Science.gov

Sample records for metastable nonequilibrium phases

  1. Demagnetization via Nucleation of the Nonequilibrium Metastable Phase in a Model of Disorder

    NASA Astrophysics Data System (ADS)

    Hurtado, Pablo I.; Marro, J.; Garrido, P. L.

    2008-10-01

    We study both analytically and numerically demagnetization via nucleation of the metastable phase in a two-dimensional nonequilibrium Ising ferromagnet at temperature T. Canonical equilibrium is dynamically impeded by a weak random perturbation which models homogeneous disorder of undetermined source. We present a simple theoretical description, in good agreement with Monte Carlo simulations, assuming that the decay of the nonequilibrium metastable state is due, as in equilibrium, to the competition between the surface and the bulk. This suggests one to accept a nonequilibrium free-energy at a mesoscopic/cluster level, and it ensues a nonequilibrium surface tension with some peculiar low- T behavior. We illustrate the occurrence of intriguing nonequilibrium phenomena, including: (i) cooperative phenomena at low T which stabilize the metastable state as temperature increases; (ii) reentrance of the limit of metastability under strong nonequilibrium conditions; and (iii) noise-enhanced propagation of domain walls. We also studied metastability in the case of open boundaries as it may correspond to a magnetic nanoparticle. We then observe the most irregular relaxation triggered by the additional surface randomness. In particular, at low T, the relaxation becomes discontinuous as occurring by way of scale-free avalanches, so that it resembles the type of relaxation reported for many complex systems. We show that this results from the superposition of many demagnetization events, each with a well-defined scale which is determined by the curvature of the domain wall at which it originates. This is an example of (apparent) scale invariance in a nonequilibrium setting which is not to be associated with any familiar kind of criticality.

  2. Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability

    SciTech Connect

    Wang, Chi -Jen; Liu, Da -Jiang; Evans, James W.

    2015-04-28

    Threshold versions of Schloegl’s model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique value but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. As a result, mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.

  3. Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability

    DOE PAGESBeta

    Wang, Chi -Jen; Liu, Da -Jiang; Evans, James W.

    2015-04-28

    Threshold versions of Schloegl’s model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique valuemore » but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. As a result, mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.« less

  4. Discontinuous non-equilibrium phase transition in a threshold Schloegl model for autocatalysis: Generic two-phase coexistence and metastability

    SciTech Connect

    Wang, Chi-Jen; Liu, Da-Jiang; Evans, James W.

    2015-04-28

    Threshold versions of Schloegl’s model on a lattice, which involve autocatalytic creation and spontaneous annihilation of particles, can provide a simple prototype for discontinuous non-equilibrium phase transitions. These models are equivalent to so-called threshold contact processes. A discontinuous transition between populated and vacuum states can occur selecting a threshold of N ≥ 2 for the minimum number, N, of neighboring particles enabling autocatalytic creation at an empty site. Fundamental open questions remain given the lack of a thermodynamic framework for analysis. For a square lattice with N = 2, we show that phase coexistence occurs not at a unique value but for a finite range of particle annihilation rate (the natural control parameter). This generic two-phase coexistence also persists when perturbing the model to allow spontaneous particle creation. Such behavior contrasts both the Gibbs phase rule for thermodynamic systems and also previous analysis for this model. We find metastability near the transition corresponding to a non-zero effective line tension, also contrasting previously suggested critical behavior. Mean-field type analysis, extended to treat spatially heterogeneous states, further elucidates model behavior.

  5. Metastable Phases in Ice Clouds

    NASA Astrophysics Data System (ADS)

    Weiss, Fabian; Baloh, Philipp; Kubel, Frank; Hoelzel, Markus; Parker, Stewart; Grothe, Hinrich

    2014-05-01

    Polar Stratospheric Clouds and Cirrus Clouds contain both, pure water ice and phases of nitric acid hydrates. Preferentially for the latter, the thermodynamically stable phases have intensively been investigated in the past (e.g. nitric acid trihydrate, beta-NAT). As shown by Peter et al. [1] the water activity inside clouds is higher than expected, which might be explained by the presence of metastable stable phases (e.g. cubic ice). However, also metastable nitric acid hydrates might be important due to the inherent non-equilibrium freezing conditions in the upper atmosphere. The delta ice theory of Gao et al. [2] presents a model approach to solve this problem by involving both metastable ice and NAT as well. So it is of high interest to investigate the metastable phase of NAT (i.e. alpha-NAT), the structure of which was unknown up to the presence. In our laboratory a production procedure for metastable alpha-NAT has been developed, which gives access to neutron diffraction and X-ray diffraction measurements, where sample quantities of several Gramm are required. The diffraction techniques were used to solve the unknown crystalline structure of metastable alpha-NAT, which in turn allows the calculation of the vibrational spectra, which have also been recorded by us in the past. Rerefences [1] Peter, T., C. Marcolli, P. Spichtinger, T. Corti, M. B. Baker, and T. Koop. When dry air is too humid. Science, 314:1399-1402, 2006. [2] Gao, R., P. Popp, D. Fahey, T. Marcy, R. L. Herman, E. Weinstock, D. Baumgardener, T. Garrett, K. Rosenlof, T. Thompson, T. P. Bui, B. Ridley, S. C. Wofsy, O. B. Toon, M. Tolbert, B. Kärcher, Th. Peter, P. K. Hudson, A. Weinheimer, and A. Heymsfield. Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds, Science, 303:516-520, 2004. [3] Tizek, H., E. Knözinger, and H. Grothe. Formation and phase distribution of nitric acid hydrates in the mole fraction range xHNO3<0.25: A combined XRD and IR study, PCCP, 6

  6. Non-equilibrium phases and phase diagrams

    SciTech Connect

    Massalski, T.B.; Rizzo, H.F.

    1988-03-01

    In this paper we consider the degree of usefulness of the phase diagram and the related thermodynamics in predicting and understanding the formation of metastable phases during quenching, or during low-temperature solid-state interdiffusion, or during co-deposition. Recent research has demonstrated that many of such metastable phases are formed because the more stable intermediate phases that are favored thermodynamically are nevertheless bypassed kinetically. The kinetic elimination of intermediate phases provides conditions where a metastable equilibrium can be established at low temperatures between the supercooled liquid and the terminal solid solutions, leading to metastable partitioned two-phase regions. Alternatively, the range of the metastable phases may be governed by the T/sub 0/ principle related to the crossover of the respective free energy curves, or may be controlled mainly by kinetic considerations. Which particular thermodynamic conditions apply appears to depend on the initial form of the phase diagram and the specific technique used. The occurrence of massive transformations also is discussed. 34 refs., 10 figs.

  7. Non-equilibrium phase transitions

    SciTech Connect

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken.

  8. The interaction of the theophylline metastable phase with water vapor

    NASA Astrophysics Data System (ADS)

    Matvienko, A. A.; Boldyrev, V. V.; Sidel'Nikov, A. A.; Chizhik, S. A.

    2008-07-01

    The conditions of hydration of the stable and metastable theophylline phases were determined. Two-phase metastable phase/monohydrate and stable phase/monohydrate equilibrium pressures were measured at 25, 30, and 35°C. The metastable phase began to react with water vapor at lower relative humidities than the stable phase. Processes that occurred with the metastable and stable theophylline phases over various water pressure ranges were considered. The metastable phase exhibited an unusual behavior at 25°C and relative humidity 47%. At constant water vapor pressure and temperature, theophylline was initially hydrated and then lost water and again became anhydrous. Two consecutive processes occurred in the system, the formation of theophylline monohydrate from the metastable phase and its decomposition to the stable phase. The ratio between the rates of these processes determined the content of the monohydrate at the given time moment.

  9. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene

    PubMed Central

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-01-01

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties. PMID:27609305

  10. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene.

    PubMed

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-01-01

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties. PMID:27609305

  11. Discovery of a metastable Al20Sm4 phase

    DOE PAGESBeta

    Ye, Z.; Zhang, F.; Sun, Y.; Mendelev, M. I.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Ding, Z.; Wang, C. -Z.; et al

    2015-03-09

    In this study, we present an efficient genetic algorithm, integrated with experimental diffraction data, to solve a nanoscale metastable Al20Sm4 phase that evolves during crystallization of an amorphous magnetron sputtered Al90Sm10 alloy. The excellent match between calculated and experimental X-ray diffraction patterns confirms an accurate description of this metastable phase. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered defects in the devitrified crystal.

  12. Nonequilibrium dynamics of phase transitions

    NASA Astrophysics Data System (ADS)

    Gagne, Carmen Jeanne

    2001-11-01

    Phase transitions occur in such diverse and important systems as ferromagnets, liquid crystals and the early Universe. The dynamics of phase transitions such as these have been studied for decades, but the analytical models still need a great deal of improvement before they can adequately describe all time stages and regions under the coexistence curve. Numerical studies can supplement these analytical theories, but they need to accurately describe the continuum equations that they are intended to solve. This thesis describes a method for removing the lattice- spacing and renormalization-mass dependence of Langevin simulations of phase mixing in (2 + 1)-dimensional asymmetric Ginzburg-Landau models with short-ranged interactions. Also, the spread in the order parameter near the critical value of the control parameter due to critical slowing down is used to more accurately determine this value of the control parameter in these simulations. In addition, a new method is proposed for quantifying the departure from equilibrium. The method explores the behavior of the rate of change of the momentum-integrated structure function, ΔStot( t), as it evolves in time. As an illustration, we examine a (1 + 1)-dimensional model of a stochastic Ginzburg-Landau model at varying cooling rates. We show that ΔStot(t) displays a peak which scales with cooling time-scale as t1/2q in the over-damped limit and t1/3q in the underdamped limit. The peak amplitude was found to scale with cooling time-scale as t6/5q in all viscosities studied.

  13. Random fields at a nonequilibrium phase transition.

    PubMed

    Barghathi, Hatem; Vojta, Thomas

    2012-10-26

    We study nonequilibrium phase transitions in the presence of disorder that locally breaks the symmetry between two equivalent macroscopic states. In low-dimensional equilibrium systems, such random-field disorder is known to have dramatic effects: it prevents spontaneous symmetry breaking and completely destroys the phase transition. In contrast, we show that the phase transition of the one-dimensional generalized contact process persists in the presence of random-field disorder. The ultraslow dynamics in the symmetry-broken phase is described by a Sinai walk of the domain walls between two different absorbing states. We discuss the generality and limitations of our theory, and we illustrate our results by large-scale Monte Carlo simulations. PMID:23215170

  14. Phase transitions in nonequilibrium traffic theory

    SciTech Connect

    Zhang, H.M.

    2000-02-01

    This paper uses the center difference scheme of Lax-Friedrichs to numerically solve a newly developed continuum traffic flow theory and the kinematic theory of Lighthill and Whitham, and Richards, and it studies the flow-concentration phase transitions in flow containing both shock and rarefaction waves. A homogeneous road with finite length was modeled by both theories. Numerical simulations show that both theories yield nearly identical results for two representative Riemann problems--one has a shock solution and the other a rarefaction wave solution. Their phase transition curves, however, are different: those derived from the new theory have two branches--one for acceleration flow and one for deceleration flow, whereas those derived from the LWR theory comprise a single curve--the equilibrium curve. The phase transition curves in the shock case agree well with certain experimental observations but disagree with others. This disagreement may be resolved by studying transitions among nonequilibrium states, which awaits further development of a more accurate finite difference approximation of the nonequilibrium theory.

  15. The stable and metastable Ti-Nb phase diagrams

    NASA Astrophysics Data System (ADS)

    Moffat, D. L.; Kattner, U. R.

    1988-10-01

    The phase transformations which occur in the Ti-Nb binary alloy system have been discussed in two recent papers. The phase relationships were investigated by varying alloy composition and thermal history. In this paper, these results are summarized in complete and thermodynamically consistent calculations of the stable and metastable phase diagrams. The calculations of the metastable equilibria are relevant to the Ti-V and Ti-Mo systems, as well as to several other titanium and zirconium-based transition metal alloy systems.

  16. Nonequilibrium Phase Chemistry in High Temperature Structure Alloys

    NASA Technical Reports Server (NTRS)

    Wang, R.

    1991-01-01

    Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.

  17. Nonequilibrium phases of nanoparticle Langmuir films.

    PubMed

    Vegso, Karol; Siffalovic, Peter; Majkova, Eva; Jergel, Matej; Benkovicova, Monika; Kocsis, Teodora; Weis, Martin; Luby, Stefan; Nygård, Kim; Konovalov, Oleg

    2012-07-17

    We report on an in-situ observation of the colloidal silver nanoparticle self-assembly into a close-packed monolayer at the air/water interface followed by a 2D to 3D transition. Using the fast tracking GISAXS technique, we were able to observe the immediate response to the compression of the self-assembled nanoparticle layer at the air/water interface and to identify all relevant intermediate stages including those far from the equilibrium. In particular, a new nonequilibrium phase before the monolayer collapse via the 2D to 3D transition was found that is inaccessible by the competing direct space imaging techniques such as the scanning and transmission electron microscopies due to the high water vapor pressure and surface tension. PMID:22724517

  18. Metastable bcc phase formation in the Nb-Cr system

    SciTech Connect

    Thoma, D.J.; Schwarz, R.B.; Perepezko, J.H.; Plantz, D.H.

    1993-08-01

    Extended metastable bcc solid solutions of Nb-Xat.%Cr (X = 35, 50, 57, 77, 82, and 94) were synthesized by two-anvil splat-quenching. In addition, bcc (Nb-67at.%Cr) was prepared by mechanically alloying mixtures of niobium and chromium powders. The lattice parameters were measured by X-ray diffraction and the Young`s moduli were measured by low-load microindentation. The composition dependence of the lattice parameters and elastic moduli show a positive deviation with respect to a rule of mixtures. During continuous heating at 15C/min., the metastable precursor bcc phases decomposed at temperatures above 750C to uniformly refined microstructures.

  19. Cooperative photoinduced metastable phase control in strained manganite films.

    PubMed

    Zhang, Jingdi; Tan, Xuelian; Liu, Mengkun; Teitelbaum, S W; Post, K W; Jin, Feng; Nelson, K A; Basov, D N; Wu, Wenbin; Averitt, R D

    2016-09-01

    A major challenge in condensed-matter physics is active control of quantum phases. Dynamic control with pulsed electromagnetic fields can overcome energetic barriers, enabling access to transient or metastable states that are not thermally accessible. Here we demonstrate strain-engineered tuning of La2/3Ca1/3MnO3 into an emergent charge-ordered insulating phase with extreme photo-susceptibility, where even a single optical pulse can initiate a transition to a long-lived metastable hidden metallic phase. Comprehensive single-shot pulsed excitation measurements demonstrate that the transition is cooperative and ultrafast, requiring a critical absorbed photon density to activate local charge excitations that mediate magnetic-lattice coupling that, in turn, stabilize the metallic phase. These results reveal that strain engineering can tune emergent functionality towards proximal macroscopic states to enable dynamic ultrafast optical phase switching and control. PMID:27400387

  20. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    NASA Astrophysics Data System (ADS)

    Rustan, Gustav Errol

    been carried out to study the metastable phase formation in an Fe83B17 near eutectic alloy. Initial supercooling measurements using the ISU-ESL identified the formation of three metastable phases: a precipitate phase that shows stable coexistence with the deeply supercooled liquid, and two distinct bulk solidification phases. To identify the structure of the metastable phases, the Washington University Beamline ESL (WU-BESL) has been used to perform in-situ high energy x-ray diffraction measurements of the metastable phases. Based on the x-ray results, the precipitate phase has been identified as bcc-Fe, and the more commonly occurring bulk solidification product has been found to be a two-phase mixture of Fe23B6 plus fcc-Fe, which appears, upon cooling, to transform into a three phase mixture of Fe23B6, bcc-Fe, and an as-yet unidentified phase, with the transformation occurring at approximately the expected fcc-to-bcc transformation temperature of pure Fe. To further characterize the multi-phase metastable alloy, the ISU-ESL has been used to perform measurements of volume thermal expansion via the videographic technique, as well as RF susceptibility via the TDO technique. The results of the thermal expansion and susceptibility data have been found to be sensitive indicators of additional structural changes that may be occurring in the metastable solid at temperatures below 1000 K, and the susceptibility data has revealed that three distinct ferromagnetic phase transitions take place within the multi-phase mixture. Based on these results, it has been hypothesized that there may be an additional transformation taking place that leads to the formation of either bct- or o-Fe3B in addition to the Fe23B6 phase, although further work is required to test this hypothesis.

  1. Stable, Metastable, and Kinetically Trapped Amyloid Aggregate Phases

    PubMed Central

    2015-01-01

    Self-assembly of proteins into amyloid fibrils plays a key role in a multitude of human disorders that range from Alzheimer’s disease to type II diabetes. Compact oligomeric species, observed early during amyloid formation, are reported as the molecular entities responsible for the toxic effects of amyloid self-assembly. However, the relation between early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. We show that these different structures occupy well-defined regions in a peculiar phase diagram. Lysozyme amyloid oligomers and their curvilinear fibrils only form after they cross a salt and protein concentration-dependent threshold. We also determine a boundary for the onset of amyloid oligomer precipitation. The oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. These experimentally determined boundaries match well with colloidal model predictions that account for salt-modulated charge repulsion. The model also incorporates the metastable and kinetic character of oligomer phases. Similarities and differences of amyloid oligomer assembly to metastable liquid–liquid phase separation of proteins and to surfactant aggregation are discussed. PMID:25469942

  2. Formation of nonequilibrium modulated phases under local energy input

    NASA Astrophysics Data System (ADS)

    Li, Linjun; Pleimling, Michel

    2012-05-01

    We study numerically an inhomogeneous Ising lattice gas with short-range interactions where different sectors are in contact with thermal baths at different temperatures. Inside the different sectors particles jump to empty sites following the familiar Kawasaki dynamics. In addition, particles can freely hop from one sector to the other. This crossing between the sectors breaks detailed balance and yields a local energy influx that drives the system to a nonequilibrium steady state. When the low-temperature sector is cooled below the equilibrium critical temperature, a complicated nonequilibrium phase diagram emerges, dominated by unusual modulated nonequilibrium stationary states. These steady states result from the interplay of phase separation and convection.

  3. A new nanoscale metastable iron phase in carbon steels

    PubMed Central

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-01-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels. PMID:26503890

  4. A new nanoscale metastable iron phase in carbon steels.

    PubMed

    Liu, Tianwei; Zhang, Danxia; Liu, Qing; Zheng, Yanjun; Su, Yanjing; Zhao, Xinqing; Yin, Jiang; Song, Minghui; Ping, Dehai

    2015-01-01

    Metastable ω phase is common in body-centred cubic (bcc) metals and alloys, including high-alloying steels. Recent theoretical calculations also suggest that the ω structure may act as an intermediate phase for face-centred cubic (fcc)-to-bcc transformation. Thus far, the role of the ω phase played in fcc-bcc martensitic transformation in carbon steels has not been reported. In previous investigations on martensitic carbon steels, extra electron diffraction spots were frequently observed by transmission electron microscopy (TEM), and these spots were historically ascribed to the diffraction arising from either internal twins or carbides. In this paper, an intensive TEM investigation revealed that the extra spots are in fact attributed to the metastable ω phase in particle-like morphology with an overall size of several or dozens of nanometres. The strict orientation relationships between the ω phase and the ferrite matrix are in good agreement with those of the hexagonal (P6/mmm) ω phase in other bcc metals and alloys. The identification of the ω phase as well as the extra diffraction spots might provide a clue to help understand the physical mechanism of martensitic transformation in steels. PMID:26503890

  5. Metastable phases in mechanically alloyed aluminum germanium powders

    SciTech Connect

    Yvon, P.J.; Schwarz, R.B.

    1993-03-01

    Aluminum and germanium form a simple eutectic system with no stable intermetallic phase, and limited mutual solubility. We report the formation of a metastable rhombohedral,{gamma}{sub 1} phase by mechanically alloying aluminum and germanium powders. This phase, which appears for compositions between 20 and 50 at. % germanium, has also been observed in rapidly quenched alloys, but there is disagreement as to its composition. By measuring the heat of crystallization as a function of composition, we determined the composition of the {gamma}{sub 1} phase to be Al{sub 70}Ge{sub 30}. We also produced Al{sub 70}Ge{sub 30} by arc melting the pure elements, followed by splat-quenching at a cooling rate in the range of 10{sup 8} K s{sup {minus}1}. This method produced two metastable phases, one of which was found to be the {gamma}{sub 1} phase obtained by mechanical alloying. The other was a monoclinic phase reported earlier in the literature as {gamma}{sub 2}.

  6. Metastable Amyloid Phases and their Conversion to Mature Fibrils

    NASA Astrophysics Data System (ADS)

    Muschol, Martin; Miti, Tatiana; Mulaj, Mentor; Schmit, Jeremy

    Self-assembly of proteins into amyloid fibrils plays a key role in both functional biological responses and pathogenic disorders which include Alzheimer's disease and type II diabetes. Amyloid fibril assembly frequently generates compact oligomeric and curvilinear polymeric intermediates which are implicated to be toxic to cells. Yet, the relation between these early-stage oligomeric aggregates and late-stage rigid fibrils, which are the hallmark structure of amyloid plaques, has remained unclear. Our measurements indicate that lysozyme amyloid oligomers and their curvilinear fibrils only form after crossing a salt and protein concentration dependent threshold. These oligomeric aggregates are structurally distinct from rigid fibrils and are metastable against nucleation and growth of rigid fibrils. Our experimental transition boundaries match well with colloidal model predictions accounting for salt-modulated charge repulsion. We also report our preliminary findings on the mechanism by which these metastable oligomeric phases are converted into stable amyloid fibrils.

  7. Geometric phases causing lifetime modifications of metastable states of hydrogen

    NASA Astrophysics Data System (ADS)

    Trappe, Martin-Isbjörn; Augenstein, Peter; DeKieviet, Maarten; Gasenzer, Thomas; Nachtmann, Otto

    2016-04-01

    Externally applied electromagnetic fields in general have an influence on the width of atomic spectral lines. The decay rates of atomic states can also be affected by the geometry of an applied field configuration giving rise to an imaginary geometric phase. A specific chiral electromagnetic field configuration is presented which geometrically modifies the lifetimes of metastable states of hydrogen. We propose to extract the relevant observables in a realistic longitudinal atomic beam spin-echo apparatus which allows the initial and final fluxes of the metastable atoms to be compared with each other interferometrically. A geometry-induced change in lifetimes at the 5%-level is found, an effect large enough to be observed in an available experiment.

  8. Thermodynamic model of nonequilibrium phase transitions.

    PubMed

    Martyushev, L M; Konovalov, M S

    2011-07-01

    Within the scope of a thermodynamic description using the maximum entropy production principle, transitions from one nonequilibrium (kinetic) regime to another are considered. It is shown that in the case when power-law dependencies of thermodynamic flux on force are similar for two regimes, only a transition accompanied by a positive jump of thermodynamic flux is possible between them. It is found that the difference in powers of the dependencies of thermodynamic fluxes on forces results in a number of interesting nonequilibrium transitions between kinetic regimes, including the reentrant one with a negative jump of thermodynamic flux. PMID:21867119

  9. Nonequilibrium transport at a dissipative quantum phase transition.

    PubMed

    Chung, Chung-Hou; Le Hur, Karyn; Vojta, Matthias; Wölfle, Peter

    2009-05-29

    We investigate the nonequilibrium transport near a quantum phase transition in a generic and relatively simple model, the dissipative resonant level model, that has many applications for nanosystems. We formulate a rigorous mapping and apply a controlled frequency-dependent renormalization group approach to compute the nonequilibrium current in the presence of a finite bias voltage V and a finite temperature T. For V-->0, we find that the conductance has its well-known equilibrium form, while it displays a distinct nonequilibrium profile at finite voltage. PMID:19519125

  10. Nonequilibrium and nonhomogeneous phenomena around a first-order quantum phase transition

    NASA Astrophysics Data System (ADS)

    Del Re, Lorenzo; Fabrizio, Michele; Tosatti, Erio

    2016-03-01

    We consider nonequilibrium phenomena in a very simple model that displays a zero-temperature first-order phase transition. The quantum Ising model with a four-spin exchange is adopted as a general representative of first-order quantum phase transitions that belong to the Ising universality class, such as for instance the order-disorder ferroelectric transitions, and possibly first-order T =0 Mott transitions. In particular, we address quantum quenches in the exactly solvable limit of infinite connectivity and show that, within the coexistence region around the transition, the system can remain trapped in a metastable phase, as long as it is spatially homogeneous so that nucleation can be ignored. Motivated by the physics of nucleation, we then study in the same model static but inhomogeneous phenomena that take place at surfaces and interfaces. The first-order nature implies that both phases remain locally stable across the transition, and with that the possibility of a metastable wetting layer showing up at the surface of the stable phase, even at T =0 . We use mean-field theory plus quantum fluctuations in the harmonic approximation to study quantum surface wetting.

  11. Modeling non-equilibrium phase transitions in isentropically compressed Bi

    SciTech Connect

    Kane, J; Smith, R

    2005-09-19

    We report here on modeling of non-equilibrium phase transitions in Bi samples isentropically compressed to 120 GPa by a ramped drive, which is produced using the Janus laser. In the experiments, the Bi samples are attached to windows of LiF or sapphire, and the velocity history of the sample-window interface is recorded with line VISAR. The 1D response of the targets is modeled using a multiphase Bi EOS, the Andrews-Hayes method for non-equilibrium transitions, and a Boettger-Wallace kinetics model. The pressure drive is deduced by back integration of VISAR data from shots performed with Al samples.

  12. Aggregation, lipid exchange, and metastable phases of dimyristoylphosphatidylethanolamine vesicles.

    PubMed

    Pryor, C; Bridge, M; Loew, L M

    1985-04-23

    A new fluorescent lipid analogue, bimanephosphatidylcholine, has been synthesized for use in lipid bilayers. This probe is well suited as an energy-transfer donor with N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine as the acceptor. Dimyristoylphosphatidylethanolamine vesicles are prepared by sonication at pH 9 and characterized by electron microscopy and other methods. Resonance energy transfer between separately labeled donor and acceptor vesicles is monitored during HCl-induced aggregation to determine the kinetics of lipid randomization. Light scattering is also monitored to measure the kinetics of aggregation. The light scattering shows a marked reversal with NaOH while the energy transfer does not, indicating lipid exchange during a reversibly aggregated state; the extent of energy transfer suggests that only lipids in the outer monolayers exchange. The gel to liquid-crystalline phase transition temperature in HCl-treated vesicles is found to be 47 degrees C with diphenylhexatriene. The initial sonicated dispersion does not show a sharp phase transition. In vesicles labeled with both donor and acceptor probes, a small, irreversible increase in energy transfer is obtained upon lowering and then restoring the pH. These results suggest a metastable phase in the sonicated vesicles containing a randomized distribution of lipid and probes within the bilayers; the thermodynamically favored phase, whose formation is triggered by the pH shock, contains domains within which the probe lipids are more highly concentrated. PMID:3995010

  13. Thermally driven metastable solid-solution Li0.5FePO4 in nanosized particles and its phase separation behaviors

    NASA Astrophysics Data System (ADS)

    Yoo, Sunyoung; Kang, Byoungwoo

    2013-10-01

    Nanosized LiFePO4 particles easily show a fast electrochemical response that can be achieved via a non-equilibrium pathway. To understand this intriguing phase transition behavior in nanosized LiFePO4 particles, the metastable solid-solution phase was prepared by thermal treatment with a chemically delithiated nanosized Li0.5FePO4 sample. Thermal treatment makes all the nanosized particles transform easily to the metastable solid-solution phase because of the large thermal energy while an electrochemical reaction does not. The phase separation behavior of the metastable solid-solution sample (Li0.5FePO4) was investigated under various kinetic conditions to understand critical factors affecting the phase separation behavior of nanosized LiFePO4 particles. The main findings in this study are as follows. The first finding is that the depressed phase separation behavior of the metastable phase may originate from the nanoparticle effect, in which the formation of a second phase inside a nanosized particle is not energetically favored because of the large interfacial energy. Therefore, phase separation in nanosized particles occurs between particles rather than inside a particle. If there was no over-potential, such as in the relaxed pellet experiment or in the relaxed electrode experiment in the electrolyte, the metastable phase was quite stable showing no phase separation behavior even though efficient pathways for lithium ions and electrons were well developed. The second finding is that the phase separation behavior of the metastable phase actually depends on the over-potential. Under open circuit voltage (OCV) conditions, the metastable phase started to exhibit a slight structural change during a long relaxation time, about ten days. The slow change of the metastable phase may be due to the low driving force, less than 10 mV, which comes from the energetic difference between the two-phase state and the metastable phase. This indicates that the phase separation

  14. Nonequilibrium phase transitions in cuprates observed by ultrafast electron crystallography.

    PubMed

    Gedik, Nuh; Yang, Ding-Shyue; Logvenov, Gennady; Bozovic, Ivan; Zewail, Ahmed H

    2007-04-20

    Nonequilibrium phase transitions, which are defined by the formation of macroscopic transient domains, are optically dark and cannot be observed through conventional temperature- or pressure-change studies. We have directly determined the structural dynamics of such a nonequilibrium phase transition in a cuprate superconductor. Ultrafast electron crystallography with the use of a tilted optical geometry technique afforded the necessary atomic-scale spatial and temporal resolutions. The observed transient behavior displays a notable "structural isosbestic" point and a threshold effect for the dependence of c-axis expansion (Deltac) on fluence (F), with Deltac/F = 0.02 angstrom/(millijoule per square centimeter). This threshold for photon doping occurs at approximately 0.12 photons per copper site, which is unexpectedly close to the density (per site) of chemically doped carriers needed to induce superconductivity. PMID:17446397

  15. An experimental verification of a criterion for forming metastable phases in containerless solidification

    SciTech Connect

    Kuribayashi, K.; Inatomi, Y.; Kumar, M. S. Vijaya

    2015-04-21

    On the thermodynamic condition for forming a metastable phase from undercooled melt in a containerless state, we had proposed a criterion that crystals will preferentially form if they have a smaller entropy of fusion than the entropy of fusion of equilibrium crystals (Kuribayashi et al., Mater. Sci. Eng., A 449–451, 675 (2007)). This criterion is proposed for being applied to materials that exhibit a faceted interface, such as semiconductors and oxides. However, no experimental data that support this criterion have been obtained. From this point, we used an aerodynamic levitator as a tool for forming metastable phases from undercooled melt and verified the above-mentioned criterion using LnFeO{sub 3} (Ln: lanthanide and Y) as the model material. In addition, the condition for double recalescence, which corresponds to forming metastable phases and stable phases, was discussed in terms of competitive 2D isomorphic nucleation of the metastable phase and 3D polymorphic nucleation of the stable phase.

  16. An experimental verification of a criterion for forming metastable phases in containerless solidification

    NASA Astrophysics Data System (ADS)

    Kuribayashi, K.; Kato, H.; Nagayama, K.; Inatomi, Y.; Kumar, M. S. Vijaya

    2015-04-01

    On the thermodynamic condition for forming a metastable phase from undercooled melt in a containerless state, we had proposed a criterion that crystals will preferentially form if they have a smaller entropy of fusion than the entropy of fusion of equilibrium crystals (Kuribayashi et al., Mater. Sci. Eng., A 449-451, 675 (2007)). This criterion is proposed for being applied to materials that exhibit a faceted interface, such as semiconductors and oxides. However, no experimental data that support this criterion have been obtained. From this point, we used an aerodynamic levitator as a tool for forming metastable phases from undercooled melt and verified the above-mentioned criterion using LnFeO3 (Ln: lanthanide and Y) as the model material. In addition, the condition for double recalescence, which corresponds to forming metastable phases and stable phases, was discussed in terms of competitive 2D isomorphic nucleation of the metastable phase and 3D polymorphic nucleation of the stable phase.

  17. Discovery of a metastable Al{sub 20}Sm{sub 4} phase

    SciTech Connect

    Ye, Z. E-mail: kmh@ameslab.gov; Zhang, F.; Mendelev, M. I.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Wang, C.-Z.; Sun, Y.; Ding, Z.; Ho, K.-M. E-mail: kmh@ameslab.gov

    2015-03-09

    We present an efficient genetic algorithm, integrated with experimental diffraction data, to solve a nanoscale metastable Al{sub 20}Sm{sub 4} phase that evolves during crystallization of an amorphous magnetron sputtered Al{sub 90}Sm{sub 10} alloy. The excellent match between calculated and experimental X-ray diffraction patterns confirms an accurate description of this metastable phase. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered defects in the devitrified crystal.

  18. Infinite-noise criticality: Nonequilibrium phase transitions in fluctuating environments

    NASA Astrophysics Data System (ADS)

    Vojta, Thomas; Hoyos, Jose

    We study the effects of time-varying environmental noise on nonequilibrium phase transitions in spreading and growth processes. Using the examples of the logistic evolution equation as well as the contact process, we show that such temporal disorder gives rise to a distinct type of critical points at which the effective noise amplitude diverges on long time scales. This leads to enormous density fluctuations characterized by an infinitely broad probability distribution at criticality. We develop a real-time renormalization-group theory that provides a general framework for the effects of temporal disorder on nonequilibrium processes. We also discuss how general this exotic critical behavior is, we illustrate the results by computer simulations, and we touch upon experimental applications of our theory. Supported by the NSF under Grant No. DMR-1205803, by Simons Foundation, by FAPESP under Grant No. 2013/09850-7, and by CNPq under Grant Nos. 590093/2011-8 and 305261/2012-6.

  19. Biological Implications of Dynamical Phases in Non-equilibrium Networks

    NASA Astrophysics Data System (ADS)

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2016-03-01

    Biology achieves novel functions like error correction, ultra-sensitivity and accurate concentration measurement at the expense of free energy through Maxwell Demon-like mechanisms. The design principles and free energy trade-offs have been studied for a variety of such mechanisms. In this review, we emphasize a perspective based on dynamical phases that can explain commonalities shared by these mechanisms. Dynamical phases are defined by typical trajectories executed by non-equilibrium systems in the space of internal states. We find that coexistence of dynamical phases can have dramatic consequences for function vs free energy cost trade-offs. Dynamical phases can also provide an intuitive picture of the design principles behind such biological Maxwell Demons.

  20. Optical Properties in Non-equilibrium Phase Transitions

    SciTech Connect

    Ao, T; Ping, Y; Widmann, K; Price, D F; Lee, E; Tam, H; Springer, P T; Ng, A

    2006-01-05

    An open question about the dynamical behavior of materials is how phase transition occurs in highly non-equilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to non-thermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reaches a critical value.

  1. High speed, high temperature electrical characterization of phase change materials: metastable phases, crystallization dynamics, and resistance drift

    NASA Astrophysics Data System (ADS)

    Dirisaglik, Faruk; Bakan, Gokhan; Jurado, Zoila; Muneer, Sadid; Akbulut, Mustafa; Rarey, Jonathan; Sullivan, Lindsay; Wennberg, Maren; King, Adrienne; Zhang, Lingyi; Nowak, Rebecca; Lam, Chung; Silva, Helena; Gokirmak, Ali

    2015-10-01

    During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K.During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05512a

  2. High speed, high temperature electrical characterization of phase change materials: metastable phases, crystallization dynamics, and resistance drift.

    PubMed

    Dirisaglik, Faruk; Bakan, Gokhan; Jurado, Zoila; Muneer, Sadid; Akbulut, Mustafa; Rarey, Jonathan; Sullivan, Lindsay; Wennberg, Maren; King, Adrienne; Zhang, Lingyi; Nowak, Rebecca; Lam, Chung; Silva, Helena; Gokirmak, Ali

    2015-10-28

    During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K. PMID:26415716

  3. Observation of Well-ordered Metastable Vortex Lattice Phases in Superconducting MgB2 Using Small-Angle Neutron Scattering

    SciTech Connect

    Das, Pinaki; Rastovski, Catherine; O'Brien, Timothy; Schlesinger, Kimberly; Dewhurst, Charles; Debeer-Schmitt, Lisa M; Zhigadlo, Nikolai; Karpinski, Janusz; Eskildsen, Morten

    2012-01-01

    The vortex lattice (VL) symmetry and orientation in clean type-II superconductors depends sensitively on the host material anisotropy, vortex density and temperature, frequently leading to rich phase diagrams. Typically, a well-ordered VL is taken to imply a ground-state configuration for the vortex-vortex interaction. Using neutron scattering we studied the VL in MgB2 for a number of field-temperature histories, discovering an unprecedented degree of metastability in connection with a known, second-order rotation transition. This allows, for the first time, structural studies of a well-ordered, nonequilibrium VL. While the mechanism responsible for the longevity of the metastable states is not resolved, we speculate it is due to a jamming of VL domains, preventing a rotation to the ground-state orientation.

  4. Non-equilibrium phase transitions in a liquid crystal

    NASA Astrophysics Data System (ADS)

    Dan, K.; Roy, M.; Datta, A.

    2015-09-01

    The present manuscript describes kinetic behaviour of the glass transition and non-equilibrium features of the "Nematic-Isotropic" (N-I) phase transition of a well known liquid crystalline material N-(4-methoxybenzylidene)-4-butylaniline from the effects of heating rate and initial temperature on the transitions, through differential scanning calorimetry (DSC), Fourier transform infrared and fluorescence spectroscopy. Around the vicinity of the glass transition temperature (Tg), while only a change in the baseline of the ΔCp vs T curve is observed for heating rate (β) > 5 K min-1, consistent with a glass transition, a clear peak for β ≤ 5 K min-1 and the rapid reduction in the ΔCp value from the former to the latter rate correspond to an order-disorder transition and a transition from ergodic to non-ergodic behaviour. The ln β vs 1000/T curve for the glass transition shows convex Arrhenius behaviour that can be explained very well by a purely entropic activation barrier [Dan et al., Eur. Phys. Lett. 108, 36007 (2014)]. Fourier transform infrared spectroscopy indicates sudden freezing of the out-of-plane distortion vibrations of the benzene rings around the glass transition temperature and a considerable red shift indicating enhanced coplanarity of the benzene rings and, consequently, enhancement in the molecular ordering compared to room temperature. We further provide a direct experimental evidence of the non-equilibrium nature of the N-I transition through the dependence of this transition temperature (TNI) and associated enthalpy change (ΔH) on the initial temperature (at fixed β-values) for the DSC scans. A plausible qualitative explanation based on Mesquita's extension of Landau-deGennes theory [O. N. de Mesquita, Braz. J. Phys. 28, 257 (1998)] has been put forward. The change in the molecular ordering from nematic to isotropic phase has been investigated through fluorescence anisotropy measurements where the order parameter, quantified by the

  5. Discovery of a metastable Al20Sm4 phase

    SciTech Connect

    Ye, Z.; Zhang, F.; Sun, Y.; Mendelev, M. I.; Ott, R. T.; Park, E.; Besser, M. F.; Kramer, M. J.; Ding, Z.; Wang, C. -Z.; Ho, K. -M.

    2015-03-09

    In this study, we present an efficient genetic algorithm, integrated with experimental diffraction data, to solve a nanoscale metastable Al20Sm4 phase that evolves during crystallization of an amorphous magnetron sputtered Al90Sm10 alloy. The excellent match between calculated and experimental X-ray diffraction patterns confirms an accurate description of this metastable phase. Molecular dynamic simulations of crystal growth from the liquid phase predict the formation of disordered defects in the devitrified crystal.

  6. Understanding metastable phase transformation during crystallization of RDX, HMX and CL-20: experimental and DFT studies.

    PubMed

    Ghosh, Mrinal; Banerjee, Shaibal; Shafeeuulla Khan, Md Abdul; Sikder, Nirmala; Sikder, Arun Kanti

    2016-09-14

    Multiphase growth during crystallization severely affects deliverable output of explosive materials. Appearance and incomplete transformation of metastable phases are a major source of polymorphic impurities. This article presents a methodical and molecular level understanding of the metastable phase transformation mechanism during crystallization of cyclic nitramine explosives, viz. RDX, HMX and CL-20. Instantaneous reverse precipitation yielded metastable γ-HMX and β-CL-20 which undergo solution mediated transformation to the respective thermodynamic forms, β-HMX and ε-CL-20, following 'Ostwald's rule of stages'. However, no metastable phase, anticipated as β-RDX, was evidenced during precipitation of RDX, which rather directly yielded the thermodynamically stable α-phase. The γ→β-HMX and β→ε-CL-20 transformations took 20 and 60 minutes respectively, whereas formation of α-RDX was instantaneous. Density functional calculations were employed to identify the possible transition state conformations and to obtain activation barriers for transformations at wB97XD/6-311++G(d,p)(IEFPCM)//B3LYP/6-311G(d,p) level of theory. The computed activation barriers and lattice energies responsible for transformation of RDX, HMX and CL-20 metastable phases to thermodynamic ones conspicuously supported the experimentally observed order of phase stability. This precise result facilitated an understanding of the occurrence of a relatively more sensitive and less dense β-CL-20 phase in TNT based melt-cast explosive compositions, a persistent and critical problem unanswered in the literature. The crystalline material recovered from such compositions revealed a mixture of β- and ε-CL-20. However, similar compositions of RDX and HMX never showed any metastable phase. The relatively long stability with the highest activation barrier is believed to restrict complete β→ε-CL-20 transformation during processing. Therefore a method is suggested to overcome this issue. PMID

  7. Formation and Stabilization of Single-Crystalline Metastable AuGe Phases in Ge Nanowires

    SciTech Connect

    Sutter, E.; Sutter, P.

    2011-07-22

    We use in situ observations by variable temperature transmission electron microscopy on AuGe alloy drops at the tips of Ge nanowires (NWs) with systematically varying composition to demonstrate the controlled formation of metastable solid phases integrated in NWs. The process, which operates in the regime of vapor-liquid-solid growth, involves a size-dependent depression of the alloy liquidus at the nanoscale that leads to extremely Ge-rich AuGe melts at low temperatures. During slow cooling, these liquid AuGe alloy drops show pronounced departures from equilibrium, i.e., a frustrated phase separation of Ge into the adjacent solid NW, and ultimately crystallize as single-crystalline segments of metastable {gamma}-AuGe. Our findings demonstrate a general avenue for synthesizing NW heterostructures containing stable and metastable solid phases, applicable to a wide range of materials of which NWs form by the vapor-liquid-solid method.

  8. A metastable phase in thermal decomposition of Ca-deficient hydroxyapatite.

    PubMed

    Tamai, Masato; Nakamura, Mitsuhiro; Isshiki, Toshiyuki; Nishio, Koji; Endoh, Hisamitsu; Nakahira, Atsushi

    2003-07-01

    We investigated the microstructural changes on an atomic length scale during thermal decomposition process of Ca-deficient hydroxyapatite (Ca-def HAp) by high-resolution transmission electron microscopy (HRTEM). Ca-def HAp was prepared by hydrolysis of alpha-tricalcium phosphate. The Ca-def HAp had a whisker-like morphology 2-5 microm in length and 0.1 microm in diameter that was elongated along c-axis. Thicker planer defects parallel to the (100) plane of the HAp matrix were observed as precipitation in the sample annealed at 700 and 800 degrees C by HRTEM observation. Thickness of the precipitation was about 10 nm and the boundaries between the precipitation and HAp matrix was coincident. The periodicity in the precipitation was parallel to the (100) plane of the HAp matrix and measured to be 1.42 nm. Since the precipitation was observed only in the sample annealed at a narrow temperature range of 700-800 degrees C, it was regarded as a metastable phase formed on the thermal decomposition process. Absorption peaks in IR spectra of annealed Ca-def HAp containing the metastable phase appeared at 744 and 3538 cm(-1) due to non-stoichiometric HAp with high Ca/P molar ratio. Furthermore, the results of energy dispersive X-ray spectroscopy showed that the metastable phase had higher Ca/P molar ratio than that of the matrix and stoichiometric HAp. Therefore, the metastable phase could be identified as Ca-rich metastable phase. The presence of Ca-rich metastable phase was confirmed to be associated with the thermal decomposition process. PMID:15348424

  9. Phase Transition and Dynamics in Imidazolium-Based Ionic Liquid Crystals through a Metastable Highly Ordered Smectic Phase.

    PubMed

    Nozaki, Yoko; Yamaguchi, Keito; Tomida, Kenji; Taniguchi, Natsumi; Hara, Hironori; Takikawa, Yoshinori; Sadakane, Koichiro; Nakamura, Kenji; Konishi, Takashi; Fukao, Koji

    2016-06-16

    The phase transition behavior and dynamics of ionic liquid crystals, 1-methyl-3-alkylimidazolium tetrafluoroborate with various alkyl chain lengths, were investigated by X-ray scattering, differential scanning calorimetry, optical microscopy, and dielectric relaxation spectroscopy to elucidate the mechanism of their structural and phase changes. A metastable phase was found to appear via a supercooled smectic phase on cooling. In the metastable phase, disorder in the smectic phase is partially frozen; thus, the phase has order higher than that of the smectic phase but lower than that of the crystalline phase. During the subsequent heating process, the frozen disorder activates, and a crystalline phase appears in the supercooled smectic phase before entering the smectic phase. The relationship between the phase behavior and the dynamics of charge carriers such as ions is also discussed. PMID:27195480

  10. Prediction of a metastable cubic phase for the transition metals with hcp ground state.

    NASA Astrophysics Data System (ADS)

    de Coss, Romeo; Aguayo, Aaron; Murrieta, Gabriel

    2007-03-01

    The discovery of a metastable phase for a given material is interesting because corresponds to a new bonding and new properties are expected. The calculation of the total-energy along the Bain path is frequently used as a method to find tetragonal metastable states. However, a local minimum in the tetragonal distortion is not a definitive proof of a metastable state, and the elastic stability needs to be evaluated. In a previous work, using the elastic stability criteria for a cubic structure, we have shown that the transition metals with hcp ground state; Ti, Zr, and Hf have a fcc metastable phase [Aguayo, G. Murrieta, and R. de Coss, Phys. Rev. B 65, 092106 (2002)]. That result is interesting since the fcc crystal structure does not appear in the current pressure-temperature phase diagram of these metals, and support the experimental observations of fcc Ti and Zr in thin films. In the present work, we extend the elastic stability study of the fcc structure to the non-magnetic transition metals with hcp ground state; Sc, Ti, Y, Zr, Tc, Ru, Hf, Re, and Os. We find that all the metals involved in this study have a metastable fcc structure. From these results, substrates on which the fcc structure of these metals could be growth epitaxially are predicted.

  11. Optimization of crystal nucleation close to a metastable fluid-fluid phase transition

    PubMed Central

    Wedekind, Jan; Xu, Limei; Buldyrev, Sergey V.; Stanley, H. Eugene; Reguera, David; Franzese, Giancarlo

    2015-01-01

    The presence of a metastable fluid-fluid critical point is thought to dramatically influence the crystallization pathway, increasing the nucleation rate by many orders of magnitude over the predictions of classical nucleation theory. We use molecular dynamics simulations to study the kinetics of crystallization in the vicinity of this metastable critical point and throughout the metastable fluid-fluid phase diagram. To quantitatively understand how the fluid-fluid phase separation affects the crystal nucleation, we evaluate accurately the kinetics and reconstruct the thermodynamic free-energy landscape of crystal formation. Contrary to expectations, we find no special advantage of the proximity of the metastable critical point on the crystallization rates. However, we find that the ultrafast formation of a dense liquid phase causes the crystallization to accelerate both near the metastable critical point and almost everywhere below the fluid-fluid spinodal line. These results unveil three different scenarios for crystallization that could guide the optimization of the process in experiments PMID:26095898

  12. Synthesis of submicron metastable phase of silicon using femtosecond laser-driven shock wave

    SciTech Connect

    Tsujino, Masashi; Sano, Tomokazu; Sakata, Osami; Ozaki, Norimasa; Kodama, Ryosuke; Kimura, Shigeru; Takeda, Shingo; Kobayashi, Kojiro F.; Hirose, Akio

    2011-12-15

    We measured the grain size of metastable phase of Si synthesized by shock compression. We analyzed the crystalline structures of the femtosecond laser-driven shock compressed silicon with x-ray diffraction measurements. We found that submicron grains of metastable Si-VIII exist in the silicon. We suggest that the pressure loading time is too short for the nucleated high-pressure phases to grow in case of the femtosecond laser-driven shock compression, therefore Si-VIII grains of submicron size are obtained. We are expecting to discover other unique crystalline structures induced by the femtosecond laser-driven shock wave.

  13. Phase diagram of KHF2 and non-equilibrium effects

    NASA Technical Reports Server (NTRS)

    Hobson, M. C.; Kellner, J. D.

    1978-01-01

    The equilibrium diagram for the KHF2-H2O system was constructed from cooling and heating curves for the compositions between 5 wt% and 40 wt% KHF2 and the results are shown. The phase diagrams shown is typical of that of a two component system with miscible liquid phases and whole solid phases consist of pure components. A eutectic point was found at approximately 15% KHF2 which remains completely liquid down to a temperature of -9.0 C. No hydrate formation was observed and no anomalous behavior such as the occurrence of solid transitions or metastable states was observed. The effect of rapid freezing on the equilibrium diagram did not appear, and cooling curves exhibited only one halt. Also, at rapid freezing rates, the supercooling of the solutions was smaller than those observed at the slow cooling rates. The existence of a eutectic composition and the slow rate of dissolution of the salt are used to interpret heat absorption behavior in practical applications of the KHF2-H2O system.

  14. Phases, collective modes, and nonequilibrium dynamics of dissipative Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Ray, S.; Sinha, S.; Sengupta, K.

    2016-03-01

    We use a density matrix formalism to study the equilibrium phases and nonequilibrium dynamics of a system of dissipative Rydberg atoms in an optical lattice within mean-field theory. We provide equations for the fixed points of the density matrix evolution for atoms with infinite on-site repulsion and analyze these equations to obtain their Mott-insulator-superfluid (MI-SF) phase boundary. A stability analysis around these fixed points provides us with the excitation spectrum of the atoms both in the MI and SF phases. We study the nature of the MI-SF critical point in the presence of finite dissipation of Rydberg excitations, discuss the fate of the superfluid order parameter of the atoms in the presence of such dissipation in the weak-coupling limit using a coherent state representation of the density matrix, and extend our analysis to Rydberg atoms with finite on-site interaction via numerical solution of the density matrix equations. Finally, we vary the boson (atom) hopping parameter J and the dissipation parameter Γ according to a linear ramp protocol. We study the evolution of entropy of the system following such a ramp and show that the deviation of the entropy from its steady-state value for the latter protocol exhibits power-law behavior as a function of the ramp time. We discuss experiments that can test our theory.

  15. Unstable dynamics, nonequilibrium phases, and criticality in networked excitable media

    SciTech Connect

    Franciscis, S. de; Torres, J. J.; Marro, J.

    2010-10-15

    Excitable systems are of great theoretical and practical interest in mathematics, physics, chemistry, and biology. Here, we numerically study models of excitable media, namely, networks whose nodes may occasionally be dormant and the connection weights are allowed to vary with the system activity on a short-time scale, which is a convenient and realistic representation. The resulting global activity is quite sensitive to stimuli and eventually becomes unstable also in the absence of any stimuli. Outstanding consequences of such unstable dynamics are the spontaneous occurrence of various nonequilibrium phases--including associative-memory phases and one in which the global activity wanders irregularly, e.g., chaotically among all or part of the dynamic attractors--and 1/f noise as the system is driven into the phase region corresponding to the most irregular behavior. A net result is resilience which results in an efficient search in the model attractor space that can explain the origin of some observed behavior in neural, genetic, and ill-condensed matter systems. By extensive computer simulation we also address a previously conjectured relation between observed power-law distributions and the possible occurrence of a ''critical state'' during functionality of, e.g., cortical networks, and describe the precise nature of such criticality in the model which may serve to guide future experiments.

  16. Unstable dynamics, nonequilibrium phases, and criticality in networked excitable media.

    PubMed

    de Franciscis, S; Torres, J J; Marro, J

    2010-10-01

    Excitable systems are of great theoretical and practical interest in mathematics, physics, chemistry, and biology. Here, we numerically study models of excitable media, namely, networks whose nodes may occasionally be dormant and the connection weights are allowed to vary with the system activity on a short-time scale, which is a convenient and realistic representation. The resulting global activity is quite sensitive to stimuli and eventually becomes unstable also in the absence of any stimuli. Outstanding consequences of such unstable dynamics are the spontaneous occurrence of various nonequilibrium phases--including associative-memory phases and one in which the global activity wanders irregularly, e.g., chaotically among all or part of the dynamic attractors--and 1/f noise as the system is driven into the phase region corresponding to the most irregular behavior. A net result is resilience which results in an efficient search in the model attractor space that can explain the origin of some observed behavior in neural, genetic, and ill-condensed matter systems. By extensive computer simulation we also address a previously conjectured relation between observed power-law distributions and the possible occurrence of a "critical state" during functionality of, e.g., cortical networks, and describe the precise nature of such criticality in the model which may serve to guide future experiments. PMID:21230236

  17. Metastable phases in Zr-Excel alloy and their stability under heavy ion (Kr2+) irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Hongbing; Zhang, Ken; Yao, Zhongwen; Kirk, Mark A.; Long, Fei; Daymond, Mark R.

    2016-02-01

    Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo, wt.%) has been proposed as a candidate material of pressure tubes in the CANDU-SCWR design. It is a dual-phase alloy containing primary hcp α-Zr and metastable bcc β-Zr. Metastable hexagonal ω-Zr phase could form in β-Zr as a result of aging during the processing of the tube. A synchrotron X-ray study was employed to study the lattice properties of the metastable phases in as-received Zr-Excel pressure tube material. In situ heavy ion (1 MeV Kr2+) irradiations were carried out at 200 °C and 450 °C to emulate the stability of the metastable phase under a reactor environment. Quantitative Chemi-STEM EDS analysis was conducted on both un-irradiated and irradiated samples to investigate alloying element redistribution induced by heavy ion irradiation. It was found that no decomposition of β-Zr was observed under irradiation at both 200 °C and 450 °C. However, ω-Zr particles experienced shape changes and shrinkage associated with enrichment of Fe at the β/ω interface during 200 °C irradiation but not at 450 °C. There is a noticeable increase in the level of Fe in the α matrix after irradiation at both 200 °C and 450 °C. The concentrations of Nb, Mo and Fe are increased in the ω phase but decreased in the β phase at 200 °C. The stability of metastable phases under heavy ion irradiation associated with elemental redistribution is discussed.

  18. Efficient aziridine synthesis in metastable crystalline phases by photoinduced denitrogenation of crystalline triazolines.

    PubMed

    de Loera, Denisse; Garcia-Garibay, Miguel A

    2012-08-01

    The solid-state photodenitrogenation of crystalline triazolines proceeds with high efficiency to form the corresponding aziridines in high chemical yields upon selection of the proper irradiation wavelength. It was shown that the solid-to-solid reactions occur by formation of the product in metastable crystalline phases. PMID:22794188

  19. Structure and transformations of metastable phases. in Zr-Nb and Ti-V alloys

    NASA Astrophysics Data System (ADS)

    Cuello, G. J.; Aurelio, G.; Fernández Guillermet, A.; Campo, J.

    An experimental study is presented of the effect of an isothermal heat treatment (`aging') upon the structural properties of three metastable phases in Zr-Nb and Ti-V alloys, viz. α (hcp), β (bcc) and Ω, formed by quenching the alloys from 1273 K. Using neutron-diffraction experiments, the constitution of the aged alloys and the structural parameters of the resulting aged phases were determined. By combining lattice-parameter measurements with previously established correlations in the Zr-Nb and Ti-V systems, new information on the composition of the aged phases was obtained. For long aging times the α and β phases seem to be approaching equilibrium conditions, which opens up the possibility of using quenching-and-aging experiments to gain insight into the metastable phase diagram of these systems, which is not accurately known from experiments.

  20. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    USGS Publications Warehouse

    Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.

    1996-01-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine ??? spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes

  1. Hexagonal ice transforms at high pressures and compression rates directly into "doubly metastable" ice phases.

    PubMed

    Bauer, Marion; Winkel, Katrin; Toebbens, Daniel M; Mayer, Erwin; Loerting, Thomas

    2009-12-14

    We report compression and decompression experiments of hexagonal ice in a piston cylinder setup in the temperature range of 170-220 K up to pressures of 1.6 GPa. The main focus is on establishing the effect that an increase in compression rate up to 4000 MPa/min has on the phase changes incurred at high pressures. While at low compression rates, a phase change to stable ice II takes place (in agreement with earlier comprehensive studies), we find that at higher compression rates, increasing fractions and even pure ice III forms from hexagonal ice. We show that the critical compression rate, above which mainly the metastable ice III polymorph is produced, decreases by a factor of 30 when decreasing the temperature from 220 to 170 K. At the highest rate capable with our equipment, we even find formation of an ice V fraction in the mixture, which is metastable with respect to ice II and also metastable with respect to ice III. This indicates that at increasing compression rates, progressively more metastable phases of ice grow from hexagonal ice. Since ices II, III, and V differ very much in, e.g., strength and rheological properties, we have prepared solids of very different mechanical properties just by variation in compression rate. In addition, these metastable phases have stability regions in the phase diagrams only at much higher pressures and temperatures. Therefore, we anticipate that the method of isothermal compression at low temperatures and high compression rates is a tool for the academic and industrial polymorph search with great potential. PMID:20001064

  2. Crystallographic Stability of Metastable Phase Formed by Containerless Processing in REFeO3 (RE: Rare-Earth Element)

    NASA Technical Reports Server (NTRS)

    Kuribayashi, Kazuhiko; Kumar, M. S. Vijaya

    2012-01-01

    Undercooling a melt often facilitates a metastable phase to nucleate preferentially. Although the classical nucleation theory shows that the most critical factor for forming a metastable phase is the interface free energy, the crystallographic stability is also indispensable for the phase to be frozen at ambient temperature. In compound materials such as oxides, authors have suggested that the decisive factors for forming a critical nucleus are not only the free energy difference but also the difference of the entropy of fusion between stable and metastable phases. In the present study, using REFeO3 (RE: rare-earth element) as a model material, we investigate the formation of a metastable phase from undercooled melts with respect to the competitive nucleation and crystallographical stabilities of both phases.

  3. Refractive indices of metastable and amorphous phases in Ne +-ion irradiated magnesium-aluminate spinel

    NASA Astrophysics Data System (ADS)

    Afanasyev-Charkin, I. V.; Cooke, D. W.; Ishimaru, M.; Bennett, B. L.; Gritsyna, V. T.; Williams, J. R.; Sickafus, K. E.

    2001-04-01

    Single-crystal MgAl 2O 4 was subjected to 180 keV Ne +-ion irradiation to fluences of (1, 5, and 10)×10 20 ions/m2. The metastable and amorphous phases induced by irradiation were studied using transmission electron microscopy (TEM) and optical transmission spectroscopy. The thicknesses of implantation-induced layer structures were obtained from TEM observations. This information was then used in conjunction with optical transmission results to deduce the refractive indices of individual structures. It was found that the lowest ion fluence produces a metastable layer with a reduced index of refraction ( n=1.70±0.005) relative to the pristine substrate ( n=1.72), whereas the intermediate fluence induces an amorphous region ( n=1.61±0.01) bounded by metastable regions. The effect of the highest fluence is to increase the thickness of the amorphous layer ( n=1.60±0.01) at the expense of the metastable regions.

  4. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off.

    PubMed

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind's most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength-ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy should

  5. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off

    NASA Astrophysics Data System (ADS)

    Li, Zhiming; Pradeep, Konda Gokuldoss; Deng, Yun; Raabe, Dierk; Tasan, Cemal Cem

    2016-06-01

    Metals have been mankind’s most essential materials for thousands of years; however, their use is affected by ecological and economical concerns. Alloys with higher strength and ductility could alleviate some of these concerns by reducing weight and improving energy efficiency. However, most metallurgical mechanisms for increasing strength lead to ductility loss, an effect referred to as the strength–ductility trade-off. Here we present a metastability-engineering strategy in which we design nanostructured, bulk high-entropy alloys with multiple compositionally equivalent high-entropy phases. High-entropy alloys were originally proposed to benefit from phase stabilization through entropy maximization. Yet here, motivated by recent work that relaxes the strict restrictions on high-entropy alloy compositions by demonstrating the weakness of this connection, the concept is overturned. We decrease phase stability to achieve two key benefits: interface hardening due to a dual-phase microstructure (resulting from reduced thermal stability of the high-temperature phase); and transformation-induced hardening (resulting from the reduced mechanical stability of the room-temperature phase). This combines the best of two worlds: extensive hardening due to the decreased phase stability known from advanced steels and massive solid-solution strengthening of high-entropy alloys. In our transformation-induced plasticity-assisted, dual-phase high-entropy alloy (TRIP-DP-HEA), these two contributions lead respectively to enhanced trans-grain and inter-grain slip resistance, and hence, increased strength. Moreover, the increased strain hardening capacity that is enabled by dislocation hardening of the stable phase and transformation-induced hardening of the metastable phase produces increased ductility. This combined increase in strength and ductility distinguishes the TRIP-DP-HEA alloy from other recently developed structural materials. This metastability-engineering strategy

  6. Formation of a metastable crystalline phase during ion irradiation of spinel

    SciTech Connect

    Devanathan, R.; Yu, Ning; Sickafus, K.; Nastasi, M.

    1995-12-31

    We have examined the radiation resistance of magnesio-aluminate spinel by irradiating single crystals of MgAl{sub 2}O{sub 4} with 400 keV Xe++ions at 100 K. At low irradiation doses, the material transformed into a metastable crystalline phase with half the lattice spacing of the original crystal. Electron diffraction analysis revealed that this structural change can be explained in terms of the redistribution of cations among octahedral, tetrahedral, and three- fold coordinated interstitial sites of the close-packed anion lattice. Corresponding to this transformation, the hardness and elastic modulus increased with dose to values about 10% greater than those of unirradiated spinel. We believe that the formation of this metastable phase plays an important role in determining the radiation resistance of spinel.

  7. Metastable morphotropic phase boundary state in the multiferroic BiFeO3-PbTiO3

    NASA Astrophysics Data System (ADS)

    Kothai, V.; Prasath Babu, R.; Ranjan, Rajeev

    2013-09-01

    Temperature-time study of the magnetoelectric multiferroic (1-x)BiFeO3-(x)PbTiO3 by x-ray and electron diffraction on the reported morphotropic phase boundary (MPB) compositions revealed that this MPB does not correspond to the equilibrium state. The MPB like state is rather of metastable nature and arise due to kinetic arrest of metastable rhombohedral (R3c) phase, along with the equilibrium tetragonal (P4mm) phase. The life time of the metastable R3c nuclei is very sensitive to composition and temperature, and nearly diverges at x → 0.27. The MPB like state appears only if the system is cooled before the metastable R3c nuclei could vanish. These findings resolve the long standing controversy with regard to seemingly erratic phase formation behaviour reported by different groups and provides a rational basis for developing genuine equilibrium MPB compositions in this system for better piezoelectric properties.

  8. A strategy to explore stable and metastable ordered phases of block copolymers.

    PubMed

    Xu, Weiquan; Jiang, Kai; Zhang, Pingwen; Shi, An-Chang

    2013-05-01

    Block copolymers with their rich phase behavior and ordering transitions have become a paradigm for the study of structured soft materials. A major challenge in the study of the phase behavior of block copolymers is to obtain different stable and metastable phases of the system. A strategy to discover complex ordered phases of block copolymers within the self-consistent field theory framework is developed by a combination of fast algorithms and novel initialization procedures. This strategy allows the generation of a large number of candidate structures, which can then be used to construct phase diagrams. Application of the strategy is illustrated using ABC star triblock copolymers as an example. A large number of candidate structures, including many three-dimensionally ordered phases, of the system are obtained and categorized. A phase diagram is constructed for symmetrically interacting ABC star triblock copolymers. PMID:23551204

  9. A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Liu, Jinxuan; Lukose, Binit; Shekhah, Osama; Arslan, Hasan Kemal; Weidler, Peter; Gliemann, Hartmut; Bräse, Stefan; Grosjean, Sylvain; Godt, Adelheid; Feng, Xinliang; Müllen, Klaus; Magdau, Ioan-Bogdan; Heine, Thomas; Wöll, Christof

    2012-12-01

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 × 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++)2- carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process.

  10. Titanium α-ω phase transformation pathway and a predicted metastable structure

    DOE PAGESBeta

    Zarkevich, Nickolai A.; Johnson, Duane D.

    2016-01-15

    A titanium is a highly utilized metal for structural lightweighting and its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We also find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.

  11. Synthesis and characterization of a metastable (SiC){sub 3}N{sub 4} phase

    SciTech Connect

    Uslu, C.; Park, B.; Poker, D.B.

    1994-12-31

    A metastable C-SI-N compound has been synthesized by high dose N{sup +} implantation into polycrystalline {beta}-SiC (cubic phase). The thin films formed upon 100 keV implantation were characterized with respect to various ion doses and target temperatures. X-ray diffraction with a position-sensitive detector and cross-sectional transmission electron microscopy revealed that the as-implanted surfaces contained {approximately} 0.15 {mu}m thick continuously-buried amorphous layers. Rutherford backscattering spectroscopy showed that the peak concentration of nitrogen saturated up to approximately 54 at. % with increasing doses, suggesting a new phase formation.

  12. Titanium α -ω phase transformation pathway and a predicted metastable structure

    NASA Astrophysics Data System (ADS)

    Zarkevich, N. A.; Johnson, D. D.

    2016-01-01

    As titanium is a highly utilized metal for structural lightweighting, its phases, transformation pathways (transition states), and structures have scientific and industrial importance. Using a proper solid-state nudged elastic band method employing two climbing images combined with density functional theory DFT + U methods for accurate energetics, we detail the pressure-induced α (ductile) to ω (brittle) transformation at the coexistence pressure. We find two transition states along the minimal-enthalpy path and discover a metastable body-centered orthorhombic structure, with stable phonons, a lower density than the end-point phases, and decreasing stability with increasing pressure.

  13. Atomistic structures of metastable and amorphous phases in ion-irradiated magnesium aluminate spinel

    NASA Astrophysics Data System (ADS)

    Ishimaru, Manabu; Hirotsu, Yoshihiko; Afanasyev-Charkin, Ivan V.; Sickafus, Kurt E.

    2002-02-01

    Ion-beam-induced microstructures in magnesium aluminate (MgAl2O4) spinel have been examined using transmission electron microscopy (TEM). Irradiations were performed at cryogenic temperature (~120 K) on MgAl2O4 spinel single-crystal surfaces with (111) orientation, using 180 keV neon (Ne+) ions to ion fluences ranging from 1016 to 1017 Ne+ cm-2. Cross-sectional TEM observations indicated that the MgAl2O4 spinel transforms first into a metastable crystalline phase and then into an amorphous phase under these irradiation conditions. On the basis of selected-area electron diffraction and high-resolution TEM, we concluded that Ne-ion-beam irradiation induces an ordered spinel-to-disordered rock-salt-like structural phase transformation. Atomistic structures of amorphous MgAl2O4 were also examined on the basis of atomic pair distribution functions. We compared the experimentally obtained results with previous theoretically calculated results for the metastable and amorphous phases of MgAl2O4, and discussed the validity of the proposed ion-beam-induced structural changes in MgAl2O4 spinel.

  14. Phase separation and defect formation in stable, metastable, and unstable GaInAsSb alloys for infrared applications

    NASA Astrophysics Data System (ADS)

    Yildirim, Asli

    GaInAsSb is a promising material for mid-infrared devices such as lasers and detectors because it is a direct band gap material with large radiative coefficient and a cut-off wavelength that can be varied across the mid-infrared (from 1.7 to 4.9 mum) while remaining lattice matched to GaSb. On the other hand, the potential of the alloy is hampered by predicted ranges of concentration where the constituents of the alloy become immiscible when the crystal is grown near thermodynamic equilibrium at typical growth temperatures. There have been efforts to extend the wavelength of GaInAsSb alloys through such techniques as digital alloy growth and non-equilibrium growth, but most of the compositional range has for a long time been inaccessible due to immiscibility challenges. Theoretical studies also supported the existence of thermodynamic immiscibility gaps for non-equilibrium growth conditions. Lower growth temperatures lead to shorther adatom diffusion length. While a shorter adatom diffusion length suppresses phase separation, too short an adatom length is associated with increased defect formation and eventually loss of crystallinity. On the other hand, hotter growth temperatures move epitaxial growth closer to thermodynamic equilib- rium conditions, and will eventually cause phase separation to occur. In this study thick 2 um; bulk GaInAsSb layers lattice-matched to GaSb substrates were grown across the entire (lattice-matched) compositional range at low growth temperatures (450° C), including the immiscibility region, when grown under non-equilibrium conditions with MBE. High quality epitaxial layers were grown for all compositions, as evidenced by smooth morphology (atomic force microscopy), high structural quality (X-ray diffraction), low alloy fluctuactions (electron dispersive spectroscopy in cross sectioned samples), and bright room temperature photoluminescence. Because initial theoretical efforts have suggessted that lattice strain can influence layer

  15. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states.

    PubMed

    de Oliveira, M M; da Luz, M G E; Fiore, C E

    2015-12-01

    Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions-to single and infinitely many absorbing states-are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems. PMID:26764651

  16. Exploiting non-equilibrium phase separation for self-assembly.

    PubMed

    Grünwald, Michael; Tricard, Simon; Whitesides, George M; Geissler, Phillip L

    2016-02-01

    Demixing can occur in systems of two or more particle species that experience different driving forces, e.g., mixtures of self-propelled active particles or of oppositely charged colloids subject to an electric field. Here we show with macroscopic experiments and computer simulations that the forces underlying such non-equilibrium segregation can be used to control the self-assembly of particles that lack attractive interactions. We demonstrate that, depending on the direction, amplitude and frequency of a periodic external force acting on one particle species, the structures formed by a second, undriven species can range from compact clusters to elongated, string-like patterns. PMID:26658789

  17. Stability of metastable phase and soft magnetic properties of bulk Fe-B nano-eutectic alloy prepared by undercooling solidification combined with CU-mold chilling

    NASA Astrophysics Data System (ADS)

    Yang, Changlin; Zhang, Jun; Huang, Huili; Song, Qijiao; Liu, Feng

    2015-11-01

    Bulk Fe83B17 nano-eutectic alloys were prepared by undercooling solidification combined with Cu-mold chilling method. Stable phase Fe2B and metastable phase Fe3B were found to coexist in the as-solidified microstructure. The soft magnetic properties were improved significantly by the nano-lamellar eutectic and the metastable phase and, were increased further by annealing at 1173 K for 1.5 h after which the metastable phase was decomposed completely.

  18. Optical phase information writing and storage in populations of metastable quantum states

    SciTech Connect

    Djotyan, G. P.; Sandor, N.; Bakos, J. S.; Soerlei, Zs.

    2009-10-15

    We propose a scheme for robust writing and storage of optical phase information in populations of metastable states of the atoms with a tripod structure of levels by using frequency-chirped laser pulses. The method provides much longer storage times compared with the schemes based on the collective atomic spin coherences. A negligible excitation of the atom provides immunity to decoherence induced by decay of the excited states. The method is robust against small-to-medium variations in the laser pulse intensity and speed of the chirp and, being insensitive to resonance conditions, it is effective both in homogeneously and inhomogeneously broadened media.

  19. The temperature-composition phase diagram of monomyristolein in water: equilibrium and metastability aspects.

    PubMed Central

    Briggs, J; Caffrey, M

    1994-01-01

    The temperature-composition phase diagram of monomyristolein in water was constructed using x-ray diffraction. Low- and wide-angle diffraction patterns were collected from samples of fixed hydration as a function of temperature in the heating direction on x-ray-sensitive film and/or image plates. The phases identified in the system include the lamellar crystalline phase, the lamellar liquid crystalline phase, the fluid isotropic phase, and two inverted cubic phases. Particular attention has been devoted to the issues of phase equilibrium and phase boundary verification. Cubic phase undercooling was examined by adjusting the temperature of several samples in the cubic phase to a value where the lamellar liquid crystalline phase represents equilibrium behavior. Cooling-induced structure and phase changes were monitored continuously over a 30-min period by recording low-angle diffraction patterns from the samples using a streak camera. The cubic-to-lamellar transition rate decreased with increasing sample hydration. Additionally, the transition proceeded more rapidly at an incubation temperature of 25 degrees C compared to that at 0 degrees C. A mechanism is proposed that accounts for the hydration and temperature sensitivity of the phase transition under nonequilibrium conditions. Images FIGURE 1 FIGURE 7 PMID:8011891

  20. Non-equilibrium phase transition in reconstituted acto-myosin cortices

    NASA Astrophysics Data System (ADS)

    Fakhri, Nikta; Abu Shah, Enas; Malik-Garbi, Maya; Mackintosh, Fred C.; Keren, Kinneret; Schmidt, Christoph F.

    2015-03-01

    The cortical actin cytoskeleton is a quasi 2-D active material in which dynamics are dominated by rapid actin turnover and myosin-driven contractility. Here we present a reconstituted model system that emulates these processes in artificial cell-like compartments. By tuning physical and chemical parameters, we induce a non-equilibrium phase transition. We characterize the local dynamics of these reconstituted cortices by tracking embedded single-walled carbon nanotubes (SWNTs). We create high-resolution maps of the contractile actomyosin flows in a homogenous and during transition to an inhomogeneous steady state. We find evidence that connectivity percolation drives the non-equilibrium phase transition.

  1. Nonequilibrium phase transition with gravitational-like interaction in a cloud of cold atoms.

    PubMed

    Barré, J; Marcos, B; Wilkowski, D

    2014-04-01

    We propose to use a cloud of laser-cooled atoms in a quasi-two-dimensional trap to investigate a nonequilibrium collapse phase transition in the presence of a gravitational-like interaction. Using theoretical arguments and numerical simulations, we show that, like in two-dimensional gravity, a transition to a collapsed state occurs below a critical temperature. In addition and as a signature of the nonequilibrium nature of the system, persistent particle currents, dramatically increasing close to the phase transition, are observed. PMID:24745411

  2. Formation of metastable structures and amorphous phases in Pu-based systems using the sputtering technique

    NASA Astrophysics Data System (ADS)

    Rizzo, H. F.; Massalski, T. B.; Echeverria, A. W.

    1989-05-01

    The triode sputtering technique with a split-target arrangement was used to obtain metastable crystalline and amorphous phases in ten binary systems of Pu with Si, Al, V, Fe, Co, Pd, Ta, Re, Os, and Ir. In addition to metastable extensions of solid solubility occurring from the binary sides of some systems, wide ranges of metallic glass formation have been observed in several systems. Extended bcc solid solution ranges were observed in Pu-Ta and Pu-V systems. Unlike in the case of many liquid-quenched alloys, the ranges of amorphous phase formation obtained with sputtering appear to have little to do with the form of the corresponding phase diagram. However, the extent of the observed ranges on the Pu-rich side was found to obey approximately the atomic size mismatch relationship. The nearest neighbor distances (NNDs) evaluated with X-ray diffraction show many unusual deviations from an assumed Vegard’s Law, which can be interpreted in relation to the changing electronic configuration of the Pu atom when present in different environments. Exposure of several amorphous alloys to severe oxidation environments did not results in observable corrosion.

  3. Non-equilibrium model of two-phase porous media flow with phase change

    NASA Astrophysics Data System (ADS)

    Cueto-Felgueroso, L.; Fu, X.; Juanes, R.

    2014-12-01

    The efficient simulation of multi-phase multi-component flow through geologic porous media is challenging and computationally intensive, yet quantitative modeling of these processes is essential in engineering and the geosciences. Multiphase flow with phase change and complex phase behavior arises in numerous applications, including enhanced oil recovery, steam injection in groundwater remediation, geologic CO2 storage and enhanced geothermal energy systems. A challenge of multiphase compositional simulation is that the number of existing phases varies with position and time, and thus the number of state variables in the saturation-based conservation laws is a function of space and time. The tasks of phase-state identification and determination of the composition of the different phases are performed assuming local thermodynamic equilibrium. Here we investigate a thermodynamically consistent formulation for non-isothermal two-phase flow, in systems where the hypothesis of instantaneous local equilibrium does not hold. Non-equilibrium effects are important in coarse-scale simulations where the assumption of complete mixing in each gridblock is not realistic. We apply our model to steam injection in water-saturated porous media.

  4. Genetic algorithm prediction of crystal structure of metastable Si-IX phase

    SciTech Connect

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Yangang; Wang, Cai-Zhuang; Ho, Kai-Ming

    2013-12-14

    We performed genetic algorithm search for the atomic structure of the long Lime unsolved Si-IX phase. We found two new structures with space groups of P4(2)/m and P-4, respectively, which have lattice parameters in excellent agreement with the experimental data. The phonon calculations showed that the P4(2)/m structure exhibits a soft phonon mode, while the P-4 structure is dynamically stable. Our calculation also showed that the P-4 structure is a meta-stable structure in a pressure range from 0 to 40 GPa, The Si-IX phase could be a mixed phase consisting of the P4(2)/m and the P-4 structures. Published by Elsevier Ltd.

  5. Metastable ripple phase of fully hydrated dipalmitoylphosphatidylcholine as studied by small angle x-ray scattering

    PubMed Central

    Yao, Haruhiko; Matuoka, Sinzi; Tenchov, Boris; Hatta, Ichiro

    1991-01-01

    Fully hydrated dipalmitoylphosphatidylcholine (DPPC) undergoes liquid crystalline to metastable Pβ, phase transition in cooling. A small angle x-ray scattering study has been performed for obtaining further evidence about the structure of this phase. From a high-resolution observation of x-ray diffraction profiles, a distinct multipeak pattern has become obvious. Among them the (01) reflection in the secondary ripple structure is identified clearly. There are peaks assigned straightforwardly to (10) and (20) reflections in the primary ripple structure and peaks assigned to (10) and (20) reflections in the secondary ripple structure. Therefore the multipeak pattern is due to superposition of the reflections cause by the primary and secondary ripple structures. The lattice parameters are estimated as follows: for the primary ripple structure a = 7.09 nm, b = 13.64 nm, and γ = 95°, and for the secondary ripple structure a = 8.2 nm, b = 26.6 nm, and γ = 90°. The lattice parameters thus obtained for the secondary ripple structure are not conclusive, however. The hydrocarbon chains in the primary ripple structure have been reported as being tilted against the bilayer plane and, on the other hand, the hydrocarbon chains in the secondary ripple structure are likely to be perpendicular to the bilayer plane. This fact seems to be related to a sequential mechanism of phase transitions. On heating from the Lβ, phase where the hydrocarbon chains are tilted the primary ripple structure having tilted hydrocarbon chains takes place and on cooling from the Lα phase where the hydrocarbon chains are not tilted the secondary ripple structure with untilted chains tends to be stabilized. It appears that the truly metastable ripple phase is expressed by the second ripple structure although in the course of the actual cooling transition both the secondary and primary ripple structures form and coexist. PMID:19431787

  6. Metastable liquid-liquid phase separation and criticality in water-like models

    NASA Astrophysics Data System (ADS)

    Singh, Rakesh; Biddle, John; Debenedetti, Pablo; Anisimov, Mikhail

    Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. A possible explanation of the origin of these anomalies lies in the existence of a metastable first order liquid-liquid phase transition (LLPT) between two (high and low density) forms of liquid water. Unambiguous experimental proof of existence of LLPT in bulk supercooled water is so far hampered by ultra-fast ice crystallization. Computer simulations of water models are therefore crucial for exploring the possibility of LLPT in deeply supercooled water. We present computer simulation results that elucidate the possibility of a metastable LLPT in one of the most accurate atomistic models of water, TIP4P/2005. To describe the computed properties, we have applied two-state thermodynamics, viewing water as a non-ideal mixture of two inter-convertible states. The thermodynamic behavior of the model in the one-phase region suggests the existence of energy-driven LLPT. We compare the behavior of TIP4P/2005 with other popular water models, and with real water, all of which are well-described by two-state thermodynamics. Additionally, we also elucidate the relation between the phenomenological order parameter of the two-state thermodynamics and the microscopic nature of the low-density structure.

  7. Formation of a metastable ferromagnetic tau phase during containerless melt processing in Mn-Al-C alloys

    NASA Technical Reports Server (NTRS)

    Kim, Y. J.; Perepezko, J. H.

    1993-01-01

    This paper reports the production of a metastable ferromagnetic tau phase directly from the melt in Mn(0.55)Al(0.433)C(0.017), using a containerless processing method involving levitation melting followed by quenching. Using the results from differential thermal analysis measurements and an analysis of the phase equilibria, it was found that the minimum amount of undercooling level required for ferromagnetic metastable tau phase formation in this alloy was Delta T = 87 K. The attainment of this undercooling may be facilitated by the application of containerless melt processing.

  8. Luminescence properties of the CsSnBr3 phase in metastable Cs4SnBr6

    NASA Astrophysics Data System (ADS)

    Myagkota, S. V.; Savchin, P. V.; Voloshinovskiĭ, A. S.; Demkiv, T. M.; Boĭko, Ya. V.; Vus, R. S.; Demkiv, L. S.

    2008-08-01

    Crystalline materials of the compositions Cs4SnBr6, CsSnBr3, and CsBr-Sn (0.1 mol %) are investigated using x-ray diffraction and luminescent methods. The formation of the CsSnBr3 phase is found to occur in metastable Cs4SnBr6 and CsBr-Sn. It is established that the CsSnBr3 crystalline phase in the Cs4SnBr6 metastable phase is a more stable compound as compared to the CsSnBr3 bulk crystal, which undergoes oxidation and hydration in air.

  9. A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy

    PubMed Central

    Liu, Jinxuan; Lukose, Binit; Shekhah, Osama; Arslan, Hasan Kemal; Weidler, Peter; Gliemann, Hartmut; Bräse, Stefan; Grosjean, Sylvain; Godt, Adelheid; Feng, Xinliang; Müllen, Klaus; Magdau, Ioan-Bogdan; Heine, Thomas; Wöll, Christof

    2012-01-01

    A novel class of metal organic frameworks (MOFs) has been synthesized from Cu-acetate and dicarboxylic acids using liquid phase epitaxy. The SURMOF-2 isoreticular series exhibits P4 symmetry, for the longest linker a channel-size of 3 × 3 nm2 is obtained, one of the largest values reported for any MOF so far. High quality, ab-initio electronic structure calculations confirm the stability of a regular packing of (Cu++)2- carboxylate paddle-wheel planes with P4 symmetry and reveal, that the SURMOF-2 structures are in fact metastable, with a fairly large activation barrier for the transition to the bulk MOF-2 structures exhibiting a lower, twofold (P2 or C2) symmetry. The theoretical calculations also allow identifying the mechanism for the low-temperature epitaxial growth process and to explain, why a synthesis of this highly interesting, new class of high-symmetry, metastable MOFs is not possible using the conventional solvothermal process. PMID:23213357

  10. Searching for high magnetization density in bulk Fe: the new metastable Fe-6 phase

    SciTech Connect

    Umemoto, K; Himmetoglu, B; Wang, JP; Wentzcovitch, RM; Cococcioni, M

    2014-11-26

    We report the discovery of a new allotrope of iron by first principles calculations. This phase has Pmn2(1) symmetry, a six-atom unit cell (hence the name Fe-6), and the highest magnetization density (M-s) among all the known crystalline phases of iron. Obtained from the structural optimizations of the Fe3C-cementite crystal upon carbon removal, Pmn2(1) Fe-6 is shown to result from the stabilization of a ferromagnetic FCC phase, further strained along the Bain path. Although metastable from 0 to 50 GPa, the new phase is more stable at low pressures than the other well-known HCP and FCC allotropes and smoothly transforms into the FCC phase under compression. If stabilized to room temperature, for example, by interstitial impurities, Fe-6 could become the basis material for high M-s rare-earth-free permament magnets and high-impact applications such as light-weight electric engine rotors or high-density recording media. The new phase could also be key to explaining the enigmatic high M-s of Fe16N2, which is currently attracting intense research activity.

  11. Searching for high magnetization density in bulk Fe: the new metastable Fe₆ phase.

    PubMed

    Umemoto, Koichiro; Himmetoglu, Burak; Wang, Jian-Ping; Wentzcovitch, Renata M; Cococcioni, Matteo

    2015-01-14

    We report the discovery of a new allotrope of iron by first principles calculations. This phase has Pmn2(1) symmetry, a six-atom unit cell (hence the name Fe6), and the highest magnetization density (Ms) among all the known crystalline phases of iron. Obtained from the structural optimizations of the Fe3C-cementite crystal upon carbon removal, Pmn2(1) Fe6 is shown to result from the stabilization of a ferromagnetic FCC phase, further strained along the Bain path. Although metastable from 0 to 50 GPa, the new phase is more stable at low pressures than the other well-known HCP and FCC allotropes and smoothly transforms into the FCC phase under compression. If stabilized to room temperature, for example, by interstitial impurities, Fe6 could become the basis material for high Ms rare-earth-free permament magnets and high-impact applications such as light-weight electric engine rotors or high-density recording media. The new phase could also be key to explaining the enigmatic high Ms of Fe16N2, which is currently attracting intense research activity. PMID:25425567

  12. Searching for high magnetization density in bulk Fe: the new metastable Fe6 phase

    NASA Astrophysics Data System (ADS)

    Umemoto, Koichiro; Himmetoglu, Burak; Wang, Jian-Ping; Wentzcovitch, Renata M.; Cococcioni, Matteo

    2015-01-01

    We report the discovery of a new allotrope of iron by first principles calculations. This phase has Pmn21 symmetry, a six-atom unit cell (hence the name Fe6), and the highest magnetization density (Ms) among all the known crystalline phases of iron. Obtained from the structural optimizations of the Fe3C-cementite crystal upon carbon removal, Pmn21 Fe6 is shown to result from the stabilization of a ferromagnetic FCC phase, further strained along the Bain path. Although metastable from 0 to 50 GPa, the new phase is more stable at low pressures than the other well-known HCP and FCC allotropes and smoothly transforms into the FCC phase under compression. If stabilized to room temperature, for example, by interstitial impurities, Fe6 could become the basis material for high Ms rare-earth-free permament magnets and high-impact applications such as light-weight electric engine rotors or high-density recording media. The new phase could also be key to explaining the enigmatic high Ms of Fe16N2, which is currently attracting intense research activity.

  13. Review of zincblende ZnO: Stability of metastable ZnO phases

    NASA Astrophysics Data System (ADS)

    Ashrafi, A.; Jagadish, C.

    2007-10-01

    Common II-VI compound semiconducting materials are stable thermodynamically with zincblende phase, while the II-O materials such as zinc oxide (ZnO) and beryllium oxide (BeO) are stable with wurtzite phase, and cadmium oxide (CdO) and magnesium oxide (MgO) are stable in rocksalt phase. This phase disharmony in the same material family laid a challenge for the basic physics and in practical applications in optoelectronic devices, where ternary and quaternary compounds are employed. Thermodynamically the zincblende ZnO is a metastable phase which is free from the giant internal electric fields in the [001] directions and has an easy cleavage facet in the ⟨110⟩ directions for laser cavity fabrication that combined with evidence for the higher optical gain. The zincblende materials also have lower ionicity that leads to the lower carrier scattering and higher doping efficiencies. Even with these outstanding features in the zincblende materials, the growth of zincblende ZnO and its fundamental properties are still limited. In this paper, recent progress in growth and fundamental properties of zincblende ZnO material has been reviewed.

  14. Phase transformations and the spectral reflectance of solid sulfur - Can metastable sulfur allotropes exist on Io?

    NASA Technical Reports Server (NTRS)

    Moses, Julianne I.; Nash, Douglas B.

    1991-01-01

    Laboratory investigations have been conducted on the effects of variations in sulfur sample histories on their solid-state transformation rate and the corresponding spectral variation of freshly frozen sulfur. The temporal variations in question may be due to differences in the amount and type of metastable allotropes present in the sulfur after solidification, as well as to the physics of the phase-transformation process itself. The results obtained are pertinent to the physical behavior and spectral variation of such freshly solidified sulfur as may exist on the Jupiter moon Io; this would initially solidify into a glassy solid or monoclinic crystalline lattice, then approach ambient dayside temperatures. Laboratory results imply that the monoclinic or polymeric allotropes can in these circumstances be maintained, and will take years to convert to the stable orthorhombic crystalline form.

  15. Phase transitions and metastability in the distribution of the bipartite entanglement of a large quantum system

    SciTech Connect

    De Pasquale, A.; Facchi, P.; Parisi, G.; Pascazio, S.; Scardicchio, A.

    2010-05-15

    We study the distribution of the Schmidt coefficients of the reduced density matrix of a quantum system in a pure state. By applying general methods of statistical mechanics, we introduce a fictitious temperature and a partition function and translate the problem in terms of the distribution of the eigenvalues of random matrices. We investigate the appearance of two phase transitions, one at a positive temperature, associated with very entangled states, and one at a negative temperature, signaling the appearance of a significant factorization in the many-body wave function. We also focus on the presence of metastable states (related to two-dimensional quantum gravity) and study the finite size corrections to the saddle point solution.

  16. Nonequilibrium thermodynamics of nucleation.

    PubMed

    Schweizer, M; Sagis, L M C

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects. PMID:25494727

  17. Nonequilibrium thermodynamics of nucleation

    SciTech Connect

    Schweizer, M.; Sagis, L. M. C.

    2014-12-14

    We present a novel approach to nucleation processes based on the GENERIC framework (general equation for the nonequilibrium reversible-irreversible coupling). Solely based on the GENERIC structure of time-evolution equations and thermodynamic consistency arguments of exchange processes between a metastable phase and a nucleating phase, we derive the fundamental dynamics for this phenomenon, based on continuous Fokker-Planck equations. We are readily able to treat non-isothermal nucleation even when the nucleating cores cannot be attributed intensive thermodynamic properties. In addition, we capture the dynamics of the time-dependent metastable phase being continuously expelled from the nucleating phase, and keep rigorous track of the volume corrections to the dynamics. Within our framework the definition of a thermodynamic nuclei temperature is manifest. For the special case of nucleation of a gas phase towards its vapor-liquid coexistence, we illustrate that our approach is capable of reproducing recent literature results obtained by more microscopic considerations for the suppression of the nucleation rate due to nonisothermal effects.

  18. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    NASA Technical Reports Server (NTRS)

    Yeh, Leehwa

    1993-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.

  19. Structural properties and high-temperature reactions of the metastable Ω phase in Zr Nb alloys

    NASA Astrophysics Data System (ADS)

    Aurelio, Gabriela; Fernández Guillermet, Armando; Cuello, Gabriel J.; Campo, Javier

    2005-05-01

    This article presents an experimental study and a systematic phenomenological analysis of the structural properties and the high-temperature reactions of the Ω phase formed by quenching ('q') bcc (β) Zr-Nb alloys. In the first part of the work an extensive database with lattice parameters (LPs) for the Ω q and the untransformed β q phase is developed on the basis of neutron diffraction measurements. Various striking features of the LP vs. composition relations are detected, and a new method of analysis is applied which involves the concept of a 'reference behavior' (RB) describing the probable properties of each individual phase if it were unaffected by the other structures in the heterogeneous alloys. In this way, a detailed evaluation is performed of the effects of Ω q/β q coherence strains upon the LPs of these two phases. In the second part of the work, neutron thermodiffraction studies are reported of the structural properties of the Ω q + β q two-phase alloys at 300 K ⩽ T ⩽ 650 K. Extensive LP vs. time results are discussed. On this basis, the structural properties of the Ω a phase formed isothermally upon aging ('a') are established, and compared with those of the Ω q phase. In addition, new information is discussed on the evolution of the Ω a + β a system toward thermodynamic equilibrium. Moreover, it is shown how the present method of analysis may also be used to obtain indirect information of both theoretical and practical interest. In particular, considerable evidence is presented indicating that the Nb content of the Ω a phase decreases upon aging whereas that of β a increases. Finally, it is shown how these composition changes might be used to reconcile much of the long-standing conflicting reports concerning the structural properties of the Ω q and Ω a metastable phases.

  20. In situ identification of the metastable phase during solidification from the undercooled YFeO3 melt by fast x-ray diffractometry at 250 Hz

    NASA Astrophysics Data System (ADS)

    Nagashio, K.; Kuribayashi, K.; Vijaya Kumar, M. S.; Niwata, K.; Hibiya, T.; Mizuno, A.; Watanabe, M.; Katayama, Y.

    2006-12-01

    A time-resolved x-ray diffraction (XRD) experiment at 250Hz using a synchrotron radiation source was carried out during the containerless solidification of ReFeO3 (Re =Y and Lu) in order to identify the metastable phase in situ. The metastable phase solidified primarily from the undercooled YFeO3 melt finally transformed to the stable orthorhombic YFeO3 phase during the short period of recalescence (˜0.035s ). Although the metastable phase could not be detected in the as-solidified sample by the powder XRD, the in situ diffraction pattern of the metastable phase in the YFeO3 system was consistent with that of the metastable hexagonal LuFeO3 phase.

  1. Exploration of metastability and hidden phases in correlated electron crystals visualized by femtosecond optical doping and electron crystallography

    PubMed Central

    Han, Tzong-Ru T.; Zhou, Faran; Malliakas, Christos D.; Duxbury, Phillip M.; Mahanti, Subhendra D.; Kanatzidis, Mercouri G.; Ruan, Chong-Yu

    2015-01-01

    Characterizing and understanding the emergence of multiple macroscopically ordered electronic phases through subtle tuning of temperature, pressure, and chemical doping has been a long-standing central issue for complex materials research. We report the first comprehensive studies of optical doping–induced emergence of stable phases and metastable hidden phases visualized in situ by femtosecond electron crystallography. The electronic phase transitions are triggered by femtosecond infrared pulses, and a temperature–optical density phase diagram is constructed and substantiated with the dynamics of metastable states, highlighting the cooperation and competition through which the macroscopic quantum orders emerge. These results elucidate key pathways of femtosecond electronic switching phenomena and provide an important new avenue to comprehensively investigate optical doping–induced transition states and phase diagrams of complex materials with wide-ranging applications. PMID:26601190

  2. Formation of a metastable ferromagnetic tau phase during containerless melt processing and rapid quenching in Mn-Al-C alloys

    NASA Technical Reports Server (NTRS)

    Kim, Y. J.; Perepezko, J. H.

    1992-01-01

    Solidification of selected Mn-Al-C alloys during containerless levitation and rapid quenching has yielded the first report for a ferromagnetic metastable tau phase formed directly from the melt. Complete solidification to tau phase was interrupted by the competitive evolution of an equilibrium epsilon phase during recalescence. The amount of undercooling required to produce the metastable ferromagnetic tau phase in a Mn(0.55)Al(0.433)C(0.017) alloy during solidification was estimated as approximately 470 K based on differential thermal analysis results. When the alloy carbon content was increased to 3.4 at. pct, transition in structure development occurred so that the samples exhibited gamma 2 phase formation as well as tau and epsilon phases.

  3. Stable and Metastable Equilibria in the Pb-Cd System

    NASA Astrophysics Data System (ADS)

    Chuang, Ying-Yu; Paik, J.-S.; Zhang, C.; Perepezko, J. H.; Chang, Y. A.

    2013-07-01

    Thermodynamic and phase diagram data in the Pb-Cd system are reevaluated. A substitutional solution model is used for the liquid and fcc and hcp phases. The stable and metastable equilibria of this system are calculated using the thermodynamic equations derived from equilibrium data. Besides the well-established eutectic reaction at 521 K (248 °C), one stable monotectic reaction at 548 K (275 °C) is found due to the existence of a stable liquid miscibility gap. The stable monotectic reaction has been missed in all previous evaluations. Experimental verifications of the stable and metastable phase equilibria are provided using droplet samples and undercooled liquid alloys. A differential thermal analysis (DTA) method is applied to determine the phase reaction temperatures using both traditional heating and cooling processes and a specially designed cycling process. Additional microstructural evidence is used to elucidate the nature of the phase reactions. The refined thermodynamic descriptions are based upon both the thermochemical and phase diagram stable and metastable data. The agreement between the calculated and experimental data is good. All experimental stable and metastable results are well explained by the new Pb-Cd phase diagram calculations within the experimental accuracy limits. Combined experimental and thermodynamic modeling procedures developed for determining the stable and metastable phase equilibria yield a highly reliable overall phase diagram assessment and a quantitative basis for the interpretation of non-equilibrium solidification processing.

  4. Equilibrium sampling by reweighting nonequilibrium simulation trajectories

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  5. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    PubMed

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems. PMID:27078486

  6. Nonequilibrium Dynamics and Phase Transitions in Holographic Models.

    PubMed

    Janik, Romuald A; Jankowski, Jakub; Soltanpanahi, Hesam

    2016-08-26

    We study the poles of the retarded Green's functions of strongly coupled field theories exhibiting a variety of phase structures from a crossover up to a first order phase transition. These theories are modeled by a dual gravitational description. The poles of the holographic Green's functions appear at the frequencies of the quasinormal modes of the dual black hole background. We establish that near the transition, in all cases considered, the applicability of a hydrodynamic description breaks down already at lower momenta than in the conformal case. We establish the appearance of the spinodal region in the case of the first order phase transition at temperatures for which the speed of sound squared is negative. An estimate of the preferential scale attained by the unstable modes is also given. We additionally observe a novel diffusive regime for sound modes for a range of wavelengths. PMID:27610844

  7. Nonequilibrium phases in rapidly quenched Fe-Al-C ternary alloys

    NASA Astrophysics Data System (ADS)

    Inoue, A.; Minemura, T.; Kitamura, A.; Masumoto, T.

    1981-06-01

    Nonequilibrium phases of austenite(Y), ordered austenite (γ') and hcp epsilon (ɛ) have been found in Fe-Al-C ternary alloys quenched rapidly from the melt. The formation ranges of these single phases are 2 to 6 pct Al and 1.8 to 2.1 pct C for the 7 phase, 6 to 12 pct Al and 1.7 to 2.1 pct C for the γ' phase and 2 to 5 pct Al and above 4 pct C for the e phase. The lattice parameter varies from 0.361 to 0.365 nm for the γ phase and from 0.361 to 0.367 nm for the γ' phase with increasing carbon and aluminum contents and is about a = 0.264 nm and c = 0.434 nm for the e phase. Among these non-equilibrium phases, the austenite is so ductile that no crack is observed even after closely contacted bending test. The austenite phase has fine subgrains of 0.1 to 0.4 μm diam and the Vickers hardness, yield strength and tensile fracture strength are about 360 DPN, 940 MPa and 995 MPa, respectively, for Fe-4.0 pct Al-2.0 pct C alloy. Thus, due to relatively high hardness and strength combined with good ductility, the nonequilibrium austenite found in Fe-Al-C system is attractive as high-strength materials whose useful dimensions may be limited by critical rapid cooling rates.

  8. Searching for high magnetization density in bulk Fe: a new metastable Fe6 phase

    NASA Astrophysics Data System (ADS)

    Cococcioni, M.

    2014-12-01

    We report the discovery of a new allotrope of bulk Fe by first principles calculations. The new phase is characterized by a six-atom unit cell (hence the name Fe6) with a Pmn21 space group, and has the highest magnetization density among all known crystalline phases of bulk Fe. Although metastable under pressures ranging from 0 to 50 GPa, Fe6 is more stable than other well-known allotropes (hcp and fcc, in particular) at ambient conditions and continuously transforms into the FCC structure under compression. Having been obtained from the cementite structure of the Fe-C alloy, this phase could be stabilized by interstitial impurities and a possibility exists that the optimal stoichiometry is close to that of Fe16N2 whose high saturation magnetization density (Ms) has not yet been fully understood. As starting material for high Ms rare-earth-free permament magnets, Fe6 could be used in high-impact applications as, e.g., new generation electric engine rotors or high-density recording media.

  9. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    SciTech Connect

    Cooper, F.

    1997-09-22

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.

  10. Metastable BrO2+ and NBr2+ molecules in the gas phase

    NASA Astrophysics Data System (ADS)

    Aoto, Yuri Alexandre; de Oliveira-Filho, Antonio Gustavo S.; Franzreb, Klaus; Ornellas, Fernando R.

    2011-03-01

    The doubly positively charged gas-phase molecules BrO2+ and NBr2+ have been produced by prolonged high-current energetic oxygen (17 keV 16O-) ion surface bombardment (ion beam sputtering) of rubidium bromide (RbBr) and of ammonium bromide (NH4Br) powdered ionic salt samples, respectively, pressed into indium foil. These novel species were observed at half-integer m/z values in positive ion mass spectra for ion flight times of roughly ˜12 μs through a magnetic-sector secondary ion mass spectrometer. Here we present these experimental results and combine them with a detailed theoretical investigation using high level ab initio calculations of the ground states of BrO2+ and NBr2+, and a manifold of excited electronic states. NBr2+ and BrO2+, in their ground states, are long-lived metastable gas-phase molecules with well depths of 2.73 × 104 cm-1 (3.38 eV) and 1.62 × 104 cm-1 (2.01 eV); their fragmentation channels into two monocations lie 2.31 × 103 cm-1 (0.29 eV) and 2.14 × 104 cm-1 (2.65 eV) below the ground state minimum. The calculated lifetimes for NBr2+ (v″ < 35) and BrO2+ (v″ < 18) are large enough to be considered stable against tunneling. For NBr2+, we predicted Re = 3.051 a0 and ωe = 984 cm-1; for BrO2+, we obtained 3.033 a0 and 916 cm-1, respectively. The adiabatic double ionization energies of BrO and NBr to form metastable BrO2+ and NBr2+ are calculated to be 30.73 and 29.08 eV, respectively. The effect of spin-orbit interactions on the low-lying (Λ + S) states is also discussed.

  11. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    NASA Astrophysics Data System (ADS)

    Selvaraj, Mahalakshmi; Venkatachalapathy, V.; Mayandi, J.; Karazhanov, S.; Pearce, J. M.

    2015-11-01

    Two low-cost chemical methods of sol-gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO3) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl2) and titanium tetrachloride (TiCl4) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO3 nanopowders. The as-prepared BaTiO3 powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 - 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO3 nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO3 nanopowders can be stabilized by the sol-hydrothermal method.

  12. Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method

    SciTech Connect

    Selvaraj, Mahalakshmi; Venkatachalapathy, V.; Karazhanov, S.; Pearce, J. M. E-mail: jeyanthinath@yahoo.co.in

    2015-11-15

    Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phase directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.

  13. Experimental signatures of a nonequilibrium phase transition governing the yielding of a soft glass

    NASA Astrophysics Data System (ADS)

    Hima Nagamanasa, K.; Gokhale, Shreyas; Sood, A. K.; Ganapathy, Rajesh

    2014-06-01

    We present direct experimental signatures of a nonequilibrium phase transition associated with the yield point of a prototypical soft solid—a binary colloidal glass. By simultaneously quantifying single-particle dynamics and bulk mechanical response, we identified the threshold for the onset of irreversibility with the yield strain. We extracted the relaxation time from the transient behavior of the loss modulus and found that it diverges in the vicinity of the yield strain. This critical slowing down is accompanied by a growing correlation length associated with the size of regions of high Debye-Waller factor, which are precursors to yield events in glasses. Our results affirm that the paradigm of nonequilibrium critical phenomena is instrumental in achieving a holistic understanding of yielding in soft solids.

  14. Metastable SiC and SiGeC alloys by carbon implantation and solid phase epitaxy

    SciTech Connect

    Strane, J.W.; Edwards, W.J. ); Mayer, J.W. . Center for Solid State Science); Stein, H.S.; Lee, S.R.; Doyle, B.L.; Picraux, S.T. )

    1992-01-01

    We demonstrate the formation of metastable Si[sub 1-y]C[sub y] and Si[sub 1-y-x]Ge[sub x]C[sub y] alloys by C ion implantation and solid phase epitaxial regrowth. Carbon was introduced into Si and SiGe layers by 5, 12 and 25 keV implants to achieve nearly uniform profiles of 0.7 and 1.4 at. % C. The 0.7 at. % C specimens exhibit the highest quality epitaxial layers after SPE regrowth, whereas in higher C concentration specimens solid phase regrowth was impeded. The localized vibrational mode of C occupying substitutional lattice sites in the diamond lattice provides a signature of the metastable phase and is used to monitor the loss of stability due to precipitation of silicon carbide. The SiC and SiGeC alloys retained substitutional carbon during 30 minute isochronal anneals up to 850[degree]C.

  15. Metastable SiC and SiGeC alloys by carbon implantation and solid phase epitaxy

    SciTech Connect

    Strane, J.W.; Edwards, W.J.; Mayer, J.W.; Stein, H.S.; Lee, S.R.; Doyle, B.L.; Picraux, S.T.

    1992-12-31

    We demonstrate the formation of metastable Si{sub 1-y}C{sub y} and Si{sub 1-y-x}Ge{sub x}C{sub y} alloys by C ion implantation and solid phase epitaxial regrowth. Carbon was introduced into Si and SiGe layers by 5, 12 and 25 keV implants to achieve nearly uniform profiles of 0.7 and 1.4 at. % C. The 0.7 at. % C specimens exhibit the highest quality epitaxial layers after SPE regrowth, whereas in higher C concentration specimens solid phase regrowth was impeded. The localized vibrational mode of C occupying substitutional lattice sites in the diamond lattice provides a signature of the metastable phase and is used to monitor the loss of stability due to precipitation of silicon carbide. The SiC and SiGeC alloys retained substitutional carbon during 30 minute isochronal anneals up to 850{degree}C.

  16. Ultra-Low Power Cross-Phase Shifts using Metastable Xenon in a High-Finesse Cavity

    NASA Astrophysics Data System (ADS)

    Hickman, Garrett; Pittman, Todd; Franson, James

    Many important applications in quantum information and quantum communications make use of weak single-photon nonlinearities. These nonlinearities have been produced using a number of methods, but they generally require a complicated experimental setup. We demonstrate a relatively simple system for producing ultra-low power cross-phase modulation, by using metastable xenon as the nonlinear medium within an optical cavity. Using metastable xenon prevents the degradation of optical surfaces which typically occurs with the use of alkali vapors such as rubidium. We produce phase shifts of up to 10 mrad using 4.5-fJ control pulses. We discuss the performance of this system and outline the planned improvements that will allow the cavity to produce single-photon phase shifts on the order of 1 mrad. This work was supported in part by DARPA DSO Grant No. W31P4Q-12-1-0015 and by NSF Grant No. PHY-1402708.

  17. Nonequilibrium phase transition of interacting bosons in an intra-cavity optical lattice.

    PubMed

    Bakhtiari, M Reza; Hemmerich, A; Ritsch, H; Thorwart, M

    2015-03-27

    We investigate the nonlinear light-matter interaction of a Bose-Einstein condensate trapped in an external periodic potential inside an optical cavity which is weakly coupled to vacuum radiation modes and driven by a transverse pump field. Based on a generalized Bose-Hubbard model which incorporates a single cavity mode, we include the collective backaction of the atoms on the cavity light field and determine the nonequilibrium quantum phases within the nonperturbative bosonic dynamical mean-field theory. With the system parameters adapted to recent experiments, we find a quantum phase transition from a normal phase to a self-organized superfluid phase, which is related to the Hepp-Lieb-Dicke superradiance phase transition. For even stronger pumping, a self-organized Mott insulator phase arises. PMID:25860742

  18. Revisiting the nonequilibrium phase transition of the triplet-creation model

    NASA Astrophysics Data System (ADS)

    Cardozo, G. O.; Fontanari, J. F.

    2006-06-01

    The nonequilibrium phase transition in the triplet-creation model is investigated using critical spreading and the conservative diffusive contact process. The results support the claim that at high enough diffusion the phase transition becomes discontinuous. As the diffusion probability increases the critical exponents change continuously from the ordinary directed percolation (DP) class to the compact directed percolation (CDP). The fractal dimension of the critical cluster, however, switches abruptly between those two universality classes. Strong crossover effects in both methods make it difficult, if not impossible, to establish the exact location of the tricritical point.

  19. Punishment in public goods games leads to meta-stable phase transitions and hysteresis

    NASA Astrophysics Data System (ADS)

    Hintze, Arend; Adami, Christoph

    2015-07-01

    The evolution of cooperation has been a perennial problem in evolutionary biology because cooperation can be undermined by selfish cheaters who gain an advantage in the short run, while compromising the long-term viability of the population. Evolutionary game theory has shown that under certain conditions, cooperation nonetheless evolves stably, for example if players have the opportunity to punish cheaters that benefit from a public good yet refuse to pay into the common pool. However, punishment has remained enigmatic because it is costly and difficult to maintain. On the other hand, cooperation emerges naturally in the public goods game if the synergy of the public good (the factor multiplying the public good investment) is sufficiently high. In terms of this synergy parameter, the transition from defection to cooperation can be viewed as a phase transition with the synergy as the critical parameter. We show here that punishment reduces the critical value at which cooperation occurs, but also creates the possibility of meta-stable phase transitions, where populations can ‘tunnel’ into the cooperating phase below the critical value. At the same time, cooperating populations are unstable even above the critical value, because a group of defectors that are large enough can ‘nucleate’ such a transition. We study the mean-field theoretical predictions via agent-based simulations of finite populations using an evolutionary approach where the decisions to cooperate or to punish are encoded genetically in terms of evolvable probabilities. We recover the theoretical predictions and demonstrate that the population shows hysteresis, as expected in systems that exhibit super-heating and super-cooling. We conclude that punishment can stabilize populations of cooperators below the critical point, but it is a two-edged sword: it can also stabilize defectors above the critical point.

  20. Punishment in public goods games leads to meta-stable phase transitions and hysteresis.

    PubMed

    Hintze, Arend; Adami, Christoph

    2015-07-01

    The evolution of cooperation has been a perennial problem in evolutionary biology because cooperation can be undermined by selfish cheaters who gain an advantage in the short run, while compromising the long-term viability of the population. Evolutionary game theory has shown that under certain conditions, cooperation nonetheless evolves stably, for example if players have the opportunity to punish cheaters that benefit from a public good yet refuse to pay into the common pool. However, punishment has remained enigmatic because it is costly and difficult to maintain. On the other hand, cooperation emerges naturally in the public goods game if the synergy of the public good (the factor multiplying the public good investment) is sufficiently high. In terms of this synergy parameter, the transition from defection to cooperation can be viewed as a phase transition with the synergy as the critical parameter. We show here that punishment reduces the critical value at which cooperation occurs, but also creates the possibility of meta-stable phase transitions, where populations can 'tunnel' into the cooperating phase below the critical value. At the same time, cooperating populations are unstable even above the critical value, because a group of defectors that are large enough can 'nucleate' such a transition. We study the mean-field theoretical predictions via agent-based simulations of finite populations using an evolutionary approach where the decisions to cooperate or to punish are encoded genetically in terms of evolvable probabilities. We recover the theoretical predictions and demonstrate that the population shows hysteresis, as expected in systems that exhibit super-heating and super-cooling. We conclude that punishment can stabilize populations of cooperators below the critical point, but it is a two-edged sword: it can also stabilize defectors above the critical point. PMID:26031571

  1. Nuclear dynamics in the metastable phase of the solid acid caesium hydrogen sulfate.

    PubMed

    Krzystyniak, Maciej; Drużbicki, Kacper; Fernandez-Alonso, Felix

    2015-12-14

    High-resolution spectroscopic measurements using thermal and epithermal neutrons and first-principles calculations within the framework of density-functional theory are used to investigate the nuclear dynamics of light and heavy species in the metastable phase of caesium hydrogen sulfate. Within the generalised-gradient approximation, extensive calculations show that both 'standard' and 'hard' formulations of the Perdew-Burke-Ernzerhof functional supplemented by Tkatchenko-Scheffler dispersion corrections provide an excellent description of the known structure, underlying vibrational density of states, and nuclear momentum distributions measured at 10 and 300 K. Encouraged by the agreement between experiment and computational predictions, we provide a quantitative appraisal of the quantum contributions to nuclear motions in this solid acid. From this analysis, we find that only the heavier caesium atoms reach the classical limit at room temperature. Contrary to naïve expectation, sulfur exhibits a more pronounced quantum character relative to classical predictions than the lighter oxygen atom. We interpret this hitherto unexplored nuclear quantum effect as arising from the tighter binding environment of this species in this technologically relevant material. PMID:26549527

  2. Discovery of a meta-stable Al–Sm phase with unknown stoichiometry using a genetic algorithm

    SciTech Connect

    Zhang, Feng; McBrearty, Ian; Ott, R T; Park, E; Mendelev, Mikhail I; Kramer, M J; Wang, Cai-Zhuang; Ho, Kai-Ming

    2014-06-01

    Unknown crystalline phases observed during the devitrification process of glassy metal alloys significantly limit our ability to understand and control phase selection in these systems driven far from equilibrium. Here, we report a new meta-stable Al5Sm phase identified by simultaneously searching Al-rich compositions of the Al-Sm system, using an efficient genetic algorithm. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of melt-spun Al90Sm10 alloys. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.

  3. Discovery of a meta-stable Al-Sm phase with unknown stoichiometry using a genetic algorithm

    SciTech Connect

    Zhang, Feng; McBrearty, Ian; Ott, R. T.; Park, E.; Mendelev, Mikhail I.; Kramer, M. J.; Wang, Cai-Zhuang; Ho, Kai-Ming

    2014-07-10

    Unknown crystalline phases observed during the devitrification process of glassy metal alloys significantly limit our ability to understand and control phase selection in these systems driven far from equilibrium. Here, we report a new meta-stable Al5Sm phase identified by simultaneously searching Al-rich compositions of the Al–Sm system, using an efficient genetic algorithm. The excellent match between calculated and experimental X-ray diffraction patterns confirms that this new phase appeared in the crystallization of melt-spun Al90Sm10 alloys.

  4. On two mathematical models of nonequilibrium two-phase flow in a porous medium

    NASA Astrophysics Data System (ADS)

    Tarakanov, A.; Konyukhov, A.

    2013-05-01

    Nonequilibrium effects in the displacement in a porous medium which manifest themselves in dependence of relative phase permeabilities and capillary pressure on the rate of the displacement are well known (see, for example, [1-2]). There are at least two different approaches to account for this phenomenon in mathematical models. The first one is based on the use of dynamic relations f(S, ∂S/∂t) instead of equilibrium functions of saturation. The model of this type was developed by Barenblatt and his co-workers [1]. Its great advantage is a small number of additional empirical parameters. Under some suggestions the characteristic time of capillary relaxation f(S, ∂S/∂t)=fe(S+τ∂S/∂t) is the only additional parameter of the model and dynamic relative permeability has the following form , where subscript 'e' denotes equilibrium functions of saturation. Another approach (see, [2]) is based on principles of nonequilibrium thermodynamics. In the framework of this approach a new thermodynamic parameter being an argument of thermodynamic potential is introduced to parameterize nonequilibrium states. For this parameter (hereafter denoted as ξ) the kinetic equation is formulated which provides non-negativity of dissipation of capillary forces. Relative phase permeabilities and capillary pressure are suggested to be functions of this parameter and saturation f=f(S,ξ), Pc=Pc(S,ξ) (1) This way of modeling starts from relation between the thermodynamical potential and its arguments and even the simplest models include a relatively large number of empirical parameters. Development of the permeability function requires additional argumentation. In the present paper the dependence of the phase permeabilities on ξ is introduced such that the resulting model is compatible with Barenblatt's model at small relaxation time i.e. f→fe(S+τ∂S/∂t) as τ→0 . (2) On the other hand the functions (1) can not be represented by the dynamic relations of the form f(S,

  5. Discontinuous nonequilibrium phase transitions in a nonlinearly pulse-coupled excitable lattice model

    NASA Astrophysics Data System (ADS)

    Assis, Vladimir R. V.; Copelli, Mauro

    2009-12-01

    We study a modified version of the stochastic susceptible-infected-refractory-susceptible (SIRS) model by employing a nonlinear (exponential) reinforcement in the contagion rate and no diffusion. We run simulations for complete and random graphs as well as d -dimensional hypercubic lattices (for d=3,2,1 ). For weak nonlinearity, a continuous nonequilibrium phase transition between an absorbing and an active phase is obtained, such as in the usual stochastic SIRS model [Joo and Lebowitz, Phys. Rev. E 70, 036114 (2004)]. However, for strong nonlinearity, the nonequilibrium transition between the two phases can be discontinuous for d≥2 , which is confirmed by well-characterized hysteresis cycles and bistability. Analytical mean-field results correctly predict the overall structure of the phase diagram. Furthermore, contrary to what was observed in a model of phase-coupled stochastic oscillators with a similar nonlinearity in the coupling [Wood , Phys. Rev. Lett. 96, 145701 (2006)], we did not find a transition to a stable (partially) synchronized state in our nonlinearly pulse-coupled excitable elements. For long enough refractory times and high enough nonlinearity, however, the system can exhibit collective excitability and unstable stochastic oscillations.

  6. Equilibrium and non-equilibrium cluster phases in colloids with competing interactions.

    PubMed

    Mani, Ethayaraja; Lechner, Wolfgang; Kegel, Willem K; Bolhuis, Peter G

    2014-07-01

    The phase behavior of colloids that interact via competing interactions - short-range attraction and long-range repulsion - is studied by computer simulation. In particular, for a fixed strength and range of repulsion, the effect of the strength of an attractive interaction (ε) on the phase behavior is investigated at various colloid densities (ρ). A thermodynamically stable equilibrium colloidal cluster phase, consisting of compact crystalline clusters, is found below the fluid-solid coexistence line in the ε-ρ parameter space. The mean cluster size is found to linearly increase with the colloid density. At large ε and low densities, and at small ε and high densities, a non-equilibrium cluster phase, consisting of elongated Bernal spiral-like clusters, is observed. Although gelation can be induced either by increasing ε at constant density or vice versa, the gelation mechanism is different in either route. While in the ρ route gelation occurs via a glass transition of compact clusters, gelation in the ε route is characterized by percolation of elongated clusters. This study both provides the location of equilibrium and non-equilibrium cluster phases with respect to the fluid-solid coexistence, and reveals the dependencies of the gelation mechanism on the preparation route. PMID:24824226

  7. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    SciTech Connect

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-10-15

    The new metastable compound Cr{sub 1+x}Sb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni{sub 2}In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr{sub 1+x}Sb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr{sub 1+x}Sb. - Graphical abstract: 1 amorphous multilayered film 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product). - Highlights: • Interdiffusion of amorphous Cr and Sb occurs before crystallization. • Crystallization of a new metastable phase Cr{sub 1.6}Sb in Ni{sub 2}In-type structure. • The new Cr-rich phase shows half-metallic behavior.

  8. Protein accumulation in the endoplasmic reticulum as a non-equilibrium phase transition.

    PubMed

    Budrikis, Zoe; Costantini, Giulio; La Porta, Caterina A M; Zapperi, Stefano

    2014-01-01

    Several neurological disorders are associated with the aggregation of aberrant proteins, often localized in intracellular organelles such as the endoplasmic reticulum. Here we study protein aggregation kinetics by mean-field reactions and three dimensional Monte carlo simulations of diffusion-limited aggregation of linear polymers in a confined space, representing the endoplasmic reticulum. By tuning the rates of protein production and degradation, we show that the system undergoes a non-equilibrium phase transition from a physiological phase with little or no polymer accumulation to a pathological phase characterized by persistent polymerization. A combination of external factors accumulating during the lifetime of a patient can thus slightly modify the phase transition control parameters, tipping the balance from a long symptomless lag phase to an accelerated pathological development. The model can be successfully used to interpret experimental data on amyloid-β clearance from the central nervous system. PMID:24722051

  9. Protein accumulation in the endoplasmic reticulum as a non-equilibrium phase transition

    PubMed Central

    Budrikis, Zoe; Costantini, Giulio; La Porta, Caterina A. M.; Zapperi, Stefano

    2014-01-01

    Several neurological disorders are associated with the aggregation of aberrant proteins, often localized in intracellular organelles such as the endoplasmic reticulum. Here we study protein aggregation kinetics by mean-field reactions and three dimensional Monte carlo simulations of diffusion-limited aggregation of linear polymers in a confined space, representing the endoplasmic reticulum. By tuning the rates of protein production and degradation, we show that the system undergoes a non-equilibrium phase transition from a physiological phase with little or no polymer accumulation to a pathological phase characterized by persistent polymerization. A combination of external factors accumulating during the lifetime of a patient can thus slightly modify the phase transition control parameters, tipping the balance from a long symptomless lag phase to an accelerated pathological development. The model can be successfully used to interpret experimental data on amyloid-β clearance from the central nervous system. PMID:24722051

  10. Second-law irreversibility and phase-space dimensionality loss from time-reversible nonequilibrium steady-state Lyapunov spectra

    NASA Astrophysics Data System (ADS)

    Hoover, W. G.; Posch, H. A.

    1994-03-01

    We consider steady-state nonequilibrium many-body flows of mass and momentum. For several such diffusive and viscous flows we estimate the phase-space strange-attractor Lyapunov dimensions from the complete spectrum of Lyapunov exponents. We vary the number of particles and the number of thermostated degrees of freedom, as well as the deviation from equilibrium. The resulting Lyapunov spectra provide numerical evidence that the fractal dimensionality loss in such systems remains extensive in a properly defined nonequilibrium analog of the equilibrium large-system thermodynamic limit. The data also suggest a variational principle in the vicinity of nonequilibrium steady states.

  11. Theoretical and experimental study of metastable solid solutions and phase stability within the immiscible Ag-Mo binary system

    NASA Astrophysics Data System (ADS)

    Sarakinos, K.; Greczynski, G.; Elofsson, V.; Magnfält, D.; Högberg, H.; Alling, B.

    2016-03-01

    Metastable solid solutions are phases that are synthesized far from thermodynamic equilibrium and offer a versatile route to design materials with tailor-made functionalities. One of the most investigated classes of metastable solid solutions with widespread technological implications is vapor deposited ternary transition metal ceramic thin films (i.e., nitrides, carbides, and borides). The vapor-based synthesis of these ceramic phases involves complex and difficult to control chemical interactions of the vapor species with the growing film surface, which often makes the fundamental understanding of the composition-properties relations a challenging task. Hence, in the present study, we investigate the phase stability within an immiscible binary thin film system that offers a simpler synthesis chemistry, i.e., the Ag-Mo system. We employ magnetron co-sputtering to grow Ag1-xMox thin films over the entire composition range along with x-ray probes to investigate the films structure and bonding properties. Concurrently, we use density functional theory calculations to predict phase stability and determine the effect of chemical composition on the lattice volume and the electronic properties of Ag-Mo solid solutions. Our combined theoretical and experimental data show that Mo-rich films (x ≥ ˜0.54) form bcc Mo-Ag metastable solid solutions. Furthermore, for Ag-rich compositions (x ≤ ˜0.21), our data can be interpreted as Mo not being dissolved in the Ag fcc lattice. All in all, our data show an asymmetry with regards to the mutual solubility of Ag and Mo in the two crystal structures, i.e., Ag has a larger propensity for dissolving in the bcc-Mo lattice as compared to Mo in the fcc-Ag lattice. We explain these findings in light of isostructural short-range clustering that induces energy difference between the two (fcc and bcc) metastable phases. We also suggest that the phase stability can be explained by the larger atomic mobility of Ag atoms as compared to that

  12. Ageing characteristics of the metastable gamma phase in U-9 wt.% Mo alloy: experimental observations and thermodynamic validation

    NASA Astrophysics Data System (ADS)

    Neogy, S.; Saify, M. T.; Jha, S. K.; Srivastava, D.; Dey, G. K.

    2015-09-01

    Ageing characteristics of the metastable bcc γ-phase in U-9 wt.% Mo alloy, a candidate for high uranium density nuclear fuel for research and test reactors, have been investigated in this study. Analyses of the aged microstructures, employing X-ray diffraction and various microscopy techniques, revealed the decomposition mechanism of the metastable γ-phase to the stable α-U and γ‧ (U2Mo) phases. A discontinuous precipitation reaction, leading to the generation of partially transformed cellular colonies with lamellae comprising of either the α-phase or the γ‧-phase in γ-phase matrix, was found to be operative. The in situ transformation of γ interlamellar regions to the γ‧-phase was noticed occasionally within the γ + α lamellar colonies. Thermodynamic analysis of the U-Mo system, using free energy-composition diagrams, could associate the observed attributes of the decomposition of γ-phase to the extent of Mo segregation and the chemical driving force required for the nucleation of α- and γ‧-phases in the γ-matrix.

  13. Silver nanoplates with ground or metastable structures obtained from template-free two-phase aqueous/organic synthesis

    SciTech Connect

    Zhelev, Doncho V. Zheleva, Tsvetanka S.

    2014-01-28

    Silver has unique electrical, catalytic, and plasmonic characteristics and has been widely sought for fabrication of nanostructures. The properties of silver nanostructures are intimately coupled to the structure of silver crystals. Two crystal structures are known for silver: the stable (ground) state cubic face centered 3C-Ag structure and the metastable hexagonal 4H-Ag structure. Recently, Chackraborty et al. [J. Phys.: Condens. Matter 23, 325401 (2011)] discovered a low density, highly reactive metastable hexagonal 2H-Ag structure accessible during electrodeposition of silver nanowires in porous anodic alumina templates. This 2H-Ag structure has enhanced electrical and catalytic characteristics. In the present work we report template-free synthesis of silver nanoplates with the metastable 2H-Ag crystal structure, which appears together with the ground 3C-Ag and the metastable 4H-Ag structures in a two-phase solution synthesis with citric acid as the capping agent. The capacity of citric acid to stabilize both the stable and the metastable structures is explained by its preferential binding to the close packed facets of Ag crystals, which are the (111) planes for 3C-Ag and the (0001) planes for 4H-Ag and 2H-Ag. Nanoplate morphology and structure are characterized using scanning electron microscopy, X-ray diffraction, and transmission electron microscopy. The synthesized nanoplates have thickness from 15 to 17 nm and edge length from 1 to 10 μm. Transmission electron microscopy selected area electron diffraction is used to uniquely identify and distinguish between nanoplates with 2H-Ag or 4H-Ag or 3C-Ag structures.

  14. Nonequilibrium, Drift-Flux Code System for Two-Phase Flow Network Analysis

    Energy Science and Technology Software Center (ESTSC)

    2000-08-01

    Version: 00 SOLA-LOOP is designed for the solution of transient two-phase flow in networks composed of one-dimensional components. The fluid dynamics is described by a nonequilibrium, drift-flux formulation of the fluid conservation laws. Although developed for nuclear reactor safety analysis, SOLA-LOOP may be used as the basis for other types of special-purpose network codes. The program can accommodate almost any set of constitutive relations, property tables, or other special features required for different applications.

  15. Influence of Temperature on Fatigue-Induced Martensitic Phase Transformation in a Metastable CrMnNi-Steel

    NASA Astrophysics Data System (ADS)

    Biermann, Horst; Glage, Alexander; Droste, Matthias

    2016-01-01

    Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.

  16. The metastable T-P phase diagram and anomalous thermodynamic properties of supercooled water

    NASA Astrophysics Data System (ADS)

    Ponyatovsky, E. G.; Sinitsyn, V. V.; Pozdnyakova, T. A.

    1998-08-01

    The metastable T-P phase diagram and the anomalies of the thermodynamic properties of supercooled water are calculated on the basis of a two-level thermodynamic model. Water is considered as a mixture of two components which differ in atomic configurations and correspond to low-density amorphous (lda) and high-density amorphous (hda) ice. The expression for the Gibbs potential of water is written in the form which is analogous to that of usual regular binary solutions. But this model considers the concentration, c, of the components, as a pressure and temperature-dependent internal parameter. There are only four constants in the expression for the Gibbs potential: the differences in the specific volumes, entropies, and energies of the two components and the mixing energy of the components whose values are ΔV0=-3.8 cm3/mol, ΔS0=4.225 J/mol, ΔE0=1037 J/mol, and U=3824 J/mol, respectively. The lda-hda phase equilibrium line terminates at the critical point, Tcr=230 K and Pcr=0.173 kbar, the second critical point in the phase diagram of water. The anomalous thermal dependence of the specific volume, the heat expansion coefficient, and the specific heat of water calculated for the atmospheric pressure is in a good quantitative agreement with the available experimental data. Thus anomalous properties of supercooled water are well explained by the occurrence of the second critical point close to the atmospheric pressure. The absolute value of parameter c is not crucial for the thermal behavior of properties, instead, the anomalies in water are due to the dependence on pressure and temperature. The parameter c behavior is analyzed in various pressure and temperature ranges around the second critical point. The thermal dependence of parameter c is very weak in the temperature range of 290-350 K at atmospheric pressure. As a consequence, the thermodynamic properties of water behave in this range like those of a normal liquid though water stays a mixture of two components

  17. Entropy analysis on non-equilibrium two-phase flow models

    SciTech Connect

    Karwat, H.; Ruan, Y.Q.

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  18. Exploration of a Metastable Normal Spinel Phase Diagram for the Quaternary Li–Ni–Mn–Co–O System

    DOE PAGESBeta

    Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam

    2016-02-27

    In an attempt to enlarge the normal spinel phase diagram for the quaternary Li-Ni-Mn-Co-O system, the transformation at moderate temperatures (150-210 °C) of layered Li0.5(Ni1-y-zMnyCoz)O2 (Rmore » $$\\bar{3}$$m), which were obtained by an ambient-temperature extraction of lithium from Li0.5(Ni1-y-zMnyCoz)O2, into normal spinel-like (Fd$$\\bar{3}$$m) Li(Ni1-y-zMnyCoz)2O4 has been investigated. The phase-conversion mechanism has been studied by joint time-of-flight (TOF) neutron and X-ray diffractions, thermogravimetric analysis, and bond valence sum map. The ionic diffusion of lithium (3a, 6c) and nickel (3a, 3b) ions has been quantified as a function of temperature. The investigated spinel phases are metastable, and they are subject to change into rock-salt phases at higher temperatures. The phases have been characterized as cathodes in lithium-ion cells. Finally, the study may serve as a strategic model to access other metastable phases by low-temperature synthesis approaches.« less

  19. FOULING-RESISTANT CERAMIC MEMBRANES FOR TREATMENT OF METASTABLE OIL/WATER EMULSIONS - PHASE I

    EPA Science Inventory

    Billions of gallons of oily wastewaters are generated daily by a variety of industrial sources. One class of oily wastewaters, metastable oil/water emulsions, encompasses waste streams for which a need exists for more cost-effective and reliable treatment. Current treatment...

  20. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    SciTech Connect

    Choi, Jeong

    2011-01-01

    The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these

  1. Metastability of anatase: size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania

    PubMed Central

    Satoh, Norifusa; Nakashima, Toshio; Yamamoto, Kimihisa

    2013-01-01

    Since crystal phase dominantly affects the properties of nanocrystals, phase control is important for the applications. To demonstrate the size dependence in anatase-rutile phase transition of titania, we used quantum-size titania prepared from the restricted number of titanium ions within dendrimer templates for size precision purposes and optical wave guide spectroscopy for the detection. Contrary to some theoretical calculations, the observed irreversibility in the transition indicates the metastablity of anatase; thermodynamics cannot explain the formation of metastable states. Therefore, we take into account the kinetic control polymerization of TiO6 octahedral units to explain how the crystal phase of the crystal-nucleus-size titania is dependent on which coordination sites, cis- or trans-, react in the TiO6 octahedra, suggesting possibilities for the synthetic phase control of nanocrystals. In short, the dendrimer templates give access to crystal nucleation chemistry. The paper will also contribute to the creation of artificial metastable nanostructures with atomic-level precision. PMID:23743571

  2. Nonequilibrium hydrogen combustion in one- and two-phase supersonic flow

    SciTech Connect

    Chang, H.T.; Hourng, L.W.; Chien, L.C.

    1997-05-01

    A time-splitting method for the numerical simulation of stiff nonequilibrium combustion problem was developed. The algorithm has been applied to simulate the shock-induced combustion and to investigate a supersonic one-and two-phase flowfield. The results are physically reasonable and demonstrate that the presence of particles has a dramatic effect on the nozzle flowfield and the thrust. Supersonic combustion usually happens in high speed flying aerodynamic problems, such as supersonic combustion ramjet (scramjet) engine for hypersonic airbreathing vehicles. Particularly for the scramjet engine, due to short residence time in the combustion chamber, it still contains incomplete combustion fuel as it enters the nozzle. For solid propellant rocket motors, the exhaust stream contains particles of aluminum oxide. In these two-phase nozzle flows, transfer of momentum and heat between gas particles often result in a decrease of nozzle efficiency.

  3. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    NASA Astrophysics Data System (ADS)

    Choi, Jeong Yun

    The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification. The energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. For analytical description of specific single-phase dendritic and cellular operating point selection, analytical models for solute partitioning under a given set of growth conditions have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these solute trapping models are not rigorously verified due to the difficulty in experimentally measuring under rapid growth conditions. Moreover, since these solute trapping models include kinetic parameters which are difficult to directly measure from experiments, application of the solute trapping models or the associated analytic rapid solidification model is limited. These theoretical models for steady state rapid solidification which incorporate the solute trapping models do not describe the interdependency of solute diffusion, interface kinetics, and alloy thermodynamics. This research program is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution at high undercooling, where conditions depart significantly from local equilibrium. Through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and

  4. An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium patterns

    NASA Astrophysics Data System (ADS)

    Hohenberg, P. C.; Krekhov, A. P.

    2015-04-01

    This paper presents an introduction to phase transitions and critical phenomena on the one hand, and nonequilibrium patterns on the other, using the Ginzburg-Landau theory as a unified language. In the first part, mean-field theory is presented, for both statics and dynamics, and its validity tested self-consistently. As is well known, the mean-field approximation breaks down below four spatial dimensions, where it can be replaced by a scaling phenomenology. The Ginzburg-Landau formalism can then be used to justify the phenomenological theory using the renormalization group, which elucidates the physical and mathematical mechanism for universality. In the second part of the paper it is shown how near pattern forming linear instabilities of dynamical systems, a formally similar Ginzburg-Landau theory can be derived for nonequilibrium macroscopic phenomena. The real and complex Ginzburg-Landau equations thus obtained yield nontrivial solutions of the original dynamical system, valid near the linear instability. Examples of such solutions are plane waves, defects such as dislocations or spirals, and states of temporal or spatiotemporal (extensive) chaos.

  5. Ti α - ω phase transformation and metastable structure, revealed by the solid-state nudged elastic band method

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai; Johnson, Duane D.

    Titanium is on of the four most utilized structural metals, and, hence, its structural changes and potential metastable phases under stress are of considerable importance. Using DFT+U combined with the generalized solid-state nudged elastic band (SS-NEB) method, we consider the pressure-driven transformation between Ti α and ω phases, and find an intermediate metastable body-centered orthorhombic (bco) structure of lower density. We verify its stability, assess the phonons and electronic structure, and compare computational results to experiment. Interestingly, standard density functional theory (DFT) yields the ω phase as the Ti ground state, in contradiction to the observed α phase at low pressure and temperature. We correct this by proper consideration of the strongly correlated d-electrons, and utilize DFT+U method in the SS-NEB to obtain the relevant transformation pathway and structures. We use methods developed with support by the U.S. Department of Energy (DE-FG02-03ER46026 and DE-AC02-07CH11358). Ames Laboratory is operated for the DOE by Iowa State University under Contract DE-AC02-07CH11358.

  6. Metastable phase transformation and hcp-ω transformation pathways in Ti and Zr under high hydrostatic pressures

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Ding, Xiangdong; Lookman, Turab; Sun, Jun; Salje, E. K. H.

    2016-07-01

    The energy landscape of Zr at high hydrostatic pressure suggests that its transformation behavior is strongly pressure dependent. This is in contrast to the known transition mechanism in Ti, which is essentially independent of hydrostatic pressure. Generalized solid-state nudged elastic band calculations at constant pressure shows that α-Zr transforms like Ti only at the lowest pressure inside the stability field of ω-phase. Different pathways apply at higher pressures where the energy landscape contains several high barriers so that metastable states are expected, including the appearance of a transient bcc phase at ca. 23 GPa. The global driving force for the hcp-ω transition increases strongly with increasing pressure and reaches 23.7 meV/atom at 23 GPa. Much of this energy relates to the excess volume of the hcp phase compared with its ω phase.

  7. Damage of Honeybee Colonies and Non-Equilibrium Percolation Phase Transition

    NASA Astrophysics Data System (ADS)

    Zhang, Peipei; Su, Beibei; He, Da-Ren

    Recently the mechanism of the damage caused by invasion of Apis mellifera capensis honeybee into the normal A. M. Scutellata colonies became interesting for scientists due to the fact that the mechanism may resemble those of cancer vicious hyperplasia, spreading of some epidemic, and turbulence of society induced by some bad society groups. We suggest a new guess that losing control of self-reproduction disturbs and throws information structure of the society into confuse. We simulate the damage process with a cellular automata based on the guess. The simulation shows that the process is equivalent to a non-equilibrium percolation phase transition. This discussion remind us that the management and monitor on the information network between society members may be a more effective way for avoiding the overflow of the destructor sub-colonies.

  8. Impurity-tuned non-equilibrium phase transition in a bacterial carpet

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Teng; Wu, Kuan-Ting; Uchida, Nariya; Woon, Wei-Yen

    2016-05-01

    The effects of impurity on the non-equilibrium phase transition in Vibrio alginolyticus bacterial carpets are investigated through a position-sensitive-diode implemented optical tweezers-microsphere assay. The collective flow increases abruptly as we increase the rotation rate of flagella via Na+ concentration. The effects of impurities on the transition behavior are examined by mixing cells of a wild type strain (VIO5) with cells of a mutant strain (NMB136) in different swimming patterns. For dilute impurities, the transition point is shifted toward higher Na+ concentration. Increasing the impurities' ratio to over 0.25 leads to a significant drop in the collective force, suggesting a partial orientational order with a smaller correlation length.

  9. Diffusion, Absorbing States, and Nonequilibrium Phase Transitions in Range Expansions and Evolution

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Maxim Olegovich

    The spatial organization of a population plays a key role in its evolutionary dynamics and growth. In this thesis, we study the dynamics of range expansions, in which populations expand into new territory. Focussing on microbes, we first consider how nutrients diffuse and are absorbed in a population, allowing it to grow. These nutrients may be absorbed before reaching the population interior, and this "nutrient shielding'' can confine the growth to a thin region on the population periphery. A thin population front implies a small local effective population size and enhanced number fluctuations (or genetic drift). We then study evolutionary dynamics under these growth conditions. In particular, we calculate the survival probability of mutations with a selective advantage occurring at the population front for two-dimensional expansions (e.g., along the surface of an agar plate), and three-dimensional expansions (e.g., an avascular tumor). We also consider the effects of irreversible, deleterious mutations which can lead to the loss of the advantageous mutation in the population via a "mutational meltdown,'' or non-equilibrium phase transition. We examine the effects of an inflating population frontier on the phase transition. Finally, we discuss how spatial dimension and frontier roughness influence range expansions of mutualistic, cross-feeding variants. We find here universal features of the phase diagram describing the onset of a mutualistic phase in which the variants remain mixed at long times.

  10. Characterization of Cr-rich Cr-Sb multilayer films: Syntheses of a new metastable phase using modulated elemental reactants

    NASA Astrophysics Data System (ADS)

    Regus, Matthias; Mankovsky, Sergiy; Polesya, Svitlana; Kuhn, Gerhard; Ditto, Jeffrey; Schürmann, Ulrich; Jacquot, Alexandre; Bartholomé, Kilian; Näther, Christian; Winkler, Markus; König, Jan D.; Böttner, Harald; Kienle, Lorenz; Johnson, David C.; Ebert, Hubert; Bensch, Wolfgang

    2015-10-01

    The new metastable compound Cr1+xSb with x up to 0.6 has been prepared via a thin film approach using modulated elemental reactants and investigated by in-situ X-ray reflectivity, X-ray diffraction, differential scanning calorimetry, energy dispersive X-ray analysis as well as transmission electron microscopy and atomic force microscopy. The new Cr-rich antimonide crystallizes in a structure related to the Ni2In-type structure, where the crystallographic position (1/3, 2/3, 3/4) is partially occupied by excess Cr. The elemental layers of the pristine material interdiffused significantly before Cr1+xSb crystallized. A change in the activation energy was observed for the diffusion process when crystal growth starts. First-principles electronic structure calculations provide insight into the structural stability, magnetic properties and resistivity of Cr1+xSb. 2 interdiffused amorphous film 3 metastable crystalline phase 4 thermodynamic stable phase (and by-product)

  11. Observation of nonequilibrium behavior near the Lifshitz point in ferroelectrics with incommensurate phase

    NASA Astrophysics Data System (ADS)

    Rushchanskii, K. Z.; Molnar, A.; Bilanych, R.; Yevych, R.; Kohutych, A.; Vysochanskii, Yu. M.; Samulionis, V.; Banys, J.

    2016-01-01

    We have investigated nonequilibrium properties of proper uniaxial Sn2P2(SexS1-x) 6 ferroelectrics with the type II incommensurate phase above Lifshitz point xLP˜0.28 . We performed measurements of dielectric susceptibility in cooling and heating regimes with the rate ranging 0.002-0.1 K/min, as well as high-resolution ultrasound investigation and hypersound Brillouin scattering experiments. For samples with x ≥0.28 clear anomalies are observed at incommensurate second-order transition (Ti) and at first-order lock-in transition (Tc) in the regime of very slow cooling rate, whereas the intermediate incommensurate phase is not observed when the rate is faster than 0.1 K/min. In general, increasing the cooling rate leads to smearing of the anomaly at Tc. We relate this effect to cooling rate dependence of domain-wall concentration and their size: domain width decreases when cooling rate increases. At certain conditions, the size of domain is comparable to the incommensurate phase modulation period, which is in the micrometer range in the vicinity of Lifshitz point and leads to pinning of the modulation period by domain walls.

  12. Non-equilibrium phase transitions in the two-temperature Ising model with Kawasaki dynamics. Phase diagram from position space renormalization group transformation

    NASA Astrophysics Data System (ADS)

    Renklioglu, B.; Yalabik, M. C.

    2012-12-01

    Phase transitions of the two-finite temperature Ising model on a square lattice are investigated by using a position space renormalization group (PSRG) transformation. Different finite temperatures, T x and T y , and also different time-scale constants, α x and α y for spin exchanges in the x and y directions define the dynamics of the non-equilibrium system. The critical surface of the system is determined by RG flows as a function of these exchange parameters. The Onsager critical point (when the two temperatures are equal) and the critical temperature for the limit when the other temperature is infinite, previously studied by the Monte Carlo method, are obtained. In addition, two steady-state fixed points which correspond to the non-equilibrium phase transition are presented. These fixed points yield the different universality class properties of the non-equilibrium phase transitions.

  13. Suppressed Release of Clarithromycin from Tablets by Crystalline Phase Transition of Metastable Polymorph Form I.

    PubMed

    Fujiki, Sadahiro; Watanabe, Narumi; Iwao, Yasunori; Noguchi, Shuji; Mizoguchi, Midori; Iwamura, Takeru; Itai, Shigeru

    2015-08-01

    The pharmaceutical properties of clarithromycin (CAM) tablets containing the metastable form I of crystalline CAM were investigated. Although the dissolution rate of form I was higher than that of stable form II, the release of CAM from form I tablet was delayed. Disintegration test and liquid penetration test showed that the disintegration of the tablet delayed because of the slow penetration of an external solution into form I tablet. Investigation by scanning electron microscopy revealed that the surface of form I tablet was covered with fine needle-shaped crystals following an exposure to the external solution. These crystals were identified as form IV crystals by powder X-ray diffraction. The phenomenon that CAM releases from tablet was inhibited by fine crystals spontaneously formed on the tablet surface could be applied to the design of sustained-release formulation systems with high CAM contents by minimizing the amount of functional excipients. PMID:26053058

  14. Metastable phases in the aluminum-germanium alloy system: Synthesis by mechanical alloying and pressure induced transformations

    SciTech Connect

    Yvon, P.

    1994-01-01

    Al and Ge form a simple equilibrium eutectic with limited mutual solubility and no intermetallic intermediate phases. We used a regular solution approach to model effects of pressure on Al-Ge. Effects of pressure are to extend solubility of Ge in Al, to displace the eutectic composition towards the Ge rich side, and to slightly decrease the eutectic temperature. We designed thermobaric treatments to induce crystal-to-glass transformations in fine grain mixtures of Al and Ge. We used Merrill-Bassett diamond anvil cells to perform experiments at high pressures. We built an x-ray apparatus to determine the structure of alloys at pressure and from cryogenic temperatures to 400C. Two-phase Al-Ge samples with fine microstructures were prepared by splat-quenching and mechanical alloying. We observed a crystal-to-glass transformation at about 80 kbar. The amorphous phase formed was metastable at ambient temperature after pressure release. This was confirmed by TEM. The amorphous phase obtained by pressurization was found to have a liquid-like structure and was metallic. In the TEM samples we also observed the presence of a second amorphous phase formed upon release of the pressure. This second phase had a tetrahedrally-bonded continuous random network structure, similar to that of semi-conducting amorphous germanium.

  15. On the metastability of the hexatic phase during the melting of two-dimensional charged particle solids

    SciTech Connect

    Derzsi, Aranka; Kovács, Anikó Zs.; Donkó, Zoltán; Hartmann, Peter

    2014-02-15

    For two-dimensional many-particle systems, first-order, second-order, single step continuous, as well as two-step continuous (KTHNY-like) melting transitions have been found in previous studies. Recent computer simulations, using particle numbers in the ≥10{sup 5} range, as well as a few experimental studies, tend to support the two-step scenario, where the solid and liquid phases are separated by a third, so called hexatic phase. We have performed molecular dynamics simulations on Yukawa (Debye-Hückel) systems at conditions earlier predicted to belong to the hexatic phase. Our simulation studies on the time needed for the equilibration of the systems conclude that the hexatic phase is metastable and disappears in the limit of long times. We also show that simply increasing the particle number in particle simulations does not necessarily result in more accurate conclusions regarding the existence of the hexatic phase. The increase of the system size has to be accompanied with the increase of the simulation time to ensure properly thermalized conditions.

  16. Connecting the Water Phase Diagram to the Metastable Domain: High-Pressure Studies in the Supercooled Regime.

    PubMed

    Fanetti, Samuele; Pagliai, Marco; Citroni, Margherita; Lapini, Andrea; Scandolo, Sandro; Righini, Roberto; Bini, Roberto

    2014-11-01

    Pressure is extremely efficient to tune intermolecular interactions, allowing the study of the mechanisms regulating, at the molecular level, the structure and dynamics of condensed phases. Among the simplest molecules, water represents in many respects a mystery despite its primary role in ruling most of the biological, physical, and chemical processes occurring in nature. Here we report a careful characterization of the dynamic regime change associated with low-density and high-density forms of liquid water by measuring the line shape of the OD stretching mode of HOD in liquid water along different isotherms as a function of pressure. Remarkably, the high-pressure studies have been here extended down to 240 K, well inside the supercooled regime. Supported by molecular dynamics simulations, a correlation among amorphous and crystalline solids and the two different liquid water forms is attempted to provide a unified picture of the metastable and thermodynamic regimes of water. PMID:26278751

  17. Traction and nonequilibrium phase behavior of confined sheared liquids at high pressure

    NASA Astrophysics Data System (ADS)

    Gattinoni, Chiara; Heyes, David M.; Lorenz, Christian D.; Dini, Daniele

    2013-11-01

    Nonequilibrium molecular dynamics simulations of confined model liquids under pressure and sheared by the relative sliding of the boundary walls have been carried out. The relationship between the time-dependent traction coefficient, μ(t), and the state of internal structure of the film is followed from commencement of shear for various control parameters, such as applied load, global shear rate, and solid-liquid atom interaction parameters. Phase diagrams, velocity and temperature profiles, and traction coefficient diagrams are analyzed for pure Lennard-Jones (LJ) liquids and a binary LJ mixture. A single component LJ liquid is found to form semicrystalline arrangements with high-traction coefficients, and stick-slip behavior is observed for high pressures and low-shear velocities, which is shown to involve periodic deformation and stress release of the wall atoms and slip in the solid-liquid boundary region. A binary mixture, which discourages crystallization, gives a more classical tribological response with the larger atoms preferentially adsorbing commensurate with the wall. The results obtained are analyzed in the context of tribology: the binary mixture behaves like a typical lubricant, whereas the monatomic system behaves like a traction fluid. It is discussed how this type of simulation can give insights on the tribological behavior of realistic systems.

  18. The Role of Noise-Induced Nonequilibrium Phase Transitions in the Structurization of Hydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, A. V.

    2005-05-01

    The aim of this paper is to develop a continual theory of developed structurized turbulence in shear flows in a compressible fluid modeled by a superposition of two mutually penetrating continuums, where the first continuum refers to the averaged field of turbulent motion, and the second, to the turbulent spacetime chaos associated with the fine-grained fluctuation motion. Incorporating into the thermohydrodynamic description of the subsystem of turbulent chaos a set of internal stochastic coordinates q k (like the locally averaged rate of turbulent energy dissipation), which characterize the structure and temporal evolution of the vorticity of the pulsational hydrodynamic field, has made it possible to use methods of statistical nonequilibrium thermodynamics to derive stochastic differential equations for these parameters and the corresponding Fokker-Planck-Kolmogorov equations for the probability density of transition. In accordance with the modified Kolmogorov similarity theory, positive fluctuating parameters q k are believed to obey the lognormal distribution in the stationary state of chaos. The Gaussian white noise with zero memory, which provides an idealized description of the real noise of vortex chaos with a very short but still finite memory, is used to model the force effect of the noise of chaos (whose fluctuations are due to the cumulative effect of numerous factors determining the state of the turbulized medium). A general concept of the birth of coherent structures in the thermodynamically open subsystem of turbulent chaos is formulated, which attributes the formation of such structures to the phenomenon of nonequilibrium phase transitions induced by the multiplicative noise of chaos during an increase of supercriticality. The interrelation between such transitions and the process of self-organization—the development of ordered “multimolecular” formations with lower symmetry as compared to that of the initial state—is discussed. The

  19. Phase transformation near the classical limit of stability

    SciTech Connect

    Maibaum, Lutz

    2008-11-06

    Successful theories of phase transformation processes include classical nucleation theory (CNT), which envisions a local equilibrium between coexisting phases, and non--equilibrium kinetic cluster theories. Using computer simulations of the magnetization reversal of the Ising model in three different ensembles we make quantitative connections between these physical pictures. We show that the critical nucleus size of CNT is strongly correlated with a dynamical measure of metastability, and that the metastable phase persists to thermodynamic conditions previously thought of as unstable.

  20. THE EFFECT OF METASTABLE EQUILIBRIUM STATES ON THE PARTITIONING OF NITRATE BETWEEN THE GAS AND AEROSOL PHASES. (R826371C005)

    EPA Science Inventory

    With the aid of three atmospheric aerosol equilibrium models, we quantify the effect of metastable equilibrium states (efflorescence branch) in comparison to stable (deliquescence branch) on the partitioning of total nitrate between the gas and aerosol phases. On average, effl...

  1. Nonequilibrium dynamics of a singlet-triplet Anderson impurity near the quantum phase transition

    NASA Astrophysics Data System (ADS)

    Roura Bas, P.; Aligia, A. A.

    2010-01-01

    We study the singlet-triplet Anderson model (STAM) in which a configuration with a doublet is hybridized with another containing a singlet and a triplet, as a minimal model to describe two-level quantum dots coupled to two metallic leads in effectively a one-channel fashion. The model has a quantum phase transition which separates regions of a doublet and a singlet ground state. The limits of integer valence of the STAM (which include a model similar to the underscreened spin-1 Kondo model) are derived and used to predict the behavior of the conductance through the system on both sides of the transition, where it jumps abruptly. At a special quantum critical line, the STAM can be mapped to an infinite- U ordinary Anderson model (OAM) plus a free spin 1/2. We use this mapping to obtain the spectral densities of the STAM as a function of those of the OAM at the transition. Using the non-crossing approximation (NCA), we calculate the spectral densities and conductance through the system as a function of temperature and bias voltage, and determine the changes that take place at the quantum phase transition. The separation of the spectral density into a singlet and a triplet part allows us to shed light on the underlying physics and to explain a shoulder observed recently in the zero bias conductance as a function of temperature in transport measurements through a single fullerene molecule (Roch et al 2008 Nature 453 633). The structure with three peaks observed in nonequilibrium transport in these experiments is also explained.

  2. Entropic screening preserves non-equilibrium nature of nematic phase while enthalpic screening destroys it.

    PubMed

    Dan, K; Roy, M; Datta, A

    2016-02-14

    The present manuscript describes the role of entropic and enthalpic forces mediated by organic non-polar (hexane) and polar (methanol) solvents on the bulk and microscopic phase transition of a well known nematic liquid crystalline material MBBA (N-(4-methoxybenzylidene)-4-butylaniline) through Differential Scanning calorimetry (DSC), UV-Visible (UV-Vis), and Fourier Transform Infrared (FTIR) spectroscopy. DSC study indicates continuous linear decreases in both nematic-isotropic (N-I) phase transition temperature and enthalpy of MBBA in presence of hexane while both these parameters show a saturation after an initial decay in methanol. These distinct transitional behaviours were explained in terms of the "depletion force" model for entropic screening in hexane and "screening-self-screening" model for methanol. Heating rate dependent DSC studies find that non-Arrhenius behaviour, characteristic of pristine MBBA and a manifestation of non-equilibrium nature [Dan et al., J. Chem. Phys. 143, 094501 (2015)], is preserved in presence of entropic screening in the hexane solution, while it changes to Arrhenius behaviour (signifying equilibrium behaviour) in presence of enthalpic screening in methanol solution. FTIR spectra show similar dependence on the solvent induced screening in the intensities of the imine (-C = N) stretch and the out-of-plane distortion vibrations of the benzene rings of MBBA with hexane and methanol as in DSC, further establishing our entropic and enthalpic screening models. UV-Vis spectra of the electronic transitions in MBBA as a function of temperature also exhibit different dependences of intensities on the solvent induced screening, and an exponential decrease is observed in presence of hexane while methanol completely changes the nature of interaction to follow a linear dependence. PMID:26874498

  3. Entropic screening preserves non-equilibrium nature of nematic phase while enthalpic screening destroys it

    NASA Astrophysics Data System (ADS)

    Dan, K.; Roy, M.; Datta, A.

    2016-02-01

    The present manuscript describes the role of entropic and enthalpic forces mediated by organic non-polar (hexane) and polar (methanol) solvents on the bulk and microscopic phase transition of a well known nematic liquid crystalline material MBBA (N-(4-methoxybenzylidene)-4-butylaniline) through Differential Scanning calorimetry (DSC), UV-Visible (UV-Vis), and Fourier Transform Infrared (FTIR) spectroscopy. DSC study indicates continuous linear decreases in both nematic-isotropic (N-I) phase transition temperature and enthalpy of MBBA in presence of hexane while both these parameters show a saturation after an initial decay in methanol. These distinct transitional behaviours were explained in terms of the "depletion force" model for entropic screening in hexane and "screening-self-screening" model for methanol. Heating rate dependent DSC studies find that non-Arrhenius behaviour, characteristic of pristine MBBA and a manifestation of non-equilibrium nature [Dan et al., J. Chem. Phys. 143, 094501 (2015)], is preserved in presence of entropic screening in the hexane solution, while it changes to Arrhenius behaviour (signifying equilibrium behaviour) in presence of enthalpic screening in methanol solution. FTIR spectra show similar dependence on the solvent induced screening in the intensities of the imine (—C = N) stretch and the out-of-plane distortion vibrations of the benzene rings of MBBA with hexane and methanol as in DSC, further establishing our entropic and enthalpic screening models. UV-Vis spectra of the electronic transitions in MBBA as a function of temperature also exhibit different dependences of intensities on the solvent induced screening, and an exponential decrease is observed in presence of hexane while methanol completely changes the nature of interaction to follow a linear dependence.

  4. Oxygen Evolution Catalyzed by Nickel-Iron Oxide Nanocrystals with a Nonequilibrium Phase.

    PubMed

    Bau, Jeremy A; Luber, Erik J; Buriak, Jillian M

    2015-09-01

    Mixed nickel-iron oxides are of great interest as electrocatalysts for the oxygen evolution reaction (OER), the kinetically challenging half-reaction required for the generation of hydrogen gas from water via electrolysis. Previously, we had reported the synthesis of single crystal, soluble nickel-iron oxide nanoparticles over a wide range of nickel:iron compositions, with a metastable cubic rock salt phase ([Ni,Fe]O) that can be isolated despite the low solubility of iron in cubic nickel oxide at ambient temperatures. Here, activity for OER was examined, catalyzed by these [Ni,Fe]O nanoparticles integrated with indium tin oxide (ITO) electrodes. Because the as-prepared [Ni,Fe]O nanoparticles are oleate-capped, the surface ligands needed to be removed to induce adherence to the ITO substrate, and to enable charge transfer and contact with water to enable OER catalysis. Two different approaches were taken to reduce or eliminate the coverage of oleate ligands in these films: UV irradiation (254 nm) and air plasma. UV irradiation proved to lead to better results in terms of stable and OER-active films at pH 13. Kinetic analysis revealed that the Tafel slopes of these nanoparticle [Ni,Fe]O OER electrodes were limited by the electrochemical surface area and were found to be within the range of 30 to 50 mV/decade. Across the four compositions of Ni:Fe studied, from 24:76 to 88:12, the observed overpotential at 10 mA/cm2 for the OER in basic conditions decreased from 0.47 to 0.30 V as the proportion of nickel increased from 24% to 88%. PMID:26293239

  5. On the Influence of Athermal ω and α Phase Instabilities on the Scale of Precipitation of the α Phase in Metastable β-Ti Alloys

    NASA Astrophysics Data System (ADS)

    Zheng, Yufeng; Sosa, John M.; Fraser, Hamish L.

    2016-05-01

    In the presentation and manuscript in the International Conference on Solid-Solid Phase Transformations in Inorganic Materials (PTM 2015 conference), the authors presented the preliminary results showing that the nano-scale compositional and structural instabilities in the parent β phase in titanium alloys have significant influence on the subsequent phase transformations, such as α phase precipitation, by a combination of advanced electron microscopy and phase field simulation. The aim of the current research described in this paper has been to develop an understanding of the role of two instabilities in metastable β Ti alloys which may influence the scale of refined distributions of the α phase. The first of these involves the role of athermal ω phase on the nucleation of the α phase, and the second is the stability of the α phase itself during up-quenching experiments performed as a part of heat-treatment schedules that lead to refined distributions of this phase. The first investigation has involved heat treatments designed to ensure that the athermal ω phase is present at a temperature at which α nucleation is known, from previous research, to occur. It was found that the scale of α precipitation produced was "refined", rather than "super-refined". Hence, it is concluded that athermal ω plays no role in the nucleation of the α phase. The second investigation involves up-quenching of samples already containing an incipient "super-refined" distribution of the α phase to determine the stability of these distributions against such up-quenching. It has been found that the stability of the α phase is dependent on the composition, C 0( T), i.e., the alloy composition where, for a given temperature, T, the free energies of the α and β phases are equal.

  6. Metastable liquid-liquid phase transition in a single-component system with only one crystal phase and no density anomaly

    NASA Astrophysics Data System (ADS)

    Franzese, G.; Malescio, G.; Skibinsky, A.; Buldyrev, S. V.; Stanley, H. E.

    2002-11-01

    We investigate the phase behavior of a single-component system in three dimensions with spherically-symmetric, pairwise-additive, soft-core interactions with an attractive well at a long distance, a repulsive soft-core shoulder at an intermediate distance, and a hard-core repulsion at a short distance, similar to potentials used to describe liquid systems such as colloids, protein solutions, or liquid metals. We showed [Nature (London) 409, 692 (2001)] that, even with no evidence of the density anomaly, the phase diagram has two first-order fluid-fluid phase transitions, one ending in a gas-low-density-liquid (LDL) critical point, and the other in a gas-high-density-liquid (HDL) critical point, with a LDL-HDL phase transition at low temperatures. Here we use integral equation calculations to explore the three-parameter space of the soft-core potential and perform molecular dynamics simulations in the interesting region of parameters. For the equilibrium phase diagram, we analyze the structure of the crystal phase and find that, within the considered range of densities, the structure is independent of the density. Then, we analyze in detail the fluid metastable phases and, by explicit thermodynamic calculation in the supercooled phase, we show the absence of the density anomaly. We suggest that this absence is related to the presence of only one stable crystal structure.

  7. Suppression of metastable-phase inclusion in N-polar (0001{sup ¯}) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    SciTech Connect

    Shojiki, Kanako Iwabuchi, Takuya; Kuboya, Shigeyuki; Choi, Jung-Hun; Tanikawa, Tomoyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi; Usami, Noritaka

    2015-06-01

    The metastable zincblende (ZB) phase in N-polar (0001{sup ¯}) (−c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the −c-plane and Ga-polar (0001) (+c-plane), the −c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the −c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated.

  8. Suppression of metastable-phase inclusion in N-polar (000 1 ¯) InGaN/GaN multiple quantum wells grown by metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Shojiki, Kanako; Choi, Jung-Hun; Iwabuchi, Takuya; Usami, Noritaka; Tanikawa, Tomoyuki; Kuboya, Shigeyuki; Hanada, Takashi; Katayama, Ryuji; Matsuoka, Takashi

    2015-06-01

    The metastable zincblende (ZB) phase in N-polar (000 1 ¯) (-c-plane) InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic vapor phase epitaxy is elucidated by the electron backscatter diffraction measurements. From the comparison between the -c-plane and Ga-polar (0001 ) (+c-plane), the -c-plane MQWs were found to be suffered from the severe ZB-phase inclusion, while ZB-inclusion is negligible in the +c-plane MQWs grown under the same growth conditions. The ZB-phase inclusion is a hurdle for fabricating the -c-plane light-emitting diodes because the islands with a triangular shape appeared on a surface in the ZB-phase domains. To improve the purity of stable wurtzite (WZ)-phase, the optimum conditions were investigated. The ZB-phase is dramatically eliminated with decreasing the V/III ratio and increasing the growth temperature. To obtain much-higher-quality MQWs, the thinner InGaN wells and the hydrogen introduction during GaN barriers growth were tried. Consequently, MQWs with almost pure WZ phase and with atomically smooth surface have been demonstrated.

  9. Quench Dynamics and Nonequilibrium Phase Diagram of the Bose-Hubbard Model

    SciTech Connect

    Kollath, Corinna; Laeuchli, Andreas M.; Altman, Ehud

    2007-05-04

    We investigate the time evolution of correlations in the Bose-Hubbard model following a quench from the superfluid to the Mott insulator. For large values of the final interaction strength the system approaches a distinctly nonequilibrium steady state that bears strong memory of the initial conditions. In contrast, when the final interaction strength is comparable to the hopping, the correlations are rather well approximated by those at thermal equilibrium. The existence of two distinct nonequilibrium regimes is surprising given the nonintegrability of the Bose-Hubbard model. We relate this phenomenon to the role of quasiparticle interactions in the Mott insulator.

  10. Nanosize effects assisted synthesis of the high pressure metastable phase in ZrO2

    NASA Astrophysics Data System (ADS)

    Li, Quanjun; Zhang, Huafang; Liu, Ran; Liu, Bo; Li, Dongmei; Zheng, Lirong; Liu, Jing; Cui, Tian; Liu, Bingbing

    2016-01-01

    The size effects on the high pressure behaviors of monoclinic (MI) ZrO2 nanoparticles were studied using in situ high pressure synchrotron X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). A size-dependent phase transition behavior under high pressure was found in nanoscale ZrO2. The normal phase transition sequence of MI-orthorhombic I (OI)-orthorhombic II (OII) occurs in 100-300 nm ZrO2 nanoparticles, while only the transition of MI-OI exists in ultrafine ~5 nm ZrO2 nanoparticles up to the highest experimental pressure of ~52 GPa. This indicates that the size effects preclude the transition from the OI to the OII phase in ~5 nm nanoparticles. Upon decompression, the OII and OI phases are retained down to ambient pressure, respectively. This is the first observation of the pure OI phase ZrO2 under ambient conditions. The bulk moduli of the MI ZrO2 nanoparticles were determined to be B0 = 192 (7) GPa for the 100-300 nm nanoparticles and B0 = 218 (12) GPa for the ~5 nm nanoparticles. We suggest that the significant high surface energy precludes the transition from the OI to the OII phase and the nanosize effects enhance the incompressibility in the ultrafine ZrO2 nanoparticles (~5 nm). Our study indicates that this is a potential way of preparing novel nanomaterials with high pressure structures using nanosize effects.

  11. Constrained dynamics of localized excitations causes a non-equilibrium phase transition in an atomistic model of glass formers.

    PubMed

    Speck, Thomas; Chandler, David

    2012-05-14

    Recent progress has demonstrated that trajectory space for both kinetically constrained lattice models and atomistic models can be partitioned into a liquid-like and an inactive basin with a non-equilibrium phase transition separating these behaviors. Recent work has also established that excitations in atomistic models have statistics and dynamics like those in a specific class of kinetically constrained models. But it has not been known whether the non-equilibrium phase transitions occurring in the two classes of models have similar origins. Here, we show that the origin is indeed similar. In particular, we show that the number of excitations identified in an atomistic model serves as the order parameter for the inactive-active phase transition for that model. In this way, we show that the mechanism by which excitations are correlated in an atomistic model - by dynamical facilitation - is the mechanism from which the active-inactive phase transition emerges. We study properties of the inactive phase and show that it is amorphous lacking long-range order. We also discuss the choice of dynamical order parameters. PMID:22583302

  12. Synthesis, characterization and formation mechanism of metastable phase VO{sub 2}(A) nanorods

    SciTech Connect

    Cheng, X.H.; Xu, H.F.; Wang, Z.Z.; Zhu, K.R.; Li, G.; Jin, Shaowei

    2013-09-01

    Graphical abstract: - Highlights: • Pure phases of VO{sub 2}(B) and VO{sub 2}(A) were prepared by a facile hydrothermal method. • Belt-like particles prepared at 180 °C was indexed as monoclinic VO{sub 2}(B) phase. • Rod-like particles prepared at 230 °C was indexed as tetragonal VO{sub 2}(A) phase. • VO{sub 2}(A) nanorods resulted from VO{sub 2}(B) nanobelts by assembly and crystal adjustment. - Abstract: Pure phase VO{sub 2}(A) nanorods were synthesized via the reduction of V{sub 2}O{sub 5} by oxalic acid during the hydrothermal treatment. Two sets of samples were prepared by varying both system temperature and reaction time under a filling ratio of 0.40 for observing the formation and evolution of VO{sub 2}(A) nanorods. Structures were characterized by X-ray diffraction, scanning and transmission electron microscopies, respectively. It was found that VO{sub 2}(B) was firstly formed and then transformed into VO{sub 2}(A) as the increasing system temperature or extending reaction time. An assembling and following crystal adjustment was proposed for explanation the formation process of VO{sub 2}(A) from VO{sub 2}(B). For VO{sub 2}(A) nanorods, the phase transition temperature of 169.7 °C was higher than that of the VO{sub 2}(A) bulk, it might be ascribed to the lower crystallinity or nonstoichiometry in VO{sub 2}(A) nanorods. VO{sub 2} nanostructures with controllable phases and properties should find their promising applications in a single VO{sub 2} nanodevice.

  13. Metastability of the β-phase in Zr-rich Zr-Nb alloys

    NASA Astrophysics Data System (ADS)

    Dey, G. K.; Singh, R. N.; Tewari, R.; Srivastava, D.; Banerjee, S.

    1995-08-01

    The decomposition of the β-phase in Zr-rich Zr-Nb alloys by three processes viz., ω formation, α-formation and hydride precipitation has been examined. In the Zr-20Nb alloy, ω-formation has been examined after thermal treatment as well as after electron irradiation and a comparison has been made between the kinetics of ω-phase formation under these two conditions. The morphology of the α-precipitates and their internal structures has been found to depend upon the type of thermal treatment with step quenching from the β-phase field leading to an allotriomorphic morphology and quenching and aging leading to internally twinned Widmanstätten α. The different morphologies obtained due to change in thermal treatment and composition of the Zr sbnd Nb alloys has been rationalized. Hydride formation has been examined in α-Zr, β-Zr and in α + β microstructures. A comparison has been made between the mechanism of formation of hydride phase in these three types of microstructures and their morphology and internal structures have been explained.

  14. Synthesis, field-emission and electric properties of metastable phase VO2 (A) ultra-long nanobelts.

    PubMed

    Li, Ming; Kong, Fengyu; Li, Liang; Zhang, Yunxia; Chen, Li; Yan, Weiwei; Li, Guanghai

    2011-11-01

    High quality single crystalline metastable phase VO(2) (A) ultra-long nanobelts were synthesized by hydrothermal method using inorganic V(2)O(5) sol as precursor and polyethylene glycol (PEG) as both surfactant and reducing agent. It was found that the oriented attach growth mechanism is responsible for the formation of VO(2) (A) nanobelts. In addition to an endothermic peak, an unusual exothermic peak was detected in DSC curve of the nanobelts. The temperature dependence of the lattice parameters have been studied, and it was found that the a-axis expands while the c-axis contracts in the high-temperature XRD test. The VO(2) (A) nanobelt has a low turn-on field of 3.8 V μm(-1) and a high field enhancement factor of 1739 in the field emission measurement. Electrical transport measurement of a single VO(2) (A) nanobelt gives a relative low hoping activation energy of 0.28 eV. PMID:21918759

  15. Pressure Processing of Nanocube Assemblies Toward Harvesting of a Metastable PbS Phase.

    PubMed

    Wang, Tie; Li, Ruipeng; Quan, Zewei; Loc, Welley Siu; Bassett, William A; Xu, Hongwu; Cao, Y Charles; Fang, Jiye; Wang, Zhongwu

    2015-08-19

    This materials-by-design approach combines nanocrystal assembly with pressure processing to drive the attachment and coalescence of PbS nanocubes along directed crystallographic dimensions to form a large 3D porous architecture. This quenchable and strained mesostructure holds the storage of large internal stress, which stabilizes the high-pressure PbS phase in atmospheric conditions. Nanocube fusion enhances the structural stability; the large surface area maintains the size-dependent properties. PMID:26179895

  16. High-Rate Intercalation without Nanostructuring in Metastable Nb2O5 Bronze Phases.

    PubMed

    Griffith, Kent J; Forse, Alexander C; Griffin, John M; Grey, Clare P

    2016-07-20

    Nanostructuring and nanosizing have been widely employed to increase the rate capability in a variety of energy storage materials. While nanoprocessing is required for many materials, we show here that both the capacity and rate performance of low-temperature bronze-phase TT- and T-polymorphs of Nb2O5 are inherent properties of the bulk crystal structure. Their unique "room-and-pillar" NbO6/NbO7 framework structure provides a stable host for lithium intercalation; bond valence sum mapping exposes the degenerate diffusion pathways in the sites (rooms) surrounding the oxygen pillars of this complex structure. Electrochemical analysis of thick films of micrometer-sized, insulating niobia particles indicates that the capacity of the T-phase, measured over a fixed potential window, is limited only by the Ohmic drop up to at least 60C (12.1 A·g(-1)), while the higher temperature (Wadsley-Roth, crystallographic shear structure) H-phase shows high intercalation capacity (>200 mA·h·g(-1)) but only at moderate rates. High-resolution (6/7)Li solid-state nuclear magnetic resonance (NMR) spectroscopy of T-Nb2O5 revealed two distinct spin reservoirs, a small initial rigid population and a majority-component mobile distribution of lithium. Variable-temperature NMR showed lithium dynamics for the majority lithium characterized by very low activation energies of 58(2)-98(1) meV. The fast rate, high density, good gravimetric capacity, excellent capacity retention, and safety features of bulk, insulating Nb2O5 synthesized in a single step at relatively low temperatures suggest that this material not only is structurally and electronically exceptional but merits consideration for a range of further applications. In addition, the realization of high rate performance without nanostructuring in a complex insulating oxide expands the field for battery material exploration beyond conventional strategies and structural motifs. PMID:27264849

  17. Crystallization, metastable phases, and demixing in a hafnia-titania nanolaminate annealed at high temperature

    SciTech Connect

    Cisneros-Morales, Massiel Cristina; Rubin Aita, Carolyn

    2010-09-15

    Nanolaminate films with a nominal 5 nm HfO{sub 2}-4 nm TiO{sub 2} bilayer architecture are sputter deposited on unheated fused silica and Au-coated glass substrates. Films on fused silica are postdeposition annealed from 573 to 1273 K and characterized by x-ray diffraction, scanning electron microscopy, Raman microscopy, and UV-visible-near IR spectrophotometry. The films show weak but progressive crystallization into orthorhombic (o) HfTiO{sub 4} when annealed up to 973 K. o-HfTiO{sub 4} is expected to form under bulk thermodynamic equilibrium conditions in the case of complete mixing of the bilayer components. Annealing above 973 K produces a crystallization sequence that is not predicted by bulk thermodynamics, ultimately involving o-HfTiO{sub 4} demixing to form monoclinic HfO{sub 2} doped with Ti and rutile TiO{sub 2} doped with Hf. These phases have a higher atomic density than o-HfTiO{sub 4} and segregate into discrete mesoscopic features. The authors propose that o-HfTiO{sub 4} demixing into higher density phases is a mechanism for thermal stress relief at high temperature. Demixing results in a major loss of optical transparency in the visible and ultraviolet spectral regions.

  18. Formation and stability of metastable structures and amorphous phases in PU-V, PU-TA, and PU-YB systems with positive heats of mixing

    NASA Astrophysics Data System (ADS)

    Rizzo, H. F.; Zocco, T.; Massalski, T. B.; Nastasi, M.; Echeverria, A.

    1994-08-01

    The triode sputtering technique with a “split-target” arrangement was used to obtain metastable crystalline and amorphous phases in the Pu-V, Pu-Ta, and Pu-Yb systems. The proposed phase diagrams for these systems all exhibit liquid immiscibility. The heats of mixing are estimated to be highly positive, and the atomic radii of the component atoms differ by at least 10 pct. Extended amorphous and body-centered cubic (bcc) solid-solution regions were observed in the Pu-V and Pu-Ta systems. The corresponding lattice parameters appear to follow in each case an assumed Vegard’s Law extension. In the Pu-Yb system, no amorphous phase was obtained, but an extended face-centered cubic (fcc) solid-solution region (24 to 78 at. pct Yb) was observed with a large positive deviation of the lattice parameter (˜9 pct at 40 at. pct Yb) from a linear Vegard’s Law between the pure fcc components. The observed ranges of amorphous and metastable solid-solution phases have been interpreted in terms of predicated heats of formation for these phases using Miedema’s thermodynamic approximations that include chemical, elastic, and structural contributions. The effect of the high deposition rates on the formation of amorphous and metastable phases has also been considered. Thermal annealing of Pu-Ta amorphous alloys brings about a rapid diffusion of Pu to the free surface of the amorphous phase without crystallization of the remaining Ta-rich amorphous phase. Microhardness measurements indicate that amorphous Pu-V and Pu-Ta alloys are softer than the crystalline bcc solid-solution alloys in the same composition range. Several similarities in the formation of mixed phase regions (amorphous and solid solutions), microhardness, and resistance to decomposition on heating were noted between the Pu-Ta and Pu-V systems and the Cu-W system studied previously.

  19. Unconventional Luminescent Centers in Metastable Phases Created by Topochemical Reduction Reactions.

    PubMed

    Liu, Bo-Mei; Zhang, Zhi-Gang; Zhang, Kai; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Yu, Hui-Mei; Li, Chao; Zheng, Li-Rong; Li, Li-Na; Yang, Guang; Zhou, Yang; Fang, Yong-Zheng; Hou, Jing-Shan; Matsushita, Yoshitaka; Sun, Hong-Tao

    2016-04-11

    A low-temperature topochemical reduction strategy is used herein to prepare unconventional phosphors with luminescence covering the biological and/or telecommunications optical windows. This approach is demonstrated by using Bi(III)-doped Y2O3 (Y(2-x)Bi(x)O3) as a model system. Experimental results suggest that topochemical treatment of Y(2-x)Bi(x)O3 using CaH2 creates randomly distributed oxygen vacancies in the matrix, resulting in the change of the oxidation states of Bi to lower oxidation states. The change of the Bi coordination environments from the [BiO6] octahedra in Y(2-x)Bi(x)O3 to the oxygen-deficient [BiO(6-z)] polyhedra in reduced phases leads to a shift of the emission maximum from the visible to the near-infrared region. The generality of this approach was further demonstrated with other phosphors. Our findings suggest that this strategy can be used to explore Bi-doped or other classes of luminescent systems, thus opening up new avenues to develop novel optical materials. PMID:26971863

  20. Synthesis of metastable phases in Al-Nb powders by mechanical alloying

    SciTech Connect

    Peng, Z.; Suryanarayana, C.; Froes, F.H. )

    1992-08-15

    Recently there have been many investigations on the synthesis and properties of transition metal trialuminides based on titanium, zirconium, vanadium, niobium and tantalum for use as structural materials in an elevated temperature environment. This interest is due to their high strength-to-density ratios, high melting points and excellent oxidation resistance. Amongst these, niobium trialuminide (NbAl{sub 3}) has a high melting point (1605{degrees} C), possesses adequate oxidation resistance (a result of the formation of a protective alumina over-layer and a density (4.54 g/cc) which is lower than that of advanced Ni{sub 3}Al-based compounds (7.6 g/cc). However, NbAl{sub 3} melts congruently and since it has an extremely limited homogeneity range, it is difficult to ensure that the chemistry falls in this desired narrow range. Further, due to the intrinsic brittleness, niobium aluminide ingots crack during solidification. Some of these problems can be overcome by producing the NbAl{sub 3} compound through the powder metallurgy route. This paper reports on the successful synthesis of homogeneous NbAl{sub 3} and amorphous phases by mechanical alloying starting from elemental powders.

  1. A phase-field approach to nonequilibrium phase transformations in elastic solids via an intermediate phase (melt) allowing for interface stresses.

    PubMed

    Momeni, Kasra; Levitas, Valery I

    2016-04-28

    A phase-field approach for phase transformations (PTs) between three different phases at nonequilibrium temperatures is developed. It includes advanced mechanics, thermodynamically consistent interfacial stresses, and interface interactions. A thermodynamic Landau-Ginzburg potential developed in terms of polar order parameters satisfies the desired instability and equilibrium conditions for homogeneous phases. The interfacial stresses were introduced with some terms from large-strain formulation even though the small-strain assumption was utilized. The developed model is applied to study the PTs between two solid phases via a highly disordered intermediate phase (IP) or an intermediate melt (IM) hundreds of degrees below the melting temperature. In particular, the β ↔ δ PTs in HMX energetic crystals via IM are analyzed. The effects of various parameters (temperature, ratios of widths and energies of solid-solid (SS) to solid-melt (SM) interfaces, elastic energy, and interfacial stresses) on the formation, stability, and structure of the IM within a propagating SS interface are studied. Interfacial and elastic stresses within a SS interphase and their relaxation and redistribution with the appearance of a partial or complete IM are analyzed. The energy and structure of the critical nucleus (CN) of the IM are studied as well. In particular, the interfacial stresses increase the aspect-ratio of the CN. Although including elastic energy can drastically reduce the energy of the CN of the IM, the activation energy of the CN of the IM within the SS interface increases when interfacial tension is taken into account. The developed thermodynamic potential can also be modified to model other multiphase physical phenomena, such as multi-variant martensitic PTs, grain boundary and surface-induced pre-melting and PTs, as well as developing phase diagrams for IPs. PMID:27078783

  2. Metastable monoclinic and orthorhombic phases and electric field induced irreversible phase transformation at room temperature in the lead-free classical ferroelectric BaTiO3

    NASA Astrophysics Data System (ADS)

    Kalyani, Ajay Kumar; Khatua, Dipak Kumar; Loukya, B.; Datta, Ranjan; Fitch, Andy N.; Senyshyn, Anatoliy; Ranjan, Rajeev

    2015-03-01

    For decades it has been a well-known fact that among the few ferroelectric compounds in the perovskite family, namely, BaTiO3, KNbO3, PbTiO3, and Na1 /2Bi1 /2TiO3 , the dielectric and piezoelectric properties of BaTiO3 are considerably higher than the others in polycrystalline form at room temperature. Further, similar to ferroelectric alloys exhibiting morphotropic phase boundary, single crystals of BaTiO3 exhibit anomalously large piezoelectric response when poled away from the direction of spontaneous polarization at room temperature. These anomalous features in BaTiO3 remained unexplained so far from the structural standpoint. In this work, we have used high-resolution synchrotron x-ray powder diffraction, atomic resolution aberration-corrected transmission electron microscopy, in conjunction with a powder poling technique, to reveal that at 300 K (i) the equilibrium state of BaTiO3 is characterized by coexistence of metastable monoclinic Pm and orthorhombic (Amm2) phases along with the tetragonal phase, and (ii) strong electric field switches the polarization direction from the [001] direction towards the [101] direction. These results suggest that BaTiO3 at room temperature is within an instability regime, and that this instability is the fundamental factor responsible for the anomalous dielectric and piezoelectric properties of BaTiO3 as compared to the other homologous ferroelectric perovskite compounds at room temperature. Pure BaTiO3 at room temperature is therefore more akin to lead-based ferroelectric alloys close to the morphotropic phase boundary where polarization rotation and field induced ferroelectric-ferroelectric phase transformations play a fundamental role in influencing the dielectric and piezoelectric behavior.

  3. Appearance of metastable B2 phase during solidification of Ni50Zr50 alloy: electrostatic levitation and molecular dynamics simulation studies.

    PubMed

    Quirinale, D G; Rustan, G E; Wilson, S R; Kramer, M J; Goldman, A I; Mendelev, M I

    2015-03-01

    High-energy x-ray diffraction measurements of undercooled, electrostatically levitated Ni50Zr50 liquid droplets were performed. The observed solidification pathway proceeded through the nucleation and growth of the metastable B2 phase, which persisted for several seconds before the rapid appearance of the stable B33 phase. This sequence is shown to be consistent with predictions from classical nucleation theory using data obtained from molecular dynamics (MD) simulations. A plausible mechanism for the B2-B33 transformation is proposed and investigated through further MD simulations. PMID:25650946

  4. Pressure-induced transformations in PrVO4 and SmVO4 and isolation of high-pressure metastable phases.

    PubMed

    Errandonea, Daniel; Achary, S Nagabhusan; Pellicer-Porres, Julio; Tyagi, Avesh K

    2013-05-01

    Zircon-type PrVO4 and SmVO4 have been studied by high-pressure Raman spectroscopy up to 17 GPa. The occurrence of phase transitions has been detected when compression exceeds 6 GPa. The transformations are not reversible. Raman spectra of the high-pressure phases show similarities with those expected for a monazite-type phase in PrVO4 and a scheelite-type phase in SmVO4.The high-pressure phases have been also synthesized using a large-volume press and recovered at ambient conditions. X-ray diffraction measurements of the metastable products recovered after decompression confirms the monazite (PrVO4) and scheelite (SmVO4) structures of the high-pressure phases. Based upon optical properties of the reported new polymorphs, novel applications for rare-earth vanadates are proposed, including photocatalytic hydrogen production. PMID:23600563

  5. Metastable bcc phase formation in 3d ferromagnetic transition metal thin films sputter-deposited on GaAs(100) substrates

    SciTech Connect

    Minakawa, Shigeyuki Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi; Inaba, Nobuyuki

    2015-05-07

    Co{sub 100−x}Fe{sub x} and Ni{sub 100−y}Fe{sub y} (at. %, x = 0–30, y = 0–60) films of 10 nm thickness are prepared on GaAs(100) substrates at room temperature by using a radio-frequency magnetron sputtering system. The detailed growth behavior is investigated by in-situ reflection high-energy electron diffraction. (100)-oriented Co and Ni single-crystals with metastable bcc structure are formed in the early stage of film growth, where the metastable structure is stabilized through hetero-epitaxial growth. With increasing the thickness up to 2 nm, the Co and the Ni films start to transform into more stable hcp and fcc structures through atomic displacements parallel to bcc(110) slide planes, respectively. The stability of bcc phase is improved by adding a small volume of Fe atoms into a Co film. The critical thickness of bcc phase formation is thicker than 10 nm for Co{sub 100−x}Fe{sub x} films with x ≥ 10. On the contrary, the stability of bcc phase for Ni-Fe system is less than that for Co-Fe system. The critical thicknesses for Ni{sub 100−y}Fe{sub y} films with y = 20, 40, and 60 are 1, 3, and 5 nm, respectively. The Co{sub 100−x}Fe{sub x} single-crystal films with metastable bcc structure formed on GaAs(100) substrates show in-plane uniaxial magnetic anisotropies with the easy direction along GaAs[011], similar to the case of Fe film epitaxially grown on GaAs(100) substrate. A Co{sub 100−x}Fe{sub x} film with higher Fe content shows a higher saturation magnetization and a lower coercivity.

  6. Non-Equilibrium Phenomena in High Power Beam Materials Processing

    NASA Astrophysics Data System (ADS)

    Tosto, Sebastiano

    2004-03-01

    The paper concerns some aspects of non-equilibrium materials processing with high power beams. Three examples show that the formation of metastable phases plays a crucial role to understand the effects of beam-matter interaction: (i) modeling of pulsed laser induced thermal sputtering; (ii) formation of metastable phases during solidification of the melt pool; (i) possibility of carrying out heat treatments by low power irradiation ``in situ''. The case (i) deals with surface evaporation and boiling processes in presence of superheating. A computer simulation model of thermal sputtering by vapor bubble nucleation in molten phase shows that non-equilibrium processing enables the rise of large surface temperature gradients in the boiling layer and the possibility of sub-surface temperature maximum. The case (ii) concerns the heterogeneous welding of Cu and AISI 304L stainless steel plates by electron beam irradiation. Microstructural investigation of the molten zone has shown that dwell times of the order of 10-1-10-3 s, consistent with moderate cooling rates in the range 10^3-10^5 K/s, entail the formation of metastable Cu-Fe phases. The case (iii) concerns electron beam welding and post-welding treatments of 2219 Al base alloy. Electron microscopy and positron annihilation have explained why post-weld heat transients induced by low power irradiation of specimens in the as welded condition enable ageing effects usually expected after some hours of treatment in furnace. The problem of microstructural instability is particularly significant for a correct design of components manufactured with high power beam technologies and subjected to severe acceptance standards to ensure advanced performances during service life.

  7. Metastable phases in HxLi1-xTaO3 waveguide layers and pure LiTaO3

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Dimova-Malinovska, D.; Grigorieva, T. I.; Kalabin, I. E.; Savatinova, I.; Savova, I.; Spesivtsev, E. V.; Tonchev, S.; Ziling, C. C.

    2001-10-01

    The formation of high-temperature phases in low-doped H:LiTaO3 waveguide layers in Z-cut LiTaO3 has been observed both by refractive-index and IR-spectra measurements. This permits us to correlate the index jumps to the changes of the OH bonds in the crystal lattice. Reversible phase transitions were detected in the temperature interval T=50-200 °C over a wide range of hydrogen content including as-grown LiTaO3. The high-temperature phases are metastable close to room temperature. This was demonstrated by tracing the time evolution of the refractive-index change. It was shown that the high-temperature phases are responsible for the long-term refractive-index instabilities in both H:LiTaO3 waveguides and virgin LiTaO3.

  8. Nucleation of lamellar domains from a sponge phase under shear flow: Shape selection of nuclei in a nonequilibrium steady state

    NASA Astrophysics Data System (ADS)

    Miyazawa, Hideyuki; Tanaka, Hajime

    2007-07-01

    It is a fundamental physical problem how a state is selected in a nonequilibrium steady state where the energy is continuously dissipated. This problem is common to phase transitions in liquids under shear flow and those in solids under deformation or electric current. In particular, soft matter often exhibits a strong nonlinear response to an external field, since its structural susceptibility to the external field is extremely large due to its softness and flexibility. Here we study the nucleation and growth process of the lamellar phase from the sponge phase under shear flow in a bilayer-forming surfactant system. We found an interesting shape selection of lamellar nuclei under shear flow between multilamellar vesicles (onions) and cylinders (leeks). These two types of behavior are separated sharply at a critical shear rate: a slight change of the shear rate is enough to switch one behavior to the other. We also found that, under a sufficiently strong shear flow, nucleated onions decrease their size with time, and eventually transform into leeks. This suggests that leeks may be the stable morphology under steady shear flow. However, the stability is limited only to the lamellar-sponge coexistence region. When a system enters into the lamellar phase region by further cooling, leeks lose their stability and break up into rather monodisperse onions, presumably via Rayleigh-like instability of a fluid tube. On the basis of these results, we draw a dynamic state diagram of smectic membrane organization under shear flow.

  9. Cosmological QCD phase transition in steady non-equilibrium dissipative Hořava-Lifshitz early universe

    NASA Astrophysics Data System (ADS)

    Khodadi, M.; Sepangi, H. R.

    2014-07-01

    We study the phase transition from quark-gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1-10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava-Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann-Robertson-Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigate the effects of the running coupling constants of Hořava-Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density ξ/s. We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel-Stewart fluid, respectively.

  10. Theory of Metastable State Relaxation in a Gravitational Field for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander F.; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).

  11. Transformation stress induced metastable tetragonal phase in (93-92)%Pb(Zn1/3Nb2/3)O3-(7-8)%PbTiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Chang, W. S.; Lim, L. C.; Yang, P.; Ku, C.-S.; Lee, H.-Y.; Tu, C.-S.

    2010-08-01

    High-resolution synchrotron radiation diffraction results indicate that the room temperature tetragonal (T) phase in (93-92)%Pb(Zn1/3Nb2/3)O3-(7-8)%PbTiO3 [PZN-(7-8)%PT] single crystals is a metastable phase stabilized by the transformation-cum-cooling stress in the crystal. This is manifested by the "missing" (001)T diffractions when the diffractions were taken from (001) fractured surfaces. The stress relaxation in this case has caused the metastable (001)T domains in the surface layer to transform to the equilibrium rhombohedral phase. Temperature and particle size effects on the metastable domains have been examined and discussed. Based on the present finding, a new PZN-PT phase diagram showing extended rhombohedral+tetragonal region is proposed.

  12. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation

    PubMed Central

    Berman, Marvin D.

    2014-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538

  13. Metastable and equilibrium phase diagrams of unconjugated bilirubin IXα as functions of pH in model bile systems: Implications for pigment gallstone formation.

    PubMed

    Berman, Marvin D; Carey, Martin C

    2015-01-01

    Metastable and equilibrium phase diagrams for unconjugated bilirubin IXα (UCB) in bile are yet to be determined for understanding the physical chemistry of pigment gallstone formation. Also, UCB is a molecule of considerable biomedical importance because it is a potent antioxidant and an inhibitor of atherogenesis. We employed principally a titrimetric approach to obtain metastable and equilibrium UCB solubilities in model bile systems composed of taurine-conjugated bile salts, egg yolk lecithin (mixed long-chain phosphatidylcholines), and cholesterol as functions of total lipid concentration, biliary pH values, and CaCl2 plus NaCl concentrations. Metastable and equilibrium precipitation pH values were obtained, and average pKa values of the two carboxyl groups of UCB were calculated. Added lecithin and increased temperature decreased UCB solubility markedly, whereas increases in bile salt concentrations and molar levels of urea augmented solubility. A wide range of NaCl and cholesterol concentrations resulted in no specific effects, whereas added CaCl2 produced large decreases in UCB solubilities at alkaline pH values only. UV-visible absorption spectra were consistent with both hydrophobic and hydrophilic interactions between UCB and bile salts that were strongly influenced by pH. Reliable literature values for UCB compositions of native gallbladder biles revealed that biles from hemolytic mice and humans with black pigment gallstones are markedly supersaturated with UCB and exhibit more acidic pH values, whereas biles from nonstone control animals and patients with cholesterol gallstone are unsaturated with UCB. PMID:25359538

  14. Signature of a continuous quantum phase transition in non-equilibrium energy absorption: Footprints of criticality on higher excited states

    PubMed Central

    Bhattacharyya, Sirshendu; Dasgupta, Subinay; Das, Arnab

    2015-01-01

    Understanding phase transitions in quantum matters constitutes a significant part of present day condensed matter physics. Quantum phase transitions concern ground state properties of many-body systems, and hence their signatures are expected to be pronounced in low-energy states. Here we report signature of a quantum critical point manifested in strongly out-of-equilibrium states with finite energy density with respect to the ground state and extensive (subsystem) entanglement entropy, generated by an external pulse. These non-equilibrium states are evidently completely disordered (e.g., paramagnetic in case of a magnetic ordering transition). The pulse is applied by switching a coupling of the Hamiltonian from an initial value (λI) to a final value (λF) for sufficiently long time and back again. The signature appears as non-analyticities (kinks) in the energy absorbed by the system from the pulse as a function of λF at critical-points (i.e., at values of λF corresponding to static critical-points of the system). As one excites higher and higher eigenstates of the final Hamiltonian H(λF) by increasing the pulse height , the non-analyticity grows stronger monotonically with it. This implies adding contributions from higher eigenstates help magnifying the non-analyticity, indicating strong imprint of the critical-point on them. Our findings are grounded on exact analytical results derived for Ising and XY chains in transverse field. PMID:26568306

  15. Non-equilibrium phase transition in a two-species driven-diffusive model of classical particles

    NASA Astrophysics Data System (ADS)

    Ghadermazi, Mohammad; Jafarpour, Farhad H.

    2016-06-01

    A two-species driven-diffusive model of classical particles is introduced on a lattice with periodic boundary condition. The model consists of a finite number of first class particles in the presence of a second class particle. While the first class particles can only hop forward, the second class particle is able to hop both forward and backward with specific rates. We have shown that the partition function of this model can be calculated exactly. The model undergoes a non-equilibrium phase transition when a condensation of the first class particles occurs behind the second class particle. The phase transition point and the spatial correlations between the first class particles are calculated exactly. On the other hand, we have shown that this model can be mapped onto a two-dimensional walk model. The random walker can only move on the first quarter of a two-dimensional plane and that it takes the paths which can start at any height and end at any height upper than the height of the starting point. The initial vertex (starting point) and the final vertex (end point) of each lattice path are weighted. The weight of the outset point depends on the height of that point while the weight of the end point depends on the height of both the outset point and the end point of each path. The partition function of this walk model is calculated using a transfer matrix method.

  16. Non-equilibrium phase transition in a two-species driven-diffusive model of classical particles

    NASA Astrophysics Data System (ADS)

    Ghadermazi, Mohammad; Jafarpour, Farhad H.

    2016-09-01

    A two-species driven-diffusive model of classical particles is introduced on a lattice with periodic boundary condition. The model consists of a finite number of first class particles in the presence of a second class particle. While the first class particles can only hop forward, the second class particle is able to hop both forward and backward with specific rates. We have shown that the partition function of this model can be calculated exactly. The model undergoes a non-equilibrium phase transition when a condensation of the first class particles occurs behind the second class particle. The phase transition point and the spatial correlations between the first class particles are calculated exactly. On the other hand, we have shown that this model can be mapped onto a two-dimensional walk model. The random walker can only move on the first quarter of a two-dimensional plane and that it takes the paths which can start at any height and end at any height upper than the height of the starting point. The initial vertex (starting point) and the final vertex (end point) of each lattice path are weighted. The weight of the outset point depends on the height of that point while the weight of the end point depends on the height of both the outset point and the end point of each path. The partition function of this walk model is calculated using a transfer matrix method.

  17. Nonequilibrium Second-Order Phase Transition in a Cooper-Pair Insulator.

    PubMed

    Doron, A; Tamir, I; Mitra, S; Zeltzer, G; Ovadia, M; Shahar, D

    2016-02-01

    In certain disordered superconductors, upon increasing the magnetic field, superconductivity terminates with a direct transition into an insulating phase. This phase is comprised of localized Cooper pairs and is termed a Cooper-pair insulator. The current-voltage characteristics measured in this insulating phase are highly nonlinear and, at low temperatures, exhibit abrupt current jumps. Increasing the temperature diminishes the jumps until the current-voltage characteristics become continuous. We show that a direct correspondence exists between our system and systems that undergo an equilibrium, second-order, phase transition. We illustrate this correspondence by comparing our results to the van der Waals equation of state for the liquid-gas mixture. We use the similarities to identify a critical point where an out of equilibrium second-order-like phase transition occurs in our system. Approaching the critical point, we find a power-law behavior with critical exponents that characterizes the transition. PMID:26894728

  18. Nonequilibrium Second-Order Phase Transition in a Cooper-Pair Insulator

    NASA Astrophysics Data System (ADS)

    Doron, A.; Tamir, I.; Mitra, S.; Zeltzer, G.; Ovadia, M.; Shahar, D.

    2016-02-01

    In certain disordered superconductors, upon increasing the magnetic field, superconductivity terminates with a direct transition into an insulating phase. This phase is comprised of localized Cooper pairs and is termed a Cooper-pair insulator. The current-voltage characteristics measured in this insulating phase are highly nonlinear and, at low temperatures, exhibit abrupt current jumps. Increasing the temperature diminishes the jumps until the current-voltage characteristics become continuous. We show that a direct correspondence exists between our system and systems that undergo an equilibrium, second-order, phase transition. We illustrate this correspondence by comparing our results to the van der Waals equation of state for the liquid-gas mixture. We use the similarities to identify a critical point where an out of equilibrium second-order-like phase transition occurs in our system. Approaching the critical point, we find a power-law behavior with critical exponents that characterizes the transition.

  19. Cosmological QCD phase transition in steady non-equilibrium dissipative Hořava–Lifshitz early universe

    SciTech Connect

    Khodadi, M. Sepangi, H.R.

    2014-07-15

    We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigate the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively.

  20. Continuum-scale investigation of evaporation from bare soil under different boundary and initial conditions: An evaluation of nonequilibrium phase change

    NASA Astrophysics Data System (ADS)

    Trautz, Andrew C.; Smits, Kathleen M.; Cihan, Abdullah

    2015-09-01

    Evaporation and condensation in bare soils govern water and energy fluxes between the land and atmosphere. Phase change between liquid water and water vapor is commonly evaluated in soil hydrology using an assumption of instantaneous phase change (i.e., chemical equilibrium). Past experimental studies have shown that finite volatilization and condensation times can be observed under certain environmental conditions, thereby questioning the validity of this assumption. A comparison between equilibrium and nonequilibrium phase change modeling approaches showed that the latter is able to provide better estimates of evaporation, justifying the need for more research on this topic. Several formulations based on irreversible thermodynamics, first-order reaction kinetics, or the kinetic theory of gases have been employed to describe nonequilibrium phase change at the continuum scale. In this study, results from a fully coupled nonisothermal heat and mass transfer model applying four different nonequilibrium phase change formulations were compared with experimental data generated under different initial and boundary conditions. Results from a modified Hertz-Knudsen formulation based on kinetic theory of gases, proposed herein, were consistently in best agreement in terms of preserving both magnitude and trends of experimental data under all environmental conditions analyzed. Simulation results showed that temperature-dependent formulations generally better predict evaporation than formulations independent of temperature. Analysis of vapor concentrations within the porous media showed that conditions were not at equilibrium under the experimental conditions tested.

  1. Nonequilibrium pattern formation in Langmuir-phase assisted assembly of alkylsiloxane monolayers

    SciTech Connect

    Wang, R.; Parikh, A.N.; Beers, J.D.; Shreve, A.P.; Swanson, B.

    1999-11-18

    Prepolymerized n-octadecyltrichlorosilane (OTS) monolayers were deposited onto oxidized silicon substrates from precursor Langmuir monolayers (at an air-water interface) in two-dimensional liquid expanded (LE), liquid condensed (LC), or mixed (LE/LC coexistence phase) states at four different pulling rates. Morphologies of the transferred monolayers have been investigated using atomic force microscopy (AFM). The OTS monolayers formed from the LE phase precursor reveal an incipient condensation transition exhibiting a novel ring-in-a-ring morphology, wherein uniformly distributed circular domains consisting of two concentric walls of ordered OTS molecules in a high density phase both sandwich and encapsulate disordered OTS molecules in a reduced density phase. On the other hand, the monolayers formed from the LC/LE phase precursor implicate a complete condensation transition, evidenced in the AFM images showing a uniform tiling of near-circular domains composed of ordered OTS molecules in a dense monolayer phase. The monolayers derived from the 2D solid or LC precursor state reveal near-complete surface coverages and uniform film structures, comparable to those obtained by adsorption from a dilute organic solution of OTS molecules (conventional self-assembly process). These structural reconstructions at the substrate surface, namely lateral redistribution into 2D domains, condensation transitions and film coverages, are discussed in terms of the competition between short range and long range interactions. The most dominant effect of increasing pulling rates is the appearance of coalesced domain structures, presumably due to drainage of the water layer at the substrate surface as well as occasional substrate pinning. These results substantiate the idea that templating surface self-assembly of monolayers by using their Langmuir-phase precursors provides a useful alternative to classical solution-phase self-assembly approaches, and affords a wide range of control over

  2. Metastability and polymorphism in the gel phase of 1,2-dipalmitoyl-3-SN-phosphatidylcholine. A Fourier transform infrared study of the subtransition.

    PubMed Central

    Cameron, D G; Mantsch, H H

    1982-01-01

    Fourier transform infrared spectroscopy was used to study the metastability of 1,2-dipalmitoyl-3-sn-phosphatidylcholine (DPPC) at temperatures near 0 degrees C. It was found that when DPPC is incubated at 2 degrees C for three days the two-dimensional acyl chain packing changes from one resulting in spectra typical of an orthorhombic subcell to one resembling that found in triclinically packed acyl systems. This transition proceeds in two stages. The first step, requiring less than one day, approximates first-order kinetics; the second stage proceeds with second- or higher-order kinetics. Comparison of spectra recorded at -36 degrees C with and without prior incubation at 2 degrees C shows that there are two stable low temperature forms of DPPC; that is, DPPC is metastable only within a narrow temperature range. A study of the thermotropic behavior in the range 0-45 degrees C shows that the subtransition near 15 degrees C is a transition from the alternate form to one with orthorhombic characteristics. Spectral changes at the pretransition and the main phase transition demonstrate that there are differences in behavior that are related to the thermal history of the sample. PMID:6896464

  3. Open problems in non-equilibrium physics

    SciTech Connect

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  4. Nonequilibrium phase transitions, fluctuations and correlations in an active contractile polar fluid.

    PubMed

    Gowrishankar, Kripa; Rao, Madan

    2016-02-21

    We study the patterning, fluctuations and correlations of an active polar fluid consisting of contractile polar filaments on a two-dimensional substrate, using a hydrodynamic description. The steady states generically consist of arrays of inward pointing asters and show a continuous transition from a moving lamellar phase, a moving aster street, to a stationary aster lattice with no net polar order. We next study the effect of spatio-temporal athermal noise, parametrized by an active temperature TA, on the stability of the ordered phases. In contrast to its equilibrium counterpart, we find that the active crystal shows true long range order at low TA. On increasing TA, the asters dynamically remodel, concomitantly we find novel phase transitions characterized by bond-orientational and polar order upon "heating". PMID:26742682

  5. Enhancement of stability in systems with metastable states

    SciTech Connect

    Spagnolo, B.; Augello, G.; Pizzolato, N.; Valenti, D.; Fiasconaro, A.

    2007-12-06

    The investigation of noise-induced phenomena in far from equilibrium systems is one of the approach used to understand the behaviour of physical and biological complex systems. Metastability is a generic feature of many nonlinear systems, and the problem of the lifetime of metastable states involves fundamental aspects of nonequilibrium statistical mechanics. The enhancement of the life-time of metastable states through the noise enhanced stability effect and the role played by the resonant activation phenomenon will be discussed in models of interdisciplinary physics: (i) Ising model (ii) Josephson junction; (iii) stochastic FitzHugh-Nagumo model; (iv) a population dynamics model, and (v) a market model with stochastic volatility.

  6. Universal nonanalytic behavior of the Hall conductance in a Chern insulator at the topologically driven nonequilibrium phase transition

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Schmitt, Markus; Kehrein, Stefan

    2016-02-01

    We study the Hall conductance of a Chern insulator after a global quench of the Hamiltonian. The Hall conductance in the long time limit is obtained by applying the linear response theory to the diagonal ensemble. It is expressed as the integral of the Berry curvature weighted by the occupation number over the Brillouin zone. We identify a topologically driven nonequilibrium phase transition, which is indicated by the nonanalyticity of the Hall conductance as a function of the energy gap mf in the post-quench Hamiltonian Ĥf. The topological invariant for the quenched state is the winding number of the Green's function W , which equals the Chern number for the ground state of Ĥf. In the limit mf→0 , the derivative of the Hall conductance with respect to mf is proportional to ln| mf| , with the constant of proportionality being the ratio of the change of W at mf=0 to the energy gap in the initial state. This nonanalytic behavior is universal in two-band Chern insulators such as the Dirac model, the Haldane model, or the Kitaev honeycomb model in the fermionic basis.

  7. Density-matrix renormalization-group study of current and activity fluctuations near nonequilibrium phase transitions.

    PubMed

    Gorissen, Mieke; Hooyberghs, Jef; Vanderzande, Carlo

    2009-02-01

    Cumulants of a fluctuating current can be obtained from a free-energy-like generating function, which for Markov processes equals the largest eigenvalue of a generalized generator. We determine this eigenvalue with the density-matrix renormalization group for stochastic systems. We calculate the variance of the current in the different phases, and at the phase transitions, of the totally asymmetric exclusion process. Our results can be described in the terms of a scaling ansatz that involves the dynamical exponent z . We also calculate the generating function of the dynamical activity (total number of configuration changes) near the absorbing-state transition of the contact process. Its scaling properties can be expressed in terms of known critical exponents. PMID:19391693

  8. Metastable extension of the fluorite phase field in Y2O3-ZrO3-ZrO2 and its effect on grain growth

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Degraef, M.; Levi, C. G.

    1994-06-01

    Pure Y2O3 and Y2O3-ZrO2 solid solutions have been prepared by melt atomization and by pyrolysis of nitrate solutions. Extended solubility is readily achieved in both techniques for the entire composition range investigated: melts with 0.30% ZrO2 and precursors with 0.50% ZrO2. However, solidification of under cooled droplets yields almost exclusively single phase powders with the structure of cubic yttria (D5(sub 3)). In contrast, the pyrolysis route leads to a sequence of metastable microstructures beginning with a nanocrystalline disordered fluorite-based (C1) solid solution. Further heating leads to the evolution of much larger (micron size) flake crystals with a (001) texture, concurrent with partial ordering of the oxygen ions to the sites occupied in the D5(sub 3) addition.

  9. Non-equilibrium Simulation of CO­2-hydrate Phase Transitions from Mixtures of CO2 and N2 Gases

    NASA Astrophysics Data System (ADS)

    Qorbani Nashaqi, K.

    2015-12-01

    Storage of CO2 in aquifers is one of several options for reducing the emissions of CO2 to the atmosphere. Generally this option requires sealing integrity through layers of clay or shale. Many reservoirs have regions of temperature and pressure inside hydrate formation conditions. Whether hydrate formation can provide long term extra sealing still remains unverified in view of all co-existing phases that affect hydrate stability. Yet another storage option for CO2 is in the form of hydrate through exchange of in situ CH4 hydrate. Injection of CO2 into hydrate filled sediments is challenging due to the partial filling of pores with hydrate which results in low porosity and low permeability. Formation of new hydrate from injected CO2 will enhance these problems, Mixing N2 gas with the CO2 will increase permeability and will reduce driving forces for formation of new hydrate from pore water and injection gas. Hydrate can generally not reach thermodynamic equilibrium due to Gibbs' phase rule and the combined first and second laws of thermodynamics. These thermodynamic constraints on distribution of masses over co-existing phases are dynamically coupled to local mass- and heat-transport. Reservoir simulations are one possible method for investigation of possible scenarios related to injection of CO2 with N2 into aquifers containing CH4 hydrate. In this work we have developed prevoiusly modified RetrasoCodeBrite (RCB) simulator to handle injection of CO2/N2 gas mixtures. Hydrate formation and dissociation were determined by investigating Gibbs free energy differences between hydrate and hydrate formers. Gibbs free energy differences were calculated from changes in chemical potentials, which were obtained using non-equilibrium thermodynamic approach. Further extension of RCB has been implemented in this work through adding on-the-fly thermodynamic calculations. Correspondingly, hydrate phase transitions are calculated directly inside the code as a result of super

  10. Phase transitions and damage spreading in a nonequilibrium lattice gas model with mixed dynamic rules

    NASA Astrophysics Data System (ADS)

    Rubio Puzzo, M. Leticia; Saracco, Gustavo P.; Bab, Marisa A.

    2016-02-01

    Phase transitions and damage spreading for a lattice gas model with mixed driven lattice gas (DLG)-Glauber dynamics are studied by means of Monte Carlo simulations. In order to control the number of sites updated according to the nonconservative Glauber dynamics, a parameter pɛ [ 0 , 1 ] is defined. In this way, for p = 0 the system corresponds to the DLG model with biased Kawasaki conservative dynamics, while for p = 1 it corresponds to the Ising model with Glauber dynamics. The results obtained show that the introduction of nonconservative dynamics dramatically affects the behavior of the DLG model, leading to the existence of Ising-like phase transitions from fully occupied to disordered states. The short-time dynamics results suggest that this transition is second order for values of p = 0.1 and p > 0.6 and first order for 0.1 < p ≤ 0.6. On the other hand, damage always spreads within the investigated temperature range and reaches a saturation value Dsat that depends on the system size, the temperature, and p. The value of Dsat in the thermodynamic limit is estimated by performing a finite-size analysis. For p < 0.6 the results show a change in the behavior of Dsat with temperature, similar to those reported for the pure (p = 0) DLG model. However, for p ≥ 0.6 the data remind us of the Ising (p = 1) curves. In each case, a damage temperature TD(p) can be defined as the value where either Dsat reaches a maximum or it becomes nonzero. This temperature is, within error bars, similar to the reported values of the temperatures that characterize the mentioned phase transitions.

  11. From Phase to Microphase Separation in Flocking Models: The Essential Role of Nonequilibrium Fluctuations

    NASA Astrophysics Data System (ADS)

    Solon, Alexandre P.; Chaté, Hugues; Tailleur, Julien

    2015-02-01

    We show that the flocking transition in the Vicsek model is best understood as a liquid-gas transition, rather than an order-disorder one. The full phase separation observed in flocking models with Z2 rotational symmetry is, however, replaced by a microphase separation leading to a smectic arrangement of traveling ordered bands. Remarkably, continuous deterministic descriptions do not account for this difference, which is only recovered at the fluctuating hydrodynamics level. Scalar and vectorial order parameters indeed produce different types of number fluctuations, which we show to be essential in selecting the inhomogeneous patterns. This highlights an unexpected role of fluctuations in the selection of flock shapes.

  12. Prediction of stable C7 /12 and metastable C4 /7 commensurate solid phases for 4He on graphite

    NASA Astrophysics Data System (ADS)

    Ahn, Jeonghwan; Lee, Hoonkyung; Kwon, Yongkyung

    2016-02-01

    Using a substrate potential described by a pairwise sum of empirical 4He-C interatomic potentials, we have performed path-integral Monte Carlo calculations for 4He adatoms on graphite. It is found that a second-layer commensurate structure is not stable above an incommensurate first-layer triangular solid. This is consistent with the conclusion of the previous theoretical study of Corboz et al. [Phys. Rev. B 78, 245414 (2008), 10.1103/PhysRevB.78.245414] that was based on a laterally averaged one-dimensional potential. On the other hand, we observe a new stable C7 /12 commensurate solid in the first 4He layer at the areal density of 0.111 Å-2, which is close to the second-layer promotion density. This high-density commensurate solid exhibits a √{12 }×√{12 } structure registered to the graphite surface that is not disrupted by the development of the second 4He layer. Furthermore, a second-layer 4/7 commensurate structure relative to the first-layer C7 /12 solid is found to be at least metastable, opening the possibility of two-dimensional supersolidity.

  13. Strong Pinning in Thick YBa2Cu3O7 Layers Mediated by Catalysis of a New Long-Period Metastable Cuprate Phase

    SciTech Connect

    Solovyov, V.F.; Develos-Bagarinao, K.; Li, Q.; Si, W.-D.; Wu, L.-J.; Zhou, J.; Wiesmann, H.; Qing, J.

    2010-12-08

    Catalysts are widely utilized to promote reactions in liquid and gaseous phases but are rarely encountered in solid state synthesis. Here we use catalytically active (001) ceria buffers to modify the structure of the epitaxial high temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7}. The modification is achieved by catalytically-assisted synthesis of a previously unknown metastable phase. The new phase, a long-period (3.5 nm) perovskite, intercalates into the YBa{sub 2}Cu{sub 3}O{sub 7} matrix without negatively affecting the critical temperature of the film. Analysis of electron microscopy and synchrotron x-ray diffraction data allow identification of the phase as a long-period YBa{sub 2}Cu{sub 3}O{sub 7} derivative formed through short-range cation displacement. The 0.8 {micro}m thick films exhibit strong enhancement of the critical current density, reaching a maximum of 4.2 MA/cm{sup 2} at 77 K. The result emphasizes the critical role of catalysis for synthesis of novel complex materials.

  14. Strong Pinning in Thick YBa2Cu3O7 Layers Mediated by Catalysis of a New Long-period Metastable Cuprate Phase

    SciTech Connect

    V Solovyov; D Develos-Bagarinao; Q Li; W Si; L Wu; J Zhou; H Wiesmann; J Qing

    2011-12-31

    Catalysts are widely utilized to promote reactions in liquid and gaseous phases but are rarely encountered in solid state synthesis. Here we use catalytically active (001) ceria buffers to modify the structure of the epitaxial high temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7}. The modification is achieved by catalytically-assisted synthesis of a previously unknown metastable phase. The new phase, a long-period (3.5 nm) perovskite, intercalates into the YBa{sub 2}Cu{sub 3}O{sub 7} matrix without negatively affecting the critical temperature of the film. Analysis of electron microscopy and synchrotron x-ray diffraction data allow identification of the phase as a long-period YBa{sub 2}Cu{sub 3}O{sub 7} derivative formed through short-range cation displacement. The 0.8 {micro}m thick films exhibit strong enhancement of the critical current density, reaching a maximum of 4.2 MA/cm{sup 2} at 77 K. The result emphasizes the critical role of catalysis for synthesis of novel complex materials.

  15. Equilibrium and non-equilibrium dynamics of the dilute lamellar phase

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Sriram

    1992-07-01

    A model for the dynamics of the sterically stabilized dilute lamellar phase is constructed and studied. The model consists of a stack of flexible fluid sheets, with excluded volume, separated by macroscopic layers of solvent. The dynamics of small fluctuations of the sheets about their mean positions is found to have two distinct short-wavelength regimes in which the frequency ω depends on the wavenumber q in an unusual manner. One is a single-membrane Zimm mode, ω ≈ - iq3, while the other is a “red-blood-cell mode”, ω ≈ - iq6. These modes give rise to fluctuation corrections for the viscosities of the system, going as ω {-1}/{3} and ω {-2}/{3}, respectively. In addition, it is shown that a sufficiently rapid shear flow with velocity and gradient in the plane of the layers causes a transition into a state where regions of reduced layer spacing co-exist with regions devoid of any layer material. The critical shear-rate for this transition should go as (layer spacing) -3. Possible experimental tests of these predictions are discussed.

  16. Metastable phases determination of U-2.5Zr-7.5Nb and U-3.0Zr-9.0Nb alloys by Rietveld method

    SciTech Connect

    Dias Pais, R. W.; Dos Santos, A. M. M.; Lameiras, F. S.; Cantagalli, N. M.; De Paula, R. G.; Ferraz, W. B.

    2012-07-01

    The Rietveld refinement has been employed for study of metastable phase of alloys U-2.5Zr-7.5Nb(wt%) and U-3Zr-9Nb(wt%). The ingots of both alloys were produced in vacuum induction furnace at temperature of about 1500 deg.C followed by cooling to room temperature. The samples with 2.5 cm in diameter and 0.3 cm of thickness was homogenized at 1000 deg.C/16 hours and treated isothermally at (i) 600 deg.C for 0.5, 3 and 24 hours and (ii) 300 deg.C for 4 minutes, 20 minutes and 17.5 hours. At the end of each treatment the samples were water quenched. Data from X-ray diffraction were collected at room temperature with a Rigaku diffractometer D Max-RAPID radiation Cuk{alpha} using steps of 0.02 deg. (2{theta}) with scan angle in the range of 20-80 deg. (2{theta}). The full diffraction pattern was analyzed by the Rietveld method using the GSAS program. The result shows that the non-resolved appearance of the XRD patterns added to the proximity of the Bragg reflections of the transition phase makes the refinement of alloys a challenging task. For the isothermal treatment at 600 deg.C during 0.5 and 3 hours both alloys showed the majority presence of {gamma}{sup S} phase fallow by {gamma}{sup 0} phase in minor amounts. For 24 hours at 600 deg.C occurred the decomposition of phases with the presence of {gamma}{sup S} + {alpha}. Isothermal treatment at 300 deg.C for both alloys is characterized by the presence of phases {gamma}{sup 0} + {alpha}'' where the concentration of the {alpha}'' phase increases with time of heat treatment. (authors)

  17. Discovery of graphitic carbon inclusions (metastable phase?) in the metamorphic microdiamonds in the Kokchetav UHP dolomite marbles

    NASA Astrophysics Data System (ADS)

    Miura, S.; Ogasawara, Y.

    2014-12-01

    The microdiamonds in the Kokchetav dolomite marble have been classified into S-, T- and R-type based on the morphologies, C isotope compositions, and other characteristics, and formed at two stages in the diamond stability field; the core of S-type and R-type at 1st stage and the rim of S-type and T-type at 2nd stage (Ishida et al., 2003; Yoshioka and Ogasawara, 2005; Imamura et al., 2013). Graphitic carbon inclusions were discovered in diamond grains in garnets in dolomite marble from the Kumdy-Kol area. We examined over 5000 diamonds in 40 thin sections and recognized 15 inclusions in 15 diamonds under transmitted light microscope. These host diamonds measure 4-15 μm. The inclusions are black-colored and measure 1-5 μm, and were found in the rim of S-type, T-type, and probably R-type. The inclusions were identified by laser Raman spectroscopy; one inclusion in the rim of S-type, four inclusions in T-type, and four inclusions in R-type. All examined inclusions are completely included in diamonds confirmed by 2D Raman mappings at different focal depths. All Raman spectra of the inclusions show a peak at ca. 1580 cm-1 with FWHM of 15-23 cm-1. This peak is assigned to the G-band by sp2 bond of carbon. All intensity of G-band is <10 % of diamond-band at peak. Most of the peaks of G-band are located higher wavenumber. The peak positions with FWHM of G-band are (in the rim of S-type): 1579.7 cm-1 with 19.8 cm-1, (in T-type): 1581.5-1585.8 cm-1 with 15.6-22.2 cm-1, and (in R-type): 1580.3-1595.7 cm-1 with 15.0-17.2 cm-1. The variation of these peak positions may be caused by the internal (residual) pressure. Raman spectra of some inclusions in the rim of S-type, T-type, and R-type show peaks at ca. 1350 cm-1 (D1-band) and ca. 1620 cm-1 (D2-band), which are assigned to structure defect of sp2 bond. The graphitic carbon inclusions discovered in the rim of S-type and T-type could be the relics of metastable intermediate graphitic carbon to form diamonds from aqueous

  18. Nonequilibrium viscosity of glass

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Allan, Douglas C.; Potuzak, Marcel

    2009-09-01

    Since glass is a nonequilibrium material, its properties depend on both composition and thermal history. While most prior studies have focused on equilibrium liquid viscosity, an accurate description of nonequilibrium viscosity is essential for understanding the low temperature dynamics of glass. Departure from equilibrium occurs as a glass-forming system is cooled through the glass transition range. The glass transition involves a continuous breakdown of ergodicity as the system gradually becomes trapped in a subset of the available configurational phase space. At very low temperatures a glass is perfectly nonergodic (or “isostructural”), and the viscosity is described well by an Arrhenius form. However, the behavior of viscosity during the glass transition range itself is not yet understood. In this paper, we address the problem of glass viscosity using the enthalpy landscape model of Mauro and Loucks [Phys. Rev. B 76, 174202 (2007)] for selenium, an elemental glass former. To study a wide range of thermal histories, we compute nonequilibrium viscosity with cooling rates from 10-12 to 1012K/s . Based on these detailed landscape calculations, we propose a simplified phenomenological model capturing the essential physics of glass viscosity. The phenomenological model incorporates an ergodicity parameter that accounts for the continuous breakdown of ergodicity at the glass transition. We show a direct relationship between the nonequilibrium viscosity parameters and the fragility of the supercooled liquid. The nonequilibrium viscosity model is validated against experimental measurements of Corning EAGLE XG™ glass. The measurements are performed using a specially designed beam-bending apparatus capable of accurate nonequilibrium viscosity measurements up to 1016Pas . Using a common set of parameters, the phenomenological model provides an accurate description of EAGLE XG™ viscosity over the full range of measured temperatures and fictive temperatures.

  19. Theory of Metastable State Relaxation for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz for a solution of the time-dependent Ginzburg-Landau non-linear partial differential equation is developed for non-critical systems such as non-critical binary solutions (solute + solvent) described by the non-conserved scalar order parameter. It is demonstrated that in such systems metastability initiates heterogeneous solute redistribution which results in formation of the non-equilibrium singly-periodic spatial solute structure. It is found how the time-dependent period of this structure evolves in time. In addition, the critical radius r(sub c) for solute embryo of the new solute rich phase together with the metastable state lifetime t(sub c) are determined analytically and analyzed.

  20. Activity mediated phase separation: Can we understand phase behavior of the nonequilibrium problem from an equilibrium approach?

    PubMed

    Trefz, Benjamin; Das, Subir K; Egorov, Sergei A; Virnau, Peter; Binder, Kurt

    2016-04-14

    We present results for structure and dynamics of mixtures of active and passive particles, from molecular dynamics (MD) simulations and integral equation theory (IET) calculations, for a physically motivated model. The perfectly passive limit of the model corresponds to the phase-separating Asakura-Oosawa model for colloid-polymer mixtures in which, for the present study, the colloids are made self-propelling by introducing activity in accordance with the well known Vicsek model. Such activity facilitates phase separation further, as confirmed by our MD simulations and IET calculations. Depending upon the composition of active and passive particles, the diffusive motion of the active species can only be realized at large time scales. Despite this, we have been able to construct an equilibrium approach to obtain the structural properties of such inherently out-of-equilibrium systems. In this method, effective inter-particle potentials were constructed via IET by taking structural inputs from the MD simulations of the active system. These potentials in turn were used in passive MD simulations, results from which are observed to be in fair agreement with the original ones. PMID:27083747

  1. Activity mediated phase separation: Can we understand phase behavior of the nonequilibrium problem from an equilibrium approach?

    NASA Astrophysics Data System (ADS)

    Trefz, Benjamin; Das, Subir K.; Egorov, Sergei A.; Virnau, Peter; Binder, Kurt

    2016-04-01

    We present results for structure and dynamics of mixtures of active and passive particles, from molecular dynamics (MD) simulations and integral equation theory (IET) calculations, for a physically motivated model. The perfectly passive limit of the model corresponds to the phase-separating Asakura-Oosawa model for colloid-polymer mixtures in which, for the present study, the colloids are made self-propelling by introducing activity in accordance with the well known Vicsek model. Such activity facilitates phase separation further, as confirmed by our MD simulations and IET calculations. Depending upon the composition of active and passive particles, the diffusive motion of the active species can only be realized at large time scales. Despite this, we have been able to construct an equilibrium approach to obtain the structural properties of such inherently out-of-equilibrium systems. In this method, effective inter-particle potentials were constructed via IET by taking structural inputs from the MD simulations of the active system. These potentials in turn were used in passive MD simulations, results from which are observed to be in fair agreement with the original ones.

  2. BiNb{sub 3}O{sub 9}, a metastable perovskite phase with Bi/vacancy ordering: Crystal structure and dielectric properties

    SciTech Connect

    Mumme, William G.; Grey, Ian E.; Edwards, Bryce; Turner, Christopher; Nino, Juan; Vanderah, Terrell A.

    2013-04-15

    The perovskite, BiNb{sub 3}O{sub 9}, is a metastable phase in the Bi{sub 2}O{sub 3}:Nb{sub 2}O{sub 5} system that forms only when cooled from a liquid phase. Crystals of BiNb{sub 3}O{sub 9} prepared in this way display pseudocubic 2a×2a×2a diffraction patterns, due to non-merohedral twinning of a tetragonal a×a×2a cell, with the doubled axis oriented along all three pseudocubic axes. The structure was refined using data collected on a twinned crystal to R{sub 1}=0.034 for 318 observed reflections. BiNb{sub 3}O{sub 9} has tetragonal symmetry, P4/mmm with a=3.9459(3) Å, c=7.8919(6) Å. Partial ordering of Bi atoms and vacancies occurs, with alternate (0 0 1) planes having 28% and 42% Bi occupancies. The Bi atoms are displaced from the A-site special positions by up to 0.4 Å. The compound exhibits a relatively high permittivity value of ∼230 at room temperature, and shows a sharp increase with increasing temperature towards an apparent diffuse phase transition above ∼180 °C, with an associated frequency dependent peak in the dielectric loss. - Graphical abstract: Structure for BiNb{sub 3}O{sub 9}, showing split Bi atoms. Highlights: ► First characterisation of a new perovskite phase with potentially useful dielectric properties. ► Solving of the structure using single crystal data on a multiply twinned crystal. ► Measurement of dielectric properties that show the phase has a high dielectric permittivity.

  3. Complexity, Metastability and Nonextensivity

    NASA Astrophysics Data System (ADS)

    Beck, C.; Benedek, G.; Rapisarda, A.; Tsallis, C.

    Work and heat fluctuations in systems with deterministic and stochastic forces / E. G. D. Cohen and R. Van Zon -- Is the entropy S[symbol] extensive or nonextensive? / C. Tsallis -- Superstatistics: recent developments and applications / C. Beck -- Two stories outside Boltzmann-Gibbs statistics: Mori's Q-phase transitions and glassy dynamics at the onset of chaos / A. Robledo, F. Baldovin and E. Mayoral -- Time-averages and the heat theorem / A. Carati -- Fundamental formulae and numerical evidences for the central limit theorem in Tsallis statistics / H. Suyari -- Generalizing the Planck distribution / A. M. C. Soma and C. Tsallis -- The physical roots of complexity: renewal or modulation? / P. Grigolini -- Nonequivalent ensembles and metastability / H. Touchette and R. S. Ellis -- Statistical physics for cosmic structures / L. Pietronero and F. Sylos Labini -- Metastability and anomalous behavior in the HMF model: connections to nonextensive thermodynamics and glassy dynamics / A. Pluchino, A. Rapisarda and V. Latora -- Vlasov analysis of relaxation and meta-equilibrium / C. Anteneodo and R. O. Vallejos -- Weak chaos in large conservative systems - infinite-range coupled standard maps / L. G. Moyano, A. P. Majtey and C. Tsallis -- Deterministc aging / E. Barkai -- Edge of chaos of the classical kicked top map: sensitivity to initial conditions / S. M. Duarte Queirós and C. Tsallis -- What entropy at the edge of chaos? / M. Lissia, M. Coraddu and R. Tonelli -- Fractal growth of carbon schwarzites / G. Benedek ... [et al.] -- Clustering and interface propagation in interacting particle dynamics / A. Provata and V. K. Noussiou -- Resonant activation and noise enhanced stability in Josephson junctions / A. L. Pankratov and B. Spagnolo -- Symmetry breaking induced directed motions / C.-H. Chang and T. Y. Tsong -- General theory of Galilean-invariant entropic lattic Boltzmann models / B. M. Boghosian -- Unifying approach to the jamming transition in granular media and

  4. Hydrothermal synthesis and characterization of a two-dimensional piperazinium cobalt–zinc phosphate via a metastable one-dimensional phase

    SciTech Connect

    Torre-Fernández, Laura; Khainakova, Olena A.; Espina, Aránzazu; Amghouz, Zakariae; Khainakov, Sergei A.; Alfonso, Belén F.; Blanco, Jesús A.; García, José R.; García-Granda, Santiago

    2015-05-15

    A two-dimensional piperazinium cobalt–zinc phosphate, formulated as (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P2{sub 1}/c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D), was also isolated and the crystal structure was determined (monoclinic P2{sub 1}/c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C–H–N) analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Graphical abstract: Hydrothermal synthesis and structural characterization of a two-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12}){sub 1.5}(Co{sub 0.6}Zn{sub 0.4}){sub 2}(HPO{sub 4}){sub 2}(PO{sub 4})·H{sub 2}O (2D), have been reported. The crystal structure of a one-dimensional piperazinium cobalt–zinc phosphate, (C{sub 4}N{sub 2}H{sub 12})Co{sub 0.3}Zn{sub 0.7}(HPO{sub 4}){sub 2}·H{sub 2}O (1D) a metastable phase during the hydrothermal synthesis, was also determined. The thermal behavior of 2D compound is strongly dependent on the selected heating rate and the magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K. - Highlights: • A 2D piperazinium cobalt–zinc phosphate has been synthesized and characterized. • Crystal

  5. Metastability and Delta-Phase Retention in Plutonium Alloys Final Report of LDRD Project 01-ERD-029

    SciTech Connect

    Wong, J; Schwartz, A J; Blobaum, K M; Krenn, C R; Wall, M A; Wolfer, W G; Haslam, J J; Moore, K T

    2004-02-11

    The {delta} to {alpha}' phase transformation in Pu-Ga alloys is intriguing for both scientific and technological reasons. On cooling, the ductile fcc {delta}-phase transforms martensitically to the brittle monoclinic {alpha}'-phase at approximately -120 C (depending on composition). This exothermic transformation involves a 20% volume contraction and a significant increase in resistivity. The reversion of {alpha}' to {delta} involves a large temperature hysteresis beginning just above room temperature. In an attempt to better understand the underlying thermodynamics and kinetics responsible for these unusual features, we have investigated the {delta} {leftrightarrow} {alpha}' phase transformations in a Pu-0.6 wt% Ga alloy using a combination of experimental and modeling techniques.

  6. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β Ti–V alloys

    SciTech Connect

    Wang, X.L.; Li, L.; Mei, W.; Wang, W.L.; Sun, J.

    2015-09-15

    Tensile properties and deformation microstructures of a series of binary β Ti–16–22V alloys have been investigated. The results show that the plastic deformation mode changes from the plate-like stress-induced ω phase transformation with a special habit plane of (− 5052){sub ω}//(3 − 3 − 2){sub β} to (332)<113> type deformation twinning with increasing the content of vanadium in the β Ti–16–22 wt.% V alloys. The plate-like stress-induced ω phase has a special orientation relationship with the β phase matrix, i.e., [110]{sub β}//[− 12 − 10]{sub ω}, (3 − 3 − 2){sub β}//(− 5052){sub ω} and (− 55 − 4){sub β}//(30 − 31){sub ω}. The alloys plastically deformed by stress-induced ω phase transformation exhibit relatively higher yield strength than those deformed via (332)<113> type deformation twinning. It can be concluded that the stability of β phase plays a significant role in plastic deformation mode, i.e., stress-induced ω phase transformation or (332)<113> type deformation twinning, which governs the mechanical property of the β Ti–16–22 wt.% V alloys. - Highlights: • Tensile properties and deformed microstructures of β Ti–16–22V alloys were studied. • Stress-induced ω phase transformation and (332)<113> twinning occur in the alloys. • Stability of β phase plays a significant role in plastic deformation mode. • Plastic deformation mode governs the mechanical property of the alloys.

  7. Nonequilibrium surface tension

    NASA Astrophysics Data System (ADS)

    Lamorgese, A.; Mauri, R.

    2015-12-01

    A weakly nonlocal phase-field model is used to define surface tension in liquid binary mixtures in terms of the composition gradient in the interfacial region so that, at equilibrium, it depends linearly on the characteristic length that defines the interfacial width. In nonequilibrium conditions, surface tension changes with time: during mixing, it decreases as the inverse square root of time, while during phase separation, when nuclei coagulate, it increases exponentially to its equilibrium value. In addition, since temperature gradients modify the steepness of the concentration profile in the interfacial region, they induce gradients in the nonequilibrium surface tension, leading to the Marangoni thermocapillary migration of an isolated drop. Similarly, Marangoni stresses are induced in a composition gradient, leading to diffusiophoresis.

  8. Structural and thermal investigation of gadolinium gallium mixed oxides obtained by coprecipitation: Observation of a new metastable phase

    SciTech Connect

    Bazzoni, Marco; Bettinelli, Marco; Daldosso, Matteo; Enzo, Stefano . E-mail: enzo@uniss.it; Serra, Filomena; Speghini, Adolfo

    2005-07-15

    Polycrystalline gadolinium gallium mixed oxides were prepared by coprecipitation and annealing at various temperatures below 1000 deg. C. The oxide materials appear to be X-ray amorphous after a heat treatment at 500 deg. C for 30 h, but after 30 h at 800 and 900 deg. C a major, unreported, hexagonal phase, isostructural with TAlO{sub 3} compounds (where T=Y, Eu, Gd, Tb, Dy, Ho, Er) appears to crystallize. On the other hand, a highly energetic mechanical treatment of the amorphous powder previously annealed at 500 deg. C changes considerably the shape and position of exothermal events occurring in the range from 700 up to 900 deg. C. Subsequent annealing at 900 deg. C of the mechanically treated powder gives rise to the complete formation of the Gd{sub 3}Ga{sub 5}O{sub 12} garnet structure at the expense of the hexagonal phase and of the minor Gd{sub 4}Ga{sub 2}O{sub 9} oxide phase. However, a 7.0 wt% contamination is found to be due to tetragonal zirconia coming from vials and balls colliding media. The garnet phase may have strong deviations from the nominal stoichiometry of the garnet, as suggested by the refined lattice parameter obtained from the powder diffraction patterns and by the remarkable absence of intensity relative to the (220) Bragg peak position.

  9. Structural and thermal investigation of gadolinium gallium mixed oxides obtained by coprecipitation: Observation of a new metastable phase

    NASA Astrophysics Data System (ADS)

    Bazzoni, Marco; Bettinelli, Marco; Daldosso, Matteo; Enzo, Stefano; Serra, Filomena; Speghini, Adolfo

    2005-07-01

    Polycrystalline gadolinium gallium mixed oxides were prepared by coprecipitation and annealing at various temperatures below 1000 °C. The oxide materials appear to be X-ray amorphous after a heat treatment at 500 °C for 30 h, but after 30 h at 800 and 900 °C a major, unreported, hexagonal phase, isostructural with TAlO 3 compounds (where T=Y, Eu, Gd, Tb, Dy, Ho, Er) appears to crystallize. On the other hand, a highly energetic mechanical treatment of the amorphous powder previously annealed at 500 °C changes considerably the shape and position of exothermal events occurring in the range from 700 up to 900 °C. Subsequent annealing at 900 °C of the mechanically treated powder gives rise to the complete formation of the Gd 3Ga 5O 12 garnet structure at the expense of the hexagonal phase and of the minor Gd 4Ga 2O 9 oxide phase. However, a 7.0 wt% contamination is found to be due to tetragonal zirconia coming from vials and balls colliding media. The garnet phase may have strong deviations from the nominal stoichiometry of the garnet, as suggested by the refined lattice parameter obtained from the powder diffraction patterns and by the remarkable absence of intensity relative to the (220) Bragg peak position.

  10. An HRTEM investigation of the metastable low-temperature silica phase opal-CT in cherts and porcelanites from the Monterey Formation, CA

    SciTech Connect

    Cady, S.L.; Wenk, H.R. )

    1992-01-01

    High resolution transmission electron microscopy (HRTEM) is used to investigate the metastable low-temperature silica phase opal-CT in cherts and porcelanites from the Miocene Monterey Formation of California. Low-dose imaging techniques developed to image highly beam sensitive proteins were used in this study and have resulted in good phase contrast images of this hydrous silica phase. Detailed X-ray powder diffraction studies of stratigraphically equivalent rocks along the Santa Barbara coast indicate that the primary d-spacing of newly formed opal-CT differs in rocks with different ratios of silica and detrital minerals. Opal-CT forms progressively later and with a smaller primary d-spacing in rocks with increasing amounts of detrital minerals. In siliceous cherts opal-CT occurs as long needles that most often form dense spherulitic fiber bundles which are randomly dispersed within the rock matrix. The random orientation of fiber bundle nucleation centers does not appear to be associated with any obvious nucleation site, unlike the length-slow opal-CT fibers known as lussatite. Opal-CT needles produce optical diffractogram patterns that are compatible with tridymite and crystobalite. Streaking in the diffraction pattern of individual needles is attributed to a high density of planar defects parallel to their length. Planar defects are not as abundant in opal-CT needles formed in detrital-rich rocks suggesting the rapid growth of opal-CT in highly siliceous environments results in a greater proportion of stacking disorder in the needles. HRTEM provides a method for investigating the development of the microstructure of opal-CT during diagenesis.

  11. Phosphate-water interplay tunes amorphous calcium carbonate metastability: spontaneous phase separation and crystallization vs stabilization viewed by solid state NMR.

    PubMed

    Kababya, Shifi; Gal, Assaf; Kahil, Keren; Weiner, Steve; Addadi, Lia; Schmidt, Asher

    2015-01-21

    Organisms tune the metastability of amorphous calcium carbonates (ACC), often by incorporation of additives such as phosphate ions and water molecules, to serve diverse functions, such as modulating the availability of calcium reserves or constructing complex skeletal scaffolds. Although the effect of additive distribution on ACC was noted for several biogenic and synthetic systems, the molecular mechanisms by which additives govern ACC stability are not well understood. By precipitating ACC in the presence of different PO4(3-) concentrations and regulating the initial water content, we identify conditions yielding either kinetically locked or spontaneously transforming coprecipitates. Solid state NMR, supported by FTIR, XRD, and electron microscopy, define the interactions of phosphate and water within the initial amorphous matrix, showing that initially the coprecipitates are homogeneous molecular dispersions of structural water and phosphate in ACC, and a small fraction of P-rich phases. Monitoring the transformations of the homogeneous phase shows that PO4(3-) and waters are extracted first, and they phase separate, leading to solid-solid transformation of ACC to calcite; small part of ACC forms vaterite that subsequently converts to calcite. The simultaneous water-PO4(3-) extraction is the key for the subsequent water-mediated accumulation and crystallization of hydroxyapatite (HAp) and carbonated hydroxyapatite. The thermodynamic driving force for the transformations is calcite crystallization, yet it is gated by specific combinations of water-phosphate levels in the initial amorphous coprecipitates. The molecular details of the spontaneously transforming ACC and of the stabilized ACC modulated by phosphate and water at ambient conditions, provide insight into biogenic and biomimetic pathways. PMID:25523637

  12. Totally solution-processed CuInS2 solar cells based on chloride inks: reduced metastable phases and improved current density

    NASA Astrophysics Data System (ADS)

    Dehghani, Mehdi; Behjat, Abbas; Tajabadi, Fariba; Taghavinia, Nima

    2015-03-01

    Planar superstrate CuInS2 (CIS) solar cell devices are fabricated using totally solution-processed deposition methods. These Cd-free devices are structured by FTO/TiO2/In2S3/CIS/carbon, where TiO2 and In2S3 are deposited by spray pyrolysis, and a CIS film is deposited using spin-coating followed by annealing at 250 °C. The pasted carbon layer is utilized as the anode. No further sulfurization or selenization is employed. The Cu/In ratio in the ink is found as a critical factor affecting the morphology and crystallinity of the film as well as the photovoltaic performance of the device. An optimum Cu/In = 1.05 results in large-grain films with sharp diffraction peaks and, subsequently, optimal series resistance and shunt conductance. It is also found that the chloride-based ink results in CIS films with considerably reduced metastable phases, compared to the conventional acetate-based inks. A current density of 23.6 mA cm-2 is obtained for the best devices, leading to a conversion efficiency of 4.1%.

  13. Hydrothermal synthesis and characterization of a two-dimensional piperazinium cobalt-zinc phosphate via a metastable one-dimensional phase

    NASA Astrophysics Data System (ADS)

    Torre-Fernández, Laura; Khainakova, Olena A.; Espina, Aránzazu; Amghouz, Zakariae; Khainakov, Sergei A.; Alfonso, Belén F.; Blanco, Jesús A.; García, José R.; García-Granda, Santiago

    2015-05-01

    A two-dimensional piperazinium cobalt-zinc phosphate, formulated as (C4N2H12)1.5(Co0.6Zn0.4)2(HPO4)2(PO4)·H2O (2D), was synthesized under hydrothermal conditions. The crystal structure was determined using single-crystal X-ray diffraction data (monoclinic P21/c, a=8.1165(3) Å, b=26.2301(10) Å, c=8.3595(4) Å, and β=110.930(5)°) and the hydrogen atom positions were optimized by DFT calculations. A single-crystal corresponding to one-dimensional metastable phase, (C4N2H12)Co0.3Zn0.7(HPO4)2·H2O (1D), was also isolated and the crystal structure was determined (monoclinic P21/c, a=8.9120(6) Å, b=14.0290(1) Å, c=12.2494(5) Å, and β=130.884(6)°). The bulk was characterized by chemical (C-H-N) analysis, powder X-ray diffraction (PXRD), powder X-ray thermodiffractometry (HT-XRD), transmission electron microscopy (STEM(DF)-EDX and EFTEM), and thermal analysis (TG/SDTA-MS), including activation energy data of its thermal decomposition. The magnetic susceptibility and magnetization measurements show no magnetic ordering down to 4 K.

  14. Nonequilibrium gap collapse near a first-order Mott transition

    NASA Astrophysics Data System (ADS)

    Sandri, Matteo; Fabrizio, Michele

    2015-03-01

    We study the nonequilibrium dynamics of a simple model for V2O3 that consists of a quarter-filled Hubbard model for two orbitals that are split by a weak crystal field. Peculiarities of this model are (1) a Mott insulator whose gap corresponds to transferring an electron from the occupied lower orbital to the empty upper one, rather than from the lower to the upper Hubbard subbands; (2) a Mott transition generically of first order even at zero temperature. We simulate by means of time-dependent Gutzwiller approximation the evolution within the insulating phase of an initial state endowed by a nonequilibrium population of electrons in the upper orbital and holes in the lower one. We find that the excess population may lead, above a threshold, to a gap collapse and drive the insulator into the metastable metallic phase within the coexistence region around the Mott transition. This result foresees a nonthermal pathway to revert a Mott insulator into a metal. Even though this physical scenario is uncovered in a very specific toy model, we argue it might apply to other Mott insulating materials that share similar features.

  15. Metastability of a Supercompressed Fluid Monolayer

    PubMed Central

    Smith, Ethan C.; Crane, Jonathan M.; Laderas, Ted G.; Hall, Stephen B.

    2003-01-01

    Previous studies showed that monomolecular films of extracted calf surfactant collapse at the equilibrium spreading pressure during quasi-static compressions but become metastable at much higher surface pressures when compressed faster than a threshold rate. To determine the mechanism by which the films become metastable, we studied single-component films of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). Initial experiments confirmed similar metastability of POPC if compressed above a threshold rate. Measurements at different surface pressures then showed that rates of collapse, although initially increasing above the equilibrium spreading pressure, reached a sharply defined maximum and then slowed considerably. When heated, rapidly compressed films recovered their ability to collapse with no discontinuous change in area, arguing that the metastability does not reflect transition of the POPC film to a new phase. These observations indicate that in several respects, the supercompression of POPC monolayers resembles the supercooling of three-dimensional liquids toward a glass transition. PMID:14581205

  16. Formation, structure and magnetism of the metastable defect fluorite phases AVO{sub 3.5+x} (A=In, Sc)

    SciTech Connect

    Shafi, Shahid P.; Lundgren, Rylan J.; Cranswick, Lachlan M.D.; Bieringer, Mario

    2007-12-15

    We report the preparation and stability of ScVO{sub 3.5+x} and the novel phase InVO{sub 3.5+x}. AVO{sub 3.5+x} (A=Sc, In) defect fluorite structures are formed as metastable intermediates during the topotactic oxidation of AVO{sub 3} bixbyites. The oxidation pathway has been studied in detail by means of thermogravimetric/differential thermal analysis and in-situ powder X-ray diffraction. The oxidation of the bixbyite phase follows a topotactic pathway at temperatures between 300 and 400 deg. C in air/carbon dioxide. The range of accessible oxygen stoichiometries for the AVO{sub 3.5+x} structures following this pathway are 0.00{<=}x{<=}0.22. Rietveld refinements against powder X-ray and neutron data revealed that InVO{sub 3.54} and ScVO{sub 3.70} crystallize in the defect fluorite structure in space group Fm-3 m (227) with a=4.9863(5) and 4.9697(3)A, respectively with A{sup 3+}/V{sup 4+} disorder on the (4a) cation site. Powder neutron diffraction experiments indicate clustering of oxide defects in all samples. Bulk magnetic measurements showed the presence of V{sup 4+} and the absence of magnetic ordering at low temperatures. Powder neutron diffraction experiments confirmed the absence of a long range ordered magnetic ground state. - Graphical abstract: Topotactic oxidation of AVO{sub 3} bixbyite to AVO{sub 3.5} defect fluorite structure followed by in-situ powder X-ray diffraction. The upper structural diagram shows a six coordinated (A/V)-O{sub 6} fragment in bixbyite, the lower structure illustrates the same seven-fold coordinated (A/V)-O{sub 7} cubic environment in the defect fluorite structure.

  17. The Free Action of Nonequilibrium Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Qianxiao; E, Weinan

    2015-10-01

    In general nonequilibrium steady states, directly replacing the canonical ensemble by the nonequilibrium invariant distribution yields a free energy function that is insufficient in characterizing the dynamical landscape. We address the problem by defining the free action, which is like a free energy on path space. Through a representative example, we demonstrate the conceptual and practical usefulness of the free action for quantifying the dynamics of nonequilibrium steady states, including those exhibiting phase transitions.

  18. Critical nonequilibrium relaxation in the Swendsen-Wang algorithm in the Berezinsky-Kosterlitz-Thouless and weak first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Nonomura, Yoshihiko; Tomita, Yusuke

    2015-12-01

    Recently we showed that the critical nonequilibrium relaxation in the Swendsen-Wang algorithm is widely described by the stretched-exponential relaxation of physical quantities in the Ising or Heisenberg models. Here we make a similar analysis in the Berezinsky-Kosterlitz-Thouless phase transition in the two-dimensional (2D) X Y model and in the first-order phase transition in the 2D q =5 Potts model and find that these phase transitions are described by the simple exponential relaxation and power-law relaxation of physical quantities, respectively. We compare the relaxation behaviors of these phase transitions with those of the second-order phase transition in the three- and four-dimensional X Y models and in the 2D q -state Potts models for 2 ≤q ≤4 and show that the species of phase transitions can be clearly characterized by the present analysis. We also compare the size dependence of relaxation behaviors of the first-order phase transition in the 2D q =5 and 6 Potts models and propose a quantitative criterion on "weakness" of the first-order phase transition.

  19. Laser Cooling of Metastable Helium

    NASA Astrophysics Data System (ADS)

    Chuang, Ti.

    An experiment on the laser cooling of a metastable helium beam has been carried out. This experiment is appropriate to be described theoretically under a semiclassical framework. The experiment is the first phase of a large experimental project, whose ultimate goal is to investigate the behavior of laser -cooled metastable helium atoms in the quantum mechanical domain. This first phase is to provide the foundation for the second phase, which will be described in a full quantum mechanical framework. To reach this goal, an atomic beam source and a detection and data acquisition system were designed and constructed to be used in both phases. A laser system that is necessary for the first phase was also designed and constructed. This experiment was designed so that the studies of the atomic behavior, both in the semiclassical and quantum mechanical regions, can be investigated almost simultaneously. This experiment mainly consists of a one-dimensional transverse Doppler cooling of a metastable helium beam. The theory of Doppler cooling, based upon previous work of others, is discussed in this thesis as well. A final velocity width (HWHM) of ~0.62 m/s has been achieved, which is about 2.5 times larger than the Doppler velocity predicted by the theory. The two most likely reasons for not obtaining the Doppler velocity have been carefully examined. Sub-Doppler cooling of the helium beam was also tried, but was unsuccessful. It is our belief that the very same reasons prevent us from achieving sub -Doppler cooling as well.

  20. Suppression of Twinning and Phase Transformation in an Ultrafine Grained 2 GPa Strong Metastable Austenitic Steel: Experiment and Simulation

    SciTech Connect

    Shen, Yongfeng; Jia, Nan; Wang, Y. D.; Sun, Xin; Zuo, Liang; Raabe, Dierk

    2015-07-17

    An ultrafine-grained 304 austenitic 18 wt.%Cr-8 wt.%Ni stainless steel with a grain size of ~270 nm was synthesized by accumulative rolling (67 % total reduction) and annealing (550 °C, 150s). Uniaxial tensile testing at room temperature reveals an extremely high yield strength of 1890 ± 50MPa and a tensile strength of 2050 ± 30MPa, while the elongation reaches 6 ± 1%. Experimental characterization on samples with different grain sizes between 270 nm and 35 μm indicates that both, deformation twinning and martensitic phase transformation are significantly retarded with increasing grain refinement. A crystal plasticity finite element model incorporating a constitutive law reflecting the grain size-controlled dislocation slip and deformation twinning captures the micromechanical behavior of the steels with different grain sizes. Comparison of simulation and experiment shows that the deformation of ultrafine-grained 304 steels is dominated by the slip of partial dislocations, whereas for coarse-grained steels dislocation slip, twinning and martensite formation jointly contribute to the shape change.

  1. The metastable brain.

    PubMed

    Tognoli, Emmanuelle; Kelso, J A Scott

    2014-01-01

    Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or "bound" together when people attend to a stimulus, perceive, think, and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales, suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral, and social functions. PMID:24411730

  2. The Metastable Brain

    PubMed Central

    Tognoli, Emmanuelle; Kelso, J. A. Scott

    2014-01-01

    Neural ensembles oscillate across a broad range of frequencies and are transiently coupled or “bound” together when people attend to a stimulus, perceive, think and act. This is a dynamic, self-assembling process, with parts of the brain engaging and disengaging in time. But how is it done? The theory of Coordination Dynamics proposes a mechanism called metastability, a subtle blend of integration and segregation. Tendencies for brain regions to express their individual autonomy and specialized functions (segregation, modularity) coexist with tendencies to couple and coordinate globally for multiple functions (integration). Although metastability has garnered increasing attention, it has yet to be demonstrated and treated within a fully spatiotemporal perspective. Here, we illustrate metastability in continuous neural and behavioral recordings, and we discuss theory and experiments at multiple scales suggesting that metastable dynamics underlie the real-time coordination necessary for the brain's dynamic cognitive, behavioral and social functions. PMID:24411730

  3. Incompatible Sets of Gradients and Metastability

    NASA Astrophysics Data System (ADS)

    Ball, J. M.; James, R. D.

    2015-12-01

    We give a mathematical analysis of a concept of metastability induced by incompatibility. The physical setting is a single parent phase, just about to undergo transformation to a product phase of lower energy density. Under certain conditions of incompatibility of the energy wells of this energy density, we show that the parent phase is metastable in a strong sense, namely it is a local minimizer of the free energy in an L 1 neighbourhood of its deformation. The reason behind this result is that, due to the incompatibility of the energy wells, a small nucleus of the product phase is necessarily accompanied by a stressed transition layer whose energetic cost exceeds the energy lowering capacity of the nucleus. We define and characterize incompatible sets of matrices, in terms of which the transition layer estimate at the heart of the proof of metastability is expressed. Finally we discuss connections with experiments and place this concept of metastability in the wider context of recent theoretical and experimental research on metastability and hysteresis.

  4. Non-equilibrium origin of high electrical conductivity in gallium zinc oxide thin films

    SciTech Connect

    Zakutayev, Andriy Ginley, David S.; Lany, Stephan; Perry, Nicola H.; Mason, Thomas O.

    2013-12-02

    Non-equilibrium state defines physical properties of materials in many technologies, including architectural, metallic, and semiconducting amorphous glasses. In contrast, crystalline electronic and energy materials, such as transparent conductive oxides (TCO), are conventionally thought to be in equilibrium. Here, we demonstrate that high electrical conductivity of crystalline Ga-doped ZnO TCO thin films occurs by virtue of metastable state of their defects. These results imply that such defect metastability may be important in other functional oxides. This finding emphasizes the need to understand and control non-equilibrium states of materials, in particular, their metastable defects, for the design of novel functional materials.

  5. Driven-dissipative many-body systems with mixed power-law interactions: Bistabilities and temperature-driven nonequilibrium phase transitions

    NASA Astrophysics Data System (ADS)

    Šibalić, N.; Wade, C. G.; Adams, C. S.; Weatherill, K. J.; Pohl, T.

    2016-07-01

    We investigate the nonequilibrium dynamics of a driven-dissipative spin ensemble with competing power-law interactions. We demonstrate that dynamical phase transitions as well as bistabilities can emerge for asymptotic van der Waals interactions, but critically rely on the presence of a slower decaying potential core. Upon introducing random particle motion, we show that a finite gas temperature can drive a phase transition with regards to the spin degree of freedom and eventually leads to mean-field behavior in the high-temperature limit. Our work reconciles contrasting observations of recent experiments with Rydberg atoms in the cold-gas and hot-vapor domain, and introduces an efficient theoretical framework in the latter regime.

  6. Polarization of metastable 129Xe

    NASA Astrophysics Data System (ADS)

    Xia, Tian; Morgan, Steven; Jau, Yuan-Yu; Happer, William

    2008-05-01

    We have measured atomic polarization of metastable 129Xe in a pyrex cell by optical pumping, while metastability exchange optical pumping of 3He is routinely done. The atomic polarization of metastable Xe is on the order of 10%. Metastable xenon is created by electrodeless rf discharge. The hyperfine transition of metastable 129Xe is observed by microwave excitation. Atomic polarization can be demonstrated by comparison of the intensities of the transitions between different Zeeman sublevels, while pumping a specific optical transition of metastable Xe with circularly polarized light. This work offers insight into attempts to polarize 129Xe nuclei by metastability exchange optical pumping.

  7. Metastable Eutectic Equilibrium in Natural Environments: Recent Developments and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Fans J. M.; Nuth, Joseph A., II; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica, compositions of circumstellar dust, presolar and solar nebula grains in the matrix of the collected aggregate IDPs. Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra)fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous and typically nano- to micrometer-sized, metastable eutectic materials.

  8. Metastable Eutectic Equilibrium in Natural Environments: Recent Development and Research Opportunities

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.; Nuth, Joseph A., III; Jablonska, Mariola; Karner, James M.

    2000-01-01

    Chemical ordering at metastable eutectics was recognized in non-equilibrium gas-to- solid condensation experiments to constrain 'silicate' dust formation in O-rich circumstellar environments. The predictable metastable eutectic behavior successfully predicted the observed ferromagnesiosilica compositions of circumstellar dust presolar and solar nebula grains in the matrix of the collected aggregate IDPs (Interplanetary Dust Particles). Many of the experimentally determined metastable eutectic solids match the fundamental building blocks of common rock-forming layer silicates: this could have implications for the origin of Life. The physical conditions conducive to metastable eutectic behavior, i.e. high temperature and (ultra) fast quenching, lead to unique amorphous, typically nano- to micrometer-sized, materials. The new paradigm of metastable eutectic behavior opens the door to new and exciting research opportunities in uncovering the many implications of these unique amorphous, and typically nano-to micrometer-sized, metastable eutectic materials.

  9. A theory for metastabilities in bubble nucleation: can it help explaining nanobubbles?

    NASA Astrophysics Data System (ADS)

    Casciola, Carlo Massimo

    2013-11-01

    The stability and the very existence of nanobubbles on a solid-liquid interface is a conundrum that has been puzzling the community of researchers working in the field since their discovery through AFM measurements in the late nineties. Nanobubbles are typically flat, with height on the order of 5-10 nm and lateral size order 100 nm or less. Pinning of the contact line presumably plays a crucial role and, based on classical estimates, they should dissolve almost immediately while they are instead reported to persist for days. Recently we developed a novel theoretical approach that is able to predict the heterogeneous nucleation path, and to explain the catalytic effect of geometrical defects in lowering the associated free-energy barrier (Giacomello et al., PRL 2012). The theory bridges the scales from nanometer to micron, and is then suitable for dealing with nanobubbles, as shown by comparison with advanced rare-event techniques used to evaluate the metastability in the atomistic context (Giacomello et al., Langmuir 2012). The interest of the approach is that it can provide an estimate for the transition frequency, i.e. the average lifetime of a metastable configuration. As will be discussed, the model can in principle be enriched to account for the interaction of the gas phase with the solid, indicated as responsible for the almost universal contact angle observed in the nanobubbles (Weijs et al., PRL 2012). If nanobubbles can be explained in the context of equilibrium statistical ensembles, as long-lived metastable states associated with a complex free-energy landscape, the work under way could shed new light on the elusive subject of their persistence. At present we cannot however exclude substantial non-equilibrium effects, outside the concept of metastability in the strict statistical-mechanics sense and associated, e.g., with thermal gradients. ERC 2013 is acknowledged for support.

  10. Reflection of processes of non-equilibrium two-phase filtration in oil-saturated hierarchical medium in data of active wave geophysical monitoring

    NASA Astrophysics Data System (ADS)

    Hachay, Olga; Khachay, Andrey; Khachay, Oleg

    2016-04-01

    The processes of oil extraction from deposit are linked with the movement of multi-phase multi-component media, which are characterized by non-equilibrium and non-linear rheological features. The real behavior of layered systems is defined by the complexity of the rheology of moving fluids and the morphology structure of the porous medium, and also by the great variety of interactions between the fluid and the porous medium [Hasanov and Bulgakova, 2003]. It is necessary to take into account these features in order to informatively describe the filtration processes due to the non-linearity, non-equilibrium and heterogeneity that are features of real systems. In this way, new synergetic events can be revealed (namely, a loss of stability when oscillations occur, and the formation of ordered structures). This allows us to suggest new methods for the control and management of complicated natural systems that are constructed on account of these phenomena. Thus the layered system, from which it is necessary to extract the oil, is a complicated dynamical hierarchical system. A comparison is provided of non-equilibrium effects of the influence of independent hydrodynamic and electromagnetic induction on an oil layer and the medium which it surrounds. It is known that by drainage and steeping the hysteresis effect on curves of the relative phase permeability in dependence on the porous medium's water saturation in some cycles of influence (drainage-steep-drainage) is observed. Using the earlier developed 3D method of induction electromagnetic frequency geometric monitoring, we showed the possibility of defining the physical and structural features of a hierarchical oil layer structure and estimating the water saturation from crack inclusions. This effect allows managing the process of drainage and steeping the oil out of the layer by water displacement. An algorithm was constructed for 2D modeling of sound diffraction on a porous fluid-saturated intrusion of a hierarchical

  11. The effect of metastable pyroxene on the slab dynamics

    NASA Astrophysics Data System (ADS)

    Agrusta, Roberto; Hunen, Jeroen; Goes, Saskia

    2014-12-01

    Seismic studies show that some subducting slabs penetrate straight into the lower mantle, whereas others seem to flatten near the base of the mantle transition zone. Slab stagnation is often attributed to an increase in viscosity and phase transformations in the olivine system. However, recent mineral physics studies showed that due to extremely low transformational diffusion rates, low-density metastable pyroxene may persist into the transition zone in cool slabs. Here we use a dynamically fully self-consistent subduction model to investigate the influence of metastable pyroxene on the dynamics of subducting oceanic lithosphere. Our results show that metastable pyroxene affects slab buoyancy at least as much as olivine metastability. However, unlike metastable olivine, which can inhibit slab penetration in the lower mantle only for cold, old, and fast slabs, metastable pyroxene is likely to also affect sinking of relatively young and slow slabs.

  12. Photoinduced phase transitions in narrow-gap Mott insulators: the case of VO2

    NASA Astrophysics Data System (ADS)

    He, Zhuoran; Millis, Andrew

    The nonequilibrium dynamics of strongly correlated electrons in photoexcited VO2 is studied using the quantum Boltzmann equation and nonequilibrium Hartree-Fock methods applied to a band structure given by extended density functional theory (DFT+ U+ V) and realistic dynamical interactions. The initial equilibration of electrons occurs in hundreds of femtoseconds. For physically reasonable parameters, our Hartree-Fock calculation sustains a new metastable M1 metal phase that is qualitatively consistent with the recent experiment of Morrison et al. The long-term stability of the M1 metal phase will also be considered This work is supported by the Department of Energy under Grant Number DE-SC0012375.

  13. Multiple solid-phase microextraction in a non-equilibrium situation. Application in quantitative analysis of chlorophenols and chloroanisoles related to cork taint in wine.

    PubMed

    Martínez-Uruñuela, Almudena; González-Sáiz, José Maria; Pizarro, Consuelo

    2005-09-30

    Multiple HS-solid-phase microextraction (MHS-SPME) is a modification of SPME developed for quantitative analysis that avoids possible matrix effects based on an exhaustive analyte extraction from the sample. In this paper, the theory of this process associated with a non-equilibrium situation has been presented. The application of an optimised HS-SPME-based method in the analysis of chloroanisoles and chlorophenols, previously acetylated, associated with the occurrence of cork taint in different red, white and rosé wine samples, has revealed the existence of matrix effects. This fact determines the choice of standard addition as the adequate technique for the quantification of these compounds in real samples. MHS-SPME is proposed as a good alternative technique with respect to HS-SPME because it avoids matrix effects, simplifies the quantification of these compounds in real samples and reduces analysis time, providing sensitivity below chloroanisole sensory threshold with acceptable precision. PMID:16130768

  14. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili

    2004-01-01

    We have investigated the impact of hot metastable oxygen atoms on the product yields and rate coefficients of atmospheric reactions involving O( (sup 1)D). The contribution of the metastable oxygen atoms to the thermal balance of the terrestrial atmosphere between 50 and 200 km has been determined. We found that the presence of hot O((sup l)D) atoms in the mesosphere and lower thermosphere significantly increases the production rate of the rotationally-vibrationally excited NO molecules. The computed yield of the NO molecules in N2O+ O((sup 1)D) atmospheric collisions, involving non-Maxwellian distributions of the metastable oxygen atoms, is more than two times larger than the NO-yield at a thermal equilibrium. The calculated non-equilibrium rate and yield functions are important for ozone and nitrous oxide modeling in the stratosphere, mesosphere and lower thermosphere.

  15. Nonequilibrium thermodynamics of an interface

    NASA Astrophysics Data System (ADS)

    Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry

    2016-05-01

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics.

  16. Nonequilibrium thermodynamics of an interface.

    PubMed

    Schweizer, Marco; Öttinger, Hans Christian; Savin, Thierry

    2016-05-01

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the "dividing surface," as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular-dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a "thermometer," and it can be significantly different from the temperatures of the adjacent phases. Our findings lay foundations for nonequilibrium interfacial thermodynamics. PMID:27300960

  17. Metastable structure of Li13Si4

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas; Bahmann, Silvia; Kortus, Jens

    2016-04-01

    The Li13Si4 phase is one out of several crystalline lithium silicide phases, which is a potential electrode material for lithium ion batteries and contains a high theoretical specific capacity. By means of ab initio methods like density functional theory (DFT) many properties such as heat capacity or heat of formation can be calculated. These properties are based on the calculation of phonon frequencies, which contain information about the thermodynamical stability. The current unit cell of "Li13Si4" given in the ICSD database is unstable with respect to DFT calculations. We propose a modified unit cell that is stable in the calculations. The evolutionary algorithm EVO found a structure very similar to the ICSD one with both of them containing metastable lithium positions. Molecular dynamic simulations show a phase transition between both structures where these metastable lithium atoms move. This phase transition is achieved by a very fast one-dimensional lithium diffusion and stabilizes this phase.

  18. Landau superfluids as nonequilibrium stationary states

    SciTech Connect

    Wreszinski, Walter F.

    2015-01-15

    We define a superfluid state to be a nonequilibrium stationary state (NESS), which, at zero temperature, satisfies certain metastability conditions, which physically express that there should be a sufficiently small energy-momentum transfer between the particles of the fluid and the surroundings (e.g., pipe). It is shown that two models, the Girardeau model and the Huang-Yang-Luttinger (HYL) model, describe superfluids in this sense and, moreover, that, in the case of the HYL model, the metastability condition is directly related to Nozières’ conjecture that, due to the repulsive interaction, the condensate does not suffer fragmentation into two (or more) parts, thereby assuring its quantum coherence. The models are rigorous examples of NESS in which the system is not finite, but rather a many-body system.

  19. Metastable nematic hedgehogs

    NASA Astrophysics Data System (ADS)

    Rosso, Riccardo; Virga, Epifanio G.

    1996-07-01

    For nematic liquid crystals, we study the local stability of a radial hedgehog against biaxial perturbations. Our analysis employs the Landau - de Gennes functional to describe the free energy stored in a ball, whose radius is a parameter of the model. We find that a radial hedgehog may be either unstable or metastable, depending on the values of the elastic constants. For unstable hedgehogs, we give an explicit expression for the radius of the ball within which the instability manifests itself: it can be interpreted as the size of the biaxial core of the defect; it is of the same order of magnitude as the radius of the disclination ring predicted by Penzenstadler and Trebin's model. The metastable hedgehogs predicted by our model are the major novelty of the paper. They tell us that we may also expect truly uniaxial point defects, whose core contains no biaxial structure.

  20. A general unified non-equilibrium model for predicting saturated and subcooled critical two-phase flow rates through short and long tubes

    SciTech Connect

    Fraser, D.W.H.; Abdelmessih, A.H.

    1995-09-01

    A general unified model is developed to predict one-component critical two-phase pipe flow. Modelling of the two-phase flow is accomplished by describing the evolution of the flow between the location of flashing inception and the exit (critical) plane. The model approximates the nonequilibrium phase change process via thermodynamic equilibrium paths. Included are the relative effects of varying the location of flashing inception, pipe geometry, fluid properties and length to diameter ratio. The model predicts that a range of critical mass fluxes exist and is bound by a maximum and minimum value for a given thermodynamic state. This range is more pronounced at lower subcooled stagnation states and can be attributed to the variation in the location of flashing inception. The model is based on the results of an experimental study of the critical two-phase flow of saturated and subcooled water through long tubes. In that study, the location of flashing inception was accurately controlled and adjusted through the use of a new device. The data obtained revealed that for fixed stagnation conditions, the maximum critical mass flux occurred with flashing inception located near the pipe exit; while minimum critical mass fluxes occurred with the flashing front located further upstream. Available data since 1970 for both short and long tubes over a wide range of conditions are compared with the model predictions. This includes test section L/D ratios from 25 to 300 and covers a temperature and pressure range of 110 to 280{degrees}C and 0.16 to 6.9 MPa. respectively. The predicted maximum and minimum critical mass fluxes show an excellent agreement with the range observed in the experimental data.

  1. The effect of metastable pyroxene on the slab dynamics

    NASA Astrophysics Data System (ADS)

    Agrusta, R.; Van Hunen, J.; Goes, S. D. B.

    2014-12-01

    Global seismic studies show variations near the base of mantle transition zone, where some slabs penetrate straight into the lower mantle, whereas others seem to flatten. The dynamics of cold subducting slabs are mainly controlled by negative thermal buoyancy forces and by buoyancy anomalies due to density contrasts of the different mineralogical phases. Recent experiments show that pyroxene dissolves into the denser garnet, forming the majorite-garnet, at very slow rates, and pyroxene can remain metastable to temperatures as high as 1400 °C.Because metastable pyroxene may potentially persist in subduction zones over large volumes and to great depths, a self-consistent subduction model has been used to investigate the influence of metastable phase on the dynamics of subducting oceanic lithosphere. The phase boundary of pyroxene to garnet (300 km equilibrium depth) is considered together with the phase transition of olivine to wadsleyite (410 km equilibrium), and ringwoodite to perovskite-magnesiowustite (670 km equilibrium). The kinetics of the phase transition for ol-wd and in px-gt are treated considering a temperature-dependent diffusion rate. To quantify the buoyant contributions of the metastable phase on the subduction dynamics, an extensive parameter sensitivity study has been performed.Results from this study illustrate that metastable pyroxene affects slab buoyancy at least as much as olivine metastability. Slab age and phase change kinetics are the most dominant parameters, and buoyancy effects are stronger for old subducting lithosphere and for low diffusion rates, favouring slab stagnation in the transition zone.

  2. Metastable isomers - A new class of interstellar molecules

    NASA Technical Reports Server (NTRS)

    Green, S.; Herbst, E.

    1979-01-01

    The abundances of a variety of metastable isomers of small organic molecules, analogous to HNC/HCN, in dense interstellar clouds are considered. These metastable species, some of which are thought to exist as intermediates in laboratory organic chemical reactions, are of considerable interest to chemists. Current ideas of gas-phase, ion-molecule chemistry are utilized to demonstrate that such metastable species should often be present in dense clouds in sufficient abundance to be observed. Unfortunately, the spectral constants of metastable isomers have rarely been determined in the laboratory, and quantum chemical calculations of a varying degree of accuracy must be utilized; results are included of some new quantum chemical calculations. The interstellar chemistry and expected microwave spectra of a representative sample of possibly important interstellar metastable isomers are discussed.

  3. Metastable metallic hydrogen glass

    SciTech Connect

    Nellis, W J

    2001-02-06

    The quest for metallic hydrogen has been going on for over one hundred years. Before hydrogen was first condensed into a liquid in 1898, it was commonly thought that condensed hydrogen would be a metal, like the monatomic alkali metals below hydrogen in the first column of the Periodic Table. Instead, condensed hydrogen turned out to be transparent, like the diatomic insulating halogens in the seventh column of the Periodic Table. Wigner and Huntington predicted in 1935 that solid hydrogen at 0 K would undergo a first-order phase transition from a diatomic to a monatomic crystallographically ordered solid at {approx}25 GPa. This first-order transition would be accompanied by an insulator-metal transition. Though searched for extensively, a first-order transition from an ordered diatomic insulator to a monatomic metal is yet to be observed at pressures up to 120 and 340 GPa using x-ray diffraction and visual inspection, respectively. On the other hand, hydrogen reaches the minimum electrical conductivity of a metal at 140 GPa, 0.6 g/cm{sup 3}, and 3000 K. These conditions were achieved using a shock wave reverberating between two stiff sapphire anvils. The shock wave was generated with a two-stage light-gas gun. This temperature exceeds the calculated melting temperature at 140 GPa by a factor of {approx}2, indicating that this metal is in the disordered fluid phase. The disorder permits hydrogen to become metallic via a Mott transition in the liquid at a much smaller pressure than in the solid, which has an electronic bandgap to the highest pressures reached to date. Thus, by using the finite temperature achieved with shock compression to achieve a disordered melt, metallic hydrogen can be achieved at a much lower pressure in a fluid than in a solid. It is not known how, nor even whether, metallic hydrogen can be quenched from a fluid at high pressures to a disordered solid metallic glass at ambient pressure and temperature. Because metallization occurs by simply

  4. Magnetic BiMn-α phase synthesis prediction: First-principles calculation, thermodynamic modeling and nonequilibrium chemical partitioning

    DOE PAGESBeta

    Zhou, S. H.; Liu, C.; Yao, Y. X.; Du, Y.; Zhang, L. J.; Wang, C. -Z.; Ho, K. -M.; Kramer, M. J.

    2016-04-29

    BiMn-α is promising permanent magnet. Due to its peritectic formation feature, there is a synthetic challenge to produce single BiMn-α phase. The objective of this study is to assess driving force for crystalline phase pathways under far-from-equilibrium conditions. First-principles calculations with Hubbard U correction are performed to provide a robust description of the thermodynamic behavior. The energetics associated with various degrees of the chemical partitioning are quantified to predict temperature, magnetic field, and time dependence of the phase selection. By assessing the phase transformation under the influence of the chemical partitioning, temperatures, and cooling rate from our calculations, we suggestmore » that it is possible to synthesize the magnetic BiMn-α compound in a congruent manner by rapid solidification. The external magnetic field enhances the stability of the BiMn-α phase. In conclusion, the compositions of the initial compounds from these highly driven liquids can be far from equilibrium.« less

  5. Nonequilibrium solidification in undercooled Ti{sub 45}Al{sub 55} melts

    SciTech Connect

    Hartmann, H.; Galenko, P. K.; Holland-Moritz, D.; Kolbe, M.; Herlach, D. M.; Shuleshova, O.

    2008-04-01

    Ti-Al alloys are of high technological interest as light-weight high-performance materials. When produced by solidification from the liquid state, the material properties of as-solidified materials are strongly dependent on the conditions governing the solidification process. Nonequilibrium solidification from the state of an undercooled liquid may result to the formation of metastable solid materials. On the one hand undercooling under special cases may influence the phase selection behavior during solidification, and on the other hand during rapid growth of solid phases in undercooled melts nonequilibrium effects such as solute trapping and disorder trapping may occur. In the present work containerless processing by electromagnetic levitation is used to undercool Ti{sub 45}Al{sub 55} melts deeply below the liquidus temperature. The dendrite growth velocity during the solidification is measured as a function of undercooling by application of a high-speed video camera. In situ diffraction experiments at ESRF in Grenoble and microstructure investigations are performed in order to identify the primary solidified phases. The experimental findings are interpreted within current theoretical models for dendritic growth and solute trapping.

  6. Phase-coherent quantum transport in silicon nanowires based on Wigner transport equation: Comparison with the nonequilibrium-Green-function formalism

    NASA Astrophysics Data System (ADS)

    Barraud, Sylvain

    2009-09-01

    Various theoretical formulations are proposed for investigating the carrier transport in nanoscale electronic devices. In this paper, a discrete formulation of the Wigner transport equation (WTE) for the self-consistent simulation of phase-coherent quantum transport in silicon nanowire metal-oxide-semiconductor field-effect transistor (MOSFET) devices is presented. The device is simulated using an effective-mass Hamiltonian within the mode-space approximation. The numerical scheme proposed in this work solves self-consistently three dimensional Poisson's equation, two dimensional Schrödinger's equation in each cross-sectional plane of the nanowire, and the steady-state one dimensional WTE for each conduction mode to handle the quantum transport along the channel. Details on numerical implementation of the Wigner function method are given, and the results are compared with those of the nonequilibrium Green's function (NEGF) method in the ballistic limit. The calculations of current-voltage electrical characteristics of surround-gated silicon nanowires are performed using both NEGF and WTE formulations. The good agreement observed between these approaches means that a direct solution of the WTE is an accurate simulation method for modeling the ballistic quantum transport in silicon nanowire MOSFETs.

  7. Size, shape, and ordering of SiGe/Si(001) islands grown by means of liquid phase epitaxy under far-nonequilibrium growth conditions

    SciTech Connect

    Hanke, M.; Boeck, T.; Gerlitzke, A.-K.; Syrowatka, F.; Heyroth, F.; Koehler, R.

    2005-04-04

    Applying scanning electron microscopy, we have studied the evolution of shape and lateral positional correlation of Si{sub 1-x}Ge{sub x}/Si(001) Stranski-Krastanov islands grown by means of liquid phase epitaxy (LPE). However, in contrast to conventional near-equilibrium LPE, a distinctly higher cooling rate of 10 K/min ensures extremly nonequilibrium growth conditions. The facet inclination of subsequent island stages decreases from nearly vertical sidewalls toward {l_brace}111{r_brace}- and {l_brace}101{r_brace}-type facets. Energy dispersive x-ray microanalysis yields a size-independent germanium content of 8.9% within islands between 760 and 1700 nm base width which is--by more than a factor of 2--smaller than islands of the same concentration grown in a near-equilibrium LPE process. Square-like formations of subsequently smaller islands around a large central island indicate only next to island interactions during the lateral self-assembling.

  8. Method optimization for non-equilibrium solid phase microextraction sampling of HAPs for GC/MS analysis

    NASA Astrophysics Data System (ADS)

    Zawadowicz, M. A.; Del Negro, L. A.

    2010-12-01

    Hazardous air pollutants (HAPs) are usually present in the atmosphere at pptv-level, requiring measurements with high sensitivity and minimal contamination. Commonly used evacuated canister methods require an overhead in space, money and time that often is prohibitive to primarily-undergraduate institutions. This study optimized an analytical method based on solid-phase microextraction (SPME) of ambient gaseous matrix, which is a cost-effective technique of selective VOC extraction, accessible to an unskilled undergraduate. Several approaches to SPME extraction and sample analysis were characterized and several extraction parameters optimized. Extraction time, temperature and laminar air flow velocity around the fiber were optimized to give highest signal and efficiency. Direct, dynamic extraction of benzene from a moving air stream produced better precision (±10%) than sampling of stagnant air collected in a polymeric bag (±24%). Using a low-polarity chromatographic column in place of a standard (5%-Phenyl)-methylpolysiloxane phase decreased the benzene detection limit from 2 ppbv to 100 pptv. The developed method is simple and fast, requiring 15-20 minutes per extraction and analysis. It will be field-validated and used as a field laboratory component of various undergraduate Chemistry and Environmental Studies courses.

  9. Nonequilibrium segregation and phase instability in alloy films during elevated-temperature irradiation in a high-voltage electron microscope

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R.

    1984-05-01

    The effects of defect-production rate gradients, caused by the radial nonuniformity in the electron flux distribution, on solute segregation and phase stability in alloy films undergoing high-voltage electron-microscope (HVEM) irradiation at high temperatures are assessed. Two-dimensional (axially symmetric) compositional redistributions were calculated, taking into account both axial and transverse radial defect fluxes. It was found that when highly focused beams were employed radiation-induced segregation consisted of two stages: dominant axial segregation at the film surfaces at short irradiation times and competitive radial segregation at longer times. The average alloy composition within the irradiated region could differ greatly from that irradiated with a uniform beam, because of the additional atom transport from or to the region surrounding the irradiated zone under the influence of radial fluxes. As a result, damage-rate gradient effects must be taken into account when interpreting in-situ HVEM observations of segregation-induced phase instabilities. The theoretical predictions are compared with experimental observations of the temporal and spatial dependence of segregation-induced precipitation in thin films of Ni-Al, Ni-Ge and Ni-Si solid solutions.

  10. Digital Synchronizer without Metastability

    NASA Technical Reports Server (NTRS)

    Simle, Robert M.; Cavazos, Jose A.

    2009-01-01

    A proposed design for a digital synchronizing circuit would eliminate metastability that plagues flip-flop circuits in digital input/output interfaces. This metastability is associated with sampling, by use of flip-flops, of an external signal that is asynchronous with a clock signal that drives the flip-flops: it is a temporary flip-flop failure that can occur when a rising or falling edge of an asynchronous signal occurs during the setup and/or hold time of a flip-flop. The proposed design calls for (1) use of a clock frequency greater than the frequency of the asynchronous signal, (2) use of flip-flop asynchronous preset or clear signals for the asynchronous input, (3) use of a clock asynchronous recovery delay with pulse width discriminator, and (4) tying the data inputs to constant logic levels to obtain (5) two half-rate synchronous partial signals - one for the falling and one for the rising edge. Inasmuch as the flip-flop data inputs would be permanently tied to constant logic levels, setup and hold times would not be violated. The half-rate partial signals would be recombined to construct a signal that would replicate the original asynchronous signal at its original rate but would be synchronous with the clock signal.

  11. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  12. Desensitization of metastable intermolecular composites

    DOEpatents

    Busse, James R.; Dye, Robert C.; Foley, Timothy J.; Higa, Kelvin T.; Jorgensen, Betty S.; Sanders, Victor E.; Son, Steven F.

    2011-04-26

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  13. Nonequilibrium molecular dynamics: The first 25 years

    SciTech Connect

    Hoover, W.G. |

    1992-08-01

    Equilibrium Molecular Dynamics has been generalized to simulate Nonequilibrium systems by adding sources of thermodynamic heat and work. This generalization incorporates microscopic mechanical definitions of macroscopic thermodynamic and hydrodynamic variables, such as temperature and stress, and augments atomistic forces with special boundary, constraint, and driving forces capable of doing work on, and exchanging heat with, an otherwise Newtonian system. The underlying Lyapunov instability of these nonequilibrium equations of motion links microscopic time-reversible deterministic trajectories to macroscopic time-irreversible hydrodynamic behavior as described by the Second Law of Thermodynamics. Green-Kubo linear-response theory has been checked. Nonlinear plastic deformation, intense heat conduction, shockwave propagation, and nonequilibrium phase transformation have all been simulated. The nonequilibrium techniques, coupled with qualitative improvements in parallel computer hardware, are enabling simulations to approximate real-world microscale and nanoscale experiments.

  14. Tensile Deformation Behavior and Phase Transformation in the Weld Coarse-Grained Heat-Affected Zone of Metastable High-Nitrogen Fe-18Cr-10Mn-N Stainless Steel

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Tae-Ho; Park, Seong-Jun; Jang, Jae-il; Jang, Min-Ho; Ha, Heon-Young; Hwang, Byoungchul

    2013-07-01

    The tensile deformation behavior and phase transformation in the weld coarse-grained heat-affected zone (CGHAZ) of a metastable high-nitrogen austenitic stainless steel was explored through tensile tests, nanoindentation experiments, and transmission electron microscopy analysis. True stress-strain response during tensile test was found to be seriously affected by δ-ferrite fraction, which depends on peak temperature of the CGHAZs. The strain-induced martensitic transformation (SIMT) occurred in base steel, whereas the SIMT disappeared and deformation twinning occurred predominantly in the CGHAZs. The relationship among true stress-strain response, nanoindentation hardness, and deformed microstructures was carefully investigated and discussed in terms of changes of stacking fault energy.

  15. Radiation-sustained nanocluster metastability in oxide dispersion strengthened materials

    NASA Astrophysics Data System (ADS)

    Ribis, J.; Bordas, E.; Trocellier, P.; Serruys, Y.; de Carlan, Y.; Legris, A.

    2015-12-01

    ODS materials constitute a new promising class of structural materials for advanced fission and fusion energy application. These Fe-Cr based ferritic steels contain ultra-high density of dispersion-strengthening nanoclusters conferring excellent mechanical properties to the alloy. Hence, guarantee the nanocluster stability under irradiation remain a critical issue. Nanoclusters are non-equilibrium multicomponent compounds (YTiCrO) forming through a complex nucleation pathway during the elaboration process. In this paper, it is proposed to observe the response of these nanoclusters when the system is placed far from equilibrium by means of ion beam. The results indicate that the Y, Ti, O and Cr atoms self-organized so that nanoclusters coarsened but maintain their non-equilibrium chemical composition. It is discussed that the radiation-sustained nanocluster metastability emerges from cooperative effects: radiation-induced Ostwald ripening, permanent creation of vacancies in the clusters, and fast Cr diffusion mediated by interstitials.

  16. Nonequilibrium thermodynamics of an interface

    NASA Astrophysics Data System (ADS)

    Savin, Thierry; Schweizer, Marco; Öttinger, Hans Christian

    Interfacial thermodynamics has deep ramifications in understanding the boundary conditions of transport theories. We present a formulation of local equilibrium for interfaces that extends the thermodynamics of the ``dividing surface,'' as introduced by Gibbs, to nonequilibrium settings such as evaporation or condensation. By identifying the precise position of the dividing surface in the interfacial region with a gauge degree of freedom, we exploit gauge-invariance requirements to consistently define the intensive variables for the interface. The model is verified under stringent conditions by employing high-precision nonequilibrium molecular dynamics simulations of a coexisting vapor-liquid Lennard-Jones fluid. We conclude that the interfacial temperature is determined using the surface tension as a ``thermometer,'' and can be significantly different from the temperatures of the adjacent phases.

  17. Nonequilibrium transport in superconducting filaments

    NASA Technical Reports Server (NTRS)

    Arutyunov, K. YU.; Danilova, N. P.; Nikolaeva, A. A.

    1995-01-01

    The step-like current-voltage characteristics of highly homogeneous single-crystalline tin and indium thin filaments has been measured. The length of the samples L approximately 1 cm was much greater than the nonequilibrium quasiparticle relaxation length Lambda. It was found that the activation of a successive i-th voltage step occurs at current significantly greater than the one derived with the assumption that the phase slip centers are weakly interacting on a scale L much greater than Lambda. The observation of 'subharmonic' fine structure on the voltage-current characteristics of tin filaments confirms the hypothesis of the long-range phase slip centers interaction.

  18. Superstructure in the Metastable Intermediate-Phase Li2/3 FePO4 Accelerating the Lithium Battery Cathode Reaction.

    PubMed

    Nishimura, Shin-ichi; Natsui, Ryuichi; Yamada, Atsuo

    2015-07-27

    LiFePO4 is an important cathode material for lithium-ion batteries. Regardless of the biphasic reaction between the insulating end members, Lix FePO4 , x≈0 and x≈1, optimization of the nanostructured architecture has substantially improved the power density of positive LiFePO4 electrode. The charge transport that occurs in the interphase region across the biphasic boundary is the primary stage of solid-state electrochemical reactions in which the Li concentrations and the valence state of Fe deviate significantly from the equilibrium end members. Complex interactions among Li ions and charges at the Fe sites have made understanding stability and transport properties of the intermediate domains difficult. Long-range ordering at metastable intermediate eutectic composition of Li2/3 FePO4 has now been discovered and its superstructure determined, which reflected predominant polaron crystallization at the Fe sites followed by Li(+) redistribution to optimize the Li-Fe interactions. PMID:26074480

  19. Non-equilibrium nanosecond-pulsed plasma generation in the liquid phase (water, PDMS) without bubbles: fast imaging, spectroscopy and leader-type model

    NASA Astrophysics Data System (ADS)

    Dobrynin, Danil; Seepersad, Yohan; Pekker, Mikhail; Shneider, Mikhail; Friedman, Gary; Fridman, Alexander

    2013-03-01

    In this paper we report the results on study of the non-equilibrium nanosecond discharge generation in liquid media. Here we studied the discharge in both water and silicon transformer oil, and present our findings on discharge behaviour depending on global (applied) electric, discharge emission spectrum and shadow imaging of the discharge. We also discuss possible scenarios of non-equilibrium nanosecond discharge development and suggest that the discharge operates in a leader-type regime supported by the electrostriction effect—creation of nano-sized pores in liquid due to high local electric field.

  20. Quasicritical brain dynamics on a nonequilibrium Widom line.

    PubMed

    Williams-García, Rashid V; Moore, Mark; Beggs, John M; Ortiz, Gerardo

    2014-12-01

    Is the brain really operating at a critical point? We study the nonequilibrium properties of a neural network which models the dynamics of the neocortex and argue for optimal quasicritical dynamics on the Widom line where the correlation length and information transmission are optimized. We simulate the network and introduce an analytical mean-field approximation, characterize the nonequilibrium phase transitions, and present a nonequilibrium phase diagram, which shows that in addition to an ordered and disordered phase, the system exhibits a "quasiperiodic" phase corresponding to synchronous activity in simulations, which may be related to the pathological synchronization associated with epilepsy. PMID:25615136

  1. Quasicritical brain dynamics on a nonequilibrium Widom line

    NASA Astrophysics Data System (ADS)

    Williams-García, Rashid V.; Moore, Mark; Beggs, John M.; Ortiz, Gerardo

    2014-12-01

    Is the brain really operating at a critical point? We study the nonequilibrium properties of a neural network which models the dynamics of the neocortex and argue for optimal quasicritical dynamics on the Widom line where the correlation length and information transmission are optimized. We simulate the network and introduce an analytical mean-field approximation, characterize the nonequilibrium phase transitions, and present a nonequilibrium phase diagram, which shows that in addition to an ordered and disordered phase, the system exhibits a "quasiperiodic" phase corresponding to synchronous activity in simulations, which may be related to the pathological synchronization associated with epilepsy.

  2. Nonequilibrium molecular dynamics

    SciTech Connect

    Hoover, W.G. . Dept. of Applied Science Lawrence Livermore National Lab., CA )

    1990-11-01

    The development of nonequilibrium molecular dynamics is described, with emphasis on massively-parallel simulations involving the motion of millions, soon to be billions, of atoms. Corresponding continuum simulations are also discussed. 14 refs., 8 figs.

  3. Modulated voltage metastable ionization detector

    NASA Technical Reports Server (NTRS)

    Carle, G. C.; Kojiro, D. R.; Humphrey, D. E. (Inventor)

    1985-01-01

    The output current from a metastable ionization detector (MID) is applied to a modulation voltage circuit. An adjustment is made to balance out the background current, and an output current, above background, is applied to an input of a strip chart recorder. For low level concentrations, i.e., low detected output current, the ionization potential will be at a maximum and the metastable ionization detector will operate at its most sensitive level. When the detected current from the metastable ionization detector increases above a predetermined threshold level, a voltage control circuit is activated which turns on a high voltage transistor which acts to reduce the ionization potential. The ionization potential applied to the metastable ionization detector is then varied so as to maintain the detected signal level constant. The variation in ionization potential is now related to the concentration of the constituent and a representative amplitude is applied to another input of said strip chart recorder.

  4. MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes.

    PubMed

    Ni, Jun; Yan, He; Wang, Anchuang; Yang, Yu; Stern, Charlotte L; Metz, Andrew W; Jin, Shu; Wang, Lian; Marks, Tobin J; Ireland, John R; Kannewurf, Carl R

    2005-04-20

    Four diamine adducts of bis(hexafluoroacetylacetonato)zinc [Zn(hfa)(2).(diamine)] can be synthesized in a single-step reaction. Single crystal X-ray diffraction studies reveal monomeric, six-coordinate structures. The thermal stabilities and vapor phase transport properties of these new complexes are considerably greater than those of conventional solid zinc metal-organic chemical vapor deposition (MOCVD) precursors. One of the complexes in the series, bis(1,1,1,5,5,5-hexafluoro-2,4-pentadionato)(N,N'-diethylethylenediamine)zinc, is particularly effective in the growth of thin films of the transparent conducting oxide Zn-In-Sn-O (ZITO) because of its superior volatility and low melting point of 64 degrees C. ZITO thin films with In contents ranging from 40 to 70 cation % (a metastable phase) were grown by low-pressure MOCVD. These films exhibit conductivity as high as 2900 S/cm and optical transparency comparable to or greater than that of commercial Sn-doped indium oxide (ITO) films. ZITO films with the nominal composition of ZnIn(2.0)Sn(1.5)O(z)() were used in fabrication of polymer light-emitting diodes. These devices exhibit light outputs and current efficiencies almost 70% greater than those of ITO-based control devices. PMID:15826201

  5. Particle energy distributions and metastable atoms in transient low pressure interpulse microwave plasma

    NASA Astrophysics Data System (ADS)

    Pandey, Shail; Nath Patel, Dudh; Ram Baitha, Anuj; Bhattacharjee, Sudeep

    2015-12-01

    The electron energies and its distribution function are measured in non-equilibrium transient pulsed microwave plasmas in the interpulse regime using a retarding field electron energy analyzer. The plasmas are driven to different initial conditions by varying the electromagnetic (EM) wave pulse duration, peak power, or the wave frequency. Two cases of wave excitation are investigated: (i) short-pulse (pulse duration, t w ~ 1 μs), high-power (~60 kW) waves of 9.45 GHz and (ii) medium-pulse (t w ~ 20 μs), and moderate power waves of ~3 kW at 2.45 GHz. It is found that high-power, short-duration pulses lead to a significantly different electron energy probability function (EEPF) in the interpulse phase—a Maxwellian with a bump on the tail, although the average energy per pulse (~60 mJ) is maintained the same in the two modes of wave excitation. Electrons with energies  >250 eV are found to exist in the discharge in the both cases. Another subset of experiments is performed to delineate the effect of the wave frequency and the peak power on EEPF. A traveling wave tube (TWT) amplifier based microwave source for generating pulsed plasma (t w  =  230 μs) in a wide frequency range (6-18 GHz) is employed for this purpose. Further experiments on measurements of metastable density using optical emission spectroscopy and ion energy analyzer have been carried out. By tailoring the EEPF of the transient plasma and metastable densities, new applications in plasma processing, chemistry and biology can be realized in the interpulse phase of the discharge.

  6. Flowing crystals: nonequilibrium structure of foam.

    PubMed

    Garstecki, Piotr; Whitesides, George M

    2006-07-14

    Bubbles pushed through a quasi-two-dimensional channel self-organize into a variety of periodic lattices. The structures of these lattices correspond to local minima of the interfacial energy. The "flowing crystals" are long-lived metastable states, a small subset of possible local minima of confined quasi-two-dimensional foams [P. Garstecki and G. M. Whitesides, Phys. Rev. E 73, 031603 (2006)10.1103/PhysRevE.73.031603]. Experimental results suggest that the choice of the structures that we observe is dictated by the dynamic stability of the cyclic processes of their formation. Thus, the dynamic system that we report provides a unique example of nonequilibrium self-organization that results in structures that correspond to local minima of the relevant energy functional. PMID:16907453

  7. Pulsed discharge production Ar* metastables

    NASA Astrophysics Data System (ADS)

    Han, Jiande; Heaven, Michael C.; Emmons, Daniel; Perram, Glen P.; Weeks, David E.; Bailey, William F.

    2016-03-01

    The production of relatively high densities of Ar* metastables (>1012 cm-3) in Ar/He mixtures, at total pressures close to 1 atm, is essential for the efficient operation of an optically pumped Ar* laser. We have used emission spectroscopy and diode laser absorption spectroscopy measurements to observe the production and decay of Ar* in a parallel plate pulsed discharge. With discharge pulses of 1 μs duration we find that metastable production is dominated by processes occurring within the first 100 ns of the gas break-down. Application of multiple, closely spaced discharge pulses yields insights concerning conditions that favor metastable production. This information has been combined with time-resolved measurements of voltage and current. The experimental results and preliminary modeling of the discharge kinetics are presented.

  8. Synthesis and characterization of transition metal arsenide nanocrystals and the metastability and magneto-structural phase transition behavior of manganese arsenide nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Yanhua

    This dissertation study focuses on (1) probing the magneto-structural phase transformation in nanoscale MnAs; (2) evaluation of the size-dependent phase stability of type-B MnAs (prepared by rapid injection); and (3) developing a general synthetic method for transition metal arsenide nanoparticles. Discrete MnAs nanoparticles that adopt different structures at room temperature (type-A, α-structure and type-B, beta-structure) have been prepared by the solution-phase arrested precipitation method. Atomic pair distribution and Rietveld refinement were employed on synchrotron data to explore the structural transitions of the bulk and nanoparticle samples, and these results were compared to AC magnetic susceptibility measurements of the samples. The results confirm that the structural transition and the magnetic transition are highly correlated in bulk MnAs and suggest that for type-A MnAs nanoparticles, there is a similar magneto-structural phase transition occurring in the same temperature region as that for bulk MnAs. However, for type-B MnAs nanoparticles, there is no magneto-structural phase transition, consistent with that type-B MnAs nanoparticles being kinetically trapped in the beta-structure. Type-B MnAs nanoparticles adopting the beta-strucuture undergo a transformation from beta to α upon cooling. Temperature dependent XRD studies and magnetic measurements suggest that the TP for α → beta conversion is suppressed to lower temperatures relative to bulk and type-A MnAs nanoparticles and that the transformation is reversible but has an enhanced hysteresis, which results in a large coexistence temperature range for the α and beta structure. The transformation temperature correlated with the compression of the lattice parameters of the type-B MnAs nanoparticles due to the decrease in the particle size or the presence of chemical doping, or both. A new general synthetic method for transition metal arsenide (Ni 11As8, FeAs and CoAs) nanocrystals synthesis was

  9. Nonequilibrium structure of colloidal dumbbells under oscillatory shear

    NASA Astrophysics Data System (ADS)

    Heptner, Nils; Chu, Fangfang; Lu, Yan; Lindner, Peter; Ballauff, Matthias; Dzubiella, Joachim

    2015-11-01

    We investigate the nonequilibrium behavior of dense, plastic-crystalline suspensions of mildly anisotropic colloidal hard dumbbells under the action of an oscillatory shear field by employing Brownian dynamics computer simulations. In particular, we extend previous investigations, where we uncovered nonequilibrium phase transitions, to other aspect ratios and to a larger nonequilibrium parameter space, that is, a wider range of strains and shear frequencies. We compare and discuss selected results in the context of scattering and rheological experiments. Both simulations and experiments demonstrate that the previously found transitions from the plastic crystal phase with increasing shear strain also occur at other aspect ratios. We explore the transition behavior in the strain-frequency phase and summarize it in a nonequilibrium phase diagram. Additionally, the experimental rheology results hint at a slowing down of the colloidal dynamics with higher aspect ratio.

  10. Metastable vacua and complex deformations

    SciTech Connect

    Tatar, Radu; Wetenhall, Ben

    2007-12-15

    We use the non-normalizable complex deformations to describe the stringy realizations of the metastable vacua in N=1, SU(N{sub c}) SUSY theories with N{sub f}>N{sub c} massive fundamental flavors. The consideration of the non-normalizable deformations requires a modified toric duality. The new approach considers the tachyon condensation between pairs of wrapped D5 branes and anti-D5 branes and the resulting mixing between some cycles in the geometry. We enlarge the class of metastable vacua to the case of branes-antibranes wrapped on cycles of deformed A{sub n} singularities.

  11. A metastable hard magnetic phase in the crystallization process of the Fe75Si11B10Nb3Sn1 alloy

    NASA Astrophysics Data System (ADS)

    Cremaschi, V.; Arcondo, B.; Vázquez, M.; Sirkin, H.

    1999-11-01

    A very interesting characteristic of FeSiB based amorphous alloys is its soft magnetic behavior. Most of these alloys remains soft along the crystallization process up to the nucleation of the iron borides. Examples of this are the widely studied Finemet and the FeSiBSn. In this work the crystallization of Fe76Si11B10Nb3 and Fe75Si11B10Nb3Sn1 is studied by means of X-ray diffraction, Mössbauer spectroscopy and coercive magnetic field measurements after one hour isothermal annealing at different temperatures. In the crystallization process of the latter alloy a hard magnetic phase appeared when the samples were annealed above 773 K. The soft magnetic behavior was recovered after annealing at 873 K. The hyperfine parameters as well as the X-ray diffraction patterns are reported.

  12. Nonequilibrium thermal entanglement

    SciTech Connect

    Quiroga, Luis; Rodriguez, Ferney J.; Ramirez, Maria E.; Paris, Roberto

    2007-03-15

    Results on heat current, entropy production rate, and entanglement are reported for a quantum system coupled to two different temperature heat reservoirs. By applying a temperature gradient, different quantum states can be found with exactly the same amount of entanglement but different purity degrees and heat currents. Furthermore, a nonequilibrium enhancement-suppression transition behavior of the entanglement is identified.

  13. Metastable states of plasma particles close to a charged surface

    SciTech Connect

    Shavlov, A. V.; Dzhumandzhi, V. A.

    2015-09-15

    The free energy of the plasma particles and the charged surface that form an electroneutral system is calculated on the basis of the Poisson-Boltzmann equation. It is shown that, owing to correlation of light plasma particles near the charged surface and close to heavy particles of high charge, there can be metastable states in plasma. The corresponding phase charts of metastable states of the separate components of plasma, and plasma as a whole, are constructed. These charts depend on temperature, the charge magnitude, the size of the particles, and the share of the charge of the light carriers out of the total charge of the plasma particles.

  14. Special simulator to study metastability

    NASA Astrophysics Data System (ADS)

    Haydt, Mary Sue V.; Mourad, Samiha

    2000-08-01

    Metastability has been long documented as a problem in digital systems with asynchronous inputs. This problem has been analyzed in CMOS latches using a 2nd order small signal model. However, uses of a third order model taking into account that the effect of the feedback transistor. While second order models are helpful in understanding how to model the circuit in the region, they do not provide sufficient information to accurately predict the essential parameter (tau) the maximum time at which the circuit may leave the metastable state. The only way to analyze such a circuit is to simulate it, using a simulator that combines small signal and large signal analysis. Future work on metastability will include modeling the feedback transistor as a resistor, and determining whether such a model is a reasonable simplification. The simulator can be modified easily to model small transistor geometries devices and to study the effect of large signal noise, such as ground and power supply bounce, on metastability. The model may also be applied to an interconnect model to improve delay and cross-talk simulations.

  15. Superfluidity and Critical Velocities in Nonequilibrium Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Wouters, Michiel; Carusotto, Iacopo

    2010-07-01

    We theoretically study the superfluidity properties of a nonequilibrium Bose-Einstein condensate of exciton polaritons in a semiconductor microcavity under incoherent pumping. The dynamics of the condensate is described at mean-field level in terms of a generalized Gross-Pitaevskii equation. The drag force on a small moving object and the onset of fringes in the density profile are shown to have a sharp threshold as a function of the velocity; a generalized Landau criterion is developed to explain this behavior in terms of the dispersion of elementary excitations. Metastability of supercurrents in multiply-connected geometries is shown to persist up to higher flow speeds.

  16. Superfluidity and Critical Velocities in Nonequilibrium Bose-Einstein Condensates

    SciTech Connect

    Wouters, Michiel; Carusotto, Iacopo

    2010-07-09

    We theoretically study the superfluidity properties of a nonequilibrium Bose-Einstein condensate of exciton polaritons in a semiconductor microcavity under incoherent pumping. The dynamics of the condensate is described at mean-field level in terms of a generalized Gross-Pitaevskii equation. The drag force on a small moving object and the onset of fringes in the density profile are shown to have a sharp threshold as a function of the velocity; a generalized Landau criterion is developed to explain this behavior in terms of the dispersion of elementary excitations. Metastability of supercurrents in multiply-connected geometries is shown to persist up to higher flow speeds.

  17. Corrigendum to “Laboratory studies of perchlorate phase transitions: Support for metastable aqueous perchlorate solutions on Mars” [Earth Planet. Sci. Lett. 312 (3-4) (2011) 371-377

    NASA Astrophysics Data System (ADS)

    Gough, R. V.; Chevrier, V. F.; Baustian, K. J.; Wise, M. E.; Tolbert, M. A.

    2014-02-01

    Perchlorate salts, recently discovered on Mars, are known to readily absorb water vapor from the atmosphere and deliquesce into the aqueous phase at room temperature. Here we study the deliquescence (crystalline solid to liquid transition) and efflorescence (liquid to crystalline solid transition) of perchlorate salts at low temperatures relevant to Mars. A Raman microscope and environmental cell were used to determine the deliquescence relative humidity (DRH) and efflorescence relative humidity (ERH) of NaClO4 and Mg(ClO4)2 as a function of temperature and hydration state. We find that the deliquescence of anhydrous NaClO4 is only slightly dependent on temperature and occurs at ∼38% RH. The DRH of NaClO4ṡH2O increases with decreasing temperature from 51% at 273 K to 64% at 228 K. The DRH of Mg(ClO4)2ṡ6H2O also increases with decreasing temperature from 42% at 273 K to 55% at 223 K. The efflorescence of both NaClO4 and Mg(ClO4)2 salt solutions occurs at a lower RH than deliquescence due to the kinetic inhibition of crystallization. For all temperatures studied, the ERH values of NaClO4 and Mg(ClO4)2 are 13% and 19%, respectively. These results indicate perchlorate salts can exist as metastable, supersaturated solutions over a wide range of RH and temperature conditions. Summer diurnal temperature and relative humidity cycles at low latitudes on Mars could allow the surface salts to be aqueous for several hours per day.

  18. Dynamic metastability in the two-dimensional Potts ferromagnet

    NASA Astrophysics Data System (ADS)

    Ibáñez Berganza, Miguel; Petri, Alberto; Coletti, Pietro

    2014-05-01

    We investigate the nonequilibrium dynamics of the two-dimensional (2D) Potts model on the square lattice after a quench below the discontinuous transition point. By means of numerical simulations of systems with q =12, 24, and 48, we observe the onset of a stationary regime below the temperature-driven transition, in a temperature interval decreasing with the system size and increasing with q. These results obtained dynamically agree with those obtained from the analytical continuation of the free energy [J. L. Meunier and A. Morel, Eur. Phys. J. B 13, 341 (2000), 10.1007/s100510050040], from which metastability in the 2D Potts model results to be a finite-size effect.

  19. Local non-equilibrium thermodynamics

    PubMed Central

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  20. Local non-equilibrium thermodynamics.

    PubMed

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  1. Decay of metastable topological defects

    SciTech Connect

    Preskill, J. ); Vilenkin, A. Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 )

    1993-03-15

    We systematically analyze the decay of metastable topological defects that arise from the spontaneous breakdown of gauge or global symmetries. Quantum-mechanical tunneling rates are estimated for a variety of decay processes. The decay rate for a global string, vortex, domain wall, or kink is typically suppressed compared to the decay rate for its gauged counterpart. We also discuss the decay of global texture, and of semilocal and electroweak strings.

  2. Investigation of xenon metastable atoms

    NASA Astrophysics Data System (ADS)

    Xia, Tian; Jau, Yuan-Yu; Happer, William

    2007-06-01

    The electron configuration of a xenon atom in its metastable state consists of tightly bound core electrons with a single missing electron in the 5P shell, and a loosely bound ``valence electron'' in the 6S shell. For our current work, we have been using pyrex cells with internal tungsten electrodes, filled with isotopically enriched Xe129 gas. Ti-sapphire laser is used to pump the metastable atom from 6S2 to 6P2 and 6P3 at 823nm and 882nm respectively. The absorption spectrum is able to resolve the hyperfine structure of Xe129 in 6S2, 6P2 and 6P3 state. The hyperfine coefficients for 6S2, 6P2 agree with previously reported measurements. And the hyperfine coefficient for 6P3 state has not been reported before. If the pumping wavelength is locked at any one of the hyperfine transitions of Xenon129 atom, zero-field magnetic resonances of metastable Xenon atoms could be observed by pumping with circularly polarized laser beam. Since relaxation between magnetic sublevels is very fast due to the big depolarization collisional cross section, the linewidth of the magnetic resonant signal is broad.

  3. Interface dynamics under nonequilibrium conditions: from a self-propelled droplet to dynamic pattern evolution.

    PubMed

    Chen, Y-J; Yoshikawa, K

    2011-04-01

    In this article, we describe the instability of a contact line under nonequilibrium conditions mainly based on the results of our recent studies. Two experimental examples are presented: the self-propelled motion of a liquid droplet and spontaneous dynamic pattern formation. For the self-propelled motion of a droplet, we introduce an experiment in which a droplet of aniline sitting on an aqueous layer moves spontaneously at an air-water interface. The spontaneous symmetry breaking of Marangoni-driven spreading causes regular motion. In a circular Petri dish, the droplet exhibits either beeline motion or circular motion. On the other hand, we show the emergence of a dynamic labyrinthine pattern caused by dewetting of a metastable thin film from the air-water interface. The contact line between the organic phase and the aqueous phase forms a unique spatio-temporal pattern characterized as a dynamic labyrinth. Motion of the contact line is controlled by diffusion processes. We propose a theoretical model to interpret essential aspects of the observed dynamic behavior. PMID:21509663

  4. Cyclic cosmology, conformal symmetry and the metastability of the Higgs

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Steinhardt, Paul J.; Turok, Neil

    2013-10-01

    Recent measurements at the LHC suggest that the current Higgs vacuum could be metastable with a modest barrier (height ( GeV)4) separating it from a ground state with negative vacuum density of order the Planck scale. We note that metastability is problematic for standard bang cosmology but is essential for cyclic cosmology in order to end one cycle, bounce, and begin the next. In this Letter, motivated by the approximate scaling symmetry of the standard model of particle physics and the primordial large-scale structure of the universe, we use our recent formulation of the Weyl-invariant version of the standard model coupled to gravity to track the evolution of the Higgs in a regularly bouncing cosmology. We find a band of solutions in which the Higgs field escapes from the metastable phase during each big crunch, passes through the bang into an expanding phase, and returns to the metastable vacuum, cycle after cycle after cycle. We show that, due to the effect of the Higgs, the infinitely cycling universe is geodesically complete, in contrast to inflation.

  5. Method for numerical simulations of metastable states

    SciTech Connect

    Heller, U.M.; Seiberg, N.

    1983-06-15

    We present a numerical simulation of metastable states near a first-order phase transition in the example of a U(1) lattice gauge theory with a generalized action. In order to make measurements in these states possible their decay has to be prevented. We achieve this by using a microcanonical simulation for a finite system. We then obtain the coupling constant (inverse temperature) as a function of the action density. It turns out to be nonmonotonic and hence not uniquely invertible. From it we derive the effective potential for the action density. This effective potential is not always convex, a property that seems to be in contradiction with the standard lore about its convexity. This apparent ''paradox'' is resolved in a discussion about different definitions of the effective potential.

  6. Metastable cosmic strings in realistic models

    SciTech Connect

    Holman, R.; Hsu, S.; Vachaspati, T.; Watkins, R. |

    1992-11-01

    The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2){sub L} {times} SU(2) {sub R} {times} U(1){sub B-L} are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed.

  7. Metastable cosmic strings in realistic models

    SciTech Connect

    Holman, R. . Dept. of Physics); Hsu, S. . Lyman Lab. of Physics); Vachaspati, T. . Dept. of Physics and Astronomy); Watkins, R. Fermi National Accelerator Lab., Batavia, IL )

    1992-01-01

    The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2)[sub L] [times] SU(2) [sub R] [times] U(1)[sub B-L] are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed.

  8. Metastable orientational order of colloidal discoids

    PubMed Central

    Hsiao, Lilian C.; Schultz, Benjamin A.; Glaser, Jens; Engel, Michael; Szakasits, Megan E.; Glotzer, Sharon C.; Solomon, Michael J.

    2015-01-01

    The interplay between phase separation and kinetic arrest is important in supramolecular self-assembly, but their effects on emergent orientational order are not well understood when anisotropic building blocks are used. Contrary to the typical progression from disorder to order in isotropic systems, here we report that colloidal oblate discoids initially self-assemble into short, metastable strands with orientational order—regardless of the final structure. The model discoids are suspended in a refractive index and density-matched solvent. Then, we use confocal microscopy experiments and Monte Carlo simulations spanning a broad range of volume fractions and attraction strengths to show that disordered clusters form near coexistence boundaries, whereas oriented strands persist with strong attractions. We rationalize this unusual observation in light of the interaction anisotropy imparted by the discoids. These findings may guide self-assembly for anisotropic systems in which orientational order is desired, such as when tailored mechanical properties are sought. PMID:26443082

  9. Nonequilibrium quantum Landauer principle.

    PubMed

    Goold, John; Paternostro, Mauro; Modi, Kavan

    2015-02-13

    Using the operational framework of completely positive, trace preserving operations and thermodynamic fluctuation relations, we derive a lower bound for the heat exchange in a Landauer erasure process on a quantum system. Our bound comes from a nonphenomenological derivation of the Landauer principle which holds for generic nonequilibrium dynamics. Furthermore, the bound depends on the nonunitality of dynamics, giving it a physical significance that differs from other derivations. We apply our framework to the model of a spin-1/2 system coupled to an interacting spin chain at finite temperature. PMID:25723198

  10. Nonequilibrium effects in Isoscaling

    SciTech Connect

    Dorso, C. O.; Lopez, J. A.

    2007-02-12

    In this work we study within a simple model different properties of the system that allow us to understand the properties of the isoscaling observable. We first show that isoscaling is a general property of fragmenting systems. We show this by using a simple generalized percolation model. We show that the usual isoscaling property can be obtained in the case of bond percolation in bichromatic lattices with any regular topology. In this case the probabilities of each color (isospin) are independent. We then explore the effect of introducing 'non-equilibrium' effects.

  11. New non-equilibrium matrix imbibition equation for double porosity model

    NASA Astrophysics Data System (ADS)

    Konyukhov, Andrey; Pankratov, Leonid

    2016-07-01

    The paper deals with the global Kondaurov double porosity model describing a non-equilibrium two-phase immiscible flow in fractured-porous reservoirs when non-equilibrium phenomena occur in the matrix blocks, only. In a mathematically rigorous way, we show that the homogenized model can be represented by usual equations of two-phase incompressible immiscible flow, except for the addition of two source terms calculated by a solution to a local problem being a boundary value problem for a non-equilibrium imbibition equation given in terms of the real saturation and a non-equilibrium parameter.

  12. Nucleation of metastable aragonite CaCO3 in seawater

    DOE PAGESBeta

    Sun, Wenhao; Jayaraman, Saivenkataraman; Chen, Wei; Persson, Kristin A.; Ceder, Gerbrand

    2015-03-04

    Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters ofmore » surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing “calcite–aragonite problem”––the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite––which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg–Ca ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution.« less

  13. Nucleation of metastable aragonite CaCO3 in seawater

    PubMed Central

    Sun, Wenhao; Jayaraman, Saivenkataraman; Chen, Wei; Persson, Kristin A.; Ceder, Gerbrand

    2015-01-01

    Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters of surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing “calcite–aragonite problem”––the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite––which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg–Ca ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution. PMID:25739963

  14. Extinction of metastable stochastic populations.

    PubMed

    Assaf, Michael; Meerson, Baruch

    2010-02-01

    We investigate the phenomenon of extinction of a long-lived self-regulating stochastic population, caused by intrinsic (demographic) noise. Extinction typically occurs via one of two scenarios depending on whether the absorbing state n=0 is a repelling (scenario A) or attracting (scenario B) point of the deterministic rate equation. In scenario A the metastable stochastic population resides in the vicinity of an attracting fixed point next to the repelling point n=0 . In scenario B there is an intermediate repelling point n=n1 between the attracting point n=0 and another attracting point n=n2 in the vicinity of which the metastable population resides. The crux of the theory is a dissipative variant of WKB (Wentzel-Kramers-Brillouin) approximation which assumes that the typical population size in the metastable state is large. Starting from the master equation, we calculate the quasistationary probability distribution of the population sizes and the (exponentially long) mean time to extinction for each of the two scenarios. When necessary, the WKB approximation is complemented (i) by a recursive solution of the quasistationary master equation at small n and (ii) by the van Kampen system-size expansion, valid near the fixed points of the deterministic rate equation. The theory yields both entropic barriers to extinction and pre-exponential factors, and holds for a general set of multistep processes when detailed balance is broken. The results simplify considerably for single-step processes and near the characteristic bifurcations of scenarios A and B. PMID:20365539

  15. Modelling non-equilibrium secondary organic aerosol formation and evaporation with the aerosol dynamics, gas- and particle-phase chemistry kinetic multilayer model ADCHAM

    SciTech Connect

    Roldin, P.; Eriksson, A. C.; Nordin, E. Z.; Hermansson, E.; Mogensen, Ditte; Rusanen, A.; Boy, Michael; Swietlicki, E.; Svenningsson, Birgitta; Zelenyuk, Alla; Pagels, J.

    2014-08-11

    We have developed the novel Aerosol Dynamics, gas- and particle- phase chemistry model for laboratory CHAMber studies (ADCHAM). The model combines the detailed gas phase Master Chemical Mechanism version 3.2, an aerosol dynamics and particle phase chemistry module (which considers acid catalysed oligomerization, heterogeneous oxidation reactions in the particle phase and non-ideal interactions between organic compounds, water and inorganic ions) and a kinetic multilayer module for diffusion limited transport of compounds between the gas phase, particle surface and particle bulk phase. In this article we describe and use ADCHAM to study: 1) the mass transfer limited uptake of ammonia (NH3) and formation of organic salts between ammonium (NH4+) and carboxylic acids (RCOOH), 2) the slow and almost particle size independent evaporation of α-pinene secondary organic aerosol (SOA) particles, and 3) the influence of chamber wall effects on the observed SOA formation in smog chambers.

  16. Geometrically induced metastability and holography

    SciTech Connect

    Aganagic, Mina; Aganagic, Mina; Beem, Christopher; Seo, Jihye; Vafa, Cumrun

    2006-10-23

    We construct metastable configurations of branes and anti-branes wrapping 2-spheres inside local Calabi-Yau manifolds and study their large N duals. These duals are Calabi-Yau manifolds in which the wrapped 2-spheres have been replaced by 3-spheres with flux through them, and supersymmetry is spontaneously broken. The geometry of the non-supersymmetric vacuum is exactly calculable to all orders of the't Hooft parameter, and to the leading order in 1/N. The computation utilizes the same matrix model techniques that were used in the supersymmetric context. This provides a novel mechanism for breaking supersymmetry in the context of flux compactifications.

  17. Probing Metastability at the LHC

    SciTech Connect

    Clavelli, L.

    2010-02-10

    Current attempts to understand supersymmetry (susy) breaking are focused on the idea that we are not in the ground state of the universe but, instead, in a metastable state that will ultimately decay to an exactly susy ground state. It is interesting to ask how experiments at the Large Hadron Collider (LHC) will shed light on the properties of this future supersymmetric universe. In particular we ask how we can determine whether this final state has the possibility of supporting atoms and molecules in a susy background.

  18. Rate of tunneling nonequilibrium quasiparticles in superconducting qubits

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad H.

    2015-04-01

    In superconducting qubits the lifetime of quantum states cannot be prolonged arbitrarily by decreasing temperature. At low temperature quasiparticles tunneling between the electromagnetic environment and superconducting islands takes the condensate state out of equilibrium due to charge imbalance. We obtain the tunneling rate from a phenomenological model of non-equilibrium, where nonequilibrium quasiparticle tunnelling stimulates a temperature-dependent chemical potential shift in the superconductor. As a result we obtain a non-monotonic behavior for relaxation rate as a function of temperature. Depending on the fabrication parameters for some qubits, the lowest tunneling rate of nonequilibrium quasiparticles can take place only near the onset temperature below which nonequilibrium quasiparticles dominate over equilibrium one. Our theory also indicates that such tunnelings can influence the probability of transitions in qubits through a coupling to the zero-point energy of phase fluctuations.

  19. Statistical physics of shear flow: a non-equilibrium problem

    NASA Astrophysics Data System (ADS)

    Evans, R. M. L.

    2010-09-01

    Complex fluids are easily and reproducibly driven into non-equilibrium steady states by the action of shear flow. The statistics of the microstructure of non-equilibrium fluids is important to the material properties of every complex fluid that flows, e.g. axle grease on a rotating bearing; blood circulating in capillaries; molten plastic flowing into a mould; the non-equilibrium onion phase of amphiphiles used for drug delivery; the list is endless. Such states are as diverse and interesting as equilibrium states, but are not governed by the same statistics as equilibrium materials. I review some recently discovered principles governing the probabilities of various types of molecular re-arrangements taking place within a sheared fluid. As well as providing new foundations for the study of non-equilibrium matter, the principles are applied to some simple models of particles interacting under flow, showing that the theory exhibits physically convincing behaviour.

  20. Metastable growth of pure wurtzite InGaAs microstructures.

    PubMed

    Ng, Kar Wei; Ko, Wai Son; Lu, Fanglu; Chang-Hasnain, Connie J

    2014-08-13

    III-V compound semiconductors can exist in two major crystal phases, namely, zincblende (ZB) and wurtzite (WZ). While ZB is thermodynamically favorable in conventional III-V epitaxy, the pure WZ phase can be stable in nanowires with diameters smaller than certain critical values. However, thin nanowires are more vulnerable to surface recombination, and this can ultimately limit their performances as practical devices. In this work, we study a metastable growth mechanism that can yield purely WZ-phased InGaAs microstructures on silicon. InGaAs nucleates as sharp nanoneedles and expand along both axial and radial directions simultaneously in a core-shell fashion. While the base can scale from tens of nanometers to over a micron, the tip can remain sharp over the entire growth. The sharpness maintains a high local surface-to-volume ratio, favoring hexagonal lattice to grow axially. These unique features lead to the formation of microsized pure WZ InGaAs structures on silicon. To verify that the WZ microstructures are truly metastable, we demonstrate, for the first time, the in situ transformation from WZ to the energy-favorable ZB phase inside a transmission electron microscope. This unconventional core-shell growth mechanism can potentially be applied to other III-V materials systems, enabling the effective utilization of the extraordinary properties of the metastable wurtzite crystals. PMID:24988280

  1. Nonequilibrium quantum dynamics in optomechanical systems

    NASA Astrophysics Data System (ADS)

    Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund

    2016-05-01

    The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.

  2. INTRODUCTION: Nonequilibrium Processes in Plasmas

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran; Marić, Dragana; Malović, Gordana

    2009-07-01

    lead to new fundamental understanding is illustrated well in the paper by Uwe Czarnetzki which describes a new method for separate control of flux and energy of ions reaching the surface of electrodes. Deborah O'Connell from Belfast has shown space and phase resolved mode transitions in rf inductively coupled plasmas obtained by optical emission measurements. At the same time an application of a similar rf discharge for the treatment of paper was presented by Irina Filatova from Belarus. Many applications of non-equilibrium plasmas depend on the development of plasma sources operating at atmospheric pressure and one such source that promises to be prominent in medicine is described by Timo Gans. In a similar way, practical considerations require studies of the injection of liquids into plasmas and progress on the development of one such source is described by Mathew Goeckner and his colleagues from Dallas. From the Institute Jožef Štefan in Slovenia and the group of Miran Mozetič we have a detailed review of their work on functionalization of organic materials by oxygen plasmas. Even higher density plasmas, where the collective phenomena dominate, show different degrees of non-equilibrium and one example presented here by Zoltan Donko deals with two dimensional plasma dust crystals and liquids, while the lecture by Jovo Vranješ from Belgium deals with the treatment of collisions in multicomponent plasmas. Finally we have papers on the transport of pollutants. The association of the two fields started initially through joint interest in some of the methods for removal of NOx and SOx, from electrostatic precipitation of industrial dust to dielectric barrier discharges. The joint work continued on the application of flowing afterglow plasma combined with a hollow cathode discharge in order to achieve a proton transfer mass analysis of organic volatile compounds and also on the possibilities of applying similar methods for solving transport equations. In this volume we

  3. Desensitization and recovery of metastable intermolecular composites

    DOEpatents

    Busse, James R.; Dye, Robert C.; Foley, Timothy J.; Higa, Kelvin T.; Jorgensen, Betty S.; Sanders, Victor E.; Son, Steven F.

    2010-09-07

    A method to substantially desensitize a metastable intermolecular composite material to electrostatic discharge and friction comprising mixing the composite material with an organic diluent and removing enough organic diluent from the mixture to form a mixture with a substantially putty-like consistency, as well as a concomitant method of recovering the metastable intermolecular composite material.

  4. Photoinduced phase transitions in narrow-gap Mott insulators: The case of VO2

    NASA Astrophysics Data System (ADS)

    He, Zhuoran; Millis, Andrew J.

    2016-03-01

    We study the nonequilibrium dynamics of photoexcited electrons in the narrow-gap Mott insulator VO2. The initial stages of relaxation are treated using a quantum Boltzmann equation methodology, which reveals a rapid (˜femtosecond time scale) relaxation to a pseudothermal state characterized by a few parameters that vary slowly in time. The long-time limit is then studied by a Hartree-Fock methodology, which reveals the possibility of nonequilibrium excitation to a new metastable M1 metal phase that is qualitatively consistent with a recent experiment. The general physical picture of photoexcitation driving a correlated electron system to a new state that is not accessible in equilibrium may be applicable in similar materials.

  5. Non-equilibrium DMFT - Polaritonics

    NASA Astrophysics Data System (ADS)

    Lubatsch, Andreas; Frank, Regine

    Non-equilibrium physics recently really becomes important with the progress of ultrafast laser sciences. However in our understanding there is still a gap between equilibrium physics and the non-equilibrium, even though numerical methods have been advanced in recent years. We compare in this talk novel results at hand with equilibrium physics. The comparison will show that especially theoretical efforts are needed to explain many - so far - unresolved problems and to predict novel research on the basis of ab initio computing. We specifically discuss several non-equilibrium extensions of DMFT, numerical methods as well as semi-analytical solvers.

  6. Radiative interactions in nonequilibrium flows

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Chandrasekhar, R.

    1992-01-01

    The influence of vibrational and chemical nonequilibrium upon infrared radiative energy transfer in nonisothermal gases is investigated. Essential information is provided on rate equations, relaxation times, transfer equations, band absorption, and radiative flux equations. The methodology developed is applied to three specific cases. These are, absorbing-emitting species between isothermal parallel plates, radiating gases in the earth's atmosphere, and supersonic flow of premixed hydrogen and air in an expanding nozzle. The results obtained for different cases reveal that the extent of radiative interactions is reduced significantly under nonequilibrium conditions. The method developed can be easily extended to investigate radiative interactions in complex nonequilibrium flows.

  7. Metastable Tight Knots in DNA

    NASA Astrophysics Data System (ADS)

    Dai, Liang; Renner, C. Benjamin; Doyle, Patrick

    2015-03-01

    Knotted structures can spontaneously occur in polymers such as DNA and proteins, and the formation of knots affects biological functions, mechanical strength and rheological properties. In this work, we calculate the equilibrium size distribution of trefoil knots in linear DNA using off-lattice simulations. We observe metastable knots on DNA, as predicted by Grosberg and Rabin. Furthermore, we extend their theory to incorporate the finite width of chains and show an agreement between our simulations and the modified theory for real chains. Our results suggest localized knots spontaneously occur in long DNA and the contour length in the knot ranges from 600 to 1800 nm. This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's research program in BioSystems and Micromechanics, the National Science Foundation (Grant No. 1335938).

  8. Atom lithography with metastable helium

    SciTech Connect

    Allred, Claire S.; Reeves, Jason; Corder, Christopher; Metcalf, Harold

    2010-02-15

    A bright metastable helium (He*) beam is collimated sequentially with the bichromatic force and three optical molasses velocity compression stages. Each He* atom in the beam has 20 eV of internal energy that can destroy a molecular resist assembled on a gold coated silicon wafer. Patterns in the resist are imprinted onto the gold layer with a standard selective etch. Patterning of the wafer with the He{sup *} was demonstrated with two methods. First, a mesh was used to protect parts of the wafer making an array of grid lines. Second, a standing wave of {lambda}=1083 nm light was used to channel and focus the He* atoms into lines separated by {lambda}/2. The patterns were measured with an atomic force microscope establishing an edge resolution of 80 nm. Our results are reliable and repeatable.

  9. Microcanonical analysis of a finite-size nonequilibrium system

    NASA Astrophysics Data System (ADS)

    Lee, Julian

    2016-05-01

    Microcanonical analysis is a powerful method that can be used to generalize the concept of phase transitions to finite-size systems. However, microcanonical analysis has only been applied to equilibrium systems. I show that it is possible to conduct the microcanonical analysis of a finite-size nonequilibrium system by generalizing the concept of microcanonical entropy. A one-dimensional asymmetric diffusion process is studied as an example for which such a generalized entropy can be explicitly found, and the microcanonical method is used to define a generalized phase transition for the finite-size nonequilibrium system.

  10. Persistence of Metastable Vortex Lattice Domains in MgB2 in the Presence of Vortex Motion

    SciTech Connect

    Rastovski, Catherine; Schlesinger, Kimberly; Gannon, William J; Dewhurst, Charles; Debeer-Schmitt, Lisa M; Zhigadlo, Nikolai; Karpinski, Janusz; Eskildsen, Morten

    2013-01-01

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  11. Multistage Zeeman deceleration of metastable neon

    SciTech Connect

    Wiederkehr, Alex W.; Motsch, Michael; Hogan, Stephen D.; Andrist, Markus; Schmutz, Hansjuerg; Lambillotte, Bruno; Agner, Josef A.; Merkt, Frederic

    2011-12-07

    A supersonic beam of metastable neon atoms has been decelerated by exploiting the interaction between the magnetic moment of the atoms and time-dependent inhomogeneous magnetic fields in a multistage Zeeman decelerator. Using 91 deceleration solenoids, the atoms were decelerated from an initial velocity of 580 m/s to final velocities as low as 105 m/s, corresponding to a removal of more than 95% of their initial kinetic energy. The phase-space distribution of the cold, decelerated atoms was characterized by time-of-flight and imaging measurements, from which a temperature of 10 mK was obtained in the moving frame of the decelerated sample. In combination with particle-trajectory simulations, these measurements allowed the phase-space acceptance of the decelerator to be quantified. The degree of isotope separation that can be achieved by multistage Zeeman deceleration was also studied by performing experiments with pulse sequences generated for {sup 20}Ne and {sup 22}Ne.

  12. Multistage Zeeman deceleration of metastable neon.

    PubMed

    Wiederkehr, Alex W; Motsch, Michael; Hogan, Stephen D; Andrist, Markus; Schmutz, Hansjürg; Lambillotte, Bruno; Agner, Josef A; Merkt, Frédéric

    2011-12-01

    A supersonic beam of metastable neon atoms has been decelerated by exploiting the interaction between the magnetic moment of the atoms and time-dependent inhomogeneous magnetic fields in a multistage Zeeman decelerator. Using 91 deceleration solenoids, the atoms were decelerated from an initial velocity of 580 m/s to final velocities as low as 105 m/s, corresponding to a removal of more than 95% of their initial kinetic energy. The phase-space distribution of the cold, decelerated atoms was characterized by time-of-flight and imaging measurements, from which a temperature of 10 mK was obtained in the moving frame of the decelerated sample. In combination with particle-trajectory simulations, these measurements allowed the phase-space acceptance of the decelerator to be quantified. The degree of isotope separation that can be achieved by multistage Zeeman deceleration was also studied by performing experiments with pulse sequences generated for (20)Ne and (22)Ne. PMID:22149785

  13. Modeling of Non-equilibrium Processes in Oil Trunk Pipeline Using Godunov Type Method

    NASA Astrophysics Data System (ADS)

    Sumskoi, S. I.; Sverchkov, A. M.

    The Article presents the numerical method of solving the system of one-dimensional non-stationary equations describing oil movement in the oil pipeline. The method is aimed at modeling the non-equilibrium and transitional processes in the oil pipelines in the normal and emergency modes. This new developed method can be applied for relaxation non-equilibrium flow case, that can't be modeling using another methods. Also this method is aimed at modeling the non-equilibrium and transitional processes in the liquefied hydrocarbon pipelines in the normal and emergency modes. Phase non-equilibrium flow is considered for boiling liquids transporting pipeline.

  14. Metastable structures in drop tube processed niobium based alloys

    NASA Astrophysics Data System (ADS)

    Evans, N. D.; Bayuzick, R. J.; Kenik, E. A.

    Analytical electron microscopy has been employed to reveal metastable structures in near eutectic niobium-germanium alloys which were processed in a 100 meter drop tube. Drop masses were generally 300 to 400-mg, with undercooling as much as 0.14-Tm prior to recalescence. Specimens which were slightly hypoeutectic and undercooled 0.10 below the liquidus prior to recalescence contain β cells which grew with solute rejection, and an intercellular metastable α + Nb5Ge3 eutectic. When deep undercooling was followed by Rapid Solidification Processing (RSP) via splatting onto a copper block, cellular β formed with solute entrapment, though the high cooling rate of RSP did not prevent the formation of Nb5Ge3 precipitates from the Ge enriched β. In one specimen, an amorphous Nb-Ge phase has been identified.

  15. Modeling, Measurements, and Fundamental Database Development for Nonequilibrium Hypersonic Aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Bose, Deepak

    2012-01-01

    The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above

  16. Metastable supersymmetry breaking vacua from conformal dynamics

    SciTech Connect

    Omura, Yuji

    2008-11-23

    We study the scenario that conformal dynamics leads to metastable supersymmetry breaking vacua. At a high energy scale, the superpotential is not R-symmetric, and has a supersymmetric minimum. However, conformal dynamics suppresses several operators along renormalization group flow toward the infrared fixed point. Then we can find an approximately R-symmetric superpotential, which has a metastable supersymmetry breaking vacuum, and the supersymmetric vacuum moves far away from the metastable supersymmetry breaking vacuum. We show a 4D simple model. Furthermore, we can construct 5D models with the same behavior, because of the AdS/CFT dual.

  17. Detection of sputtered metastable atoms by autoionization

    SciTech Connect

    Wucher, A.; Berthold, W.; Oechsner, H.; Franzreb, K.

    1994-03-01

    We report on a scheme for the detection of sputter-generated metastable atoms that is based on the resonant excitation of an autoionizing state by single-photon absorption from a tunable laser. Using this technique, sputtered silver atoms ejected in the metastable 4{ital d}{sup 9}5{ital s}{sup 2}{ital D}{sub 5/2} state with an excitation energy of 3.75 eV have been detected. This represents the highest excitation energy of sputtered metastable atoms observed so far.

  18. Metastable configurations of small-world networks.

    PubMed

    Heylen, R; Skantzos, N S; Blanco, J Busquets; Bollé, D

    2006-01-01

    We calculate the number of metastable configurations of Ising small-world networks that are constructed upon superimposing sparse Poisson random graphs onto a one-dimensional chain. Our solution is based on replicated transfer-matrix techniques. We examine the denegeracy of the ground state and find a jump in the entropy of metastable configurations exactly at the crossover between the small-world and the Poisson random graph structures. We also examine the difference in entropy between metastable and all possible configurations, for both ferromagnetic and bond-disordered long-range couplings. PMID:16486247

  19. Metastable configurations of small-world networks

    NASA Astrophysics Data System (ADS)

    Heylen, R.; Skantzos, N. S.; Blanco, J. Busquets; Bollé, D.

    2006-01-01

    We calculate the number of metastable configurations of Ising small-world networks that are constructed upon superimposing sparse Poisson random graphs onto a one-dimensional chain. Our solution is based on replicated transfer-matrix techniques. We examine the denegeracy of the ground state and find a jump in the entropy of metastable configurations exactly at the crossover between the small-world and the Poisson random graph structures. We also examine the difference in entropy between metastable and all possible configurations, for both ferromagnetic and bond-disordered long-range couplings.

  20. 3.6 AND 4.5 {mu}m PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b

    SciTech Connect

    Knutson, Heather A.; Lewis, Nikole; Showman, Adam P.; Fortney, Jonathan J.; Laughlin, Gregory; Burrows, Adam; Cowan, Nicolas B.; Agol, Eric; Aigrain, Suzanne; Charbonneau, David; Desert, Jean-Michel; Deming, Drake; Henry, Gregory W.; Langton, Jonathan

    2012-07-20

    We present new, full-orbit observations of the infrared phase variations of the canonical hot Jupiter HD 189733b obtained in the 3.6 and 4.5 {mu}m bands using the Spitzer Space Telescope. When combined with previous phase curve observations at 8.0 and 24 {mu}m, these data allow us to characterize the exoplanet's emission spectrum as a function of planetary longitude and to search for local variations in its vertical thermal profile and atmospheric composition. We utilize an improved method for removing the effects of intrapixel sensitivity variations and robustly extracting phase curve signals from these data, and we calculate our best-fit parameters and uncertainties using a wavelet-based Markov Chain Monte Carlo analysis that accounts for the presence of time-correlated noise in our data. We measure a phase curve amplitude of 0.1242% {+-} 0.0061% in the 3.6 {mu}m band and 0.0982% {+-} 0.0089% in the 4.5 {mu}m band, corresponding to brightness temperature contrasts of 503 {+-} 21 K and 264 {+-} 24 K, respectively. We find that the times of minimum and maximum flux occur several hours earlier than predicted for an atmosphere in radiative equilibrium, consistent with the eastward advection of gas by an equatorial super-rotating jet. The locations of the flux minima in our new data differ from our previous observations at 8 {mu}m, and we present new evidence indicating that the flux minimum observed in the 8 {mu}m is likely caused by an overshooting effect in the 8 {mu}m array. We obtain improved estimates for HD 189733b's dayside planet-star flux ratio of 0.1466% {+-} 0.0040% in the 3.6 {mu}m band and 0.1787% {+-} 0.0038% in the 4.5 {mu}m band, corresponding to brightness temperatures of 1328 {+-} 11 K and 1192 {+-} 9 K, respectively; these are the most accurate secondary eclipse depths obtained to date for an extrasolar planet. We compare our new dayside and nightside spectra for HD 189733b to the predictions of one-dimensional radiative transfer models from

  1. The director and molecular dynamics of the field-induced alignment of a Gay-Berne nematic phase: An isothermal-isobaric nonequilibrium molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Luckhurst, Geoffrey R.; Satoh, Katsuhiko

    2010-05-01

    Isothermal-isobaric molecular dynamics simulations have been performed for the generic Gay-Berne (GB) mesogen, GB(4.4, 20.0, 1, 1), to investigate director and molecular rotational motion during the field-induced alignment of a nematic. The alignment process for the director is discussed within the context of a hydrodynamic analysis based on the Ericksen-Leslie theory and this is found to predict the simulated behavior well. The dependence of the relaxation time for the alignment on the field strength is also in good accord with the theory. The rotational viscosity coefficient estimated from the simulation is smaller than that typically observed for real nematics and the possible reasons for this are discussed. However, the simulation results are found to follow not only the theory but also the experiments, at least qualitatively. No significant variation in the local and long-range structure of the nematic phase is found during the field-induced alignment process. In addition, we have explored the molecular dynamics in the nematic phase in the presence of the field using the first- and second-rank time autocorrelation functions. More importantly we are able to show that the director relaxation time is longer than that for molecular rotation. It is also possible to use the two orientational correlation times to explore the relationship between the rotational viscosity coefficient and the rotational diffusion constant. The diffusion constants determined from the orientational correlation times, based on the short-time expansion of the autocorrelation functions, are found to be significantly different. In consequence it is not possible to test, unambiguously, the relationship between the rotational viscosity coefficient and the rotational diffusion constant. However, it would seem that the second-rank rotational correlation time provides the most reliable route to the rotational viscosity coefficient.

  2. Phase selection during crystallization of undercooled liquid eutectic lead-tin alloys

    NASA Technical Reports Server (NTRS)

    Fecht, H. J.

    1991-01-01

    During rapid solidification substantial amounts of undercooling are in general required for formation of metastable phases. Crystallization at varying levels of undercooling and melting of metastable phases were studied during slow cooling and heating of emulsified PB-Sn alloys. Besides the experimental demonstration of the reversibility of metastable phase equilibra, two different principal solidification paths have been identified and compared with the established metastable phase diagram and predictions from classical nucleation theory. The results suggest that the most probable solidification path is described by the 'step rule' resulting in the formation of metastable phases at low undercooling, whereas the stable eutectic phase mixture crystallizes without metastable phase formation at high undercooling.

  3. Metastability of Northern Hemisphere Teleconnection modes

    NASA Astrophysics Data System (ADS)

    Risbey, James; O'Kane, Terence; Monselesan, Didier; Franzke, Christian; Horenko, Ilia

    2014-05-01

    This work applies the FEM-BV-VARX method to study of the large scale modes of variability in the Northern Hemisphere as manifest in 500hPa geopotential height fields. The FEM-BV-VARX method identifies metastable states of the system. The results for regional domains confirm that the teleconnection modes referred to as the NAO in the Atlantic domain, PNA in the Pacific domain, and Scandanavian blocking in the Eurasian domain, all exhibit metastability. For the full Northern Hemisphere domain the metastable state combines the AO and a midlatitude circumglobal wavetrain pattern. These results are shown in a set of reanalysis products from NCEP; the 20th century reanalysis, NNR1, and the CFSR coupled reanalysis. The reanalysis products are all able to simulate the structure and temporal switching of regime states. Decadal and multidecadal regimes are clearly apparent in the model affiliation sequence of metastable states and correspond to known transition points for the teleconnection modes.

  4. Vacuum-assisted headspace solid phase microextraction: improved extraction of semivolatiles by non-equilibrium headspace sampling under reduced pressure conditions.

    PubMed

    Psillakis, Elefteria; Yiantzi, Evangelia; Sanchez-Prado, Lucia; Kalogerakis, Nicolas

    2012-09-12

    A new headspace solid-phase microextraction (HSSPME) procedure carried out under vacuum conditions is proposed here where sample volumes commonly used in HSSPME (9 mL) were introduced into pre-evacuated commercially available large sampling chambers (1000 mL) prior to HSSPME sampling. The proposed procedure ensured reproducible conditions for HSSPME and excluded the possibility of analyte losses. A theoretical model was formulated demonstrating for the first time the pressure dependence of HSSPME sampling procedure under non equilibrium conditions. Although reduced pressure conditions during HSSPME sampling are not expected to increase the amount of analytes extracted at equilibrium, they greatly increase extraction rates compared to HSSPME under atmospheric pressure due to the enhancement of evaporation rates in the presence of an air-evacuated headspace. The effect is larger for semivolatiles whose evaporation rates are controlled by mass transfer resistance in the thin gas film adjacent to the sample/headspace interface. Parameters that affect HSSPME extraction were investigated under both vacuum and atmospheric conditions and the experimental data obtained were used to discuss and verify the theory. The use of an excessively large headspace volume was also considered. The applicability of Vac-HSSPME was assessed using chlorophenols as model compounds yielding linearities better than 0.9915 and detection limits in the low-ppt level. The repeatability was found to vary from 3.1 to 8.6%. PMID:22884204

  5. Detecting vapour bubbles in simulations of metastable water

    SciTech Connect

    González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal E-mail: cvaleriani@quim.ucm.es; Menzl, Georg; Geiger, Philipp; Dellago, Christoph E-mail: cvaleriani@quim.ucm.es; Aragones, Juan L.; Caupin, Frederic

    2014-11-14

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

  6. Detecting vapour bubbles in simulations of metastable water

    NASA Astrophysics Data System (ADS)

    González, Miguel A.; Menzl, Georg; Aragones, Juan L.; Geiger, Philipp; Caupin, Frederic; Abascal, Jose L. F.; Dellago, Christoph; Valeriani, Chantal

    2014-11-01

    The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguish between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.

  7. Anomalous metastability in a temperature-driven transition

    NASA Astrophysics Data System (ADS)

    Ibáñez Berganza, M.; Coletti, P.; Petri, A.

    2014-06-01

    The Langer theory of metastability provides a description of the lifetime and properties of the metastable phase of the Ising model field-driven transition, describing the magnetic-field-driven transition in ferromagnets and the chemical-potential-driven transition of fluids. An immediate further step is to apply it to the study of a transition driven by the temperature, as the one exhibited by the two-dimensional Potts model. For this model, a study based on the analytical continuation of the free energy (Meunier J. L. and Morel A., Eur. Phys. J. B, 13 (2000) 341) predicts the anomalous vanishing of the metastable temperature range in the large-system-size limit, an issue that has been controversial since the eighties. By a GPU algorithm we compare the Monte Carlo dynamics with the theory. For temperatures close to the transition we obtain agreement and characterize the dependence on the system size, which is essentially different with respect to the Ising case. For smaller temperatures, we observe the onset of stationary states with non-Boltzmann statistics, not predicted by the theory.

  8. Metastable γ-FeNi nanostructures with tunable Curie temperature

    NASA Astrophysics Data System (ADS)

    Miller, K. J.; Sofman, M.; McNerny, K.; McHenry, M. E.

    2010-05-01

    We report on new metastable γ-FeNi nanoparticles produced by mechanical alloying of melt-spun ribbon using a high energy ball mill followed by a solution annealing treatment in the γ-phase region and water quenching in of the face-centered cubic γ-phase. In the Fe-Ni phase diagram there is a strong compositional dependence of the Curie temperature, Tc, on composition in the γ-phase. This work studies the stabilization of γ-phase nanostructures and the compositional tuning of Tc in Fe-Ni alloys which can have important ramifications on the self-regulated heating of magnetic nanoparticles in temperature ranges of interest for applications in polymer curing and cancer thermotherapies. To date we have achieved Curie temperatures as low as 120 °C by this method.

  9. Control of switching between metastable superconducting states in δ-MoN nanowires

    NASA Astrophysics Data System (ADS)

    Buh, Jože; Kabanov, Viktor; Baranov, Vladimir; Mrzel, Aleš; Kovič, Andrej; Mihailovic, Dragan

    2015-12-01

    The superconducting state in one-dimensional nanosystems is very delicate. While fluctuations of the phase of the superconducting wave function lead to the spontaneous decay of persistent supercurrents in thin superconducting wires and nanocircuits, discrete phase-slip fluctuations can also lead to more exotic phenomena, such as the appearance of metastable superconducting states in current-bearing wires. Here we show that switching between different metastable superconducting states in δ-MoN nanowires can be very effectively manipulated by introducing small amplitude electrical noise. Furthermore, we show that deterministic switching between metastable superconducting states with different numbers of phase-slip centres can be achieved in both directions with small electrical current pulse perturbations of appropriate polarity. The observed current-controlled bi-stability is in remarkable agreement with theoretically predicted trajectories of the system switching between different limit cycle solutions of a model one-dimensional superconductor.

  10. Control of switching between metastable superconducting states in δ-MoN nanowires

    PubMed Central

    Buh, Jože; Kabanov, Viktor; Baranov, Vladimir; Mrzel, Aleš; Kovič, Andrej; Mihailovic, Dragan

    2015-01-01

    The superconducting state in one-dimensional nanosystems is very delicate. While fluctuations of the phase of the superconducting wave function lead to the spontaneous decay of persistent supercurrents in thin superconducting wires and nanocircuits, discrete phase-slip fluctuations can also lead to more exotic phenomena, such as the appearance of metastable superconducting states in current-bearing wires. Here we show that switching between different metastable superconducting states in δ-MoN nanowires can be very effectively manipulated by introducing small amplitude electrical noise. Furthermore, we show that deterministic switching between metastable superconducting states with different numbers of phase-slip centres can be achieved in both directions with small electrical current pulse perturbations of appropriate polarity. The observed current-controlled bi-stability is in remarkable agreement with theoretically predicted trajectories of the system switching between different limit cycle solutions of a model one-dimensional superconductor. PMID:26687762

  11. Carbon vaporization into a nonequilibrium, stagnation-point boundary layer

    NASA Technical Reports Server (NTRS)

    Suzuki, T.

    1978-01-01

    The heat transfer to the stagnation point of an ablating carbonaceous heat shield, where both the gas-phase boundary layer and the heterogeneous surface reactions are not in chemical equilibrium, is examined. Specifically, the nonequilibrium changes in the mass fraction profiles of carbon species calculated for frozen flow are studied. A set of equations describing the steady-state, nonequilibrium laminar boundary layer in the axisymmetric stagnation region, over an ablating graphite surface, is solved, with allowance for the effects of finite rate of carbon vaporization.

  12. Ergodicity, mixing, and time reversibility for atomistic nonequilibrium steady states

    SciTech Connect

    Hoover, W.G.; Kum, O.

    1997-11-01

    Ergodic mixing is prerequisite to any statistical-mechanical calculation of properties derived from atomistic dynamical simulations. Thus the time-reversible thermostats and ergostats used in simulating Gibbsian equilibrium dynamics or nonequilibrium steady-state dynamics should impose ergodicity and mixing. Though it is hard to visualize many-dimensional phase-space distributions, recent developments provide several practical numerical approaches to the problem of ergodic mixing. Here we apply three of these approaches to a useful nonequilibrium test problem, an oscillator in a temperature gradient. {copyright} {ital 1997} {ital The American Physical Society}

  13. Detailed balance, nonequilibrium states, and dissipation in symbolic sequences

    NASA Astrophysics Data System (ADS)

    Nicolis, G.; Nicolis, C.

    2016-05-01

    Symbolic sequences arising from the coarse graining of deterministic dynamical systems continuous in phase space are considered. The extent to which signatures of the time irreversibility and of the nonequilibrium constraints at the level of the original system, such as fluxes or dissipation, can be identified at the coarse-grained level is analyzed. The roles of the partition, of the time window, and of time averaging in distinguishing in a clear-cut way the equilibrium versus nonequilibrium character of the sequence are brought out.

  14. Metastable NAT in Ice-Clouds

    NASA Astrophysics Data System (ADS)

    Weiss, Fabian; Kubel, Frank; Gálvez, Óscar; Hoelzel, Markus; Parker, Stewart F.; Iannarelli, Riccardo; Rossi, Michel J.; Grothe, Hinrich

    2015-04-01

    Polar Stratospheric Clouds and Cirrus Clouds contain, besides pure water ice, a rather large fraction of various hydrates. These are very important for the formation of the cloud, which is a yet not well understood process. We recently solved the structure of a metastable NAT phase (alpha-NAT), we believe to not only be present, but playing a major role in the formation of clouds. On the basis of previous work on this phase by Grothe et al. [1], we enhanced the production of alpha-NAT to the point, where we could produce enough sample to do neutron diffraction. This enabled us to solve the structure. Our quantum mechanical calculations, using this newly found structure, show a large affinity towards water-ice. With this in mind, we interlaced our results with the experiments of R. Iannarelli [2] to derive a new 3-step NAT-formation mechanism in ice-clouds, which could explain some of the observed kinetics better than the mechanism postulated in Zondlo et al. [3]. 1. Grothe, H., Tizek, H., Waller, D. & Stokes, D. The crystallization kinetics and morphology of nitric acid trihydrate. Phys. Chem. Chem. Phys., 8, 2232-2239 (2006) 2. Iannarelli, R. Multidiagnostic Observations on HCl and HNO3 Hydrate Films in the Temperature Range 170-205K: A Kinetic Study. PhD Thesis 21791, ETH Zürich, (2013). 3. Zondlo, M.A., Hudson, P.K., Prenni A.J. & Tolbert, M.A. Chemistry and microphysics of polar stratospheric clouds and Cirrus clouds. Ann. Rev. Phys. Chem., 51, 473-499 (2000).

  15. On Typicality in Nonequilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto

    2016-06-01

    From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because "almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, "almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.

  16. On Typicality in Nonequilibrium Steady States

    NASA Astrophysics Data System (ADS)

    Evans, Denis J.; Williams, Stephen R.; Searles, Debra J.; Rondoni, Lamberto

    2016-08-01

    From the statistical mechanical viewpoint, relaxation of macroscopic systems and response theory rest on a notion of typicality, according to which the behavior of single macroscopic objects is given by appropriate ensembles: ensemble averages of observable quantities represent the measurements performed on single objects, because " almost all" objects share the same fate. In the case of non-dissipative dynamics and relaxation toward equilibrium states, " almost all" is referred to invariant probability distributions that are absolutely continuous with respect to the Lebesgue measure. In other words, the collection of initial micro-states (single systems) that do not follow the ensemble is supposed to constitute a set of vanishing, phase space volume. This approach is problematic in the case of dissipative dynamics and relaxation to nonequilibrium steady states, because the relevant invariant distributions attribute probability 1 to sets of zero volume, while evolution commonly begins in equilibrium states, i.e., in sets of full phase space volume. We consider the relaxation of classical, thermostatted particle systems to nonequilibrium steady states. We show that the dynamical condition known as Ω T-mixing is necessary and sufficient for relaxation of ensemble averages to steady state values. Moreover, we find that the condition known as weak T-mixing applied to smooth observables is sufficient for ensemble relaxation to be independent of the initial ensemble. Lastly, we show that weak T-mixing provides a notion of typicality for dissipative dynamics that is based on the (non-invariant) Lebesgue measure, and that we call physical ergodicity.

  17. Nonequilibrium enhancement of Cooper pairing in cold fermion systems

    SciTech Connect

    Robertson, Andrew; Galitski, Victor M.

    2009-12-15

    Nonequilibrium stimulation of superfluidity in trapped Fermi gases is discussed by analogy to the work of Eliashberg [Nonequilibrium Superconductivity, edited by D. N. Langenberg and A. I. Larkin (North-Holland, New York, 1986)] on the microwave enhancement of superconductivity. Optical excitation of the fermions balanced by heat loss due to thermal contact with a boson bath and/or evaporative cooling enables stationary nonequilibrium states to exist. Such a state manifests as a shift of the quasiparticle spectrum to higher energies and this effectively raises the pairing transition temperature. As an illustration, we calculate the effective enhancement of Cooper pairing and superfluidity in both the normal and superfluid phases for a mixture of {sup 87}Rb and {sup 6}Li in the limit of small departure from equilibrium. It is argued that in experiment the desirable effect is not limited to such small perturbations and the effective enhancement of the pairing temperature may be quite large.

  18. Metastability in lipid based particles exhibits temporally deterministic and controllable behavior

    NASA Astrophysics Data System (ADS)

    Jacoby, Guy; Cohen, Keren; Barkan, Kobi; Talmon, Yeshayahu; Peer, Dan; Beck, Roy

    2015-03-01

    The metastable-to-stable phase-transition is commonly observed in many fields of science, as an uncontrolled independent process, highly sensitive to microscopic fluctuations. In particular, self-assembled lipid suspensions exhibit phase-transitions, where the underlying driving mechanisms and dynamics are not well understood. Here we describe a study of the phase-transition dynamics of lipid-based particles, consisting of mixtures of dilauroylphosphatidylethanolamine (DLPE) and dilauroylphosphatidylglycerol (DLPG), exhibiting a metastable liquid crystalline-to-stable crystalline phase transition upon cooling from 60°C to 37°C. Surprisingly, unlike classically described metastable-to-stable phase transitions, the manner in which recrystallization is delayed by tens of hours is robust, predetermined and controllable. Our results show that the delay time can be manipulated by changing lipid stoichiometry, changing solvent salinity, adding an ionophore, or performing consecutive phase-transitions. Moreover, the delay time distribution indicates a deterministic nature. We suggest that the non-stochastic physical mechanism responsible for the delayed recrystallization involves several rate-affecting processes, resulting in a controllable, non-independent metastability. A qualitative model is proposed to describe the structural reorganization during the phase transition.

  19. Metastability in lipid based particles exhibits temporally deterministic and controllable behavior

    PubMed Central

    Jacoby, Guy; Cohen, Keren; Barkan, Kobi; Talmon, Yeshayahu; Peer, Dan; Beck, Roy

    2015-01-01

    The metastable-to-stable phase-transition is commonly observed in many fields of science, as an uncontrolled independent process, highly sensitive to microscopic fluctuations. In particular, self-assembled lipid suspensions exhibit phase-transitions, where the underlying driving mechanisms and dynamics are not well understood. Here we describe a study of the phase-transition dynamics of lipid-based particles, consisting of mixtures of dilauroylphosphatidylethanolamine (DLPE) and dilauroylphosphatidylglycerol (DLPG), exhibiting a metastable liquid crystalline-to-stable crystalline phase transition upon cooling from 60°C to 37°C. Surprisingly, unlike classically described metastable-to-stable phase transitions, the manner in which recrystallization is delayed by tens of hours is robust, predetermined and controllable. Our results show that the delay time can be manipulated by changing lipid stoichiometry, changing solvent salinity, adding an ionophore, or performing consecutive phase-transitions. Moreover, the delay time distribution indicates a deterministic nature. We suggest that the non-stochastic physical mechanism responsible for the delayed recrystallization involves several rate-affecting processes, resulting in a controllable, non-independent metastability. A qualitative model is proposed to describe the structural reorganization during the phase transition. PMID:25820650

  20. Solvent wrapped metastable colloidal crystals: highly mutable colloidal assemblies sensitive to weak external disturbance.

    PubMed

    Yang, Dongpeng; Ye, Siyun; Ge, Jianping

    2013-12-11

    Solvent wrapped "metastable" crystalline colloidal arrays (CCAs) have been prepared by supersaturation induced precipitation and self-assembly of monodisperse particles in polar/nonpolar organic solvents. These metastable CCAs possess ordered structures but with less stability comparing with traditionally fixed colloidal crystal systems. They are stabilized by the balance between long-range attraction and electrostatic repulsion of neighboring like-charged particles. Monitoring the reflection intensity during evaporation suggests that these crystals can exist for several hours at 90 °C and even longer at room temperature. Based on the evolution of particle volume fraction in whole suspension (φ(SiO2)), crystal phase (φ(crystal)), and liquid phase (φ(liquid)), the formation of metastable CCAs can be understood as a microscopic phase separation process, where the homogeneous dispersion will separate into a "crystal phase" with orderly stacked particles and a "liquid phase" with randomly dispersed particles. Further calculation of the volume fraction of crystal phase (V(crystal)/V(total)) and the ratio of particles in crystal phase (f(crystal)) shows that with the increase of designed Φ(SiO2), more particles precipitate to form colloidal crystals with larger sizes but the lattice spacing of the microcrystals remains constant. Unlike fixed or traditional responsive CCAs, these metastable CCAs can reversibly assemble and disassemble with great ease, because little energy is involved or required in this transformation. Therefore, they can sense weak external disturbances, including subtle motion and slight friction or shearing forces. PMID:24266836

  1. Pauli limiting and metastability regions of superconducting graphene and intercalated graphite superconductors

    NASA Astrophysics Data System (ADS)

    Santos, F. D. R.; Marques, A. M.; Dias, R. G.

    2016-01-01

    We present a study of metastability regions in the in-plane magnetic field versus temperature phase diagram of graphene and intercalated graphite superconductors. Due to the vanishing density of states, undoped graphene requires a finite BCS interaction Vc to become superconducting (any finite doping drives this critical value to zero). Above Vc, superconducting graphene under in-plane magnetic field displays the conventional low temperature first-order transition (FOT) to the normal phase, but the width of the associated metastability region (normalized to the zero-temperature critical field) vanishes when doping goes to zero and the interaction approaches Vc. In the case of intercalated graphite superconductors, modeled as two-dimensional two-band superconductors (a graphene-like band and a metallic interlayer band), a critical graphene intraband interaction is required for the appearance of a second metastability region in the superconducting region of the phase diagram. The width of this metastability region also goes to zero as the graphene intraband interaction approaches, from above, its critical value and the metastability region vanishes at the zero-temperature supercooling field associated with the metallic interlayer band. Slightly above this critical value, the low-temperature FOT line bifurcates at an intermediate temperature into a FOT line and a second-order transition line.

  2. Nonequilibrium detonation of composite explosives

    SciTech Connect

    Nichols III, A.L.

    1997-07-01

    The effect of nonequilibrium diffusional flow on detonation velocities in composite explosives is examined. Detonation conditions are derived for complete equilibrium, temperature and pressure equilibrium, and two forms of pressure equilibrium. Partial equilibria are associated with systems which have not had sufficient time for transport to smooth out the gradients between spatially separate regions. The nonequilibrium detonation conditions are implemented in the CHEQ equation of state code. We show that the detonation velocity decreases as the non-chemical degrees of freedom of the explosive are allowed to equilibrate. It is only when the chemical degrees of freedom are allowed to equilibrate that the detonation velocity increases.

  3. Nonequilibrium quantum dynamics and transport: from integrability to many-body localization

    NASA Astrophysics Data System (ADS)

    Vasseur, Romain; Moore, Joel E.

    2016-06-01

    We review the non-equilibrium dynamics of many-body quantum systems after a quantum quench with spatial inhomogeneities, either in the Hamiltonian or in the initial state. We focus on integrable and many-body localized systems that fail to self-thermalize in isolation and for which the standard hydrodynamical picture breaks down. The emphasis is on universal dynamics, non-equilibrium steady states and new dynamical phases of matter, and on phase transitions far from thermal equilibrium. We describe how the infinite number of conservation laws of integrable and many-body localized systems lead to complex non-equilibrium states beyond the traditional dogma of statistical mechanics.

  4. A third measure-metastable state in the dynamics of spontaneous shape change in healthy human's white cells.

    PubMed

    Selz, Karen A

    2011-04-01

    Human polymorphonuclear leucocytes, PMN, are highly motile cells with average 12-15 µm diameters and prominent, loboid nuclei. They are produced in the bone marrow, are essential for host defense, and are the most populous of white blood cell types. PMN also participate in acute and chronic inflammatory processes, in the regulation of the immune response, in angiogenesis, and interact with tumors. To accommodate these varied functions, their behavior is adaptive, but still definable in terms of a set of behavioral states. PMN morphodynamics have generally involved a non-equilibrium stationary, spheroid Idling state that transitions to an activated, ellipsoid translocating state in response to chemical signals. These two behavioral shape-states, spheroid and ellipsoid, are generally recognized as making up the vocabulary of a healthy PMN. A third, "random" state has occasionally been reported as associated with disease states. I have observed this third, Treadmilling state, in PMN from healthy subjects, the cells demonstrating metastable dynamical behaviors known to anticipate phase transitions in mathematical, physical, and biological systems. For this study, human PMN were microscopically imaged and analyzed as single living cells. I used a microscope with a novel high aperture, cardioid annular condenser with better than 100 nanometer resolution of simultaneous, mixed dark field and intrinsic fluorescent images to record shape changes in 189 living PMNs. Relative radial roundness, R(t), served as a computable order parameter. Comparison of R(t) series of 10 cells in the Idling and 10 in the Treadmilling state reveals the robustness of the "random" appearing Treadmilling state, and the emergence of behaviors observed in the neighborhood of global state transitions, including increased correlation length and variance (divergence), sudden jumps, mixed phases, bimodality, power spectral scaling and temporal slowing. Wavelet transformation of an R(t) series of an

  5. A Third Measure-Metastable State in the Dynamics of Spontaneous Shape Change in Healthy Human's White Cells

    PubMed Central

    Selz, Karen A.

    2011-01-01

    Human polymorphonuclear leucocytes, PMN, are highly motile cells with average 12-15 µm diameters and prominent, loboid nuclei. They are produced in the bone marrow, are essential for host defense, and are the most populous of white blood cell types. PMN also participate in acute and chronic inflammatory processes, in the regulation of the immune response, in angiogenesis, and interact with tumors. To accommodate these varied functions, their behavior is adaptive, but still definable in terms of a set of behavioral states. PMN morphodynamics have generally involved a non-equilibrium stationary, spheroid Idling state that transitions to an activated, ellipsoid translocating state in response to chemical signals. These two behavioral shape-states, spheroid and ellipsoid, are generally recognized as making up the vocabulary of a healthy PMN. A third, “random” state has occasionally been reported as associated with disease states. I have observed this third, Treadmilling state, in PMN from healthy subjects, the cells demonstrating metastable dynamical behaviors known to anticipate phase transitions in mathematical, physical, and biological systems. For this study, human PMN were microscopically imaged and analyzed as single living cells. I used a microscope with a novel high aperture, cardioid annular condenser with better than 100 nanometer resolution of simultaneous, mixed dark field and intrinsic fluorescent images to record shape changes in 189 living PMNs. Relative radial roundness, R(t), served as a computable order parameter. Comparison of R(t) series of 10 cells in the Idling and 10 in the Treadmilling state reveals the robustness of the “random” appearing Treadmilling state, and the emergence of behaviors observed in the neighborhood of global state transitions, including increased correlation length and variance (divergence), sudden jumps, mixed phases, bimodality, power spectral scaling and temporal slowing. Wavelet transformation of an R(t) series

  6. Jahn-Teller driven perpendicular magnetocrystalline anisotropy in metastable ruthenium

    NASA Astrophysics Data System (ADS)

    Odkhuu, Dorj; Rhim, S. H.; Park, Noejung; Nakamura, Kohji; Hong, Soon Cheol

    2015-01-01

    A metastable phase of body-centered-tetragonal ruthenium (bct Ru) is identified to exhibit a large perpendicular magnetocrystalline anisotropy (PMCA), whose energy EMCA is as large as 150 μ eV /atom , which is two orders of magnitude greater than those of 3 d magnetic metals. Further investigation over the range of tetragonal distortion suggests that the appearance of magnetism in the bct Ru is governed by the Jahn-Teller spit eg orbitals. Moreover, from band analysis, MCA is mainly determined by an interplay between two eg states, dx2-y2 and dz2 states, as a result of level reversal associated with tetragonal distortion.

  7. Optical Forces on Metastable Helium

    NASA Astrophysics Data System (ADS)

    Corder, Christopher Scott

    Optical forces using lasers allow precise control over the motion of atoms. The bichromatic optical force (BF) is unique in its large magnitude and velocity range, arising from the absorption and stimulated emission processes. These properties were used to transversely collimate a beam of metastable helium (He*) using the 23S - 23P transition. The collimation created a very bright beam of He*, allowing experiments of neutral atom lithography. The He* beam was used to pattern material surfaces using a resist-based lithography technique, where the pattern was determined by either mechanical or optical masks. The optical masks produced features with a separation of half the wavelength of the light used. Patterning was successfully demonstrated with both IR and UV optical masks. The etched pattern resolution was ˜ 100 nm and limited by the material surface. Further experiments were performed studying the ability of the bichromatic force to cool. The finite velocity range of the BF allows estimation of a characteristic cooling time which is independent of the excited state lifetime, only depending on the atomic mass and optical transition energy. Past experiments, including the helium collimation used for neutral atom lithography, have demonstrated that the BF can collimate and longitudinally slow atomic beams, but required long interaction times that included many spontaneous emission (SE) events. The effect of SE can be mitigated, and is predicted to not be necessary for BF cooling. Since the BF cooling time is not related to the excited state lifetime, a transition can be chosen such that the cooling time is shorter than the SE cycle time, allowing direct laser cooling on atoms and molecules that do not have cycling transitions. Experiments using the helium 2 3S-3P transition were chosen because the BF cooling time (285 ns) is on the order of the average SE cycle time (260 ns). Numerical simulations of the experimental system were run predicting compression of the

  8. Jarzynski matrix equality: Calculating the free-energy difference by nonequilibrium simulations with an arbitrary initial distribution

    NASA Astrophysics Data System (ADS)

    Wan, Biao; Yang, Cheng; Wang, Yanting; Zhou, Xin

    2016-04-01

    The Jarzynski equality (JE) method, which relates the work of a nonequilibrium process to the free-energy difference between its initial and final states, provides an efficient way to calculate free energies of thermodynamic systems in simulations or experiments. However, more extensive applications of the JE are hindered by the requirement that the initial state must be in equilibrium. In this work we extend the JE method to be the Jarzynski matrix equality (JME) method, which relates the work of trajectories connecting metastable conformational regions to their local free energies, and thus we can estimate the free energy from the nonequilibrium trajectories starting from an almost arbitrary initial distribution. We then apply the JME to toy models, Lennard-Jones fluids, and polymer chain models, demonstrating its efficiency in free-energy calculations with satisfactory accuracy. The JME extends the applicability of the nonequilibrium methods to complex systems whose initial equilibrium states are difficult to reach.

  9. Jarzynski matrix equality: Calculating the free-energy difference by nonequilibrium simulations with an arbitrary initial distribution.

    PubMed

    Wan, Biao; Yang, Cheng; Wang, Yanting; Zhou, Xin

    2016-04-01

    The Jarzynski equality (JE) method, which relates the work of a nonequilibrium process to the free-energy difference between its initial and final states, provides an efficient way to calculate free energies of thermodynamic systems in simulations or experiments. However, more extensive applications of the JE are hindered by the requirement that the initial state must be in equilibrium. In this work we extend the JE method to be the Jarzynski matrix equality (JME) method, which relates the work of trajectories connecting metastable conformational regions to their local free energies, and thus we can estimate the free energy from the nonequilibrium trajectories starting from an almost arbitrary initial distribution. We then apply the JME to toy models, Lennard-Jones fluids, and polymer chain models, demonstrating its efficiency in free-energy calculations with satisfactory accuracy. The JME extends the applicability of the nonequilibrium methods to complex systems whose initial equilibrium states are difficult to reach. PMID:27176433

  10. Computer simulation of nonequilibrium processes

    SciTech Connect

    Hoover, W.G.; Moran, B.; Holian, B.L.; Posch, H.A.; Bestiale, S.

    1987-01-01

    Recent atomistic simulations of irreversible macroscopic hydrodynamic flows are illustrated. An extension of Nose's reversible atomistic mechanics makes it possible to simulate such non-equilibrium systems with completely reversible equations of motion. The new techniques show that macroscopic irreversibility is a natural inevitable consequence of time-reversible Lyapunov-unstable microscopic equations of motion.

  11. Nonequilibrium diagnostics of plasma thrusters

    SciTech Connect

    Eddy, T.L.; Grandy, J.D.

    1990-01-01

    This paper describes possible techniques by which the state of plasma thruster operation for space propulsion can be determined from a minimum set of experimental data in the laboratory. The kinetic properties of the nonequilibrium plasma plume usually can not be directly related to the observed radiation; hence, appropriate nonequilibrium diagnostic techniques must be employed. A newly developed multithermal, multichemical equilibrium method is discussed that uses measured line emission intensities and N equations to solve for N unknowns. The effect of arbitrarily changing the number of selected N unknowns and how one determines the optimum (minimum) number to be used for a given composition is also presented. The chemical nonequilibrium aspects and the application to molecular species have not yet been published. The important conclusions are that (1) complete thermodynamic systems in nonequilibrium can be described by relatively few variables if appropriate choices and filtering methods are used, (2) a few radiation measurements can yield valid kinetic properties, and (3) the major question in the relations to be used is in the form of the law of mass action. The results are substantiated in the laboratory by additional alternative methods of measurement of some of the kinetic properties. 13 refs., 1 fig.

  12. Non-Equilibrium Transitions of Heliospheric plasma

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; McComas, D. J.

    2011-12-01

    Recent advances in Space Physics theory have established the connection between non-extensive Statistical Mechanics and space plasmas by providing a theoretical basis for the empirically derived kappa distributions commonly used to describe the phase space distribution functions of these systems [1]. The non-equilibrium temperature and the kappa index that govern these distributions are the two independent controlling parameters of non-equilibrium systems [1-3]. The significance of the kappa index is primarily given by its role in identifying the non-equilibrium stationary states, and measuring their "thermodynamic distance" from thermal equilibrium [4], while its physical meaning is connected to the correlation between the system's particles [5]. For example, analysis of the IBEX high Energetic Neutral Atom spectra [6] showed that the vast majority of measured kappa indices are between ~1.5 and ~2.5, consistent with the far-equilibrium "cavity" of minimum entropy discovered by Livadiotis & McComas [2]. Spontaneous procedures that can increase the entropy, move the system gradually toward equilibrium, that is the state with the maximum (infinite) kappa index. Other external factors that may decrease the entropy, move the system back to states further from equilibrium where the kappa indices are smaller. Newly formed pick-up ions can play this critical role in the solar wind and other space plasmas. We have analytically shown that their highly ordered motion can reduce the average entropy in the plasma beyond the termination shock, inside the inner heliosheath [7]. Non-equilibrium transitions have a key role in understanding the governing thermodynamical processes of space plasmas. References 1. Livadiotis, G., & McComas, D. J. 2009, JGR, 114, 11105. 2. Livadiotis, G., & McComas, D. J. 2010a, ApJ, 714, 971. 3. Livadiotis, G., & McComas, D. J. 2010c, in AIP Conf. Proc. 9, Pickup Ions Throughout the Heliosphere and Beyond, ed. J. LeRoux, V. Florinski, G. P. Zank, & A

  13. Multistability with a metastable mixed state.

    PubMed

    Sneppen, Kim; Mitarai, Namiko

    2012-09-01

    Complex dynamical systems often show multiple metastable states. In macroevolution, such behavior is suggested by punctuated equilibrium and discrete geological epochs. In molecular biology, bistability is found in epigenetics and in the many mutually exclusive states that a human cell can take. Sociopolitical systems can be single-party regimes or a pluralism of balancing political fractions. To introduce multistability, we suggest a model system of D mutually exclusive microstates that battle for dominance in a large system. Assuming one common intermediate state, we obtain D+1 metastable macrostates for the system, one of which is a self-reinforced mixture of all D+1 microstates. Robustness of this metastable mixed state increases with diversity D. PMID:23005273

  14. Kinetic Trapping of Metastable Amino Acid Polymorphs

    PubMed Central

    2015-01-01

    Second harmonic generation (SHG) microscopy measurements indicate that inkjet-printed racemic solutions of amino acids can produce nanocrystals trapped in metastable polymorph forms upon rapid solvent evaporation. Polymorphism impacts the composition, distribution, and physico-kinetic properties of organic solids, with energetic arguments favoring the most stable polymorph. In this study, unfavored noncentrosymmetric crystal forms were observed by SHG microscopy. Polarization-dependent SHG measurement and synchrotron X-ray microdiffraction analysis of individual printed drops are consistent with formation of homochiral crystal production. Fundamentally, these results provide evidence supporting the ubiquity of Ostwald’s Rule of Stages, describing the hypothesized transitioning of crystals between metastable polymorphic forms in the early stages of crystal formation. Practically, the presence of homochiral metastable forms has implications on chiral resolution and on solid form preparations relying on rapid solvent evaporation. PMID:24451055

  15. Metastable Detection Using Cold Solid Matrices

    NASA Astrophysics Data System (ADS)

    McConkey, William; Kedzierski, Wladek; Alsaiari, Fatimah

    2016-05-01

    Metastable particles produced in the interaction of electrons of carefully controlled energy with thermal gaseous target beams in a crossed beam set-up have been studied in the energy range from threshold to 300 eV. The e-beam is pulsed and the metastables produced drift to a solid nitrogen or rare gas detector held at 10 K. Here they form excimers which immediately radiate. The resultant photons are detected using a photomultiplier-filter combination. Time-of-flight techniques are used to separate these photons from prompt photons produced in the initial electron collision. With N2 as both target and detection matrix, the excimer emission is strongest in the green but still significant in the red spectral region. Excitation functions will be presented together with threshold measurements. These help to identify the metastable states being observed and the excitation mechanisms which are responsible. The authors thank NSERC and CFI (Canada) for financial support.

  16. Kinetic trapping of metastable amino acid polymorphs.

    PubMed

    Chowdhury, Azhad U; Dettmar, Christopher M; Sullivan, Shane Z; Zhang, Shijie; Jacobs, Kevin T; Kissick, David J; Maltais, Thora; Hedderich, Hartmut G; Bishop, Patricia A; Simpson, Garth J

    2014-02-12

    Second harmonic generation (SHG) microscopy measurements indicate that inkjet-printed racemic solutions of amino acids can produce nanocrystals trapped in metastable polymorph forms upon rapid solvent evaporation. Polymorphism impacts the composition, distribution, and physico-kinetic properties of organic solids, with energetic arguments favoring the most stable polymorph. In this study, unfavored noncentrosymmetric crystal forms were observed by SHG microscopy. Polarization-dependent SHG measurement and synchrotron X-ray microdiffraction analysis of individual printed drops are consistent with formation of homochiral crystal production. Fundamentally, these results provide evidence supporting the ubiquity of Ostwald's Rule of Stages, describing the hypothesized transitioning of crystals between metastable polymorphic forms in the early stages of crystal formation. Practically, the presence of homochiral metastable forms has implications on chiral resolution and on solid form preparations relying on rapid solvent evaporation. PMID:24451055

  17. Multistability with a Metastable Mixed State

    NASA Astrophysics Data System (ADS)

    Sneppen, Kim; Mitarai, Namiko

    2012-09-01

    Complex dynamical systems often show multiple metastable states. In macroevolution, such behavior is suggested by punctuated equilibrium and discrete geological epochs. In molecular biology, bistability is found in epigenetics and in the many mutually exclusive states that a human cell can take. Sociopolitical systems can be single-party regimes or a pluralism of balancing political fractions. To introduce multistability, we suggest a model system of D mutually exclusive microstates that battle for dominance in a large system. Assuming one common intermediate state, we obtain D+1 metastable macrostates for the system, one of which is a self-reinforced mixture of all D+1 microstates. Robustness of this metastable mixed state increases with diversity D.

  18. An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium

    NASA Astrophysics Data System (ADS)

    Pepe, R.; Bonfiglioli, A.; D'Angola, A.; Colonna, G.; Paciorri, R.

    2015-11-01

    A CFD solver, using Residual Distribution Schemes on unstructured grids, has been extended to deal with inviscid chemical non-equilibrium flows. The conservative equations have been coupled with a kinetic model for argon plasma which includes the argon metastable state as independent species, taking into account electron-atom and atom-atom processes. Results in the case of an hypersonic flow around an infinite cylinder, obtained by using both shock-capturing and shock-fitting approaches, show higher accuracy of the shock-fitting approach.

  19. On the Destabilization of Metastable Solid He

    NASA Astrophysics Data System (ADS)

    Souris, F.; Qu, A.; Dupont-Roc, J.; Grucker, J.; Jacquier, Ph.

    2015-06-01

    Recently, a metastable state of solid He has been produced by locally lowering the density of the solid below the melting density using a focused acoustic wave pulse. An unexpected instability of the solid has been found about 4 bar below the melting line. This paper reports on experiments precisely localizing in time the instability birth within the acoustic pulse. It is found that, as expected, the instability always appears during a depression swing of the wave. However a metastability pressure limit does not emerge clearly. Total stress duration seems also to play a role in the instability triggering, suggesting a fatigue effect.

  20. Two-Photon Ionization of Metastable Helium

    NASA Astrophysics Data System (ADS)

    Czechanski, James Poremba

    There have been relatively few investigations of multiphoton ionization from metastable helium. Of particular interest has been the work of Haberland et al. 1987 and Haberland and Oschwald 1988. In both the 1987 and 1988 papers they have described the two photon ionization of metastable helium. In each of these studies they have reported the occurrence of unexplained structure along the wings of their resonance profiles. Upon the performance of similar measurements by this study, the unexplained structure is not seen and the agreement of the experiment's measurements with the theoretical shape of the resonance curves has been good. To experimentally verify these resonance effects, we have used a tunable dye laser in conjunction with a time of flight mass spectrometer to create and detect ions from metastable helium by two-photon absorption. The use of a metastable state instead of the ground state is advantageous because of its proximity to the ionization continuum and its extended lifetime. Using a metastable state as a starting point for multiphoton absorption requires fewer photons to reach the ionization threshold. The extended lifetime of the state also makes it easy to access experimentally. For helium the singlet metastable state 2^1 S lies at 20.61 eV above the ground level with a natural lifetime of close to a millisecond. Two photons of 501.7 nm and 504.35 nm are required for the ionization processes in resonance with the 3^1P and the 3^1D states. This thesis is the accounting of the experimental process involved in the measurement of the dipole and quadrupole resonances of two photon ionization from singlet metastable helium. The study includes the description of the laser, electron gun assembly for metastable helium creation, and the time of flight mass spectrometer. A discussion of the theory of multiphoton processes is included along with the discussion of the data, its reduction and analysis, and a comparison with theoretical prediction. This study

  1. Numerical analysis of the non-equilibrium plasma flow in the gaseous electronics conference reference reactor

    NASA Astrophysics Data System (ADS)

    Bijie, Yang; Ning, Zhou; Quanhua, Sun

    2016-01-01

    The capacitively coupled plasma in the gaseous electronics conference reference reactor is numerically investigated for argon flow using a non-equilibrium plasma fluid model. The finite rate chemistry is adopted for the chemical non-equilibrium among species including neutral metastable, whereas a two-temperature model is employed to resolve the thermal non-equilibrium between electrons and heavy species. The predicted plasma density agrees very well with experimental data for the validation case. A strong thermal non-equilibrium is observed between heavy particles and electrons due to its low collision frequency, where the heavy species remains near ambient temperature for low pressure and low voltage conditions (0.1 Torr, 100 V). The effects of the operating parameters on the ion flux are also investigated, including the electrode voltage, chamber pressure, and gas flow rate. It is found that the ion flux can be increased by either elevating the electrode voltage or lowering the gas pressure. Project supported by the National Natural Science Foundation of China (Nos. 11372325, 11475239).

  2. Additivity, density fluctuations, and nonequilibrium thermodynamics for active Brownian particles

    NASA Astrophysics Data System (ADS)

    Chakraborti, Subhadip; Mishra, Shradha; Pradhan, Punyabrata

    2016-05-01

    Using an additivity property, we study particle-number fluctuations in a system of interacting self-propelled particles, called active Brownian particles (ABPs), which consists of repulsive disks with random self-propulsion velocities. From a fluctuation-response relation, a direct consequence of additivity, we formulate a thermodynamic theory which captures the previously observed features of nonequilibrium phase transition in the ABPs from a homogeneous fluid phase to an inhomogeneous phase of coexisting gas and liquid. We substantiate the predictions of additivity by analytically calculating the subsystem particle-number distributions in the homogeneous fluid phase away from criticality where analytically obtained distributions are compatible with simulations in the ABPs.

  3. Metastability for General Dynamics with Rare Transitions: Escape Time and Critical Configurations

    NASA Astrophysics Data System (ADS)

    Cirillo, Emilio N. M.; Nardi, Francesca R.; Sohier, Julien

    2015-10-01

    Metastability is a physical phenomenon ubiquitous in first order phase transitions. A fruitful mathematical way to approach this phenomenon is the study of rare transitions Markov chains. For Metropolis chains associated with statistical mechanics systems, this phenomenon has been described in an elegant way in terms of the energy landscape associated to the Hamiltonian of the system. In this paper, we provide a similar description in the general rare transitions setup. Beside their theoretical content, we believe that our results are a useful tool to approach metastability for non-Metropolis systems such as Probabilistic Cellular Automata.

  4. Reheating metastable O'Raifeartaigh models

    SciTech Connect

    Fox, Patrick; Craig, Nathaniel J.; Fox, Patrick J.; Wacker, Jay G.

    2006-11-01

    In theories with multiple vacua, reheating to a temperature greater than the height of a barrier can stimulate transitions from a desirable metastable vacuum to a lower energy state. We discuss the constraints this places on various theories and demonstrate that in a class of supersymmetric models this transition does not occur even for arbitrarily high reheating temperature.

  5. Reheating Metastable O'Raifeartaigh Models

    SciTech Connect

    Craig, Nathaniel J.; Fox, Patrick J.; Wacker, Jay G.

    2006-12-05

    In theories with multiple vacua, reheating to a temperature greater than the height of a barrier can stimulate transitions from a desirable metastable vacuum to a lower energy state. We discuss the constraints this places on various theories and demonstrate that in a class of supersymmetric models this transition does not occur even for arbitrarily high reheating temperature.

  6. Reheating Metastable O'Raifeartaigh Models

    SciTech Connect

    Craig, Nathaniel J.; Fox, Patrick J.; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2006-12-13

    In theories with multiple vacua, reheating to a temperature greater than the height of a barrier can stimulate transitions from a desirable metastable vacuum to a lower energy state. We discuss the constraints this places on various theories and demonstrate that in a class of supersymmetric models this transition does not occur even for arbitrarily high reheating temperature.

  7. Metastable states of highly excited heavy ions

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Griffin, P. M.; Sellin, I. A.; Smith, W. W.; Donnally, B.

    1973-01-01

    Description of the method used and results obtained in an experimental study of the metastable states of highly stripped heavy ions, aimed at determining the lifetimes of such states by the rates of autoionization and radiation. The significance and limitations of the results presented are discussed.

  8. Rapid solidification under local nonequilibrium conditions

    NASA Astrophysics Data System (ADS)

    Sobolev, S. L.

    1997-06-01

    The effects of local nonequilibrium solute diffusion on a solute concentration field, solute partitioning, interface temperature, and absolute stability limit have been considered. The model incorporates two diffusive speeds, VDb, the bulk-liquid diffusive speed, and VDi, the interface diffusive speed, as the most important parameters governing the solute concentration in the liquid phase and solute partitioning. The analysis of the model predicts a transition from diffusion-controlled solidification to purely thermally controlled regimes, which occurs abruptly when the interface velocity V equals the bulk liquid diffusive speed VDb. The abrupt change in the solidification mechanism is described by the velocity-dependent effective diffusion coefficient D*=D(1-V2/V2Db) and the generalized partition coefficient K*. If V>VDb, then D*=0 and K*=1. This implies an undistributed diffusion field in the liquid (diffusionless solidification) and complete solute trapping at V>VDb.

  9. Computer simulation of nonequilibrium processes

    SciTech Connect

    Wallace, D.C.

    1985-07-01

    The underlying concepts of nonequilibrium statistical mechanics, and of irreversible thermodynamics, will be described. The question at hand is then, how are these concepts to be realize in computer simulations of many-particle systems. The answer will be given for dissipative deformation processes in solids, on three hierarchical levels: heterogeneous plastic flow, dislocation dynamics, an molecular dynamics. Aplication to the shock process will be discussed.

  10. On the lifetime of metastable states in self-gravitating systems

    NASA Astrophysics Data System (ADS)

    Chavanis, P. H.

    2005-03-01

    We discuss the physical basis of the statistical mechanics of self-gravitating systems. We show the correspondance between statistical mechanics methods based on the evaluation of the density of states and partition function and thermodynamical methods based on the optimization of a thermodynamical potential (entropy or free energy). We address the question of the thermodynamic limit of self-gravitating systems, the justification of the mean-field approximation, the validity of the saddle point approximation near the transition point, the lifetime of metastable states and the fluctuations in isothermal spheres. In particular, we emphasize the tremendously long lifetime of metastable states of self-gravitating systems which increases exponentially with the number of particles N except in the vicinity of the critical point. More specifically, using an adaptation of the Kramers formula justified by a kinetic theory, we show that the lifetime of a metastable state scales as eNΔ s in microcanonical ensemble and eNΔ j in canonical ensemble, where Δ s and Δ j are the barriers of entropy and free energy j=s-β ɛ per particle respectively. The physical caloric curve must take these metastable states (local entropy maxima) into account. As a result, it becomes multi-valued and leads to microcanonical phase transitions and “dinosaur's necks” (Chavanis [CITE], [arXiv:astroph/0205426]; Chavanis & Rieutord [CITE], A&A, 412, 1). The consideration of metastable states answers the critics raised by D.H.E. Gross [cond-mat/0307535/0403582].

  11. Small molecule ambient mass spectrometry imaging by infrared laser ablation metastable-induced chemical ionization.

    PubMed

    Galhena, Asiri S; Harris, Glenn A; Nyadong, Leonard; Murray, Kermit K; Fernández, Facundo M

    2010-03-15

    Presented here is a novel ambient ion source termed infrared laser ablation metastable-induced chemical ionization (IR-LAMICI). IR-LAMICI integrates IR laser ablation and direct analysis in real time (DART)-type metastable-induced chemical ionization for open air mass spectrometry (MS) ionization. The ion generation in the IR-LAMICI source is a two step process. First, IR laser pulses impinge the sample surface ablating surface material. Second, a portion of ablated material reacts with the metastable reactive plume facilitating gas-phase chemical ionization of analyte molecules generating protonated or deprotonated species in positive and negative ion modes, respectively. The successful coupling of IR-laser ablation with metastable-induced chemical ionization resulted in an ambient plasma-based spatially resolved small molecule imaging platform for mass spectrometry (MS). The analytical capabilities of IR-LAMICI are explored by imaging pharmaceutical tablets, screening counterfeit drugs, and probing algal tissue surfaces for natural products. The resolution of a chemical image is determined by the crater size produced with each laser pulse but not by the size of the metastable gas jet. The detection limits for an active pharmaceutical ingredient (acetaminophen) using the IR-LAMICI source is calculated to be low picograms. Furthermore, three-dimensional computational fluid dynamic simulations showed improvements in the IR-LAMICI ion source are possible. PMID:20155978

  12. Importance of thermal nonequilibrium considerations for the simulation of nuclear reactor LOCA transients. [PWR

    SciTech Connect

    Fischer, S.R.; Nelson, R.A.; Sullivan, L.H.

    1980-01-01

    The purpose of this paper is to show the importance of considering thermal nonequilibrium effects in computer simulations of the refill and reflood portions of pressurized water reactor (PWR) loss-of-coolnat accident (LOCA) transients. Although RELAP4 assumes thermodynamic equilibrium between phases, models that account for the nonequilibrium phenomena associated with the mixing of subcooled emergency cooling water with steam and the superheating of vapor in the presence of liquid droplets have recently been incorporated into the code. Code calculated results, both with and without these new models, have been compared with experimental test data to assess the importance of including thermal nonequilibrium phenomena in computer code simulations.

  13. Formation of metastable graphite inclusions during diamond crystallization in model systems

    NASA Astrophysics Data System (ADS)

    Nechaev, D. V.; Khokhryakov, A. F.

    2014-03-01

    Metastable graphite inclusions have been studied in diamond, forsterite, and orthopyroxene synthesized in silicate-carbonate-fluid and aqueous chloride systems at 6.3-7.5 GPa and 1400-1600°C. The graphite inclusions were studied using optic microscopy and Raman spectroscopy. It has been established that graphite in diamond and liquidus silicate minerals is represented by a highly ordered variety. Depending on parameters of runs, the graphite inclusions are hexagonal, irregular polygonal, or rounded in shape. The morphology of graphite inclusions involving metastable graphite in run products is compared with previously established crystallization sequence of carbon phases. It has been revealed that the protogenetic graphite inclusions in diamond are rounded, and this shape was caused by dissolution of the newly formed graphite. Polygonal graphite inclusions are syngenetic and represented by metastable graphite that crystallized contemporaneously with diamond.

  14. Radiative Lifetimes of Metastable Atomic Ions.

    NASA Astrophysics Data System (ADS)

    Calamai, Anthony Gerard

    The natural radiative lifetimes of eleven metastable states of several atomic ions have been determined by monitoring for equal time intervals the photons emitted from an ion population containing the appropriate metastable species. The measured lifetimes range from 4.6 +/- 0.3 to 133 +/- 24 msec, and correspond to various low ionization states of the parent atoms. Of the eleven lifetimes, four are for states of mercury ions, six for noble gas ions, and one is for singly ionized nitrogen. The metastable ions were produced by electron bombardment of the appropriate neutral atomic vapor and stored inside a cylindrical, electrostatic ion trap. The pressure of the atomic vapor in the trapping volume ranged from 4 to 80 times 10^{ -8} Torr. The trap consists of a 5.0 cm diameter, 7.5 cm long cylinder with end caps and a concentric 0.003 cm diameter central cylinder maintained at a negative potential of about 150 volts. Electrons, produced by a tungsten dispenser cathode, are pulsed on for several msec, travel parallel to the trap axis, and acquire approximately 200 eV of kinetic energy before entering the ion confinement region. Following electron impact ionization of the atomic vapor, some of the photons emitted by the decaying metastable ion population emerge from the trap and are focused onto a 10 nm bandwidth interference filter. Photons transmitted by the filter are detected by a photomultiplier tube as a function of time, yielding a forbidden luminescence decay curve. As dictated by the composition of the photon decay curve, decay rates are obtained from a least-squares fit to the logarithm of either a single or a double component exponential decay. Mean decay rates are extrapolated to zero pressure of the parent atomic vapor using a straight -line least-squares fit; the radiative lifetimes of the metastable ions are obtained from the intercept of the pressure extrapolation.

  15. Cellular folding pathway of a metastable serpin.

    PubMed

    Chandrasekhar, Kshama; Ke, Haiping; Wang, Ning; Goodwin, Theresa; Gierasch, Lila M; Gershenson, Anne; Hebert, Daniel N

    2016-06-01

    Although proteins generally fold to their thermodynamically most stable state, some metastable proteins populate higher free energy states. Conformational changes from metastable higher free energy states to lower free energy states with greater stability can then generate the work required to perform physiologically important functions. However, how metastable proteins fold to these higher free energy states in the cell and avoid more stable but inactive conformations is poorly understood. The serpin family of metastable protease inhibitors uses large conformational changes that are downhill in free energy to inhibit target proteases by pulling apart the protease active site. The serpin antithrombin III (ATIII) targets thrombin and other proteases involved in blood coagulation, and ATIII misfolding can thus lead to thrombosis and other diseases. ATIII has three disulfide bonds, two near the N terminus and one near the C terminus. Our studies of ATIII in-cell folding reveal a surprising, biased order of disulfide bond formation, with early formation of the C-terminal disulfide, before formation of the N-terminal disulfides, critical for folding to the active, metastable state. Early folding of the predominantly β-sheet ATIII domain in this two-domain protein constrains the reactive center loop (RCL), which contains the protease-binding site, ensuring that the RCL remains accessible. N-linked glycans and carbohydrate-binding molecular chaperones contribute to the efficient folding and secretion of functional ATIII. The inability of a number of disease-associated ATIII variants to navigate the folding reaction helps to explain their disease phenotypes. PMID:27222580

  16. Effect of EDTA on the metastable zone width of ADP

    NASA Astrophysics Data System (ADS)

    Rajesh, N. P.; Meera, K.; Srinivasan, K.; Santhana Raghavan, P.; Ramasamy, P.

    2000-06-01

    Enhancement of the metastable zone width in ammonium dihydrogen ortho phosphate (ADP) was achieved by the addition of 1 mol% of the chelating agent ethylenediaminetetra acetic acid (EDTA) to ADP solution. The metastable zone width studies were conducted and the nucleation parameters were calculated from the measurements of the dependence of the metastable zone width on the cooling rate.

  17. Metastable sound speed in gas-liquid mixtures

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.

    1979-01-01

    A new method of calculating speed of sound for two-phase flow is presented. The new equation assumes no phase change during the propagation of an acoustic disturbance and assumes that only the total entropy of the mixture remains constant during the process. The new equation predicts single-phase values for the speed of sound in the limit of all gas or all liquid and agrees with available two-phase, air-water sound speed data. Other expressions used in the two-phase flow literature for calculating two-phase, metastable sound speed are reviewed and discussed. Comparisons are made between the new expression and several of the previous expressions -- most notably a triply isentropic equation as used, a triply isentropic equation as used, among others, by Karplus and by Wallis. Appropriate differences are pointed out and a thermodynamic criterion is derived which must be satisfied in order for the triply isentropic expression to be thermodynamically consistent. This criterion is not satisfied for the cases examined, which included two-phase nitrogen, air-water, two-phase parahydrogen, and steam-water. Consequently, the new equation derived is found to be superior to the other equations reviewed.

  18. Nonequilibrium Enhances Adaptation Efficiency of Stochastic Biochemical Systems

    PubMed Central

    Jia, Chen; Qian, Minping

    2016-01-01

    Adaptation is a crucial biological function possessed by many sensory systems. Early work has shown that some influential equilibrium models can achieve accurate adaptation. However, recent studies indicate that there are close relationships between adaptation and nonequilibrium. In this paper, we provide an explanation of these two seemingly contradictory results based on Markov models with relatively simple networks. We show that as the nonequilibrium driving becomes stronger, the system under consideration will undergo a phase transition along a fixed direction: from non-adaptation to simple adaptation then to oscillatory adaptation, while the transition in the opposite direction is forbidden. This indicates that although adaptation may be observed in equilibrium systems, it tends to occur in systems far away from equilibrium. In addition, we find that nonequilibrium will improve the performance of adaptation by enhancing the adaptation efficiency. All these results provide a deeper insight into the connection between adaptation and nonequilibrium. Finally, we use a more complicated network model of bacterial chemotaxis to validate the main results of this paper. PMID:27195482

  19. Nonequilibrium Enhances Adaptation Efficiency of Stochastic Biochemical Systems.

    PubMed

    Jia, Chen; Qian, Minping

    2016-01-01

    Adaptation is a crucial biological function possessed by many sensory systems. Early work has shown that some influential equilibrium models can achieve accurate adaptation. However, recent studies indicate that there are close relationships between adaptation and nonequilibrium. In this paper, we provide an explanation of these two seemingly contradictory results based on Markov models with relatively simple networks. We show that as the nonequilibrium driving becomes stronger, the system under consideration will undergo a phase transition along a fixed direction: from non-adaptation to simple adaptation then to oscillatory adaptation, while the transition in the opposite direction is forbidden. This indicates that although adaptation may be observed in equilibrium systems, it tends to occur in systems far away from equilibrium. In addition, we find that nonequilibrium will improve the performance of adaptation by enhancing the adaptation efficiency. All these results provide a deeper insight into the connection between adaptation and nonequilibrium. Finally, we use a more complicated network model of bacterial chemotaxis to validate the main results of this paper. PMID:27195482

  20. Two-color magneto-optical trap for metastable helium

    SciTech Connect

    Tychkov, A.S.; Koelemeij, J.C.J.; Jeltes, T.; Hogervorst, W.; Vassen, W.

    2004-05-01

    We describe a powerful scheme which combines laser cooling on two transitions of metastable helium to obtain a high phase-space density. By running a sequence of a large 1083 nm magneto-optical trap (MOT) and a compressed 389 nm MOT, a density increase of more than one order of magnitude is achieved within 5 ms. After compression, 8x10{sup 8} atoms at a central density of 5x10{sup 10} cm{sup -3} remain, while the temperature of the cloud has been reduced from 1 mK to 0.4 mK. The resulting phase-space density (4.1x10{sup -6}) is more than one order of magnitude higher than what we achieved by 1083 nm laser cooling only.

  1. Metastable nanosized aluminum powder as a reactant in energetic formulations

    SciTech Connect

    Katz, J.; Tepper, F.; Ivanov, G.V.; Lerner, M.I.; Davidovich, V.

    1998-12-01

    Aluminum powder is an important ingredient in many propellant, explosives and pyrotechnic applications. The production of nanosized aluminum powder by the electroexplosion of metal wire has been practices in the former USSR since the mid 1970`s. Differential scanning calorimetry, differential thermal analysis and x-ray phase analysis was performed on aluminum powder both before and after air passivation, as well as aluminum that was protected under kerosene, pentane, toluene and hexane. Earlier Soviet reports of unexplained thermal releases and metastable behavior have been investigated. Anomalous behavior previously reported included phase transformations at temperatures far below melting with the release of heat and chemoluminescence and self sintering of particles with a heat release large enough to melt the powders.

  2. Orientational Phase Ordering in Disordered Liquid Crystalline Heteropolymers

    NASA Astrophysics Data System (ADS)

    Gutman, Lorin; Shakhnovich, Eugene I.

    2000-03-01

    Liquid-crystalline disordered heteropolymers (DLCPs) are studied by a novel creation-annihilation method and replica field theory. The 0 disorder limit of theory is the non-perturbative (A. M. Gupta and S. F. Edwards J. Chem. Phys., 98, 1588, (1993)) result for long homopolymer chains. Sequence disorder, alignment propensity, stiffness and lyotropic effects on orientational phase ordering and coexistence width are studied numerically by unconstrained iteration of principal axis of segment orientational tensors; It is shown that sequence heterogeneity impacts strongly the density order/disorder threshold and the Maxwell construction shows a three fold increase in coexistence width compared with the homopolymer analogue. The non-equilibrium meta-stable domain scale, obtained by calculation of Doring free energy from field theory and nucleation theory is of the order of μ m, in agreement with recent experiments on DLCPs.

  3. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    SciTech Connect

    Koh, Carolyn Ann

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  4. Capability of X-ray diffraction for the study of microstructure of metastable thin films.

    PubMed

    Rafaja, David; Wüstefeld, Christina; Dopita, Milan; Motylenko, Mykhaylo; Baehtz, Carsten

    2014-11-01

    Metastable phases are often used to design materials with outstanding properties, which cannot be achieved with thermodynamically stable compounds. In many cases, the metastable phases are employed as precursors for controlled formation of nanocomposites. This contribution shows how the microstructure of crystalline metastable phases and the formation of nanocomposites can be concluded from X-ray diffraction experiments by taking advantage of the high sensitivity of X-ray diffraction to macroscopic and microscopic lattice deformations and to the dependence of the lattice deformations on the crystallographic direction. The lattice deformations were determined from the positions and from the widths of the diffraction lines, the dependence of the lattice deformations on the crystallographic direction from the anisotropy of the line shift and the line broadening. As an example of the metastable system, the supersaturated solid solution of titanium nitride and aluminium nitride was investigated, which was prepared in the form of thin films by using cathodic arc evaporation of titanium and aluminium in a nitrogen atmosphere. The microstructure of the (Ti,Al)N samples under study was tailored by modifying the [Al]/[Ti] ratio in the thin films and the surface mobility of the deposited species. PMID:25485125

  5. Short-range Ising spin glasses: the metastate interpretation of replica symmetry breaking.

    PubMed

    Read, N

    2014-09-01

    Parisi's formal replica-symmetry-breaking (RSB) scheme for mean-field spin glasses has long been interpreted in terms of many pure states organized ultrametrically. However, the early version of this interpretation, as applied to the short-range Edwards-Anderson model, runs into problems because as shown by Newman and Stein (NS) it does not allow for chaotic size dependence, and predicts non-self-averaging that cannot occur. NS proposed the concept of the metastate (a probability distribution over infinite-size Gibbs states in a given sample that captures the effects of chaotic size dependence) and a nonstandard interpretation of the RSB results in which the metastate is nontrivial and is responsible for what was called non-self-averaging. In this picture, each state drawn from the metastate has the ultrametric properties of the old theory, but when the state is averaged using the metastate, the resulting mixed state has little structure. This picture was constructed so as to agree both with the earlier RSB results and with rigorous results. Here we use the effective field theory of RSB, in conjunction with the rigorous definitions of pure states and the metastate in infinite-size systems, to show that the nonstandard picture follows directly from the RSB mean-field theory. In addition, the metastate-averaged state possesses power-law correlations throughout the low-temperature phase; the corresponding exponent ζ takes the value 4 according to the field theory in high dimensions d, and describes the effective fractal dimension of clusters of spins. Further, the logarithm of the number of pure states in the decomposition of the metastate-averaged state that can be distinguished if only correlations in a window of size W can be observed is of order W(d-ζ). These results extend the nonstandard picture quantitatively; we show that arguments against this scenario are inconclusive. More generally, in terms of Parisi's function q(x), if q(0)≠∫(0)(1)dxq(x), then the

  6. Approach to non-equilibrium behaviour in quantum field theory

    SciTech Connect

    Kripfganz, J.; Perlt, H.

    1989-05-01

    We study the real-time evolution of quantum field theoretic systems in non-equilibrium situations. Results are presented for the example of scalar /lambda//phi//sup 4/ theory. The degrees of freedom are discretized by studying the system on a torus. Short-wavelength modes are integrated out to one-loop order. The long-wavelength modes considered to be the relevant degrees of freedom are treated by semiclassical phase-space methods. /copyright/ 1989 Academic Press, Inc.

  7. Thermodynamic aspects of nonequilibrium current fluctuations

    NASA Astrophysics Data System (ADS)

    Jou, D.; Llebot, J. E.; Casas-Vázquez, J.

    1982-06-01

    Starting from a macroscopic nonequilibrium entropy, we obtain an expression for the nonequilibrium fluctuations of the electric current in a metallic resistor. Our method goes further than previous theories of irreversible thermodynamics and, as well as microscopic entropies, it leads to results of the same order of magnitude but not completely coincident with the full nonequilibrium corrections obtained from kinetic methods by Tremblay et al.

  8. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  9. Metastable Lennard-Jones fluids. II. Thermal conductivity.

    PubMed

    Baidakov, Vladimir G; Protsenko, Sergey P

    2014-06-01

    The method of equilibrium molecular dynamics with the use of the Green-Kubo formalism has been used to calculate the thermal conductivity λ in stable and metastable regions of a Lennard-Jones fluid. Calculations have been made in the range of reduced temperatures 0.4 ≤ T* = k(b)T/ε ≤ 2.0 and densities 0.01 ≤ ρ* = ρσ³ ≤ 1.2 on 15 isotherms for 234 states, 130 of which refer to metastable regions: superheated and supercooled liquids, supersaturated vapor. Equations have been built up which describe the dependence of the regular part of the thermal conductivity on temperature and density, and also on temperature and pressure. It has been found that in (p, T) variables in the region of a liquid-gas phase transition a family of lines of constant value of excess thermal conductivity Δλ = λ - λ0, where λ0 is the thermal conductivity of a dilute gas, has an envelope which coincides with the spinodal. Thus, at the approach to the spinodal of a superheated liquid and supersaturated vapor (∂Δλ/∂p)T → ∞, (∂Δλ/∂T)p → ∞. PMID:24908025

  10. Supercooled water escaping from metastability

    PubMed Central

    Aliotta, Francesco; Giaquinta, Paolo V.; Ponterio, Rosina C.; Prestipino, Santi; Saija, Franz; Salvato, Gabriele; Vasi, Cirino

    2014-01-01

    The return of supercooled water to a stable equilibrium condition is an irreversible process which, in large enough samples, takes place adiabatically. We investigated this phenomenon in water by fast imaging techniques. As water freezes, large energy and density fluctuations promote the spatial coexistence of solid and liquid phases at different temperatures. Upon synchronously monitoring the time evolution of the local temperature, we observed a sharp dynamic transition between a fast and a slow decay regime at about 266.6 K. We construe the observed phenomenon in terms of the temperature dependence of heat transfers from solid and liquid volumes already at their bulk coexistence temperature towards adjacent still supercooled liquid regions. These findings can be justified by observing that convective motions induced by thermal gradients in a supercooled liquid near coexistence are rapidly suppressed as the nucleated solid fraction overcomes, at low enough temperatures, a characteristic percolation threshold. PMID:25427603

  11. Ge-related faceting and segregation during the growth of metastable (GaAs){sub 1{minus}x}(Ge{sub 2}){sub x} alloy layers by metal{endash}organic vapor-phase epitaxy

    SciTech Connect

    Norman, A.G.; Olson, J.M.; Geisz, J.F.; Moutinho, H.R.; Mason, A.; Al-Jassim, M.M.; Vernon, S.M.

    1999-03-01

    (GaAs){sub 1{minus}x}(Ge{sub 2}){sub x} alloy layers, 0{lt}x{lt}0.22, have been grown by metal{endash}organic vapor-phase epitaxy on vicinal (001) GaAs substrates. Transmission electron microscopy revealed pronounced phase separation in these layers, resulting in regions of GaAs-rich zinc-blende and Ge-rich diamond cubic material that appears to lead to substantial band-gap narrowing. For x=0.1 layers, the phase-separated microstructure consisted of intersecting sheets of Ge-rich material on {l_brace}115{r_brace}B planes surrounding cells of GaAs-rich material, with little evidence of antiphase boundaries. Atomic force microscopy revealed {l_brace}115{r_brace}B surface faceting associated with the phase separation. {copyright} {ital 1999 American Institute of Physics.}

  12. Nonequilibrium volumetric response of shocked polymers

    SciTech Connect

    Clements, B E

    2009-01-01

    Polymers are well known for their non-equilibrium deviatoric behavior. However, investigations involving both high rate shock experiments and equilibrium measured thermodynamic quantities remind us that the volumetric behavior also exhibits a non-equilibrium response. Experiments supporting the notion of a non-equilibrium volumetric behavior will be summarized. Following that discussion, a continuum-level theory is proposed that will account for both the equilibrium and non-equilibrium response. Upon finding agreement with experiment, the theory is used to study the relaxation of a shocked polymer back towards its shocked equilibrium state.

  13. Universal metastability of sickle hemoglobin polymerization

    NASA Astrophysics Data System (ADS)

    Weng, Weijun

    Sickle hemoglobin (HbS) is a natural mutation of the normal hemoglobin (HbA) found in the red blood cells of human body. Polymerization of HbS occurs when the concentration of deoxyHbS exceeds a well-defined solubility, which is the underlying cause of the Sickle Cell Disease. It has long been assumed that thermodynamic equilibrium is reached when polymerization comes to an end. However, in this thesis we demonstrate that in confined volume as well as in bulk solution, HbS polymerization terminates prematurely, leaving the solution in a metastable state. A newly developed Reservoir method as well as modulated excitation method were adopted for the study. This discovery of universal metastability gives us new insights into understanding the mechanism of sickle cell disease.

  14. On metastable regimes in stochastic Lamb system

    NASA Astrophysics Data System (ADS)

    Freidlin, M. I.; Komech, A. I.

    2006-04-01

    We consider the long time behavior of the coupled Hamilton system of one-dimensional string and nonlinear oscillator, in contact with a heat bath modeled by the white noise. For any temperature the system converges to a statistical equilibrium described by the Boltzmann equilibrium measure. The convergence is caused by radiation provided by the nonlinear coupling. If the oscillator potential has more than one well and the temperature is small, the relaxation time is large, and the system goes through a sequence of metastable states located near local minima of the potential. When both, the temperature and the radiation rate are small, the metastable states are distributions among the minima of the potential.

  15. Metastable spontaneous breaking of N = 2 supersymmetry

    NASA Astrophysics Data System (ADS)

    Légeret, Benoît; Scrucca, Claudio A.; Smyth, Paul

    2013-05-01

    We show that contrary to the common lore it is possible to spontaneously break N = 2 supersymmetry even in simple theories without constant Fayet-Iliopoulos terms. We consider the most general N = 2 supersymmetric theory with one hypermultiplet and one vector multiplet without Fayet-Iliopoulos terms, and show that metastable supersymmetry breaking vacua can arise if both the hyper-Kähler and the special-Kähler geometries are suitably curved. We then also prove that while all the scalars can be massive, the lightest one is always lighter than the vector boson. Finally, we argue that these results also directly imply that metastable de Sitter vacua can exist in N = 2 supergravity theories with Abelian gaugings and no Fayet-Iliopoulos terms, again contrary to common lore, at least if the cosmological constant is sufficiently large.

  16. Metastability in bubbling AdS space

    NASA Astrophysics Data System (ADS)

    Massai, Stefano; Pasini, Giulio; Puhm, Andrea

    2015-02-01

    We study the dynamics of probe M5 branes with dissolved M2 charge in bubbling geometries with SO(4) × SO(4) symmetry. These solutions were constructed by Bena-Warner and Lin-Lunin-Maldacena and correspond to the vacua of the maximally supersymmetric mass-deformed M2 brane theory. We find that supersymmetric probe M2 branes polarize into M5 brane shells whose backreaction creates an additional bubble in the geometry. We explicitly check that the supersymmetric polarization potential agrees with the one found within the Polchinski-Strassler approximation. The main result of this paper is that probe M2 branes whose orientation is opposite to the background flux can polarize into metastable M5 brane shells. These decay to a supersymmetric configuration via brane-flux annihilation. Our findings suggest the existence of metastable states in the mass-deformed M2 brane theory.

  17. Metastable dynamics in heterogeneous neural fields.

    PubMed

    Schwappach, Cordula; Hutt, Axel; Beim Graben, Peter

    2015-01-01

    We present numerical simulations of metastable states in heterogeneous neural fields that are connected along heteroclinic orbits. Such trajectories are possible representations of transient neural activity as observed, for example, in the electroencephalogram. Based on previous theoretical findings on learning algorithms for neural fields, we directly construct synaptic weight kernels from Lotka-Volterra neural population dynamics without supervised training approaches. We deliver a MATLAB neural field toolbox validated by two examples of one- and two-dimensional neural fields. We demonstrate trial-to-trial variability and distributed representations in our simulations which might therefore be regarded as a proof-of-concept for more advanced neural field models of metastable dynamics in neurophysiological data. PMID:26175671

  18. Metastable dynamics in heterogeneous neural fields

    PubMed Central

    Schwappach, Cordula; Hutt, Axel; beim Graben, Peter

    2015-01-01

    We present numerical simulations of metastable states in heterogeneous neural fields that are connected along heteroclinic orbits. Such trajectories are possible representations of transient neural activity as observed, for example, in the electroencephalogram. Based on previous theoretical findings on learning algorithms for neural fields, we directly construct synaptic weight kernels from Lotka-Volterra neural population dynamics without supervised training approaches. We deliver a MATLAB neural field toolbox validated by two examples of one- and two-dimensional neural fields. We demonstrate trial-to-trial variability and distributed representations in our simulations which might therefore be regarded as a proof-of-concept for more advanced neural field models of metastable dynamics in neurophysiological data. PMID:26175671

  19. Nonequilibrium dynamics of emergent field configurations

    NASA Astrophysics Data System (ADS)

    Howell, Rafael Cassidy

    The processes by which nonlinear physical systems approach thermal equilibrium is of great importance in many areas of science. Central to this is the mechanism by which energy is transferred between the many degrees of freedom comprising these systems. With this in mind, in this research the nonequilibrium dynamics of nonperturbative fluctuations within Ginzburg-Landau models are investigated. In particular, two questions are addressed. In both cases the system is initially prepared in one of two minima of a double-well potential. First, within the context of a (2 + 1) dimensional field theory, we investigate whether emergent spatio-temporal coherent structures play a dynamcal role in the equilibration of the field. We find that the answer is sensitive to the initial temperature of the system. At low initial temperatures, the dynamics are well approximated with a time-dependent mean-field theory. For higher temperatures, the strong nonlinear coupling between the modes in the field does give rise to the synchronized emergence of coherent spatio-temporal configurations, identified with oscillons. These are long-lived coherent field configurations characterized by their persistent oscillatory behavior at their core. This initial global emergence is seen to be a consequence of resonant behavior in the long wavelength modes in the system. A second question concerns the emergence of disorder in a highly viscous system modeled by a (3 + 1) dimensional field theory. An integro-differential Boltzmann equation is derived to model the thermal nucleation of precursors of one phase within the homogeneous background. The fraction of the volume populated by these precursors is computed as a function of temperature. This model is capable of describing the onset of percolation, characterizing the approach to criticality (i.e. disorder). It also provides a nonperturbative correction to the critical temperature based on the nonequilibrium dynamics of the system.

  20. Structure and metastability of N-lignocerylgalactosylsphingosine (cerebroside) bilayers.

    PubMed

    Reed, R A; Shipley, G G

    1987-01-26

    Differential scanning calorimetry (DSC) and X-ray diffraction have been used to study hydrated N-lignocerylgalactosylsphingosine (NLGS) bilayers. DSC of fully hydrated NLGS shows an endothermic transition at 69-70 degrees C, immediately followed by an exothermic transition at 72-73 degrees C; further heating shows a high-temperature (Tc = 82 degrees C), high-enthalpy (delta H = 15.3 kcal/mol NLGS) transition. Heating to 75 degrees C, cooling to 20 degrees C and subsequent reheating shows no transitions at 69-73 degrees C; only the high-temperature (82 degrees C), high-enthalpy (15.3 kcal/mol) transition. Two exothermic transitions are observed on cooling; for the upper transition its temperature (about 65 degrees C) and enthalpy (about 6 kcal/mol NLGS) are essentially independent of cooling rate, whereas the lower transition exhibits marked changes in both temperature (30----60 degrees C) and enthalpy (2.2----9.5 kcal/mol NLGS) as the cooling rate decreases from 40 to 0.625 Cdeg/min. On reheating, the enthalpy of the 69-70 degrees C transition is dependent on the previous cooling rate. The DSC data provide clear evidence of conversions between metastable and stable forms. X-ray diffraction data recorded at 26, 75 and 93 degrees C show clearly that NLGS bilayer phases are present at all temperatures. The X-ray diffraction pattern at 75 degrees C shows a bilayer periodicity d = 65.4 A, and a number of sharp reflections in the wide-angle region indicative of a crystalline chain packing mode. This stable bilayer form converts to a liquid-crystal bilayer phase; at 93 degrees C, the bilayer periodicity d = 59.1 A, and a diffuse reflection at 1/4.6 A-1 is observed. The diffraction pattern at 22 degrees C represents a combination of the stable and metastable low-temperature bilayer forms. NLGS exhibits a complex pattern of thermotropic changes related to conversions between metastable (gel), stable (crystalline) and liquid-crystalline bilayer phases. The structure and

  1. Nozzle flow with vibrational nonequilibrium

    NASA Technical Reports Server (NTRS)

    Heinbockel, J. H.; Landry, J. G.

    1995-01-01

    This research concerns the modeling and numerical solutions of the coupled system of compressible Navier-Stokes equations in cylindrical coordinates under conditions of equilibrium and nonequilibrium thermodynamics. The problem considered was the modeling of a high temperature diatomic gas N2 flowing through a converging-diverging high expansion nozzle. The problem was modeled in two ways. The first model uses a single temperature with variable specific heats as functions of this temperature. For the second model we assume that the various degrees of freedom all have a Boltzmann distribution and that there is a continuous redistribution of energy among the various degrees of freedom as the gas passes through the nozzle. Each degree of freedom is assumed to have its own temperature and, consequently, each system state can be characterized by these temperatures. This suggests that formulation of a second model with a vibrational degree of freedom along with a rotational-translation degree of freedom, each degree of freedom having its own temperature. Initially the vibrational degree of freedom is excited by heating the gas to a high temperature. As the high temperature gas passes through the nozzle throat there is a sudden drop in temperature along with a relaxation time for the vibrational degree of freedom to achieve equilibrium with the rotational-translation degree of freedom. That is, we assume that the temperature change upon passing through the throat is so great that the changes in the vibrational degree of freedom occur at a much slower pace and consequently lags behind the rotational-translational energy changes. This lag results in a finite relaxation time. In this context the term nonequilibrium is used to denote the fact that the energy content of the various degrees of freedom are characterized by two temperatures. We neglect any chemical reactions which could also add nonequilibrium effects. We develop the energy equations for the nonequilibrium model

  2. Stochastic basins of attraction for metastable states

    NASA Astrophysics Data System (ADS)

    Serdukova, Larissa; Zheng, Yayun; Duan, Jinqiao; Kurths, Jürgen

    2016-07-01

    Basin of attraction of a stable equilibrium point is an effective concept for stability analysis in deterministic systems; however, it does not contain information on the external perturbations that may affect it. Here we introduce the concept of stochastic basin of attraction (SBA) by incorporating a suitable probabilistic notion of basin. We define criteria for the size of the SBA based on the escape probability, which is one of the deterministic quantities that carry dynamical information and can be used to quantify dynamical behavior of the corresponding stochastic basin of attraction. SBA is an efficient tool to describe the metastable phenomena complementing the known exit time, escape probability, or relaxation time. Moreover, the geometric structure of SBA gives additional insight into the system's dynamical behavior, which is important for theoretical and practical reasons. This concept can be used not only in models with small noise intensity but also with noise whose amplitude is proportional or in general is a function of an order parameter. As an application of our main results, we analyze a three potential well system perturbed by two types of noise: Brownian motion and non-Gaussian α-stable Lévy motion. Our main conclusions are that the thermal fluctuations stabilize the metastable system with an asymmetric three-well potential but have the opposite effect for a symmetric one. For Lévy noise with larger jumps and lower jump frequencies ( α = 0.5 ) metastability is enhanced for both symmetric and asymmetric potentials.

  3. Optimized Markov state models for metastable systems

    NASA Astrophysics Data System (ADS)

    Guarnera, Enrico; Vanden-Eijnden, Eric

    2016-07-01

    A method is proposed to identify target states that optimize a metastability index amongst a set of trial states and use these target states as milestones (or core sets) to build Markov State Models (MSMs). If the optimized metastability index is small, this automatically guarantees the accuracy of the MSM, in the sense that the transitions between the target milestones is indeed approximately Markovian. The method is simple to implement and use, it does not require that the dynamics on the trial milestones be Markovian, and it also offers the possibility to partition the system's state-space by assigning every trial milestone to the target milestones it is most likely to visit next and to identify transition state regions. Here the method is tested on the Gly-Ala-Gly peptide, where it is shown to correctly identify the expected metastable states in the dihedral angle space of the molecule without a priori information about these states. It is also applied to analyze the folding landscape of the Beta3s mini-protein, where it is shown to identify the folded basin as a connecting hub between an helix-rich region, which is entropically stabilized, and a beta-rich region, which is energetically stabilized and acts as a kinetic trap.

  4. Detonation of Meta-stable Clusters

    SciTech Connect

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.

    2008-05-31

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  5. Stochastic basins of attraction for metastable states.

    PubMed

    Serdukova, Larissa; Zheng, Yayun; Duan, Jinqiao; Kurths, Jürgen

    2016-07-01

    Basin of attraction of a stable equilibrium point is an effective concept for stability analysis in deterministic systems; however, it does not contain information on the external perturbations that may affect it. Here we introduce the concept of stochastic basin of attraction (SBA) by incorporating a suitable probabilistic notion of basin. We define criteria for the size of the SBA based on the escape probability, which is one of the deterministic quantities that carry dynamical information and can be used to quantify dynamical behavior of the corresponding stochastic basin of attraction. SBA is an efficient tool to describe the metastable phenomena complementing the known exit time, escape probability, or relaxation time. Moreover, the geometric structure of SBA gives additional insight into the system's dynamical behavior, which is important for theoretical and practical reasons. This concept can be used not only in models with small noise intensity but also with noise whose amplitude is proportional or in general is a function of an order parameter. As an application of our main results, we analyze a three potential well system perturbed by two types of noise: Brownian motion and non-Gaussian α-stable Lévy motion. Our main conclusions are that the thermal fluctuations stabilize the metastable system with an asymmetric three-well potential but have the opposite effect for a symmetric one. For Lévy noise with larger jumps and lower jump frequencies ( α=0.5) metastability is enhanced for both symmetric and asymmetric potentials. PMID:27475077

  6. Thermal evolution of the metastable r8 and bc8 polymorphs of silicon

    SciTech Connect

    Haberl, Bianca; Guthrie, Malcolm; Sinogeikin, Stanislav V.; Shen, Guoyin; Williams, James S.; Bradby, Jodie E.

    2015-01-28

    The kinetics of two metastable polymorphs of silicon under thermal annealing was investigated. These phases with body-centered cubic bc8 and rhombohedral r8 structures can be formed upon pressure release from metallic silicon.We study these metastable polymorphs were formed by two different methods, via point loading and in a diamond anvil cell (DAC). Upon thermal annealing different transition pathways were detected. In the point loading case, the previously reported Si-XIII formed and was confirmed as a new phase with an as-yet-unidentified structure. In the DAC case, bc8-Si transformed to the hexagonal-diamond structure at elevated pressure, consistent with previous studies at ambient pressure. In contrast, r8-Si transformed directly to diamond-cubic Si at a temperature of 255⁰C. In conclusion, these data were used to construct diagrams of the metastability regimes of the polymorphs formed in a DAC and may prove useful for potential technological applications of these metastable polymorphs.

  7. Thermal evolution of the metastable r8 and bc8 polymorphs of silicon

    DOE PAGESBeta

    Haberl, Bianca; Guthrie, Malcolm; Sinogeikin, Stanislav V.; Shen, Guoyin; Williams, James S.; Bradby, Jodie E.

    2015-01-28

    The kinetics of two metastable polymorphs of silicon under thermal annealing was investigated. These phases with body-centered cubic bc8 and rhombohedral r8 structures can be formed upon pressure release from metallic silicon.We study these metastable polymorphs were formed by two different methods, via point loading and in a diamond anvil cell (DAC). Upon thermal annealing different transition pathways were detected. In the point loading case, the previously reported Si-XIII formed and was confirmed as a new phase with an as-yet-unidentified structure. In the DAC case, bc8-Si transformed to the hexagonal-diamond structure at elevated pressure, consistent with previous studies at ambientmore » pressure. In contrast, r8-Si transformed directly to diamond-cubic Si at a temperature of 255⁰C. In conclusion, these data were used to construct diagrams of the metastability regimes of the polymorphs formed in a DAC and may prove useful for potential technological applications of these metastable polymorphs.« less

  8. Irreversible phase transition between LiFePO4 and FePO4 during high-rate charge-discharge reaction by operando X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Takahashi, Ikuma; Mori, Takuya; Yoshinari, Takahiro; Orikasa, Yuki; Koyama, Yukinori; Murayama, Haruno; Fukuda, Katsutoshi; Hatano, Masaharu; Arai, Hajime; Uchimoto, Yoshiharu; Terai, Takayuki

    2016-03-01

    LiFePO4 is a practically used cathode material for lithium-ion batteries due to a high theoretical capacity, high cycle capability and the high-rate performance. The metastable LixFePO4 (LxFP) phase with an intermediate composition appears in the non-equilibrium state at high-rate condition. However, the formation process of the metastable LxFP phase and its impact to the electrochemical property are still unclear. In order to elucidate these points, we directly observed the phase transition behavior by applying operando XRD during 10C charge-discharge. LxFP phase does not form in charge reaction but preferentially forms in discharge reaction. The phase transition from LxFP to Li-rich phase is less likely to proceed in the end of discharge reaction. The asymmetric phase transition between LiFePO4 and FePO4 results in decreasing the discharge capacity and increasing the irreversible capacity at high-rate conditions.

  9. Synergistic stabilization of metastable Fe23B6 and γ-Fe in undercooled Fe83B17

    NASA Astrophysics Data System (ADS)

    Quirinale, D. G.; Rustan, G. E.; Kreyssig, A.; Goldman, A. I.

    2015-06-01

    Previous investigations of undercooled liquid Fe83B17 near the eutectic composition have found that metastable crystalline phases, such as Fe23B6, can be formed and persist down to ambient temperature even for rather modest cooling rates. Using time-resolved high-energy x-ray diffraction on electrostatically levitated samples of Fe83B17, we demonstrate that the Fe23B6 metastable phase and fcc γ-Fe grow coherently from the undercooled Fe83B17 liquid and effectively suppress the formation of the equilibrium Fe2B + bcc α-Fe phases. The stabilization of γ-Fe offers another opportunity for experimental investigations of magnetism in metastable fcc iron.

  10. INTRODUCTION: Nonequilibrium Processes in Plasmas

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran; Marić, Dragana; Malović, Gordana

    2009-07-01

    This book aims to give a cross section from a wide range of phenomena that, to different degrees, fall under the heading of non-equilibrium phenomenology. The selection is, of course, biased by the interests of the members of the scientific committee and of the FP6 Project 026328 IPB-CNP Reinforcing Experimental Centre for Non-equilibrium Studies with Application in Nano-technologies, Etching of Integrated Circuits and Environmental Research. Some of the papers included here are texts based on selected lectures presented at the Second International Workshop on Non-equilibrium Processes in Plasmas and Environmental Science. However, this volume is not just the proceedings of that conference as it contains a number of papers from authors that did not attend the conference. The goal was to put together a volume that would cover the interests of the project and support further work. It is published in the Institute of Physics journal Journal of Physics: Conference Series to ensure a wide accessibility of the articles. The texts presented here range from in-depth reviews of the current status and past achievements to progress reports of currently developed experimental devices and recently obtained still unpublished results. All papers have been refereed twice, first when speakers were selected based on their reputation and recently published results, and second after the paper was submitted both by the editorial board and individual assigned referees according to the standards of the conference and of the journal. Nevertheless, we still leave the responsibility (and honours) for the contents of the papers to the authors. The papers in this book are review articles that give a summary of the already published work or present the work in progress that will be published in full at a later date (or both). In the introduction to the first volume, in order to show how far reaching, ubiquitous and important non-equilibrium phenomena are, we claimed that ever since the early

  11. Thermodynamics of Stability of Nonequilibrium Steady States.

    ERIC Educational Resources Information Center

    Rastogi, R. P.; Shabd, Ram

    1983-01-01

    Presented is a concise and critical account of developments in nonequilibrium thermodynamics. The criterion for stability of nonequilibrium steady states is critically examined for consecutive and monomolecular triangular reactions, autocatalytic reactions, auto-inhibited reactions, and the Lotka-Volterra model. (JN)

  12. Waveform effects of a metastable olivine tongue in subducting slabs

    NASA Technical Reports Server (NTRS)

    Vidale, John E.; Williams, Quentin; Houston, Heidi

    1991-01-01

    Velocity models of subducting slabs with a kinetically-depressed olivine to beta- and gamma-spinel transition are constructed, and the effect that such structures would have on teleseismic P waveforms are examined using a full-wave finite-difference method. These 2D calculations yielded waveforms at a range of distances in the downdip direction. The slab models included a wedge-shaped, low-velocity metastable olivine tongue (MOTO) to a depth of 670 km, as well as a plausible thermal anomaly; one model further included a 10-km-thick fast layer on the surface of the slab. The principal effect of MOTO is to produce grazing reflections at wide angles off the phase boundary, generating a secondary arrival 0 to 4 seconds after the initial arrival depending on the take-off angle. The amplitude and timing of this feature vary with the lateral location of the seismic source within the slab cross-section.

  13. Geometrical thermodynamics analysis of the change in the Gibbs energy during the nonequilibrium solidification of eutectic alloys

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. D.; Sobolev, A. Yu.; Sobol', O. V.; Frolova, S. A.; Shchebetovskaya, N. V.

    2015-09-01

    Geometrical thermodynamics is used to analyze the possible dependences of the Gibbs energy on temperature and component concentration in the two-phase region during nonequilibrium solidification of eutectic alloys.

  14. Nonequilibrium effects in self-assembled mesophase materials: unexpected supercooling effects for cubosomes and hexosomes.

    PubMed

    Dong, Yao-Da; Tilley, Adam J; Larson, Ian; Lawrence, M Jayne; Amenitsch, Heinz; Rappolt, Michael; Hanley, Tracey; Boyd, Ben J

    2010-06-01

    Polar lipids often exhibit equilibrium liquid crystalline structures in excess water, such as the bicontinuous cubic phases (Q(II)) at low temperatures and inverse hexagonal phase (H(II)) at higher temperatures. In this study, the equilibrium and nonequilibrium phase behavior of glyceryl monooleate (GMO) and phytantriol (PHYT) systems in excess water were investigated using both continuous heating and cooling cycles, and rapid temperature changes. Evolution of the phase structure was followed using small-angle X-ray scattering (SAXS). During cooling, not only was supercooling of the liquid crystalline systems by up to 25 degrees C observed, but evidence for nonequilibrium phase structures (not present on heating; such as the gyroid cubic phase only present at low water content in equilibrium) was also apparent. The nonequilibrium phases were surprisingly stable, with return to equilibrium structure for dispersed submicrometer sized particle systems taking more than 13 h in some cases. Inhibition of phase nucleation was the key to greater supercooling effects observed for the dispersed particles compared to the bulk systems. These findings highlight the need for continued study into the nonequilibrium phase structures for these types of systems, as this may influence performance in applications such as drug delivery. PMID:20364857

  15. Entropy-production-driven oscillators in simple nonequilibrium networks

    NASA Astrophysics Data System (ADS)

    Weber, Jeffrey K.; Pande, Vijay S.

    2015-03-01

    The development of tractable nonequilibrium simulation methods represents a bottleneck for efforts to describe the functional dynamics that occur within living cells. We here employ a nonequilibrium approach called the λ ensemble to characterize the dissipative dynamics of a simple Markovian network driven by an external potential. In the highly dissipative regime brought about by the λ bias, we observe a dynamical structure characteristic of cellular architectures: The entropy production drives a damped oscillator over state populations in the network. We illustrate the properties of such oscillations in weakly and strongly driven regimes, and we discuss how control structures associated with the "dynamical phase transition" in the system can be related to switches and oscillators in cellular dynamics.

  16. Boltzmann equation solver adapted to emergent chemical non-equilibrium

    SciTech Connect

    Birrell, Jeremiah; Wilkening, Jon; Rafelski, Johann

    2015-01-15

    We present a novel method to solve the spatially homogeneous and isotropic relativistic Boltzmann equation. We employ a basis set of orthogonal polynomials dynamically adapted to allow for emergence of chemical non-equilibrium. Two time dependent parameters characterize the set of orthogonal polynomials, the effective temperature T(t) and phase space occupation factor ϒ(t). In this first paper we address (effectively) massless fermions and derive dynamical equations for T(t) and ϒ(t) such that the zeroth order term of the basis alone captures the particle number density and energy density of each particle distribution. We validate our method and illustrate the reduced computational cost and the ability to easily represent final state chemical non-equilibrium by studying a model problem that is motivated by the physics of the neutrino freeze-out processes in the early Universe, where the essential physical characteristics include reheating from another disappearing particle component (e{sup ±}-annihilation)

  17. Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe-Sb2Te3 pseudobinary systems.

    PubMed

    Matsunaga, Toshiyuki; Yamada, Noboru; Kubota, Yoshiki

    2004-12-01

    The most widely used memory materials for rewritable phase-change optical disks are the GeTe-Sb2Te3 pseudobinary compounds. Among these compounds, Ge2Sb2Te5 crystallizes into a cubic close-packed structure with a six-layer period (metastable phase) in the non-thermal equilibrium state, and a trigonal structure with a nine-layer period (stable phase) in the thermal equilibrium state. The structure of the stable phase has Ge/Sb layers in which Ge and Sb are randomly occupied, as does the structure of the metastable phase, while the conventionally estimated structure had separate layers of Ge and Te. The metastable and stable phases are very similar in that Te and Ge/Sb layers stack alternately to form the crystal. The major differences between these phases are: (i) the stable phase has pairs of adjacent Te layers that are not seen in the metastable phase and (ii) only the metastable phase contains vacancies of ca 20 at. % in the Ge/Sb layers. PMID:15534378

  18. Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS2

    PubMed Central

    Vaskivskyi, Igor; Gospodaric, Jan; Brazovskii, Serguei; Svetin, Damjan; Sutar, Petra; Goreshnik, Evgeny; Mihailovic, Ian A.; Mertelj, Tomaz; Mihailovic, Dragan

    2015-01-01

    Controllable switching between metastable macroscopic quantum states under nonequilibrium conditions induced either by light or with an external electric field is rapidly becoming of great fundamental interest. We investigate the relaxation properties of a “hidden” (H) charge density wave (CDW) state in thin single crystals of the layered dichalcogenide 1T-TaS2, which can be reached by either a single 35-fs optical laser pulse or an ~30-ps electrical pulse. From measurements of the temperature dependence of the resistivity under different excitation conditions, we find that the metallic H state relaxes to the insulating Mott ground state through a sequence of intermediate metastable states via discrete jumps over a “Devil’s staircase.” In between the discrete steps, an underlying glassy relaxation process is observed, which arises because of reciprocal-space commensurability frustration between the CDW and the underlying lattice. We show that the metastable state relaxation rate may be externally stabilized by substrate strain, thus opening the way to the design of nonvolatile ultrafast high-temperature memory devices based on switching between CDW states with large intrinsic differences in electrical resistance. PMID:26601218

  19. Nonequilibrium breakdown of a correlated insulator through pattern formation

    NASA Astrophysics Data System (ADS)

    Ribeiro, Pedro; Antipov, Andrey E.; Rubtsov, Alexey N.

    2016-04-01

    We study the breakdown of an interaction-induced insulator under an imposed bias voltage. A rich voltage-temperature phase diagram is found that contains phases with a spatially patterned charge gap. Nonequilibrium conditions are shown to be able to change the antiferromagnetic nature of the equilibrium correlations. Above a threshold voltage, smaller than the charge gap, the formation of patterns occurs together with the emergence of midgap states yielding a finite conductance. We discuss the experimental implications of this proposed scenario for the breakdown of the insulating state.

  20. Nucleation of metastable aragonite CaCO3 in seawater

    SciTech Connect

    Sun, Wenhao; Jayaraman, Saivenkataraman; Chen, Wei; Persson, Kristin A.; Ceder, Gerbrand

    2015-03-04

    Predicting the conditions in which a compound adopts a metastable structure when it crystallizes out of solution is an unsolved and fundamental problem in materials synthesis, and one which, if understood and harnessed, could enable the rational design of synthesis pathways toward or away from metastable structures. Crystallization of metastable phases is particularly accessible via low-temperature solution-based routes, such as chimie douce and hydrothermal synthesis, but although the chemistry of the solution plays a crucial role in governing which polymorph forms, how it does so is poorly understood. Here, we demonstrate an ab initio technique to quantify thermodynamic parameters of surfaces and bulks in equilibrium with an aqueous environment, enabling the calculation of nucleation barriers of competing polymorphs as a function of solution chemistry, thereby predicting the solution conditions governing polymorph selection. We apply this approach to resolve the long-standing “calcite–aragonite problem”––the observation that calcium carbonate precipitates as the metastable aragonite polymorph in marine environments, rather than the stable phase calcite––which is of tremendous relevance to biomineralization, carbon sequestration, paleogeochemistry, and the vulnerability of marine life to ocean acidification. We identify a direct relationship between the calcite surface energy and solution Mg–Ca ion concentrations, showing that the calcite nucleation barrier surpasses that of metastable aragonite in solutions with Mg:Ca ratios consistent with modern seawater, allowing aragonite to dominate the kinetics of nucleation. Our ability to quantify how solution parameters distinguish between polymorphs marks an important step toward the ab initio prediction of materials synthesis pathways in solution.

  1. Noise signatures of metastable resistivity states in ferromagnetic insulating manganite

    SciTech Connect

    Przybytek, J.; Fink-Finowicki, J.; Puźniak, R.; Markovich, V.; Jung, G.

    2015-07-28

    Pronounced noise signatures enabling one to discriminate metastable resistivity states in La{sub 0.86}Ca{sub 0.14}MnO{sub 3} single crystals have been observed. The normalized noise spectra for metastable resisitivity differ both in shape and magnitude, indicating that the metastable state is associated with transition of the electronic system into another local minimum of the potential landscape. Such scenario is consistent with freezing of the electronic system into a Coulomb glass state.

  2. Nonequilibrium structure in sequential assembly

    NASA Astrophysics Data System (ADS)

    Popov, Alexander V.; Craven, Galen T.; Hernandez, Rigoberto

    2015-11-01

    The assembly of monomeric constituents into molecular superstructures through sequential-arrival processes has been simulated and theoretically characterized. When the energetic interactions allow for complete overlap of the particles, the model is equivalent to that of the sequential absorption of soft particles on a surface. In the present work, we consider more general cases by including arbitrary aggregating geometries and varying prescriptions of the connectivity network. The resulting theory accounts for the evolution and final-state configurations through a system of equations governing structural generation. We find that particle geometries differ significantly from those in equilibrium. In particular, variations of structural rigidity and morphology tune particle energetics and result in significant variation in the nonequilibrium distributions of the assembly in comparison to the corresponding equilibrium case.

  3. Nonequilibrium fluctuations in a resistor

    NASA Astrophysics Data System (ADS)

    Garnier, N.; Ciliberto, S.

    2005-06-01

    In small systems where relevant energies are comparable to thermal agitation, fluctuations are of the order of average values. In systems in thermodynamical equilibrium, the variance of these fluctuations can be related to the dissipation constant in the system, exploiting the fluctuation-dissipation theorem. In nonequilibrium steady systems, fluctuations theorems (FT) additionally describe symmetry properties of the probability density functions (PDFs) of the fluctuations of injected and dissipated energies. We experimentally probe a model system: an electrical dipole driven out of equilibrium by a small constant current I , and show that FT are experimentally accessible and valid. Furthermore, we stress that FT can be used to measure the dissipated power P¯ =R I2 in the system by just studying the PDFs’ symmetries.

  4. Nonequilibrium migration in human history.

    PubMed Central

    Wakeley, J

    1999-01-01

    A nonequilibrium migration model is proposed and applied to genetic data from humans. The model assumes symmetric migration among all possible pairs of demes and that the number of demes is large. With these assumptions it is straightforward to allow for changes in demography, and here a single abrupt change is considered. Under the model this change is identical to a change in the ancestral effective population size and might be caused by changes in deme size, in the number of demes, or in the migration rate. Expressions for the expected numbers of sites segregating at particular frequencies in a multideme sample are derived. A maximum-likelihood analysis of independent polymorphic restriction sites in humans reveals a decrease in effective size. This is consistent with a change in the rates of migration among human subpopulations from ancient low levels to present high ones. PMID:10581291

  5. Metastable Krypton Beam Source via Two-Photon Pumping Technique

    SciTech Connect

    Wong, W.W.; Young, L.

    2003-01-01

    Metastable beams of rare gas atoms have wide applications in chemical analysis of samples, as well as in aiding understanding of fundamental processes and physical attributes. Most current sources of metastable rare gas atomic beams, however, are limited in their flux density, which greatly reduces their utility in applications such as low level trace analysis and precision measurements. Previous work has demonstrated feasibility of metastable krypton production via two-photon pumping, and this paper extends that possibility into beam form. Further optimization on this scheme, moreover, promises 100-fold increase of metastable krypton flux density over that of an rf-driven discharge.

  6. Nonequilibrium radiative hypersonic flow simulation

    NASA Astrophysics Data System (ADS)

    Shang, J. S.; Surzhikov, S. T.

    2012-08-01

    Nearly all the required scientific disciplines for computational hypersonic flow simulation have been developed on the framework of gas kinetic theory. However when high-temperature physical phenomena occur beneath the molecular and atomic scales, the knowledge of quantum physics and quantum chemical-physics becomes essential. Therefore the most challenging topics in computational simulation probably can be identified as the chemical-physical models for a high-temperature gaseous medium. The thermal radiation is also associated with quantum transitions of molecular and electronic states. The radiative energy exchange is characterized by the mechanisms of emission, absorption, and scattering. In developing a simulation capability for nonequilibrium radiation, an efficient numerical procedure is equally important both for solving the radiative transfer equation and for generating the required optical data via the ab-initio approach. In computational simulation, the initial values and boundary conditions are paramount for physical fidelity. Precise information at the material interface of ablating environment requires more than just a balance of the fluxes across the interface but must also consider the boundary deformation. The foundation of this theoretic development shall be built on the eigenvalue structure of the governing equations which can be described by Reynolds' transport theorem. Recent innovations for possible aerospace vehicle performance enhancement via an electromagnetic effect appear to be very attractive. The effectiveness of this mechanism is dependent strongly on the degree of ionization of the flow medium, the consecutive interactions of fluid dynamics and electrodynamics, as well as an externally applied magnetic field. Some verified research results in this area will be highlighted. An assessment of all these most recent advancements in nonequilibrium modeling of chemical kinetics, chemical-physics kinetics, ablation, radiative exchange

  7. Deep Metastable Eutectic Nanometer-Scale Particles in the MgO-Al2O3-SiO2 System

    NASA Technical Reports Server (NTRS)

    Reitmeijer, Frans J. M.; Nash, J. A., III

    2011-01-01

    Laboratory vapor phase condensation experiments systematically yield amorphous, homogeneous, nanoparticles with unique deep metastable eutectic compositions. They formed during the nucleation stage in rapidly cooling vapor systems. These nanoparticles evidence the complexity of the nucleation stage. Similar complex behavior may occur during the nucleation stage in quenched-melt laboratory experiments. Because of the bulk size of the quenched system many of such deep metastable eutectic nanodomains will anneal and adjust to local equilibrium but some will persist metastably depending on the time-temperature regime and melt/glass transformation.

  8. Non-equilibrium Transport of Light

    NASA Astrophysics Data System (ADS)

    Wang, Chiao-Hsuan; Taylor, Jacob

    Non-equilibrium Transport of Light The thermalization of light under conditions of parametric coupling to a bath provides a robust chemical potential for light. We study non-equilibrium transport of light using non-equilibrium Green's function approach under the parametric coupling scheme, and explore a potential photonic analogue to the Landauer transport equation. Our results provide understandings of many-body states of photonic matter with chemical potential imbalances. The transport theory of light paves the way for quantum simulation and even practical applications of diode-like circuits using quantum photonic sources in the microwave and optical domain.

  9. On Nonequilibrium Radiation in Hydrogen Shock Layers

    NASA Technical Reports Server (NTRS)

    Park, Chul

    2005-01-01

    The influence of thermochemical nonequilibrium in the shock layer over a vehicle entering the atmosphere of an outer planet is examined qualitatively. The state of understanding of the heating environment for the Galileo Probe vehicle is first reviewed. Next, the possible reasons for the high recession in the frustum region and the low recession in the stagnation region are examined. The state of understanding of the nonequilibrium in the hydrogen flow is then examined. For the entry flight in Neptune, the possible influence of nonequilibrium is predicted.

  10. Metastable Metal Hydrides for Hydrogen Storage

    DOE PAGESBeta

    Graetz, Jason

    2012-01-01

    The possibility of using hydrogen as a reliable energy carrier for both stationary and mobile applications has gained renewed interest in recent years due to improvements in high temperature fuel cells and a reduction in hydrogen production costs. However, a number of challenges remain and new media are needed that are capable of safely storing hydrogen with high gravimetric and volumetric densities. Metal hydrides and complex metal hydrides offer some hope of overcoming these challenges; however, many of the high capacity “reversible” hydrides exhibit a large endothermic decomposition enthalpy making it difficult to release the hydrogen at low temperatures. Onmore » the other hand, the metastable hydrides are characterized by a low reaction enthalpy and a decomposition reaction that is thermodynamically favorable under ambient conditions. The rapid, low temperature hydrogen evolution rates that can be achieved with these materials offer much promise for mobile PEM fuel cell applications. However, a critical challenge exists to develop new methods to regenerate these hydrides directly from the reactants and hydrogen gas. This spotlight paper presents an overview of some of the metastable metal hydrides for hydrogen storage and a few new approaches being investigated to address the key challenges associated with these materials.« less

  11. Nonequilibrium statistical mechanical models for cytoskeletal assembly: Towards understanding tensegrity in cells

    NASA Astrophysics Data System (ADS)

    Shen, Tongye; Wolynes, Peter G.

    2005-10-01

    The cytoskeleton is not an equilibrium structure. To develop theoretical tools to investigate such nonequilibrium assemblies, we study a statistical physical model of motorized spherical particles. Though simple, it captures some of the key nonequilibrium features of the cytoskeletal networks. Variational solutions of the many-body master equation for a set of motorized particles accounts for their thermally induced Brownian motion as well as for the motorized kicking of the structural elements. These approximations yield stability limits for crystalline phases and for frozen amorphous structures. The methods allow one to compute the effects of nonequilibrium behavior and adhesion (effective cross-linking) on the mechanical stability of localized phases as a function of density, adhesion strength, and temperature. We find that nonequilibrium noise does not necessarily destabilize mechanically organized structures. The nonequilibrium forces strongly modulate the phase behavior and have comparable effect as the adhesion due to cross-linking. Modeling transitions such as these allows the mechanical properties of cytoskeleton to rapidly and adaptively change. The present model provides a statistical mechanical underpinning for a tensegrity picture of the cytoskeleton.

  12. In situ high pressure investigations on metastable BiBO3

    NASA Astrophysics Data System (ADS)

    Khanna, Atul; Mishra, A. K.; Sharma, S. M.

    2016-05-01

    Synchrotron based angle dispersive x-ray diffraction (ADXRD) studies were performed on metastable crystalline bismuth orthoborate (BiBO3) up to 14.5 GPa during compression and decompression cycle. These studies revealed that the BiBO3 is unstable and it converts to Bi4B2O9 phase at high pressure. Moreover the transformation is found to be irreversible.

  13. Periodical Micro-Structuring of Hydride Containing Metastable Aluminumoxide using Laser Interference Metallurgy

    SciTech Connect

    Veith, Michael; Andres, Katrin; Petersen, Christian; Daniel, Claus; Holzapfel, Christian; M�cklich, Frank

    2005-01-01

    Layers of the metastable ceramic HAlO are sensitive to heat: These layers transform to biphasic Al/Al2O3 due to elimination of di-hydrogen. Using interfering Nd:YAG laser beams, periodic patterns can be produced. By these methods two dimensional structuring is obtained with the characteristics of distinctly different phases and different chemical compositions at periodic places on the layer.

  14. Universal Nonequilibrium Properties of Dissipative Rydberg Gases

    NASA Astrophysics Data System (ADS)

    Marcuzzi, Matteo; Levi, Emanuele; Diehl, Sebastian; Garrahan, Juan P.; Lesanovsky, Igor

    2014-11-01

    We investigate the out-of-equilibrium behavior of a dissipative gas of Rydberg atoms that features a dynamical transition between two stationary states characterized by different excitation densities. We determine the structure and properties of the phase diagram and identify the universality class of the transition, both for the statics and the dynamics. We show that the proper dynamical order parameter is in fact not the excitation density and find evidence that the dynamical transition is in the "model A " universality class; i.e., it features a nontrivial Z2 symmetry and a dynamics with nonconserved order parameter. This sheds light on some relevant and observable aspects of dynamical transitions in Rydberg gases. In particular it permits a quantitative understanding of a recent experiment [C. Carr, Phys. Rev. Lett. 111, 113901 (2013)] which observed bistable behavior as well as power-law scaling of the relaxation time. The latter emerges not due to critical slowing down in the vicinity of a second order transition, but from the nonequilibrium dynamics near a so-called spinodal line.

  15. Nonequilibrium fluctuations for linear diffusion dynamics.

    PubMed

    Kwon, Chulan; Noh, Jae Dong; Park, Hyunggyu

    2011-06-01

    We present the theoretical study on nonequilibrium (NEQ) fluctuations for diffusion dynamics in high dimensions driven by a linear drift force. We consider a general situation in which NEQ is caused by two conditions: (i) drift force not derivable from a potential function, and (ii) diffusion matrix not proportional to the unit matrix, implying nonidentical and correlated multidimensional noise. The former is a well-known NEQ source and the latter can be realized in the presence of multiple heat reservoirs or multiple noise sources. We develop a statistical mechanical theory based on generalized thermodynamic quantities such as energy, work, and heat. The NEQ fluctuation theorems are reproduced successfully. We also find the time-dependent probability distribution function exactly as well as the NEQ work production distribution P(W) in terms of solutions of nonlinear differential equations. In addition, we compute low-order cumulants of the NEQ work production explicitly. In two dimensions, we carry out numerical simulations to check out our analytic results and also to get P(W). We find an interesting dynamic phase transition in the exponential tail shape of P(W), associated with a singularity found in solutions of the nonlinear differential equation. Finally, we discuss possible realizations in experiments. PMID:21797340

  16. Field Theory and Orientational Phase Ordering of Sequence Disordered LC Heteropolymers

    NASA Astrophysics Data System (ADS)

    Gutman, Lorin; Shakhnovich, Eugene

    2002-03-01

    A theory of fields for a solution of polymers with disordered sequences of flexible and mesogenic segments is solved using a novel creation-annihilation operator formalism. The 0 sequence disorder limit is the the A. M. Gupta and S. F. Edwards, J. Chem. Phys., 98, 1588, (1993) result for long homopolymer chains. Sequence disorder, alignment propensity, stiffness and lyotropic impact on orientation and coexistence of phases from numerical unconstrained iteration of orientational tensors are presented. We find that heterogeneity in sequence impacts strongly the density order/disorder threshold. The Maxwell construction shows a three fold increase in coexistence width compared with the homopolymer analogue. The non-equilibrium meta-stable domain scale, obtained by calculation of Doring free energy from field theory and nucleation theory is of the order of μ m, and agrees well with recent experiments on DLCPs.

  17. Metastable Tetragonal CdWO4 Nanoparticles Synthesized with a Solvothermal Method

    SciTech Connect

    Rondinone, Adam Justin; Travaglini, Dustin H; Pawel, Michelle D; Mahurin, Shannon Mark; Dai, Sheng

    2007-01-01

    CdWO{sub 4} has only previously been reported in the monoclinic, or wolframite, phase. Here we report the first metastable, tetragonal or scheelite, CdWO4 nanopowder. The tetragonal CdWO{sub 4} was synthesized by a propylene glycol solvothermal method. The scheelite phase is stabilized by a combination of high surface area and surface complexation by the propylene glycol. The CdWO{sub 4} is stable at 1 bar to 300 C, and converts back to the monoclinic wolframite phase between 300 and 500 C. The nanopowder exhibits cubic morphology and the average particle size of the nanopowder is around 50 nm.

  18. Mathematical modeling of non-equilibrium sorption

    NASA Astrophysics Data System (ADS)

    Kaliev, Ibragim A.; Mukhambetzhanov, Saltanbek T.; Sabitova, Gulnara S.; Sakhit, Anghyz E.

    2016-08-01

    We consider the system of equations modeling the process of non-equilibrium sorption. Difference approximation of differential problem by the implicit scheme is formulated. The solution of the difference problem is constructed using the sweep method. Based on the numerical results we can conclude the following: when the relaxation time decreases to 0, then the solution of non-equilibrium problem tends with increasing time to solution of the equilibrium problem.

  19. Nonequilibrium Casimir-Polder plasmonic interactions

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Messina, Riccardo; Dalvit, Diego A. R.; Intravaia, Francesco

    2016-04-01

    We investigate how the combination of nonequilibrium effects and material properties impacts on the Casimir-Polder interaction between an atom and a surface. By addressing systems with temperature inhomogeneities and laser interactions, we show that nonmonotonous energetic landscapes can be produced where barriers and minima appear. Our treatment provides a self-consistent quantum theoretical framework for investigating the properties of a class of nonequilibrium atom-surface interactions.

  20. Quantum thermodynamics: a nonequilibrium Green's function approach.

    PubMed

    Esposito, Massimiliano; Ochoa, Maicol A; Galperin, Michael

    2015-02-27

    We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Green's functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit. PMID:25768745

  1. Nitrogen metastable (N2(A3 Σu + )) in a cold argon atmospheric pressure plasma jet: Shielding and gas composition

    NASA Astrophysics Data System (ADS)

    Iseni, Sylvain; Bruggeman, Peter J.; Weltmann, Klaus-Dieter; Reuter, Stephan

    2016-05-01

    N 2 ( A 3 Σu + ) metastable species are detected and measured in a non-equilibrium atmospheric pressure plasma jet by laser induced fluorescence. A shielding device is used to change the ambient conditions additionally to the feeding gas composition. Varying the amount of N2 and air admixed to the feeding gas as well as changing the shielding gas from N2 to air reveals that the highest N 2 ( A 3 Σu + ) is achieved in the case of air admixtures in spite of the enhanced collisional quenching due to the presence of O2. The reasons for these observations are discussed in detail.

  2. Theory for non-equilibrium statistical mechanics.

    PubMed

    Attard, Phil

    2006-08-21

    This paper reviews a new theory for non-equilibrium statistical mechanics. This gives the non-equilibrium analogue of the Boltzmann probability distribution, and the generalization of entropy to dynamic states. It is shown that this so-called second entropy is maximized in the steady state, in contrast to the rate of production of the conventional entropy, which is not an extremum. The relationships of the new theory to Onsager's regression hypothesis, Prigogine's minimal entropy production theorem, the Langevin equation, the formula of Green and Kubo, the Kawasaki distribution, and the non-equilibrium fluctuation and work theorems, are discussed. The theory is worked through in full detail for the case of steady heat flow down an imposed temperature gradient. A Monte Carlo algorithm based upon the steady state probability density is summarized, and results for the thermal conductivity of a Lennard-Jones fluid are shown to be in agreement with known values. Also discussed is the generalization to non-equilibrium mechanical work, and to non-equilibrium quantum statistical mechanics. As examples of the new theory two general applications are briefly explored: a non-equilibrium version of the second law of thermodynamics, and the origin and evolution of life. PMID:16883388

  3. First principles nonequilibrium plasma mixing

    NASA Astrophysics Data System (ADS)

    Ticknor, C.; Herring, S. D.; Lambert, F.; Collins, L. A.; Kress, J. D.

    2014-01-01

    We have performed nonequilibrium classical and quantum-mechanical molecular dynamics simulations that follow the interpenetration of deuterium-tritium (DT) and carbon (C) components through an interface initially in hydrostatic and thermal equilibrium. We concentrate on the warm, dense matter regime with initial densities of 2.5-5.5 g/cm3 and temperatures from 10 to 100 eV. The classical treatment employs a Yukawa pair-potential with the parameters adjusted to the plasma conditions, and the quantum treatment rests on an orbital-free density functional theory at the Thomas-Fermi-Dirac level. For times greater than about a picosecond, the component concentrations evolve in accordance with Fick's law for a classically diffusing fluid with the motion, though, described by the mutual diffusion coefficient of the mixed system rather than the self-diffusion of the individual components. For shorter times, microscopic processes control the clearly non-Fickian dynamics and require a detailed representation of the electron probability density in space and time.

  4. Controlled production of the elusive metastable form II of acetaminophen (paracetamol): a fully scalable templating approach in a cooling environment.

    PubMed

    Agnew, Lauren R; Cruickshank, Dyanne L; McGlone, Thomas; Wilson, Chick C

    2016-05-31

    A scalable, transferable, cooling crystallisation route to the elusive, metastable, form II of the API acetaminophen (paracetamol) has been developed using a multicomponent "templating" approach, delivering 100% polymorphic phase pure form II at scales up to 120 g. Favourable solubility and stability properties are found for the form II samples. PMID:26926388

  5. Anomalous thermal hysteresis of two first order phase transitions in relaxor ferroelectric 0.945 Pb(Zn1/3Nb2/3)O3-0.055PbTiO3 crystals studied by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Islam, Md. Saidul; Tsukada, Shinya; Kojima, Seiji

    2016-03-01

    The thermal hysteresis has been studied by Brillouin scattering in the relaxor ferroelectric (1 - x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 with x = 0.055 (i.e., below the morphotropic phase boundary composition x ˜ 0.08). On heating from room temperature, the first order rhombohedral to tetragonal phase transition occurs at TR-T = 397 K, then the first order tetragonal to cubic transition occurs at TT-C = 425 K. However, on cooling from high temperature, only the diffusive phase transition was observed around TC-R = 401 K. Such anomalous thermal hysteresis is attributed to the metastable non-equilibrium states induced by supercooling due to quenching of nano-domains by the random electric fields of the B-site charge disorder.

  6. Photoassociative spectroscopy of ultracold metastable argon

    SciTech Connect

    Shaffer, M. K.; Ranjit, G.; Sukenik, C. I.; Walhout, M.

    2011-05-15

    We present results of photoassociative spectroscopy performed on ultracold metastable argon atoms in a magneto-optical trap. Ion spectra are obtained with laser detuning up to a few gigahertz below the 4s[3/2]{sub 2}{yields}4p[5/2]{sub 3} trapping transition at 811 nm and with intensities in a range of {approx}(10{sup 2}-10{sup 5})I{sub Sat}. We also compute dipole-dipole potentials for both singly and doubly excited diatomic molecules and use a Leroy-Bernstein analysis to determine the approximate vibrational spacings in the (s+p) and (p+p) manifolds. Based on this theoretical framework, we explain a broad background feature in our data and suggest that double-excitation mechanisms are likely responsible for sharp dips in the ion signal.

  7. Polymorphism and metastable growth of DKDP

    NASA Astrophysics Data System (ADS)

    Jiang, Min-hua; Fang, Chang-shui; Yu, Xi-ling; Wang, Min; Zheng, Tao-hong; Gao, Zhang-shou

    1981-05-01

    Single crystal K( H1- xDx) 2PO4, DKDP or deuterated pottassium dihydrogen phosphate in the low temperature tetragonal form is desired as single crystals for electro-optic applications. Its growth by slow cooling of aqueous solutions is limited by the fact that the temperature interval for cooling is usually limited by the upper temperature set by the tetragonal-monoclinic transition. The dependence of the transition temperature on deuterium concentration in solution has been studied. Careful studies showed that at moderate conditions of supersaturation the metastable tetragonal form persists and can be crystallized in the monoclinic stability field. These results were used to allow growth of good quality crystals over an extended temperature interval including the monoclinic stability region.

  8. A well-structured metastable ceria surface

    SciTech Connect

    Olbrich, R.; Pieper, H. H.; Oelke, R.; Wilkens, H.; Wollschläger, J.; Reichling, M.; Zoellner, M. H.; Schroeder, T.

    2014-02-24

    By the growth of a 180 nm thick film on Si(111), we produce a metastable ceria surface with a morphology dominated by terraced pyramids with an oriented triangular base. Changes in the nanoscale surface morphology and local surface potential due to annealing at temperatures ranging from 300 K to 1150 K in the ultra-high vacuum are studied with non-contact atomic force microscopy and Kelvin probe force microscopy. As the surface is stable in the temperature range of 300 K to 850 K, it is most interesting for applications requiring regular steps with a height of one O-Ce-O triple layer.

  9. Navigating the ribosome's metastable energy landscape.

    PubMed

    Munro, James B; Sanbonmatsu, Kevin Y; Spahn, Christian M T; Blanchard, Scott C

    2009-08-01

    The molecular mechanisms by which tRNA molecules enter and transit the ribosome during mRNA translation remains elusive. However, recent genetic, biochemical and structural studies offer important new findings into the ordered sequence of events underpinning the translocation process that help place the molecular mechanism within reach. In particular, new structural and kinetic insights have been obtained regarding tRNA movements through 'hybrid state' configurations. These dynamic views reveal that the macromolecular ribosome particle, like many smaller proteins, has an intrinsic capacity to reversibly sample an ensemble of similarly stable native states. Such perspectives suggest that substrates, factors and environmental cues contribute to translation regulation by helping the dynamic system navigate through a highly complex and metastable energy landscape. PMID:19647434

  10. Metastable Atom Detection Using Solid N2

    NASA Astrophysics Data System (ADS)

    McConkey, William; Kedzierski, Wladek; Lukic, Dragan

    2014-05-01

    Over the years our laboratory has been a center for the use of rare-gas matrices at temperatures below 70K in the detection and study of low energy atomic and molecular metastable particles [see Kedzierski et al., Can J Phys, 91, 1044, (2013) for Refs]. Recently we have extended this work to study the use of a solid nitrogen matrix at temperatures below 35K as a detector of O(1S) atoms. This proves to be at least as sensitive as any rare gas matrix though the lifetime of the excimer formed in the matrix is somewhat longer (~ 20 μs) than what is observed in a Xe matrix for example. The detailed performance of the detector as a function of temperature and other parameters will be presented at the conference. The authors thank NSERC and CFI, (Canada), for financial support.

  11. Selective removal of either metastable species from a mixed 3P 0,2 rare-gas metastable beam

    NASA Technical Reports Server (NTRS)

    Dunning, F. B.; Cook, T. B.; West, W. P.; Stebbings, R. F.

    1975-01-01

    A tunable CW laser has been used to selectively remove either of the two metastable species, 3P 0,2, which are initially present in a neon metastable beam. The method is applicable to other rare gases and provides the opportunity for separate investigation of effects due to atoms in either the 3P 0 or 3P 2 state.

  12. Dielectric breakdown and avalanches at nonequilibrium metal-insulator transitions.

    PubMed

    Shekhawat, Ashivni; Papanikolaou, Stefanos; Zapperi, Stefano; Sethna, James P

    2011-12-30

    Motivated by recent experiments on the finite temperature Mott transition in VO(2) films, we propose a classical coarse-grained dielectric breakdown model where each degree of freedom represents a nanograin which transitions from insulator to metal with increasing temperature and voltage at random thresholds due to quenched disorder. We describe the properties of the resulting nonequilibrium metal-insulator transition and explain the universal characteristics of the resistance jump distribution. We predict that by tuning voltage, another critical point is approached, which separates a phase of boltlike avalanches from percolationlike ones. PMID:22243320

  13. Neutral atom lithography with metastable helium

    NASA Astrophysics Data System (ADS)

    Allred, Claire Shean

    In this dissertation we describe our performance of resist assisted neutral atom lithography using a bright beam of metastable 23S1 Helium (He*). Metastable Helium atoms have 20 eV of internal energy making them easy to detect and able to destroy a resist. The He* is produced by a reverse flow DC discharge source and then collimated with the bichromatic force, followed by three optical molasses velocity compression stages. The atoms in the resulting beam have a mean longitudinal velocity of 1125 m/s and a divergence of 1.1 mrad. The typical beam flux is 2 x 109 atoms/mm2s through a 0.1mm diameter aperture 70 cm away from the source. The internal energy of the atoms damages the molecules of a self assembled monolayer (SAM) of nonanethiol. The undisturbed SAM protects a 200 A layer of gold that has been evaporated onto a prepared Silicon wafer from a wet chemical etch. Two methods are used to pattern the He* atoms before they destroy the SAM. First, a Nickel micro mesh was used to protect the SAM. These experiments established an appropriate dosage and etch time for patterning. The samples were analyzed with an atomic force microscope and found to have an edge resolution of 63 nm. Then, patterning was accomplished using the dipole force the atoms experience while traversing a standing wave of lambda = 1083nm light tuned 500MHz below the 23S 1 → 23P2 transition. Depending on the intensity of the light, the He* atoms are focused or channeled into lines separated by lambda/2. The lines cover the entire exposed length of the substrate, about 3 mm. They are about 3 mm long, corresponding to about twice the beam waist of the laser standing wave. Thus there are 6 x 10 3 lines of length 5500lambda. These results agree with our numerical simulations of the experiment.

  14. Nonequilibrium many-body steady states via Keldysh formalism

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Gorshkov, Alexey V.

    2016-01-01

    Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under nonequilibrium dynamics. While these states and their phase transitions have been studied extensively with mean-field theory, the validity of the mean-field approximation has not been systematically investigated. In this paper, we employ a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in a variety of models. In all cases, a complete description via the Keldysh formalism indicates a partial or complete failure of the mean-field analysis. Furthermore, we find that an effective temperature emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is generically described by a thermodynamic universality class.

  15. Nonequilibrium Statistical Mechanics in One Dimension

    NASA Astrophysics Data System (ADS)

    Privman, Vladimir

    2005-08-01

    Part I. Reaction-Diffusion Systems and Models of Catalysis; 1. Scaling theories of diffusion-controlled and ballistically-controlled bimolecular reactions S. Redner; 2. The coalescence process, A+A->A, and the method of interparticle distribution functions D. ben-Avraham; 3. Critical phenomena at absorbing states R. Dickman; Part II. Kinetic Ising Models; 4. Kinetic ising models with competing dynamics: mappings, correlations, steady states, and phase transitions Z. Racz; 5. Glauber dynamics of the ising model N. Ito; 6. 1D Kinetic ising models at low temperatures - critical dynamics, domain growth, and freezing S. Cornell; Part III. Ordering, Coagulation, Phase Separation; 7. Phase-ordering dynamics in one dimension A. J. Bray; 8. Phase separation, cluster growth, and reaction kinetics in models with synchronous dynamics V. Privman; 9. Stochastic models of aggregation with injection H. Takayasu and M. Takayasu; Part IV. Random Sequential Adsorption and Relaxation Processes; 10. Random and cooperative sequential adsorption: exactly solvable problems on 1D lattices, continuum limits, and 2D extensions J. W. Evans; 11. Lattice models of irreversible adsorption and diffusion P. Nielaba; 12. Deposition-evaporation dynamics: jamming, conservation laws and dynamical diversity M. Barma; Part V. Fluctuations In Particle and Surface Systems; 13. Microscopic models of macroscopic shocks S. A. Janowsky and J. L. Lebowitz; 14. The asymmetric exclusion model: exact results through a matrix approach B. Derrida and M. R. Evans; 15. Nonequilibrium surface dynamics with volume conservation J. Krug; 16. Directed walks models of polymers and wetting J. Yeomans; Part VI. Diffusion and Transport In One Dimension; 17. Some recent exact solutions of the Fokker-Planck equation H. L. Frisch; 18. Random walks, resonance, and ratchets C. R. Doering and T. C. Elston; 19. One-dimensional random walks in random environment K. Ziegler; Part VII. Experimental Results; 20. Diffusion

  16. Nonequilibrium Statistical Mechanics in One Dimension

    NASA Astrophysics Data System (ADS)

    Privman, Vladimir

    1997-02-01

    Part I. Reaction-Diffusion Systems and Models of Catalysis; 1. Scaling theories of diffusion-controlled and ballistically-controlled bimolecular reactions S. Redner; 2. The coalescence process, A+A->A, and the method of interparticle distribution functions D. ben-Avraham; 3. Critical phenomena at absorbing states R. Dickman; Part II. Kinetic Ising Models; 4. Kinetic ising models with competing dynamics: mappings, correlations, steady states, and phase transitions Z. Racz; 5. Glauber dynamics of the ising model N. Ito; 6. 1D Kinetic ising models at low temperatures - critical dynamics, domain growth, and freezing S. Cornell; Part III. Ordering, Coagulation, Phase Separation; 7. Phase-ordering dynamics in one dimension A. J. Bray; 8. Phase separation, cluster growth, and reaction kinetics in models with synchronous dynamics V. Privman; 9. Stochastic models of aggregation with injection H. Takayasu and M. Takayasu; Part IV. Random Sequential Adsorption and Relaxation Processes; 10. Random and cooperative sequential adsorption: exactly solvable problems on 1D lattices, continuum limits, and 2D extensions J. W. Evans; 11. Lattice models of irreversible adsorption and diffusion P. Nielaba; 12. Deposition-evaporation dynamics: jamming, conservation laws and dynamical diversity M. Barma; Part V. Fluctuations In Particle and Surface Systems; 13. Microscopic models of macroscopic shocks S. A. Janowsky and J. L. Lebowitz; 14. The asymmetric exclusion model: exact results through a matrix approach B. Derrida and M. R. Evans; 15. Nonequilibrium surface dynamics with volume conservation J. Krug; 16. Directed walks models of polymers and wetting J. Yeomans; Part VI. Diffusion and Transport In One Dimension; 17. Some recent exact solutions of the Fokker-Planck equation H. L. Frisch; 18. Random walks, resonance, and ratchets C. R. Doering and T. C. Elston; 19. One-dimensional random walks in random environment K. Ziegler; Part VII. Experimental Results; 20. Diffusion

  17. Role of metastable charge states in a quantum-dot spin-qubit readout

    NASA Astrophysics Data System (ADS)

    Mason, J. D.; Studenikin, S. A.; Kam, A.; Wasilewski, Z. R.; Sachrajda, A. S.; Kycia, J. B.

    2015-09-01

    Readout of a spin qubit in a lateral gate-defined quantum-dot device typically involves a charge detector and a spin-to-charge conversion technique employing spin blockade. We investigate alternative mechanisms for spin-to-charge conversion involving metastable excited charge states made possible by an asymmetry in the tunneling rates to the leads. This technique is used to observe Landau-Zener-Stückelberg oscillations of the S -T+ qubit within the (1,0) ground state region of the charge stability diagram. The oscillations are π phase shifted relative to those detected using the standard technique and display a nonsinusoidal waveform due to the increased relaxation time from the metastable state.

  18. Metastable epitaxial magnets: A study of growth and magnetic properties

    NASA Astrophysics Data System (ADS)

    Wu, Stella Zhong

    1997-11-01

    Recent advancement in the information storage industry is demanding more fundamental understanding of magnetic systems, especially the magnetic thin films, surfaces, and interfaces. In this work, we were focusing on ultrathin ferromagnetic thin films of Ni on Cu(100), Cu(110) and Cu(111) single crystal substrates, and FeNi and CoNi binary alloy films on Cu(100) with varying atomic concentration. The growth of these films by molecular beam epitaxy was monitored using a number of experimental techniques. A pseudomorphic layer-by-layer growth was achieved which resulted in an fcc metastable crystalline structure with a ferromagnetic phase. The magnetic anisotropy behavior of these thin films was monitored using surface magneto-optic Kerr effect magnetometer at both polar and longitudinal geometries, and various spin reorientation transitions were found. The measurements of Curie temperature as a variation of film thickness as well as atomic concentration resulted in the proposal of a finite-size scaling law. By using this scaling law, the bulk Curie temperature for these metastable fcc binary alloys can be extrapolated, showing that Fe atoms exist in a low-spin ferromagnetic phase. In the Ni films, a dimensionality crossover from bulk to a 2-dimensional system at a few monolayer thickness was established. By alloying, we have been able to tune the electron occupation number in the 3d band. Combined with the 3d electronic band structure information we have gained by using ultraviolet photoemission spectroscopy study of these systems at normal emission, a conclusion of continuous band filling in CoNi alloy system was drawn. However, FeNi films show a different behavior at a certain composition. The recent collaboration with synchrotron radiation facility has enabled us to quantitatively characterize the spin moment and orbital moment from each element. An x-ray magnetic circular dichroism (XMCD) study was performed on CoNi alloy system, and resulted in the conclusion of

  19. Metastable olivine wedge beneath northeast China and its applications

    NASA Astrophysics Data System (ADS)

    Jiang, G.; Zhao, D.; Zhang, G.

    2013-12-01

    When the Pacific slab subducted into the mantle transition zone, there might exist a metastable olivine wedge (MOW) inside the slab due to the phase transition. Lots of researchers have adopted such various methods to detect the characteristics of this MOW as the forward modeling of travel times, shear wave amplitude patterns, teleseismic P wave coda, receiver function imaging, thermodynamic simulation and so on. Almost all results could be more or less affected by the source, the receiver and/or the velocity model passed through by the seismic rays. In this study, we have used 21 deep earthquakes, greater than 400 km and locating beneath northeast China, to study the velocity within the MOW. For more precisions, we have done further modifications in two ways based on our previous studies. (1) Double-difference location method is used to relocate all events with an error of 1-2 km with the data recorded by stations both at northeast China and at Japan. All relocated events locate in a zone about 30 km away from the upper boundary of Pacific slab. (2) Double residual travel times, generated by an event-pair at a common station at only Japan, are used to constrain the velocity anomaly rather than the residuals themselves. As a result, we have found that an ultra-lower velocity zone (ULVZ), averagely -7% relative to the iasp91 model, exists within the subducted Pacific slab around the deep earthquakes, which might be represented as the metastable olivine wedge. Because of the lower-velocity corresponding to the lower-density, the MOW would provide upward buoyancy forces which might prevent the slab from free subduction into the mantle transition zone. This feed-back mechanism of MOW to the slab is called ';parachute-effect', which is characterized by other researchers. In addition, the existence of the ULVZ or the MOW in the slab may supply a possible mechanism for triggering deep earthquakes, called ';phase transformation faulting', which was already proposed few

  20. Thermal Fluctuations in Nonequilibrium Systems

    NASA Astrophysics Data System (ADS)

    Garcia, Alex Luis

    A general Monte Carlo algorithm was developed for thermal systems whose transport and chemistry can be described by a Master Equation. Nicolis and Malek Mansour examined a model in which the transition rate could be derived exactly, namely a system coupled to two reservoirs by Knudsen flow. Their Fokker-Planck equation formulation of the thermal fluctuations is confirmed by the numerical simulation. In general it is very difficult to formulate the transition rate for thermal processes. Nicolis and Malek Mansour devised a parameterized transition rate using equilibrium and deterministic properties. They predicted the existence of long-range nonequilibrium temperature fluctuation correlations for a system subjected to a linear temperature gradient. Their construction, however, is not amenable to Monte Carlo simulation due to the nonkinetic nature of the resulting stochastic process. It is shown that a direct comparison can be made between their generic thermal system and the multicell Knudsen system. Quantitative confirmation of linear temperature correlations is obtained. A vectorized version of the Monte Carlo simulation which runs on an array processor is presented. The appearance of anomalous correlations when a system is not initialized at the steady state is discussed. It is found that even a deterministic system will display a fictitious long range correlation of fluctuations due to the slow decay of the lowest order mode even when the system is initially relatively close to steady state. Some guidelines for guarding against this type of data contamination are discussed. The analytic methods and numerical codes obtained in the above studies are used in the study of the stochastic temporal evolution of a complex thermal ignition system. A simple qualitative argument used for one-variable systems is found to yield important quantitative information concerning the variance of the explosion time. The results are confirmed by Monte Carlo numerical simulations.

  1. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    PubMed

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. PMID:25619737

  2. Dissociation-excitation reactions of argon metastables with carbon dioxide.

    NASA Technical Reports Server (NTRS)

    Starr, W. L.

    1971-01-01

    Results of a study showing that a metastable argon-carbon dioxide reaction results in dissociation of carbon dioxide and electronic excitation of one of the products, carbon monoxide or oxygen. A flow system using a 2450-MHz discharge was used to produce metastable argon atoms. Metastable argon in the afterglow was confirmed by adding nitrogen to the afterglow. Without addition of carbon dioxide no argon line emission, or any other emission, is observed from the reaction zone. Absence of argon line emission produced by recombination indicates the absence of charged species.

  3. Nonequilibrium equalities in absolutely irreversible processes

    NASA Astrophysics Data System (ADS)

    Murashita, Yuto; Funo, Ken; Ueda, Masahito

    2015-03-01

    Nonequilibrium equalities have attracted considerable attention in the context of statistical mechanics and information thermodynamics. Integral nonequilibrium equalities reveal an ensemble property of the entropy production σ as = 1 . Although nonequilibrium equalities apply to rather general nonequilibrium situations, they break down in absolutely irreversible processes, where the forward-path probability vanishes and the entropy production diverges. We identify the mathematical origins of this inapplicability as the singularity of probability measure. As a result, we generalize conventional integral nonequilibrium equalities to absolutely irreversible processes as = 1 -λS , where λS is the probability of the singular part defined based on Lebesgue's decomposition theorem. The acquired equality contains two physical quantities related to irreversibility: σ characterizing ordinary irreversibility and λS describing absolute irreversibility. An inequality derived from the obtained equality demonstrates the absolute irreversibility leads to the fundamental lower bound on the entropy production. We demonstrate the validity of the obtained equality for a simple model.

  4. Nonequilibrium 2-Hydroxyoctadecanoic Acid Monolayers: Effect of Electrolytes

    SciTech Connect

    Lendrum, Conrad D.; Ingham, Bridget; Lin, Binhua; Meron, Mati; Toney, Michael F.; McGrath, Kathryn M.

    2012-02-06

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position {alpha} to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of {approx}6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase.

  5. Pulsed NMR investigation of the supercooled water-gas hydrate-gas metastable equilibrium

    NASA Astrophysics Data System (ADS)

    Vlasov, V. A.; Zavodovsky, A. G.; Madygulov, M. Sh.; Nesterov, A. N.; Reshetnikov, A. M.

    2013-11-01

    A method is developed for determining the thermobaric conditions of phase equilibrium in a liquid water-hydrate-gas system by means of pulsed 1H NMR. The method is founded on NMR-based measurements of the amount of liquid water phase in a sample containing gas hydrate under certain values of pressure p and temperature T. The results from investigating the p, T conditions for metastable equilibrium in a supercooled water-Freon-12 hydrate-gas system are presented. The results are in good agreement with the known literature data.

  6. Tailoring non-equilibrium atmospheric pressure plasmas for healthcare technologies

    NASA Astrophysics Data System (ADS)

    Gans, Timo

    2012-10-01

    Non-equilibrium plasmas operated at ambient atmospheric pressure are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. This includes the unique opportunity to deliver short-lived highly reactive species such as atomic oxygen and atomic nitrogen. Reactive oxygen and nitrogen species can initiate a wide range of reactions in biochemical systems, both therapeutic and toxic. The toxicological implications are not clear, e.g. potential risks through DNA damage. It is anticipated that interactions with biological systems will be governed through synergies between two or more species. Suitable optimized plasma sources are improbable through empirical investigations. Quantifying the power dissipation and energy transport mechanisms through the different interfaces from the plasma regime to ambient air, towards the liquid interface and associated impact on the biological system through a new regime of liquid chemistry initiated by the synergy of delivering multiple energy carrying species, is crucial. The major challenge to overcome the obstacles of quantifying energy transport and controlling power dissipation has been the severe lack of suitable plasma sources and diagnostic techniques. Diagnostics and simulations of this plasma regime are very challenging; the highly pronounced collision dominated plasma dynamics at very small dimensions requires extraordinary high resolution - simultaneously in space (microns) and time (picoseconds). Numerical simulations are equally challenging due to the inherent multi-scale character with very rapid electron collisions on the one extreme and the transport of chemically stable species characterizing completely different domains. This presentation will discuss our recent progress actively combining both advance optical diagnostics and multi-scale computer simulations.

  7. Nonequilibrium thermodynamics and a fluctuation theorem for individual reaction steps in a chemical reaction network

    NASA Astrophysics Data System (ADS)

    Pal, Krishnendu; Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2015-09-01

    We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction.

  8. Metastability and transformation of polymorphic crystals in biodegradable poly(butylene adipate).

    PubMed

    Gan, Zhihua; Kuwabara, Kazuhiro; Abe, Hideki; Iwata, Tadahisa; Doi, Yoshiharu

    2004-01-01

    Polymorphism phenomenon of melt-crystallized poly(butylene adipate) (PBA) has been studied by wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), and differential scanning calorimetry (DSC). It has been found that the isothermal crystallization leads to the formation of PBA polymorphic crystals, simply by changing the crystallization temperature. The PBA alpha crystal, beta crystal, and the mixture of two crystal forms grow at the crystallization temperatures above 32 degrees C, below 27 degrees C, and between these two temperatures, respectively. The relationship between PBA polymorphism and melting behaviors has been analyzed by the assignments of multiple melting peaks. Accordingly, the equilibrium melting temperatures Tm degrees of both alpha and beta crystals were determined by Hoffman-Weeks and Gibbs-Thomson equations for the purpose of understanding the structural metastability. The Tm degrees of the PBA alpha crystal was found to be higher than that of the beta crystal, indicating that the PBA alpha crystal form is a structurally stable phase and that the beta crystal form is a metastable phase. The analysis of growth kinetics of PBA polymorphic crystals indicates that the metastable PBA beta crystal is indeed the kinetically preferential result. Based on the thermal and kinetic results, the phenomenon of stability inversion with crystal size in melt-crystallized PBA was recognized, in terms of the growth mechanisms of PBA alpha and beta crystals and the transformation of beta to alpha crystals. The PBA beta --> alpha crystal transformation takes place at a sufficiently high annealing temperature, and the transformation has been evident to be a solid-solid-phase transition process accompanied by the thickening of lamellar crystals. The molecular motion of polymer chains in both crystalline and amorphous phases has been discussed to understand the thickening and phase transformation behaviors. PMID:15002996

  9. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  10. Study of non-equilibrium transport phenomena

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.

    1987-01-01

    Nonequilibrium phenomena due to real gas effects are very important features of low density hypersonic flows. The shock shape and emitted nonequilibrium radiation are identified as the bulk flow behavior parameters which are very sensitive to the nonequilibrium phenomena. These parameters can be measured in shock tubes, shock tunnels, and ballistic ranges and used to test the accuracy of computational fluid dynamic (CFD) codes. Since the CDF codes, by necessity, are based on multi-temperature models, it is also desirable to measure various temperatures, most importantly, the vibrational temperature. The CFD codes would require high temperature rate constants, which are not available at present. Experiments conducted at the NASA Electric Arc-driven Shock Tube (EAST) facility reveal that radiation from steel contaminants overwhelm the radiation from the test gas. For the measurement of radiation and the chemical parameters, further investigation and then appropriate modifications of the EAST facility are required.

  11. Nonequilibrium spin injection in monolayer black phosphorus.

    PubMed

    Chen, Mingyan; Yu, Zhizhou; Wang, Yin; Xie, Yiqun; Wang, Jian; Guo, Hong

    2016-01-21

    Monolayer black phosphorus (MBP) is an interesting emerging electronic material with a direct band gap and relatively high carrier mobility. In this work we report a theoretical investigation of nonequilibrium spin injection and spin-polarized quantum transport in MBP from ferromagnetic Ni contacts, in two-dimensional magnetic tunneling structures. We investigate physical properties such as the spin injection efficiency, the tunnel magnetoresistance ratio, spin-polarized currents, charge currents and transmission coefficients as a function of external bias voltage, for two different device contact structures where MBP is contacted by Ni(111) and by Ni(100). While both structures are predicted to give respectable spin-polarized quantum transport, the Ni(100)/MBP/Ni(100) trilayer has the superior properties where the spin injection and magnetoresistance ratio maintains almost a constant value against the bias voltage. The nonequilibrium quantum transport phenomenon is understood by analyzing the transmission spectrum at nonequilibrium. PMID:26675820

  12. Nonequilibrium spin injection in monolayer black phosphorus

    NASA Astrophysics Data System (ADS)

    Chen, Mingyan; Yu, Zhizhou; Wang, Yin; Xie, Yiqun; Wang, Jian; Guo, Hong

    Monolayer black phosphorus (MBP) is an interesting emerging electronic material with a direct band gap and relatively high carrier mobility. In this work we report a theoretical investigation of nonequilibrium spin injection and spin-polarized quantum transport in MBP from ferromagnetic Ni contacts, in two-dimensional magnetic tunneling structures. We investigate physical properties such as the spin injection efficiency, the tunnel magnetoresistance ratio, spin-polarized currents, charge currents and transmission coefficients as a function of external bias voltage, for two different device contact structures where MBP is contacted by Ni(111) and by Ni(100). While both structures are predicted to give respectable spin-polarized quantum transport, the Ni(100)/MBP/Ni(100) trilayer has the superior properties where the spin injection and magnetoresistance ratio maintains almost a constant value against the bias voltage. The nonequilibrium quantum transport phenomenon is understood by analyzing the transmission spectrum at nonequilibrium.

  13. Thermal response of nonequilibrium RC circuits.

    PubMed

    Baiesi, Marco; Ciliberto, Sergio; Falasco, Gianmaria; Yolcu, Cem

    2016-08-01

    We analyze experimental data obtained from an electrical circuit having components at different temperatures, showing how to predict its response to temperature variations. This illustrates in detail how to utilize a recent linear response theory for nonequilibrium overdamped stochastic systems. To validate these results, we introduce a reweighting procedure that mimics the actual realization of the perturbation and allows extracting the susceptibility of the system from steady-state data. This procedure is closely related to other fluctuation-response relations based on the knowledge of the steady-state probability distribution. As an example, we show that the nonequilibrium heat capacity in general does not correspond to the correlation between the energy of the system and the heat flowing into it. Rather, also nondissipative aspects are relevant in the nonequilibrium fluctuation-response relations. PMID:27627283

  14. Propagation studies of metastable intermolecular composites (MIC).

    SciTech Connect

    Son, S. F.; Busse, J. R.; Asay, B. W.; Peterson, P. D.; Mang, J. T.; Bockmon, B.; Pantoya, M.

    2002-01-01

    Thermite materials are attractive energetic materials because the reactions are highly exothermic, have high energy densities, and high temperatures of combustion. However, the application of thermite materials has been limited because of the relative slow release of energy compared to other energetic materials. Engineered nano-scale composite energetic materials, such as Al/MoO{sub 3}, show promise for additional energetic material applications because they can react very rapidly. The composite material studied in this work consists of tailored, ultra-fine grain (30-200 nm diameter) aluminum particles that dramatically increase energy release rates of these thermite materials. These reactant clusters of fuel and oxidizer particles are in nearly atomic scale proximity to each other but are constrained from reaction until triggered. Despite the growing importance of nano-scale energetic materials, even the most basic combustion characteristics of these materials have not been thoroughly studied. This paper reports initial studies of the ignition and combustion of metastable intermolecular composites (MIC) materials. The goals were lo obtain an improved understanding of flame propagation mechanisms and combustion behaviors associated with nano-structured energetic materials. Information on issues such as reaction rate and behavior as a function of composition (mixture ratio), initial static charge, and particle size are essential and will allow scientists to design applications incorporating the benefits of these compounds. The materials have been characterized, specifically focusing on particle size, shape, distribution and morphology.

  15. Metastable polymorphs of hydrogen isotopes solidified near the triple point

    NASA Astrophysics Data System (ADS)

    Kozioziemski, B. J.; Chernov, A. A.; Mapoles, E. R.; Sater, J. D.

    2010-07-01

    Hydrogen (H2) , deuterium (D2) , and the 0.25D2-0.5DT-0.25T2 isotopic mixture of deuterium and tritium (D-T) each form a metastable solid state below their respective triple-point temperatures (TTP) . The metastable solid is observed to nucleate and grow from inside of a 5-10μm inner diameter borosilicate glass tube when the liquid hydrogens are slowly cooled through their respective TTP . These metastable solids have their triple-point temperature 15-43 mK below the stable hexagonal close-packed (hcp) crystal of the same composition, a different growth habit, and recrystallize to the hcp solid. This metastable solid may be a crystal with unknown structure or, less likely, hcp with stacking faults and other defects.

  16. Towards a Theory of Metastability in Open Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Macieszczak, Katarzyna; GuÅ£ǎ, Mǎdǎlin; Lesanovsky, Igor; Garrahan, Juan P.

    2016-06-01

    By generalizing concepts from classical stochastic dynamics, we establish the basis for a theory of metastability in Markovian open quantum systems. Partial relaxation into long-lived metastable states—distinct from the asymptotic stationary state—is a manifestation of a separation of time scales due to a splitting in the spectrum of the generator of the dynamics. We show here how to exploit this spectral structure to obtain a low dimensional approximation to the dynamics in terms of motion in a manifold of metastable states constructed from the low-lying eigenmatrices of the generator. We argue that the metastable manifold is in general composed of disjoint states, noiseless subsystems, and decoherence-free subspaces.

  17. The Importance of Kinetic Metastability: Some Common Everyday Examples

    ERIC Educational Resources Information Center

    Jensen, William B.

    2015-01-01

    The importance of kinetic metastability is illustrated in detail using several common household products and recommendations are made for how this important and widespread, but often neglected, phenomenon can be more effectively presented in the introductory chemistry textbook.

  18. Towards a Theory of Metastability in Open Quantum Dynamics.

    PubMed

    Macieszczak, Katarzyna; Guţă, Mădălin; Lesanovsky, Igor; Garrahan, Juan P

    2016-06-17

    By generalizing concepts from classical stochastic dynamics, we establish the basis for a theory of metastability in Markovian open quantum systems. Partial relaxation into long-lived metastable states-distinct from the asymptotic stationary state-is a manifestation of a separation of time scales due to a splitting in the spectrum of the generator of the dynamics. We show here how to exploit this spectral structure to obtain a low dimensional approximation to the dynamics in terms of motion in a manifold of metastable states constructed from the low-lying eigenmatrices of the generator. We argue that the metastable manifold is in general composed of disjoint states, noiseless subsystems, and decoherence-free subspaces. PMID:27367368

  19. Nonequilibrium air radiation (Nequair) program: User's manual

    NASA Technical Reports Server (NTRS)

    Park, C.

    1985-01-01

    A supplement to the data relating to the calculation of nonequilibrium radiation in flight regimes of aeroassisted orbital transfer vehicles contains the listings of the computer code NEQAIR (Nonequilibrium Air Radiation), its primary input data, and explanation of the user-supplied input variables. The user-supplied input variables are the thermodynamic variables of air at a given point, i.e., number densities of various chemical species, translational temperatures of heavy particles and electrons, and vibrational temperature. These thermodynamic variables do not necessarily have to be in thermodynamic equilibrium. The code calculates emission and absorption characteristics of air under these given conditions.

  20. Nonequilibrium noise in electrophoresis: The microion wind

    NASA Astrophysics Data System (ADS)

    Saha, Suropriya; Ramaswamy, Sriram

    2014-03-01

    A colloid supported against gravitational settling by means of an imposed electric field behaves, on average, as if it is at equilibrium in a confining potential [T. M. Squires, J. Fluid Mech. 443, 403 (2001), 10.1017/S0022112001005432]. We show, however, that the effective Langevin equation for the colloid contains a nonequilibrium noise source, proportional to the field, arising from the thermal motion of dissolved ions. The position fluctuations of the colloid show strong, experimentally testable signatures of nonequilibrium behavior, including a highly anisotropic, frequency-dependent "effective temperature" obtained from the fluctuation-dissipation ratio.