloid having anticancer, antimetastatic, antiproliferative and immunomodulatory activities and also potential therapeutic applications against AIDS. In the present study, ten isolates of M. anisopliae were screened and enzyme assayed for the production of swainsonine in different media (Complex oatmeal, Czapekdox media with and without lysine (8% w/v) and Sabouraud dextrose broth (SDB)). Among these strains, ARSEF 1724 (UM8) was found to produce highest amount of swainsonine (1.34 μg/l) after 72 h of incubation under shake flask conditions at 180 rpm and 28 °C in complex oatmeal media. In order to maximize the yield of swainsonine the media composition including macro and micronutrients were optimized. The process variables including the chemical factors like carbon sources, nitrogen sources of both organic and inorganic nature and pH with constant inoculum size (1 × 10(8) spores/ml) were screened using classical one-factor-at-a-time (OFAT) approach to find their optimum levels. The present study shows that the nutrient requirement is specific for each strain of Metarhizium. Oatmeal extract (6%) was found to be the best supporting media along with nitrogen source, glucose (2%) as best carbon source and pH (~5) as the best for swainsonine production. PMID:22144370

  20. Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates.

    PubMed

    Rangel, Drauzio E N; Braga, Gilberto U L; Flint, Stephan D; Anderson, Anne J; Roberts, Donald W

    2004-01-01

    Solar ultraviolet radiation (UV-A and UV-B) is a major factor in failure of programs using the insect pathogenic fungus Metarhizium anisopliae as a biological control agent. Studies were conducted to determine if growth conditions, viz. artificial (agar media or rice grain) or natural (infected insects) substrates for conidial production affect two traits that directly influence performance of conidia after field application: tolerance to UV-B radiation and conidial germination speed. Conidia of two isolates (ARSEF 23 and ARSEF 2575) of M. anisopliae var. anisopliae produced on potato dextrose agar plus yeast extract (PDAY) or on fungus-killed larvae of two insect species, Galleria mellonella and Zophobas morio, were inactivated by exposure to UV-B radiation. Conidia of both isolates when produced on insect cadavers were significantly more sensitive to UV-B radiation than conidia produced on PDAY. Also, conidia from insect cadavers germinated slower than those from PDAY cultures. A comparison of conidia from artificial substrates showed that conidia produced on Czapek's and Emerson's YpSs agar media or rice grains had higher tolerance to UV-B radiation and germinated faster than conidia raised on PDA and PDAY. Accordingly, the growth substrate and nutritional environment in which conidia are produced influences M. anisopliae conidial UV-B tolerance and speed of germination; and manipulation of these variables could be used to obtain conidia with increased tolerance to UV-B radiation and shorter germination times. PMID:15579316

  1. Comparison of respiratory responses to Metarhizium anisopliae extract using two different sensitization protocols.

    PubMed

    Ward, M D; Madison, S L; Andrews, D L; Sailstad, D M; Gavett, S H; Selgrade, M J

    2000-06-01

    Metarhizium anisopliae, an entomopathogenic fungus, is a prototypic microbial pesticide licensed for indoor control of cockroaches, a major source of allergens. We have previously demonstrated allergy and asthma-like responses in BALB/c mice intraperitoneally (IP) sensitized in the presence of adjuvant and intratracheally (IT) challenged with the soluble factors from M. anisopliae crude antigen (MACA) (Ward et al., 1998, 2000). This protocol has been used frequently to establish animal models of allergenicity. However, the sensitization protocol is artificial and not representative of an environmental exposure. Concern has been raised that this protocol might produce allergic responses that would not occur under normal environmental exposure conditions. The objective of this study was to compare responses in mice to MACA by two exposure protocols: (1) exclusive respiratory exposures without adjuvant (representative of environmental exposures) and (2) intraperitoneal sensitization in the presence of adjuvant followed by IT challenge (the traditional approach). The intratracheal protocol consisted of four IT exposures of 10 microg MACA in 50 microl HBSS each over a 4-week period. A vehicle control group of mice was exposed IT to HBSS. The intraperitoneal protocol consisted of IP sensitization with 25 microg MACA in 0.2 ml of 1.3% alhydrogel (aluminum hydroxide) followed 14 days later with an IT challenge (10 microg MACA/50 microl HBSS). Airway reactivity responsiveness to methacholine was assessed, serum and bronchoalveolar lavage fluid (BALF) samples were obtained, and the lungs were fixed for histopathology at 1, 3, and 8 days following the last MACA IT challenge. Both groups exhibited immune and pulmonary responses typical of allergic asthma. In general, local responses in the lung, including inflammatory responses (eosinophils, lymphocytes, and macrophages), BALF IgE, and functional responses to methacholine were greater in the IT sensitized group compared to the

  2. Differential allergy responses to Metarhizium anisopliae fungal component extracts in BALB/c mice.

    PubMed

    Ward, Marsha D W; Chung, Yong Joo; Haykal-Coates, Najwa; Copeland, Lisa B

    2009-03-01

    Intratracheal aspiration (IA) exposure to Metarhizium anisopliae crude antigen (MACA), which is composed of equal protein amounts of mycelium (MYC), conidia (CON) and inducible proteases/chitinases (IND) extracts/filtrates, has resulted in responses characteristic of human allergic asthma in mice. The study objective was to evaluate the potential of each component extract to induce allergic/asthma-like responses observed in this mouse model. BALB/c mice received 4 IA exposures to MACA, CON, MYC, IND, or bovine serum albumin (BSA; negative control) or appropriate vehicle control or inflammatory control over a 4-wk period. Mice were assessed by whole-body plethysmography for immediate airway responses and airway hyperresponsiveness to methacholine (Mch) challenge (PenH). Serum and bronchoalveolar lavage fluid (BALF) were collected 3 d after the final exposure. Additionally, BALF neurotrophin levels and extract protease and chitinase activity levels were evaluated. Western blot analysis showed that each component contained different IgE-reactive proteins. All fungal extract exposures resulted in elevated BALF total and differential cell counts, IgE and IgA and total serum IgE compared to HBSS and BSA controls. MYC-exposed mice had the highest responses except for neutrophil influx, which was highest in MACA and IND exposures. However, the MYC-exposed mice had significantly lower PenH values compared to other treatments. By comparison IND and MACA induced significantly higher PenH values. Additionally, IND had substantially higher protease activity levels but induced the lowest neurotrophin levels compared to the other fungal exposures. In this allergic asthma model extract chitinase activity was not associated with allergic responses. In summary, multiple exposures to any of the M. anisopliae component extracts induced allergic/asthma-like responses in BALB/c mice but the response magnitude was different for each component and each appears to contain unique Ig

  3. Inhibition of the entomopathogenic fungus Metarhizium anisopliae in vitro by the bed bug defensive secretions (E)-2-hexenal and (E)-2-octenal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two major aldehydes (E)-2-hexenal and (E)-2-octenal emitted as defensive secretions by bed bugs Cimex lectularius L. (Hemiptera: Cimicidae), inhibit the in vitro growth of Metarhizium anisopliae (Metsch.) Sokorin (Hypocreales: Clavicipitaceae). These chemicals inhibit fungal growth by direct con...

  4. Virulence of Beauveria bassiana and Metarhizium anisopliae (Ascomycota: Hypocreales) commercial strains against adult Xylosandrus germanus (Coleoptera: Scolytidae) and impact on brood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ambrosia beetle Xylosandrus germanus is an invasive pest with a wide host range and is a serious pest of orchards and nurseries in the eastern US. In this study we evaluated the potential of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae as control agents against this beet...

  5. Persistence of Metarhizium Anisopliae Incorporated into Soilless Potting Media for Control of the Black Vine Weevil, Otiorhynchus Sulcatus in Container-Grown Ornamentals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The black vine weevil (BVW), Otiorhynchus sulcatus (F.) is a serious pest of nursery crops, particularly in the Pacific Northwest. The fungus, Metarhizium anisopliae (F52), has recently been registered by the US Environmental Protection Agency for BVW control. The objective of this study was to de...

  6. Production of Microsclerotia of the Fungal Entomopathogen Metarhizium anisopliae and Their Use as a Biocontrol Agent for Soil-Inhabiting Insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three strains of Metarhizium anisopliae, F52, TM109, and Ma1200, were evaluated for growth and propagule formation in shake flask studies using media with varying carbon concentrations and carbon-to-nitrogen ratios. Under the conditions of this study, all strains produced blastospores and microscle...

  7. Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous secondary metabolites have been isolated from the insect pathogenic fungus Metarhizium anisopliae, but the roles of these compounds as virulence factors in disease development are poorly understood. We targeted for disruption by Agrobacterium tumefaciens-mediated transformation a putative n...

  8. Screening of tropical isolates of Metarhizium anisopliae for virulence to the red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae).

    PubMed

    Sun, Xiaodong; Yan, Wei; Qin, Weiquan; Zhang, Jing; Niu, Xiaoqing; Ma, Guangchang; Li, Fuheng

    2016-01-01

    The red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) is a serious pest of the palm tree in tropical regions of the world. One strain of Metarhizium sp. ZJ-1, isolated from Chinese soils, was evaluated for growth characteristics, and screened for its virulence to R. ferrugineus larvae in laboratory conditions. An approximately 685-bp fragment was amplified by ITS (ITS1-5.8S-ITS2) PCR from strain ZJ-1, further phylogenetic analysis revealed that 93 % similarity to Metarhizium anisopliae. Inoculation of 1 × 10(8) conidia/mL caused 100 % mortality of R. ferrugineus, LT50 levels of ZJ-1 were 1.66 days (1 × 10(8) conidia/mL), indicating that the conidia of strain ZJ-1 were highly virulent. These results suggest that M. anisopliae ZJ-1 has potential as an effective and persistent biological control agent for R. ferrugineus. PMID:27468401

  9. Different Effects of Metarhizium anisopliae Strains IMI330189 and IBC200614 on Enzymes Activities and Hemocytes of Locusta migratoria L.

    PubMed Central

    Cao, Guangchun; Jia, Miao; Zhao, Xia; Wang, Lei; Tu, Xiongbing; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2016-01-01

    Background Metarhizium is an important class of entomopathogenic fungi in the biocontrol of insects, but its virulence is affected by insect immunity. To clarify the mechanism in virulence of Metarhizium, we compared the immunological differences in Locusta migratoria L. when exposed to two strains of Metarhizium anisopliae (Ma). Results The virulence of Ma IMI330189 was significantly higher than that of Ma IBC200614 to locust, and IMI330189 overcame the hemocytes and began destroying the hemocytes of locust at 72 h after spray, while locust is immune to IBC200614. IMI330189 could overcome the humoral immunity of locust by inhibiting the activities of phenol oxidase (PO), esterases, multi-function oxidases (MFOs) and acetylcholinesterases in locust while increasing the activities of glutathione-S-transferases (GSTs), catalase and aryl-acylamidase (AA). However IBC200614 inhibit the activities of GSTs and AA in locust and increase the activities of MFOs, PO, superoxide dismutase, peroxidase and chitinase in locust. The changes of enzymes activities in period of infection showed that the time period between the 2nd and the 5th day after spray is critical in the pathogenic process. Conclusion These results found the phenomenon that Ma initiatively broke host hemocytes, revealed the correlation between the virulence of Ma and the changes of enzymes activities in host induced by Ma, and clarified the critical period in the infection of Ma. So, these results should provide guidance for the construction of efficient biocontrol Ma strains. PMID:27227835

  10. Assessing the optimal virulence of malaria‐targeting mosquito pathogens: a mathematical study of engineered Metarhizium anisopliae

    PubMed Central

    2014-01-01

    Background Metarhizium anisopliae is a naturally occurring fungal pathogen of mosquitoes. Recently, Metarhizium has been engineered to act against malaria by directly killing the disease agent within mosquito vectors and also effectively blocking onward transmission. It has been proposed that efforts should be made to minimize the virulence of the fungal pathogen, in order to slow the development of resistant mosquitoes following an actual deployment. Results Two mathematical models were developed and analysed to examine the efficacy of the fungal pathogen. It was found that, in many plausible scenarios, the best effects are achieved with a reduced or minimal pathogen virulence, even if the likelihood of resistance to the fungus is negligible. The results for both models depend on the interplay between two main effects: the ability of the fungus to reduce the mosquito population, and the ability of fungus‐infected mosquitoes to compete for resources with non‐fungus‐infected mosquitoes. Conclusions The results indicate that there is no obvious choice of virulence for engineered Metarhizium or similar pathogens, and that all available information regarding the population ecology of the combined mosquito‐fungus system should be carefully considered. The models provide a basic framework for examination of anti‐malarial mosquito pathogens that should be extended and improved as new laboratory and field data become available. PMID:24397503

  11. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle.

    PubMed

    Erler, Fedai; Ates, A Ozgur

    2015-01-01

    The aim of this study was to evaluate the effectiveness of the entomopathogenic fungi (EPF), Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) strain PPRI 5339 [BroadBand, an emulsifiable spore concentrate (EC) formulation] and Metarhizium anisopliae (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) strain F52 [Met52, both EC and granular (GR) formulations] against the larvae of Polyphylla fullo (L.) (Coleoptera: Scarabaeidae). Larvicidal bioassays were performed in foam boxes (100 by 75 by 50 cm; length by width by height), containing moist soil medium with some humus and potato tubers as food. Although the B. bassiana product (min. 4 × 10(9) conidia/ml) was applied at 100, 150, and 200 ml/100 l water; M. anisopliae strain F52 was applied at 500, 1,000, and 1,500 g/m(3) of moist soil medium for GR (9 × 10(8) cfu/g) and 75, 100, and 125 ml/100 l water for EC (5.5 × 10(9) conidia/ml) formulation. Both fungi were pathogenic to larvae of the pest; however, young larvae (1st and 2nd instars) were more susceptible to infection than older ones (3rd instar). Mortality rates of young and older larvae varied with conidial concentration of both fungi and elapsed time after application. The B. bassiana product was more effective than both of the formulations of the M. anisopliae product, causing mortalities up to 79.8 and 71.6% in young and older larvae, respectively. The highest mortality rates of young and older larvae caused by the M. anisopliae product were 74.1 and 67.6% for the GR formulation, 70.2 and 61.8% for the EC formulation, respectively. These results may suggest that both fungi have potential to be used for management of P. fullo. PMID:25881632

  12. Genomic Analyses and Transcriptional Profiles of the Glycoside Hydrolase Family 18 Genes of the Entomopathogenic Fungus Metarhizium anisopliae

    PubMed Central

    Junges, Ângela; Boldo, Juliano Tomazzoni; Souza, Bárbara Kunzler; Guedes, Rafael Lucas Muniz; Sbaraini, Nicolau; Kmetzsch, Lívia; Thompson, Claudia Elizabeth; Staats, Charley Christian; de Almeida, Luis Gonzaga Paula; de Vasconcelos, Ana Tereza Ribeiro; Vainstein, Marilene Henning; Schrank, Augusto

    2014-01-01

    Fungal chitin metabolism involves diverse processes such as metabolically active cell wall maintenance, basic nutrition, and different aspects of virulence. Chitinases are enzymes belonging to the glycoside hydrolase family 18 (GH18) and 19 (GH19) and are responsible for the hydrolysis of β-1,4-linkages in chitin. This linear homopolymer of N-acetyl-β-D-glucosamine is an essential constituent of fungal cell walls and arthropod exoskeletons. Several chitinases have been directly implicated in structural, morphogenetic, autolytic and nutritional activities of fungal cells. In the entomopathogen Metarhizium anisopliae, chitinases are also involved in virulence. Filamentous fungi genomes exhibit a higher number of chitinase-coding genes than bacteria or yeasts. The survey performed in the M. anisopliae genome has successfully identified 24 genes belonging to glycoside hydrolase family 18, including three previously experimentally determined chitinase-coding genes named chit1, chi2 and chi3. These putative chitinases were classified based on domain organization and phylogenetic analysis into the previously described A, B and C chitinase subgroups, and into a new subgroup D. Moreover, three GH18 proteins could be classified as putative endo-N-acetyl-β-D-glucosaminidases, enzymes that are associated with deglycosylation and were therefore assigned to a new subgroup E. The transcriptional profile of the GH18 genes was evaluated by qPCR with RNA extracted from eight culture conditions, representing different stages of development or different nutritional states. The transcripts from the GH18 genes were detected in at least one of the different M. anisopliae developmental stages, thus validating the proposed genes. Moreover, not all members from the same chitinase subgroup presented equal patterns of transcript expression under the eight distinct conditions studied. The determination of M. anisopliae chitinases and ENGases and a more detailed study concerning the enzymes

  13. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle

    PubMed Central

    Erler, Fedai; Ates, A. Ozgur

    2015-01-01

    The aim of this study was to evaluate the effectiveness of the entomopathogenic fungi (EPF), Beauveria bassiana (Bals.) Vuill. (Deuteromycotina: Hyphomycetes) strain PPRI 5339 [BroadBand, an emulsifiable spore concentrate (EC) formulation] and Metarhizium anisopliae (Metsch.) Sorokin (Hypocreales: Clavicipitaceae) strain F52 [Met52, both EC and granular (GR) formulations] against the larvae of Polyphylla fullo (L.) (Coleoptera: Scarabaeidae). Larvicidal bioassays were performed in foam boxes (100 by 75 by 50 cm; length by width by height), containing moist soil medium with some humus and potato tubers as food. Although the B. bassiana product (min. 4 × 109 conidia/ml) was applied at 100, 150, and 200 ml/100 l water; M. anisopliae strain F52 was applied at 500, 1,000, and 1,500 g/m3 of moist soil medium for GR (9 × 108 cfu/g) and 75, 100, and 125 ml/100 l water for EC (5.5 × 109 conidia/ml) formulation. Both fungi were pathogenic to larvae of the pest; however, young larvae (1st and 2nd instars) were more susceptible to infection than older ones (3rd instar). Mortality rates of young and older larvae varied with conidial concentration of both fungi and elapsed time after application. The B. bassiana product was more effective than both of the formulations of the M. anisopliae product, causing mortalities up to 79.8 and 71.6% in young and older larvae, respectively. The highest mortality rates of young and older larvae caused by the M. anisopliae product were 74.1 and 67.6% for the GR formulation, 70.2 and 61.8% for the EC formulation, respectively. These results may suggest that both fungi have potential to be used for management of P. fullo. PMID:25881632

  14. Method for Determining the best Hydrophilic-lipophilic Balance (HLB) Number of a Compatible Non-ionic Surfactant in Formulation Development for Areal Conidia of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A non-swirling/direct dropping method was developed to optimize a compatible, non-ionic surfactant for formulation development of Metarhizium anisopliae conidia by determining the optimal hydrophilic-lipophilic balance number. Results showed the optimal HLB number of the tested M. anisopliae conidia...

  15. Biological control of Rhipicephalus (Boophilus) annulatus by different strains of Metarhizium anisopliae, Beauveria bassiana and Lecanicillium psalliotae fungi.

    PubMed

    Pirali-Kheirabadi, Khodadad; Haddadzadeh, Hamidreza; Razzaghi-Abyaneh, Mehdi; Bokaie, Saeed; Zare, Rasoul; Ghazavi, Mehran; Shams-Ghahfarokhi, Masoomeh

    2007-05-01

    Virulence of 11 native strains of entomopathogenic fungi; Metarhizium anisopliae (three strains), Beauveria bassiana (six strains) and Lecanicillium psalliotae (two strains) collected from different parts of Iran, were studied against different developmental stages of Rhipicephalus (Boophilus) annulatus. After the exposure of ticks to the fungal strains in different concentrations (i.e. 10(3), 10(5), 10(7) conidia/ml), various parameters such as mortality rate and reproductive efficiency of engorged females, mortality of unfed tick larvae and eclosion percentage of infected eggs were evaluated to determine the fungal virulence. Based on the obtained results, five strains including M. anisopliae (IRAN 437 C and DEMI 001), B. bassiana (IRAN 403 C) and L. psalliotae (IRAN 468 C and IRAN 518 C) were found to be virulent to various stages of tick developmental cycle. Mortality rate of engorged females was found to be dose-dependent with regard to the conidial concentration used. Total mortality rates of 90-100%, 70% and 56.6% were observed for M. anisopliae (IRAN 437 C and DEMI 001), B. bassiana (IRAN 403 C) and L. psalliotae (IRAN 468 C), 6-11 days post inoculation (PI) with 10(7) conidia/ml, respectively. Most strains were able to inhibit egg laying by females in the range of 0-26% in different conidial concentrations. The results indicated that the mean egg laying of treated engorged tick females exposed to M. anisopliae (IRAN 437 C) was less than the mean values of those treated with other fungal strains. Results revealed 89.1%, 35.5% and 56.3% decrease in egg hatchability and 88.69%, 78.15% and 59.74% reduction in reproductive efficiency of the ticks using 10(7) conidia/ml of M. anisopliae (IRAN 437 C), B. bassiana (IRAN 403 C) and L. psalliotae (IRAN 468 C), respectively. In general, the entomopathogenic effects of native M. anisopliae and B. bassiana against various developmental stages of R. (B.) annulatus were confirmed in the present work. Likewise, although L

  16. Real encoded genetic algorithm and response surface methodology to optimize production of an indolizidine alkaloid, swainsonine, from Metarhizium anisopliae.

    PubMed

    Singh, Digar; Kaur, Gurvinder

    2013-09-01

    Response surface methodology (RSM) and artificial neural network-real encoded genetic algorithm (ANN-REGA) were employed to develop a process for fermentative swainsonine production from Metarhizium anisopliae (ARSEF 1724). The effect of finally screened process variables viz. inoculum size, oatmeal extract, glucose, and CaCl2 were investigated through central composite design and were further utilized for training sets in ANN with training and test R values of 0.99 and 0.94, respectively. ANN-REGA was finally employed to simulate the predictive swainsonine production with best evolved media composition. ANN-REGA predicted a more precise fermentation model with 103 % (shake flask) increase in alkaloid production compared to 75.62 % (shake flask) obtained with RSM model upon validation. PMID:23315485

  17. Allergic Responses Induced by a Fungal Biopesticide Metarhizium anisopliae and House Dust Mite Are Compared in a Mouse Model

    PubMed Central

    Ward, Marsha D. W.; Chung, Yong Joo; Copeland, Lisa B.; Doerfler, Donald L.

    2011-01-01

    Biopesticides can be effective in controlling their target pest. However, research regarding allergenicity and asthma development is limited. We compared the ability of fungal biopesticide Metarhizium anisopliae (MACA) and house dust mite (HDM) extracts to induce allergic responses in BALB/c mice. The extracts were administered by intratracheal aspiration at doubling doses (2.5–80 μg protein) 4X over a four-week period. Three days after the last exposure, serum and bronchoalveolar lavage fluid (BALF) were collected. The extracts' relative allergenicity was evaluated based on response robustness (lowest significant dose response compared to control (0 μg)). MACA induced a more robust serum total IgE response than HDM. However, in the antigen-specific IgE assay, a similar dose of both MACA and HDM was required to achieve the same response level. Our data suggest a threshold dose of MACA for allergy induction and that M. anisopliae may be similar to HDM in allergy induction potential. PMID:21785589

  18. Allergic Responses Induced by a Fungal Biopesticide Metarhizium anisopliae and House Dust Mite Are Compared in a Mouse Model.

    PubMed

    Ward, Marsha D W; Chung, Yong Joo; Copeland, Lisa B; Doerfler, Donald L

    2011-01-01

    Biopesticides can be effective in controlling their target pest. However, research regarding allergenicity and asthma development is limited. We compared the ability of fungal biopesticide Metarhizium anisopliae (MACA) and house dust mite (HDM) extracts to induce allergic responses in BALB/c mice. The extracts were administered by intratracheal aspiration at doubling doses (2.5-80 μg protein) 4X over a four-week period. Three days after the last exposure, serum and bronchoalveolar lavage fluid (BALF) were collected. The extracts' relative allergenicity was evaluated based on response robustness (lowest significant dose response compared to control (0 μg)). MACA induced a more robust serum total IgE response than HDM. However, in the antigen-specific IgE assay, a similar dose of both MACA and HDM was required to achieve the same response level. Our data suggest a threshold dose of MACA for allergy induction and that M. anisopliae may be similar to HDM in allergy induction potential. PMID:21785589

  19. A Field Experiment to Assess the Rate of Infestation in Honey Bee Populations of Two Metarhizium anisopliae Isolates on Varroa destructor (Acari: Mesostigmata)

    PubMed Central

    Pirali-kheirabadi, Khodadad; Teixeira-da-Silva, Jaime A; Razzaghi-Abyaneh, Mehdi; Nazemnia, Mehdi

    2013-01-01

    Background: The protective effect of two isolates of an entomopathogenic fungus, Metarhizium anisopliae (DEMI 002 and Iran 437C) on the adult stage of Varroa destructor was evaluated in comparison with fluvalinate strips in the field. Methods: A total of 12 honey bee colonies were provided from an apiculture farm. The selected hives were divided into 4 groups (3 hives per group). The first group was the control, treated with distilled water. The other two groups were exposed to different fungi (M. anisopliae isolates DEMI 002 and Iran 437C) and the last group was treated with one strip of fluvalinate per colony. The number of fallen mites was counted using sticky traps during a 6-day period, six days before and after treatments. A fungal suspension at a concentration of 5× 106 conidia/mL was sprayed onto the frames and the number of fallen mites was counted. Results: Metarhizium anisopliae DEMI 002 and Iran 437C isolates were as effective (i.e., caused as much mite fall) as the fluvalinate strip in controlling bee colonies than no treatment. Conclusion: Both M. anisopliae isolates are promising candidates as agents in the control of Varroa mites under field conditions. Isolate DEMI 002 can be considered as a possible non-chemical biocontrol agent for controlling bee infestation with V. destructor in the field. In order to substantiate this hypothesis, tests are currently being performed using larger colonies and larger doses than tested in the present study in our beekeeping. PMID:23785691

  20. Adulticidal and larvicidal activity of Beauveria bassiana and Metarhizium anisopliae against housefly, Musca domestica (Diptera: Muscidae), in laboratory and simulated field bioassays.

    PubMed

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree; Satya, Santosh

    2011-06-01

    The susceptibility of the adult and larval stage of housefly, Musca domestica L. (Diptera: Muscidae), to two entomopathogenic fungi, Metarhizium anisopliae (Metsch.) Sor. and Beauveria bassiana (Bals.) Vuill., was evaluated under laboratory and simulated field bioassays. Bioassays on adult houseflies were carried out at different conidial concentrations ranging from 10(3) to 10(9) conidia/ml in petri plate and minichamber assays. Absolute mortality was observed within 4-5 days at all the concentrations tested. M. anisopliae was found to be more effective with LC(50) of 6.75 × 10(7) conidia/ml compared with 1.21 × 10(8) conidia/ml of B. bassiana in petri plate bioassay. Similar trend was observed in minichamber bioassay. Larvicidal activity evaluated through petri plate bioassay also indicated that M. anisopliae was more effective larvicide with LC(50) of 4.1 × 10(8) conidia/ml as against 3.31 × 10(9) conidia/ml of B. bassiana. Larvicidal activity was further evaluated in simulated field condition of decaying waste matrix using dry conidial formulations (10(8) conidia/g) of both the fungi. Larval mortality obtained in this assay was 43% (B. bassiana) and 63% (M. anisopliae). Remarkably better performance of M. anisopliae as an adulticidal and larvicidal agent over B. bassiana in laboratory bioassays as well as simulated field conditions suggests that it may have good potential to become part of an integrated housefly control program. PMID:21161273

  1. Human sera IgE reacts with a Metarhizium anisopliae fungal catalase

    EPA Science Inventory

    Background: Previous studies have demonstrated that Metarhzium anisopliae extract can induce immune responses in a mouse model that are characteristic of human allergic asthma. Objectives: The objective of this study was to identify and characterize the extract proteins t...

  2. The Adh1 gene of the fungus Metarhizium anisopliae is expressed during insect colonization and required for full virulence.

    PubMed

    Callejas-Negrete, Olga Alicia; Torres-Guzmán, Juan Carlos; Padilla-Guerrero, Israel Enrique; Esquivel-Naranjo, Ulises; Padilla-Ballesteros, Maria Fernanda; García-Tapia, Adriana; Schrank, Augusto; Salazar-Solís, Eduardo; Gutiérrez-Corona, Félix; González-Hernández, Gloria Angélica

    2015-03-01

    Zymography of alcohol dehydrogenase (ADH) activity in the entomopathogenic fungus Metarhizium anisopliae grown under various conditions revealed that micro-aerobic growth was associated with increased ADH activity. The major ADH protein, AdhIp, was purified to homogeneity by affinity chromatography and has an estimated molecular weight of 41kDa and an isoelectric point (pI) of 6.4. Peptide mass fingerprint analysis allowed the identification and cloning of the gene that encodes this protein, Adh1, as annotated in the M. anisopliae genome database. AdhIp is related to the medium-chain dehydrogenase/reductase (MDR)/zinc-dependent alcohol dehydrogenase-like family and contains conserved ADH sequence motifs, such as the zinc-containing ADH signature, the FAD/NAD binding domain and amino acid residues that are conserved in most microbial ADHs. Semi-quantitative RT-PCR analysis revealed that Adh1 gene expression occurs at low levels during early Plutella xylostella infection and that the Adh1 gene was primarily expressed at larval death and as mycelia emerge from the insect cuticle before conidiation. Antisense-RNA experiments indicated that NAD(+)-dependent ADH activity was diminished by 20-75% in the transformants, and the transformants that had lower ADH activity showed allyl alcohol resistance, which indicates that reduction in ADH activity also occurs in vivo. Bioassays performed using antisense adh1 transformants, which have lower ADH activity, showed that LC50 values were two to five times higher than the wild-type, indicating that AdhIp is required for full capability of the fungus to penetrate and/or colonize the insect. PMID:25534970

  3. Horizontal Transmission of Metarhizium anisopliae in Fruit Flies and Effect of Fungal Infection on Egg Laying and Fertility

    PubMed Central

    Dimbi, Susan; Maniania, Nguya K.; Ekesi, Sunday

    2013-01-01

    Fly-to-fly transmission of conidia of the entomopathogenic fungus Metarhizium anisopliae and the effect of fungal infection on the reproductive potential of females surviving infection were investigated in three fruit fly species, Ceratitis cosyra, C. fasciventris, and C. capitata. The number of conidia picked up by a single fruit fly was determined in C. cosyra. The initial uptake (Day 0) of conidia by a single fly was approx. 1.1 × 106 conidia after exposure to the treated substrate. However, the number of conidia dropped from 7.2 × 105 to 4.1 × 105 conidia after 2 and 8 h post-exposure, respectively. The number of conidia picked up by a single fungus-treated fly (“donor”) varied between 3.8 × 105 and 1.0 × 106 in the three fruit fly species, resulting in 100% mortality 5–6 days post-exposure. When fungus-free flies of both sexes (“recipient” flies) were allowed to mate with “donor” flies, the number of conidia picked up by a single fly varied between 1.0 × 105 and 2.5 × 105, resulting in a mortality of 83–100% in C. capitata, 72–85% in C. cosyra and 71–93% in C. fasciventris 10–15 days post-inoculation. There was an effect of fungal infection on female egg laying in the three species of fruit flies as control flies laid more eggs than fungus-treated females. The percentage reduction in fecundity in flies infected with M. anisopliae was 82, 73 and 37% in C. capitata, C. fasciventris and C. cosyra, respectively. The results are discussed with regard to application in autodissemination techniques. PMID:26464386

  4. A protocol for determination of conidial viability of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae from commercial products.

    PubMed

    Oliveira, Daian Guilherme Pinto; Pauli, Giuliano; Mascarin, Gabriel Moura; Delalibera, Italo

    2015-12-01

    Techniques for directly determining conidial viability have widespread use but also have limitations for quality control assessments of formulated mycoinsecticides, especially in emulsifiable oil. This study proposes a new method based on adaptations of already established protocols that use the direct viability method to make it more economical and accurate, thus enabling its use in the evaluation of formulated products. Appropriate parameters and conditions were defined using products based on Beauveria bassiana and Metarhizium anisopliae in the forms of pure conidia, fungus-colonized rice, ground fungus-colonized rice and oil dispersion. The established protocol, named ESALQ, consists of the transfer of 150 μL of a suspension containing about 0.7 and 1 × 10(6) conidia/mL onto Rodac® plates with 5 mL of potato dextrose agar culture medium + 5 mg/L of Pentabiotic® and 10 μL/L of Derosal® (Carbendazim) and subsequent counting of germinated and non-germinated conidia. For the ground fungus-colonized rice and oil dispersion formulations, prior to transferring the fungal suspension to the medium, rice should be decanted and the oil removed, respectively. This method was compared with another direct viability method and with the Colony-forming unit (CFU) and Fluorescence viability methods, comparing the accuracy obtained using the coefficient of variation (CV) of the analysis of each method. The results showed that in addition to the ease of application, the developed method has higher accuracy than the other methods (with a CV up to seven times lower than in the Standard method and up to 32 times lower than CFU). The CFU method underestimated the concentration of viable conidia in most of the tested fungal forms, and in the emulsifiable oil products, these values were 54% lower for B. bassiana and 84% lower for M. anisopliae. The adaptations and standardizations proposed in the ESALQ method showed effective improvements for routine quality assessment of

  5. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects.

    PubMed

    Jackson, Mark A; Jaronski, Stefan T

    2009-08-01

    Microsclerotia (MS), overwintering structures produced by many plant pathogenic fungi, have not been described for Metarhizium anisopliae. Three strains of M. anisopliae--F52, TM109, and MA1200--formed MS in shake flask cultures using media with varying carbon concentrations and carbon-to-nitrogen (C:N) ratios. Under the conditions of this study, all strains produced MS, compact hyphal aggregates that become pigmented with culture age, in addition to more typical blastospores and mycelia. While all strains formed desiccation tolerant MS, highest concentrations (2.7-2.9 x 10(8) L(-1) liquid medium) were produced in rich media with C:N ratios of 30:1 and 50:1 by strain F52. All three strains of M. anisopliae produced similar biomass concentrations when media and growth time were compared. Strain MA1200 produced higher concentrations of blastospores than the other two strains of M. anisopliae with highest blastospore concentrations (1.6 and 4.2 x 10(8) blastospores ml(-1) on days 4 and 8, respectively) in media with the highest carbon and nitrogen concentrations. Microsclerotial preparations of M. anisopliae containing diatomaceous earth survived air-drying (to <5 % moisture) with no significant loss in viability. Rehydration and incubation of air-dried MS granules on water agar plates resulted in hyphal germination and sporogenic germination to produce high concentrations of conidia. Bioassays using soil-incorporated, air-dried MS preparations resulted in significant infection and mortality in larvae of the sugar beet root maggot, Tetanops myopaeformis. This is the first report of the production of sclerotial bodies by M. anisopliae and provides a novel approach for the control of soil-dwelling insects with this entomopathogenic fungus. PMID:19358886

  6. Fitness costs to Helicoverpa armigera after exposure to sub-lethal concentrations of Metarhizium anisopliae sensu lato: Study on F1 generation.

    PubMed

    Jarrahi, Azadeh; Safavi, Seyed Ali

    2016-07-01

    The entomopathogenic fungus, Metarhizium anisopliae (Metsch.) Sorokin is a valuable biocontrol agent attacking larval stages of many lepidopteran pests including Helicoverpa armigera (Hübner). Sub-lethal effects of M. anisopliae sensu lato (s.l.) (isolate M14) were investigated on life table parameters of offspring from treated larvae of H. armigera. Duration of different life stages was significantly affected by fungal treatments. Fecundity was decreased in females derived from H. armigera larvae treated with M. anisopliae s.l. Sub-lethal concentrations of the entomopathogen reduced the net reproduction rate (R0) of F1 insects for all treatments compared with the control. Similar reductions were observed for the intrinsic and the finite rates of increase (rm and λ, respectively). The mean generation time (T) and the doubling time (DT) were statistically higher in offspring of individuals exposed to some fungal concentrations than control insects. Our results indicated that there was a significant decrease in the F1 population of H. armigera derived from larvae that were exposed to sub-lethal concentrations of M. anisopliae s.l. PMID:27247225

  7. Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation.

    PubMed

    Miller, Charles D; Rangel, Drauzio; Braga, Gilberto U L; Flint, Stephan; Kwon, Sun-Il; Messias, Claudio L; Roberts, Donald W; Anderson, Anne J

    2004-01-01

    Metarhizium anisopliae isolates have a wide insect host range, but an impediment to their commercial use as a biocontrol agent of above-ground insects is the high susceptibility of spores to the near-UV present in solar irradiation. To understand stress responses in M. anisopliae, we initiated studies of enzymes that protect against oxidative stress in two strains selected because their spores differed in sensitivity to UV-B. Spores of the more near-UV resistant strain in M. anisopliae 324 displayed different isozyme profiles for catalase-peroxidase, glutathione reductase, and superoxide dismutase when compared with the less resistant strain 2575. A transient loss in activity of catalase-peroxidase and glutathione reductase was observed during germination of the spores, whereas the intensity of isozymes displaying superoxide dismutase did not change as the mycelium developed. Isozyme composition for catalase-peroxidases and glutathione reductase in germlings changed with growth phase. UV-B exposure from lamps reduced the activity of isozymes displaying catalase-peroxidase and glutathione reductase activities in 2575 more than in 324. The major effect of solar UV-A plus UV-B also was a reduction in catalase-peroxidases isozyme level, a finding confirmed by measurement of catalase specific activity. Impaired growth of M. anisopliae after near-UV exposure may be related to reduced abilities to handle oxidative stress. PMID:15052320

  8. Comparison of water, oils and emulsifiable adjuvant oils as formulating agents for Metarhizium anisopliae for use in control of Boophilus microplus.

    PubMed

    Polar, Perry; Kairo, Moses T K; Moore, Dave; Pegram, Rupert; John, Sally-Ann

    2005-09-01

    Studies were conducted to identify oil-based formulating agents (paraffinic oil, palm oil and emulsifiable adjuvant oils (EAOs)) for Metarhizium anisopliae that were superior to water with simple surfactants using a germination test and a bioassay against Boophilus microplus. Germination of conidia in all formulations, except 10% coconut EAO, produced more than 68% germination at 24 h and nearly 100% at 48 h. Coconut oil (average survival time (AST) = 4.6 +/- 0.28 days) and 10% liquid paraffin EAO (AST = 4.4 +/- 0.15 days) enhanced the pathogenicity of M. anisopliae to B. microplus relative to water (AST = 8.4 +/- 0.42 days). M. anisopliae in 10% liquid paraffin EAO was the most effective formulation having a moderately high germination after 24 h and a low AST as well as a high AST in the control. In the second experiment, germination of conidia in 2% liquid paraffin EAO and 2% Cropspray was higher than in 2% Codacide oil at 24 h, however, all treatments reached 100% germination after 48 h. The ASTs of the EAO based M. anisopliae formulations (Average AST = 6.4 +/- 0.54 days) were similar but lower that the ASTs of the controls (Average AST = 9.6 +/- 0.28 days). PMID:16170611

  9. The effect of leaf biopesticide Mirabilis jalapa and fungi Metarhizium anisopliae to immune response and mortality of Spodoptera exigua instar IV

    NASA Astrophysics Data System (ADS)

    Suryani, A. Irma; Anggraeni, Tjandra

    2014-03-01

    Spodoptera exigua is one of insect causing damage in agriculture sector. This insect can be controlled by a natural biopesticide by combining two agents of biological control, biopesticides Mirabilis jalapa and entomopathogenic fungi Metarhizium anisopliae, considered to be virulent toward a wide range of insects. The objective of research was to determine the effect of biopesticides M. jalapa and fungi M. anisopliae against immune system and mortality of S. exigua. This research used a complete randomized block design with five concentrations Mirabilis jalapa and optimum dose of M. anisopliae. A high dose of M. jalapa (0.8% w/v) is the most effective one to decrease total haemocytes especially granulocyt and plasmatocyt (cellular immune) and decrease the concentration of lectin (humoral immune) from S. exigua (p < 0.05). The combination of M. jalapa (0, 8% w/v) and lethal dose of M. anisopliae 2.59 × 107 spore/ml were significant to increase mortality of S. exigua within 48 hours (p < 0.05).

  10. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    PubMed Central

    2010-01-01

    Background Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have previously examined the effects of entomopathogenic fungi against adult mosquitoes, most application methods used cannot be readily deployed in the field. Because the fungi are biological organisms it is important to test potential field application methods that will not adversely affect them. The two objectives of this study were to investigate any differences in fungal susceptibility between an insecticide-resistant and insecticide-susceptible strain of Anopheles gambiae sensu stricto, and to test a potential field application method with respect to the viability and virulence of two fungal species Methods Pieces of white polyester netting were dipped in Metarhizium anisopliae ICIPE-30 or Beauveria bassiana IMI391510 mineral oil suspensions. These were kept at 27 ± 1°C, 80 ± 10% RH and the viability of the fungal conidia was recorded at different time points. Tube bioassays were used to infect insecticide-resistant (VKPER) and insecticide-susceptible (SKK) strains of An. gambiae s.s., and survival analysis was used to determine effects of mosquito strain, fungus species or time since fungal treatment of the net. Results The resistant VKPER strain was significantly more susceptible to fungal infection than the insecticide-susceptible SKK strain. Furthermore, B. bassiana was significantly more virulent than M. anisopliae for both mosquito strains, although this may be linked to the different viabilities of these fungal species. The viability of both fungal species decreased significantly one day after application onto polyester netting when compared to the viability of conidia remaining in suspension. Conclusions The insecticide-resistant mosquito strain was susceptible

  11. Copulation Activity, Sperm Production and Conidia Transfer in Aedes aegypti Males Contaminated by Metarhizium anisopliae: A Biological Control Prospect

    PubMed Central

    Russell, Tanya L.; Braks, Marieta A. H.

    2015-01-01

    Background Dengue is the most prevalent arboviral disease transmitted by Aedes aegypti worldwide, whose chemical control is difficult, expensive, and of inconsistent efficacy. Releases of Metarhizium anisopliae—exposed Ae. aegypti males to disseminate conidia among female mosquitoes by mating represents a promising biological control approach against this important vector. A better understanding of fungus virulence and impact on reproductive parameters of Ae. aegypti, is need before testing auto-dissemination strategies. Methodology/Principal Findings Mortality, mating competitiveness, sperm production, and the capacity to auto-disseminate the fungus to females up to the 5thcopulation, were compared between Aedes aegypti males exposed to 5.96 x 107 conidia per cm2 of M. anisopliae and uninfected males. Half (50%) of fungus-exposed males (FEMs) died within the first 4 days post-exposure (PE). FEMs required 34% more time to successively copulate with 5 females (165 ± 3 minutes) than uninfected males (109 ± 3 minutes). Additionally, fungus infection reduced the sperm production by 87% at 5 days PE. Some beneficial impacts were observed, FEMs were able to successfully compete with uninfected males in cages, inseminating an equivalent number of females (about 25%). Under semi-field conditions, the ability of FEMs to search for and inseminate females was also equivalent to uninfected males (both inseminating about 40% females); but for the remaining females that were not inseminated, evidence of tarsal contact (transfer of fluorescent dust) was significantly greater in FEMs compared to controls. The estimated conidia load of a female exposed on the 5th copulation was 5,200 mL-1 which was sufficient to cause mortality. Conclusion/Significance Our study is the first to demonstrate auto-dissemination of M. anisopliae through transfer of fungus from males to female Ae. aegypti during mating under semi-field conditions. Our results suggest that auto-dissemination studies

  12. Effects of conidial densities and spray volume of Metarhizium anisopliae and Beauveria bassiana fungal suspensions on conidial viability, droplet size and deposition coverage in bioassay using a novel bioassay spray system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments were conducted to study the conidial viability during bioassay spray with different suspensions of Metarhizium anisopliae ATCC 62176 and Beauveria bassiana NI8, and to investigate the effects of conidial density and spray volume on the distribution of droplet size and deposit coverage us...

  13. Effects of UVB irradiance on conidia and germinants of the entomopathogenic Hyphomycete Metarhizium anisopliae: a study of reciprocity and recovery.

    PubMed

    Braga, G U; Flint, S D; Messias, C L; Anderson, A J; Roberts, D W

    2001-02-01

    We tested the effects of irradiances of 920 and 1200 mW m-2 (weighted irradiance) on the conidia and germinants of the entomopathogenic Hyphomycete Metarhizium anisopliae. The conidia were exposed to the two irradiances for 1, 2, 4, 6, 7 or 8 h. Increased exposure decreased relative percent culturability. The inactivation provoked by the irradiance of 1200 mW m-2 was higher than for the 920 mW m-2, with a reduction in the 50% lethal time (LT50) from 6 h 40 min to 4 h 26 min. Reciprocity was not observed when conidia in water suspension and germinants in different stages of the germinative process were exposed to a 17.3 kJ m-2 total dose at both irradiance levels. Although nonreciprocity was observed in all situations, its magnitude varied as a function of metabolic state and/or cell-cycle phase in which the conidia were at the exposure time. The least difference between the effects of the two irradiance levels was observed when nongerminating conidia in suspension were exposed, and the greatest was observed when conidia were exposed during an advanced germination phase. Doses of 6.6 and 17.3 kJ m-2 supplied through the two irradiance levels delayed the germination of the surviving conidia. At both doses, delay was greater during exposure to the higher irradiance. Nonreciprocity was higher for the 17.3 kJ m-2 dose. Nonreciprocity magnitude, in addition to depending on the conidial physiological state, also depended on dose. The results demonstrate the importance of evaluating the impact of the increase in irradiance during the different stages of the fungal life cycle, especially during the stages which are more sensitive to UV, and not simply in dormant conidia. PMID:11272727

  14. Laboratory and field studies on the infection of stink bugs, nezara viridula, piezodorus guildinii, and euschistus heros (Hemiptera: pentatomidae) with metarhizium anisopliae and beauveria bassiana in brazil

    PubMed

    Sosa-Gmez; Moscardi

    1998-03-01

    Isolates of Metarhizium anisopliae (CNPSo-Ma12) and Beauveria bassiana (CNPSo-Bb56) were tested under field conditions as biological control agents of soybean stink bugs (Nezara viridula, Piezodorus guildinii, and Euschistus heros). Kaolin-based powder formulations of M. anisopliae or B. bassiana were applied to soybean plots at a rate of 1.5 x 10(13) conidia per ha. After treatment, field cages (0.25 m2) were placed in plots and stink bug adults were introduced into the cages. Mycosis for both P. guildinii and N. viridula was initially observed 7 days postapplication in the 1991 season and at 15 days postapplication in the 1992 season. For E. heros, mortality was detected on day 8 and on day 20 in 1991 and 1992, respectively. In 1991, infection levels of 48 and 41% were achieved at day 30 for P. guildinii and N. viridula, respectively, whereas the infection level in E. heros reached only 33%. In 1992, mortality caused by M. anisopliae on the three stink bug species was lower than that observed in 1991, with cumulative mycosis at day 30 being 15, 17, and 20% for P. guildinii, N. viridula, and E. heros, respectively. The 1991 season was humid and warm, whereas in the 1992 season there was an 8-day drought spell (<75% relative humidity (RH)) after application, suggesting that %RH was responsible for an earlier occurrence and a higher prevalence of both fungi on stink bug species in the 1991 trial. Despite the higher deposition of B. bassiana on the plants (17 colony forming units [CFU] per mm2 of leaflet) 1 day after application compared to M. anisopliae (5.1 CFU per mm2 of leaflet), B. bassiana was less efficient against stink bugs than M. anisopliae. Field results were confirmed through laboratory bioassays, in controlled conditions (T = 26 +/- 1.5 degreesC, 90% RH, and 8D:16L light regimen). The mean time to mortality by M. anisopliae was 4.3 +/- 0.2 days for P. guildinii, 4. 6 +/- 0.2 days for N. viridula, and 7.4 +/- 0.5 days for E. heros. E. heros was less

  15. Agrobacterium-Mediated Disruption of a Nonribosomal Peptide Synthetase Gene in the Invertebrate Pathogen Metarhizium anisopliae Reveals a Peptide Spore Factor▿ †

    PubMed Central

    Moon, Yong-Sun; Donzelli, Bruno G. G.; Krasnoff, Stuart B.; McLane, Heather; Griggs, Mike H.; Cooke, Peter; Vandenberg, John D.; Gibson, Donna M.; Churchill, Alice C. L.

    2008-01-01

    Numerous secondary metabolites have been isolated from the insect pathogenic fungus Metarhizium anisopliae, but the roles of these compounds as virulence factors in disease development are poorly understood. We targeted for disruption by Agrobacterium tumefaciens-mediated transformation a putative nonribosomal peptide synthetase (NPS) gene, MaNPS1. Four of six gene disruption mutants identified were examined further. Chemical analyses showed the presence of serinocyclins, cyclic heptapeptides, in the extracts of conidia of control strains, whereas the compounds were undetectable in ΔManps1 mutants treated identically or in other developmental stages, suggesting that MaNPS1 encodes a serinocyclin synthetase. Production of the cyclic depsipeptide destruxins, M. anisopliae metabolites also predicted to be synthesized by an NPS, was similar in ΔManps1 mutant and control strains, indicating that MaNPS1 does not contribute to destruxin biosynthesis. Surprisingly, a MaNPS1 fragment detected DNA polymorphisms that correlated with relative destruxin levels produced in vitro, and MaNPS1 was expressed concurrently with in vitro destruxin production. ΔManps1 mutants exhibited in vitro development and responses to external stresses comparable to control strains. No detectable differences in pathogenicity of the ΔManps1 mutants were observed in bioassays against beet armyworm and Colorado potato beetle in comparison to control strains. This is the first report of targeted disruption of a secondary metabolite gene in M. anisopliae, which revealed a novel cyclic peptide spore factor. PMID:18502925

  16. Secretome of the Biocontrol Agent Metarhizium anisopliae Induced by the Cuticle of the Cotton Pest Dysdercus peruvianus Reveals New Insights into Infection

    PubMed Central

    2015-01-01

    Metarhizium anisopliae is an entomopathogenic fungus that has evolved specialized strategies to infect insect hosts. Here we analyzed secreted proteins related to Dysdercus peruvianus infection. Using shotgun proteomics, abundance changes in 71 proteins were identified after exposure to host cuticle. Among these proteins were classical fungal effectors secreted by pathogens to degrade physical barriers and alter host physiology. These include lipolytic enzymes, Pr1A, B, C, I, and J proteases, ROS-related proteins, oxidorreductases, and signaling proteins. Protein interaction networks were generated postulating interesting candidates for further studies, including Pr1C, based on possible functional interactions. On the basis of these results, we propose that M. anisopliae is degrading host components and actively secreting proteins to manage the physiology of the host. Interestingly, the secretion of these factors occurs in the absence of a host response. The findings presented here are an important step in understanding the host–pathogen interaction and developing more efficient biocontrol of D. peruvianus by M. anisopliae. PMID:24702058

  17. Effect of Metarhizium anisopliae on the Fertility and Fecundity of Two Species of Fruit Flies and Horizontal Transmission of Mycotic Infection

    PubMed Central

    Sookar, P.; Bhagwant, S.; Allymamod, M.N.

    2014-01-01

    In Mauritius, the peach fruit fly, Bactrocera zonata Saunders (Diptera: Tephritidae), and the melon fly, Bactrocera cucurbitae (Coquillett), are the major pest of fruits and vegetables, respectively. Fruit growers make use of broad-spectrum insecticides to protect their crops from fruit fly attack. This method of fruit fly control is hazardous to the environment and is a threat to beneficial insects. The entomopathogenic fungus, Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae), which was isolated from the soils of Mauritius, was used to investigate whether fungus-treated adult fruit flies could transfer conidia to non-treated flies during mating, and whether fungal infection could have an effect on mating behavior, fecundity, and fertility of the two female fruit fly species. When treated male flies were maintained together with non-treated female flies, they were able to transmit infection to untreated females, resulting in high mortalities. Similarly, fungus-infected female flies mixed with untreated males also transmitted infections to males, also resulting in high mortalities. Infection by M. anisopliae also resulted in the reduction of the number of eggs produced by females of B. cucurbitae. The results suggest that M. anisopliae may have potential for use in integrated control programs of B. zonata and B. cucurbitae using the sterile insect technique in Mauritius. PMID:25201230

  18. Persistence of Metarhizium anisopliae incorporated into soilless potting media for control of the black vine weevil, Otiorhynchus sulcatus in container-grown ornamentals.

    PubMed

    Bruck, Denny J; Donahue, Kelly M

    2007-06-01

    The objective of this study was to determine the persistence of Metarhizium anisopliae (F52), measured as infectivity against black vine weevil larvae, in a soilless potting medium at six wholesale nursery locations across the Willamette Valley, Oregon. A granule formulation (0.30 and 0.60 kg/m(3)) was incorporated into media at planting and fungal persistence determined over two growing seasons. The fungus persisted in the potting media over the duration of the experiment with 50-60% of the larvae exposed to treated media becoming infected at the end of the experiment. The percentage of infected larvae gradually declined from > or = 90% on week 3 to 40-60% by week 19. Larval infection rebounded over the fall and winter months of 2004 to 75-80% followed again by a slow decline over the course of the second growing season. PMID:17349655

  19. Field trials using the fungal pathogen, Metarhizium anisopliae (Deuteromycetes: Hyphomycetes) to control the ectoparasitic mite, Varroa destructor (Acari: Varroidae) in honey bee, Apis mellifera (Hymenoptera: Apidae) colonies.

    PubMed

    Kanga, Lambert Houssou Ble; Jones, Walker A; James, Rosalind R

    2003-08-01

    The potential for Metarhizium anisopliae (Metschinkoff) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in honey bee colonies was evaluated in field trials against the miticide, tau-fluvalinate (Apistan). Peak mortality of V. destructor occurred 3-4 d after the conidia were applied; however, the mites were still infected 42 d posttreatments. Two application methods were tested: dusts and strips coated with the fungal conidia, and both methods resulted in successful control of mite populations. The fungal treatments were as effective as the Apistan, at the end of the 42-d period of the experiment. The data suggested that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. M. anisopliae was harmless to the honey bees (adult bees, or brood) and colony development was not affected. Mite mortality was highly correlated with mycosis in dead mites collected from sticky traps, indicating that the fungus was infecting and killing the mites. Because workers and drones drift between hives, the adult bees were able to spread the fungus between honey bee colonies in the apiary, a situation that could be beneficial to beekeepers. PMID:14503579

  20. [Evaluation of cellular response in engorged females of Boophilus microplus (Canestrini, 1887) inoculated with Metarhizium anisopliae, Beauveria bassiana, Penicillium corylophilum or Fusarium oxysporum].

    PubMed

    da Silva, Sandra B; Bittencourt, Vânia Rita E P

    2006-01-01

    The effect of Beauveria bassiana, Metarhizium anisopliae, Penicillium corylophilum or Fusarium oxysporum on the dynamic of hemocytes presented in the haemolymph of engorged females of Boophilus microplus was studied. The inoculation was carried out with conidia suspension of different fungi in the concentration of 10(8) conidia/ml. A negative control group was inoculated with 0.1% Tween 80 water solution and a testimony group was comprised of non inoculated ticks. The haemolymph samples were collected in 24, 48 and 72 hours post-challenge. In all the studied periods, prohemocytes, plasmatocytes, granulocytes, spherulocytes and oenocytoids were observed in the specimens inoculated with fungus and also in the controls groups (negative and testimony). Prohemocytes, plasmatocytes and spherulocytes were the most cells in the haemolymph. The absence of hemocytes 72h post-challenging was observed prior to the death of the specimens inoculated with B. bassiana suggesting a failure in the cellular response. Hyphae and conidia growth was observed in the samples treated with entomopathogenic fungi (B. bassiana or M. anisopliae). The groups treated with non entomopathogenic fungi (P. corylophilum or F. oxysporum) did not shown significant differences in relation to the negative control and testimony groups. PMID:17196118

  1. Efficacy of the entomopathogenic fungi Metarhizium anisopliae in the control of infestation by stable flies Stomoxys calcitrans (L.), under natural infestation conditions.

    PubMed

    Cruz-Vazquez, C; Carvajal Márquez, J; Lezama-Gutiérrez, R; Vitela-Mendoza, I; Ramos-Parra, M

    2015-09-15

    The objective of this study was to evaluate the efficacy of an isolate of Metarhizium anisopliae applied by aspersion to control of Stomoxys calcitrans flies in dairy cattle naturally infested. Was applied by aspersion an aqueous formulation of M. anisopliae sensu lato (Ma134), at a concentration of 1×10(8)conidia/ml, four times with seven day intervals, on a group of eight Holstein cows; a control group of eight Holstein cows, received a water solution with Tween 80 (0.1%). The average number of flies per animal was estimated one day before each application, and then daily counts were done in both groups. The effectiveness of the formulation was calculated using the Abbott's formula. At the same time, defensive behaviors of stamp/kicks and tail movements were evaluated daily, estimating relative frequency per hour. The Ma134 formulation had an infestation control efficacy of 73%, taking into consideration the four study weeks. The population reduction effect was observed since the first week post-application (p<0.05), and the effect increased with the subsequent applications. Defensive behaviors were reduced beginning from the first application, reaching a reduction of 66% and 70%, respectively, during the four weeks of study. These results demonstrated the effectiveness of the formulation to control infestation by S. calcitrans, as well as reduce defensive behaviors which involves the infestation. PMID:26209932

  2. Interactions of Metarhizium anisoplae and tree-based mulches in repellence and mycoses against Coptotermes formosanus (Isoptera: Rhinotermitidae).

    PubMed

    Sun, Jian-Zhong; Fuxa, James R; Richter, Arthur; Ring, Dennis

    2008-06-01

    The use of mulch in urban landscapes has increased in the United States for the past decade. Tree-based organic mulches can supply Coptotermes formosanus Shiraki with food, moisture, and shelter. The current research contributes to mulch management technology in termite control. A choice test arena was designed to determine the repellence and mortality caused by commercial mulches treated with different concentrations of the fungus Metarhizium anisopliae (Metschnikoff) against C. formosanus. Each of six tree-based mulches (pine bark, pine straw, bald cypress, eucalyptus, water oak, and melaleuca) was coated with six conidial concentrations ranging from 1 x 10(3) to 1 x 10(8) conidia/ml. The foragers of C. formosanus were repelled significantly by the fungal-treated mulch substrates; the proportion of termites on fungal-treated mulch was usually <20% during the 28-d test. By day 28, >99% of the termites were killed in test arenas containing a chamber with mulch treated with 10(7) or 10(8) conidia/ml. M. anisopliae significantly reduced mulch consumption by 34-71%. Mulch consumption by the termites was negatively correlated with fungal concentration, and the type of mulch also affected consumption. The differences in termite foraging activities, mortality, and food consumption among mulches were usually confounded by differences in fungal concentrations of M. anisopliae. The results indicate that repellence and virulence of M. anisopliae conidia should significantly reduce the suitability of these six mulches as a habitat for C. formosanus. PMID:18559182

  3. The combination of the entomopathogenic fungus Metarhizium anisopliae with the insecticide Imidacloprid increases virulence against the dengue vector Aedes aegypti (Diptera: Culicidae)

    PubMed Central

    2011-01-01

    Background Dengue fever transmitted by the mosquito Aedes aegypti, is one of the most rapidly spreading insect borne diseases, stimulating the search for alternatives to current control measures. The dengue vector A. aegypti has received less attention than anophelene species, although more than 2.5 billion people are at risk of infection worldwide. Entomopathogenic fungi are emerging as potential candidates for the control of mosquitoes. Here we continue our studies on the pathogenicity of the entomopathogenic fungus Metarhizium anisopliae against adult A. aegypti females. With the aim of further reducing mean survival times of A. aegypti exposed to fungus impregnated surfaces, a sub-lethal concentration of the neonicotinoid insecticide Imidacloprid (IMI) was added to fungal suspensions. Results A sub-lethal concentration of IMI that did not significantly alter the daily survival rates or mean survival percentages of mosquitoes was identified to be 0.1 ppm. This sub-lethal concentration was combined with M. anisopliae conidia (1 × 109 conidia mL-1). Both the combined treatment and the conidia alone were able to reduce the survival of A. aegypti compared with untreated or IMI treated mosquitoes. Importantly, mosquito survival following exposure to the combined treatment for 6 and 12 hrs was significantly reduced when compared with mosquitoes exposed to conidia alone. Conclusions This is the first time that a combination of an insecticide and an entomopathogenic fungus has been tested against A. aegypti. Firstly, the study showed the potential of IMI as an alternative to the currently employed pyrethroid adulticides. Secondly, as an alternative to applications of high concentrations of chemical insecticides, we suggest that adult A. aegypti could be controlled by surface application of entomopathogenic fungi and that the efficiency of these fungi could be increased by combining the fungi with ultra-low concentrations of insecticides, resulting in higher mortality

  4. Efficacy of Metarhizium anisopliae in controlling the two-spotted spider mite Tetranychus urticae on common bean in screenhouse and field experiments.

    PubMed

    Bugeme, David Mugisho; Knapp, Markus; Ekesi, Sunday; Chabi-Olaye, Adenirin; Boga, Hamadi Iddi; Maniania, Nguya Kalemba

    2015-02-01

    The efficacy of aqueous and emulsifiable formulations of the fungus Metarhizium anisopliae isolate ICIPE78 was evaluated on the population density of Tetranychus urticae infesting common bean plants under screenhouse and field conditions. Synthetic acaricide abamectin was included as a check. Bean plants were artificially infested with T. urticae and allowed to multiply. Three treatments were applied in the screenhouse and 1 treatment in field trials. Mite density was recorded 2 d before spraying and weekly postspraying. The number of pods per plant, number of seeds per pod, and the dry weight of seeds per plant were recorded only in the screenhouse trials. In both screenhouse and field trials, fungal formulations applied at the concentration of 10(8) conidia/mL and the acaricide reduced the population density of mites as compared to the controls. There were significant differences in T. urticae population densities between the treatments at the various post-spraying sampling dates. In the screenhouse, the mite densities were near zero from 3-week postspraying in the treated leaves. At 4-week postspraying, there were no more leaves in the untreated control (T1) and in the control water + Silwet-L77 (T2). Fungal formulations were as effective as abamectin in reducing mite densities in both screenhouse and field experiments. There were significant differences in the production parameters during the 2 screenhouse trials, with fungal and abamectin treatments generally having the highest yield. Results of this study underline the potential of the M. anisopliae isolate ICIPE78 as an alternative to acaricides for T. urticae management. PMID:24470064

  5. Genome-assisted development of nuclear intergenic sequence markers for entomopathogenic fungi of the Metarhizium anisopliae species complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomopathogenic fungi in the genus Metarhizium have proven useful for the biological control of economically important pests across the globe. Understanding the true diversity of this group is hampered by convergent morphologies between species. The application of molecular techniques has enabled...

  6. Effects of passages through a suitable host of the fungus, Metarhizium anisopliae, on the virulence of acaricide- susceptible and resistant strains of the tick, Rhipicephalus microplus

    PubMed Central

    Adames, Markis; Fernández-Ruvalcaba, Manuel; Peña-Chora, Guadalupe; Hernández-Velázquez, Victor M.

    2011-01-01

    The aim of this work was to assess the virulence of strain M379 of the fungus, Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavicipitaceae) after different passages through a suitable host and at different concentrations for the control of both acaricide-susceptible and resistant strains of the tick, Rhipicephalus (formerly Boophilus) microplus Canestrini (Ixodida: Ixodidae) in vitro. The highest value of LC50 for the susceptible strain corresponded to zero passage with 7.68 × 107 conidia/ml followed by the fourth passage with 2.68 × 107, which reduced 2.87-fold the lethal concentration. When comparing LC50 values of the fourth vs. the seventh passage (2.59 × 105 conidia/ml), the lethal concentration was reduced 103.47-fold by the seventh passage. In addition, in the resistant strain the LC50 highest value corresponded to zero passage with 4.95 × 107 conidia/ml followed by the fourth passage with 7.86 × 106, which reduced 6.30-fold the lethal concentration. When comparing LC50 values of the fourth vs. the seventh passage (1.04 × 105 conidia/ml) in the resistant strain, the lethal concentration was reduced 75.58-fold by the seventh passage. These results suggest that the number of passages on M. anisopliae through a suitable host increased its virulence on both R microplus strains. When comparing LC50 of the zero passage through a suitable host of both acaricide-susceptible and resistant strains, the highest LC50 values corresponded to the susceptible strain with 7.68 × 107 conidia/ml followed by the resistant one with 4.95 × 107, showing that on the resistant strain the lethal concentration is reduced by 1.55-fold. When comparing the fourth passage, the highest values of LC50 corresponded to the susceptible strain with 2.68 × 107 conidia/ml followed by the resistant one with 7.86 × 106 conidia/ml, showing for the resistant strain a 3.41-fold reduced lethal concentration. Moreover, when comparing the seventh passages, the highest values of

  7. Effect of heat stress and oil formulation on conidial germination of Metarhizium anisopliae s.s. on tick cuticle and artificial medium.

    PubMed

    Barreto, Lucas P; Luz, Christian; Mascarin, Gabriel M; Roberts, Donald W; Arruda, Walquíria; Fernandes, Éverton K K

    2016-07-01

    The effect of heat stress (45°C) versus non-heat stress (27°C) on germination of Metarhizium anisopliae sensu stricto (s.s.) isolate IP 119 was examined with conidia formulated (suspended) in pure mineral oil or in water (Tween 80, 0.01%), and then applied onto the cuticle of Rhipicephalus sanguineus sensu lato (s.l.) engorged females or onto culture medium (PDAY). In addition, bioassays were performed to investigate the effect of conidia heated while formulated in oil, then applied to blood-engorged adult R. sanguineus females. Conidia suspended in water then exposed to 45°C, in comparison to conidia formulated in mineral oil and exposed to the same temperature, germinated less and more slowly when incubated on either PDAY medium or tick cuticle. Also, conidial germination on tick cuticle was delayed in comparison to germination on artificial culture medium; for example, germination was 13% on tick cuticle 72h after inoculation, in contrast to 61.5% on PDAY medium. Unheated (27°C) conidia suspended in either water or oil and applied to tick cuticle developed appressoria 36h after treatment; whereas only heat-stressed conidia formulated in oil developed appressoria on tick cuticle. In comparison to conidia heated in mineral oil, there was a strong negative effect of heat on germination of conidia heated in water before being applied to arthropod cuticle. Nevertheless, bioassays [based primarily on egg production (quantity) and egg hatchability] exhibited high percentages of tick control regardless of the type of conidial suspension; i.e., water- or oil-formulated conidia, and whether or not conidia were previously exposed to heat. In comparison to aqueous conidial preparations, however, conidia formulated in oil reduced egg hatchability irrespective of heat or no-heat exposure. In conclusion, mineral-oil formulation protected conidia against heat-induced delay of both germination and appressorium production when applied to the cuticle of R. sanguineus. PMID

  8. Advances in microbial insect control in horticultural ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of microbial organisms as biological control agents has progressed significantly since Metschnikoff launched the first attempt at microbial insect control with Metarhizium anisopliae in 1879. Following the lead of Metschnikoff, entomopathogenic nematodes, fungi, bacteria and viruses have b...

  9. A novel dodine-free selective medium based on the use of cetyl trimethyl ammonium bromide (CTAB) to isolate Beauveria bassiana, Metarhizium anisopliae sensu lato and Paecilomyces lilacinus from soil.

    PubMed

    Posadas, Julieta B; Comerio, Ricardo M; Mini, Jorge I; Nussenbaum, Ana L; Lecuona, Roberto E

    2012-01-01

    This study evaluated the quaternary ammonium compound cetyl trimethyl ammonium bromide (CTAB) as an alternative to the chemically related dodecylguanidine (dodine) for the selective isolation of entomopathogenic fungi. Oatmeal agar (OA) with chloramphenicol was used as basal medium, and three concentrations of CTAB (0.5, 0.6, 0.7 g/L) were evaluated and compared against OA + 0.46 g/L dodine. Selective isolation and growth studies were performed with the entomopathogens Beauveria bassiana, Metarhizium anisopliae s.l. and Paecilomyces lilacinus and five common non-entomopathogenic non-target species. The three entomopathogenic fungi sporulated earlier on OA + 0.6 g/L CTAB than on OA + 0.46 g/L dodine, while none of the non-target fungi sporulated on OA + 0.6 g/L CTAB. All entomopathogenic fungal isolates grew on OA + 0.6 g/L CTAB, despite some intra-species variation, whereas non-target fungi showed no growth or sporulation. OA + 0.6 g/L CTAB resulted in an efficient medium to isolate B. bassiana, M. anisopliae s. l. and P. lilacinus from soil samples. Results of our study suggest that OA + 0.6 g/L CTAB is a suitable, simple and inexpensive to prepare medium to replace OA + 0.46 g/L dodine for the selective isolation of these fungi. PMID:22314588

  10. Larvicidal and pupicidal properties of Acalypha alnifolia Klein ex Willd. (Euphorbiaceae) leaf extract and the microbial insecticide Metarhizium anisopliae (Metsch.) against lymphatic filarial vector, Culex quinquefasciatus..

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was made to determine the mosquitocidal properties of Acalypha alnifolia leaf extract combined with the use of Metarizhium anisopliae spores for control of the lymphatic filariasis vector Culex quinquefasciatus. The methanolic leaf extract showed larvicidal and pupicidal effects after 24...

  11. Susceptibility of adult and larval stages of the horn fly, Haematobia irritans, to the entomopathogenic fungus Metarhizium anisopliae under field conditions.

    PubMed

    Mochi, Dinalva Alves; Monteiro, Antonio Carlos; Simi, Lucas Detogni; Sampaio, Alexandre Amstalden Moraes

    2009-12-01

    The efficacy of M. anisopliae strain E9 as a biological insecticide for the adult and larval stages of H. irritans was assessed under field conditions. To assess larvicidal activity, nine heifers were randomly divided into three groups, which were maintained separated from each other. The first group ingested fungal spores encapsulated in alginate pellets. The second group ingested in natura spores that were grown on sterilized rice. In both groups, each animal received three meals a day, with each meal containing 2 x 10(10)conidia. The third group received no treatment and was used as a control. Fecal samples from manure and whole dung pats were collected from each of the three separate pastures on the day that the animals were allocated and on days 1, 3, 6, 9 and 12 afterwards. The fecal samples were tested for the presence of fungal colony forming units (CFU), and the emergence of horn flies was observed in the dung pats. Significantly less (P<0.01) adult horn flies were found in dung pats of the group treated with encapsulated fungi (11.7) than in those from the heifers treated with conidia in natura (27.9) or from the control group (29.5). The fecal samples of the treated animals presented significantly higher numbers of M. anisopliae CFUs then those from the untreated controls. We found that on day 9 fecal samples from animals given microencapsulated conidia had significantly higher CFUs than those from animals treated with conidia in natura. To assess adulticide activity, four heifers were sprayed with a suspension of 3 x 10(10)conidial(-1) of M. anisopliae, and four control animals were sprayed with the same solution without conidial content. Four sprayings were done at five-day intervals, and all animals were photographed daily to observe the quantity of flies present. After the second spraying, we observed an average of 22.9 flies per animal; untreated heifers had an average of 43 flies per animal; thus, the treatment significantly (P<0.05) decreases fly

  12. Further Progress with Metarhizium Microsclerotial Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsclerotium production by Metarhizium anisopliae, previously reported for flask scale, was successfully achieved at a 100-Liter fermenter scale. The resulting granular formulations readily conidiated on water agar or in moist soil to the same extent as reported for flask fermentations. Both Phar...

  13. Multiplexed microsatellite markers for seven Metarhizium species.

    PubMed

    Mayerhofer, Johanna; Lutz, Andy; Widmer, Franco; Rehner, Stephen A; Leuchtmann, Adrian; Enkerli, Jürg

    2015-11-01

    Cross-species transferability of 41 previously published simple sequence repeat (SSR) markers was assessed for 11 species of the entomopathogenic fungus Metarhizium. A collection of 65 Metarhizium strains including all 54 used in a recent phylogenetic revision of the genus were characterized. Between 15 and 34 polymorphic SSR markers produced scorable PCR amplicons in seven species, including M. anisopliae, M. brunneum, M. guizhouense, M. lepidiotae, M. majus, M. pingshaense, and M. robertsii. To provide genotyping tools for concurrent analysis of these seven species fifteen markers grouped in five multiplex pools were selected based on high allelic diversity and easy scorability of SSR chromatograms. PMID:26407949

  14. CONTROL OF WIREWORM (ELATERIDAE) IN POTATOES WITH MICROBIAL METARHIZIUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Technical grade, liquid and granular formulations of Metarhizium anisopliae F52 were evaluated for wireworm control in small plots of potatoes at two sites in 2006. In-furrow treatments of three different formulations on day of planting: an emulsifiable concentrate (EC) diluted in water, a technica...

  15. Biolarvicidal and pupicidal activity of Acalypha alnifolia Klein ex Willd.(Family:Euphorbiaceae) leaf extract and microbial insecticide, Metarhizium anisopliae(Metsch.)against malaria fever mosquito Anopheles stephensi Liston

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was made to determine the biological activity of Acalypha alnifolia leaf extract and the microbial insecticide Metarizhium anisopliae against larvae and pupae of the malaria vector Anopheles stephensi. Ethanolic A. alnifolia leaf extract tested against 1st through 4th instars and pupae o...

  16. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity

    USGS Publications Warehouse

    Fernandes, E.K.K.; Keyser, C.A.; Chong, J.P.; Rangel, D.E.N.; Miller, M.P.; Roberts, D.W.

    2010-01-01

    Aims: The genetic relationships and conidial tolerances to high and low temperatures were determined for isolates of several Metarhizium species and varieties. Methods and Results: Molecular-based techniques [AFLP and rDNA (ITS1, ITS2 and 5??8S) gene sequencing] were used to characterize morphologically identified Metarhizium spp. isolates from a wide range of sources. Conidial suspensions of isolates were exposed to wet heat (45 ?? 0??2??C) and plated on potato dextrose agar plus yeast extract (PDAY) medium. After 8-h exposure, the isolates divided clearly into two groups: (i) all isolates of Metarhizium anisopliae var. anisopliae (Ma-an) and Metarhizium from the flavoviride complex (Mf) had virtually zero conidial relative germination (RG), (ii) Metarhizium anisopliae var. acridum (Ma-ac) isolates demonstrated high heat tolerance (c. 70-100% RG). Conidial suspensions also were plated on PDAY and incubated at 5??C for 15 days, during which time RGs for Ma-an and Ma-ac isolates were virtually zero, whereas the two Mf were highly cold active (100% RG). Conclusions: Heat and cold exposures can be used as rapid tools to tentatively identify some important Metarhizium species and varieties. Significance and Impact of the Study: Identification of Metarhizium spp. currently relies primarily on DNA-based methods; we suggest a simple temperature-based screen to quickly obtain tentative identification of isolates as to species or species complexes. ?? 2009 The Society for Applied Microbiology.

  17. Production of microsclerotia by brazilian strains of metarhizium spp. using submerged liquid culture fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the potential production and desiccation tolerance of microsclerotia (MS) by Brazilian strains of Metarhizium. anisopliae [Ma], M. acridum [Mc] and M. robertsii [Mr]. These fungi were grown in a liquid medium containing 16 g carbon l-1 with a carbon:nitrogen ratio of 50:1. One hundre...

  18. Comparative impact of artificial selection for fungicide resistance on Beauveria bassiana and Metarhizium brunncum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hypocreales fungi such as Beauveria bassiana and Metarhizium anisopliae can be negatively affected by fungicides thereby reducing their biocontrol potential. The overall goal of this study was to investigate the impact of artificial selection for fungicide resistance on two commercial entomopathoge...

  19. Metachelins, mannosylated and N-oxidized coprogen-type siderophores from Metarhizium robertsii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under iron-depleted culture conditions, the entomopathogenic fungus Metarhizium robertsii (Bischoff, Humber, and Rehner) (= M. anisopliae) produces a complex of extracellular siderophores including novel O-glycosylated and/or N-oxidized coprogen-type compounds as well as the known fungal siderophore...

  20. Development of pilot-scale fermentation and stabilization processes for the production of microsclerotia of the entomopathogenic fungus Metarhizium brunneun strain F52

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using 100L stirred-tank bioreactors, we evaluated the effect of fermentation parameters and drying protocols on the production and stabilization of microsclerotia (MS) of the entomopathogenic fungus Metarhizium brunneum (formerly M. anisopliae F52). Results showed that stirred-tank bioreactors can ...

  1. Imbibitional damage in conidia of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Metarhizium acridum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When dried organisms are immersed in water, rapid imbibition may cause severe damage to plasma membranes; in unicellular organisms, such damage is usually lethal. This study investigated effects of pre-immersion moisture levels and immersion temperature on imbibitional damage in three insect pathoge...

  2. Biocontrol of the Brown-Banded Cockroach, Supella longipalpa F. (Blattaria: Blattellidae), with Entomopathogenic Fungus, Metharhizium anisopliae

    PubMed Central

    Sharififard, Mona; Mossadegh, Mohammad Saeed; Vazirianzadeh, Babak; Latifi, Seyed Mahmood

    2016-01-01

    Background: Considering to the high distribution of cockroaches as urban pests, the efficacy of different formulations of Metarhizium anisopliae strain Iran 437C were assessed against the brown-banded cockroach, Supella longipalpa F. under laboratory and field conditions. Methods: Metarhizium anisopliae isolates were screened with immersing adults of the brown-banded cockroachs in aqueous suspension of 108 conidia ml−1 followed by surface or bait treated with different doses of the most virulent isolate against the nymphs. Then formulations of conidia oil-in-water were examined versus cockroach nymphs using different plant oils and paraffin. Then they were evaluated and compared with aqueous suspension and control group. On a large-scale, the sunflower oil-in-water formulation of conidia was sprayed at houses using a hand sprayer. Results: Metarhizium anisopliae IRAN 437C was the most virulent isolate against the brown-banded cockroach, causing 100% mortality in adults at seven days post-exposure. Inoculated bait with this isolate was not enough pathogenic against the cockroach even at two weeks after treatment. Treated surface with conidia as aqueous suspension or oil-in-water formulation was more effective than the bait formulation against the cockroach caused 39.4–97.2% mortality compared with 2.5% mortality in control group after two days. Spraying the conidia formulated with sunflower oil was an effective formulation causing 76.1% reduction in the cockroach density on the third day post treatment in the houses. Conclusion: The oil-in-water formulation of M. anisopliae IRAN 437C could be recommended as a promising alternative for cockroach control. PMID:27308292

  3. Allergenic extracts from Metarhizium canisopliae: obtainment and characterization.

    PubMed

    Barbieri, R T; Croce, J; Gandra, R F; Gagete, E; Paula, C R; Gambale, W

    2005-01-01

    Metarhizium anisopliae is used as a biopesticide for insects that damage agricultural plantations like sugar cane and forage plants. In a previous study the sensitization to this fungus of asthmatic patients coming from sugar cane areas was showed. The aims of this work were: to compare crude extracts obtained with Tris-HCl and Coca liquid from several growth phases of M. anisopliae concerning the total content of proteins and their electrophoretic analysis profile; to evaluate in vivo allergic sensitization in Balb/c mice and allergic patients from a sugar cane area, and to characterize the allergenic fractions in the sera of patients positive for the prick test by means of Western-blotting. The extract obtained with Coca liquid on the 16th day was the one that presented the greatest number of proteic fractions, including all those present in the other extracts. Twelve fractions were verified in this extract with approximate molecular weights from 94 to 14 kDa. The allergenicity of the extract obtained on the 16th day was proven by the production of IgE antibodies in Balb/c mice, with titres of 200. Prick tests carried out with the extract of the 16th day in 79 atopic individuals (from sugar cane area), 35 atopic individuals (from urban area) and 11 non- atopic individuals showed respective positivity of 29%, 9% and 0%. The allergenic characterization in vitro was performed by means of Western blotting, and the fractions that reacted with the positive individuals' sera were those of approximate molecular weights of 67 kDa (95%); 20 kDa (55%); 94 kDa (36%); 34 and 36 kDa (23%); 43 and 48 kDa (14%); 16 kDa (9%) and 54kDa (5%). It was concluded that the crude allergenic extract, obtained with Coca liquid from the 16th day growth of Metarhizium anisopliae, contains allergenic fractions and can be used in diagnostic screening tests. PMID:16047714

  4. Multiplexed microsatellite markers for seven Metarhizium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross-species transferability of 41 previously published simple sequence repeat (SSR) markers was assessed for 11 species of the entomopathogenic fungus Metarhizium. A collection of 65 Metarhizium isolates including all 54 used in a recent phylogenetic revision of the genus were characterized. Betwe...

  5. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality

    PubMed Central

    Alkhaibari, Abeer M.; Carolino, Aline T.; Yavasoglu, Sare I.; Maffeis, Thierry; Mattoso, Thalles C.; Bull, James C.; Samuels, Richard I.; Butt, Tariq M.

    2016-01-01

    Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world’s population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti

  6. Metarhizium brunneum Blastospore Pathogenesis in Aedes aegypti Larvae: Attack on Several Fronts Accelerates Mortality.

    PubMed

    Alkhaibari, Abeer M; Carolino, Aline T; Yavasoglu, Sare I; Maffeis, Thierry; Mattoso, Thalles C; Bull, James C; Samuels, Richard I; Butt, Tariq M

    2016-07-01

    Aedes aegypti is the vector of a wide range of diseases (e.g. yellow fever, dengue, Chikungunya and Zika) which impact on over half the world's population. Entomopathogenic fungi such as Metarhizium anisopliae and Beauveria bassiana have been found to be highly efficacious in killing mosquito larvae but only now are the underlying mechanisms for pathogenesis being elucidated. Recently it was shown that conidia of M. anisopliae caused stress induced mortality in Ae. aegypti larvae, a different mode of pathogenicity to that normally seen in terrestrial hosts. Blastospores constitute a different form of inoculum produced by this fungus when cultured in liquid media and although blastospores are generally considered to be more virulent than conidia no evidence has been presented to explain why. In our study, using a range of biochemical, molecular and microscopy methods, the infection process of Metarhizium brunneum (formerly M. anisopliae) ARSEF 4556 blastospores was investigated. It appears that the blastospores, unlike conidia, readily adhere to and penetrate mosquito larval cuticle. The blastospores are readily ingested by the larvae but unlike the conidia are able infect the insect through the gut and rapidly invade the haemocoel. The fact that pathogenicity related genes were upregulated in blastospores exposed to larvae prior to invasion, suggests the fungus was detecting host derived cues. Similarly, immune and defence genes were upregulated in the host prior to infection suggesting mosquitoes were also able to detect pathogen-derived cues. The hydrophilic blastospores produce copious mucilage, which probably facilitates adhesion to the host but do not appear to depend on production of Pr1, a cuticle degrading subtilisin protease, for penetration since protease inhibitors did not significantly alter blastospore virulence. The fact the blastospores have multiple routes of entry (cuticle and gut) may explain why this form of the inoculum killed Ae. aegypti larvae

  7. FIELD TRIALS ON THE MICROBIAL CONTROL OF VARROA WITH THE FUNGUS METARHIZIUM ANISOPLIAE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of chemical controls products are currently available to the beekeeping industry for varroa mite control. However, we find that beekeepers are frequently dissatisfied with the level of mite control they are able to achieve, and a biological control agent could potentially offer an entirely...

  8. 76 FR 26194 - Metarhizium anisopliae Strain F52; Exemption From the Requirement of a Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-06

    ... manufacturing (NAICS code 311). Pesticide manufacturing (NAICS code 32532). This listing is not intended to be...) 305-5805. II. Background and Statutory Findings In the Federal Register of April 8, 2009 (74 FR 15969... from review under Executive Order 12866, entitled Regulatory Planning and Review (58 FR 51735,...

  9. THE IDENTIFICATION AND CHARACTERIZATION OF AN LGE-INDUCING PROTEIN IN METARHIZIUM ANISOPLIAE EXTRACT

    EPA Science Inventory

    Molds are ubiquitous components of the indoor environment and have been associated with exacerbation of asthma as well as a number of other health effects. Their contribution to the induction of allergic asthma is less certain. Previously, we have shown that BALB/c mice exposed...

  10. Storage conditions affect speed of germination in Beauveria bassiana and Metarhizium anisopliae conidia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The retention of high viability during storage is essential for effectiveness and thus market acceptance of fungus-based biopesticides. The length of adequate shelf-lives for mycoinsecticides is controversial, with proposed requirements varying from a few weeks to 18 months. Shelf-life determination...

  11. Production of microsclerotia by Brazilian strains of Metarhizium spp. using submerged liquid culture fermentation.

    PubMed

    Mascarin, Gabriel Moura; Kobori, Nilce Naomi; de Jesus Vital, Rayan Carlos; Jackson, Mark Alan; Quintela, Eliane Dias

    2014-05-01

    We investigated the potential production and desiccation tolerance of microsclerotia (MS) by Brazilian strains of Metarhizium anisopliae (Ma), M. acridum (Mc) and M. robertsii (Mr). These fungi were grown in a liquid medium containing 16 g carbon l⁻¹ with a carbon:nitrogen ratio of 50:1. One hundred milliliters cultures were grown in 250 ml Erlenmeyer flasks in a rotary incubator shaker at 28 °C and 200 rpm for 5 days. Five-day-old MS were harvested, mixed with diatomaceous earth (DE) and air-dried for 2 days at 30 °C. The air-dried MS-DE granular preparations were milled by mortar + pestle and stored in centrifuged tubes at either 26 or -20 °C. Desiccation tolerance and conidia production were assessed for dried MS granules by measuring hyphal germination after incubation for 2 days on water agar plates at 26 °C and for conidia production following 7 days incubation. Yields of MS by all strains of Metarhizium were 6.1-7.3 × 10⁶ l⁻¹ after 3 days growth with maximum MS yields (0.7-1.1 × 10⁷ l⁻¹) after 5 days growth. No differences in biomass accumulation were observed after 3 days growth, whereas Ma-CG168 showed the highest biomass accumulation after 5 days growth. Dried MS-DE preparations of all fungal strains were equally tolerant to desiccation (≥93 % germination) and the highest conidia production was obtained by MS granules of Mc-CG423 (4 × 10⁹ conidia g⁻¹). All MS granules showed similar stability after storage at either 26 or -20 °C for 3.5 months. PMID:24343780

  12. PROTEOMIC ANALYSIS OF ALLERGENS FROM METARHIZIUM ANISOPLIEA

    EPA Science Inventory

    The goal of this project is the identification and characterization of allergens from the fungus M. Anisopliae, using mass spectrometry (MS). The US EPA, under the "Children at Risk" program, is currently addressing the problem of indoor fungal bioaerosol contamination. One of ...

  13. Phylogenetic diversity of Brazilian Metarhizium associated with sugarcane agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biological control of spittlebug with Metarhizium in sugarcane is an example of the successful application of sustainable pest management in Brazil. However little is known about the richness, distribution and ecology of Metarhizium species in the agroecosystems and natural environments of Brazil. W...

  14. Insertion of an Esterase Gene into a Specific Locust Pathogen (Metarhizium acridum) Enables It to Infect Caterpillars

    PubMed Central

    Wang, Sibao; Fang, Weiguo; Wang, Chengshu; St. Leger, Raymond J.

    2011-01-01

    An enduring theme in pathogenic microbiology is poor understanding of the mechanisms of host specificity. Metarhizium is a cosmopolitan genus of invertebrate pathogens that contains generalist species with broad host ranges such as M. robertsii (formerly known as M. anisopliae var. anisopliae) as well as specialists such as the acridid-specific grasshopper pathogen M. acridum. During growth on caterpillar (Manduca sexta) cuticle, M. robertsii up-regulates a gene (Mest1) that is absent in M. acridum and most other fungi. Disrupting M. robertsii Mest1 reduced virulence and overexpression increased virulence to caterpillars (Galleria mellonella and M. sexta), while virulence to grasshoppers (Melanoplus femurrubrum) was unaffected. When Mest1 was transferred to M. acridum under control of its native M. robertsii promoter, the transformants killed and colonized caterpillars in a similar fashion to M. robertsii. MEST1 localized exclusively to lipid droplets in M. robertsii conidia and infection structures was up-regulated during nutrient deprivation and had esterase activity against lipids with short chain fatty acids. The mobilization of stored lipids was delayed in the Mest1 disruptant mutant. Overall, our results suggest that expression of Mest1 allows rapid hydrolysis of stored lipids, and promotes germination and infection structure formation by M. robertsii during nutrient deprivation and invasion, while Mest1 expression in M. acridum broadens its host range by bypassing the regulatory signals found on natural hosts that trigger the mobilization of endogenous nutrient reserves. This study suggests that speciation in an insect pathogen could potentially be driven by host shifts resulting from changes in a single gene. PMID:21731492

  15. Susceptibility of Ixodes scapularis (Acari: Ixodidae) to Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) using three exposure assays in the laboratory.

    PubMed

    Bharadwaj, Anuja; Stafford, Kirby C

    2012-02-01

    An emulsifiable concentrate (EC) and granular (G) formulation of the entomopathogenic fungus, Metarhizium brunneum strain F52 (formerly Metarhizium anisopliae strain F52) were tested against unfed adults and nymphs of Ixodes scapularis Say in the laboratory. Three exposure methods; dip, surface contact, and direct spray application, and three exposure time intervals (3, 30, and 300 min) were used to evaluate the EC formulation. Application rates ranged from 2.6 x 10(2) to 2.6 x 10(8) conidia/cm2. The surface treatment was used for granular formulation with concentrations ranging from 2.3 x 10(5) to 2.3 x 10(7) conidia/cm2 for same three exposure times. Both the EC and G formulations of this fungus were highly pathogenic against I. scapularis adults and nymphs. Logistic regression analysis found formulation, spore concentration, time of exposure, and observation period were significant or highly significant factors influencing tick mortality. For adult I. scapularis, the spray application with the EC formulation of M. brunneum F52 resulted in a lower LC50 (5.9 x 10(4) conidia/cm2) at 30 min than surface exposure to the EC (LC50 = 1.3 x 10(6) conidia/cm2) or G formulation (LC50 = 8.1 x 10(5) conidia/cm2). At higher concentrations, fungal activity was evident in adult I. scapularis held at 5 degrees C suggesting the fungus may provide control in the cooler fall season. While the observed pathogenicity of a fungus against ticks can be dependent upon the bioassay assessment, we found nymphs and adults of I. scapularis to be highly susceptible to M. brunneum F52, regardless of the exposure method used. PMID:22420275

  16. MALDI-TOF mass spectrometry applied to identifying species of insect-pathogenic fungi from the Metarhizium anisopliae complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has proven to be a powerful tool for taxonomic resolution of microorganisms. In this proof-of-concept study, we assessed the effectiveness of this technique to track the current gene sequence-based phylogenet...

  17. Allergic Responses Induced by a Fungal Biopesticide Metarhizium anisopliae and House Dust Mite are Compared in a Mouse Model

    EPA Science Inventory

    Biopesticides can be effective in controlling their target pest. However, research regarding mammalian health impacts of these agents has focused on toxicity and pathogenicity, with limited research regarding allergenicity and asthma development. We compared the ability of funga...

  18. In vitro compatibility between three bacterial sugarbeet disease-control agents and the entomopathogenic fungi, Metarhizium anisopliae and Beauveria bassiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rhizosphere is the primary arean for entomopathogenic fungi (EPF) deployed against soil-dwelling pests, and is also the site of action of biological agents used against root pathogens. Interactions between EPF and soil microbes, much less biofungicidal agents, have been barely studied, however, ...

  19. Occurrence of Metarhizium spp in central Brazilian soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biodiversity of entomopathogenic fungi in tropical ecosystems is still little investigated, and the objective of this study was to isolate and identify fungi of the entomopathogenic genus Metarhizium (Hypocreales: Clavicipitaceae) present in undisturbed soils of Central Brazilian Cerrado. A tota...

  20. Molecular genetics of secondary chemistry in Metarhizium fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As with many microbes, entomopathogenic fungi from the genus Metarhizium produce a plethora of small molecule metabolites, often referred to as secondary metabolites. Although these intriguing compounds are a conspicuous feature of the biology of the producing fungi, their roles in pathogenicity and...

  1. Metacridamides A and B from the biocontrol fungus metarhizium acridum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. As part of an effort to catalog the secondary metabolites of this fungus we discovered that its conidia produce two novel 17-membered macrocycl...

  2. Immune responses of locusts to challenge with the pathogenic fungus Metarhizium or high doses of laminarin.

    PubMed

    Mullen, Lisa M; Goldsworthy, Graham J

    2006-04-01

    Two isolates of Metarhizium anisopliae var acridum were tested for their effects on the locust immune system and for comparison with the effects of challenge by injection with laminarin. Isolate IMI 330189 (referred to hereafter as Met 189) is highly pathogenic whether applied topically as conidia or injected as blastospores. However, isolate ARSEF 728 (referred to hereafter as Met 728) is pathogenic only when injected as blastospores, suggesting that the lack of pathogenicity of topically applied conidia from this isolate is due to a failure to penetrate the insect cuticle and gain access to the haemocoel. After topical application of conidia from Met 189, no activation of prophenoloxidase is detected, but injection of blastospores from Met 189 brings about a transient increase in phenoloxidase activity in the haemolymph in both adult locusts and 5th instar nymphs, although this does not prevent fungal-induced mortality. Co-injection of adipokinetic hormone-I (AKH-I) with blastospores prolongs the activation of prophenoloxidase in the haemolymph of adult locusts, and enhances it in nymphs. It is argued that the lack of activation of prophenoloxidase in nymphs shown previously (Mullen, L., Goldsworthy, G., 2003. Changes in lipophorins are related to the activation of phenoloxidase in the haemolymph of Locusta migratoria in response to injection of immunogens. Insect Biochemistry and Molecular Biology 33, 661-670), reflects differences in the sensitivity of the immune system between adults and nymphs rather than distinct qualitative differences, and this is confirmed in this study by the demonstration that doses of laminarin higher than those used previously (>or=100 microg) do activate the prophenoloxidase cascade in 5th instar nymphs. Nodules are formed in locusts of all ages in response to fungal infection or injection of laminarin, although there is wide variation in the number, size and distribution of nodules formed. During the examination of 5th instar nymphs

  3. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized Cowpea Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Destruxins (DTXs) are cyclic depsipeptides produced by many Metarhizium isolates that have long been assumed to contribute to virulence of these entomopathogenic fungi. We evaluated the virulence of 20 Metarhizium isolates against insect larvae and measured the concentration of DTXs A, B, and E prod...

  4. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genus Metarhizium traditionally refers to green-spored asexual insect pathogenic fungi. Through culturing and molecular methods, Metarhizium has been linked to Metacordyceps sexual states. Historically, fungal nomenclature has allowed separate names for the different life-stages of pleomorphic...

  5. Production of destruxins from metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Destruxins (DTXs) are cyclic depsipeptides produced by many Metarhizium isolates that have long been assumed to contribute to virulence of these entomopathogenic fungi. We evaluated the virulence of 20 Metarhizium isolates against insect larvae and measured the concentration of DTXs A, B, and E prod...

  6. Occurrence of Entomopathogenic Fungi from Agricultural and Natural Ecosystems in Saltillo, México, and their Virulence Towards Thrips and Whiteflies

    PubMed Central

    Sánchez-Peña, Sergio R.; Lara, Jorge San-Juan; Medina, Raúl F.

    2011-01-01

    Entomopathogenic fungi were collected from soil in four adjacent habitats (oak forest, agricultural soil, pine reforestation and chaparral habitat) in Saltillo, México using the insect bait method with Tenebrio molitor (L.) (Coleoptera: Tenebrionidae) larvae as bait. Overall, of the larvae exposed to soil, 171 (20%) hosted Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae), 25 (3%) hosted Metarhizium anisopliae (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) and 1 (0.1%) hosted lsaria (=Paecilomyces) sp. (Hypocreales: Cordycipitaceae). B. bassiana was significantly more frequent on larvae exposed to oak forest soil. M. anisopliae was significantly more frequent on larvae exposed to agricultural soil. From the infected bait insects, 93 isolates of B. bassiana and 24 isolates of M. anisopliae were obtained. Strains were tested for their infectivity against Cuban laurel thrips, Gynaikothrips uzeli Zimmerman (Thysanoptera: Phlaeothripidae) and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). B. bassiana isolates caused the highest mortality on thrips (some causing 88% mortality after 6 days); both fungal species caused similarly high mortality levels against whiteflies (75%) after 6 days. Large amounts of germplasm of entomopathogenic fungi, fundamentally B. bassiana and M. anisopliae, exist in the habitats sampled; pathogenicity varied among strains, and some strains possessed significant virulence. Soils in these habitats are reservoirs of diverse strains with potential for use in biocontrol. PMID:21521145

  7. Occurrence of entomopathogenic fungi from agricultural and natural ecosystems in Saltillo, México, and their virulence towards thrips and whiteflies.

    PubMed

    Sánchez-Peña, Sergio R; Lara, Jorge San-Juan; Medina, Raúl F

    2011-01-01

    Entomopathogenic fungi were collected from soil in four adjacent habitats (oak forest, agricultural soil, pine reforestation and chaparral habitat) in Saltillo, México using the insect bait method with Tenebrio molitor (L.) (Coleoptera: Tenebrionidae) larvae as bait. Overall, of the larvae exposed to soil, 171 (20%) hosted Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Cordycipitaceae), 25 (3%) hosted Metarhizium anisopliae (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae) and 1 (0.1%) hosted lsaria (=Paecilomyces) sp. (Hypocreales: Cordycipitaceae). B. bassiana was significantly more frequent on larvae exposed to oak forest soil. M. anisopliae was significantly more frequent on larvae exposed to agricultural soil. From the infected bait insects, 93 isolates of B. bassiana and 24 isolates of M. anisopliae were obtained. Strains were tested for their infectivity against Cuban laurel thrips, Gynaikothrips uzeli Zimmerman (Thysanoptera: Phlaeothripidae) and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). B. bassiana isolates caused the highest mortality on thrips (some causing 88% mortality after 6 days); both fungal species caused similarly high mortality levels against whiteflies (75%) after 6 days. Large amounts of germplasm of entomopathogenic fungi, fundamentally B. bassiana and M. anisopliae, exist in the habitats sampled; pathogenicity varied among strains, and some strains possessed significant virulence. Soils in these habitats are reservoirs of diverse strains with potential for use in biocontrol. PMID:21521145

  8. Susceptibility of Apple Clearwing Moth Larvae, Synanthedon myopaeformis (Lepidoptera: Sesiidae) to Beauveria basiana and Metarhizium brunneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Apple clearwing moth larvae, Synanthedon myopaeformis (Lepidoptera: Sessidae) collected from orchards in British Columbia, Canada, were naturally infected with the entomopathogenic fungus, Metarhizium brunneum (Petch). In laboratory bioassays, larvae were susceptible to infection and dose related mo...

  9. Evaluation of Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) for control of Japanese beetle larvae in turfgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experimental and commercial preparations of Metarhizium brunneum strain F52 were evaluated for control of Japanese beetle Popillia japonica Newman (Coleoptera: Scarbaeidae) larvae (white grubs) in the laboratory and under field conditions. Experimental preparations consisted of granule and liquid f...

  10. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics.

    PubMed

    Kepler, Ryan M; Humber, Richard A; Bischoff, Joseph F; Rehner, Stephen A

    2014-01-01

    The genus Metarhizium historically refers to green-spored asexual insect pathogenic fungi. Through culturing and molecular methods, Metarhizium has been linked to Metacordyceps sexual states. Historically fungal nomenclature has allowed separate names for the different life stages of pleomorphic fungi. However, with the move to one name for one fungus regardless of life stage, there is a need to determine which name is correct. For Metarhizium the situation is complicated by the fact that Metacordyceps sexual states are interspersed among additional asexual genera, including Pochonia, Nomuraea and Paecilomyces. Metarhizium has priority as the earliest available name, but delimiting the boundaries of this genus remains problematic. To clarify relationships among these taxa we have obtained representative material for each genus and established a molecular dataset of the protein-coding genes BTUB, RPB1, RPB2 and TEF. The resulting phylogeny supports Metarhizium combining the majority of species recognized in Metacordyceps as well as the green-spored Nomuraea species and those in the more recently described genus Chamaeleomyces. Pochonia is polyphyletic, and we restrict the definition of this genus to those species forming a monophyletic clade with P. chlamydosporia, and the excluded species are transferred to Metapochonia gen. nov. It is our hope that this unified concept of sexual and asexual states in Metarhizium will foster advances in communication and understanding the unique ecologies of the associated species. PMID:24891418

  11. Multilocus sequence typing of Metarhizium anisopliae var acridum isolates as microbial agents for locust and grasshopper control. Genbank Accession numbers FJ787311 to FJ787325

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A growing interest in the biological control of locusts and grasshoppers (Acrididae) has led to the development of biopesticides based on naturally occurring pathogens which offers an environmentally safe alternative to chemical pesticides. However, the fungal strains which are being sought for biop...

  12. Field Applications of Entomopathogenic Fungi Beauveria bassiana (Hypocreales: Clavicipitaceae) and Metarhizium anisopliae F52 (Hypocreales: Nectriaceae) for the Control of Ixodes scapularis (Acari: Ixodidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two commercial formulations of Beauveria bassiana (Balsamo-Crivelli) Vuillemin were applied to residential sites in Old Lyme, Connecticut for the control of nymphs of the blacklegged tick, Ixodes scapularis in 1999 and 2000. The pyrethroid bifenthrin was applied to other homes for comparison with B....

  13. Field Studies of Control of Anoplophora glabripennis (Coleoptera: Cerambycidae) Using Fiber Bands Containing the Entomopathogenic Fungi Metarhizium Anisopliae and Beauveria Brongniartii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian Longhorn beetle (ALB) has been found attacking urban street trees in New York in 1996, Chicago in 1998, New Jersey in 2002 and 2004, and in Toronto in 2003. This tree-killing invasive insect is a major pest in China, having killed hundreds of millions of trees in the past forty years. The ...

  14. Debilitation in conidia of the entomopathogenic fungi Beauveria and Metarhizium anisopliae and implications with respect to viability determinations and mycopesticide quality assessments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viabilities of entomopathogenic fungal conidia comprising biopesticide products are most commonly determined by suspension of dry conidia from storage in a water/surfactant solution immediately before inoculation onto an agar-based germination substrate; conidia are then incubated at a moderate temp...

  15. Use of the entomopathogenic fungi Metarhizium anisopliae, Cordyceps bassiana and Isaria fumosorosea to control Diaphorina citri (Hemiptera: Psylidae) in Persian lime under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), is a destructive insect pest in the citriculture, because it is an efficient vector of the proteobacteria, ‘Candidatus Liberibacter asiaticus’ (Las), ‘Ca. L. Africanus’ (Laf), and ‘Ca. L. Americanus’ (Lam). These bacteria c...

  16. Metarhizium robertsii Produces an Extracellular Invertase (MrINV) That Plays a Pivotal Role in Rhizospheric Interactions and Root Colonization

    PubMed Central

    Liao, Xinggang; Fang, Weiguo; Lin, Liangcai; Lu, Hsiao-Ling; Leger, Raymond J. St.

    2013-01-01

    As well as killing pest insects, the rhizosphere competent insect-pathogenic fungus Metarhizium robertsii also boosts plant growth by providing nitrogenous nutrients and increasing resistance to plant pathogens. Plant roots secrete abundant nutrients but little is known about their utilization by Metarhizium spp. and the mechanistic basis of Metarhizium-plant associations. We report here that M. robertsii produces an extracellular invertase (MrInv) on plant roots. Deletion of MrInv (⊿MrInv) reduced M. robertsii growth on sucrose and rhizospheric exudates but increased colonization of Panicum virgatum and Arabidopsis thaliana roots. This could be accounted for by a reduction in carbon catabolite repression in ⊿MrInv increasing production of plant cell wall-degrading depolymerases. A non-rhizosphere competent scarab beetle specialist Metarhizium majus lacks invertase which suggests that rhizospheric competence may be related to the sugar metabolism of different Metarhizium species. PMID:24205119

  17. Genetic basis of destruxin production in the entomopathogen Metarhizium robertsii.

    PubMed

    Giuliano Garisto Donzelli, Bruno; Krasnoff, Stuart B; Moon, Yong-Sun; Sun-Moon, Yong; Churchill, Alice C L; Gibson, Donna M

    2012-04-01

    Destruxins are among the most exhaustively researched secondary metabolites of entomopathogenic fungi, yet definitive evidence for their roles in pathogenicity and virulence has yet to be shown. To establish the genetic bases for the biosynthesis of this family of depsipeptides, we identified a 23,792-bp gene in Metarhizium robertsii ARSEF 2575 containing six complete nonribosomal peptide synthetase modules, with an N-methyltransferase domain in each of the last two modules. This domain arrangement is consistent with the positioning of the adjacent amino acids N-methyl-L: -valine and N-methyl-L: -alanine within the depsipeptide structure of destruxin. DXS expression levels in vitro and in vivo exhibited comparable patterns, beginning at low levels during the early growth phases and increasing with time. Targeted gene knockout using Agrobacterium-mediated transformation produced mutants that failed to synthesize destruxins, in comparison with wild type and ectopic control strains, indicating the involvement of this gene in destruxin biosynthesis. The destruxin synthetase (DXS) disruption mutant was as virulent as the control strain when conidial inoculum was topically applied to larvae of Spodoptera exigua, Galleria mellonella, and Tenebrio molitor indicating that destruxins are dispensable for virulence in these insect hosts. The DXS mutants exhibited no other detectable changes in morphology and development. PMID:22367459

  18. Ovicidal activity of Metarhizium brunneum (Mb F52) on dengue fever vector, Aedes aegypti

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ovicidal activity of Metarhizium brunneum F52 (Mb F52) grown from granules was evaluated against Aedes aegypti eggs over time. Survival of larvae from treated eggs was significantly less when compared with untreated eggs at 7, 10 and 14 days post treatment. Only 27 % of treated eggs produced vi...

  19. Metacridamides A and B, bioactive macrocycles from conidia of the entomopathogenic fungus Metarhizium acridum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. Its conidia produce two novel 17-membered macrocycles, metacridamides A (1) and B (2), which consist of a Phe unit condensed with a nonaketide....

  20. Evaluating different carriers of Metarhizium brunneum F52 microsclerotia for control of adult Asian longhorned beetles (Coleoptera: Cerambycidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsclerotia (MS) of Metarhizium brunneum strain F52 (Hypocreales: Clavicipitaceae), were processed as granules using three carriers: kaolin clay, microcrystalline cellulose (MCC) or diatomaceous earth (DE). In a series of experiments aimed at comparing viable conidial production and subsequent pe...

  1. Microsclerotia of Metarhizium brunneum F52 applied in hydromulch for control of Asian longhorned beetles (Coleoptera: Cerambycidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The entomopathogenic fungus Metarhizium brunneum (Petch), strain F52 (Hypocreales: Clavicipitaceae) is able to produce environmentally persistent microsclerotia. Incorporating these desiccation-tolerant M. brunneum F52 microsclerotia (Mb MS) granules into hydromulch [a mixture of water + wheat straw...

  2. Evaluating different granule carriers of Metarhizium brunneum F52 microsclerotia for control of adult Asian longhorned beetles (Coleoptera: Cerambycidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsclerotia (MS) of Metarhizium brunneum strain F52 (Hypocreales: Clavicipitaceae), were processed as granules using three carriers: kaolin clay, microcrystalline cellulose (MCC) or diatomaceous earth (DE). In a series of experiments aimed at comparing viable conidial production and subsequent pe...

  3. Root isolations of Metarhizium spp. from crops reflect diversity in the soil and indicate no plant specificity.

    PubMed

    Steinwender, Bernhardt M; Enkerli, Jürg; Widmer, Franco; Eilenberg, Jørgen; Kristensen, Hanne L; Bidochka, Michael J; Meyling, Nicolai V

    2015-11-01

    Metarhizium spp. have recently been shown to be associated with the roots of different plants. Here we evaluated which Metarhizium species were associated with roots of oat (Avena sativa), rye (Secale cereale) and cabbage (Brassica oleracea), common crop plants in Denmark. Thirty-six root samples from each of the three crops were collected within an area of approximately 3ha. The roots were rinsed with sterile water, homogenized and the homogenate plated onto selective media. A subset of 126 Metarhizium isolates were identified to species by sequencing of the 5' end of the gene translation elongation factor 1-alpha and characterized by simple sequence repeat (SSR) analysis of 14 different loci. Metarhizium brunneum was the most common species isolated from plant roots (84.1% of all isolates), while M. robertsii (11.1%) and M. majus (4.8%) comprised the remainder. The SSR analysis revealed that six multilocus genotypes (MLGs) were present among the M. brunneum and M. robertsii isolates, respectively. A single MLG of M. brunneum represented 66.7%, 79.1% and 79.2% of the total isolates obtained from oat, rye and cabbage, respectively. The isolation of Metarhizium spp. and their MLGs from roots revealed a comparable community composition as previously reported from the same agroecosystem when insect baiting of soil samples was used as isolating technique. No specific MLG association with a certain crop was found. This study highlights the diversity of Metarhizium spp. found in the rhizosphere of different crops within a single agroecosystem and suggests that plants either recruit fungal associates from the surrounding soil environment or even govern the composition of Metarhizium populations. PMID:26407950

  4. Production of destruxins from Metarhizium spp. fungi in artificial medium and in endophytically colonized cowpea plants.

    PubMed

    Golo, Patrícia S; Gardner, Dale R; Grilley, Michelle M; Takemoto, Jon Y; Krasnoff, Stuart B; Pires, Marcus S; Fernandes, Éverton K K; Bittencourt, Vânia R E P; Roberts, Donald W

    2014-01-01

    Destruxins (DTXs) are cyclic depsipeptides produced by many Metarhizium isolates that have long been assumed to contribute to virulence of these entomopathogenic fungi. We evaluated the virulence of 20 Metarhizium isolates against insect larvae and measured the concentration of DTXs A, B, and E produced by these same isolates in submerged (shaken) cultures. Eight of the isolates (ARSEF 324, 724, 760, 1448, 1882, 1883, 3479, and 3918) did not produce DTXs A, B, or E during the five days of submerged culture. DTXs were first detected in culture medium at 2-3 days in submerged culture. Galleria mellonella and Tenebrio molitor showed considerable variation in their susceptibility to the Metarhizium isolates. The concentration of DTXs produced in vitro did not correlate with percent or speed of insect kill. We established endophytic associations of M. robertsii and M. acridum isolates in Vigna unguiculata (cowpeas) and Cucumis sativus (cucumber) plants. DTXs were detected in cowpeas colonized by M. robertsii ARSEF 2575 12 days after fungal inoculation, but DTXs were not detected in cucumber. This is the first instance of DTXs detected in plants endophytically colonized by M. robertsii. This finding has implications for new approaches to fungus-based biological control of pest arthropods. PMID:25127450

  5. Community composition and population genetics of insect pathogenic fungi in the genus Metarhizium from soils of a long-term agricultural research system.

    PubMed

    Kepler, Ryan M; Ugine, Todd A; Maul, Jude E; Cavigelli, Michel A; Rehner, Stephen A

    2015-08-01

    Fungi in the genus Metarhizium are insect pathogens able to function in other niches, including soil and plant rhizosphere habitats. In agroecosystems, cropping and tillage practices influence soil fungal communities with unknown effects on the distribution of Metarhizium, whose presence can reduce populations of crop pests. We report results from a selective media survey of Metarhizium in soils sampled from a long-term experimental farming project in the mid-Atlantic region. Field plots under soybean cultivation produced higher numbers of Metarhizium colony-forming units (cfu) than corn or alfalfa. Plots managed organically and via chisel-till harboured higher numbers of Metarhizium cfu than no-till plots. Sequence typing of Metarhizium isolates revealed four species, with M. robertsii and M. brunneum predominating. The M. brunneum population was essentially fixed for a single clone as determined by multilocus microsatellite genotyping. In contrast, M. robertsii was found to contain significant diversity, with the majority of isolates distributed between two principal clades. Evidence for recombination was observed only in the most abundant clade. These findings illuminate multiple levels of Metarhizium diversity that can be used to inform strategies by which soil Metarhizium populations may be manipulated to exert downward pressure on pest insects and promote plant health. PMID:25627647

  6. A natural fungal infection of a sylvatic cockroach with Metarhizium blattodeae sp. nov., a member of the M. flavoviride species complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wild, forest-dwelling cockroach from the subfamily Ectobiidae (order Blattodea) in a nature reserve in Cavalcante, in the state of Goias, Brazil, was found to be infected by a new, genetically distinct species in the Metarhizium flavoviride species complex that we describe here as Metarhizium blat...

  7. Resistant ticks inhibit Metarhizium infection prior to hemocoel invasion by reducing fungal viability on the cuticle surface

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied disease progression of, and host responses to, four species in the M. anisopliae complex expressing green fluorescent protein (GFP). We compared development and determined their relative levels of virulence against two susceptible arthropods, the cattle tick Rhipicephalus annulatus and th...

  8. Effect of fermentation media on the production, efficacy and storage stability of Metarhizium brunneum microsclerotia formulated as a prototype granule

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New liquid fermentation techniques for the production of the bioinsecticidal fungus Metarhizium brunneum strain F-52 have resulted in the formation of microsclerotia (MS), a compact, melonized-hyphal structure capable of surviving desiccation and formulation as dry granules. When rehydrated, these M...

  9. Conidial production, persistence and pathogenicity of hydromulch formulations of Metarhizium brunneum F52 microsclerotia under forest conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microsclerotia granules of Metarhizium brunneum Petch strain F52 (Hypocreales: Clavicipitaceae) in hydromulch (water, wheat straw, and tackifier) were sprayed onto bark or wood samples during two spray trials in 2013 and six spray trials in 2014. Microsclerotial granules in hydromulch continued to p...

  10. Specific diversity of the entomopathogenic fungi Beauveria and Metarhizium in Mexican agricultural soils.

    PubMed

    Pérez-González, Víctor H; Guzmán-Franco, Ariel W; Alatorre-Rosas, Raquel; Hernández-López, Jorge; Hernández-López, Antonio; Carrillo-Benítez, María G; Baverstock, Jason

    2014-06-01

    Prior knowledge of the local population structure of entomopathogenic fungi is considered an important requisite when developing microbial control strategies against major pests of crops such as white grubs. An extensive survey in the estate of Guanajuato, one of the main agricultural regions of Mexico, was carried out to determine the abundance and diversity of entomopathogenic fungi in soil. Soil collected from 11 locations was baited for entomopathogenic fungi using Galleria mellonella. In addition, all isolates were morphologically identified and selected isolates of Beauveria and Metarhizium isolates identified using Bloc and ITS or Elongation Factor 1-α and ITS sequence information respectively. Genotypic diversity was then studied using microsatellite genotyping. The proportion of isolates belonging to each genus varied amongst all locations. The species Beauveria bassiana, B. pseudobassiana and Metarhizium robertsii were found, with B. bassiana being the most abundant and widely distributed. Microsatellite genotyping showed that the 36 B. bassiana isolates were grouped in 29 unique haplotypes, but with no separation according to geographical origin. PMID:24769124

  11. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...

  12. Exposure of Metarhizium acridum mycelium to light induces tolerance to UV-B radiation.

    PubMed

    Brancini, Guilherme T P; Rangel, Drauzio E N; Braga, Gilberto Ú L

    2016-03-01

    Metarhizium acridum is an entomopathogenic fungus commonly used as a bioinsecticide. The conidium is the fungal stage normally employed as field inoculum in biological control programs and must survive under field conditions such as high ultraviolet-B (UV-B) exposure. Light, which is an important stimulus for many fungi, has been shown to induce the production of M. robertsii conidia with increased stress tolerance. Here we show that a two-hour exposure to white or blue/UV-A light of fast-growing mycelium induces tolerance to subsequent UV-B irradiation. Red light, however, does not have the same effect. In addition, we established that this induction can take place with as little as 1 min of white-light exposure. This brief illumination scheme could be relevant in future studies of M. acridum photobiology and for the production of UV-B resistant mycelium used in mycelium-based formulations for biological control. PMID:26884481

  13. Naturally occurring entomopathogenic fungi infecting stored grain insect species in Punjab, Pakistan.

    PubMed

    Wakil, Waqas; Usman Ghazanfar, Muhammad; Yasin, Muhammad

    2014-01-01

    The occurrence of entomopathogenic fungi isolated from stored grain insect pests sampled from various geographical regions of Punjab, Pakistan, was investigated. In total, 25,720 insects from six different species were evaluated, and 195 isolates from 24 different fungal species were recovered. These included the Ascomycetes Beauveria bassiana sensu lato (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae), Metarhizium anisopliae sensu lato (Metschnikoff) Sorokin (Hypocreales: Clavicipitaceae), Purpureocillium lilacinum (Thorn) Samson (Hypocreales: Ophiocordycipitaceae), and Lecanicillium attenuatum (Zare and W. Gams) (Hypocreales: Clavicipitaceae). The cadavers of red flour beetle Tribolium castaneum (Herbst.) (Coleoptera: Tenebrionidae) were significantly infected with the fungi followed by rice weevil Sitophilus oryzae (L.) (Coleoptera: Curculionidae), lesser grain borer Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae), rusty grain beetle Cryptolestes ferrugineus (Stephens) (Coleoptera: Cucujidae), and cowpea weevil Callosobruchus maculatus (F.) (Coleoptera: Bruchidae); however, the least were recovered from khapra beetle Trogoderma granarium (Everts) (Coleoptera: Dermestidae). The geographical attributes (altitude, longitude, and latitude) greatly influenced the occurrence of entomopathogenic fungi with highest number of isolates found from >400 (m) altitude, 33°-34' N latitude, and 73°-74' E longitude. The findings of the current surveys clearly indicated that the entomopathogenic fungi are widely distributed in the insect cadavers, which may later be used in successful Integrated Pest Management programs. PMID:25480970

  14. Explaining mycoinsecticide activity: poor performance of spray and bait formulations of Beauveria bassiana and Metarhizium brunneum against Mormon cricket in field cage studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our objectives were threefold: (1) to evaluate B. bassiana GHA and M. anisopliae F52 for potential use against Mormon cricket (Anabrus simplex Haldeman); (2) to compare spray and bait formulations of each fungus against immature and adult Mormon cricket; and (3) to understand the effect of optimal a...

  15. Metacridamides A and B, macrocycles from conidia of the entomopathogenic fungus Metarhizium acridum

    PubMed Central

    Krasnoff, Stuart B.; Englich, Ulrich; Miller, Paula G.; Shuler, Michael L.; Glahn, Raymond P.; Donzelli, Bruno G. G.; Gibson, Donna M.

    2012-01-01

    Metarhizium acridum, an entomopathogenic fungus, has been commercialized and used successfully for biocontrol of grasshopper pests in Africa and Australia. Its conidia produce two novel 17-membered macrocycles, metacridamides A (1) and B (2), which consist of a Phe unit condensed with a nonaketide. Planar structures were elucidated by a combination of mass spectrometric and NMR techniques. Following hydrolysis of 1, chiral amino acid analysis assigned the L-configuration to the Phe unit. A crystal structure established the absolute configuration of the eight remaining stereogenic centers in 1. Metacridamide A (1) showed cytotoxicity to three cancer lines with IC50s of 6.2, 11.0, and 10.8 µM against Caco-2 (epithelial colorectal adenocarcinoma), MCF-7 (breast cancer), and HepG2/C3A (hepatoma) cell lines, respectively. In addition, metacridamide B (2) had an IC50 of 18.2 µM against HepG2/C3A, although it was inactive at 100 µM against Caco-2 and MCF-7. Neither analogue showed antimicrobial, phytotoxic, or insecticidal activity. PMID:22292922

  16. MrSkn7 controls sporulation, cell wall integrity, autolysis, and virulence in Metarhizium robertsii.

    PubMed

    Shang, Yanfang; Chen, Peilin; Chen, Yixiong; Lu, Yuzhen; Wang, Chengshu

    2015-04-01

    Two-component signaling pathways generally include sensor histidine kinases and response regulators. We identified an ortholog of the response regulator protein Skn7 in the insect-pathogenic fungus Metarhizium robertsii, which we named MrSkn7. Gene deletion assays and functional characterizations indicated that MrSkn7 functions as a transcription factor. The MrSkn7 null mutant of M. robertsii lost the ability to sporulate and had defects in cell wall biosynthesis but was not sensitive to oxidative and osmotic stresses compared to the wild type. However, the mutant was able to produce spores under salt stress. Insect bioassays using these spores showed that the virulence of the mutant was significantly impaired compared to that of the wild type due to the failures to form the infection structure appressorium and evade host immunity. In particular, deletion of MrSkn7 triggered cell autolysis with typical features such as cell vacuolization, downregulation of repressor genes, and upregulation of autolysis-related genes such as extracellular chitinases and proteases. Promoter binding assays confirmed that MrSkn7 could directly or indirectly control different putative target genes. Taken together, the results of this study help us understand the functional divergence of Skn7 orthologs as well as the mechanisms underlying the development and control of virulence in insect-pathogenic fungi. PMID:25710964

  17. Overexpression of a Metarhizium robertsii HSP25 gene increases thermotolerance and survival in soil.

    PubMed

    Liao, Xinggang; Lu, Hsiao-Ling; Fang, Weiguo; St Leger, Raymond J

    2014-01-01

    Temperature extremes are an important adverse factor limiting the effectiveness of microbial pest control agents. They reduce virulence and persistence in the plant root-colonizing insect pathogen Metarhizium robertsii. Small heat shock proteins have been shown to confer thermotolerance in many organisms. In this study, we report on the cloning and characterization of a small heat shock protein gene hsp25 from M. robertsii. hsp25 expression was upregulated when the fungus was grown at extreme temperatures (4, 35, and 42 °C) or in the presence of oxidative or osmotic agents. Expression of hsp25 in Escherichia coli increased bacterial thermotolerance confirming that hsp25 encodes a functional heat shock protein. Overexpressing hsp25 in M. robertsii increased fungal growth under heat stress either in nutrient-rich medium or on locust wings and enhanced the tolerance of heat shock-treated conidia to osmotic stress. In addition, overexpression of hsp25 increased the persistence of M. robertsii in rhizospheric soils in outdoor microcosms, though it did not affect survival in bulk soil, indicating that M. robertsii's survival in soil is dependent on interactions with plant roots. PMID:24265026

  18. Impact of Metarhizium brunneum (Hypocreales: Clavicipitaceae) on pre-imaginal Rhagoletis indifferens (Diptera: Tephritidae) within and on the surface of orchard soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When last instar laboratory-reared Rhagoletis indifferens (Cherry Fruit Fly) were allowed to pupate within non-sterile orchard soil containing incorporated Metarhizium brunneum isolate F52 conidia, a dose-related proportion died from developmental abnormalities and mycosis. Similarly, when prepupal ...

  19. Development of a user-friendly delivery method for the fungus Metarhizium anisopliac to control the ectoparasitic mite Varroa destructor in honey bee, Apis mellifera, colonies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducte...

  20. Simulated aerial sprays for field cage evaluation of Beauveria bassiana and Metarhizium brunneum (Ascomycetes: Hypocreales) against Anabrus simplex (Orthoptera: Tettigoniidae) in Montana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field efficacy of the entomopathogenic Ascomycete Beauveria bassiana strain GHA and Metarhizium brunneum strain F52 was evaluated against nymphs of the Mormon cricket, Anabrus simplex. Fungi were applied with a new apparatus that allows simulated aerial sprays to 0.1m2 areas in the field. The Mormon...

  1. Community composition and population genetics of insect pathogenic fungi in the genus Metarhizium from soils of a long-term agricultural research system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi in the genus Metarhizium are facultative pathogens of insects with the capacity to function in other niches, including soil and plant rhizosphere habitats. In agroecosystems, cropping and tillage practices heavily influence soil fungal communities with unknown effects on the distribution of M...

  2. Evaluation of Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) for Control of Japanese Beetle Larvae in Turfgrass.

    PubMed

    Behle, Robert W; Richmond, Douglas S; Jackson, Mark A; Dunlap, Christopher A

    2015-08-01

    Experimental and commercial preparations of Metarhizium brunneum (Petch) strain F52 were evaluated for control of Japanese beetle, Popillia japonica Newman (Coleoptera: Scarbaeidae), larvae (white grubs) in the laboratory and under field conditions. Experimental preparations consisted of granule and liquid formulations made using in vitro produced microsclerotia, which are intended to produce infective conidial spores after application. These formulations were compared against commercial insecticides (imidacloprid and trichlorfon), and commercial formulations of M. brunneum F52 (Met 52) containing only conidia. Field-collected grubs were susceptible to infection in a dosage-dependent relationship when exposed to potting soil treated with experimental microsclerotia granules in the laboratory. The LC(50) for field-collected larvae was 14.2 mg of granules per cup (∼15 g granules/m(2)). Field plots treated with experimental and commercial formulations of M. brunneum F52 after 10 September (targeting second and third instar grubs) had significantly lower grub densities compared with untreated plots, providing 38.6-69.2% control, which sometimes equaled levels of control with chemical insecticides. Fungal treatments made prior to 21 August provided 14.3-69.3% control, although grub densities resulting from these treatments were often not significantly lower than those in untreated control plots. By comparison, chemical insecticide treatments provide 68-100% grub control, often providing better control when applied earlier in the season. In conclusion, P. japonica larvae are susceptible to infection by M. brunneum, and grub densities were reduced most consistently by fall applications targeting later instars. PMID:26470299

  3. The acid trehalase, ATM1, contributes to the in vivo growth and virulence of the entomopathogenic fungus, Metarhizium acridum.

    PubMed

    Jin, Kai; Peng, Guoxiong; Liu, Yingchun; Xia, Yuxian

    2015-04-01

    For pathogens, the ability to acquire available nutrients in a host is a key to their survival and replication. Entomopathogenic fungi of the genus Metarhizium secrete trehalase, which enables them to use trehalose, the predominant sugar in insects. Here, the roles of the acid trehalase gene (ATM1) in the in vivo growth and virulence of Metarhizium acridum were investigated. Phenotypic analysis showed that disruption of ATM1 severely reduced fungal growth on exogenous trehalose as the sole carbon source. Bioassays showed that ATM1 disruption impaired the virulence of M. acridum against the host insect Locusta migratoria. The ATM1-disruption strain (ΔATM1) grown more slowly than the wild-type strain (WT) and complemented transformant (CP) in locust blood, which was consistent with the activity of acid trehalase in the hemolymph of infected locusts. Correspondingly, the trehalose concentration in locusts infected by ΔATM1 was significantly higher than in those infected by WT or CP. Thus, ATM1 disruption led to a significant reduction in virulence by adversely affecting the fungal growth in insect hemolymph, which resulted from the inability of the mutant strain to use trehalose. PMID:25865794

  4. A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii.

    PubMed

    Xu, Chuan; Zhang, Xing; Qian, Ying; Chen, Xiaoxuan; Liu, Ran; Zeng, Guohong; Zhao, Hong; Fang, Weiguo

    2014-01-01

    Systematic gene disruption is a direct way to interrogate a fungal genome to functionally characterize the full suite of genes involved in various biological processes. Metarhizium robertsii is extraordinarily versatile, and it is a pathogen of arthropods, a saprophyte and a beneficial colonizer of rhizospheres. Thus, M. robertsii can be used as a representative to simultaneously study several major lifestyles that are not shared by the "model" fungi Saccharomyces cerevisiae and Neurospora crassa; a systematic genetic analysis of M. robertsii will benefit studies in other fungi. In order to systematically disrupt genes in M. robertsii, we developed a high-throughput gene disruption methodology, which includes two technologies. One is the modified OSCAR-based, high-throughput construction of gene disruption plasmids. This technology involves two donor plasmids (pA-Bar-OSCAR with the herbicide resistance genes Bar and pA-Sur-OSCAR with another herbicide resistance gene Sur) and a recipient binary plasmid pPK2-OSCAR-GFP that was produced by replacing the Bar cassette in pPK2-bar-GFP with a ccdB cassette and recombination recognition sites. Using this technology, a gene disruption plasmid can be constructed in one cloning step in two days. The other is a highly efficient gene disruption technology based on homologous recombination using a Ku70 deletion mutant (ΔMrKu70) as the recipient strain. The deletion of MrKu70, a gene encoding a key component involved in nonhomologous end-joining DNA repair in fungi, dramatically increases the gene disruption efficiency. The frequency of disrupting the conidiation-associated gene Cag8 in ΔMrKu70 was 93% compared to 7% in the wild-type strain. Since ΔMrKu70 is not different from the wild-type strain in development, pathogenicity and tolerance to various abiotic stresses, it can be used as a recipient strain for a systematic gene disruption project to characterize the whole suite of genes involved in the biological processes of

  5. A High-Throughput Gene Disruption Methodology for the Entomopathogenic Fungus Metarhizium robertsii

    PubMed Central

    Xu, Chuan; Zhang, Xing; Qian, Ying; Chen, Xiaoxuan; Liu, Ran; Zeng, Guohong; Zhao, Hong; Fang, Weiguo

    2014-01-01

    Systematic gene disruption is a direct way to interrogate a fungal genome to functionally characterize the full suite of genes involved in various biological processes. Metarhizium robertsii is extraordinarily versatile, and it is a pathogen of arthropods, a saprophyte and a beneficial colonizer of rhizospheres. Thus, M. robertsii can be used as a representative to simultaneously study several major lifestyles that are not shared by the “model” fungi Saccharomyces cerevisiae and Neurospora crassa; a systematic genetic analysis of M. robertsii will benefit studies in other fungi. In order to systematically disrupt genes in M. robertsii, we developed a high-throughput gene disruption methodology, which includes two technologies. One is the modified OSCAR-based, high-throughput construction of gene disruption plasmids. This technology involves two donor plasmids (pA-Bar-OSCAR with the herbicide resistance genes Bar and pA-Sur-OSCAR with another herbicide resistance gene Sur) and a recipient binary plasmid pPK2-OSCAR-GFP that was produced by replacing the Bar cassette in pPK2-bar-GFP with a ccdB cassette and recombination recognition sites. Using this technology, a gene disruption plasmid can be constructed in one cloning step in two days. The other is a highly efficient gene disruption technology based on homologous recombination using a Ku70 deletion mutant (ΔMrKu70) as the recipient strain. The deletion of MrKu70, a gene encoding a key component involved in nonhomologous end-joining DNA repair in fungi, dramatically increases the gene disruption efficiency. The frequency of disrupting the conidiation-associated gene Cag8 in ΔMrKu70 was 93% compared to 7% in the wild-type strain. Since ΔMrKu70 is not different from the wild-type strain in development, pathogenicity and tolerance to various abiotic stresses, it can be used as a recipient strain for a systematic gene disruption project to characterize the whole suite of genes involved in the biological processes

  6. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions.

    PubMed

    Samish, M; Rot, A; Ment, D; Barel, S; Glazer, I; Gindin, G

    2014-12-15

    High infectivity of entomopathogenic fungi to ticks under laboratory conditions has been demonstrated in many studies. However, the few reports on their use under field conditions demonstrate large variations in their success, often with no clear explanation. The present study evaluated the factors affecting the efficacy of the fungus Metarhizium brunneum against the tick Rhipicephalus (Boophilus) annulatus. It demonstrates how environmental conditions and ground cover affect the efficiency of the fungus under field conditions. During the summer, 93% of tick females exposed to fungus-contaminated ground died within 1 week, whereas during the winter, only 62.2% died within 6 weeks. Nevertheless, the hatchability of their eggs was only 6.1% during the summer and 0.0% during winter. Covering the ground with grass, leaves or gravel improved fungal performance. Aside from killing female ticks, the fungus had a substantial effect on tick fecundity. Fungal infection reduced the proportion of female ticks laying full-size egg masses by up to 91%, and reduced egg hatchability by up to 100%. To reduce the negative effect of outdoor factors on fungal activity, its conidia were mixed with different oils (olive, canola, mineral or paraffin at 10% v/v) and evaluated in both laboratory and field tests for efficacy. All tested oils without conidia sprayed on the sand did not influence tick survival or weight of the laid eggs but significantly reduced egghatchability. Conidia in water with canola or mineral oil spread on agarose and incubated for 18 h showed 57% and 0% germination, respectively. Comparing, under laboratory conditions, the effects of adding each of the four oils to conidia in water on ticks demonstrated no effect on female mortality or weight of the laid egg mass, but the percentage of hatched eggs was reduced. In outdoor trials, female ticks placed on the ground sprayed with conidia in water yielded an average of 175 larvae per female and there was no hatching of

  7. VALIDATION OF EMBRYO TESTS FOR DETERMINING EFFECTS OF FUNGAL PEST CONTROL AGENTS ON NONTARGET AQUATIC ANIMALS

    EPA Science Inventory

    Developing embryos of the inland silverside fish Menidia beryllina and grass shrimp Palaemonetes pugio were exposed to conidiospores of the fungal weed control agent, Colletotrichum gloeosporioides, f. sp. aeschynomene, and the entomopathogen, Metarhizium anisopliae. nly Metarhiz...

  8. Isolation of endosymbionts from Ipomoea carnea and Swainsona canescens that produce swainsonine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi including Metarhizium anisopliae (Clavicipitaceae), Rhizoctonia leguminicola (Ceratobasidiaceae), and Undifilum (Pleosporaceae), an endophyte found in the plant genera Astragalus and Oxytropis (Fabaceae) have been reported to be responsible for the production of swainsonine. Based upon the ass...

  9. Behavioral and electrophysiological responses of Coptotermes formosanus Shiraki towards entomopathogenic fungal volatiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Termites adjust their response to entomopathogenic fungi according to the profile of the fungal volatile organic compounds (VOCs). This study first demonstrated the pathogenicity of Metarhizium anisopliae, Beauveria bassiana and Isaria fumosorosea (=Paecilomyces fumosoroseus) towards the Formosan s...

  10. The Production of Fungal Microsclerotia in Liquid Culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A liquid culture production method has been developed for small sclerotia (microsclerotia) of various biological control fungi. The mycoherbicides Colletotrichum truncatum and Mycoleptodiscus terrestris and the mycoinsecticide Metarhizium anisopliae have all been shown to produce microsclerotia und...

  11. Developing fungal bands for control of Asian Longhorned Beetle, Anoplophora glabripennis, in the U.S. J. of Anhui Agri. University

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), native to China and Korea, is a serious non-indigenous invasive species in North America. Bioassays with Beauveria brongniartii, B. bassiana, and Metarhizium anisopliae against A. glabripennis, including the larvae and adult, were co...

  12. DIFFERENTIAL ALLERGIC AND NEUROTROPHIN RESPONSES TO FUNGAL COMPONENT EXTRACTS IN BALB/C MICE

    EPA Science Inventory

    Metarhizium anisopliae mycelium (MYC), conidia (CON) and inducible protease (IND) extracts were combined to produce the antigen MACA to screen for allergenic potential. Involuntary aspiration (IA) exposure to MACA in BALB/c mice has caused immune, inflammatory and physiological ...

  13. A natural fungal infection of a sylvatic cockroach with Metarhizium blattodeae sp. nov., a member of the M. flavoviride species complex.

    PubMed

    Montalva, Cristian; Collier, Karin; Rocha, Luiz Fernando Nunes; Inglis, Peter Ward; Lopes, Rogério Biaggioni; Luz, Christian; Humber, Richard A

    2016-05-01

    A wild, forest-dwelling cockroach from the subfamily Ectobiidae (order Blattodea) in a nature reserve in Cavalcante, in the state of Goiás, Brazil, was found to be infected by a new, genetically distinct species in the Metarhizium flavoviride species complex that we describe here as Metarhizium blattodeae. The status of this fungus as a new species is supported by both multigenic sequence comparisons and protein profiles generated by MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. This is one of the first reports of a naturally occurring fungal pathogen affecting any sylvatic (forest-dwelling) cockroach from any part of the world. M. blattodeae caused up to 96 % mortality of Periplaneta americana nymphs (a serious peridomestic cockroach species) after 10 d. PMID:27109363

  14. Heat-induced post-stress growth delay: a biological trait of many Metarhizium isolates reducing biocontrol efficacy?

    PubMed

    Keyser, Chad A; Fernandes, Éverton K K; Rangel, Drauzio E N; Roberts, Donald W

    2014-07-01

    The habitats of many pest insects have fluctuating climatic conditions. To function effectively, the pathogens of these pests must be capable of infecting and developing disease at a wide range of temperatures. The current study examines ten Metarhizium spp. isolates as to their ability to recover normal metabolic activity after exposure to high temperature for several hours daily; and whether such recovery, with at least some isolates, requires a temporary repair ("retooling") period. Fungal colonies were exposed to 40°C for 4h or 8h followed by 20h or 16h at 28°C, respectively, for three consecutive days. Growth rates during treatments were compared to control plates (constant 28°C) and to plates with growth stoppage by cold treatment (4h or 8h at 5°C per day). All ten isolates survived 3days of cycled heat treatment and resumed normal growth afterward; some isolates however, were considerably more negatively affected by heat-cycling than others. In fact, some isolates underwent greatly reduced growth not only during 8h heating, but also some hours after cessation of heat treatment. This phenomenon is labeled in the current study as "post-stress growth delay" (PSGD). In contrast, all isolates stopped growing during 8h cold treatments, but immediately recommenced growing on return to 28°C. The delay in recommencing growth of some isolates after heat treatment amplifies the effect of this stress. In addition to the studies on the effects of heat cycling on fungal cultures, the effects of imposing such temperature cycling on fungal infection of insects was documented in the laboratory. Three Metarhizium isolates were bioassayed using Galleria mellonella larvae. Treated insects were placed at daily temperature regimes matching those used for the in vitro fungus rate-of-growth study, and insect mortality recorded daily. For all three isolates the levels of insect mortality at the highest-heat dose (40°C at 8h daily) significantly reduced infection. Fluctuating

  15. Influence of mating and age on susceptibility of the beetle Anoplophora glabripennis to the fungal pathogen Metarhizium brunneum.

    PubMed

    Fisher, Joanna J; Hajek, Ann E

    2016-05-01

    The age and life history of an insect can influence its susceptibility to pathogens. Reproduction can be costly and may trade off with immunity while it is generally assumed that immunity will decrease with increasing age through a process called immunosenescence. Fungal pathogens are used as biological control agents for a variety of insect pests, and Metarhizium brunneum is being developed to control the Asian longhorned beetle (Anoplophora glabripennis), an invasive wood-borer. Because adult female A. glabripennis take 1-2weeks to mature after eclosion and both sexes can be long-lived, we investigated how age and mating status would influence susceptibility of A. glabripennis to M. brunneum. Young (6.5day-old) unmated, mature (27-33day-old) mated and unmated, and old (57-71day-old) unmated and mated adults were inoculated with a lethal dose of M. brunneum. The presence of M. brunneum in the hemolymph was quantified and beetle mortality was monitored daily. There was a cost to reproduction for mated mature male and female beetles which died a median of 1.6-1.9days earlier than unmated beetles, while there was no effect of mating on susceptibility for old beetles. We found no evidence for immunosenescence in old beetles, as they did not die faster than young or mature beetles. Young unmated males however were more susceptible than mature or old unmated males, while there was no effect of age on susceptibility of unmated females. PMID:27103165

  16. The MrCYP52 cytochrome P450 monoxygenase gene of Metarhizium robertsii is important for utilizing insect epicuticular hydrocarbons.

    PubMed

    Lin, Liangcai; Fang, Weiguo; Liao, Xinggang; Wang, Fengqing; Wei, Dongzhi; St Leger, Raymond J

    2011-01-01

    Fungal pathogens of plants and insects infect their hosts by direct penetration of the cuticle. Plant and insect cuticles are covered by a hydrocarbon-rich waxy outer layer that represents the first barrier against infection. However, the fungal genes that underlie insect waxy layer degradation have received little attention. Here we characterize the single cytochrome P450 monoxygenase family 52 (MrCYP52) gene of the insect pathogen Metarhizium robertsii, and demonstrate that it encodes an enzyme required for efficient utilization of host hydrocarbons. Expressing a green florescent protein gene under control of the MrCYP52 promoter confirmed that MrCYP52 is up regulated on insect cuticle as well as by artificial media containing decane (C10), extracted cuticle hydrocarbons, and to a lesser extent long chain alkanes. Disrupting MrCYP52 resulted in reduced growth on epicuticular hydrocarbons and delayed developmental processes on insect cuticle, including germination and production of appressoria (infection structures). Extraction of alkanes from cuticle prevented induction of MrCYP52 and reduced growth. Insect bioassays against caterpillars (Galleria mellonella) confirmed that disruption of MrCYP52 significantly reduces virulence. However, MrCYP52 was dispensable for normal germination and appressorial formation in vitro when the fungus was supplied with nitrogenous nutrients. We conclude therefore that MrCYP52 mediates degradation of epicuticular hydrocarbons and these are an important nutrient source, but not a source of chemical signals that trigger infection processes. PMID:22194968

  17. Glycerol-3-Phosphate Acyltransferase Contributes to Triacylglycerol Biosynthesis, Lipid Droplet Formation, and Host Invasion in Metarhizium robertsii

    PubMed Central

    Gao, Qiang; Shang, Yanfang; Huang, Wei

    2013-01-01

    Enzymes involved in the triacylglycerol (TAG) biosynthesis have been well studied in the model organisms of yeasts and animals. Among these, the isoforms of glycerol-3-phosphate acyltransferase (GPAT) redundantly catalyze the first and rate-limiting step in glycerolipid synthesis. Here, we report the functions of mrGAT, a GPAT ortholog, in an insect-pathogenic fungus, Metarhizium robertsii. Unlike in yeasts and animals, a single copy of the mrGAT gene is present in the fungal genome and the gene deletion mutant is viable. Compared to the wild type and the gene-rescued mutant, the ΔmrGAT mutant demonstrated reduced abilities to produce conidia and synthesize TAG, glycerol, and total lipids. More importantly, we found that mrGAT is localized to the endoplasmic reticulum and directly linked to the formation of lipid droplets (LDs) in fungal cells. Insect bioassay results showed that mrGAT is required for full fungal virulence by aiding fungal penetration of host cuticles. Data from this study not only advance our understanding of GPAT functions in fungi but also suggest that filamentous fungi such as M. robertsii can serve as a good model to elucidate the role of the glycerol phosphate pathway in fungal physiology, particularly to determine the mechanistic connection of GPAT to LD formation. PMID:24077712

  18. Fungal dimorphism in the entomopathogenic fungus Metarhizium rileyi: Detection of an in vivo quorum-sensing system.

    PubMed

    Boucias, D; Liu, S; Meagher, R; Baniszewski, J

    2016-05-01

    This investigation documents the expression of the in vivo dimorphic program exhibited by the insect mycopathogen Metarhizium rileyi. This insect mycopathogen represents the key mortality factor regulating various caterpillar populations in legumes, including subtropical and tropical soybeans. Using two hosts and M. rileyi isolates, we have measured M. rileyi growth rates under in vivo and in vitro conditions and have assessed the pathogen's impact on host fitness. Significantly, the hyphal bodies-to-mycelia transition that occurs at the late infection stage is regulated by a quorum-sensing molecule(s) (QSM) that triggers hyphal bodies (Hb) to synchronously switch to the tissue-invasive mycelia. Within hours of this transition, the host insect succumbs to mycosis. The production of the QS chemical(s) occurs when a quorum of Hb is produced in the hemolymph (late-stage infection). Furthermore, the QS activity detected in late-stage infected sera is unique and is unrelated to any known fungal QSM. The lack of similar QS activity from conditioned media of M. rileyi suggests that the chemical signal(s) that mediates the dimorphic switch is produced by host tissues in response to a quorum of hyphal bodies produced in the host hemolymph. The serum-based QS activity is retained after lyophilization, mild heat treatment, and proteinase digestion. However, attempts to extract/identify the QSM have been unsuccessful. Results suggest that the observed hyphal body-to-mycelia transition is a multi-step process involving more than one chemical signal. PMID:27018146

  19. Efficacy of a granular formulation containing Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) microsclerotia against nymphs of Ixodes scapularis (Acari: Ixoididae).

    PubMed

    Behle, Robert W; Jackson, Mark A; Flor-Weiler, Lina B

    2013-02-01

    Technical improvements in the production and formulation of microbial agents will increase the potential for development of biological pesticides that are able to compete with chemical insecticides in the marketplace. Here we report the efficacy of a simple granule formulation containing microsclerotia of Metarhizium brunneum (Petch) (Hypocreales: Clavicipitaceae) for control of unfed and fed nymphs of Ixodes scpaularis Say (Acari: Ixoididae). Microsclerotial granules of M. brunneum applied to moist potting mix produce infective conidia within 2 wk and conidia remained viable for up to 8 wk after application. Microsclerotial granules produced from 3.05 x 10(9) to 1.24 x 10(10) conidia g(-1) granules in potting mix. Both unfed and fed nymphs were susceptible to infection when exposed to treated potting soil with up to 56 and 74% mortality, respectively. M. brunneum demonstrated a transtadial infection for fed nymphs exposed to treated potting mix with signs of a fungal infection becoming apparent only after molting into adults. High conidial production rates from microsclerotial granules of M. brunneum combined with significant tick mortality support the need for additional research to evaluate the efficacy of this treatment technology as a biopesticide option for control of ticks. PMID:23448015

  20. Analysis and Modeling of Time-Dose-Mortality of Melanoplus sanguinipes, Locusta migratoria migratorioides, and Schistocerca gregaria (Orthoptera: Acrididae) from Beauveria, Metarhizium, and Paecilomyces Isolates from Madagascar

    PubMed

    Nowierski; Zeng; Jaronski; Delgado; Swearingen

    1996-05-01

    A complementary log-log (CLL) model was used to model time-dose-mortality relationships from bioassay tests of 26 fungal isolates mostly from Madagascar, Africa, against three acridid species, all referred to here as "grasshoppers." The fungal pathogens included 15 isolates of Beauveria bassiana, 9 isolates of Metarhizium flavoviridae, and 2 isolates of Paecilomyces spp. Grasshopper species tested included Melanoplus sanguinipes, Locusta migratoria migratorioides, and Schistocerca gregaria. The scaled deviance, mean deviance, Pearson X2 statistic, Hosmer-Lemeshow (H-L) C statistic, and three-dimensional time-dose-mortality graphs were used to assess extra-binomial variation, data points that were potential outliers, conformance of the scaled deviance statistic and Pearson's X2 statistic to a chi2 distribution, and the fit of the CLL model. The H-L C statistic also was found to be useful in showing the goodness of fit of the CLL model for the fungal isolates prior to modeling the extra-binomial variation. After the extra-binomial variation was modeled using Williams' method, the slope from maximum likelihood estimation, modified log(LD50) estimates (which were corrected for background mortality using the CLL model), a dynamic ranking of the log(LD50) values over time, and a three-dimensional plot of time, dose, and mortality of the three grasshopper species were used to evaluate the effectiveness of the fungal isolates. In general, the CLL model provided a rather poor fit of the fungal isolates which had a large number of replicate trials in the bioassay tests (i.e., a large sample size) due to extra-binomial variation. The CLL model provided an excellent fit of the time-dose-mortality relationships of such isolates after the extra-binomial variation was modeled and included in the CLL model. Metarhizium isolates MFV and SP5 were found to be the most virulent isolates tested against M. sanguinipes, followed by Metarhizium isolates: SP8, SP7, SP9, SP6, and SP1, and

  1. Microsclerotia of Metarhizium brunneum F52 Applied in Hydromulch for Control of Asian Longhorned Beetles (Coleoptera: Cerambycidae).

    PubMed

    Goble, Tarryn A; Hajek, Ann E; Jackson, Mark A; Gardescu, Sana

    2015-04-01

    The entomopathogenic fungus Metarhizium brunneum (Petch) strain F52 (Hypocreales: Clavicipitaceae) is able to produce environmentally persistent microsclerotia (hyphal aggregates). Microsclerotia of strain F52 produced as granules and incorporated into hydromulch (hydro-seeding straw, water, and a natural glue) provides a novel mycoinsecticide that could be sprayed onto urban, forest, or orchard trees. We tested this formulation against adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) using three substrates (moistened bark, dry bark, absorbent bench liner) sprayed with a low rate (9 microsclerotia granules/cm2) of hydromulch. Median survival times of beetles continuously exposed to sprayed moist bark or absorbent liner were 17.5 and 19.5 d, respectively. Beetles exposed to sprayed dry bark, which had a lower measured water activity, lived significantly longer. When moist bark pieces were sprayed with increased rates of microsclerotia granules in hydromulch, 50% died by 12.5 d at the highest application rate, significantly sooner than beetles exposed to lower application rates (16.5-17.5 d). To measure fecundity effects, hydromulch with or without microsclerotia was sprayed onto small logs and pairs of beetles were exposed for a 2-wk oviposition period in containers with 98 or 66% relative humidity. At 98% humidity, oviposition in the logs was highest for controls (18.3±1.4 viable offspring per female) versus 3.9±0.8 for beetles exposed to microsclerotia. At 66% humidity, fecundities of controls and beetles exposed to microsclerotia were not significantly different. This article presents the first evaluation of M. brunneum microsclerotia in hydromulch applied for control of an arboreal insect pest. PMID:26470154

  2. Effect of fermentation media on the production, efficacy, and storage stability of Metarhizium brunneum microsclerotia formulated as a prototype granule.

    PubMed

    Behle, Robert W; Jackson, Mark A

    2014-04-01

    New liquid fermentation techniques for the production of the bioinsecticidal fungus Metarhizium brunneum strain F-52 have resulted in the formation of microsclerotia (MS), a compact, melonized-hyphal structure capable of surviving desiccation and formulation as dry granules. When rehydrated, these MS granules germinate to produce conidia that can infect susceptible insects. Fermentation media containing cottonseed or soy flours as nitrogen sources and formulated at two carbon to nitrogen ratios (C:N), 30:1 or 50:1, were evaluated forproduction of microsclerotia. Dry MS granule samples were compared for storage stability based on conidia production, and insecticidal activity against larvae of the lesser mealworm, Alphitobius diaperinus (Panzer), using a potting soil bioassay. Cottonseed and soy flours were equivalent for production, MS granule viability, and insecticidal activity. Fermentation media containing higher nitrogen concentrations (30:1 C:N) resulted in greater biomass accumulation and greater production of conidia from granules regardless of the nitrogen source. MS granules made with M. brunneum cultures grown in media with 30:1 C:N produced 8.5 x 10(9) conidia per gram of granules after 8-d incubation, significantly higher than MS granules made using fungus produced using 50:1 C:N media (5.5 x 10(9) conidia per gram dry MS granules). The LC50 for larval mortality was 8.05 x 10(5) conidia per cup, equivalent to applications of 94 or 147 microg granules per cup for granules made from high and low nitrogen media, respectively. Measurements of water activity were not significantly different among granule samples (0.28-0.29) even though granules made from high nitrogen media had higher moisture content (> 5.2%) compared with granules made from low nitrogen media (< 4.6%). Higher initial conidial production was reflected in longer storage stability at 25 degrees C, with half-lives estimated at 3.7 and 1.7 wk for 30:1 and 50:1 C:N ratios, respectively. These

  3. On-host control of the brown dog tick Rhipicephalus sanguineus Latreille (Acari: Ixodidae) by Metarhizium brunneum (Hypocreales: Clavicipitaceae).

    PubMed

    Rot, A; Gindin, G; Ment, D; Mishoutchenko, A; Glazer, I; Samish, M

    2013-03-31

    Ticks are obligatory blood-sucking arthropods. Their life cycle includes a relatively short period of feeding on a vertebrate host and a long off-host period spent in the upper layer of the soil. Entomopathogenic fungi are known to be highly effective tick pathogens and the on-host application of these fungi may be a promising economic approach for tick control. In this study, we evaluated the tick control provided by spraying Metarhizium brunneum onto the tick's vertebrate host, specifically gerbils (Meriones tristrami) and rabbits (Oryctolagus cuniculus). The efficacy of the fungal treatment was not limited to a direct effect on the mortality of feeding ticks, but continued during molting (off host) and, in the case of female ticks, the treatment reduced the production of eggs and their hatching rate. The direct control of the on-host stages was relatively low (from 19 to 38%); whereas the effects of the applied fungus on subsequent tick development reduced the yield of the following engorged stages up to 30-63%. Engorged females that dropped from rabbits sprayed with M. brunneum laid 21.5% fewer eggs than the control females. Moreover, these ticks transmitted conidia by contact to the eggs which they laid, resulting a 3-fold reduction in the rate of hatching relative to the control. Based on theoretical cumulative calculations, these results suggest that if the progeny of each unfed stage feed on fungus-sprayed hosts, there will be a 92% reduction in the tick population within one generation. Two spray formulations, one based on mineral oil and another based on a starch-sucrose mixture, significantly enhanced on-host tick control, in comparison with an unformulated conidial suspension. The reduction in the number of nymphs that fed on the treated host and later developed into unfed adults was 54.9% for unformulated conidia, 70.4% for the oil formulation and 86.4% for the starch-sucrose formulation. Increasing the environmental humidity around the gerbils while

  4. Interactions of two insect pathogens, Paranosema locustae (Protista: Microsporidia) and Metarhizium acridum (Fungi: Hypocreales), during a mixed infection of Locusta migratoria (Insecta: Orthoptera) nymphs.

    PubMed

    Tokarev, Yuri S; Levchenko, Maxim V; Naumov, Anton M; Senderskiy, Igor V; Lednev, Georgiy R

    2011-02-01

    Locusta migratoria nymphs were fed Paranosema locustae spores and/or surface-treated with Metarhizium acridum 3 (assay 1), 6 (assay 2) or 9 days (assay 3) post microsporidia application (p.m.a.). These three dates corresponded to the key phases of P. locustae development: (a) mass proliferation, (b) transition to sporogenesis and (c) onset of spore maturation, respectively. As a result, locust mortality due to mixed treatment increased slower, equally and faster, as compared to mortality expected from the combination of two pathogens in assays 1-3, respectively. However, a statistically significant difference in survival times was observed only in assay 3, indicating that only at the phase of spore maturation microsporidia drastically increase locust susceptibility to fungal infection. Analysis of perished nymphs showed that fungal treatment 3 days p.m.a. impeded development of microsporidia. Fungal sporulation on locust cadavers was not affected by co-occurring microsporidiosis. PMID:20932843

  5. Haemolymph protein and lipid profile of Rhipicephalus (Boophilus) microplus infected by fungi.

    PubMed

    Angelo, I C; Gôlo, P S; Camargo, M G; Kluck, G E G; Folly, E; Bittencourt, V R E P

    2010-04-01

    The current study evaluates the protein and lipid profile of haemolymph of Rhipicephalus (Boophilus) microplus engorged females infected by Metarhizium anisopliae, Beauveria bassiana or Fusarium oxysporum. Ticks were immersed or inoculated with conidial suspension. Haemolymph was collected from the dorsal surface of engorged females. The results showed altered total protein amounts; however, no significant difference was observed on electrophoretic profile among haemolymph samples. In addition, altered lipid profile was detected in haemocyte samples from ticks treated with Beauveria and Metarhizium. PMID:20537114

  6. Basic Leucine Zipper (bZIP) Domain Transcription Factor MBZ1 Regulates Cell Wall Integrity, Spore Adherence, and Virulence in Metarhizium robertsii *

    PubMed Central

    Huang, Wei; Shang, Yanfang; Chen, Peilin; Cen, Kai; Wang, Chengshu

    2015-01-01

    Transcription factors (TFs) containing the basic leucine zipper (bZIP) domain are widely distributed in eukaryotes and display an array of distinct functions. In this study, a bZIP-type TF gene (MBZ1) was deleted and functionally characterized in the insect pathogenic fungus Metarhizium robertsii. The deletion mutant (ΔMBZ1) showed defects in cell wall integrity, adhesion to hydrophobic surfaces, and topical infection of insects. Relative to the WT, ΔMBZ1 was also impaired in growth and conidiogenesis. Examination of putative target gene expression indicated that the genes involved in chitin biosynthesis were differentially transcribed in ΔMBZ1 compared with the WT, which led to the accumulation of a higher level of chitin in mutant cell walls. MBZ1 exhibited negative regulation of subtilisin proteases, but positive control of an adhesin gene, which is consistent with the observation of effects on cell autolysis and a reduction in spore adherence to hydrophobic surfaces in ΔMBZ1. Promoter binding assays indicated that MBZ1 can bind to different target genes and suggested the possibility of heterodimer formation to increase the diversity of the MBZ1 regulatory network. The results of this study advance our understanding of the divergence of bZIP-type TFs at both intra- and interspecific levels. PMID:25673695

  7. Prospects for the use of entomopathogenic fungi for control of stored-product pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Only two fungus species, Beauveria bassiana and Metarhizium anisopliae, have been given serious attention as possible microbial controls for stored-product pests. Their host ranges are broad, but their potency for the various target insects varies greatly, and some of the most important pests such a...

  8. Directed Evolution of a Filamentous Fungus for Thermotolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Filamentous fungi represent the most widely used eukaryotic biocatalysts in industrial and chemical applications. Metarhizium anisopliae is a broad-host-range entomopathogenic fungus currently under intensive investigation as a biologically based alternative to chemical pesticides. One of the most p...

  9. CATALASE FROM A FUNGAL MICROBIAL PESTICIDE INDUCES A UNIQUE IGE RESPONSE.

    EPA Science Inventory

    BALB/c mice exposed by involuntary aspiration to Metarhizium anisopliae extract (MACA), a microbial pesticide, have shown responses characteristic of human allergic lung disease/asthma. IgE-binding proteins have been identified in MACA by Western blot analysis, 2-dimensio...

  10. Relationship of black vine weevil egg density and damage to two cranberry cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field and laboratory trials compared Metarhizium anisopliae and Steinernema kraussei to imidacloprid for black vine weevil (BVW), Otiorhynchus sulcatus, larval control in cranberry. Two field sites were treated in fall of 2009 and soil samples collected during 2009 and 2010 to assess treatment effic...

  11. Abundance of soil-borne entomopathogenic fungi in organic and conventional fields in the Midwestern USA with an emphasis on the effect of herbicides and fungicides on fungal persistence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Naturally-occurring entomopathogenic fungi provide a valued service of killing agricultural pests and subduing pest outbreaks. Species such as Beauveria bassiana and Metarhizium anisopliae have been researched in many experiments and have proven to be effective pathogens. This research will focus ...

  12. Microbial control of varroa: misadventures in the field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report six different field trials testing the efficacy of Metarhizium anisopliae, an entomopathogenic fungus, against varroa mites in honey bee hives. Varroa mites are parasitic on honey bees and cause serious damage to Apis mellifera colonies. Several control methods are available for varroa mit...

  13. Molecular characterization and pathogenicity of fungal isolates for use against the small hive beetle (Aethina tumida)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The analysis of DNA sequences from fungal pathogens obtained from cadavers of the small hive beetle (SHB) collected from several apiaries in Florida revealed a mixture of saprobes and two potential primary entomopathogens, Metarhizium anisopliae and Beauveria bassiana. Spray tower bioassays indicate...

  14. Efficacy of entomopathogenic fungi in suppressing pecan weevil, Curculio caryae (Coleoptera: Curculionidae) in commercial pecan orchards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pecan weevil, Curculio caryae (Horn), is a key pest of pecans. Here we report the efficacy of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae applied to trees in grower orchards at three locations. In Fort Valley, Georgia, treatments included B. bassiana applied to the tru...

  15. Root environment is a key determinant of fungal entomopathogen endophytism following seed treatment in the common bean, Phaseolus vulgaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The common bean is the most important food legume in the world. We examined the potential of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae applied as seed treatments for their endophytic establishment in the common bean. Endophytic colonization in sterile sand:peat average...

  16. Influence of substrate and relative humidity on the efficacy of three entomopathogenic fungi for the hide beetle, Dermestes maculatus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dermestes maculatus is carrion feeder that is also a pest of poultry houses, museums, silkworm culture, and many stored foods. The Hypocreales, Beauveria bassiana, Metarhizium anisopliae, and Isaria fumosorosea, were tested for efficacy against D. maculatus larvae on concrete, plastic, leather, and ...

  17. Antagonism of entomopathogenic fungi by Bacillus spp. associated with the integument of cicadellids and delphacids.

    PubMed

    Toledo, Andrea; López, Silvina; Aulicino, Mónica; de Remes-Lenicov, Ana María; Balatti, Pedro

    2015-06-01

    Entomopathogenic fungi are potential tools to biocontrol cicadellids and delphacids, two groups of insects that cause extensive damage to agricultural crops. However, bacteria living on the host cuticle may inhibit fungal growth. In the present work, following the molecular characterization of 10 strains of Bacillus isolated from the integument of cicadellids and delphacids, we selected isolates of the fungi Beauveria bassiana and Metarhizium anisopliae that are resistant to the antimicrobials secreted by these bacterial strains. The antagonistic activity of the 10 bacterial isolates belonging to the genus Bacillus (i.e., B. amyloliquefaciens, B. pumilus, and B. subtilis) against 41 isolates of Bea. bassiana and 20 isolates of M. anisopliae was investigated in vitro on tryptic soy agar using the central disk test. With this approach, isolates of Bea. bassiana and M. anisopliae resistant to antagonistic bacteria were identified that can be further developed as biological control agents. PMID:26496616

  18. Entomopathogenic fungi in cornfields and their potential to manage larval western corn rootworm Diabrotica virgifera virgifera.

    PubMed

    Rudeen, Melissa L; Jaronski, Stefan T; Petzold-Maxwell, Jennifer L; Gassmann, Aaron J

    2013-11-01

    Entomopathogenic ascomycete fungi are ubiquitous in soil and on phylloplanes, and are important natural enemies of many soil-borne arthropods including larval western corn rootworm, Diabrotica virgifera virgifera, which is a major pest of corn. We measured the prevalence of Beauveria bassiana and Metarhizium anisopliae sensu lato in ten cornfields in Iowa, USA by baiting with larval insects. B. bassiana and M. anisopliae s.l. were present in 60% ± 6.3% and 55% ± 6.4% of soil samples, respectively. Subsequent laboratory bioassays found that some M. anisopliae s.l. strains collected from cornfields killed a greater proportion of D.v. virgifera larvae than a standard commercial strain. PMID:24120889

  19. Susceptibility of Cabbage Maggot Larvae (Diptera: Anthomyiidae) to Hypocreales Entomopathogenic Fungi.

    PubMed

    Myrand, V; Buffet, J P; Guertin, C

    2015-02-01

    The pathogenicity of six Metarhizium spp., four Beauveria bassiana (Balsamo) Vuillemin, and four Tolypocladium cylindrosporum Gams (Ascomycota: Hypocreales) fungal pathogens exposed to third-instar Delia radicum L. was evaluated in laboratory bioassays. The presence of intra- and intergeneric variations concerning the pathogenicity of the isolates was investigated. Results show that all Metarhizium spp. and T. cylindrosporum isolates caused a noteworthy mortality to the third instar and consequently reduced adult eclosion. The well-known standard, F52 strain (identified as Metarhizium brunneum), resulted in up to 79% reduction in D. radicum eclosion. The other Metarhizium isolates including UAMH 9197 (Metarhizium anisopliae) and UAMH 2801 (M. brunneum), as well as T. cylindrosporum DAOM 167325 and DAOM 183952, produced a mean eclosion reduction of >50%. While the pathogenicity of Metarhizium spp. and T. cylindrosporum is similar, the B. bassiana isolates are undoubtedly less pathogenic. Based on the results obtained with the selected isolates, no intrageneric differences relative to the pathogenicity of the isolates appeared to be present. Globally, this study deepened the knowledge about D. radicum susceptibility toward Hypocreales entomopathogenic fungi, chiefly T. cylindrosporum. The implications of this study regarding the development of a biological control agent are discussed. PMID:26470101

  20. Optimizing Western Flower Thrips Management on French Beans by Combined Use of Beneficials and Imidacloprid.

    PubMed

    Nyasani, Johnson O; Subramanian, Sevgan; Poehling, Hans-Michael; Maniania, Nguya K; Ekesi, Sunday; Meyhöfer, Rainer

    2015-01-01

    Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an important pest of vegetable crops worldwide and has developed resistance to many insecticides. The predatory mites Neoseiulus (=Amblyseius) cucumeris (Oudemans), the entomopathogenic fungus Metarhizium anisopliae (Metsch.), and an insecticide (imidacloprid) were tested for their efficacy to reduce WFT population density and damage to French bean (Phaseolus vulgaris L.) pods under field conditions in two planting periods. Metarhizium anisopliae was applied as a foliar spray weekly at a rate of one litre spray volume per plot while imidacloprid was applied as a soil drench every two weeks at a rate of two litres of a mixture of water and imidacloprid per m². Neoseiulus cucumeris was released every two weeks on plant foliage at a rate of three mites per plant. Single and combined treatment applications reduced WFT population density by at least three times and WFT damage to French bean pods by at least 1.7 times compared with untreated plots. The benefit-cost ratios in management of WFT were profitable with highest returns realized on imidacloprid treated plots. The results indicate that M. anisopliae, N. cucumeris, and imidacloprid have the potential for use in developing an integrated pest management program against WFT on French beans. PMID:26463079

  1. Optimizing Western Flower Thrips Management on French Beans by Combined Use of Beneficials and Imidacloprid

    PubMed Central

    Nyasani, Johnson O.; Subramanian, Sevgan; Poehling, Hans-Michael; Maniania, Nguya K.; Ekesi, Sunday; Meyhöfer, Rainer

    2015-01-01

    Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is an important pest of vegetable crops worldwide and has developed resistance to many insecticides. The predatory mites Neoseiulus (=Amblyseius) cucumeris (Oudemans), the entomopathogenic fungus Metarhizium anisopliae (Metsch.), and an insecticide (imidacloprid) were tested for their efficacy to reduce WFT population density and damage to French bean (Phaseolus vulgaris L.) pods under field conditions in two planting periods. Metarhizium anisopliae was applied as a foliar spray weekly at a rate of one litre spray volume per plot while imidacloprid was applied as a soil drench every two weeks at a rate of two litres of a mixture of water and imidacloprid per m2. Neoseiulus cucumeris was released every two weeks on plant foliage at a rate of three mites per plant. Single and combined treatment applications reduced WFT population density by at least three times and WFT damage to French bean pods by at least 1.7 times compared with untreated plots. The benefit-cost ratios in management of WFT were profitable with highest returns realized on imidacloprid treated plots. The results indicate that M. anisopliae, N. cucumeris, and imidacloprid have the potential for use in developing an integrated pest management program against WFT on French beans. PMID:26463079

  2. Laboratory bioassays of entomopathogenic fungi for control of Delia radicum (L.) larvae.

    PubMed

    Bruck, Denny J; Snelling, Jane E; Dreves, Amy J; Jaronski, Stefan T

    2005-06-01

    Laboratory soil bioassays were performed at economic field rates for in-furrow (3.85 x 10(6)spores/g dry soil) and broadcast (3.85 x 10(5)spores/g dry soil) applications with three isolates of Metarhizium anisopliae (F52, ATCC62176, and ARSEF5520) and one isolate of Beauveria bassiana (GHA). All isolates tested were infective to second instar Delia radicum (L.). The conditionally registered M. anisopliae isolate (F52) performed best killing an average of 85 and 72% of D. radicum larvae at the high and low concentration, respectively. The mean LC50 and LC95 of F52 against second instar D. radicum was 2.7 x 10(6) and 1.8 x 10(8)spores/g dry soil, respectively. The use of F52 in an integrated management program is discussed. PMID:16087004

  3. An endosymbiotic conidial fungus, Scopulariopsis brevicaulis, protects the American dog tick, Dermacentor variabilis, from desiccation imposed by an entomopathogenic fungus.

    PubMed

    Yoder, Jay A; Benoit, Joshua B; Denlinger, David L; Tank, Justin L; Zettler, Lawrence W

    2008-02-01

    The functional role of an endosymbiotic conidial fungus (Scopulariopsis brevicaulis) prevalent within the integumental glands and hemocoel of the American dog tick (Dermacentor variabilis) was investigated to explore the nature of this tick/fungus association. D. variabilis is normally highly resistant to Metarhizium anisopliae, a widely-distributed entomopathogenic fungus, but when mature female ticks harboring S. brevicaulis were fed a solution containing a mycotoxin (Amphotericin B) to purge this mycobiont internally, the ticks inoculated with M. anisopliae displayed classic signs of pathogenicity, as evidenced by recovery of M. anisopliae from ticks by internal fungus culture, greatly accelerated net transpiration water loss rates (nearly 3x faster than ticks containing S. brevicaulis naturally) and elevation of critical equilibrium humidity (CEH) closer to saturation, implying a reduced capacity to absorb water vapor and disruption of water balance (water gain not equal water loss) that resulted in tick death. The presence of S. brevicaulis within the tick was previously puzzling: the fungus is transmitted maternally and there is no apparent harm inflicted to either generation. This study suggests that S. brevicaulis provides protection to D. variabilis ticks against M. anisopliae. Thus, the S. brevicaulis/tick association appears to be mutualistic symbiosis. Given that both organisms are of medical-veterinary importance, disruption of this symbiosis has potential for generating novel tools for disease control. PMID:17880996

  4. Effect of certain entomopathogenic fungi on oxidative stress and mortality of Periplaneta americana.

    PubMed

    Chaurasia, Abhilasha; Lone, Yaqoob; Wani, Owais; Gupta, U S

    2016-02-01

    The present paper reports the effects of Metarhizium anisopliae, Isaria fumosoroseus and Hirsutella thompsonaii on Periplaneta americana. I. fumosoroseus and H. thompsonaii were cultured at 28±1°C on potato carrot agar and M. anisopliae was cultured at 28±1°C on potato dextrose agar for 14days. Conidial suspensions of fungi were given to cockroaches through different routes. M. anisopliae shows high virulence against adult cockroaches and mortality ranges from 38.65% to 78.36% after 48h. I. fumosoroseus and H. thompsonii show less virulence compared to M. anisopliae. We also investigated the effect of these three fungi on the activity of lactate dehydrogenase, lipid peroxidation and catalase in different tissues of the insect to gain an understanding of the different target site. The result suggested that the activity of lactate dehydrogenase, catalase and level of malondialdehyde varies in different organs and through different routes of exposure. Based on mortality percentages, all tested fungi had high potentials for biocontrol agents against P. americana. Our study reveals for the first time that I. fumosoroseus and H. thompsonaii fungal infections initiate oxidative stress in the midgut, fat body, whole body and hemolymph of cockroach thereby suggesting them to be the target organs for oxidative damage. PMID:26821655

  5. Resource competition between two fungal parasites in subterranean termites

    NASA Astrophysics Data System (ADS)

    Chouvenc, Thomas; Efstathion, Caroline A.; Elliott, Monica L.; Su, Nan-Yao

    2012-11-01

    Subterranean termites live in large groups in underground nests where the pathogenic pressure of the soil environment has led to the evolution of a complex interaction among individual and social immune mechanisms in the colonies. However, groups of termites under stress can show increased susceptibility to opportunistic parasites. In this study, an isolate of Aspergillus nomius Kurtzman, Horn & Hessltine was obtained from a collapsed termite laboratory colony. We determined that it was primarily a saprophyte and, secondarily, a facultative parasite if the termite immunity is undergoing a form of stress. This was determined by stressing individuals of the Formosan subterranean termite Coptotermes formosanus Shiraki via a co-exposure to the virulent fungal parasite Metarhizium anisopliae (Metch.) Sorokin. We also examined the dynamics of a mixed infection of A. nomius and M. anisopliae in a single termite host. The virulent parasite M. anisopliae debilitated the termite immune system, but the facultative, fast growing parasite A. nomius dominated the mixed infection process. The resource utilization strategy of A. nomius during the infection resulted in successful conidia production, while the chance for M. anisopliae to complete its life cycle was reduced. Our results also suggest that the occurrence of opportunistic parasites such as A. nomius in collapsing termite laboratory colonies is the consequence of a previous stress, not the cause of the stress.

  6. Effect of Gregarina sp. parasitism on the susceptibility of Blattella germanica to some control agents.

    PubMed

    Lopes, Rogério B; Alves, Sérgio B

    2005-03-01

    Gregarines are enteric parasites of invertebrates but little is known about the negative effects of this parasitism on host species. The present study evaluates the influence of the parasitism of Gregarina sp. on the survival of Blattella germanica and methods for elimination of gregarine infection in laboratory rearing systems. Insects were dissected and the infection was detected in 80% of a sample of 50 adults. Diseased cockroaches had swollen abdomens, slower movement at high incidences of the protozoan, and short antennas. Dead cockroaches showed darkened body and putrid smell, indicating septicaemia. Infected insects were more susceptible than healthy cockroaches when treated with Metarhizium anisopliae and triflumuron. PMID:15955347

  7. [Natural ocurrence of entomopathogenic fungi in soils cultivated with Paraguay tea (Ilex paraguariensis St. Hil.) in Misiones, Argentina].

    PubMed

    Schapovaloff, María E; Angeli Alves, Luis F; Urrutia, María I; López Lastra, Claudia C

    2015-01-01

    This study aimed to morphologically isolate, identify and characterize entomopathogenic fungi present in soils cultivated with Paraguay tea (Ilex paraguariensis). A survey of native entomopathogenic fungi was conducted from 40 soil samples grown with Paraguay tea in the province of Misiones, Argentina, from May 2008 to June 2010. The soil dilution plate methodology on selective culture media was used to isolate microorganisms. Taxonomic identification was performed using macroscopic and microscopic characters and specific keys. Twenty nine strains, belonging to the species Beauveria bassiana (n = 17), Metarhizium anisopliae (n = 2) and Purpureocillium lilacinum (n = 10) were isolated and identified. PMID:26028585

  8. Variability in susceptibility to simulated sunlight of conidia among isolates of entomopathogenic Hyphomycetes.

    PubMed

    Fargues, J; Goettel, M S; Smits, N; Ouedraogo, A; Vidal, C; Lacey, L A; Lomer, C J; Rougier, M

    1996-09-01

    The influence of simulated sunlight on survival of conidia of 4 species of entomopathogenic Hyphomycetes was investigated. Conidia from 65 isolates ofBeauveria bassiana, 23 ofMetarhizium anisopliae, 14 ofMetarhizium flavoviride and 33 isolates ofPaecilomyces fumosoroseus were irradiated by artificial sunlight (295 to 1,100 nm at an ultraviolet-B irradiance of 0.3 W m(-2)) for 0, 1, 2, 4 and 8 h. Survival was estimated by comparing the number of colony forming units (CFU) produced by conidia exposed to irradiation to the number of CFUs produced by an unexposed control. Survival decreased with increased exposure to simulated sunlight; exposure for 2 h or more was detrimental to all isolates tested. Overall, isolates ofM. flavoviride were the most resistant to irradiation followed byB. bassiana andM. anisopliae. Conidia ofP. fumosoroseus were most susceptible. In addition to the large interspecies differences in susceptibility to irradiation, there was also an intraspecies variation indicating that strain selection to irradiation tolerance may be important in the development of microbial control agents where increased persistence in an insolated environment is desirable. PMID:20882453

  9. Density-dependence and within-host competition in a semelparous parasite of leaf-cutting ants

    PubMed Central

    Hughes, William OH; Petersen, Klaus S; Ugelvig, Line V; Pedersen, Dorthe; Thomsen, Lene; Poulsen, Michael; Boomsma, Jacobus J

    2004-01-01

    Background Parasite heterogeneity and within-host competition are thought to be important factors influencing the dynamics of host-parasite relationships. Yet, while there have been many theoretical investigations of how these factors may act, empirical data is more limited. We investigated the effects of parasite density and heterogeneity on parasite virulence and fitness using four strains of the entomopathogenic fungus, Metarhizium anisopliae var. anisopliae, and its leaf-cutting ant host Acromyrmex echinatior as the model system. Results The relationship between parasite density and infection was sigmoidal, with there being an invasion threshold for an infection to occur (an Allee effect). Although spore production was positively density-dependent, parasite fitness decreased with increasing parasite density, indicating within-host scramble competition. The dynamics differed little between the four strains tested. In mixed infections of three strains the infection-growth dynamics were unaffected by parasite heterogeneity. Conclusions The strength of within-host competition makes dispersal the best strategy for the parasite. Parasite heterogeneity may not have effected virulence or the infection dynamics either because the most virulent strain outcompeted the others, or because the interaction involved scramble competition that was impervious to parasite heterogeneity. The dynamics observed may be common for virulent parasites, such as Metarhizium, that produce aggregated transmission stages. Such parasites make useful models for investigating infection dynamics and the impact of parasite competition. PMID:15541185

  10. Mortality and repellent effects of microbial pathogens on Coptotermes formosanus (Isoptera: Rhinotermitidae)

    PubMed Central

    2012-01-01

    Background Two entomopathogenic fungi, Isaria fumosorosea and Metarhizium anisopliae, and one bacterium, Bacillus thuringiensis, were tested for their ability to cause mortality of Formosan subterranean termites (FST), Coptotermes formosanus (Shiraki), after liquid exposure, and for their lack of propensity to repel FST. Results The fungus Isaria fumosorosea at 108 spores/ml caused 72.5% mortality on day 7, significantly higher than the control and 106 spores/ml treatment. On day 14, the 106 and 108 concentrations caused 38.8% and 92.5% mortality, respectively, significantly higher than the control. On day 21, 82.5% and 100% of the termites were killed by the 106 and 108 treatments, respectively. I. fumosorosea did not repel termites at 106 nor 108 spores/g in sand, soil or sawdust. The fungus Metarhizium anisopliae at 108 spores/ml caused 57.5% mortality on day 7, 77.5% mortality on day 14 and 100% mortality on day 21. Conclusions On all three days the rate of mortality was significantly higher than that of the control and 106 spores/ml treatment with I. fumosorosea. Neither I. fumosorosea nor M. anisopliae caused repellency of FST in sand, soil or sawdust. The bacterium Bacillus thuringiensis did not cause significant mortality on days 7, 14 or 21. When termites were exposed to cells of B. thuringiensis in sawdust and when termites were exposed to a mixture of spores and cells in sand, a significantly higher number remained in the control tubes. Repellency was not seen with B. thuringiensis spores alone, nor with the above treatments in the other substrates. PMID:23241169