Sample records for meteor crater arizona

  1. Nocturnal Air Seiches in the Arizona Meteor Crater

    NASA Astrophysics Data System (ADS)

    Muschinski, A.; Fritts, D. C.; Zhong, S.; Oncley, S. P.

    2011-12-01

    The Arizona Meteor Crater near Winslow, AZ is 170 m deep, has a diameter of 1.2 km, and it has a nearly circular shape. The motivation of the Meteor Crater Experiment (METCRAX), conducted in October 2006, was to use the Meteor Crater as a natural laboratory to study atmospheric phenomena that are typical for small basins. Among other observations, high-resolution wind, temperature and pressure measurements were collected with sonics and microbarometers, respectively, during the entire month. The sensors were mounted between 0.5 m and 8.5 m AGL on seven portable towers, five of which were located within the crater and two on the crater rim. Here we report observations of nocturnal air seiches, that is, standing gravity waves associated with the time-harmonic sloshing of the cold-air pool that forms at the bottom of the crater due to radiative cooling at night. We present time series, spectra, and spectrograms of temperature, wind and pressure fluctuations that characterize those air seiches. Typical seiche periods were 15 min. We compare the observations with the time-harmonic solutions of the shallow-water equation and with numerical simulations.

  2. Erosion of ejecta at Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    Grant, John A.; Schultz, Peter H.

    1993-01-01

    New methods for estimating erosion at Meteor Crater, Arizona, indicate that continuous ejecta deposits beyond 1/4-1/2 crater radii from the rim have been lowered less than 1 m on the average. This conclusion is based on the results of two approaches: coarsening of unweathered ejecta into surface lag deposits and calculation of the sediment budget within a drainage basin on the ejecta. Preserved ejecta morphologies beneath thin alluvium revealed by ground-penetrating radar provide qualitative support for the derived estimates. Although slightly greater erosion of less resistant ejecta locally has occurred, such deposits were limited in extent, particularly beyond 0.25R-0.5R from the present rim. Subtle but preserved primary ejecta features further support our estimate of minimal erosion of ejecta since the crater formed about 50,000 years ago. Unconsolidated deposits formed during other sudden extreme events exhibit similarly low erosion over the same time frame; the common factor is the presence of large fragments or large fragments in a matrix of finer debris. At Meteor Crater, fluvial and eolian processes remove surrounding fines leaving behind a surface lag of coarse-grained ejecta fragments that armor surfaces and slow vertical lowering.

  3. Major Element Analysis of the Target Rocks at Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Hoerz, Friedrich; Mittlefehldt, David W.; Varley, Laura; Mertzman, Stan; Roddy, David

    2002-01-01

    We collected approximately 400 rock chips in continuous vertical profile at Meteor Crater, Arizona, representing, from bottom to top, the Coconino, Toroweap, Kaibab, and Moenkopi Formations to support ongoing compositional analyses of the impact melts and their stratigraphic source depth(s) and other studies at Meteor Crater that depend on the composition of the target rocks. These rock chips were subsequently pooled into 23 samples for compositional analysis by XRF (x ray fluorescence) methods, each sample reflecting a specific stratigraphic "subsection" approximately 5-10 in thick. We determined the modal abundance of quartz, dolomite, and calcite for the entire Kaibab Formation at vertical resolutions of 1-2 meters. The Coconino Formation composes the lower half of the crater cavity. It is an exceptionally pure sandstone. The Toroweap is only two inches thick and compositionally similar to Coconino, therefore, it is not a good compositional marker horizon. The Kaibab Formation is approximately 80 in thick. XRD (x ray diffraction) studies show that the Kaibab Formation is dominated by dolomite and quartz, albeit in highly variable proportions; calcite is a minor phase at best. The Kaibab at Meteor Crater is therefore a sandy dolomite rather than a limestone, consistent with pronounced facies changes in the Permian of SE Arizona over short vertical and horizontal distances. The Moenkopi forms the 12 in thick cap rock and has the highest Al2O3 and FeO concentrations of all target rocks. With several examples, we illustrate how this systematic compositional and modal characterization of the target ideologies may contribute to an understanding of Meteor Crater, such as the depth of its melt zone, and to impact cratering in general, such as the liberation of CO2 from shocked carbonates.

  4. In situ 10Be-26Al exposure ages at Meteor Crater, Arizona

    USGS Publications Warehouse

    Nishiizumi, K.; Kohl, C.P.; Shoemaker, E.M.; Arnold, J.R.; Klein, J.; Fink, D.; Middleton, R.

    1991-01-01

    A new method of dating the surface exposure of rocks from in situ production of 10Be and 26Al has been applied to determine the age of Meteor Crater, Arizona. A lower bound on the crater age of 49,200 ?? 1,700 years has been obtained by this method. ?? 1991.

  5. Meteor Crater (Barringer Meteorite Crater), Arizona: Summary of Impact Conditions

    NASA Astrophysics Data System (ADS)

    Roddy, D. J.; Shoemaker, E. M.

    1995-09-01

    Meteor Crater in northern Arizona represents the most abundant type of impact feature in our Solar System, i.e., the simple bowl-shaped crater. Excellent exposures and preservation of this large crater and its ejecta blanket have made it a critical data set in both terrestrial and planetary cratering research. Recognition of the value of the crater was initiated in the early 1900's by Daniel Moreau Barringer, whose 27 years of exploration championed its impact origin [1]. In 1960, Shoemaker presented information that conclusively demonstrated that Meteor Crater was formed by hypervelocity impact [2]. This led the U.S. Geological Survey to use the crater extensively in the 1960-70's as a prime training site for the Apollo astronauts. Today, Meteor Crater continues to serve as an important research site for the international science community, as well as an educational site for over 300,000 visitors per year. Since the late 1950's, studies of this crater have presented an increasingly clearer view of this impact and its effects and have provided an improved view of impact cratering in general. To expand on this data set, we are preparing an upgraded summary on the Meteor Crater event following the format in [3], including information and interpretations on: 1) Inferred origin and age of the impacting body, 2) Inferred ablation and deceleration history in Earth's atmosphere, 3) Estimated speed, trajectory, angle of impact, and bow shock conditions, 4) Estimated coherence, density, size, and mass of impacting body, 5) Composition of impacting body (Canyon Diablo meteorite), 6) Estimated kinetic energy coupled to target rocks and atmosphere, 7) Terrain conditions at time of impact and age of impact, 8) Estimated impact dynamics, such as pressures in air, meteorite, and rocks, 9) Inferred and estimated material partitioning into vapor, melt, and fragments, 10) Crater and near-field ejecta parameters, 11) Rock unit distributions in ejecta blanket, 12) Estimated far

  6. Impact mechanics at Meteor Crater, Arizona

    USGS Publications Warehouse

    Shoemaker, Eugene Merle

    1959-01-01

    Meteor Crator is a bowl-shaped depression encompassed by a rim composed chiefly of debris stacked in layers of different composition. Original bedrock stratigraphy is preserved, inverted, in the debris. The debris rests on older disturbed strata, which are turned up at moderate to steep angles in the wall of the crater and are locally overturned near the contact with the debris. These features of Meteor Crater correspond closely to those of a crater produced by nuclear explosion where depth of burial of the device was about 1/5 the diameter of the resultant crater. Studies of craters formed by detonation of nuclear devices show that structures of the crater rims are sensitive to the depth of explosion scaled to the yield of the device. The structure of Meteor Crater is such as would be produced by a very strong shock originating about at the level of the present crater floor, 400 feet below the original surface. At supersonic to hypersonic velocity an impacting meteorite penetrates the ground by a complex mechanism that includes compression of the target rocks and the meteorite by shock as well as hydrodynamic flow of the compressed material under high pressure and temperature. The depth of penetration of the meteorite, before it loses its integrity as a single body, is a function primarily of the velocity and shape of the meteorite and the densities and equations of state of the meteorite and target. The intensely compressed material then becomes dispersed in a large volume of breccia formed in the expanding shock wave. An impact velocity of about 15 km/sec is consonant with the geology of Meteor Crater in light of the experimental equation of state of iron and inferred compressibility of the target rocks. The kinetic energy of the meteorite is estimated by scaling to have been from 1.4 to 1.7 megatons TNT equivalent.

  7. Airflow analyses using thermal imaging in Arizona's Meteor Crater as part of METCRAX II

    NASA Astrophysics Data System (ADS)

    Grudzielanek, A. Martina; Vogt, Roland; Cermak, Jan; Maric, Mateja; Feigenwinter, Iris; Whiteman, C. David; Lehner, Manuela; Hoch, Sebastian W.; Krauß, Matthias G.; Bernhofer, Christian; Pitacco, Andrea

    2016-04-01

    In October 2013 the second Meteor Crater Experiment (METCRAX II) took place at the Barringer Meteorite Crater (aka Meteor Crater) in north central Arizona, USA. Downslope-windstorm-type flows (DWF), the main research objective of METCRAX II, were measured by a comprehensive set of meteorological sensors deployed in and around the crater. During two weeks of METCRAX II five infrared (IR) time lapse cameras (VarioCAM® hr research & VarioCAM® High Definition, InfraTec) were installed at various locations on the crater rim to record high-resolution images of the surface temperatures within the crater from different viewpoints. Changes of surface temperature are indicative of air temperature changes induced by flow dynamics inside the crater, including the DWF. By correlating thermal IR surface temperature data with meteorological sensor data during intensive observational periods the applicability of the IR method of representing flow dynamics can be assessed. We present evaluation results and draw conclusions relative to the application of this method for observing air flow dynamics in the crater. In addition we show the potential of the IR method for METCRAX II in 1) visualizing airflow processes to improve understanding of these flows, and 2) analyzing cold-air flows and cold-air pooling.

  8. Characteristics of ejecta and alluvial deposits at Meteor Crater, Arizona and Odessa Craters, Texas: Results from ground penetrating radar

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.

  9. Meteor Crater, AZ

    NASA Image and Video Library

    2002-03-12

    The Barringer Meteorite Crater (also known as "Meteor Crater") is a gigantic hole in the middle of the arid sandstone of the Arizona desert. A rim of smashed and jumbled boulders, some of them the size of small houses, rises 50 m above the level of the surrounding plain. The crater itself is nearly a 1500 m wide, and 180 m deep. When Europeans first discovered the crater, the plain around it was covered with chunks of meteoritic iron - over 30 tons of it, scattered over an area 12 to 15 km in diameter. Scientists now believe that the crater was created approximately 50,000 years ago. The meteorite which made it was composed almost entirely of nickel-iron, suggesting that it may have originated in the interior of a small planet. It was 50 m across, weighed roughly 300,000 tons, and was traveling at a speed of 65,000 km per hour. This ASTER 3-D perspective view was created by draping an ASTER bands 3-2-1image over a digital elevation model from the US Geological Survey National Elevation Dataset. This image was acquired on May 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03490

  10. Styles of crater gradation in Southern Ismenius Lacus, Mars: Clues from Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1992-01-01

    Impact craters on the Earth and Mars provide a unique opportunity to quantify the gradational evolution of instantaneously created landforms in a variety of geologic settings. Unlike most landforms, the initial morphology associated with impact craters on both planets is uncomplicated by competition between construction and degradation during formation. Furthermore, pristine morphologies are both well-constrained and similar to a first order. The present study compares styles of graduation at Meteor Crater with those around selected craters (greater than 1-2 km in diameter) in southern Ismenius Lacus. Emphasis is placed on features visible in images near LANDSAT TM resolution (30-50 m/pixel) which is available for both areas. In contrast to Mars, vegetation on the Earth can modify gradation, but appears to influence overall rates and styles by 2X-3X rather than orders of magnitude. Further studies of additional craters in differing settings will refine the effects of this and other factors (e.g., substrate). Finally, by analogy with results from other terrestrial gradational surfaces this study should help provide constraints on climate over crater histories.

  11. Ejecta patterns of Meteor Crater, Arizona derived from the linear un-mixing of TIMS data and laboratory thermal emission spectra

    NASA Technical Reports Server (NTRS)

    Ramsey, Michael S.; Christensen, Philip R.

    1992-01-01

    Accurate interpretation of thermal infrared data depends upon the understanding and removal of complicating effects. These effects may include physical mixing of various mineralogies and particle sizes, atmospheric absorption and emission, surficial coatings, geometry effects, and differential surface temperatures. The focus is the examination of the linear spectral mixing of individual mineral or endmember spectra. Linear addition of spectra, for particles larger than the wavelength, allows for a straight-forward method of deconvolving the observed spectra, predicting a volume percent of each endmember. The 'forward analysis' of linear mixing (comparing the spectra of physical mixtures to numerical mixtures) has received much attention. The reverse approach of un-mixing thermal emission spectra was examined with remotely sensed data, but no laboratory verification exists. Understanding of the effects of spectral mixing on high resolution laboratory spectra allows for the extrapolation to lower resolution, and often more complicated, remotely gathered data. Thermal Infrared Multispectral Scanner (TIMS) data for Meteor Crater, Arizona were acquired in Sep. 1987. The spectral un-mixing of these data gives a unique test of the laboratory results. Meteor Crater (1.2 km in diameter and 180 m deep) is located in north-central Arizona, west of Canyon Diablo. The arid environment, paucity of vegetation, and low relief make the region ideal for remote data acquisition. Within the horizontal sedimentary sequence that forms the upper Colorado Plateau, the oldest unit sampled by the impact crater was the Permian Coconino Sandstone. A thin bed of the Toroweap Formation, also of Permian age, conformably overlays the Coconino. Above the Toroweap lies the Permian Kiabab Limestone which, in turn, is covered by a thin veneer of the Moenkopi Formation. The Moenkopi is Triassic in age and has two distinct sub-units in the vicinity of the crater. The lower Wupatki member is a fine

  12. A seismic refraction technique used for subsurface investigations at Meteor Crater, Arizona

    NASA Technical Reports Server (NTRS)

    Ackermann, H. D.; Godson, R. H.; Watkins, J. S.

    1975-01-01

    A seismic refraction technique for interpreting the subsurface shape and velocity distribution of an anomalous surface feature such as an impact crater is described. The method requires the existence of a relatively deep refracting horizon and combines data obtained from both standard shallow refraction spreads and distant offset shots by using the deep refractor as a source of initial arrivals. Results obtained from applying the technique to Meteor crater generally agree with the known structure of the crater deduced by other investigators and provide new data on an extensive fractured zone surrounding the crater. The breccia lens is computed to extend roughly 190 m below the crater floor, about 30 m less than the value deduced from early drilling data. Rocks around the crater are fractured as distant as 900 m from the rim crest and to a depth of at least 800 m beneath the crater floor.

  13. An experimental investigation of the effect of impact generated micro-deformations in Moenkopi and Coconino Sandstone from Meteor Crater, Arizona on subsequent weathering

    NASA Astrophysics Data System (ADS)

    Verma, A.; Bourke, M. C.; Osinski, G.; Viles, H. A.; Blanco, J. D. R.

    2017-12-01

    Impact cratering is an important geological process that affects all planetary bodies in our solar system. As rock breakdown plays an important role in the evolution of landforms and sediments, it is important to assess the role of inheritance in the subsequent breakdown of impacted rocks.The shock pressure of several gigapascals generated during the impact can exceed the effective strength of target lithology by three to four orders of magnitude and is responsible for melting, vaporisation, shock metamorphism, fracturing and fragmentation of rocks. Environmental conditions and heterogeneities in rock properties exert an important control in rock breakdown. Similar to other subaerial rocks, impacted rocks are affected by a range of rock breakdown processes. In order to better understand the role of inheritance of the impact on rock breakdown, a rock breakdown experiment was conducted in a simulated environmental cabinet under conditions similar to the arid conditions found at the Meteor Crater site. We sampled Moenkopi and Coconino Sandstone from the Meteor Crater impact site in Arizona. For comparison, samples were also collected at control sites close by that have similar rock formations but did not undergo impact. Several established techniques (X-ray CT, SEM, Equotip, SfM) were used to characterise the rock samples before the environmental cabinet experiments. Our laboratory analysis (XRD, SEM, optical microscopy, X-ray CT) on impacted rock samples from Meteor Crater, show that rock porosity and permeability changes due to compaction and fracturing during impact. There were no high-pressure polymorphs of quartz or glass detected in XRD analysis. We ran the experiments on a total of 28 petrophysically characterised 5x5x5 cm sample blocks of Coconino and Moenkopi Sandstone (24 impacted rocks and 4 non-impacted). The results will be presented at the AGU Fall meeting 2017.

  14. Thermal infrared data analyses of Meteor Crater, Arizona: Implications for Mars spaceborne data from the Thermal Emission Imaging System

    NASA Astrophysics Data System (ADS)

    Wright, Shawn P.; Ramsey, Michael S.

    2006-02-01

    Thermal infrared (TIR) data from the Earth-orbiting Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument are used to identify the lithologic distribution of the Meteor Crater ejecta blanket. Thermal emission laboratory spectra were obtained for collected samples, and spectral deconvolution was performed on ASTER emissivity data using both image and sample end-members. Comparison of the spaceborne ASTER data to the airborne Thermal Infrared Multispectral Scanner (TIMS) data was used to validate the ASTER end-member analyses. The ASTER image end-member analysis agrees well with past studies considering the effects of resolution degradation. The work at Meteor Crater has direct bearing on the interpretation of Thermal Emission Imaging System (THEMIS) data currently being returned from Mars. ASTER and THEMIS have similar spatial and spectral resolutions, and Meteor Crater serves as an analog for similar-sized impact sites on Mars. These small impact craters have not been studied in detail owing to the low spatial resolution of past orbiting TIR instruments. Using the same methodology as that applied to Meteor Crater, THEMIS TIR data of a provisionally named Winslow Crater (~1 km) impact crater in Syrtis Major are analyzed. The crater rim and ejecta blanket were found to contain larger block sizes and a lower albedo than the surrounding ejecta-free plain, indicating a young impact age. The composition of the rim, ejecta, and surrounding plain is determined to be dominated by basalt; however, potential stratigraphy has also been identified. Results of this work could be extended to future investigations using THEMIS data.

  15. Zhamanshin meteor crater

    NASA Technical Reports Server (NTRS)

    Florenskiy, P. V.; Dabizha, A. I.

    1987-01-01

    A historical survey and geographic, geologic and geophysical characteristics, the results of many years of study of the Zhamanshin meteor crater in the Northern Aral region, are reported. From this data the likely initial configuration and cause of formation of the crater are reconstructed. Petrographic and mineralogical analyses are given of the brecciated and remelted rocks, of the zhamanshinites and irgizite tektites in particular. The impact melting, dispersion and quenching processes resulting in tektite formation are discussed.

  16. Radar scattering mechanisms within the meteor crater ejecta blanket: Geologic implications and relevance to Venus

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Campbell, B. A.; Zisk, S. H.; Schaber, Gerald G.; Evans, C.

    1989-01-01

    Simple impact craters are known to occur on all of the terrestrial planets and the morphologic expression of their ejecta blankets is a reliable indicator of their relative ages on the Moon, Mars, Mercury, and most recently for Venus. It will be crucial for the interpretation of the geology of Venus to develop a reliable means of distinguishing smaller impact landforms from volcanic collapse and explosion craters, and further to use the observed SAR characteristics of crater ejecta blankets (CEB) as a means of relative age estimation. With these concepts in mind, a study was initiated of the quantitative SAR textural characteristics of the ejecta blanket preserved at Meteor Crater, Arizona, the well studied 1.2 km diameter simple crater that formed approx. 49,000 years ago from the impact of an octahedrite bolide. While Meteor Crater was formed as the result of an impact into wind and water lain sediments and has undergone recognizable water and wind related erosion, it nonetheless represents the only well studied simple impact crater on Earth with a reasonably preserved CEB. Whether the scattering behavior of the CEB can provide an independent perspective on its preservation state and style of erosion is explored. Finally, airborne laser altimeter profiles of the microtopography of the Meteor Crater CEB were used to further quantify the subradar pizel scale topographic slopes and RMS height variations for comparisons with the scattering mechanisms computed from SAR polarimetry. A preliminary assessment was summarized of the L-band radar scattering mechanisms within the Meteor Crater CEB as derived from a NASA/JPL DC-8 SAR Polarimetry dataset acquired in 1988, and the dominant scattering behavior was compared with microtopographic data (laser altimeter profiles and 1:10,000 scale topographic maps).

  17. Si-29 NMR spectroscopy of naturally-shocked quartz from Meteor Crater, Arizona: Correlation to Kieffer's classification scheme

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Cygan, R. T.; Kirkpatrick, R. J.

    1993-01-01

    We have applied solid state Si-29 nuclear magnetic resonance (NMR) spectroscopy to five naturally-shocked Coconino Sandstone samples from Meteor Crater, Arizona, with the goal of examining possible correlations between NMR spectral characteristics and shock level. This work follows our observation of a strong correlation between the width of a Si-29 resonance and peak shock pressure for experimentally shocked quartz powders. The peak width increase is due to the shock-induced formation of amorphous silica, which increases as a function of shock pressure over the range that we studied (7.5 to 22 GPa). The Coconino Sandstone spectra are in excellent agreement with the classification scheme of Kieffer in terms of presence and approximate abundances of quartz, coesite, stishovite, and glass. We also observe a new resonance in two moderately shocked samples that we have tentatively identified with silicon in tetrahedra with one hydroxyl group in a densified form of amorphous silica.

  18. Harvey Nininger's 1948 attempt to nationalize Meteor Crater.

    NASA Astrophysics Data System (ADS)

    Plotkin, H.; Clarke, R. S., Jr.

    2008-10-01

    Harvey Nininger successfully petitioned the American Astronomical Society to pass a motion in support of nationalizing Meteor Crater, Arizona, at its June 1948 meeting. He alleged that the Barringer family, who held title to the crater, was depriving American citizens of its scenic beauty and scientific value. He then reportedly went on to make the unauthorized—and false—claim that the family would be receptive to a fair purchase offer for the crater. The Barringers, who had not been given advance warning of the petition and were not present at the meeting, felt ambushed. They quickly and forcefully rebutted Nininger’s allegations, made it clear they had no intention of relinquishing their title to the crater, and terminated his exploration rights. What led Nininger to such a curious and self-defeating act? Based on our reading of his voluminous personal correspondence, we conclude that it was rooted primarily in his complex relationship with Frederick Leonard and Lincoln LaPaz, and his desire to establish a national institute for meteoritical research—with them, originally, but after a serious falling out, on his own. Prevented from moving his American Meteorite Museum to the crater rim, Nininger wondered what would happen if the crater was nationalized and made into a public park, with an accompanying tourist center and museum. With characteristic élan, he could picture himself at its head, with a secure salary and adequate space to exhibit his meteorite collection.

  19. Ejecta distribution patterns at Meteor Crater, Arizona: On the applicability of lithologic end-member deconvolution for spaceborne thermal infrared data of Earth and Mars

    NASA Astrophysics Data System (ADS)

    Ramsey, Michael S.

    2002-08-01

    A spectral deconvolution using a constrained least squares approach was applied to airborne thermal infrared multispectral scanner (TIMS) data of Meteor Crater, Arizona. The three principal sedimentary units sampled by the impact were chosen as end-members, and their spectra were derived from the emissivity images. To validate previous estimates of the erosion of the near-rim ejecta, the model was used to identify the areal extent of the reworked material. The outputs of the algorithm reveal subtle mixing patterns in the ejecta, identified larger ejecta blocks, and were used to further constrain the volume of Coconino Sandstone present in the vicinity of the crater. The availability of the multialtitude data set also provided a means to examine the effects of resolution degradation and quantify the subsequent errors on the model. These data served as a test case for the use of image-derived lithologic end-members at various scales, which is critical for examining thermal infrared data of planetary surfaces. The model results indicate that the Coconino Ss. reworked ejecta is detectable over 3 km from the crater. This was confirmed by field sampling within the primary ejecta field and wind streak. The areal distribution patterns of this unit imply past erosion and subsequent sediment transport that was low to moderate compared with early studies and therefore places further constraints on the ejecta degradation of Meteor Crater. It also provides an important example of the analysis that can be performed on thermal infrared data currently being returned from Earth orbit and expected from Mars in 2002.

  20. Gully formation in terrestrial simple craters: Meteor Crater, USA and Lonar Crater, India

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Head, J. W.; Kring, D. A.

    2007-12-01

    Geomorphic features such as gullies, valley networks, and channels on Mars have been used as a proxy to understand the climate and landscape evolution of Mars. Terrestrial analogues provide significant insight as to how the various exogenic and endogenic processes might contribute to the evolution of these martian landscapes. We describe here a terrestrial example from Meteor Crater, which shows a spectacular development of gullies throughout the inner wall in response to rainwater precipitation, snow melting and groundwater discharge. As liquid water has been envisaged as one of the important agents of landscape sculpturing, Meteor Crater remains a useful landmark, where planetary geologists can learn some lessons. We also show here how the lithology and structural framework of this crater controls the gully distribution. Like many martian impact craters, it was emplaced in layered sedimentary rocks with an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels and fans. Some of the gullies originate from the rim crest and others from the middle crater wall, where a lithologic transition occurs. Deeply incised alcoves are well-developed on the soft sandstones of the Coconino Formation exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of groundwater flow and discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing degradation. Like martian craters, channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when groundwater seeped from springs on the crater wall. Caves exposed on the lower crater level may point to percolation of surface runoff

  1. Transformations to granular zircon revealed: Twinning, reidite, and ZrO2 in shocked zircon from Meteor Crater (Arizona, USA)

    USGS Publications Warehouse

    Cavosie, Aaron; Timms, Nicholas E.; Erickson, Timmons M.; Hagerty, Justin J.; Hörz, Friedrich

    2016-01-01

    Granular zircon in impact environments has long been recognized but remains poorly understood due to lack of experimental data to identify mechanisms involved in its genesis. Meteor Crater in Arizona (United States) contains abundant evidence of shock metamorphism, including shocked quartz, the high pressure polymorphs coesite and stishovite, diaplectic SiO2 glass, and lechatelierite (fused SiO2). Here we report the presence of granular zircon, a new shocked mineral discovery at Meteor Crater, that preserve critical orientation evidence of specific transformations that occurred during its formation at extreme impact conditions. The zircon grains occur as aggregates of sub-µm neoblasts in highly shocked Coconino Formation Sandstone (CFS) comprised of lechatelierite. Electron backscatter diffraction shows that each grain consists of multiple domains, some with boundaries disoriented by 65°, a known {112} shock-twin orientation. Other domains have crystallographic c-axes in alignment with {110} of neighboring domains, consistent with the former presence of the high pressure ZrSiO4 polymorph reidite. Additionally, nearly all zircon preserve ZrO2 + SiO2, providing evidence of partial dissociation. The genesis of CFS granular zircon started with detrital zircon that experienced shock-twinning and reidite formation from 20 to 30 GPa, ultimately yielding a phase that retained crystallographic memory; this phase subsequently recrystallized to systematically oriented zircon neoblasts, and in some areas partially dissociated to ZrO2. The lechatelierite matrix, experimentally constrained to form at >2000 °C, provided an ultra high-temperature environment for zircon dissociation (~1670 °C) and neoblast formation. The capacity of granular zircon to preserve a cumulative P-T record has not been recognized previously, and provides a new method for retrieving histories of impact-related mineral transformations in the crust at conditions far beyond which most rocks melt.

  2. Meteor Crater, AZ

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Barringer Meteorite Crater (also known as 'Meteor Crater') is a gigantic hole in the middle of the arid sandstone of the Arizona desert. A rim of smashed and jumbled boulders, some of them the size of small houses, rises 50 m above the level of the surrounding plain. The crater itself is nearly a 1500 m wide, and 180 m deep. When Europeans first discovered the crater, the plain around it was covered with chunks of meteoritic iron - over 30 tons of it, scattered over an area 12 to 15 km in diameter. Scientists now believe that the crater was created approximately 50,000 years ago. The meteorite which made it was composed almost entirely of nickel-iron, suggesting that it may have originated in the interior of a small planet. It was 50 m across, weighed roughly 300,000 tons, and was traveling at a speed of 65,000 km per hour. This ASTER 3-D perspective view was created by draping an ASTER bands 3-2-1image over a digital elevation model from the US Geological Survey National Elevation Dataset.

    This image was acquired on May 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along

  3. Creation of High Resolution Terrain Models of Barringer Meteorite Crater (Meteor Crater) Using Photogrammetry and Terrestrial Laser Scanning Methods

    NASA Technical Reports Server (NTRS)

    Brown, Richard B.; Navard, Andrew R.; Holland, Donald E.; McKellip, Rodney D.; Brannon, David P.

    2010-01-01

    Barringer Meteorite Crater or Meteor Crater, AZ, has been a site of high interest for lunar and Mars analog crater and terrain studies since the early days of the Apollo-Saturn program. It continues to be a site of exceptional interest to lunar, Mars, and other planetary crater and impact analog studies because of its relatively young age (est. 50 thousand years) and well-preserved structure. High resolution (2 meter to 1 decimeter) digital terrain models of Meteor Crater in whole or in part were created at NASA Stennis Space Center to support several lunar surface analog modeling activities using photogrammetric and ground based laser scanning techniques. The dataset created by this activity provides new and highly accurate 3D models of the inside slope of the crater as well as the downslope rock distribution of the western ejecta field. The data are presented to the science community for possible use in furthering studies of Meteor Crater and impact craters in general as well as its current near term lunar exploration use in providing a beneficial test model for lunar surface analog modeling and surface operation studies.

  4. A Young, Fresh Crater in Hellespontus

    NASA Image and Video Library

    2016-01-14

    This image from NASA Mars Reconnaissance Orbiter spacecraft is of a morphologically fresh and simple impact crater in the Hellespontus region. At 1.3 kilometers in diameter, this unnamed crater is only slightly larger than Arizona's Barringer (aka Meteor) Crater, by about 200 meters. Note the simple bowl shape and the raised crater rim. Rock and soil excavated out of the crater by the impacting meteor -- called ejecta -- forms the ejecta deposit. It is continuous for about one crater radius away from the rim and is likely composed of about 90 percent ejecta and 10 percent in-place material that was re-worked by both the impact and the subsequently sliding ejecta. The discontinuous ejecta deposit extends from about one crater radius outward. Here, high velocity ejecta that was launched from close to the impact point -- and got the biggest kick -- flew a long way, landed, rolled, slid, and scoured the ground, forming long tendrils of ejecta and v-shaped ridges. http://photojournal.jpl.nasa.gov/catalog/PIA20340

  5. Meteor Crater: Energy of formation - Implications of centrifuge scaling

    NASA Technical Reports Server (NTRS)

    Schmidt, R. M.

    1980-01-01

    Recent work on explosive cratering has demonstrated the utility of performing subscale experiments on a geotechnic centrifuge to develop scaling rules for very large energy events. The present investigation is concerned with an extension of this technique to impact cratering. Experiments have been performed using a projectile gun mounted directly on the centrifuge rotor to launch projectiles into a suitable soil container undergoing centripetal accelerations in excess of 500 G. The pump tube of a two-stage light-gas gun was used to attain impact velocities of approximately 2 km/sec. The results of the experiments indicate that the energy of formation of any large impact crater depends upon the impact velocity. This dependence, shown for the case of Meteor Crater, is consistent with analogous results for the specific energy dependence of explosives and is expected to persist to impact velocities in excess of 25 km/sec.

  6. STRAWBERRY CRATER ROADLESS AREAS, ARIZONA.

    USGS Publications Warehouse

    Wolfe, Edward W.; Light, Thomas D.

    1984-01-01

    The results of a mineral survey conducted in the Strawberry Crater Roadless Areas, Arizona, indicate little promise for the occurrence of metallic mineral or fossil fuel resources in the area. The area contains deposits of cinder, useful for the production of aggregate block, and for deposits of decorative stone; however, similar deposits occur in great abundance throughout the San Francisco volcanic field outside the roadless areas. There is a possibility that the Strawberry Crater Roadless Areas may overlie part of a crustal magma chamber or still warm pluton related to the San Francisco Mountain stratovolcano or to basaltic vents of late Pleistocene or Holocene age. Such a magma chamber or pluton beneath the Strawberry Crater Roadless Areas might be an energy source from which a hot-, dry-rock geothermal energy system could be developed, and a probable geothermal resource potential is therefore assigned to these areas. 9 refs.

  7. Strawberry Crater Roadless Areas, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, E.W.; Light, T.D.

    1984-01-01

    The results of a mineral survey conducted in 1980 in the Strawberry Crater Roadless Areas, Arizona, indicate little promise for the occurrence of metallic mineral or fossil fuel resources in the area. The area contains deposits of cinder, useful for the production of aggregate block, and for deposits of decorative stone; however, similar deposits occur in great abundance throughout the San Francisco volcanic field outside the roadless areas. There is a possibility that the Strawberry Crater Roadless Areas may overlie part of a crustal magma chamber or still warm pluton related to the San Francisco Mountain stratovolcano or to basalticmore » vents of late Pleistocene or Holocene age. Such a magma chamber or pluton beneath the Strawberry Crater Roadless Areas might be an energy source from which a hot-, dry-rock geothermal energy system could be developed, and a probable geothermal resource potential is therefore assigned to these areas.« less

  8. Flagstaff, Arizona seen in Earth Resources Experiments package

    NASA Image and Video Library

    1974-02-01

    SL4-93-067 (16 Nov. 1973-8 Feb. 1974) --- A spectacular winter view of the Flagstaff, Arizona area is seen in this Skylab 4 Earth Resources Experiments package S190-B (five-inch earth terrain camera) infrared photograph taken from the Skylab space station in Earth orbit. Included in the scene are the San Francisco Mountains, Oak Creek Canyon, Painted Desert and Meteor Crater. The infrared picture depicts in red living vegetation, in white the snow, and in bright blue the water. Major features identified in this photograph are Humphrey's peak, top center, Flagstaff at foot of the peak, Sunset Crater volcanic field with numerous vents and craters right of Flagstaff and Meteor Crater (right center). Within the mountainous areas several clear areas generally rectangular are visible and represent the areas where lumbering has removed the forest. The thin white line extending from left corner to Sunset Crater fields is the power transmission line cleared area. Roads are subdued and are not easily visible. Photo credit: NASA

  9. Partially-Exhumed Crater in Northern Terra Meridiani: Stereo Anaglyph of overlapping coverage in

    NASA Technical Reports Server (NTRS)

    2002-01-01

    MGS MOC Release No. MOC2-316, 8 August 2002 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images have shown time and again that the geology and history of Mars is complex. These two pictures show different views of a circular feature in northern Terra Meridiani at 2.3oN, 356.6oW. The first is a mosaic of 3 MOC narrow angle images acquired in August 1999, November 2000, and June 2002. The black area is a gap in coverage resulting from data lost after transmission from Mars to Earth. The second picture is a stereo ('3-D') anaglyph of a portion of the same circular feature. It has been rotated 90o clockwise to show the stereo effect that results from combining the August 1999 image, which was taken while the spacecraft was pointed nadir (straight down) and the June 2002 image, taken with the spacecraft pointing backwards about 16o (i.e., MGS Relay-16 orientation). The anaglyph should be viewed with '3-D' glasses (red in left eye, blue in the right). The circular feature was once an impact crater. The crater was 2.6 km (1.6 mi) across, about 2.6 times larger than the famous Meteor Crater in northern Arizona. Terra Meridiani, like northern Arizona, is a region of vast exposures of layered sedimentary rock. Like the crater in Arizona, this one was formed by a meteor that impacted a layered rock substrate. Later, this crater was filled and completely buried under more than 100 m (more than 327 ft) of additional layered sediment. The sediment hardened to become rock. Later still, the rock was eroded away--by processes unknown (perhaps wind)--to re-expose the buried crater. The crater today remains mostly filled with sediment, its present rim standing only about 40 m (130 ft) above its surroundings.

  10. Impact Crater in Coastal Patagonia

    NASA Technical Reports Server (NTRS)

    D'Antoni, Hector L; Lasta, Carlos A.; Condon, Estelle (Technical Monitor)

    2000-01-01

    Impact craters are geological structures attributed to the impact of a meteoroid on the Earth's (or other planet's) surface (Koeberl and Sharpton. 1999). The inner planets of the solar system as well as other bodies such as our moon show extensive meteoroid impacts (Gallant 1964, French 1998). Because of its size and gravity, we may assume that the Earth has been heavily bombarded but weathering and erosion have erased or masked most of these features. In the 1920's, a meteor crater (Mark 1987) was identified in Arizona and to this first finding the identification of a large number of impact structures on Earth followed (Hodge 1994). Shock metamorphic effects are associated with meteorite impact craters. Due to extremely high pressures, shatter cones are produced as well as planar features in quartz and feldspar grains, diaplectic glass and high-pressure mineral phases such as stishovite (French 1998).

  11. Impact Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Today marks the 45th anniversary of the dawn of the Space Age (October 4, 1957). On this date the former Soviet Union launched the world's first satellite, Sputnik 1. Sputnik means fellow traveler. For comparison Sputnik 1 weighed only 83.6 kg (184 pounds) while Mars Odyssey weighs in at 758 kg (1,671 pounds).

    This scene shows several interesting geologic features associated with impact craters on Mars. The continuous lobes of material that make up the ejecta blanket of the large impact crater are evidence that the crater ejecta were fluidized upon impact of the meteor that formed the crater. Volatiles within the surface mixed with the ejecta upon impact thus creating the fluidized form. Several smaller impact craters are also observed within the ejecta blanket of the larger impact crater giving a relative timing of events. Layering of geologic units is also observed within the large impact crater walls and floor and may represent different compositional units that erode at variable rates. Cliff faces, dissected gullies, and heavily eroded impact craters are observed in the bottom half of the image at the terminus of a flat-topped plateau.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS

  12. Doublet Crater

    NASA Image and Video Library

    2010-12-22

    This image from NASA Mars Odyssey is of a doublet crater located in Utopia Planitia, near the Elysium Volcanic region. Doublet craters are formed by simultaneous impact of a meteor that broke into two pieces prior to hitting the surface.

  13. Strong Evidence of Variable Micro-meteor Flux from Apollo 17 Samples Obtained at Shorty Crater and on the Light Mantle Avalanche at Taurus-Littrow

    NASA Astrophysics Data System (ADS)

    Schmitt, H. H.; Petro, N. E.

    2017-12-01

    Light-gray regolith overlying the orange and black pyroclastic ash (Schmitt, 2017) at Shorty Crater protected the ash from incorporation into surrounding basaltic regolith for 3.5 billion years (Tera and Wasserburg, 1976; Saito and Alexander, 1979). Inspection of LROC images indicate this regolith probably came from a 350 m diameter, degraded impact crater (Fitzgibbon Crater), about 1 km NNE of Shorty. This regolith was derived largely from basalt and spread over the ash deposit about 24 Myr (Eugster, et al., 1979, corrected for post-Shorty exposure) after the last ash eruption. Maturity indexes for light gray regolith samples 74441 and 74461 are about 8 (Morris, 1978) and agglutinate concentrations are 8% and 7.7% (Heiken and McKay, 1974), respectively. These values are inconsistent with the exposure and cycling of the light-gray regolith during 3.5 billion years in the lunar surface impact environment (i.e., the time between ash deposition and the light mantle avalanche). If agglutinate content and Is/FeO indexes largely reflect the cumulative effect of micro-meteor impacts, as generally concluded, the light-gray regolith formed in an environment with significantly less micro-meteor flux than that which has prevailed more recently. 14-18% of fragile, ropy glass in the light-gray regolith, as compared with <1% in presently exposed Taurus-Littrow regoliths, also is consistent with low micro-meteor flux during development. The high recent micro-meteor flux appears to have existed for at least for the last 75 million years (Schmitt, et al., 2017), the estimated time using LROC-based crater frequency analysis (van der Bogert, et al., 2012) since the light mantle avalanche of South Massif regolith covered the light-gray regolith. New regolith on the light mantle appears to be developing a higher concentration of agglutinates and a higher maturity index relative to regolith in deeper portions of the unit. Light mantle avalanche samples 73141 (subsurface) and 73121 (near

  14. Filled Craters

    NASA Image and Video Library

    2006-05-11

    This MOC image shows adjacent impact craters located north-northwest of the Acheron Fossae region of Mars. The two craters are of similar size and formed by meteor impacts. However, one is much more filled than the other, indicating that it is older

  15. Iturralde Crater, Bolivia

    NASA Image and Video Library

    2002-09-17

    NASA scientists will venture into an isolated part of the Bolivian Amazon to try and uncover the origin of a 5 mile (8 kilometer) diameter crater there known as the Iturralde Crater. Traveling to this inhospitable forest setting, the Iturralde Crater Expedition 2002 will seek to determine if the unusual circular crater was created by a meteor or comet. Organized by Dr. Peter Wasilewski of NASA's Goddard Space Flight Center, Greenbelt, Md., the Iturralde Crater Expedition 2002 will be led by Dr. Tim Killeen of Conservation International, which is based in Bolivia. Killeen will be assisted by Dr. Compton Tucker of Goddard. The team intends to collect and analyze rocks and soil, look for glass particles that develop from meteor impacts and study magnetic properties in the area to determine if the Iturralde site was indeed created by a meteor. This image was acquired on June 29, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03859

  16. Scaling craters in carbonates: Electron paramagnetic resonance analysis of shock damage

    NASA Technical Reports Server (NTRS)

    Polanskey, Carol A.; Ahrens, Thomas J.

    1994-01-01

    prehistoric shock damage. This is demonstrated by our study of shocked Kaibab limestone from the 49,000-year-old Meteor (Barringer) Crater Arizona.

  17. Pedestal Crater and Yardangs

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-444, 6 August 2003

    This April 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small meteor impact crater that has been modified by wind erosion. Two things happened after the crater formed. First, the upper few meters of surface material into which the meteor impacted was later eroded away by wind. The crater ejecta formed a protective armor that kept the material under the ejecta from been blown away. This caused the crater and ejecta to appear as if standing upon a raised platform--a feature that Mars geologists call a pedestal crater. Next, the pedestal crater was buried beneath several meters of new sediment, and then this material was eroded away by wind to form the array of sharp ridges that run across the pedestal crater's surface. These small ridges are known as yardangs. This picture is illuminated by sunlight from the upper left; it is located in west Daedalia Planum near 14.6oS, 131.9oW.

  18. Impact Crater Identified on the Navajo Nation Near Chinle, Arizona

    NASA Astrophysics Data System (ADS)

    Shoemaker, E. M.; Roddy, D. J.; Moore, C. B.; Pfeilsticker, R.; Curley, C. L.; Dunkelman, T.; Kuerzel, K.; Taylor, M.; Shoemaker, C.; Donnelly, P.

    1995-09-01

    A small impact crater has been identified about 8 km north of Chinle, Arizona on the Navajo Nation. Preliminary studies show that the crater is elongate in a N-S direction, measuring about 23 by 34 m in diameter, with a depth of about 1.3 m. The impact origin of the crater is identified by its shape, subsurface deformation, and an iron-nickel oxide fragment. We estimate the age to be about 150 to 250 years. The impact site is on the east side of the Chinle Valley at an altitude of 1685 m and is about 2 km east of Chinle Wash. The crater formed on an alluvial surface that slopes gently west toward the Wash. About 2 m of reddish brown alluvial sand and silt of the Jeddito Formation of late Pleistocene age rests on the Petrified Forest Member of the Chinle Formation of late Triassic age. A moderately developed late Pleistocene pedocal soil has developed on the Jeddito. Several thin discontinuous caliche horizons occur at a depth of about 1 m. The caliche horizons provided easily traced markers by which we could delimit the original walls of the crater and recognize deformation along the crater walls. Three trenches were excavated down to the top of the Chinle bedrock: 1) an east- west trench 31 m long across the center of the crater, 2) a north-south trench 13 m long in the north crater rim, and 3) a north-south trench 12 m long in the south crater rim. Excavation width was about 1 m and provided excellent exposures of the subsurface stratigraphy and deformation. The trenches revealed that the original crater was about 23 m wide and 27 m long. The original rim crests have entirely eroded away so that no perceptible raised rim remains. At the center of the crater, the original depth was about 3 m; material washed from the rims now fills the crater floor to a depth of 1.5 m. The crater is symmetrical; however, the deepest part of the original crater lies south of the center and was not reached in the south trench. The east-west trench showed that the initial floor of

  19. Exhuming Crater in Northeast Arabia

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-563, 3 December 2003

    The upper crust of Mars is layered, and interbedded with these layers are old, filled and buried meteor impact craters. In a few places on Mars, such as Arabia Terra, erosion has re-exposed some of the filled and buried craters. This October 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example. The larger circular feature was once a meteor crater. It was filled with sediment, then buried beneath younger rocks. The smaller circular feature is a younger impact crater that formed in the surface above the rocks that buried the large crater. Later, erosion removed all of the material that covered the larger, buried crater, except in the location of the small crater. This pair of martian landforms is located near 17.6oN, 312.8oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.

  20. Fresh Impact Crater and Rays in Tharsis

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission has included dozens of opportunities to point the spacecraft directly at features of interest so that pictures of things not seen during the earlier Mapping Mission can be obtained. The example shown here is a small meteorite impact crater in northern Tharsis near 17.2oN, 113.8oW. Viking Orbiter images from the late 1970's showed at this location what appeared to be a dark patch with dark rays emanating from a brighter center. The MOC team surmised that the dark rays may be indicating the location of afresh crater formed by impact sometime in the past few centuries (since dark ray are quickly covered by dust falling out of the martian atmosphere). All through MOC's Mapping Mission in 1999 and 2000, attempts were made to image the crater as predictions indicated that the spacecraft would pass over the site, but the crater was never seen. Finally, in June 2001, Extended Mission operations allowed the MOC team to point the spacecraft (and hence the camera, which is fixed to the spacecraft)directly at the center of the dark rays, where we expected to find the crater.

    The picture on the left (above, A) is a mosaic of three MOC high resolution images and one much lower-resolution Viking image. From left to right, the images used in the mosaic are: Viking 1 516A55, MOC E05-01904, MOCM21-00272, and MOC M08-03697. Image E05-01904 is the one taken in June 2001 by pointing the spacecraft. It captured the impact crater responsible for the rays. A close-up of the crater, which is only 130 meters (427 ft)across, is shown on the right (above, B). This crater is only one-tenth the size of the famous Meteor Crater in northern Arizona.

    The June 2001 MOC image reveals many surprises about this feature. For one, the crater is not located at the center of the bright area from which the dark rays radiate. The rays point to the center of this bright area, not the crater. Further, the dark material ejected

  1. Big Crater as Viewed by Pathfinder Lander

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The 'Big Crater' is actually a relatively small Martian crater to the southeast of the Mars Pathfinder landing site. It is 1500 meters (4900 feet) in diameter, or about the same size as Meteor Crater in Arizona. Superimposed on the rim of Big Crater (the central part of the rim as seen here) is a smaller crater nicknamed 'Rimshot Crater.' The distance to this smaller crater, and the nearest portion of the rim of Big Crater, is 2200 meters (7200 feet). To the right of Big Crater, south from the spacecraft, almost lost in the atmospheric dust 'haze,' is the large streamlined mountain nicknamed 'Far Knob.' This mountain is over 450 meters (1480 feet) tall, and is over 30 kilometers (19 miles) from the spacecraft. Another, smaller and closer knob, nicknamed 'Southeast Knob' can be seen as a triangular peak to the left of the flanks of the Big Crater rim. This knob is 21 kilometers (13 miles) southeast from the spacecraft.

    The larger features visible in this scene - Big Crater, Far Knob, and Southeast Knob - were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The scene includes rocky ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of South Twin Peak. The largest rock in the nearfield, just left of center in the foreground, nicknamed 'Otter', is about 1.5 meters (4.9 feet) long and 10 meters (33 feet) from the spacecraft.

    This view of Big Crater was produced by combining 6 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    Mars Pathfinder is the second in NASA

  2. Secrets of the Wabar craters

    USGS Publications Warehouse

    Wynn, Jeffrey C.; Shoemaker, Eugene M.

    1997-01-01

    Focuses on the existence of craters in the Empty Quarter of Saudi Arabia created by the impact of meteors in early times. Mars Pathfinder and Mars Global Surveyor's encounter with impact craters; Elimination of craters in the Earth's surface by the action of natural elements; Impact sites' demand for careful scientific inspections; Location of the impact sites.

  3. Abstracts for the International Conference on Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Topics addressed include: chemical abundances; asteroidal belt evolution; sources of meteors and meteorites; cometary spectroscopy; gas diffusion; mathematical models; cometary nuclei; cratering records; imaging techniques; cometary composition; asteroid classification; radio telescopes and spectroscopy; magnetic fields; cosmogony; IUE observations; orbital distribution of asteroids, comets, and meteors; solar wind effects; computerized simulation; infrared remote sensing; optical properties; and orbital evolution.

  4. Atmospheric Fragmentation of the Canyon Diablo Meteoroid

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.; Artemieva, N. A.

    2005-01-01

    About 50 kyr ago the impact of an iron meteoroid excavated Meteor Crater, Arizona, the first terrestrial structure widely recognized as a meteorite impact crater. Recent studies of ballistically dispersed impact melts from Meteor Crater indicate a compositionally unusually heterogeneous impact melt with high SiO2 and exceptionally high (10 to 25% on average) levels of projectile contamination. These are observations that must be explained by any theoretical modeling of the impact event. Simple atmospheric entry models for an iron meteorite similar to Canyon Diablo indicate that the surface impact speed should have been around 12 km/s [Melosh, personal comm.], not the 15-20 km/s generally assumed in previous impact models. This may help explaining the unusual characteristics of the impact melt at Meteor Crater. We present alternative initial estimates of the motion in the atmosphere of an iron projectile similar to Canyon Diablo, to constraint the initial conditions of the impact event that generated Meteor Crater.

  5. Big Crater as Viewed by Pathfinder Lander - Anaglyph

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The 'Big Crater' is actually a relatively small Martian crater to the southeast of the Mars Pathfinder landing site. It is 1500 meters (4900 feet) in diameter, or about the same size as Meteor Crater in Arizona. Superimposed on the rim of Big Crater (the central part of the rim as seen here) is a smaller crater nicknamed 'Rimshot Crater.' The distance to this smaller crater, and the nearest portion of the rim of Big Crater, is 2200 meters (7200 feet). To the right of Big Crater, south from the spacecraft, almost lost in the atmospheric dust 'haze,' is the large streamlined mountain nicknamed 'Far Knob.' This mountain is over 450 meters (1480 feet) tall, and is over 30 kilometers (19 miles) from the spacecraft. Another, smaller and closer knob, nicknamed 'Southeast Knob' can be seen as a triangular peak to the left of the flanks of the Big Crater rim. This knob is 21 kilometers (13 miles) southeast from the spacecraft.

    The larger features visible in this scene - Big Crater, Far Knob, and Southeast Knob - were discovered on the first panoramas taken by the IMP camera on the 4th of July, 1997, and subsequently identified in Viking Orbiter images taken over 20 years ago. The scene includes rocky ridges and swales or 'hummocks' of flood debris that range from a few tens of meters away from the lander to the distance of South Twin Peak. The largest rock in the nearfield, just left of center in the foreground, nicknamed 'Otter', is about 1.5 meters (4.9 feet) long and 10 meters (33 feet) from the spacecraft.

    This view of Big Crater was produced by combining 6 individual 'Superpan' scenes from the left and right eyes of the IMP camera. Each frame consists of 8 individual frames (left eye) and 7 frames (right eye) taken with different color filters that were enlarged by 500% and then co-added using Adobe Photoshop to produce, in effect, a super-resolution panchromatic frame that is sharper than an individual frame would be.

    The anaglyph view of Big Crater was

  6. Impact cratering calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.; Okeefe, J. D.; Smither, C.; Takata, T.

    1991-01-01

    In the course of carrying out finite difference calculations, it was discovered that for large craters, a previously unrecognized type of crater (diameter) growth occurred which was called lip wave propagation. This type of growth is illustrated for an impact of a 1000 km (2a) silicate bolide at 12 km/sec (U) onto a silicate half-space at earth gravity (1 g). The von Misses crustal strength is 2.4 kbar. The motion at the crater lip associated with this wave type phenomena is up, outward, and then down, similar to the particle motion of a surface wave. It is shown that the crater diameter has grown d/a of approximately 25 to d/a of approximately 4 via lip propagation from Ut/a = 5.56 to 17.0 during the time when rebound occurs. A new code is being used to study partitioning of energy and momentum and cratering efficiency with self gravity for finite-sized objects rather than the previously discussed planetary half-space problems. These are important and fundamental subjects which can be addressed with smoothed particle hydrodynamic (SPH) codes. The SPH method was used to model various problems in astrophysics and planetary physics. The initial work demonstrates that the energy budget for normal and oblique impacts are distinctly different than earlier calculations for silicate projectile impact on a silicate half space. Motivated by the first striking radar images of Venus obtained by Magellan, the effect of the atmosphere on impact cratering was studied. In order the further quantify the processes of meteor break-up and trajectory scattering upon break-up, the reentry physics of meteors striking Venus' atmosphere versus that of the Earth were studied.

  7. Crater Chains

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    The large crater at the top of this THEMIS visible image has several other craters inside of it. Most noticeable are the craters that form a 'chain' on the southern wall of the large crater. These craters are a wonderful example of secondary impacts. They were formed when large blocks of ejecta from an impact crashed back down onto the surface of Mars. Secondaries often form radial patterns around the impact crater that generated them, allowing researchers to trace them back to their origin.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 19.3, Longitude 347.5 East (12.5 West). 19 meter/pixel resolution.

  8. First natural occurrence of coesite

    USGS Publications Warehouse

    Chao, E.C.T.; Shoemaker, E.M.; Madsen, B.M.

    1960-01-01

    Coesite, the high-pressure polymorph of SiO2, hitherto known only as a synthetic compound, is identified as an abundant mineral in sheared Coconino sandstone at Meteor Crater, Arizona. This natural occurrence has important bearing on the recognition of meteorite impact craters in quartz-bearing geologic formations.

  9. Chemical, isotopic, and gas compositions of selected thermal springs in Arizona, New Mexico, and Utah

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1977-01-01

    Twenty-seven thermal springs in Arizona, New Mexico, and Utah were sampled for detailed chemical and isotopic analysis. The springs issue sodium chloride, sodium bicarbonate, or sodium mixed-anion waters of near neutral (6.2) to alkaline (9.2) pH. High concentrations of fluoride, more than 8 milligrams per liter, occur in Arizona in waters from Gillard Hot Springs, Castle Hot Springs, and the unnamed spring of Eagle Creek, and in New Mexico from springs along the Gila River. Deuterium compositions of the thermal waters cover the same range as those expected for meteoric waters in the respective areas. The chemical compositions of the thermal waters indicate that Thermo Hot Springs in Utah and Gillard Hot Springs in Arizona represent hydrothermal systems which are at temperatures higher than 125 deg C. Estimates of subsurface temperature based on the quartz and Na-K-Ca geothermometer differ by up to 60 deg C for Monroe, Joseph, Red Hill, and Crater hot springs in Utah. Similar conflicting estimates of aquifer temperature occur for Verde Hot Springs, the springs near Clifton and Coolidge Dam, in Arizona; and the warm springs near San Ysidro, Radium Hot Springs, and San Francisco Hot Springs, in New Mexico. Such disparities could result from mixing, precipitation of calcium carbonate, or perhaps appreciable concentrations of magnesium. (Woodard-USGS)

  10. Exhuming South Polar Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 February 2004 The large, circular feature in this image is an old meteor impact crater. The crater is larger than the 3 kilometers-wide (1.9 miles-wide) Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, thus only part of the crater is seen. The bright mesas full of pits and holes--in some areas resembling swiss cheese--are composed of frozen carbon dioxide. In this summertime view, the mesa slopes and pit walls are darkened as sunlight causes some of the ice to sublime away. At one time in the past, the crater shown here may have been completely covered with carbon dioxide ice, but, over time, it has been exhumed as the ice sublimes a little bit more each summer. The crater is located near 86.8oS, 111.6oW. Sunlight illuminates this scene from the upper left.

  11. Map showing the Elko crater field, Elko County, Nevada

    USGS Publications Warehouse

    Ketner, Keith B.; Roddy, David J.

    1980-01-01

    The Elko crater field consists of two arrays of rimmed craters in the valleys of Dorsey, Susie, and McClellan Creeks, 30 to 50 km north of Elko, Nevada. In the principal array, more the 165 craters are scattered irregularly in an area 3 km wide and 20 km long. Most of the the craters are circular but some, formed by overlap, are oval or irregular. They range from 5 m to 250 m in diameter and the relief of the largest ones, from the sedimentary floor of the cater to the top of the rim, is at least 6 m. The surficial material of the rims is principally gravel similar to that in the surrounding terrane. The surficial material inside the craters is primarily silt, probably blown in by the wind, and pebbles, apparently washed in from the rims. There is also a later of volcanic ash at a depth of about 2 m. This ash was identified by its physical and mineralogical composition as the Mazama ash (R. E. Wilcox, oral commun., 1976), a ±6600 year old ash bed also present in the alluvium of Dorsey and Susie Creeks. The craters are presently interpreted as having been formed by a meteor shower although no meteor material has been discovered. Investigation is continuing.

  12. Crater Landslide

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06088 Crater Landslide

    This landslide occurs in an unnamed crater southeast of Millochau Crater.

    Image information: VIS instrument. Latitude -24.4N, Longitude 87.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  13. Proceedings of the Geophysical Laboratory/Lawrence Radiation Laboratory Cratering Symposium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordyke, Milo D.

    1961-10-01

    The geological papers in this morning's session will deal descriptively with surficial features and end products of impact craters caused by meteorite falls. Such items as breccia, structural deformation, normal and inverse stratigraphy, glass (fused rock), and coesite will frequently be mentioned. Meteor and explosion crater data are presented.

  14. Evidence for Recent Liquid Water on Mars: Channeled Aprons in a Small Crater within Newton Crater

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site]

    Newton Crater is a large basin formed by an asteroid impact that probably occurred more than 3 billion years ago. It is approximately 287 kilometers (178 miles) across. The picture shown here (top) highlights the north wall of a specific, smaller crater located in the southwestern quarter of Newton Crater (above). The crater of interest was also formed by an impact; it is about 7 km (4.4 mi) across, which is about 7 times bigger than the famous Meteor Crater in northern Arizona in North America.

    The north wall of the small crater has many narrow gullies eroded into it. These are hypothesized to have been formed by flowing water and debris flows. Debris transported with the water created lobed and finger-like deposits at the base of the crater wall where it intersects the floor (bottom center top image). Many of the finger-like deposits have small channels indicating that a liquid--most likely water--flowed in these areas. Hundreds of individual water and debris flow events might have occurred to create the scene shown here. Each outburst of water from higher upon the crater slopes would have constituted a competition between evaporation, freezing, and gravity.

    The individual deposits at the ends of channels in this MOC image mosaic were used to get a rough estimate of the minimum amount of water that might be involved in each flow event. This is done first by assuming that the deposits are like debris flows on Earth. In a debris flow, no less than about 10% (and no more than 30%) of their volume is water. Second, the volume of an apron deposit is estimated by measuring the area covered in the MOC image and multiplying it by a conservative estimate of thickness, 2 meters (6.5 feet). For a flow containing only 10% water, these estimates conservatively suggest that about 2.5 million liters (660,000 gallons) of water are involved in each event; this is enough to fill about 7 community-sized swimming pools or

  15. Crater Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06085 Crater Clouds

    The crater on the right side of this image is affecting the local wind regime. Note the bright line of clouds streaming off the north rim of the crater.

    Image information: VIS instrument. Latitude -78.8N, Longitude 320.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  16. Cydonia Craters

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Eroded mesas and secondary craters dot the landscape in this area of the Cydonia Mensae region. The single oval-shaped crater displays a 'butterfly' ejecta pattern, indicating that the crater formed from a low-angle impact.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 32.9, Longitude 343.8 East (16.2 West). 19 meter/pixel resolution.

  17. A Bright Lunar Impact Flash Linked to the Virginid Meteor Complex

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Suggs, R. J.

    2015-01-01

    On 17 March 2013 at 03:50:54 UTC, NASA detected a bright impact flash on the Moon caused by a meteoroid impacting the lunar surface. There was meteor activity in Earth's atmosphere the same night from the Virginid Meteor Complex. The impact crater associated with the impact flash was found and imaged by Lunar Reconnaissance Orbiter (LRO). Goal: Monitor the Moon for impact flashes produced by meteoroids striking the lunar surface. Determine meteoroid flux in the 10's gram to kilogram size range.

  18. Crater studies: Part A: lunar crater morphometry

    USGS Publications Warehouse

    Pike, Richard J.

    1973-01-01

    Morphometry, the quantitative study of shape, complements the visual observation and photointerpretation in analyzing the most outstanding landforms of the Moon, its craters (refs. 32-1 and 32-2). All three of these interpretative tools, which were developed throughout the long history of telescopic lunar study preceding the Apollo Program, will continue to be applicable to crater analysis until detailed field work becomes possible. Although no large (>17.5 km diameter) craters were examined in situ on any of the Apollo landings, the photographs acquired from the command modules will markedly strengthen results of less direct investigations of the craters. For morphometry, the most useful materials are the orbital metric and panoramic photographs from the final three Apollo missions. These photographs permit preparation of contour maps, topographic profiles, and other numerical data that accurately portray for the first time the surface geometry of lunar craters of all sizes. Interpretations of craters no longer need be compromised by inadequate topographic data. In the pre-Apollo era, hypotheses for the genesis of lunar craters usually were constructed without any numerical descriptive data. Such speculations will have little credibility unless supported by accurate, quantitative data, especially those generated from Apollo orbital photographs. This paper presents a general study of the surface geometry of 25 far-side craters and a more detailed study of rim-crest evenness for 15 near-side and far-side craters. Analysis of this preliminary sample of Apollo 15 and 17 data, which includes craters between 1.5 and 275 km in diameter, suggests that most genetic interpretations of craters made from pre-Apollo topographic measurements may require no drastic revision. All measurements were made from topographic profiles generated on a stereoplotter at the Photogrammetric Unit of the U.S. Geological Survey, Center of Astrogeology, Flagstaff, Arizona.

  19. Palos Crater

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    Palos Crater has been suggested as a future landing site for Mars Missions. This crater has a channel called Tinto Vallis, which enters from the south. This site was suggested as a landing site because it may contain lake deposits. Palos Crater is named in honor of the port city in Spain from which Christopher Columbus sailed on his way to the New World in August of 1492. The floor of Palos Crater appears to be layered in places providing further evidence that this site may in fact have been the location of an ancient lake.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Crater At Night

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This nighttime IR image is dominated by a large crater. The crater no longer has any visible ejecta, and retains only it's rim - seen here as a varigated black/gray semi-circle surrounding a brighter floor. The smaller craters in the image have bright rings representing their rocky rims. This crater is located just south of Syrtis Major.

    Image information: IR instrument. Latitude 2.8, Longitude 76.4 East (283.6 West). 100 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. Turkish meteor surveillance systems and network: Impact craters and meteorites database

    NASA Astrophysics Data System (ADS)

    Unsalan, O.; Ozel, M. E.; Derman, I. E.; Terzioglu, Z.; Kaygisiz, E.; Temel, T.; Topoyan, D.; Solmaz, A.; Yilmaz Kocahan, O.; Esenoglu, H. H.; Emrahoglu, N.; Yilmaz, A.; Yalcinkaya, B. O.

    2014-07-01

    In our project, we aim toward constructing Turkish Meteor Surveillance Systems and Network in Turkey. For this goal, video observational systems from SonotaCo (Japan) were chosen. Meteors are going to be observed with the specific cameras, their orbits will be calculated by the software from SonotaCo, and the places where they will be falling / impacting will be examined by field trips. The collected meteorites will be investigated by IR-Raman Spectroscopic techniques and SEM-EDX analyses in order to setup a database. On the other hand, according to our Prime Ministry Ottoman Archives, there are huge amounts of reports of falls for the past centuries. In order to treat these data properly, it is obvious that processing systems should be constructed and developed.

  2. Video Meteor Fluxes

    NASA Technical Reports Server (NTRS)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  3. Isidis Crater Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater located south of the Isidis Planitia region of Mars. As with the previous unnamed crater landslide, this one formed due to slope failure of the inner crater rim.

    Image information: VIS instrument. Latitude -2.9, Longitude 90.8 East (269.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Crater in Marte Vallis

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-566, 6 December 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a streamlined tail-pointing toward the upper right (northeast)--in the lee of a meteor impact crater in Marte Vallis, a large valley and channel complex southeast and east of the Elysium volcanic region. The fluid that went through Marte Vallis, whether water, mud, lava, or otherwise, created this form as it moved from the lower left (southwest) toward the upper right. The crater is located near 19.0oN, 174.9oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the left.

  5. Effects of Pre-Existing Target Structure on the Formation of Large Craters

    NASA Technical Reports Server (NTRS)

    Barnouin-Jha, O. S.; Cintala, M. J.; Crawford, D. A.

    2003-01-01

    The shapes of large-scale craters and the mechanics responsible for melt generation are influenced by broad and small-scale structures present in a target prior to impact. For example, well-developed systems of fractures often create craters that appear square in outline, good examples being Meteor Crater, AZ and the square craters of 433 Eros. Pre-broken target material also affects melt generation. Kieffer has shown how the shock wave generated in Coconino sandstone at Meteor crater created reverberations which, in combination with the natural target heterogeneity present, created peaks and troughs in pressure and compressed density as individual grains collided to produce a range of shock mineralogies and melts within neighboring samples. In this study, we further explore how pre-existing target structure influences various aspects of the cratering process. We combine experimental and numerical techniques to explore the connection between the scales of the impact generated shock wave and the pre-existing target structure. We focus on the propagation of shock waves in coarse, granular media, emphasizing its consequences on excavation, crater growth, ejecta production, cratering efficiency, melt generation, and crater shape. As a baseline, we present a first series of results for idealized targets where the particles are all identical in size and possess the same shock impedance. We will also present a few results, whereby we increase the complexities of the target properties by varying the grain size, strength, impedance and frictional properties. In addition, we investigate the origin and implications of reverberations that are created by the presence of physical and chemical heterogeneity in a target.

  6. Old Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    The large crater in the center of this image is older than all the smaller craters in the rest of the VIS image. The crater no longer has any visible rim or ejecta, and is simply a circular smooth floored basin. The interior has been further modified by both impact and the process that formed the darker markings. This image is from the region near Naktong Vallis.

    Image information: VIS instrument. Latitude -1, Longitude 30.7 East (329.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Meteor44 Video Meteor Photometry

    NASA Technical Reports Server (NTRS)

    Swift, Wesley R.; Suggs, Robert M.; Cooke, William J.

    2004-01-01

    Meteor44 is a software system developed at MSFC for the calibration and analysis of video meteor data. The dynamic range of the (8bit) video data is extended by approximately 4 magnitudes for both meteors and stellar images using saturation compensation. Camera and lens specific saturation compensation coefficients are derived from artificial variable star laboratory measurements. Saturation compensation significantly increases the number of meteors with measured intensity and improves the estimation of meteoroid mass distribution. Astrometry is automated to determine each image s plate coefficient using appropriate star catalogs. The images are simultaneously intensity calibrated from the contained stars to determine the photon sensitivity and the saturation level referenced above the atmosphere. The camera s spectral response is used to compensate for stellar color index and typical meteor spectra in order to report meteor light curves in traditional visual magnitude units. Recent efforts include improved camera calibration procedures, long focal length "streak" meteor photome&y and two-station track determination. Meteor44 has been used to analyze data from the 2001.2002 and 2003 MSFC Leonid observational campaigns as well as several lesser showers. The software is interactive and can be demonstrated using data from recent Leonid campaigns.

  8. Mare Chromium Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    This crater, located in Mare Chromium, shows evidence of exterior modification, with little interior modification. While the rim is still visible, the ejecta blanket has been removed or covered. There is some material at the bottom of the crater, but the interior retains the bowl shape from the initial formation of the crater.

    Image information: VIS instrument. Latitude -34.4, Longitude 174.4 East (185.6 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Marte Valles Crater 'Island'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 April 2004 Marte Valles is an outflow channel system that straddles 180oW longitude between the region south of Cerberus and far northwestern Amazonis. The floor of the Marte valleys have enigmatic platy flow features that some argue are formed by lava, others suggest they are remnants of mud flows. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an island created in the middle of the main Marte Valles channel as fluid---whether lava or mud---flowed past two older meteor impact craters. The craters are located near 21.5oN, 175.3oW. The image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  10. Terra Cimmeria Crater Landslide

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater in the Terra Cimmeria region of Mars. The unnamed crater hosting this image is just east of Molesworth Crater.

    Image information: VIS instrument. Latitude -27.7, Longitude 152 East (208 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Cutting Craters

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 12 November 2003

    The rims of two old and degraded impact craters are intersected by a graben in this THEMIS image taken near Mangala Fossa. Yardangs and low-albedo wind streaks are observed at the top of the image as well as interesting small grooves on the crater floor. The origin of these enigmatic grooves may be the result of mud or lava and volatile interactions. Variable surface textures observed in the bottom crater floor are the result of different aged lava flows.

    Image information: VIS instrument. Latitude -15.2, Longitude 219.2 East (140.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Asteroids, Comets, Meteors 2014

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Penttilä, A.; Granvik, M.; Virkki, A.; Fedorets, G.; Wilkman, O.; Kohout, T.

    2014-08-01

    Asteroids, Comets, Meteors focuses on the research of small Solar System bodies. Small bodies are the key to understanding the formation and evolution of the Solar System, carrying signals from pre-solar times. Understanding the evolution of the Solar System helps unveil the evolution of extrasolar planetary systems. Societally, small bodies will be important future resources of minerals. The near-Earth population of small bodies continues to pose an impact hazard, whether it be small pieces of falling meteorites or larger asteroids or cometary nuclei capable of causing global environmental effects. The conference series entitled ''Asteroids, Comets, Meteors'' constitutes the leading international series in the field of small Solar System bodies. The first three conferences took place in Uppsala, Sweden in 1983, 1985, and 1989. The conference is now returning to Nordic countries after a quarter of a century. After the Uppsala conferences, the conference has taken place in Flagstaff, Arizona, U.S.A. in 1991, Belgirate, Italy in 1993, Paris, France in 1996, Ithaca, New York, U.S.A. in 1999, in Berlin, Germany in 2002, in Rio de Janeiro, Brazil in 2005, in Baltimore, Maryland, U.S.A. in 2008, and in Niigata, Japan in 2012. ACM in Helsinki, Finland in 2014 will be the 12th conference in the series.

  13. Signs of Landscape Modifications at Martian Crater

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Click on the image for larger version

    The lower portion of this image from the Thermal Emission Imaging System camera (THEMIS) on NASA's Mars Odyssey orbiter shows a crater about 16 kilometers (10 miles) in diameter with features studied as evidence of deposition or erosion. The crater is centered at 40.32 degrees south latitude and 132.5 degrees east longitude, in the eastern portion of the Hellas basin on Mars. It has gullies and arcuate ridges on its north, pole-facing interior wall. This crater is in the center of a larger (60-kilometer or 37-mile diameter) crater with lobate flows on its north, interior wall. The image, number V07798008 in the THEMIS catalog, covers a swath of ground 17.4 kilometers (10.8 miles) wide.

    NASA's Jet Propulsion Laboratory manages the Mars Odyssey mission for NASA's Office of Space Science. THEMIS was developed by Arizona State University in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  14. Tritium concentrations in the active Pu'u O'o crater, Kilauea volcano, Hawaii: implications for cold fusion in the Earth's interior

    NASA Astrophysics Data System (ADS)

    Quick, J. E.; Hinkley, T. K.; Reimer, G. M.; Hedge, C. E.

    1991-11-01

    The assertion that deuterium-deuterium fusion may occur at low temperature suggests a potential new source of geothermal heat. If a cold-fusion-like process occurs within the Earth, then a test for its existence would be a search for anomalous tritium in volcanic emissions. The Pu'u O'o crater is the first point at which large amounts of water are degassed from the magma that feeds the Kilauea system. The magma is probably not contaminated by meteoric-source ground water prior to degassing at Pu'u O'o, although mixing of meteoric and magmatic H 2O occurs within the crater. Tritium contents of samples from within the crater are lower than in samples taken simultaneously from the nearby upwind crater rim. These results provide no evidence in support of a cold-fusion-like process in the Earth's interior.

  15. Tritium concentrations in the active Pu'u O'o crater, Kilauea volcano, Hawaii: implications for cold fusion in the Earth's interior

    USGS Publications Warehouse

    Quick, J.E.; Hinkley, T.K.; Reimer, G.M.; Hedge, C.E.

    1991-01-01

    The assertion that deuterium-deuterium fusion may occur at low temperature suggests a potential new source of geothermal heat. If a cold-fusion-like process occurs within the Earth, then a test for its existence would be a search for anomalous tritium in volcanic emissions. The Pu'u O'o crater is the first point at which large amounts of water are degassed from the magma that feeds the Kilauea system. The magma is probably not contaminated by meteoric-source ground water prior to degassing at Pu'u O'o, although mixing of meteoric and magmatic H2O occurs within the crater. Tritium contents of samples from within the crater are lower than in samples taken simultaneously from the nearby upwind crater rim. These results provide no evidence in support of a cold-fusion-like process in the Earth's interior. ?? 1991.

  16. Proctor Crater Dunes

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image, located near 30E and 47.5S, displays sand dunes within Proctor Crater. These dunes are composed of basaltic sand that has collected in the bottom of the crater. The topographic depression of the crater forms a sand trap that prevents the sand from escaping. Dune fields are common in the bottoms of craters on Mars and appear as dark splotches that lean up against the downwind walls of the craters. Dunes are useful for studying both the geology and meteorology of Mars. The sand forms by erosion of larger rocks, but it is unclear when and where this erosion took place on Mars or how such large volumes of sand could be formed. The dunes also indicate the local wind directions by their morphology. In this case, there are few clear slipfaces that would indicate the downwind direction. The crests of the dunes also typically run north-south in the image. This dune form indicates that there are probably two prevailing wind directions that run east and west (left to right and right to left).

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project

  17. Meteor Beliefs Project: Musical Meteors, meteoric imagery as used in near-contemporary song lyrics

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair; Gheorghe, Andrei Dorian

    2010-01-01

    Items collected from contemporary song lyrics featuring meteoric imagery, or inspired by meteors, are given, with some discussion. While not a major part of the Meteor Beliefs Project, there are points of interest in how such usage may become passed into popular beliefs about meteors.

  18. Chappy Oblique

    NASA Image and Video Library

    2016-03-30

    Looking east to west across the rim and down into Chaplygin crater reveals this beautiful example of a fresh young crater and its perfectly preserved ejecta blanket. The delicate patterns of flow across, over, and down local topography clearly show that ejecta traveled as a ground hugging flow for great distances, rather than simply being tossed out on a ballistic trajectory. Very near the rim lies a dark, lacy, discontinuous crust of now frozen impact melt. Clearly this dark material is on top of the bright material so it was the very last material ejected from the crater. The melt was formed as the tremendous energy of impact was converted to heat and the lunar crust was melted at the impact point. As the crater rebounded and material sloughed down the walls of the deforming crater the melt was splashed out over the rim and froze. Its low reflectance is mostly due to a high percentage of glass because the melt cooled so quickly that minerals did not have time to crystallize. The fact that the delicate splash patterns are so well preserved testifies to the very young age of this crater. But how young? For comparison "Chappy" (informal name) is 200 m larger than Meteor crater (1200 m diameter) in Arizona, which is about 50,000 years old. Craters of this size form every 100,000 years or so on the Moon and the Earth. Since there are very few superposed craters on Chappy, and its ejecta is so perfectly preserved it may be much younger than Meteor crater. However, we can't know the true true absolute age of "Chappy" until we can obtain a sample of its impact melt for radiometric age dating. Credit: NASA/Goddard/Arizona State University/LRO/LROC

  19. Chappy Oblique

    NASA Image and Video Library

    2017-12-08

    Looking east to west across the rim and down into Chaplygin crater reveals this beautiful example of a fresh young crater and its perfectly preserved ejecta blanket. The delicate patterns of flow across, over, and down local topography clearly show that ejecta traveled as a ground hugging flow for great distances, rather than simply being tossed out on a ballistic trajectory. Very near the rim lies a dark, lacy, discontinuous crust of now frozen impact melt. Clearly this dark material is on top of the bright material so it was the very last material ejected from the crater. The melt was formed as the tremendous energy of impact was converted to heat and the lunar crust was melted at the impact point. As the crater rebounded and material sloughed down the walls of the deforming crater the melt was splashed out over the rim and froze. Its low reflectance is mostly due to a high percentage of glass because the melt cooled so quickly that minerals did not have time to crystallize. The fact that the delicate splash patterns are so well preserved testifies to the very young age of this crater. But how young? For comparison "Chappy" (informal name) is 200 m larger than Meteor crater (1200 m diameter) in Arizona, which is about 50,000 years old. Craters of this size form every 100,000 years or so on the Moon and the Earth. Since there are very few superposed craters on Chappy, and its ejecta is so perfectly preserved it may be much younger than Meteor crater. However, we can't know the true true absolute age of "Chappy" until we can obtain a sample of its impact melt for radiometric age dating. Investigate all of Chappy's ejecta, at full resolution: lroc.sese.asu.edu/posts/901 Credit: NASA/Goddard/Arizona State University/LRO/LROC

  20. Tycho Crater's Peak

    NASA Image and Video Library

    2011-06-29

    NASA image release June 30, 2011 On June 10, 2011, NASA's Lunar Reconnaissance Orbiter captured a dramatic sunrise view of Tycho crater. A very popular target with amateur astronomers, Tycho is located at 43.37°S, 348.68°E, and is about 51 miles (82 km) in diameter. The summit of the central peak is 1.24 miles (2 km) above the crater floor. The distance from Tycho's floor to its rim is about 2.92 miles (4.7 km). Tycho crater's central peak complex, shown here, is about 9.3 miles (15 km) wide, left to right (southeast to northwest in this view). › More information and related images › NASA's LRO website Credit: NASA Goddard/Arizona State University NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Origin of the 'dike-like' structure and transitions in eruptive styles at Colton Crater, northern Arizona: San Francisco Volcanic Field REU

    NASA Astrophysics Data System (ADS)

    Witter, M. R.; Ort, M. H.; Leudemann, L. A.

    2013-12-01

    Colton Crater, located within the San Francisco Volcanic Field (SFVF) in northern Arizona, is one of over 600 scoria cones in the field. Unlike most other volcanoes in the SFVF, Colton Crater is characterized as a hybrid volcano that had Strombolian, Hawaiian, and Surtseyan explosions. Surtseyan explosions led to the excavation of the center of the volcano, creating a large 1.3-km-diameter crater with a 30-m post-phreatomagmatic scoria cone at its center. A vertical erosion-resistant feature along the northern rim of the crater, originally mapped as a dike, provides valuable information about the sequence and timing of the transition to phreatomagmatic eruptions because it disrupts the otherwise continuous spatter layers deposited just prior to that change. Stratigraphic sections and paleomagnetic analysis of Colton Crater reveal the origin and timing of emplacement of this vertical structure and its place in the transitional eruptive history. The prominent upper layers in the crater walls show some variation throughout the crater, but generally are composed of agglutinated spatter, welded scoria and bombs, and rootless lava flows. The uppermost portion of the outward-dipping spatter layers that lie between the two saddles on the northern rim closely match the layers observed in the vertical structure, revealing that the structure is a section of rotated spatter. The characteristic remanent magnetization (ChRM), identified using alternating field (AF) demagnetization, shows the timing of the displacement of sections of the agglutinated spatter and welded cinder. Sites along the vertical structure yield ChRMs statistically identical to non-rotated sites, which indicates that rotation of the vertical structure occurred before the ChRM had been set, i.e., the layers were above the Curie temperature during rotation. The eruption started as Strombolian and Hawaiian perhaps because the flux of magma overpowered the influx of water from local aquifer formations, creating

  2. Meteor Beliefs Project: ``Year of Meteors''

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair; Drobnock, George J.; Gheorghe, Andrei Dorian

    2011-10-01

    We present a discussion linking ideas from a modern music album by Laura Veirs back to a turbulent time in American history 150 years ago, which inspired poet Walt Whitman to compose his poem "Year of Meteors", and the meteor beliefs of the period around 1859-1860, when collection of facts was giving way to analyses and theoretical explanations in meteor science.

  3. Dunes in Darwin Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03039 Dunes in Darwin Crater

    The dunes and sand deposits in this image are located on the floor of Darwin Crater.

    Image information: VIS instrument. Latitude 57.4S, Longitude 340.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Tephra Blanket Record of a Violent Strombolian Eruption, Sunset Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Wagner, K. D.; Ort, M. H.

    2015-12-01

    New fieldwork provides a detailed description of the widespread tephra of the ~1085 CE Sunset Crater eruption in the San Francisco Volcanic Field, Arizona, and refines interpretation of the eruptive sequence. The basal fine-lapilli tephra-fall-units I-IV are considered in detail. Units I and II are massive, with Unit I composed of angular to spiny clasts and II composed of more equant, oxidized clasts. Units III and IV have inversely graded bases and massive tops and are composed of angular to spiny iridescent and mixed iridescent and oxidized angular clasts, respectively. Xenoliths are rare in all units (<0.1%): sedimentary xenoliths are consistent with the known shallow country rock (Moenkopi and Kaibab Fms); magmatic xenoliths are pumiceous rhyolite mingled with basalt. Unit II is less sideromelane rich (20%) than Units I, III, and IV (60-80%). Above these units are at least two more coarse tephra-fall units. Variably preserved ash and fine-lapilli laminae cap the tephra blanket. This deposit is highly susceptible to reworking, and likely experienced both syn- and post-eruptive aeolian redistribution. It appears as either well sorted, alternating planar-parallel beds of ash and fine lapilli with rare wavy beds, or as cross- or planar-bedded ash. The tephra blanket as a whole is stratigraphically underlain by a fissure-fed lava flow and lapilli-fall units are intercalated with two larger flows. Mean grain size is coarsest in Unit I but coarsens in Units II-IV. Units I, III, and IV are moderately to poorly sorted with no skew. Unit II is better sorted and more coarse-skewed. Units I and III are slightly more platykurtic than II and IV. Without considering possible spatial effects introduced by dispersion patterns, bootstrap ANOVA confidence intervals suggest at least Unit II sorting and skewness are from distinct populations. Isopachs indicate Units I and II were associated with a 10-km-long fissure source. After or during Unit II's deposition, activity localized

  5. A Tale of 3 Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    11 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image captures some of the complexity of the martian upper crust. Mars does not simply have an impact-cratered surface, it's upper crust is a cratered volume. Over time, older craters on Mars have been eroded, filled, buried, and in some cases exhumed and re-exposed at the martian surface. The crust of Mars is layered to depths of 10 or more kilometers, and mixed in with the layered bedrock are a variety of ancient craters with diameters ranging from a few tens of meters (a few tens of yards) to several hundred kilometers (more than one or two hundred miles).

    The picture shown here captures some of the essence of the layered, cratered volume of the upper crust of Mars in a very simple form. The image shows three distinct circular features. The smallest, in the lower right quarter of the image, is a meteor crater surrounded by a mound of material. This small crater formed within a layer of bedrock that once covered the entire scene, but today is found only in this small remnant adjacent to the crater. The intermediate-sized crater, west (left) of the small one, formed either in the next layer down--that is, below the layer in which the small crater formed--or it formed in some layers that are now removed, but was big enough to penetrate deeply into the rock that is near the surface today. The largest circular feature in the image, in the upper right quarter of the image, is still largely buried. It formed in layers of rock that are below the present surface. Erosion has brought traces of its rim back to the surface of Mars. This picture is located near 50.0oS, 77.8oW, and covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this October 2004 image from the upper left.

  6. Meteor Showers.

    ERIC Educational Resources Information Center

    Kronk, Gary W.

    1988-01-01

    Described are the history, formation, and observing techniques of meteors and comets. Provided are several pictures, diagrams, meteor organizations and publications, and meteor shower observation tables. (YP)

  7. Polygons and Craters

    NASA Technical Reports Server (NTRS)

    2005-01-01

    3 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows polygons enhanced by subliming seasonal frost in the martian south polar region. Polygons similar to these occur in frozen ground at high latitudes on Earth, suggesting that perhaps their presence on Mars is also a sign that there is or once was ice in the shallow subsurface. The circular features are degraded meteor impact craters.

    Location near: 72.2oS, 310.3oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  8. Freedom Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Freedom crater, located in Acidalia Planitia, exhibits a concentric ring pattern in its interior, suggesting that there has been some movement of these materials towards the center of the crater. Slumping towards the center may have been caused by the presence of ground ice mixed in with the sediments. The origin for the scarps on the western edge of the interior deposit is unknown.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 43.3, Longitude 351.3 East (8.7 West). 19 meter/pixel resolution.

  9. Possible Layers on Floor of Suzhi Crater

    NASA Image and Video Library

    2016-12-14

    This image shows the floor of Suzhi Crater, an approximately 25-kilometer diameter impact crater located northeast of Hellas Planitia. The crater floor is mostly covered by dark-toned deposits; however some patches of the underlying light-toned bedrock are now exposed, like in this Context Camera image. This enhanced-color infrared image shows a close up of the exposed bedrock on the floor of the crater. Here we can see the lighter-toned bedrock partially covered up by darker-toned bedrock and a few wind-blown bedforms. The lighter-toned bedrock appears to lie over yet another type of bedrock in our image, which appears to be yellowish and heavily fractured. What complex tale of Martian geologic and climate history might these rocks tell us if we were able to sample them in person? Perhaps, one day we'll know. The University of Arizona, Tucson, operates HiRISE, which was http://photojournal.jpl.nasa.gov/catalog/PIA21273

  10. Landslide in a Crater

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The landslide in this VIS image is located inside an impact crater in the Elysium region of Mars. The unnamed crater is located at the margin of the volcanic flows from the Elysium Mons complex.

    Image information: VIS instrument. Latitude 1.2, Longitude 134 East (226 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Fluidized Crater Ejecta Deposit

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Mars Orbiter Camera (MOC) onboard the Mars Global Surveyor (MGS) spacecraft continued to obtain high resolution images of the red planet into August 1998. At this time, each ground track (the portion of Mars available for MOC imaging on a given orbit) covers areas from about 40oN on the late afternoon side of the planet, up over the sunlit north polar cap, and down the early morning side of Mars to about 20oN latitude. Early morning and late afternoon views provide good shadowing to reveal subtle details on the martian surface. Views of Mars with such excellent lighting conditions will not be seen by MOC once MGS's Science Phasing Orbits end in mid-September 1998.

    The image shown here, MOC image 47903, was targeted on Friday afternoon (PDT), August 7, 1998. This picture of ejecta from a nameless 9.1 kilometer (5.7 mile)-diameter crater was designed to take full advantage of the present lighting conditions. When the image was taken (around 5:38 p.m. (PDT) on Saturday, August 8, 1998), the Sun had just risen and was only about 6o above the eastern horizon. With the Sun so low in the local sky, the contrast between sunlit and shadowed surfaces allowed new, subtle details to be revealed on the surface of the crater ejecta deposit.

    The crater shown here has ejecta of a type that was first identified in Mariner 9 and Viking Orbiter images as 'fluidized' ejecta. Ejecta is the material that is thrown out from the crater during the explosion that results when a meteor--piece of a comet or asteroid--collides with the planet. Fluidized ejecta is characterized by its lobate appearance, and sometimes by the presence of a ridge along the margin of the ejecta deposit. In the case of the crater shown here, there are two ridges that encircle the crater ejecta--this type of ejecta deposit is sometimes called a double-lobe rampart deposit. The MOC image shows that this particular crater also has 'normal' ejecta that occurs out on the plains, beyond the outermost ridge of

  12. The Meteor Meter.

    ERIC Educational Resources Information Center

    Eggensperger, Martin B.

    2000-01-01

    Introduces the Meteor Scatter Project (MSP) in which high school students build an automated meteor observatory and learn to monitor meteor activity. Involves students in activities such as radio frequency survey, antenna design, antenna construction, manual meteor counts, and computer board configuration and installation. (YDS)

  13. Crater Copernicus

    NASA Technical Reports Server (NTRS)

    1999-01-01

    HUBBLE SHOOTS THE MOON in a change of venue from peering at the distant universe, NASA's Hubble Space Telescope has taken a look at Earth's closest neighbor in space, the Moon. Hubble was aimed at one of the Moon's most dramatic and photogenic targets, the 58 mile-wide (93 km) impact crater Copernicus. The image was taken while the Space Telescope Imaging Spectrograph(STIS) was aimed at a different part of the moon to measure the colors of sunlight reflected off the Moon. Hubble cannot look at the Sun directly and so must use reflected light to make measurements of the Sun's spectrum. Once calibrated by measuring the Sun's spectrum, the STIS can be used to study how the planets both absorb and reflect sunlight.(upper left)The Moon is so close to Earth that Hubble would need to take a mosaic of 130 pictures to cover the entire disk. This ground-based picture from Lick Observatory shows the area covered in Hubble's photomosaic with the WideField Planetary Camera 2..(center)Hubble's crisp bird's-eye view clearly shows the ray pattern of bright dust ejected out of the crater over one billion years ago, when an asteroid larger than a mile across slammed into the Moon. Hubble can resolve features as small as 600 feet across in the terraced walls of the crater, and the hummock-like blanket of material blasted out by the meteor impact.(lower right)A close-up view of Copernicus' terraced walls. Hubble can resolve features as small as 280 feet across.

  14. Rayed Gratteri Crater

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Click on image for larger version

    This HiRISE image covers the western portion of the primary cavity of Gratteri crater situated in the Memnonia Fossae region. Gratteri crater is one of five definitive large rayed craters on Mars. Gratteri crater has a diameter of approximately 6.9 kilometers. Crater rays are long, linear features formed from the high-velocity ejection of blocks of material that re-impact the surface in linear clusters or chains that appear to emanate from the main or primary cavity. Such craters have been long recognized as the 'brightest' and 'freshest' craters on the Moon. However, Martian rays differ from lunar rays in that they are not 'bright,' but best recognized by their thermal signature (at night) in 100 meter/pixel THEMIS thermal infrared images. The HiRISE image shows that Gratteri crater has well-developed and sharp crater morphologic features with no discernable superimposed impact craters. The HiRISE sub-image shows that this is true for the ejecta and crater floor up to the full resolution of the image. Massive slumped blocks of materials on the crater floor and the 'spur and gully' morphology with the crater wall may suggest that the subsurface in this area may be thick and homogenous. Gratteri crater's ejecta blanket (as seen in THEMIS images) can be described as 'fluidized,' which may be suggestive of the presence of ground-ice that may have helped to 'liquefy' the ejecta as it was deposited near the crater. Gratteri's ejecta can be observed to have flowed in and around obstacles including an older, degraded crater lying immediately to the SW of Gratteri's primary cavity.

    Image PSP_001367_1620 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 10, 2006. The complete image is centered at -17.7 degrees latitude, 199.9 degrees East longitude. The range to the target site was 257.1 km

  15. Mesospheric temperature estimation from meteor decay times during Geminids meteor shower

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Lukianova, Renata; Shalimov, Sergey; Lester, Mark

    2016-02-01

    Meteor radar observations at the Sodankylä Geophysical Observatory (67° 22'N, 26° 38'E, Finland) indicate that the mesospheric temperature derived from meteor decay times is systematically underestimated by 20-50 K during the Geminids meteor shower which has peak on 13 December. A very good coincidence of the minimum of routinely calculated temperature and maximum of meteor flux (the number of meteors detected per day) was observed regularly on that day in December 2008-2014. These observations are for a specific height-lifetime distribution of the Geminids meteor trails and indicate a larger percentage of overdense trails compared to that for sporadic meteors. A consequence of this is that the routine estimates of mesospheric temperature during the Geminids are in fact underestimates. The observations do, however, indicate unusual properties (e.g., mass, speed, or chemical composition) of the Geminids meteoroids. Similar properties were found also for Quadrantids in January 2009-2015, which like the Geminids has as a parent body an asteroid, but not for other meteor showers.

  16. Antarctic meteor observations using the Davis MST and meteor radars

    NASA Astrophysics Data System (ADS)

    Holdsworth, David A.; Murphy, Damian J.; Reid, Iain M.; Morris, Ray J.

    2008-07-01

    This paper presents the meteor observations obtained using two radars installed at Davis (68.6°S, 78.0°E), Antarctica. The Davis MST radar was installed primarily for observation of polar mesosphere summer echoes, with additional transmit and receive antennas installed to allow all-sky interferometric meteor radar observations. The Davis meteor radar performs dedicated all-sky interferometric meteor radar observations. The annual count rate variation for both radars peaks in mid-summer and minimizes in early Spring. The height distribution shows significant annual variation, with minimum (maximum) peak heights and maximum (minimum) height widths in early Spring (mid-summer). Although the meteor radar count rate and height distribution variations are consistent with a similar frequency meteor radar operating at Andenes (69.3°N), the peak heights show a much larger variation than at Andenes, while the count rate maximum-to-minimum ratios show a much smaller variation. Investigation of the effects of the temporal sampling parameters suggests that these differences are consistent with the different temporal sampling strategies used by the Davis and Andenes meteor radars. The new radiant mapping procedure of [Jones, J., Jones, W., Meteor radiant activity mapping using single-station radar observations, Mon. Not. R. Astron. Soc., 367(3), 1050-1056, doi: 10.1111/j.1365-2966.2006.10025.x, 2006] is investigated. The technique is used to detect the Southern delta-Aquarid meteor shower, and a previously unknown weak shower. Meteoroid speeds obtained using the Fresnel transform are presented. The diurnal, annual, and height variation of meteoroid speeds are presented, with the results found to be consistent with those obtained using specular meteor radars. Meteoroid speed estimates for echoes identified as Southern delta-Aquarid and Sextantid meteor candidates show good agreement with the theoretical pre-atmospheric speeds of these showers (41 km s -1 and 32 km s -1

  17. Meteor Beliefs Project: Meteors in the Maori astronomical traditions of New Zealand

    NASA Astrophysics Data System (ADS)

    Britton, Tui R.; Hamacher, Duane W.

    2014-02-01

    We review the literature for perceptions of meteors in the Maori culture of Aotearoa or New Zealand. We examine representations of meteors in religion, story, and ceremony. We find that meteors are sometimes personified as gods or children, or are seen as omens of death and destruction. The stories we found highlight the broad perception of meteors found throughout the Maori culture, and note that some early scholars conflated the terms comet and meteor.

  18. The U.S. Geological Survey Astrogeology Science Center

    USGS Publications Warehouse

    Kestay, Laszlo P.; Vaughan, R. Greg; Gaddis, Lisa R.; Herkenhoff, Kenneth E.; Hagerty, Justin J.

    2017-07-17

    In 1960, Eugene Shoemaker and a small team of other scientists founded the field of astrogeology to develop tools and methods for astronauts studying the geology of the Moon and other planetary bodies. Subsequently, in 1962, the U.S. Geological Survey Branch of Astrogeology was established in Menlo Park, California. In 1963, the Branch moved to Flagstaff, Arizona, to be closer to the young lava flows of the San Francisco Volcanic Field and Meteor Crater, the best preserved impact crater in the world. These geologic features of northern Arizona were considered good analogs for the Moon and other planetary bodies and valuable for geologic studies and astronaut field training. From its Flagstaff campus, the USGS has supported the National Aeronautics and Space Administration (NASA) space program with scientific and cartographic expertise for more than 50 years.

  19. Small Impact Craters with Dark Ejecta Deposits

    NASA Technical Reports Server (NTRS)

    1999-01-01

    When a meteor impacts a planetary surface, it creates a blast very much like a bomb explosion. Shown here are two excellent examples of small impact craters on the martian surface. Each has a dark-toned deposit of material that was blown out of the crater (that is, ejected) during the impact. Materials comprising these deposits are called ejecta. The ejecta here is darker than the surrounding substrate because each crater-forming blast broke through the upper, brighter surface material and penetrated to a layer of darker material beneath. This darker material was then blown out onto the surface in the radial pattern seen here.

    The fact that impact craters can penetrate and expose material from beneath the upper surface of a planet is very useful for geologists trying to determine the nature and composition of the martian subsurface. The scene shown here is illuminated from the upper left and covers an area 1.1 km (0.7 mi) wide by 1.4 km (0.9 mi). The larger crater has a diameter of about 89 meters (97 yards), the smaller crater is about 36 meters (39 yards) across. The picture is located in Terra Meridiani and was taken by the Mars Global Surveyor Mars Orbiter Camera.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  20. Geologic map of the eastern quarter of the Flagstaff 30’ x 60’ quadrangle, Coconino County, northern Arizona

    USGS Publications Warehouse

    Billingsley, George H.; Block, Debra L.; Hiza-Redsteer, Margaret

    2014-01-01

    The eastern quarter of the Flagstaff 30′ x 60′ quadrangle includes eight USGS 1:24,000-scale quadrangles in Coconino County, northern Arizona (fig. 1, map sheet): Anderson Canyon, Babbitt Wash, Canyon Diablo, Grand Falls, Grand Falls SE, Grand Falls SW, Grand Falls NE, and Meteor Crater. The map is bounded by lat 35° to 35°30′ N. and long 111° to 111°15′ W. and is on the southern part of the Colorado Plateaus geologic province (herein Colorado Plateau). Elevations range from 4,320 ft (1,317 m) at the Little Colorado River in the northwest corner of the map area to about 6,832 ft (2,082 m) at the southwest corner of the map. This geologic map provides an updated geologic framework for the eastern quarter of the Flagstaff 30′ x 60′ quadrangle and is adjacent to two other recent geologic maps, the Cameron and Winslow 30′ x 60′ quadrangles (Billingsley and others, 2007, 2013). This geologic map is the product of a cooperative effort between the U.S. Geological Survey (USGS) and the Navajo Nation. It provides geologic information for resource management officials of the U.S. Forest Service, the Arizona Game and Fish Department, and the Navajo Nation Reservation (herein the Navajo Nation). Funding for the map was provided by the USGS geologic mapping program, Reston, Virginia. Field work on the Navajo Nation was conducted under a permit from the Navajo Nation Minerals Department. Any persons wishing to conduct geologic investigations on the Navajo Nation must first apply for, and receive, a permit from the Navajo Nation Minerals Department, P.O. Box 1910, Window Rock, Arizona 86515, telephone (928) 871-6587.

  1. Physical and dynamical studies of meteors. Meteor-fragmentation and stream-distribution studies

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.; Southworth, R. B.

    1975-01-01

    Population parameters of 275 streams including 20 additional streams in the synoptic-year sample were found by a computer technique. Some 16 percent of the sample is in these streams. Four meteor streams that have close orbital resemblance to Adonis cannot be positively identified as meteors ejected by Adonis within the last 12000 years. Ceplecha's discrete levels of meteor height are not evident in radar meteors. The spread of meteoroid fragments along their common trajectory was computed for most of the observed radar meteors. There is an unexpected relationship between spread and velocity that perhaps conceals relationships between fragmentation and orbits; a theoretical treatment will be necessary to resolve these relationships. Revised unbiased statistics of synoptic-year orbits are presented, together with parallel statistics for the 1961 to 1965 radar meteor orbits.

  2. Impact Crater with Peak

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one

  3. Meteor Beliefs Project: Meteoric references in Ovid's Metamorphoses

    NASA Astrophysics Data System (ADS)

    Gheorghe, A. D.; McBeath, A.

    2003-10-01

    Three sections of Ovid's Metamorphoses are examined, providing further information on meteoric beliefs in ancient Roman times. These include meteoric imagery among the portents associated with the death of Julius Caesar, which we mentioned previously from the works of William Shakespeare (McBeath and Gheorghe, 2003b).

  4. Potential for Hydrothermal Deposits in Large Martian Impact Craters

    NASA Astrophysics Data System (ADS)

    Thorsos, I. E.; Newsom, H. E.; Davies, A.

    2000-12-01

    Investigation of environments on Mars favorable for pre-biotic chemistry or primitive life is a goal of current strategy. Deposits left by hydrothermal systems on Mars are high priority targets. Impact craters larger than 50 km in diameter should have breached local aquifers and provided sufficient heat to power hydrothermal systems. The amount of heat in craters depends on the size of the melt sheet and uplifted basement forming the central peak. The volume of melt is estimated using scaling relationships (Cintala & Grieve, 1998). The central uplift originates below the transient crater cavity and has a stratigraphic uplift of 1/10 the final crater diameter (Melosh & Ivanov, 1999). The central uplift's temperature with depth profile is estimated using a cylindrical "plug" model and adding the enthalpy profile at the time of maximum impactor penetration (O'Keefe & Ahrens, 1994) to the ambient thermal gradient. The heat from the two sources is estimated over a range of crater diameters. The next phase of this work is to model the longevity and extent of the hydrothermal systems. Cintala, H. J. & R. A. F. Grieve, Meteor. and Plan. Sci. 33, 889-912, 1998. Melosh, H. J. & B. A. Ivanov, Annual Rev. Earth Planet. Sci., 385-415, 1999. O'Keefe, J. D. & T. J. Ahrens, Geol. Soc. Amer. Spec. Paper 293, 103-109, 1994.

  5. Asteroidal-meteoric complexes.

    NASA Astrophysics Data System (ADS)

    Shestaka, I. S.

    1994-12-01

    Fourteen asteroidal-meteoric complexes were identified by means of the criterion of similarity of quasistationary parameters μ, ν and Tisserand's invariant Ti. Each of these complexes consists of several meteor swarms and one or several asteroids. The existence of such complexes confirms the possibility of formation of meteor swarms by means of disintegration of asteroids and their fragments.

  6. Automated Meteor Fluxes with a Wide-Field Meteor Camera Network

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Campbell-Brown, M. D.; Cooke, W.; Weryk, R. J.; Gill, J.; Musci, R.

    2013-01-01

    Within NASA, the Meteoroid Environment Office (MEO) is charged to monitor the meteoroid environment in near ]earth space for the protection of satellites and spacecraft. The MEO has recently established a two ]station system to calculate automated meteor fluxes in the millimeter ]size ]range. The cameras each consist of a 17 mm focal length Schneider lens on a Watec 902H2 Ultimate CCD video camera, producing a 21.7 x 16.3 degree field of view. This configuration has a red ]sensitive limiting meteor magnitude of about +5. The stations are located in the South Eastern USA, 31.8 kilometers apart, and are aimed at a location 90 km above a point 50 km equidistant from each station, which optimizes the common volume. Both single station and double station fluxes are found, each having benefits; more meteors will be detected in a single camera than will be seen in both cameras, producing a better determined flux, but double station detections allow for non ]ambiguous shower associations and permit speed/orbit determinations. Video from the cameras are fed into Linux computers running the ASGARD (All Sky and Guided Automatic Real ]time Detection) software, created by Rob Weryk of the University of Western Ontario Meteor Physics Group. ASGARD performs the meteor detection/photometry, and invokes the MILIG and MORB codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for the approximate shower identification in single station meteors. The ASGARD output is used in routines to calculate the flux in units of #/sq km/hour. The flux algorithm employed here differs from others currently in use in that it does not assume a single height for all meteors observed in the common camera volume. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the radiant of active shower or sporadic source. The flux per height interval is summed to obtain the total meteor flux. As ASGARD also

  7. The Radio Meteor Zoo: searching for meteors in BRAMS radio observations

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Calders, S.; Tétard, C.; Verbeeck, C.; Martinez Picar, A.; Gamby, E.

    2017-09-01

    The Radio Meteor Zoo is a citizen science project where users are asked to identify meteor echoes in BRAMS radio data obtained mostly during meteor showers. The project will be described in details and preliminary results obtained during the Perseids and Geminids 2016, Quadrantids 2016 and 2017, and Lyrids 2017 are shown. Discussion about improvements will also be provided.

  8. Becquerel Crater

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03676 Linear Clouds

    This interesting deposit is located on the floor of Becquerel Crater.

    Image information: VIS instrument. Latitude 21.3N, Longitude 352.2E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Mesospheric temperature estimation from meteor decay times of weak and strong meteor trails

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Han; Kim, Yong Ha; Jee, Geonhwa; Lee, Changsup

    2012-11-01

    Neutral temperatures near the mesopause region were estimated from the decay times of the meteor echoes observed by a VHF meteor radar during a period covering 2007 to 2009 at King Sejong Station (62.22°S, 58.78°W), Antarctica. While some previous studies have used all meteor echoes to determine the slope from a height profile of log inverse decay times for temperature estimation, we have divided meteor echoes into weak and strong groups of underdense meteor trails, depending on the strength of estimated relative electron line densities within meteor trails. We found that the slopes from the strong group are inappropriate for temperature estimation because the decay times of strong meteors are considerably scattered, whereas the slopes from the weak group clearly define the variation of decay times with height. We thus utilize the slopes only from the weak group in the altitude region between 86 km and 96 km to estimate mesospheric temperatures. The meteor estimated temperatures show a typical seasonal variation near the mesopause region and the monthly mean temperatures are in good agreement with SABER temperatures within a mean difference of 4.8 K throughout the year. The meteor temperatures, representing typically the region around the altitude of 91 km, are lower on average by 2.1 K than simultaneously measured SATI OH(6-2) rotational temperatures during winter (March-October).

  10. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    USGS Publications Warehouse

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  11. Practical Meteor Stream Forecasting

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; Suggs, Robert M.

    2003-01-01

    Inspired by the recent Leonid meteor storms, researchers have made great strides in our ability to predict enhanced meteor activity. However, the necessary calibration of the meteor stream models with Earth-based ZHRs (Zenith Hourly Rates) has placed emphasis on the terran observer and meteor activity predictions are published in such a manner to reflect this emphasis. As a consequence, many predictions are often unusable by the satellite community, which has the most at stake and the greatest interest in meteor forecasting. This paper suggests that stream modelers need to pay more attention to the needs of this community and publish not just durations and times of maxima for Earth, but everything needed to characterize the meteor stream in and out of the plane of the ecliptic, which, at a minimum, consists of the location of maximum stream density (ZHR) and the functional form of the density decay with distance from this point. It is also suggested that some of the terminology associated with meteor showers may need to be more strictly defined in order to eliminate the perception of crying wolf by meteor scientists. An outburst is especially problematic, as it usually denotes an enhancement by a factor of 2 or more to researchers, but conveys the notion of a sky filled with meteors to satellite operators and the public. Experience has also taught that predicted ZHRs often lead to public disappointment, as these values vastly overestimate what is seen.

  12. Construction of a meteor orbit calculation system for comprehensive meteor observation

    NASA Astrophysics Data System (ADS)

    Mizumoto, S.; Madkour, W.; Yamamoto, M.

    2016-01-01

    At Kochi University of Technology (KUT), the development of an HRO (Ham-band Radio meteor Observation) -Interferometer (IF) was started in 2003, and we realized the meteor orbit calculation system by multiple-site radio observation with GPS time-keeping combining with the 5 channel (5ch) HRO-IF in 2012. Here, we introduce a future plan of comprehensive meteor observation by Radio, Optical and Infrasound observation.

  13. The KUT meteor radar: An educational low cost meteor observation system by radio forward scattering

    NASA Astrophysics Data System (ADS)

    Madkour, W.; Yamamoto, M.

    2016-01-01

    The Kochi University of Technology (KUT) meteor radar is an educational low cost observation system built at Kochi, Japan by successive graduate students since 2004. The system takes advantage of the continuous VHF- band beacon signal emitted from Fukui National College of Technology (FNCT) for scientific usage all over Japan by receiving the forward scattered signals. The system uses the classical forward scattering setup similar to the setup described by the international meteor organization (IMO), gradually developed from the most basic single antenna setup to the multi-site meteor path determination setup. The primary objective is to automate the observation of the meteor parameters continuously to provide amounts of data sufficient for statistical analysis. The developed software system automates the observation of the astronomical meteor parameters such as meteor direction, velocity and trajectory. Also, automated counting of meteor echoes and their durations are used to observe mesospheric ozone concentration by analyzing the duration distribution of different meteor showers. The meteor parameters observed and the methodology used for each are briefly summarized.

  14. Studies of Transient Meteor Activity

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter M. M.

    2002-01-01

    Meteoroids bombard Earth's atmosphere daily, but occasionally meteor rates increase to unusual high levels when Earth crosses the relatively fresh ejecta of comets. These transient events in meteor activity provide clues about the whereabouts of Earth-threatening long-period comets, the mechanisms of large-grain dust ejection from comets, and the particle composition and size distribution of the cometary ejecta. Observations of these transient events provide important insight in natural processes that determine the large grain dust environment of comets, in natural phenomena that were prevalent during the time of the origin of life, and in processes that determine the hazard of civilizations to large impacts and of man-made satellites to the periodic blizzard of small meteoroids. In this proposal, three tasks form a coherent program aimed at elucidating various aspects of meteor outbursts, with special reference to planetary astronomy and astrobiology. Task 1 was a ground-based effort to observe periods of transient meteor activity. This includes: (1) stereoscopic imaging of meteors during transient meteor events for measurements of particle size distribution, meteoroid orbital dispersions and fluxes; and (2) technical support for Global-MS-Net, a network of amateur-operated automatic counting stations for meteor reflections from commercial VHF radio and TV broadcasting stations, keeping a 24h vigil on the level of meteor activity for the detection of new meteor streams. Task 2 consisted of ground-based and satellite born spectroscopic observations of meteors and meteor trains during transient meteor events for measurements of elemental composition, the presence of organic matter in the meteoroids, and products generated by the interaction of the meteoroid with the atmosphere. Task 3 was an airborne effort to explore the 2000 Leonid meteor outbursts, which are anticipated to be the most significant of transient meteor activity events in the remainder of the

  15. Planetary Defense Legacy for a Certain Future

    DTIC Science & Technology

    1998-04-01

    hyperbole. Although I could accept prior impacts as historical fact, having seen Meteor Crater in Arizona and accepted the evidence presented by Luis Alvarez...context of impersonal numbers or statistics, the lives of individuals lose meaning. A threat that puts 100 people at risk is likely to be seen as quite...automobiles even though air travel is statistically safer .52 Some sociologists have estimated that a risk of death of 1 in 1 million is the public’s

  16. Meteor research program

    NASA Technical Reports Server (NTRS)

    Southworth, R. B.; Mccrosky, R. E.

    1970-01-01

    An overview of research on radio and radar meteors accomplished during the past decade is presented, and the work of the past year is highlighted. Velocity distribution and mass flux data are obtained for meteors in the range 10 to 0.0001 g, the size believed to be the principal hazard to space missions. The physical characteristics of mass, structure and density, luminosity, and ablation are briefly described, and the formulation of a theory for interactions of ionization and excitation during collision of atomic particles is mentioned. Five classes of meteoroids are identified, including the two of iron and stone meteorites. Stream meteors associated with known comets are Classes A or C, and parent comets of Class B streams are not observed. Class A meteoroids are identified with the core of a cometary nucleus, Class C with less dense surface of the nucleus after sublimation of ices, and Class B with less dense cores of smaller cometary nuclei. Atmospheric meteor phenomena associated with winds and gravity waves, density and temperature, atomic oxygen, and meteor rate changes are mentioned.

  17. New meteor showers – yes or not?

    NASA Astrophysics Data System (ADS)

    Koukal, Jakub

    2018-01-01

    The development of meteor astronomy associated with the development of CCD technology is reflected in a huge increase in databases of meteor orbits. It has never been possible before in the history of meteor astronomy to examine properties of meteors or meteor showers. Existing methods for detecting new meteor showers seem to be inadequate in these circumstances. The spontaneous discovery of new meteor showers leads to ambiguous specifications of new meteor showers. There is a duplication of already discovered meteor showers and a division of existing meteor showers based on their own criteria. The analysis in this article considers some new meteor showers in the IAU MDC database.

  18. Study of the Dynamics of Meteoroids Through the Earth's Atmosphere and Retrieval of Meteorites: The Mexican Meteor Network

    NASA Astrophysics Data System (ADS)

    Cordero Tercero, M. G.; Farah Simon, A.; Velazquez-Villegas, F.

    2016-12-01

    When a comet , asteroid or meteoroid impact with a planet several things can happen depending on the mass, velocity and composition of the impactor, if the planet or moon has an atmosphere or not, and the angle of impact. On bodies without an atmosphere like Mercury or the Moon, every object that strikes their surfaces produces impact craters with sizes ranging from centimeters to hundreds and even thousands of kilometers across. On bodies with an atmosphere, this encounter can produce impact craters, meteorites, meteors and fragmentation. Each one of these phenomena is interesting because they provide information about the surfaces and the geological evolution of solar system bodies. Meteors are luminous wakes on the sky due to the interaction between the meteoroid and the Earth's atmosphere. A meteoroid is asteroidal or cometary material ranging in size from 2 mm to a few tens of meters. The smallest tend to evaporate at heights between 80 and 120 km. Objects of less than 2 mm are called micrometeorites. If the meteor brightness exceeds the brightness of Venus, the phenomenon is called a bolide or fireball. If a meteoroid, or a fragment of it, survives atmospheric ablation and it can be recovered on the ground, that piece is called a meteorite. Most meteoroids 2 meters long fragment suddenly into the atmosphere, it produces a shock wave that can affect humans and their environment like the Chelyabinsk event occurred on February 15, 2013 an two less energetic events in Mexico in 2010 and 2011. To understand the whole phenomenon, we proposed a video camera network for observing meteors. The objectives of this network are to: a) contribute to the study of the fragmentation of meteoroids in the Earth's atmosphere, b) determine values of important physical parameters; c) study seismic waves produced by atmospheric shock waves, d) study the dynamics of meteoroids and f) recover and study meteorites. During this meeting, the progress of the project will be presented.

  19. Meteor researches at KHNURE

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana V.; Voloshchuk, Yuri I.; Kashcheyev, Boris L.; Slipchenko, Nikolay I.

    2005-01-01

    The Scientific Educational Center of Radioengineering of the Kharkiv National University of Radioelectronics (KHNURE: ) is one of the oldest radar meteor centers which was founded by B. L. Kashcheyev in 1958. The first automatic meteor radar system in Ukraine “MARS” is connected with our University. There are long-term observational series of meteor rates and orbital data in the Center. Fields of the KHNURE researches are: a structure of meteor showers a determination of meteoroid orbits an influx of cosmic rubbish in the Earth atmosphere search of parental bodies of meteoroids a statistic analysis of measurement results of radiometeors an estimation of errors of meteor radar measurements a search for real hyperbolic orbits and interstellar meteoroids. KHNURE disposes a unique electronic orbital catalogue. This catalogue contains the primary information velocities radiants and orbits of nearly 250000 radiometeoroids with masses from 0.001 to 0.000001 g. The “MARS” registered these data during observations of 1972 1978. From these data 5160 meteor streams are singled out. New classification of streams is made in view of their structure. The study of meteor stream orbits from the KHNURE data bank allow to predict orbits of a big number of undiscovered “dangerous” NEOs.

  20. Meteor Researches at Khnure

    NASA Astrophysics Data System (ADS)

    Kolomiyets, Svitlana V.; Voloshchuk, Yuri I.; Kashcheyev, Boris L.; Slipchenko, Nikolay I.

    The Scientific Educational Center of Radioengineering of the Kharkiv National University of Radioelectronics (KHNURE: ) is one of the oldest radar meteor centers which was founded by B. L. Kashcheyev in 1958. The first automatic meteor radar system in Ukraine “MARS” is connected with our University. There are long-term observational series of meteor rates and orbital data in the Center. Fields of the KHNURE researches are: a structure of meteor showers a determination of meteoroid orbits an influx of cosmic rubbish in the Earth atmosphere search of parental bodies of meteoroids a statistic analysis of measurement results of radiometeors an estimation of errors of meteor radar measurements a search for real hyperbolic orbits and interstellar meteoroids. KHNURE disposes a unique electronic orbital catalogue. This catalogue contains the primary information velocities radiants and orbits of nearly 250000 radiometeoroids with masses from 0.001 to 0.000001 g. The “MARS” registered these data during observations of 1972 1978. From these data 5160 meteor streams are singled out. New classification of streams is made in view of their structure. The study of meteor stream orbits from the KHNURE data bank allow to predict orbits of a big number of undiscovered “dangerous” NEOs

  1. Ups and downs in planetary science

    USGS Publications Warehouse

    Shoemaker, Carolyn S.

    1999-01-01

    The field of planetary science as it developed during the lifetimes of Gene and Carolyn Shoemaker has sustained a period of exciting growth. Surveying the skies for planet-crossing asteroids and comets and studying the results of their impact upon the planets, especially the Earth, was for Gene and Carolyn an intense and satisfying quest for knowledge. It all started when Gene envisioned man going to the Moon, especially himself. After that, one thing led to another: the study of nuclear craters and a comparison with Meteor Crater, Arizona; the Apollo project and a succession of unmanned space missions to the inner and outer planets; an awareness of cratering throughout our solar system; the search for near-Earth asteroids and comets; a study of ancient craters in Australia; and the impact of Shoemaker-Levy 9 on Jupiter. The new paradigm of impact cratering as a cause for mass extinction and the opening of space for the development of new life forms have been causes to champion.

  2. Craters on Crater

    NASA Image and Video Library

    2006-10-10

    Several craters were formed on the rim of this large crater. The movement of material downhill toward the floor of the large crater has formed interesting patterns on the floors of the smaller craters

  3. Holden Crater Dune Field

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    A common location for dune fields on Mars is in the basin of large craters. This dune field is located in Holden Crater at 25 degrees South atitude.

    Image information: VIS instrument. Latitude -25.5, Longitude 326.8 East (33.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Evidence for Recent Liquid Water on Mars: Channels and Aprons in East Gorgonum Crater

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] Warning!This link leads to a very large image that may be too long for some web browsers (in these cases, you must save the link to your desktop and view with other software) [figure removed for brevity, see original site]

    This suite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) pictures provides a vista of martian gullies on the northern wall of a 12 kilometer-(7.4 mile)-wide meteor impact crater east of the Gorgonum Chaos region on the red planet.

    The first picture (above left) is a composite of three different high resolution MOC views obtained in 1999 and 2000. The second picture (above right)shows the location of the high resolution views relative to the whole crater as it appeared in the highest resolution image previously acquired of the area, taken by the Viking 1 orbiter in 1978. The release image (top) shows a close-up of one of the channels and debris aprons found in the northwestern quarter of the impact crater.

    Some of the channels in this crater are deeply-entrenched and cut into lighter-toned deposits. The numerous channels and apron deposits indicate that many tens to hundreds of individual events involving the flow of water and debris have occurred here. The channels and aprons have very crisp, sharp relief and there are no small meteor impact craters on them, suggesting that these features are extremely young relative to the 4.5 billion year history of Mars. It is possible that these landforms are still being created by water seeping from the layered rock in the crater wall today.

    The crater has no name and it is located near 37.4oS, 168.0oW. The composite view in (above left) includes a picture taken by MOC on September 10, 1999, a picture obtained April 26, 2000, and another on May 22, 2000. The scene from left to right (including the dark gap between photos) covers an area approximately 7.6 kilometers (4.7 miles) wide by 18 km (11.1 mi) long. Sunlight illuminates the scene

  5. Meteor Shower Activity Derived from "Meteor Watching Public-Campaign" in Japan

    NASA Technical Reports Server (NTRS)

    Sato, M.; Watanabe, J.

    2011-01-01

    We tried to analyze activities of meteor showers from accumulated data collected by public campaigns for meteor showers which were performed as outreach programs. The analyzed campaigns are Geminids (in 2007 and 2009), Perseids (in 2008 and 2009), Quadrantids (in 2009) and Orionids (in 2009). Thanks to the huge number of reports, the derived time variations of the activities of meteor showers is very similar to those obtained by skilled visual observers. The values of hourly rates are about one-fifth (Geminids 2007) or about one-fourth (Perseids 2008) compared with the data of skilled observers, mainly due to poor observational sites such as large cities and urban areas, together with the immature skill of participants in the campaign. It was shown to be highly possible to estimate time variation in the meteor shower activity from our campaign.

  6. Meteor stream activity. 2: Meteor outbursts

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.

    1995-01-01

    In the past two centuries, alert amateur and professional meteor astronomers have documented 35 outbursts of 17 individual meteor streams well enough to allow the construction of a homogeneous set of activity curves. These curves add to similar profiles of the annual streams in a previous paper (Paper 1). This paper attempts to define the type and range of phenomena that classify as meteor outbursts from which the following is concluded: Outbursts are associated with the return of the comet to perihelion (near-comet type outbursts), but occur also when the parent comet is far from perihelion and far from the Earth (far-comet type). All outbursts of a given type only, depending on encounter geometry. The activity curves, expressed in terms of Zenith Hourly Rates (ZHR), have a shape that is generally well described by: ZHR = ZHR(sub max) 10(sup(-B (the absolute value of lambda (sub dot in a circle) - lambda (sup max) (sub dot in a circle))). The steepness of the slopes varies from an exponent of B = 7 to B = 220 per degree of solar longitude, with a typical value of B = 30. In addition, most near-comet type outbursts have a broader component underlying the main peak with B approximately 1 - 7.The duration Delta t is approximately 1/B of the main peak is almost independent of location near the comet, while the background component varies considerably in duration and relative intensity from one return to another. The two components in the activity curve are due to two distinct structures in the dust distribution near the parent comet, where the main component can be due to a sheet of dust that emanates from the IRAS dust trail. This brings the total number of distinct structures in meteor streams to four, including the two structures from the annual stream activity in Paper 1.

  7. Recent meteor observing activities in Japan

    NASA Astrophysics Data System (ADS)

    Yamamoto, M.

    2005-02-01

    The meteor train observation (METRO) campaign is described as an example of recent meteor observing activity in Japan. Other topics of meteor observing activities in Japan, including Ham-band radio meteor observation, the ``Japan Fireball Network'', the automatic video-capture software ``UFOCapture'', and the Astro-classroom programme are also briefly introduced.

  8. Huygens Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 15 July 2003

    The floor of the 450 km diameter crater named after Dutch astronomer Christian Huygens (1629-1695) shows an unusual texture. Smooth-topped mesas are scattered across a more rugged surface. The mesas are testament to a former smooth layer of material that is in the process of eroding away.

    Image information: VIS instrument. Latitude -16.2, Longitude 54.5 East (305.5 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. An Investigation of the Fine Spatial Structure of Meteor Streams Using the Relational Database ``Meteor''

    NASA Astrophysics Data System (ADS)

    Karpov, A. V.; Yumagulov, E. Z.

    2003-05-01

    We have restored and ordered the archive of meteor observations carried out with a meteor radar complex ``KGU-M5'' since 1986. A relational database has been formed under the control of the Database Management System (DBMS) Oracle 8. We also improved and tested a statistical method for studying the fine spatial structure of meteor streams with allowance for the specific features of application of the DBMS. Statistical analysis of the results of observations made it possible to obtain information about the substance distribution in the Quadrantid, Geminid, and Perseid meteor streams.

  10. Underwater research methods for study of nuclear bomb craters, Enewetak, Marshall Islands

    USGS Publications Warehouse

    Shinn, E.A.; Halley, R.B.; Kindinger, J.L.; Hudson, J.H.; Slate, R.A.

    1990-01-01

    Three craters, created by the explosion of nuclear fusion devices, were mapped, sampled, core drilled and excavated with airlifts at Enewetak Atoll in the Marshall Islands by using scuba and a research submersible. The craters studied were Mike, Oak, and Koa. Tests took place near sea level at the transition between lithified reef flat and unlithified lagoonal sediments, where water depth ranged from 1 to 4 m. Craters produced by the blasts ranged from 30 to 60 m in depth. The purpose of our study was to determine crater diameter and depth immediately after detonation. Observations of submerged roadways and testing structures and upturned crater rims similar to those characteristic of meteor impacts indicate that the initial, or transient, craters were smaller than their present size. At some later time, while the area was too radioactive for direct examination, the sides of the craters slumped owing to dewatering of under lying pulverized rock. Core drilling of crater margins with a diver-operated hydraulic coring device provided additional data. On the seaward margin of the atoll, opposite Mike, a large portion of the atoll rim approximately the size of a city block had slumped into the deep ocean, leaving a clean vertical rock section more than 400m high. An abundance of aggressive grey reef sharks displaying classic territorial behavior prevented use of scuba at the Mike slump site. The two-person submersible R.V. Delta provided protection and allowed observations down to 300 m. During the 6-week period of study, we made more than 300 scuba and 275 submersible dives. Mapping was with side scan sonar and continuous video sweeps supplemented by tape-recorded verbal descriptions made from within the submersible. A mini-ranger navigation system linked to the submersible allowed plotting of bottom features, depth and sediment type with spatial accuracy to within 2 m.

  11. Sporadic E-Layers and Meteor Activity

    NASA Astrophysics Data System (ADS)

    Alimov, Obid

    2016-07-01

    In average width it is difficult to explain variety of particularities of the behavior sporadic layer Es ionospheres without attraction long-lived metallic ion of the meteoric origin. Mass spectrometric measurements of ion composition using rockets indicate the presence of metal ions Fe+, Mg+, Si+, Na+, Ca+, K+, Al+ and others in the E-region of the ionosphere. The most common are the ions Fe+, Mg+, Si+, which are primarily concentrated in the narrow sporadic layers of the ionosphere at altitudes of 90-130 km. The entry of meteoric matter into the Earth's atmosphere is a source of meteor atoms (M) and ions (M +) that later, together with wind shear, produce midlatitude sporadic Es layer of the ionosphere. To establish the link between sporadic Es layer and meteoroid streams, we proceeded from the dependence of the ionization coefficient of meteors b on the velocity of meteor particles in different meteoroid streams. We investigated the dependence of the critical frequency f0Es of sporadic E on the particle velocity V of meteor streams and associations. It was established that the average values of f0Es are directly proportional to the velocity V of meteor streams and associations, with the correlation coefficient of 0.53 < R < 0.74. Thus, the critical frequency of the sporadic layer Es increases with the increase of particle velocity V in meteor streams, which indicates the direct influence of meteor particles on ionization of the lower ionosphere and formation of long-lived metal atoms M and ions M+ of meteoric origin.

  12. Meteoric water alteration of soil and landscapes at Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Amundson, Ronald

    2018-04-01

    The geomorphology and geochemistry data gathered by the MER Opportunity at Meridiani Planum is a rich data set relevant to soil research on Mars. Many of the data, particularly with respect to outcrops at Victoria Crater, have been only partially analyzed. Here, the previously published geochemical profile of Endurance Crater is compared to that of Victoria Crater, to understand aspects of the post-depositional aqueous and chemical alteration of the Meridiani land surface. The landsurface bears cracking patterns similar to those produced by multiple episodes of wetting and drying in expansive materials on Earth. The geochemical profiles at both craters are nearly identical, suggesting (using mass balance methods) that a very chemically homogenous sedimentary deposit has been engulfed by the apparent surficial addition of S, Cl, and Br (and associated cations) since exposure to the atmosphere. The chemistry and mineralogy at both locations is one where the most insoluble of the added components resides near the land surface (Ca sulfates), and the more soluble components are concentrated at greater depths in a vertical pattern consistent with their solubility in water. The profiles, when compared to those on Earth (and to physical constraints), are most similar those generated by the downward movement of meteoric water. When this aqueous alteration and soil formation occurred is not well constrained, but the processes occurred between late Noachian (?) to late Amazonian times. The exposure of the Victoria crater walls, which occurred likely less than 107 y ago (late Amazonian), shows the accumulation of dust as well as evidence for aqueous concentration of NaBr and/or CaBr, possibly by deliquescence. By direct comparison to Earth, the regional soil at Meridiani Planum is a Typic Petrogypsid (a sulfate cemented arid soil), bearing similarities to very ancient soils formed in the Atacama Desert of Chile. The amount of water required to produce the soils ranges from a

  13. Meteoric Water Alteration of Soil and Landscapes at Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Amundson, R.

    2017-12-01

    The geomorphology and geochemistry data gathered by the MER Opportunity at Meridiani Planum is arguably the richest data set relevant soil research on Mars. Much of the data, particularly with respect to outcrops at Victoria Crater, have been only partially published and analyzed. Here, the previously published geochemical profile of Endurance Crater is compared to that of Victoria Crater, to understand aspects of the post-depositional aqueous and chemical alteration of the Meridiani land surface. The landsurface bears cracking patterns similar to those produced by multiple episodes of wetting and drying in expansive materials on Earth. The geochemical profiles at both craters are nearly identical, suggesting (using mass balance methods) that a very homogenous sedimentary deposit has been engulfed by the apparent surficial addition of S, Cl, and Br (and associated cations) since exposure to the atmosphere. The chemistry and mineralogy at both locations is one where the most insoluble of the added components resides near the land surface (Ca sulfates), and the more soluble components are concentrated at greater depths in a vertical pattern consistent with their solubility in water. The profiles, when compared to those on Earth (and to physical constraints), are unambiguously those generated by the downward movement of meteoric water. When this aqueous alteration and soil formation occurred is not well constrained, but progressed between late Noachian to Amazonian times. The exposure of the Victoria crater walls, which occurred likely less than 107y ago (late Amazonian), shows the accumulation of dust as well as evidence for aqueous concentration of NaBr, possibly by deliquescence. By direct comparison to Earth, the regional soil at Meridiani Planum is a Typic Petrogypsid, bearing similarities to very ancient soils formed in the Atacama Desert of Chile. The amount of water required to produce the soils ranges from a very low (and physically unlikely) quantity of 2

  14. Meteors Without Borders: a global campaign

    NASA Astrophysics Data System (ADS)

    Heenatigala, T.

    2012-01-01

    "Meteors Without Borders" is a global project, organized by Astronomers Without Borders and launched during the Global Astronomy Month in 2010 for the Lyrid meteor shower. The project focused on encouraging amateur astronomy groups to hold public outreach events for major meteor showers, conduct meteor-related classroom activities, photography, poetry and art work. It also uses social-media platforms to connect groups around the world to share their observations and photography, live during the events. At the International Meteor Conference 2011, the progress of the project was presented along with an extended invitation for collaborations for further improvements of the project.

  15. An observational study of turbulence inside a closed basin

    NASA Astrophysics Data System (ADS)

    Fu, Peijian; Zhong, Shiyuan; Whiteman, C. David; Horst, Tom; Bian, Xindi

    2010-12-01

    Data from a flux tower on the floor of Arizona's Meteor Crater are compared to data on the plain outside the crater to determine the impact of basin topography on surface-layer mean and turbulence properties, focusing particularly on windy periods. The bowl-shaped crater amplifies the diurnal oscillations of temperature and heat fluxes, with the amplification most pronounced under quiescent synoptic conditions. The crater's rim shelters the crater atmosphere from mean background flows so that wind speeds inside the crater are usually less than half the speeds on the outside plain. But flows in the crater are much more turbulent, with turbulence presumably generated by the conversion of mean flow into turbulent motion. On days with near-surface winds outside the crater greater than 10 m s-1, turbulent kinetic energy can reach extremely large values (˜15 m2 s-2) inside the crater. Compared to the velocity and temperature spectra outside, spectral peaks occur at lower frequencies inside the crater, especially for the cross-stream wind component. The surface layer is very shallow (<2 m) on the crater floor, suggesting that the similarity theory-based empirical formulas may not be useful for describing properties of the flow at that location.

  16. Kharkiv Meteor Radar System (the XX Age)

    NASA Astrophysics Data System (ADS)

    Kolomiyets, S. V.

    2012-09-01

    Kharkiv meteor radar research are of historic value (Kolomiyets and Sidorov 2007). Kharkiv radar observations of meteors proved internationally as the best in the world, it was noted at the IAU General Assembly in 1958. In the 1970s Kharkiv meteor automated radar system (MARS) was recommended at the international level as a successful prototype for wide distribution. Until now, this radar system is one of the most sensitive instruments of meteor radars in the world for astronomical observations. In 2004 Kharkiv meteor radar system is included in the list of objects which compose the national property of Ukraine. Kharkiv meteor radar system has acquired the status of the important historical astronomical instrument in world history. Meteor Centre for researching meteors in Kharkiv is a analogue of the observatory and performs the same functions of a generator and a battery of special knowledge and skills (the world-famous studio). Kharkiv and the location of the instrument were brand points on the globe, as the place where the world-class meteor radar studies were carried out. They are inscribed in the history of meteor astronomy, in large letters and should be immortalized on a world-wide level.

  17. Meteor Shower Identification and Characterization with Python

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea

    2015-01-01

    The short development time associated with Python and the number of astronomical packages available have led to increased usage within NASA. The Meteoroid Environment Office in particular uses the Python language for a number of applications, including daily meteor shower activity reporting, searches for potential parent bodies of meteor showers, and short dynamical simulations. We present our development of a meteor shower identification code that identifies statistically significant groups of meteors on similar orbits. This code overcomes several challenging characteristics of meteor showers such as drastic differences in uncertainties between meteors and between the orbital elements of a single meteor, and the variation of shower characteristics such as duration with age or planetary perturbations. This code has been proven to successfully and quickly identify unusual meteor activity such as the 2014 kappa Cygnid outburst. We present our algorithm along with these successes and discuss our plans for further code development.

  18. Interferometric Meteor Head Echo Observations using the Southern Argentina Agile Meteor Radar (SAAMER)

    NASA Technical Reports Server (NTRS)

    Janches, D.; Hocking, W.; Pifko, S.; Hormaechea, J. L.; Fritts, D. C.; Brunini, C; Michell, R.; Samara, M.

    2013-01-01

    A radar meteor echo is the radar scattering signature from the free-electrons in a plasma trail generated by entry of extraterrestrial particles into the atmosphere. Three categories of scattering mechanisms exist: specular, nonspecular trails, and head-echoes. Generally, there are two types of radars utilized to detect meteors. Traditional VHF meteor radars (often called all-sky1radars) primarily detect the specular reflection of meteor trails traveling perpendicular to the line of sight of the scattering trail, while High Power and Large Aperture (HPLA) radars efficiently detect meteor head-echoes and, in some cases, non-specular trails. The fact that head-echo measurements can be performed only with HPLA radars limits these studies in several ways. HPLA radars are very sensitive instruments constraining the studies to the lower masses, and these observations cannot be performed continuously because they take place at national observatories with limited allocated observing time. These drawbacks can be addressed by developing head echo observing techniques with modified all-sky meteor radars. In addition, the fact that the simultaneous detection of all different scattering mechanisms can be made with the same instrument, rather than requiring assorted different classes of radars, can help clarify observed differences between the different methodologies. In this study, we demonstrate that such concurrent observations are now possible, enabled by the enhanced design of the Southern Argentina Agile Meteor Radar (SAAMER) deployed at the Estacion Astronomica Rio Grande (EARG) in Tierra del Fuego, Argentina. The results presented here are derived from observations performed over a period of 12 days in August 2011, and include meteoroid dynamical parameter distributions, radiants and estimated masses. Overall, the SAAMER's head echo detections appear to be produced by larger particles than those which have been studied thus far using this technique.

  19. International cooperation and amateur meteor work

    NASA Astrophysics Data System (ADS)

    Roggemans, P.

    Today, the existing framework for international cooperation among amateur meteor workers offers numerous advantages. However, this is a rather recent situation. Meteor astronomy, although popular among amateurs, was the very last topic within astronomy to benefit from a truly international approach. Anyone attempting long term studies of, for instance, meteor stream structures will be confronted with the systematic lack of usable observations due to the absence of any standards in observing, recording and reporting, any archiving or publishing policy. Visual meteor observations represent the overall majority of amateur efforts, while photographic and radio observing were developed only in recent decades as technological specialties of rather few meteor observing teams.

  20. Four years of meteor spectra patrol

    NASA Technical Reports Server (NTRS)

    Harvey, G. A.

    1974-01-01

    The development of the NASA-Langley Research Center meteor spectra patrol is described in general terms. The recording of very faint meteors was made possible by three great strides in optical and photographic technology in the 1960's: (1) the availability of optical-grade fused silica at modest cost, (2) the development of large transmission gratings with high blaze efficiency, and (3) the development of a method for avoiding plate fogging due to background skylight, which consisted of using a photoelectric meteor detector which actuates the spectrograph shutter when a meteor occurs in the field. The classification scheme for meteor spectra developed by Peter M. Millman is described.

  1. Activity of the Lyrid meteor stream

    NASA Technical Reports Server (NTRS)

    Lindblad, Bertil A.; Porubcan, V.

    1992-01-01

    The activity of the Lyrid meteor stream is in most years fairly low with a visual rate at maximum (21-22 April) of 5-10 meteors per hour. Short bursts of very high Lyrid activity, with visual hourly rates of 100 or more, have sometimes been reported. These observations generally refer to faint visual meteors. The reported bursts of high activity have occurred in a very narrow interval of solar longitudes (deg 31.24 to 31.38 equinox 1950.0), while the recurrent or 'normal' maximum for bright meteors occurs at solar longitude deg 31.6, or slightly later. A mass separation of the meteors in the shower is thus indicated.

  2. An assessment of crater erosional histories on the Earth and Mars using digital terrain models.

    NASA Astrophysics Data System (ADS)

    Paul, R. L.; Muller, J.-P.; Murray, J. B.

    The research will examine quantitatively the geomorphology of both Terrestrial and Martian craters. The erosional and sub-surface processes will be investigated to understand how these affect a crater's morphology. For example, the Barringer crater in Arizona has an unusual shape. The Earth has a very high percentage of water both in the atmosphere as clouds or rain and under the surface. The presence of water will therefore affect a crater's formation and its subsequent erosional modification. On Mars there is little or no water present currently, though recent observations suggest there may be near-surface ice in some areas. How do craters formed in the Martian environment therefore differ from Terrestrial ones? How has the structure of Martian craters changed in areas of possible fluvial activity? How does the surface material affect crater formation? How does the Earth's fluvial activity affect a crater's evolution? At present, four measurements of circularity have been used to describe a crater (Murray & Guest, 1972). These parameters will be re-examined to see how effectively they describe Terrestrial and Martian craters using high resolution DTMs which were not available at the time of the original study. The model described by Forsberg-Taylor et al. 2004, and others will also be applied to results obtained from the chosen craters to assess how effectively these craters are described. Both hypsometric curves and hydrological analysis will be used to assess crater evolution. A suitable criterion for the selection of Terrestrial and Martian craters is essential for this type of research. Terrestrial craters have been selected in arid or semi-arid terrain with crater diameters larger than one kilometre. Craters less than five million years old would be ideal. However, this was too restrictive and so a variety of crater ages have had to be used. Eight terrestrial craters have been selected in arid or semi-arid areas for study, using the Earth Impact Database and

  3. Review of amateur meteor research

    NASA Astrophysics Data System (ADS)

    Rendtel, Jürgen

    2017-09-01

    Significant amounts of meteor astronomical data are provided by amateurs worldwide, using various methods. This review concentrates on optical data. Long-term meteor shower analyses based on consistent data are possible over decades (Orionids, Geminids, κ-Cygnids) and allow combination with modelling results. Small and weak structures related to individual stream filaments of cometary dust have been analysed in both major and minor showers (Quadrantids, September ε-Perseids), providing feedback to meteoroid ejection and stream evolution processes. Meteoroid orbit determination from video meteor networks contributes to the improvement of the IAU meteor data base. Professional-amateur cooperation also concerns observations and detailed analysis of fireball data, including meteorite ground searches.

  4. Meteor Beliefs Project: Seven years and counting

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Drobnock, G. J.; Gheorghe, A. D.

    2010-04-01

    The Meteor Beliefs Project's seventh anniversary is celebrated with an eclectic mixture of meteor beliefs from the 1799 Leonids in Britain, the folkloric link between meteors and wishing in some Anglo-American sources, how a meteoric omen came to feature in Nathaniel Hawthorne's 1850 novel The Scarlet Letter, and a humorous item from the satirical magazine Punch in 1861, all helping to show how meteor beliefs can be transformed by different parts of society.

  5. Global Variation of Meteor Trail Plasma Turbulence

    NASA Technical Reports Server (NTRS)

    Dyrud, L. P.; Hinrichs, J.; Urbina, J.

    2011-01-01

    We present the first global simulations on the occurrence of meteor trail plasma irregularities. These results seek to answer the following questions: when a meteoroid disintegrates in the atmosphere will the resulting trail become plasma turbulent, what are the factors influencing the development of turbulence, and how do they vary on a global scale. Understanding meteor trail plasma turbulence is important because turbulent meteor trails are visible as non-specular trails to coherent radars, and turbulence influences the evolution of specular radar meteor trails, particularly regarding the inference of mesospheric temperatures from trail diffusion rates, and their usage for meteor burst communication. We provide evidence of the significant effect that neutral atmospheric winds and density, and ionospheric plasma density have on the variability of meteor trail evolution and the observation of nonspecular meteor trails, and demonstrate that trails are far less likely to become and remain turbulent in daylight, explaining several observational trends using non-specular and specular meteor trails.

  6. The observation of sporadic meteors and meteor showers by means of radio technology measuring equipment

    NASA Astrophysics Data System (ADS)

    Schippke, W.

    1981-08-01

    Advantages regarding a tracking of meteors with the aid of the instruments of radio technology are related to the possibility for continuous observations without any dependence on meteorological conditions or on the time of day or night. Two methods exist for the registration of the traces of meteors, including a passive and an active method. The appropriate frequency range for both methods is the lower VHF range. For passive observations a very sensitive measurement receiver is required along with recording equipment, and a suitable antenna system. In Europe there are many television transmitters which are eminently suited for a detection of meteor traces. The active method for tracking meteors is more difficult and requires for its employment more expensive equipment than the passive method. It is based on the use of a VHF metric-wave radar. These devices operate normally also at a frequency of approximately 50 or 60 MHz. Attention is given to the theory of meteoric scattering, the various types of ionized trails, the geometry of meteor traces, results obtained in an observational station in Munich, and observations in the 144-MHz band.

  7. Meteor Observations as Big Data Citizen Science

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.; Vinkovic, D.; Schwarz, G.; Nina, A.; Koschny, D.; Lyytinen, E.

    2016-12-01

    Meteor science represents an excellent example of the citizen science project, where progress in the field has been largely determined by amateur observations. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently established BigSkyEarth http://bigskyearth.eu/ network.

  8. The Composition of the Y2K Meteor

    NASA Astrophysics Data System (ADS)

    Coulson, S. G.

    During the Leonid meteor shower of November 1999 a very bright meteor train, subsequently called the Y2K meteor, was observed. Analysis of the trajectory of the meteor suggests that it was composed of two distinct materials. The bulk of the meteor was composed of a comet-like material, while a much smaller fraction was of a denser carbonaceous material. A simple model is used to analytically determine the mass of the meteor fragments.

  9. A study of meteor spectroscopy and physics from earth-orbit: A preliminary survey into ultraviolet meteor spectra

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.

    1976-01-01

    Preliminary data required to extrapolate available meteor physics information (obtained in the photographic, visual and near ultraviolet spectral regions) into the middle and far ultraviolet are presented. Wavelength tables, telluric attenuation factors, meteor rates, and telluric airglow data are summarized in the context of near-earth observation vehicle parameters using moderate to low spectral resolution instrumentation. Considerable attenuation is given to the problem of meteor excitation temperatures since these are required to predict the strength of UV features. Relative line intensities are computed for an assumed chondritic composition. Features of greatest predicted intensities, the major problems in meteor physics, detectability of UV meteor events, complications of spacecraft motion, and UV instrumentation options are summarized.

  10. Constraints on Meteoric Smoke Composition and Meteoric Influx Using SOFIE Observations With Models

    NASA Astrophysics Data System (ADS)

    Hervig, Mark E.; Brooke, James S. A.; Feng, Wuhu; Bardeen, Charles G.; Plane, John M. C.

    2017-12-01

    The composition of meteoric smoke particles in the mesosphere is constrained using measurements from the Solar Occultation For Ice Experiment (SOFIE) in conjunction with models. Comparing the multiwavelength observations with models suggests smoke compositions of magnetite, wüstite, magnesiowüstite, or iron-rich olivine. Smoke compositions of pure pyroxene, hematite, iron-poor olivine, magnesium silicate, and silica are excluded, although this may be because these materials have weak signatures at the SOFIE wavelengths. Information concerning smoke composition allows the SOFIE extinction measurements to be converted to smoke volume density. Comparing the observed volume density with model results for varying meteoric influx (MI) provides constraints on the ablated fraction of incoming meteoric material. The results indicate a global ablated MI of 3.3 ± 1.9 t d-1, which represents only iron, magnesium, and possibly silica, given the smoke compositions indicated here. Considering the optics and iron content of individual smoke compositions gives an ablated Fe influx of 1.8 ± 0.9 t d-1. Finally, the global total meteoric influx (ablated plus surviving) is estimated to be 30 ± 18 t d-1, when considering the present results and a recent description of the speciation of meteoric material.

  11. Letter - Reply: Meteors in Australian Aboriginal Dreamings

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.

    2011-06-01

    In response to the letter by Gorelli (2010) about Hamacher & Norris (2010), he is quite right about Aboriginal people witnessing impact events in Australia. There are several oral traditions regarding impact sites, some of which were probably witnessed, as Gorelli pointed out. The Henbury craters he mentions, with a young age of only ∼ 4200 years, have oral traditions that seem to describe a cosmic impact, including an aversion to drinking water that collects in the craters in fear that the fire-devil (which came from the sun, according to an Elder) would rain iron in them again. Other impact sites, such as Gosse's Bluff crater (Tnorala in the Arrernte language) and Wolfe Creek crater (Kandimalal in the Djaru language) have associated impact stories, despite their old ages (142 Ma and ∼0.3 Ma, respectively). In addition, many fireball and airburst events are described in Aboriginal oral traditions, a number of which seem to indicate impact events that are unknown to Western science. I have published a full treatise of meteorite falls and impact events in Australian Aboriginal culture that I would like to bring to the attention of Gorelli and WGN readers (Hamacher & Norris, 2009). Although our paper was published in the 2009 volume of Archaeoastronomy, it did not appear in print until just recently, which is probably why it has gone unnoticed. Recent papers describing the association between meteorites and Aboriginal cosmology (Hamacher, 2011) and comets in Aboriginal culture (Hamacher & Norris, 2011) have also been published, and would likely be of interest to WGN readers. I heartily agree with Gorelli that oral traditions are fast disappearing, taking with them a wealth of information about not only that peoples' culture, but also about past geologic and astronomical events, such as meteorite falls and cosmic impacts (a branch of the growing field of Geomythology). There is an old saying that "when a man dies, a library goes with him". This is certainly the

  12. Bi-telescopic, deep, simultaneous meteor observations

    NASA Technical Reports Server (NTRS)

    Taff, L. G.

    1986-01-01

    A statistical summary is presented of 10 hours of observing sporadic meteors and two meteor showers using the Experimental Test System of the Lincoln Laboratory. The observatory is briefly described along with the real-time and post-processing hardware, the analysis, and the data reduction. The principal observational results are given for the sporadic meteor zenithal hourly rates. The unique properties of the observatory include twin telescopes to allow the discrimination of meteors by parallax, deep limiting magnitude, good time resolution, and sophisticated real-time and post-observing video processing.

  13. Photoacoustic sounds from meteors

    DOE PAGES

    Spalding, Richard; Tencer, John; Sweatt, William; ...

    2017-02-01

    Concurrent sound associated with very bright meteors manifests as popping, hissing, and faint rustling sounds occurring simultaneously with the arrival of light from meteors. Numerous instances have been documented with –11 to –13 brightness. These sounds cannot be attributed to direct acoustic propagation from the upper atmosphere for which travel time would be several minutes. Concurrent sounds must be associated with some form of electromagnetic energy generated by the meteor, propagated to the vicinity of the observer, and transduced into acoustic waves. Previously, energy propagated from meteors was assumed to be RF emissions. This has not been well validated experimentally.more » Herein we describe experimental results and numerical models in support of photoacoustic coupling as the mechanism. Recent photometric measurements of fireballs reveal strong millisecond flares and significant brightness oscillations at frequencies ≥40 Hz. Strongly modulated light at these frequencies with sufficient intensity can create concurrent sounds through radiative heating of common dielectric materials like hair, clothing, and leaves. This heating produces small pressure oscillations in the air contacting the absorbers. Calculations show that –12 brightness meteors can generate audible sound at ~25 dB SPL. As a result, the photoacoustic hypothesis provides an alternative explanation for this longstanding mystery about generation of concurrent sounds by fireballs.« less

  14. Meteor showers of the southern hemisphere

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kerr, Steve

    2014-04-01

    We present the results of an exhaustive meteor shower search in the southern hemisphere. The underlying data set is a subset of the IMO Video Meteor Database comprising 50,000 single station meteors obtained by three Australian cameras between 2001 and 2012. The detection technique was similar to previous single station analysis. In the data set we find 4 major and 6 minor northern hemisphere meteor showers, and 12 segments of the Antihelion source (including the Northern and Southern Taurids and six streams from the MDC working list). We present details for 14 southern hemisphere showers plus the Centaurid and Puppid-Velid complex, with the η Aquariids and the Southern δ Aquariids being the strongest southern showers. Two of the showers (θ^2 Sagittariids and τ Cetids) were previously unknown and have received preliminary designations by the MDC. Overall we find that the fraction of southern meteor showers south of -30deg declination (roughly 25%) is clearly smaller than the fraction of northern meteor showers north of +30deg declination (more than 50%) obtained in our previous analysis.

  15. Meteors in Australian Aboriginal Dreamings

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Norris, Ray P.

    2010-06-01

    We present a comprehensive analysis of Australian Aboriginal accounts of meteors. The data used were taken from anthropological and ethnographic literature describing oral traditions, ceremonies, and Dreamings of 97 Aboriginal groups representing all states of modern Australia. This revealed common themes in the way meteors were viewed between Aboriginal groups, focusing on supernatural events, death, omens, and war. The presence of such themes around Australia was probably due to the unpredictable nature of meteors in an otherwise well-ordered cosmos.

  16. The First Confirmed Videorecordings of Lunar Meteor Impacts

    NASA Technical Reports Server (NTRS)

    Dunham, D. W.; Cudnik, B.; Palmer, D. M.; Sada, P. V.; Melosh, J.; Beech, M.; Pellerin, L.; Asher, D.; Frankenberger R.; Venable R.

    2000-01-01

    North American observers recorded at least six meteors striking the Moon's surface during the Leonid meteor shower on 1999 Nov. 18. Each meteor produced a flash that was recorded from at least two separate locations, marking the first confirmed lunar meteor impacts.

  17. A meteor stream study of 1966

    NASA Astrophysics Data System (ADS)

    Terentjeva, Alexandra

    2017-03-01

    3600 individual photographic orbits of meteor bodies and about 2000 visual meteor radiants with corresponding velocities were compiled and carefully studied in detail. 154 minor meteor streams were detected in the Solar System, their basic orbital and other data are given. Firstly some remarkable shower and stream properties are established: examples of the large elliptic radiation areas with semi-major axes perpendicular to the Ecliptic; the existence of the Northern (N) , Southern (S) and Ecliptical (Q) branches of some streams; stream-antipodes and radiant-antipodes (symmetrically arranged relatively to the Ecliptic) with angular distances from the Ecliptic to 40-80°; a number of short-perihelion streams (q 0.05-0.07 A.U.); some meteor streams perpendicular to the Ecliptic's plane. There are also some unique meteor bodies with their orbits enclosed within the limits of the Earth's one, or having the clockwise and anticlockwise direction in two similar orbits. Hyperbolic photographic velocities vh = 57-88 km /sec are treated as real ones according to the best radar and visual observations. A "bunch" of ecliptical streams, discovered in the USSR in 1950, is a complex of orbits of the mostly massive meteor particles of the Zodiacal Cloud. The stream evolution rate is comparatively high. The total complex of sporadic meteor bodies is not totally chaotic and accidental.

  18. Pursuing a historical meteor shower

    NASA Astrophysics Data System (ADS)

    Watanabe, Jun-Ichi; Sato, Mikiya; Kasuga, Toshihiro

    2006-11-01

    The strong outburst of the Phoenicids was witnessed by people in a Japanese expedition ship, Soya, in 1956. After that, this meteor shower has never been observed at this activity level. Although its parent comet has not been strictly identified, the possible candidate was the comet D/1819W1 (Blanpain) which appeared only once in 1819. A newly discovered asteroid 2003WY25 becomes a clue to the mystery of this meteor shower. We introduce our result on the investigation of this meteor shower on the basis of the dust trail theory.

  19. Sand Sheet on Crater Floor

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    As with yesterday's image, this dune field is located inside a crater, in this case an unnamed crater at 26 degrees North latitude. In this VIS image the dunes are coalescing into a sand sheet, note the lack of dune forms to the north of the small hills. The presence of ridges and hills in the area is affecting the dune shapes.

    Image information: VIS instrument. Latitude 26.4, Longitude 62.7 East (297.3 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology

  20. A Colorful Look at the Birt E Crater on the Moon

    NASA Image and Video Library

    2014-07-17

    This false color image of Birt E crater shows the topography of the moon and it is thought to be the source region for lava that carved out Rima Birt, a rille in Mare Nubium. This mare is older than 3.4 billion years, and so is this vent! LROC NAC M1144849711L/R with the a color DTM overlaid; North is up. Download high res: lroc.sese.asu.edu/posts/794 Credit: NASA/GSFC/Arizona State University More info: Birt E crater was not created like most craters on the Moon; there was no meteorite impact. Lava sputtered out of this pyroclastic vent in Mare Nubium over 3.4 billion years ago, dispersing lava onto the surface and leaving the crater we see today. How can we tell it is a volcanic vent and not an impact crater? Impact craters and volcanic vents can be differentiated because vents often have an irregular or elongated shape (as with Birt E). Impact craters are usually circular in shape, created by the shockwave during an impact event. Also, the vee-shape of this crater is likely a product of the formation mechanism. Vee-shaped vents are thought to be formed from a pyroclastic eruption. Gasses fractionating out of the liquid rock create violent events during eruptions. Explosive eruptions created the shape that we see today, but Birt E could have had a complex history with effusive eruptions forming Rima Birt, a rille flowing from Birt E to the SE. Over long enough time scales Birt E will be filled in with ejecta from newly formed craters around Mare Nubium or by mass wasting of the walls into the crater. Let’s enjoy this ancient crater today while we still can! NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. eMeteorNews: website and PDF journal

    NASA Astrophysics Data System (ADS)

    Roggemans, P.; Kacerek, R.; Koukal, J.; Miskotte, K.; Piffl, R.

    2016-01-01

    Amateur meteor workers have always been interested to exchange information and experience. In the past this was only possible via personal contacts by letter or by specialized journals. With internet a much faster medium became available and plenty of websites, mailing lists, Facebook groups, etc., have been created in order to communicate about meteors. Today there is a wealth of meteor data circulating on internet, but the information is very scattered and not directly available to everyone. The authors have been considering how to organize an easy access to the many different meteor related publications. The best solution for the current needs of amateur meteor observers proved to be a dedicated website combined with a PDF journal, both being free available without any subscription fee or registration requirement. The authors decided to start with this project and in March 2016 the website meteornews.org has been created. A first issue of eMeteorNews was prepared in April 2016. The year 2016 will be a test period for this project. The mission statement of this project is: "Minimizing overhead and editorial constraints to assure a swift exchange of information dedicated to all fields of active amateur meteor work."

  2. NASA's Earth Science Use of Commercially Availiable Remote Sensing Datasets: Cover Image

    NASA Technical Reports Server (NTRS)

    Underwood, Lauren W.; Goward, Samuel N.; Fearon, Matthew G.; Fletcher, Rose; Garvin, Jim; Hurtt, George

    2008-01-01

    The cover image incorporates high resolution stereo pairs acquired from the DigitalGlobe(R) QuickBird sensor. It shows a digital elevation model of Meteor Crater, Arizona at approximately 1.3 meter point-spacing. Image analysts used the Leica Photogrammetry Suite to produce the DEM. The outside portion was computed from two QuickBird panchromatic scenes acquired October 2006, while an Optech laser scan dataset was used for the crater s interior elevations. The crater s terrain model and image drape were created in a NASA Constellation Program project focused on simulating lunar surface environments for prototyping and testing lunar surface mission analysis and planning tools. This work exemplifies NASA s Scientific Data Purchase legacy and commercial high resolution imagery applications, as scientists use commercial high resolution data to examine lunar analog Earth landscapes for advanced planning and trade studies for future lunar surface activities. Other applications include landscape dynamics related to volcanism, hydrologic events, climate change, and ice movement.

  3. What can we learn about impact mechanics from large craters on Venus?

    NASA Technical Reports Server (NTRS)

    Mckinnon, William B.; Alexopoulos, J. S.

    1992-01-01

    More than 50 unequivocal peak-ring craters and multiringed impact basins have been identified on Venus from Earth-based Arecibo, Venera 15/16, and Magellan radar images. These ringed craters are relatively pristine, and so serve as an important new dataset that will further understanding of the structural and rheological properties of the venusian surface and of impact mechanics in general. They are also the most direct analogues for craters formed on the Earth in Phanerozoic time. Finite-element simulations of basin collapse and ring formation were undertaken in collaboration with V. J. Hillgren (University of Arizona). These calculations used an axisymmetric version of the viscoelastic finite element code TECTON, modeled structures on the scale of Klenova or Meitner, and demonstrated two major points. First, viscous flow and ring formation are possible on the timescale of crater collapse for the sizes of multiringed basins seen on Venus and heat flows appropriate to the plant. Second, an elastic lithosphere overlying a Newtonian viscous asthenosphere results mainly in uplift beneath the crater. Inward asthenospheric flow mainly occurs at deeper levels. Lithospheric response is dominantly vertical and flexural. Tensional stress maxima occur and ring formation by normal faulting is predicted in some cases, but these predicted rings occur too far out to explain observed ring spacings on Venus (or on the Moon). Overall, these estimates and models suggest that multiringed basin formation is indeed possible at the scales observed on Venus. Furthermore, due to the strong inverse dependence of solid-state viscosity on stress, the absence of Cordilleran-style ring faulting in craters smaller than Meitner or Klenova makes sense. The apparent increase in viscosity of shock-fluidized rock with crater diameter, greater interior temperatures accessed by larger, deeper craters, and decreased non-Newtonian viscosity associated with larger craters may conspire to make the

  4. The activity of autumn meteor showers in 2006-2008

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna

    2015-03-01

    The purpose of meteor observations in INASAN is the study of meteor showers, as the elements of the migrant substance of the Solar System, and estimation of risk of hazardous collisions of spacecrafts with the particles of streams. Therefore we need to analyze the meteor events with brightness of up to 8 m, which stay in meteoroid streams for a long time and can be a hazardous for the spacecraft. The results of our single station TV observations of autumn meteor showers for the period from 2006 to 2008 are presented. The high-sensitive hybrid camera (the system with coupled of the Image Intensifier) FAVOR with limiting magnitude for meteors about 9m. . .10m in the field of view 20 × 18 was used for observations. In 2006-2008 from October to November more than 3 thousand of meteors were detected, 65% from them have the brightness from 6m to 9m. The identification with autumn meteor showers (Orionids, Taurids, Draconids, Leonids) was carried out. In order to estimate the density of the influx of meteor matter to the Earth for these meteor showers the Index of meteor activity (IMA) was calculated. The IMA distribution for the period 2006 - 2008 is given. The distributions of autumn meteor showers (the meteors with brightness of up to 8 m) by stellar magnitude from 2006 to 2008 are also presented.

  5. Secondary Craters

    NASA Image and Video Library

    2016-12-21

    This image of a southern mid-latitude crater was intended to investigate the lineated material on the crater floor. At the higher resolution of HiRISE, the image reveals a landscape peppered by small impact craters. These craters range from about 30 meters in diameter down to the resolution limit (about 2 meter diameter in this image acquired by averaging 2x2 picture elements). Such dense clusters of small craters are frequently formed by secondary craters, caused by the impact of material that was excavated and ejected from the surface of Mars during the creation of a larger nearby crater by the impact of a comet or an asteroid. Secondary impact craters are both interesting and vexing. They are interesting because they show the trajectories of the material that was ejected from the primary impact with the greatest speeds, typically material from near the surface of the blast zone. Secondary craters are often found along the traces of crater rays, linear features that extend radially from fresh impact craters and can reach many crater diameters in length. Secondary craters can be useful when crater rays are visible and the small craters can be associated with a particular primary impact crater. They can be used to constrain the age of the surface where they fell, since the surface must be older than the impact event. The age of the crater can be approximately estimated from the probability of an impact that produced a crater of such a size within a given area of Mars over a given time period. But these secondary craters can also be perplexing when no crater rays are preserved and a source crater is not easily identifiable, as is the case here. The impact that formed these secondary craters took place long enough ago that their association with a particular crater has been erased. They do not appear along the trace of a crater ray that is still apparent in visible or thermal infrared observations. These secondary craters complicate the task of estimating the age of

  6. New radio meteor detecting and logging software

    NASA Astrophysics Data System (ADS)

    Kaufmann, Wolfgang

    2017-08-01

    A new piece of software ``Meteor Logger'' for the radio observation of meteors is described. It analyses an incoming audio stream in the frequency domain to detect a radio meteor signal on the basis of its signature, instead of applying an amplitude threshold. For that reason the distribution of the three frequencies with the highest spectral power are considered over the time (3f method). An auto notch algorithm is developed to prevent the radio meteor signal detection from being jammed by a present interference line. The results of an exemplary logging session are discussed.

  7. Why to start with eMeteorNews?

    NASA Astrophysics Data System (ADS)

    Roggemans, Paul

    2016-01-01

    Amateur meteor workers have always been interested to exchange information and experience. In the past this was only possible via personal contacts by letter or by specialized journals. With internet a much faster medium became available and plenty of websites, mailing lists, Facebook groups, etc., have been created in order to communicate about meteors. Today there is a wealth of meteor data circulating on internet, but the information is very scattered and not directly available to everyone. The authors have been considering how to organize an easy access to the many different meteor related publications. The best solution for the current needs of amateur meteor observers proved to be a dedicated website combined with a PDF journal, both being free available without any subscription fee or registration requirement. The authors decided to start with this project and in March 2016 the website meteornews.org has been created. A first issue of eMeteorNews has been prepared in May 2016. The year 2016 will be a test period for this project. The mission statement of this project is: “Minimizing overhead and editorial constraints to assure a swift exchange of information dedicated to all fields of active amateur meteor work.”

  8. Monte Carlo modeling and meteor showers

    NASA Technical Reports Server (NTRS)

    Kulikova, N. V.

    1987-01-01

    Prediction of short lived increases in the cosmic dust influx, the concentration in lower thermosphere of atoms and ions of meteor origin and the determination of the frequency of micrometeor impacts on spacecraft are all of scientific and practical interest and all require adequate models of meteor showers at an early stage of their existence. A Monte Carlo model of meteor matter ejection from a parent body at any point of space was worked out by other researchers. This scheme is described. According to the scheme, the formation of ten well known meteor streams was simulated and the possibility of genetic affinity of each of them with the most probable parent comet was analyzed. Some of the results are presented.

  9. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Chau, J. L.; Vierinen, J.; Pfeffer, N.; Clahsen, M.; Stober, G.

    2016-12-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products, such as wind fields. This type of a radar would also be useful for over-the-horizon radar, ionosondes, and observations of field-aligned-irregularities.

  10. Seasonal Variation in Meteor Decay Time Profiles Measured by a Meteor Radar at King Sejong Station (62°S, 58°W), Antarctica

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, J.; Lee, C.; Jee, G.

    2008-12-01

    A VHF meteor radar at King Sejong Station (62°S, 58°W), Antarctica has been detecting echoes from more than 20,000 meteors per day since March 2007. Meteor echoes are decayed typically within seconds as meteor trail plasma spread away or are neutralized. Assuming that diffusion is the only process for decay of meteor echo signals, the atmospheric temperatures and pressures have been inferred from the measured meteor decay times at the peak meteor altitudes around 90 km. In this study, we analyze altitude profiles of meteor decay times in each month, which clearly show a maximum at 80 ~ 85 km. The maximum appears at higher altitude during austral summer than winter. The fast decay of meteor signals below the maximum cannot be explained by atmospheric diffusion which decreases with increasing atmospheric densities. We find that the measured meteor decay time profiles can be fitted with a loss rate profile, in addition to diffusion, with a peak altitude of 55 ~ 73 km and a peak rate of 4 ~ 15 sec- 1. The additional loss of meteor plasma may be due to electron absorption by icy particles in the mesosphere, but the estimated peak altitudes are much lower than the layers of NLC or PME. The estimated peak loss rates seem to be too large to be accounted by absorption by icy or dust particles. We will discuss other processes to explain the fast meteor times and their variation over season.

  11. Meteor showers in review

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter

    2017-09-01

    Recent work on meteor showers is reviewed. New data is presented on the long duration showers that wander in sun-centered ecliptic coordinates. Since the early days of meteor photography, much progress has been made in mapping visual meteor showers, using low-light video cameras instead. Now, some 820,000 meteoroid orbits have been measured by four orbit surveys during 2007-2015. Mapped in sun-centered ecliptic coordinates in 5° intervals of solar longitude, the data show a number of long duration (>15 days) meteor showers that have drifting radiants and speeds with solar longitude. 18 showers emerge from the antihelion source and follow a drift pattern towards high ecliptic latitudes. 27 Halley-type showers in the apex source move mostly towards lower ecliptic longitudes, but those at high ecliptic latitudes move backwards. Also, 5 low-speed showers appear between the toroidal ring and the apex source, moving towards the antihelion source. Most other showers do not last long, or do not move much in sun-centered ecliptic coordinates. The surveys also detected episodic showers, which mostly document the early stages of meteoroid stream formation. New data on the sporadic background have shed light on the dynamical evolution of the zodiacal cloud.

  12. Infrasound detection of meteors

    NASA Astrophysics Data System (ADS)

    ElGabry, M. N.; Korrat, I. M.; Hussein, H. M.; Hamama, I. H.

    2017-06-01

    Meteorites that penetrate the atmosphere generate infrasound waves of very low frequency content. These waves can be detected even at large distances. In this study, we analyzed the infrasound waves produced by three meteors. The October 7, 2008 TC3 meteor fell over the north Sudan Nubian Desert, the February 15, 2013 Russian fireball, and the February 6, 2016 Atlantic meteor near to the Brazil coast. The signals of these three meteors were detected by the infrasound sensors of the International Monitoring System (IMS) of the Comprehensive Test Ban Treaty Organization (CTBTO). The progressive Multi Channel Technique is applied to the signals in order to locate these infrasound sources. Correlation of the recorded signals in the collocated elements of each array enables to calculate the delays at the different array element relative to a reference one as a way to estimate the azimuth and velocity of the coming infrasound signals. The meteorite infrasound signals show a sudden change in pressure with azimuth due to its track variation at different heights in the atmosphere. Due to movement of the source, a change in azimuth with time occurs. Our deduced locations correlate well with those obtained from the catalogues of the IDC of the CTBTO.

  13. Problems in the design of multifunction meteor-radar networks

    NASA Astrophysics Data System (ADS)

    Nechitailenko, V. A.; Voloshchuk, Iu. I.

    The design of meteor-radar networks is examined in connection with the need to conduct experiments on a mass scale in meteor geophysics and astronomy. Attention is given to network architecture features and procedures of communication-path selection in the organization of information transfer, with allowance for the features of the meteor communication link. The meteor link is considered as the main means to ensure traffic in the meteor-radar network.

  14. Meteor Search by Spirit, Sol 668

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Annotated Meteor Search by Spirit, Sol 668

    The panoramic cameras on NASA's Mars Exploration Rovers are about as sensitive as the human eye at night. The cameras can see the same bright stars that we can see from Earth, and the same patterns of constellations dot the night sky. Scientists on the rover team have been taking images of some of these bright stars as part of several different projects. One project is designed to try to capture 'shooting stars,' or meteors, in the martian night sky. 'Meteoroids' are small pieces of comets and asteroids that travel through space and eventually run into a planet. On Earth, we can sometimes see meteoroids become brilliant, long 'meteors' streaking across the night sky as they burn up from the friction in our atmosphere. Some of these meteors survive their fiery flight and land on the surface (or in the ocean) where, if found, they are called 'meteorites.' The same thing happens in the martian atmosphere, and Spirit even accidentally discovered a meteor while attempting to obtain images of Earth in the pre-dawn sky back in March, 2004 (see http://marsrovers.jpl.nasa.gov/gallery/press/spirit/20040311a.html, and Selsis et al. (2005) Nature, vol 435, p. 581). On Earth, some meteors come in 'storms' or 'showers' at predictable times of the year, like the famous Perseid meteor shower in August or the Leonid meteor shower in November. These 'storms' happen when Earth passes through the same parts of space where comets sometimes pass. The meteors we see at these times are from leftover debris that was shed off of these comets.

    The same kind of thing is predicted for Mars, as well. Inspired by calculations about Martian meteor storms by meteor scientists from the University of Western Ontario in Canada and the Centre de Recherche en Astrophysique de Lyon in France, and also aided by other meteor research colleagues from NASA's Marshall Space Flight Center, scientists on

  15. Meteor Shower Forecasting for Spacecraft Operations

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Cooke, William J.; Campbell-Brown, Margaret D.

    2017-01-01

    Although sporadic meteoroids generally pose a much greater hazard to spacecraft than shower meteoroids, meteor showers can significantly increase the risk of damage over short time periods. Because showers are brief, it is sometimes possible to mitigate the risk operationally, which requires accurate predictions of shower activity. NASA's Meteoroid Environment Office (MEO) generates an annual meteor shower forecast that describes the variations in the near-Earth meteoroid flux produced by meteor showers, and presents the shower flux both in absolute terms and relative to the sporadic flux. The shower forecast incorporates model predictions of annual variations in shower activity and quotes fluxes to several limiting particle kinetic energies. In this work, we describe our forecasting methods and present recent improvements to the temporal profiles based on flux measurements from the Canadian Meteor Orbit Radar (CMOR).

  16. The Daytime Craterids, a radar-detected meteor shower outburst from hyperbolic comet C/2007 W1 (Boattini)

    NASA Astrophysics Data System (ADS)

    Wiegert, P. A.; Brown, P. G.; Weryk, R. J.; Wong, D. K.

    2011-06-01

    We report a new daytime meteor shower detected with the Canadian Meteor Orbit Radar (CMOR). This shower has a radiant in the southern constellation Crater. The Daytime Craterid shower was observed in 2003 and 2008 but not in any of the other years in the 2002-09 interval. The strength of this shower in the years observed is equivalent to a daily averaged zenithal hourly rate (ZHR) over 30, with a peak ZHR likely much higher at the time of the outburst. The orbital elements of the shower closely match those of Comet C/2007 W1 (Boattini), which passed perihelion in 2007. The orbit of C/2007 W1 is nominally hyperbolic orbit making this the first meteor shower detected from a clearly unbound comet. The 2003 outburst of the Daytime Craterid shower indicates that this comet must have recently been transferred to an unbound orbit from a bound one, likely through a close encounter with a giant planet. As a result we conclude that this shower provides us with one of the few examples of showers originating from the population of nearly isotropic comets. The stream is difficult to model owing to its proximity to the orbits of Jupiter, Saturn and the Earth. However, the intermittent nature of the shower can be largely understood from numerical simulations. No outbursts of similar strength are expected in the next decade, with the possible exception of 2015.

  17. Masursky Crater

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 9 June 2003

    The large, tilted blocks in this THEMIS visible image are chaotic terrain in Masursky Crater. Chaotic terrain is thought to occur when subsurface water is suddenly released to the surface, and the resulting loss of ground support causes the surface material to slump and break into blocks. Most of the chaotic terrain on Mars is seen in the vicinity of the large catastrophic outflow channels. Many of the outflow channels actually have chaotic terrain as their source. This chaotic terrain is the source of a small channel that connects to the much larger Tiu Valles.

    Image information: VIS instrument. Latitude 12, Longitude 327.6 East (32.4 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. Analysis of ALTAIR 1998 Meteor Radar Data

    NASA Technical Reports Server (NTRS)

    Zinn, J.; Close, S.; Colestock, P. L.; MacDonell, A.; Loveland, R.

    2011-01-01

    We describe a new analysis of a set of 32 UHF meteor radar traces recorded with the 422 MHz ALTAIR radar facility in November 1998. Emphasis is on the velocity measurements, and on inferences that can be drawn from them regarding the meteor masses and mass densities. We find that the velocity vs altitude data can be fitted as quadratic functions of the path integrals of the atmospheric densities vs distance, and deceleration rates derived from those fits all show the expected behavior of increasing with decreasing altitude. We also describe a computer model of the coupled processes of collisional heating, radiative cooling, evaporative cooling and ablation, and deceleration - for meteors composed of defined mixtures of mineral constituents. For each of the cases in the data set we ran the model starting with the measured initial velocity and trajectory inclination, and with various trial values of the quantity mPs 2 (the initial mass times the mass density squared), and then compared the computed deceleration vs altitude curves vs the measured ones. In this way we arrived at the best-fit values of the mPs 2 for each of the measured meteor traces. Then further, assuming various trial values of the density Ps, we compared the computed mass vs altitude curves with similar curves for the same set of meteors determined previously from the measured radar cross sections and an electrostatic scattering model. In this way we arrived at estimates of the best-fit mass densities Ps for each of the cases. Keywords meteor ALTAIR radar analysis 1 Introduction This paper describes a new analysis of a set of 422 MHz meteor scatter radar data recorded with the ALTAIR High-Power-Large-Aperture radar facility at Kwajalein Atoll on 18 November 1998. The exceptional accuracy/precision of the ALTAIR tracking data allow us to determine quite accurate meteor trajectories, velocities and deceleration rates. The measurements and velocity/deceleration data analysis are described in Sections

  19. Scoria Cone and Tuff Ring Stratigraphy Interpreted from Ground Penetrating Radar, Rattlesnake Crater, Arizona

    NASA Astrophysics Data System (ADS)

    Kruse, S. E.; McNiff, C. M.; Marshall, A. M.; Courtland, L. M.; Connor, C.; Charbonnier, S. J.; Abdollahzadeh, M.; Connor, L.; Farrell, A. K.; Harburger, A.; Kiflu, H. G.; Malservisi, R.; Njoroge, M.; Nushart, N.; Richardson, J. A.; Rookey, K.

    2013-12-01

    Numerous recent studies have demonstrated that detailed investigation of scoria cone and maar morphology can reveal rich details the eruptive and erosion histories of these volcanoes. A suite of geophysical surveys were conducted to images Rattlesnake Crater in the San Francisco Volcanic Field, AZ, US. We report here the results of ~3.4 km of ground penetrating radar (GPR) surveys that target the processes of deposition and erosion on the pair of cinder cones that overprint the southeast edge of Rattlesnake crater and on the tuff ring that forms the crater rim. Data were collected with 500, 250, 100, and 50 MHz antennas. The profiles were run in a radial direction down the northeast flanks of the cones (~1 km diameter, ~120 meters height) , and on the inner and outer margins of the oblong maar rim (~20-80 meters height). A maximum depth of penetration of GPR signal of ~15m was achieved high on the flanks of scoria cones. A minimum depth of essentially zero penetration occurred in the central crater. We speculate that maximum penetration occurs near the peaks of the cones and crater rim because ongoing erosion limits new soil formation. Soil formation would tend to increase surface conductivity and hence decrease GPR penetration. Soil is probably better developed within the crater, precluding significant radar penetration there. On the northeast side of the gently flattened rim of the easternmost scoria cone, the GPR profile shows internal layering that dips ~20 degrees northeast relative to the current ground surface. This clearly indicates that the current gently dipping surface is not a stratigraphic horizon, but reflects instead an erosive surface into cone strata that formed close to the angle of repose. Along much of the cone flanks GPR profiles show strata dipping ~4-5 degrees more steeply than the current surface, suggesting erosion has occurred over most of the height of the cone. An abrupt change in strata attitude is observed at the gradual slope

  20. Optical and Radar Measurements of the Meteor Speed Distribution

    NASA Technical Reports Server (NTRS)

    Moorhead, A. V.; Brown, P. G.; Campbell-Brown, M. D.; Kingery, A.; Cooke, W. J.

    2016-01-01

    The observed meteor speed distribution provides information on the underlying orbital distribution of Earth-intersecting meteoroids. It also affects spacecraft risk assessments; faster meteors do greater damage to spacecraft surfaces. Although radar meteor networks have measured the meteor speed distribution numerous times, the shape of the de-biased speed distribution varies widely from study to study. Optical characterizations of the meteoroid speed distribution are fewer in number, and in some cases the original data is no longer available. Finally, the level of uncertainty in these speed distributions is rarely addressed. In this work, we present the optical meteor speed distribution extracted from the NASA and SOMN allsky networks [1, 2] and from the Canadian Automated Meteor Observatory (CAMO) [3]. We also revisit the radar meteor speed distribution observed by the Canadian Meteor Orbit Radar (CMOR) [4]. Together, these data span the range of meteoroid sizes that can pose a threat to spacecraft. In all cases, we present our bias corrections and incorporate the uncertainty in these corrections into uncertainties in our de-biased speed distribution. Finally, we compare the optical and radar meteor speed distributions and discuss the implications for meteoroid environment models.

  1. Optical Meteor Systems Used by the NASA Meteoroid Environment Office

    NASA Technical Reports Server (NTRS)

    Kingery, A. M.; Blaauw, R. C.; Cooke, W. J.; Moser, D. E.

    2015-01-01

    The NASA Meteoroid Environment Office (MEO) uses two main meteor camera networks to characterize the meteoroid environment: an all sky system and a wide field system to study cm and mm size meteors respectively. The NASA All Sky Fireball Network consists of fifteen meteor video cameras in the United States, with plans to expand to eighteen cameras by the end of 2015. The camera design and All-Sky Guided and Real-time Detection (ASGARD) meteor detection software [1, 2] were adopted from the University of Western Ontario's Southern Ontario Meteor Network (SOMN). After seven years of operation, the network has detected over 12,000 multi-station meteors, including meteors from at least 53 different meteor showers. The network is used for speed distribution determination, characterization of meteor showers and sporadic sources, and for informing the public on bright meteor events. The NASA Wide Field Meteor Network was established in December of 2012 with two cameras and expanded to eight cameras in December of 2014. The two camera configuration saw 5470 meteors over two years of operation with two cameras, and has detected 3423 meteors in the first five months of operation (Dec 12, 2014 - May 12, 2015) with eight cameras. We expect to see over 10,000 meteors per year with the expanded system. The cameras have a 20 degree field of view and an approximate limiting meteor magnitude of +5. The network's primary goal is determining the nightly shower and sporadic meteor fluxes. Both camera networks function almost fully autonomously with little human interaction required for upkeep and analysis. The cameras send their data to a central server for storage and automatic analysis. Every morning the servers automatically generates an e-mail and web page containing an analysis of the previous night's events. The current status of the networks will be described, alongside with preliminary results. In addition, future projects, CCD photometry and broadband meteor color camera

  2. Meteoric 10Be in soil profiles - A global meta-analysis

    USGS Publications Warehouse

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-01-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  3. On associations of Apollo asteroids with meteor streams

    NASA Technical Reports Server (NTRS)

    Porubcan, V.; Stohl, Jan; Vana, R.

    1992-01-01

    Potential associations of Apollo asteroids with meteor streams are searched on the basis of the orbital parameters comparison. From all Apollo asteroids discovered through 1991 June those are only selected for further analysis whose orbits approach to less than 0.1 AU to the Earth's orbit. Their orbits are compared with precise photographic orbits of individual meteors from the Meteor Data Center in Lund. Results on the associations of asteroids with meteor streams are presented and discussed.

  4. ScienceCast 20: Summer Meteor Shower

    NASA Image and Video Library

    2011-07-21

    If you're camping out and can't sleep, maybe your slumber is being interrupted by the flash of meteors. The summer Perseid meteor shower is getting underway as Earth enters the debris stream from comet Swift-Tuttle.

  5. Results of Lunar Impact Observations During Geminid Meteor Shower Events

    NASA Technical Reports Server (NTRS)

    Suggs, R. J.; Suggs, R. M.

    2015-01-01

    Meteoroids are natural particles with origins from comets, asteroids, and planets from within the solar system. On average, 33 metric tons (73,000 lb) of meteoroids hit Earth everyday with velocities ranging between 20 and 72 km/s. However, the vast majority of these meteoroids disintegrate in the atmosphere and never make it to the ground. The Moon also encounters the same meteoroid flux, but has no atmosphere to stop them from striking the surface. At such speeds even a small meteoroid has incredible energy. A meteoroid with a mass of only 5 kg can excavate a crater over 9 m across, hurling 75 metric tons (165,000 lb) of lunar soil and rock on ballistic trajectories above the lunar surface. Meteoroids with particle sizes as small as 100 micrometer (1 Microgram) can do considerable damage to spacecraft in Earth's orbit and beyond. Impacts can damage thermal protection systems, radiators, windows, and pressurized containers. Secondary effects might include partial penetration or pitting, local deformation, and surface degradation that can cause a failure upon reentry. The speed, mass, density, and flux of meteoroids are important factors for design considerations and mitigation during operations. Lunar operations (unmanned and manned) are also adversely affected by the meteoroid flux. Ejecta from meteoroid impacts is also part of the lunar environment and must be characterized. Understanding meteoroid fluxes and the associated risk of meteoroids impacting spacecraft traveling in and beyond Earth's orbit is the objective of the Meteoroid Environment Office (MEO) located at Marshall Space Flight Center (MSFC). One of the MEO's programs is meteoroid impact monitoring of the Moon. The large collecting area of the night side of the lunar disk provides statistically significant counts of meteoroids that can provide useful information about the flux of meteoroids in the hundreds of grams to kilograms size range. This information is not only important for characterizing

  6. The archiving of meteor research information

    NASA Technical Reports Server (NTRS)

    Nechitailenko, V. A.

    1987-01-01

    The results obtained over the past years under GLOBMET are not reviewed but some of the problems the solution of which will guide further development of meteor investigation and international cooperation in this field for the near term are discussed. The main attention is paid to problems which the meteor community itself can solve, or at least expedite. Most of them are more or less connected with the problem of information archiving. Information archiving deals with methods and techniques of solving two closely connected groups of problems. The first is the analysis of data and information as an integral part of meteor research and deals with the solution of certain methodological problems. The second deals with gathering data and information for the designing of models of the atmosphere and/or meteor complex and its utilization. These problem solutions are discussed.

  7. The 2014 May Camelopardalid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Cooke, Bill; Moser, Danielle

    2014-01-01

    On May 24, 2014 Earth will encounter multiple streams of debris laid down by Comet 209P LINEAR. This will likely produce a new meteor shower, never before seen. Rates predicted to be from 100 to 1000 meteors per hour between 2 and 4 AM EDT, so we are dealing with a meteor outburst, potentially a storm. Peak rate of 200 per hour best current estimate. Difficult to calibrate models due to lack of past observations. Models indicate mm size particles in stream, so potential risk to Earth orbiting spacecraft.

  8. Impact and cratering rates onto Pluto

    NASA Astrophysics Data System (ADS)

    Greenstreet, Sarah; Gladman, Brett; McKinnon, William B.

    2015-09-01

    The New Horizons spacecraft fly-through of the Pluto system in July 2015 will provide humanity's first data for the crater populations on Pluto and its binary companion, Charon. In principle, these surfaces could be dated in an absolute sense, using the observed surface crater density (# craters/km2 larger than some threshold crater diameter D). Success, however, requires an understanding of both the cratering physics and absolute impactor flux. The Canada-France Ecliptic Plane Survey (CFEPS) L7 synthetic model of classical and resonant Kuiper belt populations (Petit, J.M. et al. [2011]. Astron. J. 142, 131-155; Gladman, B. et al. [2012]. Astron. J. 144, 23-47) and the scattering object model of Kaib et al. (Kaib, N., Roškar, R., Quinn, T. [2011]. Icarus 215, 491-507) calibrated by Shankman et al. (Shankman, C. et al. [2013]. Astrophys. J. 764, L2-L5) provide such impact fluxes and thus current primary cratering rates for each dynamical sub-population. We find that four sub-populations (the q < 42AU hot and stirred main classicals, the classical outers, and the plutinos) dominate Pluto's impact flux, each providing ≈ 15- 25 % of the total rate. Due to the uncertainty in how the well-characterized size distribution for Kuiper belt objects (with impactor diameter d > 100km) connects to smaller projectiles, we compute cratering rates using five model impactor size distributions: a single power-law, a power-law with a knee, a power-law with a divot, as well as the "wavy" size distributions described in Minton et al. (Minton, D.A. et al. [2012]. Asteroids Comets Meteors Conf. 1667, 6348) and Schlichting et al. (Schlichting, H.E., Fuentes, C.I., Trilling, D.E. [2013]. Astron. J. 146, 36-42). We find that there is only a small chance that Pluto has been hit in the past 4 Gyr by even one impactor with a diameter larger than the known break in the projectile size distribution (d ≈ 100km) which would create a basin on Pluto (D ⩾ 400km in diameter). We show that due to

  9. Photoacoustic Sounds from Meteors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spalding, Richard E.; Tencer, John; Sweatt, William C.

    2015-03-01

    High-speed photometric observations of meteor fireballs have shown that they often produce high-amplitude light oscillations with frequency components in the kHz range, and in some cases exhibit strong millisecond flares. We built a light source with similar characteristics and illuminated various materials in the laboratory, generating audible sounds. Models suggest that light oscillations and pulses can radiatively heat dielectric materials, which in turn conductively heats the surrounding air on millisecond timescales. The sound waves can be heard if the illuminated material is sufficiently close to the observer’s ears. The mechanism described herein may explain many reports of meteors that appearmore » to be audible while they are concurrently visible in the sky and too far away for sound to have propagated to the observer. This photoacoustic (PA) explanation provides an alternative to electrophonic (EP) sounds hypothesized to arise from electromagnetic coupling of plasma oscillation in the meteor wake to natural antennas in the vicinity of an observer.« less

  10. Meteors with anomalous apparent heights from TV observations in Kyiv

    NASA Astrophysics Data System (ADS)

    Kozak, P.

    2017-12-01

    Basing on additional studying and précised processing of video-records of double-station meteor TV observations in Astronomical Observatory of Taras Shevchenko National University of Kyiv the selection of meteors with anomalous photometrical and kinematical characteristics has been carried out. A special attention was paid to the registration of meteors on extreme heights exceeding 130km. In opposite to practically proved at the moment facts about appearance of fast bright bolides created by massive bodies belonging to Leonids, Perseids and Orionids streams on heights over 130-135km, and up to even 160-195km we obtained the confirmation of appearance on the anomalous heights of low-light meteors of masses 10-3g. In 1993 during observations of Perseid meteor shower we registered for the first time the shower meteor with apparent height of 136.84 - 0.12km. In 2001 and 2003 during September observations of sporadic meteors we registered only one meteor from 98 on the height over 135km. During observations of Leonids meteor storm in 2002 we registered five relatively low-light meteors belonging to the shower with apparent heights exceeding 135-140km with masses 10^-3 g.

  11. Major and Daytime Meteor Showers using Global Radio Meteor Observations covering the period 2001-2016

    NASA Astrophysics Data System (ADS)

    Ogawa, Hiroshi; Steyaert, Christian

    2017-10-01

    With radio, it is possible to observe meteor activity even in bad weather and during daytime. The research in this paper succeeded in detecting the important stream features, such as peak time, peak level and FWHM (Full Width Half Maximum) in not only major streams but also daytime meteor showers, using worldwide radio forward scattering data covering the period 2001-2016.

  12. Constraining the Physical Properties of Meteor Stream Particles by Light Curve Shapes Using the Virtual Meteor Observatory

    NASA Technical Reports Server (NTRS)

    Koschny, D.; Gritsevich, M.; Barentsen, G.

    2011-01-01

    Different authors have produced models for the physical properties of meteoroids based on the shape of a meteor's light curve, typically from short observing campaigns. We here analyze the height profiles and light curves of approx.200 double-station meteors from the Leonids and Perseids using data from the Virtual Meteor Observatory, to demonstrate that with this web-based meteor database it is possible to analyze very large datasets from different authors in a consistent way. We compute the average heights for begin point, maximum luminosity, and end heights for Perseids and Leonids. We also compute the skew of the light curve, usually called the F-parameter. The results compare well with other author's data. We display the average light curve in a novel way to assess the light curve shape in addition to using the F-parameter. While the Perseids show a peaked light curve, the average Leonid light curve has a more flat peak. This indicates that the particle distribution of Leonid meteors can be described by a Gaussian distribution; the Perseids can be described with a power law. The skew for Leonids is smaller than for Perseids, indicating that the Leonids are more fragile than the Perseids.

  13. A spreadsheet that calculates meteor orbits

    NASA Astrophysics Data System (ADS)

    Langbroek, M.

    2004-08-01

    The author has written an MS Excel spreadsheet application called Metorb08.xls which calculates a meteor's orbital elements from its apparent radiant position and initial speed. It can be downloaded from URL http://home.wanadoo.nl/marco.langbroek along with a suite of other meteor-related Excel applications.

  14. Fully correcting the meteor speed distribution for radar observing biases

    NASA Astrophysics Data System (ADS)

    Moorhead, Althea V.; Brown, Peter G.; Campbell-Brown, Margaret D.; Heynen, Denis; Cooke, William J.

    2017-09-01

    Meteor radars such as the Canadian Meteor Orbit Radar (CMOR) have the ability to detect millions of meteors, making it possible to study the meteoroid environment in great detail. However, meteor radars also suffer from a number of detection biases; these biases must be fully corrected for in order to derive an accurate description of the meteoroid population. We present a bias correction method for patrol radars that accounts for the full form of ionization efficiency and mass distribution. This is an improvement over previous methods such as that of Taylor (1995), which requires power-law distributions for ionization efficiency and a single mass index. We apply this method to the meteor speed distribution observed by CMOR and find a significant enhancement of slow meteors compared to earlier treatments. However, when the data set is severely restricted to include only meteors with very small uncertainties in speed, the fraction of slow meteors is substantially reduced, indicating that speed uncertainties must be carefully handled.

  15. CAMS confirmation of previously reported meteor showers

    NASA Astrophysics Data System (ADS)

    Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Holman, D.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.

    2016-03-01

    Leading up to the 2015 IAU General Assembly, the International Astronomical Union's Working List of Meteor Showers included 486 unconfirmed showers, showers that are not certain to exist. If confirmed, each shower would provide a record of past comet or asteroid activity. Now, we report that 41 of these are detected in the Cameras for Allsky Meteor Surveillance (CAMS) video-based meteor shower survey. They manifest as meteoroids arriving at Earth from a similar direction and orbit, after removing the daily radiant drift due to Earth's motion around the Sun. These showers do exist and, therefore, can be moved to the IAU List of Established Meteor Showers. This adds to 31 previously confirmed showers from CAMS data. For each shower, finding charts are presented based on 230,000 meteors observed up to March of 2015, calculated by re-projecting the drift-corrected Sun-centered ecliptic coordinates into more familiar equatorial coordinates. Showers that are not detected, but should have, and duplicate showers that project to the same Sun-centered ecliptic coordinates, are recommended for removal from the Working List.

  16. The California All-sky Meteor Surveillance (CAMS) System

    NASA Astrophysics Data System (ADS)

    Gural, P. S.

    2011-01-01

    A unique next generation multi-camera, multi-site video meteor system is being developed and deployed in California to provide high accuracy orbits of simultaneously captured meteors. Included herein is a description of the goals, concept of operations, hardware, and software development progress. An appendix contains a meteor camera performance trade study made for video systems circa 2010.

  17. Present State and Prospects for the Meteor Research in Ukraine

    NASA Astrophysics Data System (ADS)

    Shulga, O.; Voloshchuk, Y.; Kolomiyets, S.; Cherkas, Y.; Kimakovskay, I.; Kimakovsky, S.; Knyazkova, E.; Kozyryev, Y.; Sybiryakova, Y.; Gorbanev, Y.; Stogneeva, I.; Shestopalov, V.; Kozak, P.; Rozhilo, O.; Taranukha, Y.

    2015-03-01

    ODESSA. Systematical study of the meteor events are being carried out since 1953. In 2003 complete modernization of the observing technique was performed, and TV gmeteor patrolh on the base of WATEC LCL902 cameras was created. @ wide variety of mounts and objectives are used: from Schmidt telescope F = 540 mm, F/D = 2.25 (field of view FOV = (0.68x0.51) deg, star limiting magnitude SLM = 13.5 mag, star astrometric accuracy 1-2 arcsec) up to Fisheye lenses F = 8 mm, F/D = 3.5 (FOV = (36x49) deg, SLM = 7 mag). The database of observations that was collected between 2003 and 2012 consists of 6176 registered meteor events. Observational programs on basis and non-basis observations in Odessa (Kryzhanovka station) and Zmeiny island are presented. Software suite of 12 programs was created for processing of meteor TV observations. It enables one to carry out the whole cycle of data processing: from image preprocessing up to orbital elements determination. Major meteor particles research directions: statistic, areas of streams, precise stream radiant, orbit elements, phenomena physics, flare appearance, wakes, afterglow, chemistry and density. KYIV. The group of meteor investigations has been functioning more than twenty years. The observations are carried out simultaneously from two points placed at the distance of 54 km. Super-isocon low light camera tubes are used with photo lens: F = 50mm, F/D = 1.5 (FOV = (23.5 x 19.0) deg, SLM = 9.5 mag), or F = 85, F/D = 1.5 (FOV = (13x11) deg, SLM = 11.5 mag). Astrometry, photometry, calculation of meteor trajectory in Earth atmosphere and computation of heliocentric orbit are realized in developed gFalling Starh software. KHARKOV. Meteor radio-observations have begun in 1957. In 1972, the radiolocation system MARS designed for automatic meteor registration was recognized as being the most sensitive system in the world. With the help of this system 250 000 faint meteors (up to 12 mag) were registered between 1972 and 1978 (frequency

  18. Why do complex impact craters have elevated crater rims?

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Sturm, Sebastian; Krueger, Tim

    2014-05-01

    Most of the complex impact craters on the Moon and on Mars have elevated crater rims like their simple counterparts. The raised rim of simple craters is the result of (i) the deposition of a coherent proximal ejecta blanket at the edge of the transient cavity (overturned flap) and (ii) a structural uplift of the pre-impact surface near the transient cavity rim during the excavation stage of cratering [1]. The latter occurs either by plastic thickening or localized buckling of target rocks, as well as by the emplacement of interthrust wedges [2] or by the injection of dike material. Ejecta and the structural uplift contribute equally to the total elevation of simple crater rims. The cause of elevated crater rims of large complex craters [3] is less obvious, but still, the rim height scales with the final crater diameter. Depending on crater size, gravity, and target rheology, the final crater rim of complex craters can be situated up to 1.5-2.0 transient crater radii distance from the crater center. Here the thickness of the ejecta blanket is only a fraction of that occurring at the rim of simple craters, e.g. [4], and thus cannot account for a strong elevation. Likewise, plastic thickening including dike injection of the underlying target may not play a significant role at this distance any more. We started to systematically investigate the structural uplift and ejecta thickness along the rim of complex impact craters to understand the cause of their elevation. Our studies of two lunar craters (Bessel, 16 km diameter and Euler, 28 km diameter) [5] and one unnamed complex martian crater (16 km diameter) [6] showed that the structural uplift at the final crater rim makes 56-67% of the total rim elevation while the ejecta thickness contributes 33-44%. Thus with increasing distance from the transient cavity rim, the structural uplift seems to dominate. As dike injection and plastic thickening are unlikely at such a distance from the transient cavity, we propose that

  19. Earth observation taken by the Expedition 28 crew

    NASA Image and Video Library

    2011-09-08

    ISS028-E-044433 (8 Sept. 2011) --- Bigach Impact Crater in Kazakhstan is featured in this image photographed by an Expedition 28 crew member on the International Space Station. Some meteor impact craters, like Barringer Crater in Arizona, are easily recognizable on the landscape due to well-preserved form and features. Other impact structures, such as Bigach Impact Crater in northeastern Kazakhstan are harder to recognize due to their age, modification by subsequent geologic processes, or even human alteration of the landscape. According to scientists, at approximately 5 million years old, Bigach is a relatively young geologic feature; however active tectonic processes in the region have caused movement of parts of the structure along faults, leading to a somewhat angular appearance (center). The roughly circular rim of the eight kilometers in diameter structure is still discernable around the relatively flat interior in this photograph. In addition to modification by faulting and erosion, the interior of the impact structure has also been used for agricultural activities, as indicated by the presence of tan regular graded fields. Other rectangular agricultural fields are visible to the northeast and east. The closest settlement, Novopavlovka, is barely visible near the top of the image.

  20. Comparison of Impact Crater Size-Frequency Distributions (SFD) on Saturnian Satellites with Other Solar-System Bodies

    NASA Astrophysics Data System (ADS)

    Schmedemann, N.; Neukum, G.; Denk, T.; Wagner, R.; Hartmann, O.

    2009-04-01

    such as Mercury, Venus, Mars, Gaspra, Callisto, Ganymede and Mimas have revealed similarly shaped crater diameter SFDs e.g. [4]. While those SFD curves are equally shaped, the whole curves with their characteristic W-shapes appear to be shifted along the diameter axis. Most likely, this shift is primarily the result of different impact velocities. Other factors of scaling relationships between crater diameter and projectile diameter such as density and gravity on different target bodies are of secondary importance. The measurements of the crater diameter SFD on the saturnian satellites Tethys, Dione, Rhea, and Iapetus also show high similarities to the lunar W-shaped curve. The most complete and statistically valid data set was generated in the case of Iapetus. We have been able to measure crater sizes over four orders of magnitude. The most likely impactor source for the craters in the inner solar system is the asteroid belt orbiting the sun between Mars and Jupiter e.g. [3],[4]. The asteroid body diameter SFD has more recently been analyzed by [2] using the latest discoveries and the absolute geometric albedo of the asteroids. Those albedo values have been converted to asteroid-body diameters using the method of [1]. The body SFD of the asteroid belt in the range from its inner border out to the 5:2 resonance gap gives a very good match to the lunar SFD. The same W-shape characteristics is found at the jovian and saturnian satellite SFD curves as mentioned earlier. Based on these observations and similarities, it is reasonable to suspect asteroids as the major contribution for the outer solar system bombardment in the range of Saturn as well. References: [1]Fowler & Chillemi (1992) in "The IRAS minor planet survey" [2]Ivanov at al. (2002) in „Asteroids III"; The University of Arizona Press: 89-101 [3]Neukum (1983) Habilitation Thesis, "Meteoritenbombardement und Datierung planetarer Oberflächen"; Ludwig-Maximilians-University of Munich. [4]Neukum & Ivanov (1994

  1. IAU Meteor Data Center-the shower database: A status report

    NASA Astrophysics Data System (ADS)

    Jopek, Tadeusz Jan; Kaňuchová, Zuzana

    2017-09-01

    Currently, the meteor shower part of Meteor Data Center database includes: 112 established showers, 563 in the working list, among them 36 have the pro tempore status. The list of shower complexes contains 25 groups, 3 have established status and 1 has the pro tempore status. In the past three years, new meteor showers submitted to the MDC database were detected amongst the meteors observed by CAMS stations (Cameras for Allsky Meteor Surveillance), those included in the EDMOND (European viDeo MeteOr Network Database), those collected by the Japanese SonotaCo Network, recorded in the IMO (International Meteor Organization) database, observed by the Croatian Meteor Network and on the Southern Hemisphere by the SAAMER radar. At the XXIX General Assembly of the IAU in Honolulu, Hawaii in 2015, the names of 18 showers were officially accepted and moved to the list of established ones. Also, one shower already officially named (3/SIA the Southern iota Aquariids) was moved back to the working list of meteor showers. At the XXIX GA IAU the basic shower nomenclature rule was modified, the new formulation predicates ;The general rule is that a meteor shower (and a meteoroid stream) should be named after the constellation that contains the nearest star to the radiant point, using the possessive Latin form;. Over the last three years the MDC database was supplemented with the earlier published original data on meteor showers, which permitted verification of the correctness of the MDC data and extension of bibliographic information. Slowly but surely new database software options are implemented, and software bugs are corrected.

  2. First results on video meteors from Crete, Greece

    NASA Astrophysics Data System (ADS)

    Maravelias, G.

    2012-01-01

    This work presents the first systematic video meteor observations from a, forthcoming permanent, station in Crete, Greece, operating as the first official node within the International Meteor Organization's Video Network. It consists of a Watec 902 H2 Ultimate camera equipped with a Panasonic WV-LA1208 (focal length 12mm, f/0.8) lens running MetRec. The system operated for 42 nights during 2011 (August 19-December 30, 2011) recording 1905 meteors. It is significantly more performant than a previous system used by the author during the Perseids 2010 (DMK camera 21AF04.AS by The Imaging Source, CCTV lens of focal length 2.8 mm, UFO Capture v2.22), which operated for 17 nights (August 4-22, 2010) recording 32 meteors. Differences - according to the author's experience - between the two softwares (MetRec, UFO Capture) are discussed along with a small guide to video meteor hardware.

  3. Diatremes and craters attributed to natural explosions

    USGS Publications Warehouse

    Shoemaker, Eugene Merle

    1956-01-01

    Diatremes - volcanic pipes attributed to explosion - and craters have been studied to infer the ultimate causes and physical conditions attending natural explosive processes. Initial piercement of diatremes on the Navajo reservation, Arizona was probably along a fracture propagated by a high-pressure aqueous fluid. Gas rising at high velocity along the fracture would become converted to a gas-solid fluidized system by entrainment of wall- rock fragments. The first stages of widening of the vent are probably accomplished mainly by simple abrasion of the high-velocity fluidized system on the walls of the fracture. As the vent widens, its enlargement may be accelerated by inward spalling of the walls. The inferred mechanics of the Navajo-Hopi diatremes is used to illustrate the possibility of diatreme formation over a molten salt mass.

  4. The motion of radio meteor reflection point of Geminids

    NASA Astrophysics Data System (ADS)

    Ohnishi, Kouji; Ishikawa, Toshiyuki; Hattori, Shinobu; Nishimura, Osamu; Miyazawa, Akiko; Yanagisawa, Masatoshi; Endo, Makoto; Kawamura, Masaki; Maruyama, Toshiyuki; Hosayama, Kai; Tokunaga, Mai; Maegawa, Kimio; Abe, Shinsuke

    2001-11-01

    Ham-band Radio Observation (HRO) is one of the observational techniques for the forward scatter observation of meteors. We observe the meteor echo with two-element loop antennas (F/B ratio is 10 dB) at the Nagano National College of Technology (Nagano, Japan) using the continuous transmission of beacon signals for meteor observations at 53.750 MHz, 50W from Fukui National College of Technology (Fukui, Japan). To prove that the radio echo is really the echo due to meteor, we have constructed the direction determination system using the paired antennas that can detect the direction roughly where the radio echo come from. The direction of one of this paired antennas was West toward Sabae and the other was East which has proved to be the most sensitive for this research. Using this system, we detected the change of the direction of reflection point of meteor radio signal of Geminids in 2000; from the westward to eastward before and after the culmination of the radiant which is consistent the formula of reflection point of meteors. At the same time, we detected the change of an intensity and a trend of the Doppler shift of meteor echoes. This result is consistent of the meteor wind data of MU Rader of Radio Science Center for Space & Atmosphere (RASC), Kyoto University.

  5. An upper limit on Early Mars atmospheric pressure from small ancient craters

    NASA Astrophysics Data System (ADS)

    Kite, E. S.; Williams, J.; Lucas, A.; Aharonson, O.

    2012-12-01

    Planetary atmospheres brake, ablate, and disrupt small asteroids and comets, filtering out small hypervelocity surface impacts and causing fireballs, airblasts, meteors, and meteorites. Hypervelocity craters <1 km diameter on Earth are typically caused by irons (because stones are more likely to break up), and the smallest hypervelocity craters near sea-level on Earth are ~20 m in diameter. 'Zap pits' as small as 30 microns are known from the airless moon, but the other airy worlds show the effects of progressively thicker atmospheres:- the modern Mars atmosphere is marginally capable of removing >90% of the kinetic energy of >240 kg iron impactors; Titan's paucity of small craters is consistent with a model predicting atmospheric filtering of craters smaller than 6-8km; and on Venus, craters below ~20 km diameter are substantially depleted. Changes in atmospheric CO2 concentration are believed to be the single most important control on Mars climate evolution and habitability. Existing data requires an early epoch of massive atmospheric loss to space; suggests that the present-day rate of escape to space is small; and offers only limited evidence for carbonate formation. Existing evidence has not led to convergence of atmosphere-evolution models, which must balance poorly understood fluxes from volcanic degassing, surface weathering, and escape to space. More direct measurements are required in order to determine the history of CO2 concentrations. Wind erosion and tectonics exposes ancient surfaces on Mars, and the size-frequency distribution of impacts on these surfaces has been previously suggested as a proxy time series of Mars atmospheric thickness. We will present a new upper limit on Early Mars atmospheric pressure using the size-frequency distribution of 20-100m diameter ancient craters in Aeolis Dorsa, validated using HiRISE DTMs, in combination with Monte Carlo simulations of the effect of paleo-atmospheres of varying thickness on the crater flux. These

  6. Crater gradation in Gusev crater and Meridiani Planum, Mars

    USGS Publications Warehouse

    Grant, J. A.; Arvidson, R. E.; Crumpler, L.S.; Golombek, M.P.; Hahn, B.; Haldemann, A.F.C.; Li, R.; Soderblom, L.A.; Squyres, S. W.; Wright, S.P.; Watters, W.A.

    2006-01-01

    The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ???400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred. Copyright 2006 by the American Geophysical Union.

  7. Crater gradation in Gusev crater and Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Grant, J. A.; Arvidson, R. E.; Crumpler, L. S.; Golombek, M. P.; Hahn, B.; Haldemann, A. F. C.; Li, R.; Soderblom, L. A.; Squyres, S. W.; Wright, S. P.; Watters, W. A.

    2006-01-01

    The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ~400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred.

  8. Meteor Observation in a Group

    NASA Astrophysics Data System (ADS)

    Zimnikoval, Peter

    2010-08-01

    Observation in former Czechoslovakia has more than 100 years tradition. These activities started in Czech part of the republic, mostly. More serious and systematic observations began in second half of the 20-th century. Important role played the International Geophysical Year 1957/58. Part of this event was International Meteor Year. Czechoslovakian astronomers were accredited as main organisers of the IMY. It was improved observe methods for this reason. High role in meteor observations has establishment of public observatories in Slovakia in 70-ties, too. Beside of popularization of astronomy one of main task was to organise amateur observations. Important role had collaboration of Copernicus Observatory and planetarium Brno (now Czech republic) and observatory Banská Bystrica from 1972. Main purpose of the collaboration was organising of so-called National Meteor Expeditions. These expeditions runs till 1988. Tradition of expeditions continues in Slovakia until today.

  9. ScienceCast 73: 2012 Perseid Meteor Shower

    NASA Image and Video Library

    2012-08-09

    The Perseid meteor shower is underway. There's more to see than meteors, however, when the shower peaks on August 11th through 13th. The brightest planets in the solar system are lining up in the middle of the display.

  10. MST radar observations of Perseid meteor shower 2004

    NASA Astrophysics Data System (ADS)

    Venkata Phani Kumar, D.; Reddy, K. Chenna; Yellaiah, G.

    2006-09-01

    There was a special attention for Perseid meteor shower observations in view of the predictions of an intense activity on 11th August 2004 caused by a filament of dust drifting across the Earth's orbit. Results of a systematic study of Perseid meteor shower observations, carried out during 12-15 August 2004 using Indian MST radar are presented. Based on over 27 hours of observing time, we detected 2260 meteor echoes occurring between 80 km and 120 km with a mean height of 103 km. For our observations, the peak activity of the shower occured on 12/13 August, corresponding to solar longitude lambdao = 140.565± 0.16 with an average rate of 250 meteor echoes per hour. The SNR distribution of the echoes observed during the shower indicates that the smaller size meteoroids are more compared to larger size meteoroids in the perseid meteor stream. The three distinct peaks observed in the shower activity is presented and discussed.

  11. In Situ Measurements of Meteoric Ions

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Aiken, Arthur C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Extraterrestrial material is the source of metal ions in the Earth's atmosphere, Each year approx. 10(exp 8) kg of material is intercepted by the Earth. The origin of this material is predominantly solar orbiting interplanetary debris from comets or asteroids that crosses the Earth's orbit. It contains a very small amount of interstellar material. On occasion the Earth passes through enhanced amounts of debris associated with the orbit of a decaying comet. This leads to enhanced meteor shower displays for up to several days. The number flux of shower material is typically several times the average sporadic background influx of material. Meteoric material is some of the earliest material formed in the solar system. By studying the relative elemental abundances of atmospheric metal ions, information can be gained on the chemical composition of cometary debris and the chemical makeup of the early solar system. Using in situ sampling with rocket-borne ion mass spectrometers; there have been approximately 50 flights that made measurements of the metal ion abundances at attitudes between 80 and 130 km. It is this altitude range where incoming meteoric particles am ablated, the larger ones giving rise to visible meteor. displays. In several rocket measurements isotopic ratios of different atomic ion mass components and metal molecular ion concentrations have been determined and used to identify unambiguously the measured species and to investigate the processes controlling the metal ion distributions The composition of the Earth's ionosphere was first sampled by an ion mass spectrometer flown an a rocket in 1956. In 1958 a rocket-borne ion spectrometer identified, fbr the first time, a layer of metal ions near 95 km. These data were interpreted as evidence of an extraterrestrial rather than a terrestrial source. Istomin predicted: "It seems probable that with some improvement in the method that analysis of the ion composition in the E-region may be used for determining

  12. The effects of the Chesapeake Bay impact crater on the geologic framework and the correlation of hydrogeologic units of southeastern Virginia, south of the James River

    USGS Publications Warehouse

    Powars, David S.

    2000-01-01

    About 35 million years ago, a large comet or meteor slammed into the shallow shelf on the western margin of the Atlantic Ocean, creating the Chesapeake Bay impact crater. This report, the second in a series, refines the geologic framework of southeastern Virginia, south of the James River in and near the impact crater, and presents evidence for the existence of a pre-impact James River structural zone. The report includes detailed correlations of core lithologies with borehole geophysical logs; the correlations provide the foundation for the compilation of stratigraphic cross sections. These cross sections are tied into the geologic framework of the lower York-James Peninsula as presented in the first report in the series, Professional Paper 1612

  13. First 3-D simulations of meteor plasma dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    Oppenheim, Meers M.; Dimant, Yakov S.

    2015-02-01

    Millions of small but detectable meteors hit the Earth's atmosphere every second, creating trails of hot plasma that turbulently diffuse into the background atmosphere. For over 60 years, radars have detected meteor plasmas and used these signals to infer characteristics of the meteoroid population and upper atmosphere, but, despite the importance of meteor radar measurements, the complex processes by which these plasmas evolve have never been thoroughly explained or modeled. In this paper, we present the first fully 3-D simulations of meteor evolution, showing meteor plasmas developing instabilities, becoming turbulent, and inhomogeneously diffusing into the background ionosphere. These instabilities explain the characteristics and strength of many radar observations, in particular the high-resolution nonspecular echoes made by large radars. The simulations reveal how meteors create strong electric fields that dig out deep plasma channels along the Earth's magnetic fields. They also allow researchers to explore the impacts of the intense winds and wind shears, commonly found at these altitudes, on meteor plasma evolution. This study will allow the development of more sophisticated models of meteor radar signals, enabling the extraction of detailed information about the properties of meteoroid particles and the atmosphere.

  14. Determination of meteor flux distribution over the celestial sphere

    NASA Technical Reports Server (NTRS)

    Andreev, V. V.; Belkovich, O. I.; Filimonova, T. K.; Sidorov, V. V.

    1992-01-01

    A new method of determination of meteor flux density distribution over the celestial sphere is discussed. The flux density was derived from observations by radar together with measurements of angles of arrival of radio waves reflected from meteor trails. The role of small meteor showers over the sporadic background is shown.

  15. Detection of the Phoenicids meteor shower in 2014

    NASA Astrophysics Data System (ADS)

    Sato, Mikiya; Watanabe, Jun-ichi; Tsuchiya, Chie; Moorhead, Althea V.; Moser, Danielle E.; Brown, Peter G.; Cooke, William J.

    2017-09-01

    An appearance of the Phoenicids meteor shower was predicted in 2014 by using a dust trail simulation of an outburst of 1956. We detected Phoenicids meteors on December 2 through multiple observation methods. The NASA All Sky Fireball Network and the Southern Ontario Meteor Network detected five meteors of Phoenicids via video observation. The Canadian Meteor Orbit Radar (CMOR) found fourteen candidate meteors, eight of which were confirmed as Phoenicids. The observed radiant point is consistent with that of our model predictions. In addition to the above observations, a visual observation was carried out by the Japanese team near the Observatorio del Roque de los Muchachos (ORM) of Instituto de Astrofisica de Canarias (IAC) in La Palma Island. The obtained zenithal hourly rate (ZHR) was 16.4±4.9. The maximum ZHR was roughly estimated to be between 20 and 30, which indicates that the cometary activity of parent object 289P/Blanpain in the early 20th century was only about one fifth or one eighth as high as its activity in the late 18th and early 19th century. Accordingly, it seems to be the case that 289P/Blanpain is gradually transforming from a comet to a dormant object.

  16. Multivariate analyses of crater parameters and the classification of craters

    NASA Technical Reports Server (NTRS)

    Siegal, B. S.; Griffiths, J. C.

    1974-01-01

    Multivariate analyses were performed on certain linear dimensions of six genetic types of craters. A total of 320 craters, consisting of laboratory fluidization craters, craters formed by chemical and nuclear explosives, terrestrial maars and other volcanic craters, and terrestrial meteorite impact craters, authenticated and probable, were analyzed in the first data set in terms of their mean rim crest diameter, mean interior relief, rim height, and mean exterior rim width. The second data set contained an additional 91 terrestrial craters of which 19 were of experimental percussive impact and 28 of volcanic collapse origin, and which was analyzed in terms of mean rim crest diameter, mean interior relief, and rim height. Principal component analyses were performed on the six genetic types of craters. Ninety per cent of the variation in the variables can be accounted for by two components. Ninety-nine per cent of the variation in the craters formed by chemical and nuclear explosives is explained by the first component alone.

  17. The Updated IAU MDC Catalogue of Photographic Meteor Orbits

    NASA Technical Reports Server (NTRS)

    Porubcan, V.; Svoren, J.; Neslusan, L.; Schunova, E.

    2011-01-01

    The database of photographic meteor orbits of the IAU Meteor Data Center at the Astronomical Institute SAS has gradually been updated. To the 2003 version of 4581 photographic orbits compiled from 17 different stations and obtained in the period 1936-1996, additional new 211 orbits compiled from 7 sources have been added. Thus, the updated version of the catalogue contains 4792 photographic orbits (equinox J2000.0) available either in two separate orbital and geophysical data files or a file with the merged data. All the updated files with relevant documentation are available at the web of the IAU Meteor Data Center. Keywords astronomical databases photographic meteor orbits 1 Introduction Meteoroid orbits are a basic tool for investigation of distribution and spatial structure of the meteoroid population in the close surroundings of the Earth s orbit. However, information about them is usually widely scattered in literature and often in publications with limited circulation. Therefore, the IAU Comm. 22 during the 1976 IAU General Assembly proposed to establish a meteor data center for collection of meteor orbits recorded by photographic and radio techniques. The decision was confirmed by the next IAU GA in 1982 and the data center was established (Lindblad, 1987). The purpose of the data center was to acquire, format, check and disseminate information on precise meteoroid orbits obtained by multi-station techniques and the database gradually extended as documented in previous reports on the activity of the Meteor Data Center by Lindblad (1987, 1995, 1999 and 2001) or Lindblad and Steel (1993). Up to present, the database consists of 4581 photographic meteor orbits (Lindblad et al., 2005), 63.330 radar determined orbit: Harvard Meteor Project (1961-1965, 1968-1969), Adelaide (1960-1961, 1968-1969), Kharkov (1975), Obninsk (1967-1968), Mogadish (1969-1970) and 1425 video-recordings (Lindblad, 1999) to which additional 817 video meteors orbits published by Koten el

  18. Radio Meteors Observations Techniques at RI NAO

    NASA Astrophysics Data System (ADS)

    Vovk, Vasyl; Kaliuzhnyi, Mykola

    2016-07-01

    The Solar system is inhabited with large number of celestial bodies. Some of them are well studied, such as planets and vast majority of big asteroids and comets. There is one group of objects which has received little attention. That is meteoroids with related to them meteors. Nowadays enough low-technology high-efficiency radio-technical solutions are appeared which allow to observe meteors daily. At RI NAO three methodologies for meteor observation are developed: single-station method using FM-receiver, correlation method using FM-receiver and Internet resources, and single-station method using low-cost SDR-receiver.

  19. Adaptive data rate capacity of meteor-burst communications

    NASA Astrophysics Data System (ADS)

    Larsen, J. D.; Melville, S. W.; Mawrey, R. S.

    The use of adaptive data rates in the meteor-burst communications environment is investigated. Measured results obtained from a number of meteor links are presented and compared with previous theoretical predictions. The contribution of various meteor trail families to throughput capacity are also investigated. The results show that the use of adaptive data rates can significantly increase the throughput capacity of meteor-burst communication systems. The greatest rate of increase in throughput with increase in operating rate is found at low operating rates. This finding has been confirmed for a variety of links and days. Reasonable correspondence is obtained between the predicted modified overdense model and the observed results. Overdense trails, in particular two trail types within the overdense family, are shown to dominate adaptive data throughput.

  20. Meteor studies in the framework of the JEM-EUSO program

    NASA Astrophysics Data System (ADS)

    Abdellaoui, G.; Abe, S.; Acheli, A.; Adams, J. H.; Ahmad, S.; Ahriche, A.; Albert, J.-N.; Allard, D.; Alonso, G.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Aouimeur, W.; Arai, Y.; Arsene, N.; Asano, K.; Attallah, R.; Attoui, H.; Ave Pernas, M.; Bacholle, S.; Bakiri, M.; Baragatti, P.; Barrillon, P.; Bartocci, S.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, A.; Belov, K.; Benadda, B.; Benmessai, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Bisconti, F.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Boudaoud, R.; Bozzo, E.; Briggs, M. S.; Bruno, A.; Caballero, K. S.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Capel, F.; Caramete, A.; Caramete, L.; Carlson, P.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellina, A.; Castellini, G.; Catalano, C.; Catalano, O.; Cellino, A.; Chikawa, M.; Chiritoi, G.; Christl, M. J.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Di Martino, M.; Djemil, T.; Djenas, S. A.; Dulucq, F.; Dupieux, M.; Dutan, I.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Eser, J.; Fang, K.; Fenu, F.; Fernández-González, S.; Fernández-Soriano, J.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Fouka, M.; Franceschi, A.; Franchini, S.; Fuglesang, C.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; García-Ortega, E.; Garipov, G.; Gascón, E.; Geary, J.; Gelmini, G.; Genci, J.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guehaz, R.; Guzmán, A.; Hachisu, Y.; Haiduc, M.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Hidber, W.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Isgrò, F.; Itow, Y.; Jammer, T.; Joven, E.; Judd, E. G.; Jung, A.; Jochum, J.; Kajino, F.; Kajino, T.; Kalli, S.; Kaneko, I.; Kang, D.; Kanouni, F.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Kedadra, A.; Khales, H.; Khrenov, B. A.; Kim, Jeong-Sook; Kim, Soon-Wook; Kim, Sug-Whan; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lahmar, H.; Lakhdari, F.; Larsson, O.; Lee, J.; Licandro, J.; Lim, H.; López Campano, L.; Maccarone, M. C.; Mackovjak, S.; Mahdi, M.; Maravilla, D.; Marcelli, L.; Marcos, J. L.; Marini, A.; Martens, K.; Martín, Y.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Matthews, J. N.; Mebarki, N.; Medina-Tanco, G.; Mehrad, L.; Mendoza, M. A.; Merino, A.; Mernik, T.; Meseguer, J.; Messaoud, S.; Micu, O.; Mimouni, J.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Nadji, B.; Nagano, M.; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Nardelli, A.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Painter, W.; Panasyuk, M. I.; Panico, B.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perdichizzi, M.; Pérez-Grande, I.; Perfetto, F.; Peter, T.; Picozza, P.; Pierog, T.; Pindado, S.; Piotrowski, L. W.; Piraino, S.; Placidi, L.; Plebaniak, Z.; Pliego, S.; Pollini, A.; Popescu, E. M.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Rabanal, J.; Radu, A. A.; Rahmani, M.; Reardon, P.; Reyes, M.; Rezazadeh, M.; Ricci, M.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez Cano, G.; Sagawa, H.; Sahnoune, Z.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sanchez, J. C.; Sánchez, J. L.; Santangelo, A.; Santiago Crúz, L.; Sanz-Andrés, A.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Sledd, J.; Słomińska, K.; Sobey, A.; Stan, I.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tahi, H.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Talai, M. C.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Traïche, M.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Vankova, G.; Vigorito, C.; Villaseñor, L.; Vlcek, B.; von Ballmoos, P.; Vrabel, M.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J., Jr.; Weber, M.; Weigand Muñoz, R.; Weindl, A.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, S.; Young, R.; Zgura, I. S.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2017-09-01

    We summarize the state of the art of a program of UV observations from space of meteor phenomena, a secondary objective of the JEM-EUSO international collaboration. Our preliminary analysis indicates that JEM-EUSO, taking advantage of its large FOV and good sensitivity, should be able to detect meteors down to absolute magnitude close to 7. This means that JEM-EUSO should be able to record a statistically significant flux of meteors, including both sporadic ones, and events produced by different meteor streams. Being unaffected by adverse weather conditions, JEM-EUSO can also be a very important facility for the detection of bright meteors and fireballs, as these events can be detected even in conditions of very high sky background. In the case of bright events, moreover, exhibiting some persistence of the meteor train, preliminary simulations show that it should be possible to exploit the motion of the ISS itself and derive at least a rough 3D reconstruction of the meteor trajectory. Moreover, the observing strategy developed to detect meteors may also be applied to the detection of nuclearites, exotic particles whose existence has been suggested by some theoretical investigations. Nuclearites are expected to move at higher velocities than meteoroids, and to exhibit a wider range of possible trajectories, including particles moving upward after crossing the Earth. Some pilot studies, including the approved Mini-EUSO mission, a precursor of JEM-EUSO, are currently operational or in preparation. We are doing simulations to assess the performance of Mini-EUSO for meteor studies, while a few meteor events have been already detected using the ground-based facility EUSO-TA.

  1. Meteor velocity distribution from CILBO double station video camera data

    NASA Astrophysics Data System (ADS)

    Drolshagen, Esther; Ott, Theresa; Koschny, Detlef; Drolshagen, Gerhard; Poppe, Bjoern

    2014-02-01

    This paper is based on data from the double-station meteor camera setup on the Canary Islands - CILBO. The data has been collected from July 2011 until August 2014. The CILBO meteor data of one year (1 June 2013 - 31 May 2014) were used to analyze the velocity distribution of sporadic meteors and to compare the distribution to a reference distribution for near-Earth space. The velocity distribution for 1 AU outside the influence of Earth derived from the Harvard Radio Meteor Project (HRMP) was used as a reference. This HRMP distribution was converted to an altitude of 100 km by considering the gravitational attraction of Earth. The new, theoretical velocity distribution for a fixed meteoroid mass ranges from 11 - 71 𝑘𝑚/𝑠 and peaks at 12.5 𝑘𝑚/𝑠. This represents the predicted velocity distribution. The velocity distribution of the meteors detected simultaneously by both cameras of the CILBO system was examined. The meteors are sorted by their stream association and especially the velocity distribution of the sporadics is studied closely. The derived sporadic velocity distribution has a maximum at 64 𝑘𝑚/𝑠. This drastic difference to the theoretical curve confirms that fast meteors are usually greatly over-represented in optical and radar measurements of meteors. The majority of the fast sporadics are apparently caused by the Apex contribution in the early morning hours. This paper presents first results of the ongoing analysis of the meteor velocity distribution.

  2. Identification of craters on Moon using Crater Density Parameter

    NASA Astrophysics Data System (ADS)

    Vandana, Vandana

    2016-07-01

    Lunar craters are the most noticeable features on the face of the moon. They take up 40.96% of the lunar surface and, their accumulated area is approximately three times as much as the lunar surface area. There are many myths about the moon. Some says moon is made of cheese. The moon and the sun chase each other across the sky etc. but scientifically the moon are closest and are only natural satellite of earth. The orbit plane of the moon is tilted by 5° and orbit period around the earth is 27-3 days. There are two eclipse i.e. lunar eclipse and solar eclipse which always comes in pair. Moon surface has 3 parts i.e. highland, Maria, and crater. For crater diagnostic crater density parameter is one of the means for measuring distance can be easily identity the density between two craters. Crater size frequency distribution (CSFD) is being computed for lunar surface using TMC and MiniSAR image data and hence, also the age for the selected test sites of mars is also determined. The GIS-based program uses the density and orientation of individual craters within LCCs (as vector points) to identify potential source craters through a series of cluster identification and ejection modeling analyses. JMars software is also recommended and operated only the time when connected with server but work can be done in Arc GIS with the help of Arc Objects and Model Builder. The study plays a vital role to determine the lunar surface based on crater (shape, size and density) and exploring affected craters on the basis of height, weight and velocity. Keywords: Moon; Crater; MiniSAR.

  3. Meteor showers associated with 2003EH1

    NASA Astrophysics Data System (ADS)

    Babadzhanov, P. B.; Williams, I. P.; Kokhirova, G. I.

    2008-06-01

    Using the Everhart RADAU19 numerical integration method, the orbital evolution of the near-Earth asteroid 2003EH1 is investigated. This asteroid belongs to the Amor group and is moving on a comet-like orbit. The integrations are performed over one cycle of variation of the perihelion argument ω. Over such a cycle, the orbit intersect that of the Earth at eight different values of ω. The orbital parameters are different at each of these intersections and so a meteoroid stream surrounding such an orbit can produce eight different meteor showers, one at each crossing. The geocentric radiants and velocities of the eight theoretical meteor showers associated with these crossing points are determined. Using published data, observed meteor showers are identified with each of the theoretically predicted showers. The character of the orbit and the existence of observed meteor showers associated with 2003EH1 confirm the supposition that this object is an extinct comet.

  4. Crater density differences: Exploring regional resurfacing, secondary crater populations, and crater saturation equilibrium on the moon

    USGS Publications Warehouse

    Povilaitis, R Z; Robinson, M S; van der Bogert, C H; Hiesinger, Harald; Meyer, H M; Ostrach, Lillian

    2017-01-01

    The global population of lunar craters >20 km in diameter was analyzed by Head et al., (2010) to correlate crater distribution with resurfacing events and multiple impactor populations. The work presented here extends the global crater distribution analysis to smaller craters (5–20 km diameters, n = 22,746). Smaller craters form at a higher rate than larger craters and thus add granularity to age estimates of larger units and can reveal smaller and younger areas of resurfacing. An areal density difference map generated by comparing the new dataset with that of Head et al., (2010) shows local deficiencies of 5–20 km diameter craters, which we interpret to be caused by a combination of resurfacing by the Orientale basin, infilling of intercrater plains within the nearside highlands, and partial mare flooding of the Australe region. Chains of 5–30 km diameter secondaries northwest of Orientale and possible 8–22 km diameter basin secondaries within the farside highlands are also distinguishable. Analysis of the new database indicates that craters 57–160 km in diameter across much of the lunar highlands are at or exceed relative crater densities of R = 0.3 or 10% geometric saturation, but nonetheless appear to fit the lunar production function. Combined with the observation that small craters on old surfaces can reach saturation equilibrium at 1% geometric saturation (Xiao and Werner, 2015), this suggests that saturation equilibrium is a size-dependent process, where large craters persist because of their resistance to destruction, degradation, and resurfacing.

  5. METEOR - an artificial intelligence system for convective storm forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elio, R.; De haan, J.; Strong, G.S.

    1987-03-01

    An AI system called METEOR, which uses the meteorologist's heuristics, strategies, and statistical tools to forecast severe hailstorms in Alberta, is described, emphasizing the information and knowledge that METEOR uses to mimic the forecasting procedure of an expert meteorologist. METEOR is then discussed as an AI system, emphasizing the ways in which it is qualitatively different from algorithmic or statistical approaches to prediction. Some features of METEOR's design and the AI techniques for representing meteorological knowledge and for reasoning and inference are presented. Finally, some observations on designing and implementing intelligent consultants for meteorological applications are made. 7 references.

  6. The self-secondary crater population of the Hokusai crater on Mercury

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Prieur, Nils C.; Werner, Stephanie C.

    2016-07-01

    Whether or not self-secondaries dominate small crater populations on continuous ejecta deposits and floors of fresh impact craters has long been a controversy. This issue potentially affects the age determination technique using crater statistics. Here the self-secondary crater population on the continuous ejecta deposits of the Hokusai crater on Mercury is unambiguously recognized. Superposition relationships show that this population was emplaced after both the ballistic sedimentation of excavation flows and the subsequent veneering of impact melt, but it predated the settlement and solidification of melt pools on the crater floor. Fragments that formed self-secondaries were launched via impact spallation with large angles. Complex craters on the Moon, Mercury, and Mars probably all have formed self-secondaries populations. Dating young craters using crater statistics on their continuous ejecta deposits can be misleading. Impact melt pools are less affected by self-secondaries. Overprint by subsequent crater populations with time reduces the predominance of self-secondaries.

  7. Scaling multiblast craters: General approach and application to volcanic craters

    NASA Astrophysics Data System (ADS)

    Sonder, I.; Graettinger, A. H.; Valentine, G. A.

    2015-09-01

    Most volcanic explosions leave a crater in the surface around the center of the explosions. Such craters differ from products of single events like meteorite impacts or those produced by military testing because they typically result from multiple, rather than single, explosions. Here we analyze the evolution of experimental craters that were created by several detonations of chemical explosives in layered aggregates. An empirical relationship for the scaled crater radius as a function of scaled explosion depth for single blasts in flat test beds is derived from experimental data, which differs from existing relations and has better applicability for deep blasts. A method to calculate an effective explosion depth for nonflat topography (e.g., for explosions below existing craters) is derived, showing how multiblast crater sizes differ from the single-blast case: Sizes of natural caters (radii and volumes) are not characteristic of the number of explosions, nor therefore of the total acting energy, that formed a crater. Also, the crater size is not simply related to the largest explosion in a sequence but depends upon that explosion and the energy of that single blast and on the cumulative energy of all blasts that formed a crater. The two energies can be combined to form an effective number of explosions that is characteristic for the crater evolution. The multiblast crater size evolution has implications on the estimates of volcanic eruption energies, indicating that it is not correct to estimate explosion energy from crater size using previously published relationships that were derived for single-blast cases.

  8. Bonestell Crater

    NASA Image and Video Library

    2018-04-17

    Bonestell Crater is a relatively young crater located in Acidalia Planitia. The grooved surface of the ejecta blanket is evident in this VIS image. Dust blown into the crater and the downslope movement of fine materials from the rim are slowly modifying the crater features. Orbit Number: 71230 Latitude: 36.398 Longitude: 329.708 Instrument: VIS Captured: 2018-01-04 05:31 https://photojournal.jpl.nasa.gov/catalog/PIA22371

  9. Arizona transportation history.

    DOT National Transportation Integrated Search

    2011-12-01

    The Arizona transportation history project was conceived in anticipation of Arizonas centennial, which will be : celebrated in 2012. Following approval of the Arizona Centennial Plan in 2007, the Arizona Department of : Transportation (ADOT) recog...

  10. Lunar Cratering Chronology: Calibrating Degree of Freshness of Craters to Absolute Ages

    NASA Astrophysics Data System (ADS)

    Trang, D.; Gillis-Davis, J.; Boyce, J. M.

    2013-12-01

    The use of impact craters to age-date surfaces of and/or geomorphological features on planetary bodies is a decades old practice. Various dating techniques use different aspects of impact craters in order to determine ages. One approach is based on the degree of freshness of primary-impact craters. This method examines the degradation state of craters through visual inspection of seven criteria: polygonality, crater ray, continuous ejecta, rim crest sharpness, satellite craters, radial channels, and terraces. These criteria are used to rank craters in order of age from 0.0 (oldest) to 7.0 (youngest). However, the relative decimal scale used in this technique has not been tied to a classification of absolute ages. In this work, we calibrate the degree of freshness to absolute ages through crater counting. We link the degree of freshness to absolute ages through crater counting of fifteen craters with diameters ranging from 5-22 km and degree of freshness from 6.3 to 2.5. We use the Terrain Camera data set on Kaguya to count craters on the continuous ejecta of each crater in our sample suite. Specifically, we divide the crater's ejecta blanket into quarters and count craters between the rim of the main crater out to one crater radii from the rim for two of the four sections. From these crater counts, we are able to estimate the absolute model age of each main crater using the Craterstats2 tool in ArcGIS. Next, we compare the degree of freshness for the crater count-derived age of our main craters to obtain a linear inverse relation that links these two metrics. So far, for craters with degree of freshness from 6.3 to 5.0, the linear regression has an R2 value of 0.7, which corresponds to a relative uncertainty of ×230 million years. At this point, this tool that links degree of freshness to absolute ages cannot be used with craters <8km because this class of crater degrades quicker than larger craters. A graphical solution exists for correcting the degree of

  11. Results of the IMO Video Meteor Network - June 2015

    NASA Astrophysics Data System (ADS)

    Molau, Sirko; Kac, Javor; Crivello, Stefano; Stomeo, Enrico; Barentsen, Geert; Goncalves, Rui; Saraiva, Carlos; Maciejewski, Maciej; Maslov, Mikhail

    2015-10-01

    Observations of the IMO Video Meteor Network are presented for 2015 June. Activity profile is presented for the Daytime Arietids, based on 28 shower meteors. The meteor rate of the Daytime Arietids between June 5 and 11, normalized for the limiting magnitude and angular velocity, is found to be about one quarter of that of the eta-Aquariids during their maximum.

  12. Cratering on Small Bodies: Lessons from Eros

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    2003-01-01

    Cratering and regolith processes on small bodies happen continuously as interplanetary debris rains down on asteroids, comets, and planetary satellites. Butthey are very poorly observed and not well understood. On the one hand, we have laboratory experimentation at small scales and we have examination of large impact craters (e.g. Meteor Crater on Earth and imaging of abundant craters on terrestrial planets and outer planet moons). Understanding cratering on bodies of intermediate scales, tens of meters to hundreds of km in size, involves either extrapolation from our understanding of cratering phenomena at very different scales or reliance on very preliminary, incomplete examination of the observational data we now have for a few small bodies. I review the latter information here. It has been generally understood that the role of gravity is greatly diminished for smaller bodies, so a lot of cratering phenomena studied for larger bodies is less applicable. But it would be a mistake to imagine that laboratory experiments on gravitationless rocks (usually at 1 g) are directly applicable, except perhaps to those monolithic Near Earth Asteroids (NEAs) some tens of meters in size that spin very rapidly and can be assumed to be "large bare rocks" with "negative gravity". Whereas it had once been assumed that asteroids smaller than some tens of km diameter would retain little regolith, it is increasingly apparent that regolith and megoregolith processes extend down to bodies only hundreds of meters in size, perhaps smaller. Yet these processes are very different from those that pertain to the Moon, which is our chief prototype of regolith processes. The NEAR Shoemaker spacecraft's studies of Eros provide the best evidence to date about small-body cratering processes, as well as a warning that our theoretical understanding requires anchoring by direct observations. Eros: "Ponds", Paucity of Small Craters, and Other Mysteries. Although Eros is currently largely detached

  13. Meteor Shower Records: A Reference Table of Observations from Previous Centuries

    NASA Astrophysics Data System (ADS)

    Koseki, M.

    2009-10-01

    Meteor history shows the complex nature of meteor showers. The author presents the Comae Berenicids as an example of the difficulties in defining meteor showers for visibility using different observational techniques. It is not useful to give a fixed or coded name to a 'meteor shower' because it may not be real and could lead observers to fictitious results.

  14. The makings of meteor astronomy: part VII.

    NASA Astrophysics Data System (ADS)

    Beech, M.

    1994-08-01

    The idea that meteors might be some form of "electrical manifestation" was a popular one for several decades near the end of the 18th century. The great fireball of August 18, 1783, prompted one researcher, Charles Blagden, to develop a detailed empirical model which described all manner of meteoric phenomena.

  15. Mixing of Magmatic Volatiles With Meteoric Groundwater in the Summit of Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Hurwitz, S.; Goff, F.; Janik, C. J.; Evans, W. C.; Counce, D. A.; Sorey, M. L.; Ingebritsen, S. E.

    2001-12-01

    Water samples were collected from the only deep well (Keller Well-NSF Well) on the summit of Kilauea volcano, Hawaii. The well was drilled in 1973 to a depth of 1262 m, but sat idle until 1998 when a drilling rig was used to remove mud and renew access to the hydrothermal system at a location very close to summit fumarolic activity. The chemistry and isotopic composition of fluid samples collected in 1998-2001 differ significantly from those of samples collected before 1998 and reported in previous studies. The water from the well is rich in sulfate and has a near-neutral pH. The major element chemistry differs significantly from seawater composition and from that of hydrothermal fluids from Kilauea's east rift zone. The well water has a low chloride concentration relative to typical magmatic-hydrothermal fluids and a high sulfate to bicarbonate ratio (approximately 4:1). Based on the S/Cl mass ratio and on carbon and helium isotopes in the well fluids, summit fumaroles and the parental Kilauea magma, we conclude that the hydrothermal fluids sampled from the well formed by condensation of magmatic volatiles into shallow, mainly meteoric groundwater. The oxygen and deuterium isotopic composition indicate that the meteoric component was recharged on the eastern margin of the caldera. Steam condensation and gas dissolution beneath the crater formed an acidic fluid that dissolved the host basalt at high temperatures. The hydrothermal fluid was then modified by cooling and precipitation of secondary minerals along a flow path away from the crater towards the well. Geochemical modeling based on fluid chemistry and geothermometry suggests that the well fluids equilibrated with an assemblage of secondary minerals at temperatures between 90 and 140oC. The C/S ratios in the well water, the parental magma, and the gas plume emanating from the caldera indicate that most of the sulfur degassed from the magma is scrubbed by groundwaters beneath the summit. However, based on the

  16. Are the Leonid Meteor Storms Coming?

    NASA Technical Reports Server (NTRS)

    Yeomans, D. K.; Yau, K.; Weissman, P. R.

    1995-01-01

    On Nov. 17, 1996 an extraordinary Leonid meteor storm (144,000 per hour) was witnessed by observers in central and western United States. With an orbital period of 33 years, the next return to perihelion will be Feb. 28, 1998. Because the distribution of the particles flying in formation with the parent comet is poorly known, no secure predictions can be made for Leonid meteor storms in the coming years.

  17. Cydonia Craters

    NASA Image and Video Library

    2003-03-22

    In this image from NASA Mars Odyssey, eroded mesas and secondary craters dot the landscape in an area of Cydonia Mensae. The single oval-shaped crater displays a butterfly ejecta pattern, indicating that the crater formed from a low-angle impact.

  18. ``Hiss, clicks and pops'' - The enigmatic sounds of meteors

    NASA Astrophysics Data System (ADS)

    Finnegan, J. A.

    2015-04-01

    The improbability of sounds heard simultaneously with meteors allows the phenomenon to remain on the margins of scientific interest and research. This is unjustified, since these audibly perceived electric field effects indicate complex, inconsistent and still unresolved electric-magnetic coupling and charge dynamics; interacting between the meteor; the ionosphere and mesosphere; stratosphere; troposphere and the surface of the earth. This paper reviews meteor acoustic effects, presents illustrating reports and hypotheses and includes a summary of similar and additional phenomena observed during the 2013 February 15 asteroid fragment disintegration above the Russian district of Chelyabinsk. An augmenting theory involving near ground, non uniform electric field production of Ozone, as a stimulated geo-physical phenomenon to explain some hissing `meteor sounds' is suggested in section 2.2. Unlike previous theories, electric-magnetic field fluctuation rates are not required to occur in the audio frequency range for this process to acoustically emit hissing and intermittent impulsive sounds; removing the requirements of direct conversion, passive human transduction or excited, localised acoustic `emitters'. Links to the Armagh Observatory All-sky meteor cameras, electrophonic meteor research and full construction plans for an extremely low frequency (ELF) receiver are also included.

  19. Young Channel, Old Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 18 March 2004

    The Odyssey spacecraft has completed a full Mars year of observations of the red planet. For the next several weeks the Image of the Day will look back over this first mars year. It will focus on four themes: 1) the poles - with the seasonal changes seen in the retreat and expansion of the caps; 2) craters - with a variety of morphologies relating to impact materials and later alteration, both infilling and exhumation; 3) channels - the clues to liquid surface flow; and 4) volcanic flow features. While some images have helped answer questions about the history of Mars, many have raised new questions that are still being investigated as Odyssey continues collecting data as it orbits Mars.

    Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark.

    This daytime IR image was collected on February 3, 2003 during the northern summer season. This image shows a younger channel cutting through an older crater.

    Image information: IR instrument. Latitude 30.8, Longitude 19 East (341 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System

  20. Mesoscale Computational Investigation of Shocked Heterogeneous Materials with Application to Large Impact Craters

    NASA Technical Reports Server (NTRS)

    Crawford, D. A.; Barnouin-Jha, O. S.; Cintala, M. J.

    2003-01-01

    The propagation of shock waves through target materials is strongly influenced by the presence of small-scale structure, fractures, physical and chemical heterogeneities. Pre-existing fractures often create craters that appear square in outline (e.g. Meteor Crater). Reverberations behind the shock from the presence of physical heterogeneity have been proposed as a mechanism for transient weakening of target materials. Pre-existing fractures can also affect melt generation. In this study, we are attempting to bridge the gap in numerical modeling between the micro-scale and the continuum, the so-called meso-scale. To accomplish this, we are developing a methodology to be used in the shock physics hydrocode (CTH) using Monte-Carlo-type methods to investigate the shock properties of heterogeneous materials. By comparing the results of numerical experiments at the micro-scale with experimental results and by using statistical techniques to evaluate the performance of simple constitutive models, we hope to embed the effect of physical heterogeneity into the field variables (pressure, stress, density, velocity) allowing us to directly imprint the effects of micro-scale heterogeneity at the continuum level without incurring high computational cost.

  1. Secondary craters on Europa and implications for cratered surfaces.

    PubMed

    Bierhaus, Edward B; Chapman, Clark R; Merline, William J

    2005-10-20

    For several decades, most planetary researchers have regarded the impact crater populations on solid-surfaced planets and smaller bodies as predominantly reflecting the direct ('primary') impacts of asteroids and comets. Estimates of the relative and absolute ages of geological units on these objects have been based on this assumption. Here we present an analysis of the comparatively sparse crater population on Jupiter's icy moon Europa and suggest that this assumption is incorrect for small craters. We find that 'secondaries' (craters formed by material ejected from large primary impact craters) comprise about 95 per cent of the small craters (diameters less than 1 km) on Europa. We therefore conclude that large primary impacts into a solid surface (for example, ice or rock) produce far more secondaries than previously believed, implying that the small crater populations on the Moon, Mars and other large bodies must be dominated by secondaries. Moreover, our results indicate that there have been few small comets (less than 100 m diameter) passing through the jovian system in recent times, consistent with dynamical simulations.

  2. TV observations of the Perseid meteor shower in 2012-2013

    NASA Astrophysics Data System (ADS)

    Kartashova, Anna P.; Bolgova, Galina T.

    2015-12-01

    The results of television meteor observations during the Perseid meteor shower activity in 2012-2013 are presented. The observations were carried out in the Moscow region using the television system PatrolCa - the patrol camera with the field of view of 56°×44° and limiting magnitude (for meteors) of +4m. The distribution of the Index of Meteors Activity of the Perseid meteor shower in 2012-2013 was estimated. The maximum activity occurs on August 12 with the Index of Meteors Activity (IMA) (λ=140.4°) 192 (±0.03)*103 particles to the Earth per 1 h in 2012 and 122 (±0.06)*103 particles to the Earth per 1 h in 2013 (λ=140.2°). In total for 91 meteoroids radiants, geocentric velocities and orbit parameters were calculated. The daily drift of Perseid radiant was determined. The dependence of the beginning and ending heights by absolute magnitude is presented.

  3. Meteor stream survey in the southern hemisphere using SAAMER

    NASA Astrophysics Data System (ADS)

    Janches, D.; da Silva, D.; Pifko, S.; Hormaechea, J.; Hocking, W.; Brunini, C.; Close, S.; Fritts, D.

    2014-07-01

    We present in this manuscript two meteor shower surveys in the Southern Hemisphere utilizing the Southern Argentina Agile Meteor Radar (SAAMER). SAAMER, which operates at the southern most region of South America, is a new generation SKiYMET system designed with significant differences from typical meteor radars including high transmitted power and an 8-antenna transmitting array enabling large detected rates at low zenith angles. For the first survey, we applied the statistical methodology developed by Jones and Jones (2006) to the data collected each day during 4 years and compiled the results into 1 composite representative year at 1-degree resolution in Solar Longitude. We then search for enhancements in the activity, which last for at least 3 days and evolve temporally as is expected for a meteor shower. Using this methodology, we have identified in our data 32 shower radiants, two of which were not part of the IAU commission 22 meteor shower working list (Janches et al., 2014). Recently, SAAMER's capabilities were enhanced by adding two remote stations to receive meteor forward scatter signals from meteor trails and thus enable the determination of meteoroid orbital parameters. SAAMER started recording orbits in January 2012. We also present a 1-year survey using a wavelet-transform approach (Galligan and Baggaley, 2002ab; Brown et al., 2008) of this new orbital dataset to isolate enhancements in radiant density in geocentric coordinates resulting in not only radiant information but shower orbital properties.

  4. Tabular comparisons of the Flynn Creek impact crater, United States, Steinheim impact crater, Germany and Snowball explosion crater, Canada

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.

    1977-01-01

    A tabular outline of comparative data is presented for 340 basic dimensional, morphological, and structural parameters and related aspects for three craters of the flat-floored, central uplift type, two of which are natural terrestrial impact craters and one is a large-scale experimental explosion crater. The three craters are part of a general class, in terms of their morphology and structural deformation that is represented on each of the terrestrial planets including the moon. One of the considered craters, the Flynn Creek Crater, was formed by a hypervelocity impact event approximately 360 m.y. ago in what is now north central Tennessee. The impacting body appears to have been a carbonaceous chondrite or a cometary mass. The second crater, the Steinheim Crater, was formed by an impact event approximately 14.7 m.y. ago in what is now southwestern Germany. The Snowball Crater was formed by the detonation of a 500-ton TNT hemisphere on flat-lying, unconsolidated alluvium in Alberta, Canada.

  5. Meteor activity from 2001XQ on 2-3 December 2016?

    NASA Astrophysics Data System (ADS)

    Roggemans, Paul

    2016-04-01

    The minor shower 66 Draconid (541 SDD) which was discovered by the Croatian Meteor Network has a mean orbit based on 43 meteors, similar to the orbit of 2001 XD. The asteroid 2001 XD has an orbit typical for Jupiter family comets and therefore may be a dormant comet. The shower activity ranges from November 23 until December 21. All meteor observers are encouraged to pay attention to any possible meteors from this source, although no outburst or any anything spectacular has to be expected.

  6. Crowdsourcing, the great meteor storm of 1833, and the founding of meteor science.

    PubMed

    Littmann, Mark; Suomela, Todd

    2014-06-01

    Yale science professor Denison Olmsted used crowdsourcing to gather observations from across the United States of the unexpected deluge of meteors on 13 November 1833--more than 72,000/h. He used these observations (and newspaper accounts and correspondence from scientists) to make a commendably accurate interpretation of the meteor storm, overturning 2100 years of erroneous teachings about shooting stars and establishing meteor science as a new branch of astronomy. Olmsted's success was substantially based on his use of newspapers and their practice of news pooling to solicit observations from throughout the country by lay and expert observers professionally unaffiliated with Yale College and him. In today's parlance, Olmsted was a remarkably successful early practitioner of scientific crowdsourcing, also known as citizen science. He may have been the first to use mass media for crowdsourcing in science. He pioneered many of the citizen-science crowdsourcing practices that are still in use today: an open call for citizen participation, a clearly defined task, a large geographical distribution for gathering data and a rapid response to opportunistic events. Olmsted's achievement is not just that he used crowdsourcing in 1833 but that crowdsourcing helped him to advance science significantly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Meteore 63 commercial seaplane

    NASA Technical Reports Server (NTRS)

    1927-01-01

    Societe Provencale de Constructions Aeronautiques, builder of the "Meteore 63" has constructed a three engine (biplane) seaplane which has met conditions for a seaworthy certificate of the first class.

  8. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Cooke, William

    2016-01-01

    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below.

  9. Meteor burst communications for LPI applications

    NASA Astrophysics Data System (ADS)

    Schilling, D. L.; Apelewicz, T.; Lomp, G. R.; Lundberg, L. A.

    A technique that enhances the performance of meteor-burst communications is described. The technique, the feedback adaptive variable rate (FAVR) system, maintains a feedback channel that allows the transmitted bit rate to mimic the time behavior of the received power so that a constant bit energy is maintained. This results in a constant probability of bit error in each transmitted bit. Experimentally determined meteor-burst channel characteristics and FAVR system simulation results are presented.

  10. The 2011 Draconids: The First European Airborne Meteor Observation Campaign

    NASA Astrophysics Data System (ADS)

    Vaubaillon, Jeremie; Koten, Pavel; Margonis, Anastasios; Toth, Juraj; Rudawska, Regina; Gritsevich, Maria; Zender, Joe; McAuliffe, Jonathan; Pautet, Pierre-Dominique; Jenniskens, Peter; Koschny, Detlef; Colas, Francois; Bouley, Sylvain; Maquet, Lucie; Leroy, Arnaud; Lecacheux, Jean; Borovicka, Jiri; Watanabe, Junichi; Oberst, Jürgen

    2015-02-01

    On 8 October 2011, the Draconid meteor shower (IAU, DRA) was predicted to cause two brief outbursts of meteors, visible from locations in Europe. For the first time, a European airborne meteor observation campaign was organized, supported by ground-based observations. Two aircraft were deployed from Kiruna, Sweden, carrying six scientists, 19 cameras and eight crew members. The flight geometry was chosen such that it was possible to obtain double-station observations of many meteors. The instrument setup on the aircraft as well as on the ground is described in full detail. The main peak from 1900-dust ejecta happened at the predicted time and at the predicted rate. The second peak was observed from the earlier flight and from the ground, and was caused most likely by trails ejected in the nineteenth century. A total of 250 meteors were observed, for which light curve data were derived. The trajectory, velocity, deceleration and orbit of 35 double station meteors were measured. The magnitude distribution index was high, as a result of which there was no excess of meteors near the horizon. The light curve proved to be extremely flat on average, which was unexpected. Observations of spectra allowed us to derive the compositional information of the Draconids meteoroids and showed an early release of sodium, usually interpreted as resulting from fragile meteoroids. Lessons learned from this experience are derived for future airborne meteor shower observation campaigns.

  11. Crater Floor Dune Field

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Our topic for the weeks of April 4 and April 11 is dunes on Mars. We will look at the north polar sand sea and at isolated dune fields at lower latitudes. Sand seas on Earth are often called 'ergs,' an Arabic name for dune field. A sand sea differs from a dune field in two ways: 1) a sand sea has a large regional extent, and 2) the individual dunes are large in size and complex in form.

    Our final dune image shows a small dune field inside an unnamed crater south of Nili Fossae.

    Image information: VIS instrument. Latitude 20.6, Longitude 79 East (281 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Linear feature detection algorithm for astronomical surveys - II. Defocusing effects on meteor tracks

    NASA Astrophysics Data System (ADS)

    Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew; Ivezić, Željko

    2018-03-01

    Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor track and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.

  13. Multi-Year CMOR Observations of the Geminid Meteor Shower

    NASA Technical Reports Server (NTRS)

    Webster, A. R.; Jones, J.

    2011-01-01

    The three-station Canadian Meteor Orbit Radar (CMOR) is used here to examine the Geminid meteor shower with respect to variation in the stream properties including the flux and orbital elements over the period of activity in each of the consecutive years 2005 2008 and the variability from year to year. Attention is given to the appropriate choice and use of the D-criterion in the separating the shower meteors from the sporadic background.

  14. Detection of recycled marine sediment components in crater lake fluids using 129I

    NASA Astrophysics Data System (ADS)

    Fehn, U.; Snyder, G. T.; Varekamp, J. C.

    2002-06-01

    Crater lakes provide time-integrated samples of volcanic fluids, which may carry information on source components. We tested under what circumstances 129I concentrations can be used for the detection of a signal derived from the recycling of marine sediments in subduction zone magmatism. The 129I system has been successfully used to determine origin and pathways in other volcanic fluids, but the application of this system to crater lakes is complicated by the presence of anthropogenic 129I, related to recent nuclear activities. Results are reported from four crater lakes, associated with subducting crust varying in age between 23 and 98 Ma. The 129I/I ratios determined for Copahue, Argentina, (129I/I=700×10-15) and White Island, New Zealand, (129I/I=284×10-15) demonstrate the presence of iodine in the crater lakes that was derived from recycled marine sediments. A comparison to the ages of the subducted sediments in these two cases indicates that the ratios likely reflect iodine remobilization from the entire sediment column that was undergoing subduction. While the 129I signals in Poás and Rincón de la Vieja, Costa Rica also demonstrate the presence of recycled iodine, the relatively high percentage of meteoric water in these lakes prevents a reliable determination of source ages. The observed high concentrations of iodine and 129I/I ratios substantially below current surface values strongly argue for the presence of recycled marine components in the arc magmas of all four cases. Components from subducted marine sediments can be quantified and related to specific parts of the sediment column in cases where the iodine concentration in the lake waters exceeds 5 μM.

  15. The 2014 KCG Meteor Outburst: Clues to a Parent Body

    NASA Technical Reports Server (NTRS)

    Moorhead, Althea V.; Brown, Peter G.; Spurny, Pavel; Cooke, William J.

    2015-01-01

    The Kappa Cygnid (KCG) meteor shower exhibited unusually high activity in 2014, producing ten times the typical number of meteors. The shower was detected in both radar and optical systems and meteoroids associated with the outburst spanned at least five decades in mass. In total, the Canadian Meteor Orbit Radar, European Network, and NASA All Sky and Southern Ontario Meteor Network produced thousands of KCG meteor trajectories. Using these data, we have undertaken a new and improved characterization of the dynamics of this little-studied, variable meteor shower. The Cygnids have a di use radiant and a significant spread in orbital characteristics, with multiple resonances appearing to play a role in the shower dynamics. We conducted a new search for parent bodies and found that several known asteroids are orbitally similar to the KCGs. N-body simulations show that the two best parent body candidates readily transfer meteoroids to the Earth in recent centuries, but neither produces an exact match to the KCG radiant, velocity, and solar longitude. We nevertheless identify asteroid 2001 MG1 as a promising parent body candidate.

  16. Meteors: A Delivery Mechanism of Organic Matter to The Early Earth

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Wilson, Mike A.; Packan, Dennis; Laux, Christophe O.; Krueger, Charles H.; Boyd, Iain, D.; Popova, Olga P.; Fonda, Mark; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    All potential exogenous pre-biotic matter arrived to Earth by ways of our atmosphere, where much material was ablated during a luminous phase called 1. meteors" in rarefied flows of high (up to 270) Mach number. The recent Leonid showers offered a first glimpse into the elusive physical conditions of the ablation process and atmospheric chemistry associated with high-speed meteors. Molecular emissions were detected that trace a meteor's brilliant light to a 4,300 K warm wake rather than to the meteor's head. A new theoretical approach using the direct simulation by Monte Carlo technique identified the source-region and demonstrated that the ablation process is critical in the heating of the meteor's wake. In the head of the meteor, organic carbon appears to survive flash heating and rapid cooling. The temperatures in the wake of the meteor are just right for dissociation of CO and the formation of more complex organic compounds. The resulting materials could account for the bulk of pre-biotic organic carbon on the early Earth at the time of the origin of life.

  17. A test of the comet hypothesis of the Tunguska Meteor Fall - Nature of the meteor 'thermal' explosion paradox

    NASA Technical Reports Server (NTRS)

    Liu, V. C.

    1978-01-01

    The hypothesis that a comet was responsible for the Tunguska Meteor Fall is rejected because the hypothesis does not seem to account for the intense terminal spherical shock. A porous meteoroid model is proposed, and an analysis indicates that an entity of this type might produce an aerodynamic heat flux large enough to account for the terminal meteor explosion. It is suggested that the presence of olivine and of highly irregular macrostructure in meteors might indicate the presence of some porosity. For a highly porous meteoroid, it is postulated that during entry into the atmosphere the aerodynamic heat transfer at its external or pore walls would become so intensified as to cause either complete ablation with popping or a solid-liquid-vapor phase transition accompanied by an explosion.

  18. Open-source meteor detection software for low-cost single-board computers

    NASA Astrophysics Data System (ADS)

    Vida, D.; Zubović, D.; Šegon, D.; Gural, P.; Cupec, R.

    2016-01-01

    This work aims to overcome the current price threshold of meteor stations which can sometimes deter meteor enthusiasts from owning one. In recent years small card-sized computers became widely available and are used for numerous applications. To utilize such computers for meteor work, software which can run on them is needed. In this paper we present a detailed description of newly-developed open-source software for fireball and meteor detection optimized for running on low-cost single board computers. Furthermore, an update on the development of automated open-source software which will handle video capture, fireball and meteor detection, astrometry and photometry is given.

  19. Interactions between meteoric smoke particles and the stratospheric aerosol layer

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Marshall, L.; Brooke, J. S. A.; Dhomse, S.; Plane, J. M. C.; Feng, W.; Neely, R.; Bardeen, C.; Bellouin, N.; Dalvi, M.; Johnson, C.; Abraham, N. L.; Schmidt, A.; Carslaw, K. S.; Chipperfield, M.; Deshler, T.; Thomason, L. W.

    2017-12-01

    In-situ measurements in the Arctic, Antarctic and at mid-latitudes suggest a widespread presence of meteoric smoke particles (MSPs), as an inclusion within a distinct class of stratospheric aerosol particles. We apply the UM-UKCA stratosphere-troposphere composition-climate model, with interactive aerosol microphysics, to map the global distribution of these "meteoric-sulphuric particles" and explore the implications of their presence. Comparing to balloon-borne stratospheric aerosol measurements, we indirectly constrain the uncertain MSP flux into the upper mesosphere, and assess whether meteoric inclusion can explain observed refractory/non-volatile particle concentrations. Our experiments suggest meteoric-sulphuric particles are present at all latitudes, the Junge layer transitioning from mostly homogeneously nucleated particles at the bottom, to mostly meteoric-sulphuric particles at the top. We find MSPs exert a major influence on the quiescent Junge layer, with meteoric-sulphuric particles generally bigger than homogeneously nucleated particles, and therefore more rapidly removed into the upper troposphere. Resolving the smoke interactions weakens homogeneous nucleation in polar spring, reduces the quiescent sulphur burden, and improves comparisons to a range of different stratospheric aerosol measurements. The refractory nature of meteoric-sulphuric particles also means they "survive" ascent through the uppermost Junge layer, whereas homogeneously nucleated particles evaporate completely. Simulations through the Pinatubo-perturbed period are more realistic, with greater volcanic enhancement of effective radius, causing faster decay towards quiescent conditions, both effects matching better with observations. Overall, our experiments suggest meteoric-sulphuric particles are an important component of the Junge layer, strongly influential in both quiescent and volcanically perturbed conditions.

  20. Automated Optical Meteor Fluxes and Preliminary Results of Major Showers

    NASA Technical Reports Server (NTRS)

    Blaauw, R.; Campbell-Brown, M.; Cooke, W.; Kingery, A.; Weryk, R.; Gill, J.

    2014-01-01

    NASA's Meteoroid Environment Office (MEO) recently established a two-station system to calculate daily automated meteor fluxes in the millimeter-size-range for both single-station and double-station meteors. The cameras each consist of a 17 mm focal length Schneider lens (f/0.95) on a Watec 902H2 Ultimate CCD video camera, producing a 21.7x15.5 degree field of view. This configuration sees meteors down to a magnitude of +6. This paper outlines the concepts of the system, the hardware and software, and results of 3,000+ orbits from the first 18 months of operations. Video from the cameras are run through ASGARD (All Sky and Guided Automatic Real-time Detection), which performs the meteor detection/photometry, and invokes MILIG and MORB (Borovicka 1990) codes to determine the trajectory, speed, and orbit of the meteor. A subroutine in ASGARD allows for approximate shower identification in single-station detections. The ASGARD output is used in routines to calculate the flux. Before a flux can be calculated, a weather algorithm indicates if sky conditions are clear enough to calculate fluxes, at which point a limiting magnitude algorithm is employed. The limiting stellar magnitude is found using astrometry.net (Lang et al. 2012) to identify stars and translated to the corresponding shower and sporadic limiting meteor magnitude. It is found every 10 minutes and is able to react to quickly changing sky conditions. The extensive testing of these results on the Geminids and Eta Aquariids is shown. The flux involves dividing the number of meteors by the collecting area of the system, over the time interval for which that collecting area is valid. The flux algorithm employed here differs from others currently in use in that it does not make the gross oversimplication of choosing a single height to calculate the collection area of the system. In the MEO system, the volume is broken up into a set of height intervals, with the collecting areas determined by the position of the

  1. Large, Fresh Crater Surrounded by Smaller Craters

    NASA Image and Video Library

    2014-05-22

    The largest crater associated with a March 2012 impact on Mars has many smaller craters around it, revealed in this image from the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.

  2. Density variations of meteor flux along the Earth's orbit

    NASA Technical Reports Server (NTRS)

    Svetashkova, N. T.

    1987-01-01

    No model of distribution of meteor substance is known to explain the observed diurnal and annual variations of meteor rates, if that distribution is assumed to be constant during the year. Differences between the results of observations and the prediction of diurnal variation rates leads to the conclusion that the density of the orbits of meteor bodies changes with the motion of the Earth along its orbit. The distributions of the flux density over the celestial sphere are obtained by the method described previously by Svetashkova, 1984. The results indicate that the known seasonal and latitudinal variations of atmospheric conditions does not appear to significantly affect the value of the mean flux density of meteor bodies and the matter influx onto the Earth.

  3. A Tale of Two Craters

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    In western Acidalia, two craters of similar size (a few km's) dramatically display the effects of geologic activity. The younger one on the left has been left relatively well preserved, retaining a sharp rim crest, a classic bowl shape, and a clearly defined ejecta blanket. The older one on the right likely has experienced a flood of lava that covered over the ejecta and filled in the bowl (note the breach in the rim). Its rim crest has been worn down by a multitude of subsequent impacts.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 35.9, Longitude 311.1 East (48.9 West). 19 meter/pixel resolution.

  4. Detection and Characterisation of Meteors as a Big Data Citizen Science project

    NASA Astrophysics Data System (ADS)

    Gritsevich, M.

    2017-12-01

    Out of a total around 50,000 meteorites currently known to science, the atmospheric passage was recorded instrumentally in only 30 cases with the potential to derive their atmospheric trajectories and pre-impact heliocentric orbits. Similarly, while the observations of meteors, add thousands of new entries per month to existing databases, it is extremely rare they lead to meteorite recovery. Meteor studies thus represent an excellent example of the Big Data citizen science project, where progress in the field largely depends on the prompt identification and characterisation of meteor events as well as on extensive and valuable contributions by amateur observers. Over the last couple of decades technological advancements in observational techniques have yielded drastic improvements in the quality, quantity and diversity of meteor data, while even more ambitious instruments are about to become operational. This empowers meteor science to boost its experimental and theoretical horizons and seek more advanced scientific goals. We review some of the developments that push meteor science into the Big Data era that requires more complex methodological approaches through interdisciplinary collaborations with other branches of physics and computer science. We argue that meteor science should become an integral part of large surveys in astronomy, aeronomy and space physics, and tackle the complexity of micro-physics of meteor plasma and its interaction with the atmosphere. The recent increased interest in meteor science triggered by the Chelyabinsk fireball helps in building the case for technologically and logistically more ambitious meteor projects. This requires developing new methodological approaches in meteor research, with Big Data science and close collaboration between citizen science, geoscience and astronomy as critical elements. We discuss possibilities for improvements and promote an opportunity for collaboration in meteor science within the currently

  5. A Numerical Model to Assess Soil Fluxes from Meteoric 10Be Data

    NASA Astrophysics Data System (ADS)

    Campforts, B.; Govers, G.; Vanacker, V.; Vanderborght, J.; Smolders, E.; Baken, S.

    2015-12-01

    Meteoric 10Be may be mobile in the soil system. The latter hampers a direct translation of meteoric 10Be inventories into spatial variations in erosion and deposition rates. Here, we present a spatially explicit 2D model that allows us to simulate the behaviour of meteoric 10Be in the soil system. The Be2D model is then used to analyse the potential impact of human-accelerated soil fluxes on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile including particle migration, chemical leaching and bioturbation, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes from creep, water and tillage erosion. Model simulations show that meteoric 10Be inventories can indeed be related to erosion and deposition, across a wide range of geomorphological and pedological settings. However, quantification of the effects of vertical mobility is essential for a correct interpretation of the observed spatial patterns in 10Be data. Moreover, our simulations suggest that meteoric 10Be can be used as a tracer to unravel human impact on soil fluxes when soils have a high retention capacity for meteoric meteoric 10Be. Application of the Be2D model to existing data sets shows that model parameters can reliably be constrained, resulting in a good agreement between simulated and observed meteoric 10Be concentrations and inventories. This confirms the suitability of the Be2D model as a robust tool to underpin quantitative interpretations of spatial variability in meteoric 10Be data for eroding landscapes.

  6. Radar and optical observations of small mass meteors at Arecibo

    NASA Astrophysics Data System (ADS)

    Michell, R.; Janches, D.; DeLuca, M. D.; Samara, M.; Chen, R. Y.

    2016-12-01

    Optical observations of meteors were conducted over 4 separate nights alongside the Arecibo radar. Meteors were detected in the optical imaging data and with both of the radars at Arecibo. The UHF (430 MHz) radar is the most sensitive and therefore detected the most meteors however the VHF (46.8 MHz) radar detected a higher percentage of meteors in common with the optics, due to the larger beam size and larger mass detectability threshold. The emphasis of this presentation is on meteors that were detected by the optics and one or both radars. The comparisons between the the relative sensitivities of these 3 detecting techniques will improve the meteoroid mass estimates made from the optical intensities. The overall aim would be to develop more accurate and robust methods of calculating meteoroid mass from the radar data alone.

  7. Mesospheric sodium over Gadanki during Geminid meteor shower 2007

    NASA Astrophysics Data System (ADS)

    Lokanadham, B.; Rakesh Chandra, N.; Bhaskara Rao, S. Vijaya; Raghunath, K.; Yellaiah, G.

    Resonance LIDAR system at Gadanki has been used for observing the mesospheric sodium during the night of 12-13 Dec 2007 when the peak activity of Geminid meteor shower occurred. Geminid meteor shower is observed along with the co-located MST radar in the altitude range 80-110 km. Sodium density profiles have been obtained with a vertical resolution of 300 m and a temporal resolution of 120 s with sodium resonance scattering LIDAR system. The sodium layers were found to exist in the altitude range 90-100 km. The enhanced Geminid meteor rates were recorded with the co-located MST radar in the same altitude range. The sodium concentration in the atmospheric altitude of ~93 km is estimated to be 2000 per cc where the meteoric concentration of Geminid is maximum and reduced to around 800 on the non activity of Geminid. These observations showed that the sodium levels in the E-region are found to be increasing during meteor shower nights at least by a factor of two.

  8. SPA Meteor Section Results: 2006

    NASA Astrophysics Data System (ADS)

    McBeath, Alastair

    2010-12-01

    A summary of the main analyzed results and other information provided to the SPA Meteor Section from 2006 is presented and discussed. Events covered include: the radio Quadrantid maximum on January 3/4; an impressive fireball seen from parts of England, Belgium and the Netherlands at 22h53m51s UT on July 18, which was imaged from three EFN stations as well; the Southern delta-Aquarid and alpha-Capricornid activity from late July and early August; the radio Perseid maxima on August 12/13; confirmation that the October 5/6 video-meteor outburst was not observed by radio; visual and radio findings from the strong, bright-meteor, Orionid return in October; another impressive UK-observed fireball on November 1/2, with an oil painting of the event as seen from London; the Leonids, which produced a strong visual maximum around 04h-05h UT on November 18/19 that was recorded much less clearly by radio; radio and visual reports from the Geminids, with a note regarding NASA-observed Geminid lunar impact flashes; and the Ursid outburst recorded by various techniques on December 22.

  9. Meteor Beliefs Project: some meteoric imagery in the works of William Shakespeare

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Gheorghe, A. D.

    2003-08-01

    Passages from three of William Shakespeare's plays are presented, illustrating some of the beliefs in meteors in 16th-17th century England. They also reflect earlier beliefs and information which it is known Shakespeare drew on in constructing his works.

  10. Buried Crater

    NASA Image and Video Library

    2002-12-04

    With a location roughly equidistant between two of the largest volcanic constructs on the planet, the fate of the approximately 50 km 31 mile impact crater in this image from NASA Mars Odyssey was sealed. It has been buried to the rim by lava flows. The MOLA context image shows pronounced flow lobes surrounding the crater, a clear indication of the most recent episode of volcanism that could have contributed to its infilling. Breaches in the rim are clearly evident in the image and suggest locations through which lavas could have flowed. These openings appear to be limited to the west side of the crater. Other craters in the area are nearly obliterated by the voluminous lava flows, further demonstrating one of the means by which Mars renews its surface. The MOLA context image shows pronounced flow lobes surrounding the crater, a clear indication of the most recent episode of volcanism that could have contributed to its infilling. Breaches in the rim are clearly evident in the image and suggest locations through which lavas could have flowed. These openings appear to be limited to the west side of the crater. Other craters in the area are nearly obliterated by the voluminous lava flows, further demonstrating one of the means by which Mars renews its surface. http://photojournal.jpl.nasa.gov/catalog/PIA04018

  11. Comparing Eyewitness-Derived Trajectories of Bright Meteors to Ground Truth Data

    NASA Technical Reports Server (NTRS)

    Moser, D. E.

    2016-01-01

    The NASA Meteoroid Environment Office (MEO) is the only US government agency tasked with analyzing meteors of public interest. When queried about a meteor observed over the United States, the MEO must respond with a characterization of the trajectory, orbit, and size within a few hours. Using observations from meteor networks like the NASA All Sky Fireball Network or the Southern Ontario Meteor Network, such a characterization is often easy. If found, casual recordings from the public and stationary web cameras can be used to roughly analyze a meteor if the camera's location can be identified and its imagery calibrated. This technique was used with great success in the analysis of the Chelyabinsk meteorite fall. But if the event is outside meteor network coverage, if an insufficient number of videos are found, or if the imagery cannot be geolocated or calibrated, a timely assessment can be difficult if not impossible. In this situation, visual reports made by eyewitnesses may be the only resource available. This has led to the development of a tool to quickly calculate crude meteor trajectories from eyewitness reports made to the American Meteor Society. The output is illustrated in Figure 1. A description of the tool, example case studies, and a comparison to ground truth data observed by the NASA All Sky Fireball Network will be presented.

  12. Cratering mechanics

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.

    1986-01-01

    Main concepts and theoretical models which are used for studying the mechanics of cratering are discussed. Numerical two-dimensional calculations are made of explosions near a surface and high-speed impact. Models are given for the motion of a medium during cratering. Data from laboratory modeling are given. The effect of gravitational force and scales of cratering phenomena is analyzed.

  13. Activity and observability of meteor showers throughout the year

    NASA Astrophysics Data System (ADS)

    Zimnikoval, Peter

    2014-02-01

    Diagrams on the poster present the activity periods of meteor showers as well as the rising and setting times of meteor shower radiants. Plotted are sunrises, sunsets and the period of twilight. It was constructed according to data from the IMO Meteor Shower Working List. More active showers are displayed in red and less active showers in green. The diagrams are calculated for geographic latitudes of 40° N, 0° and 40° S. The time scale is given as local time at the relevant zonal meridian and supplemented by local daylight saving time. The diagrams contain rounded values of solar longitude J2000. The star chart shows the radiant positions and drift of IMO meteor showers while the other diagrams display shower activity and date of maximum.

  14. Feasibility Study Utilizing Meteor Burst Communications for Vessel Monitoring

    DOT National Transportation Integrated Search

    1981-01-01

    This document discusses the feasibility of using meteor burst communications for monitoring vessel position, in particular the Prince William Sound VMS near Valdez, Alaska. This document describes the equipment and operational performance of meteor b...

  15. Martian Central Pit Craters

    NASA Technical Reports Server (NTRS)

    Hillman, E.; Barlow, N. G.

    2005-01-01

    Impact craters containing central pits are rare on the terrestrial planets but common on icy bodies. Mars is the exception among the terrestrial planets, where central pits are seen on crater floors ( floor pits ) as well as on top of central peaks ( summit pits ). Wood et al. [1] proposed that degassing of subsurface volatiles during crater formation produced central pits. Croft [2] argued instead that central pits might form during the impact of volatile-rich comets. Although central pits are seen in impact craters on icy moons such as Ganymede, they do show some significant differences from their martian counterparts: (a) only floor pits are seen on Ganymede, and (b) central pits begin to occur at crater diameters where the peak ring interior morphology begins to appear in terrestrial planet craters [3]. A study of craters containing central pits was conducted by Barlow and Bradley [4] using Viking imagery. They found that 28% of craters displaying an interior morphology on Mars contain central pits. Diameters of craters containing central pits ranged from 16 to 64 km. Barlow and Bradley noted that summit pit craters tended to be smaller than craters containing floor pits. They also noted a correlation of central pit craters with the proposed rings of large impact basins. They argued that basin ring formation fractured the martian crust and allowed subsurface volatiles to concentrate in these locations. They favored the model that degassing of the substrate during crater formation was responsible for central pit formation due to the preferential location of central pit craters along these basin rings.

  16. Observations of Leonid Meteors Using a Mid-Wave Infrared Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Rossano, G. S.; Russell, R. W.; Lynch, D. K.; Tessensohn, T. K.; Warren, D.; Jenniskens, P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    We report broadband 3-5.5 micrometer detections of two Leonid meteors observed during the 1998 Leonid Multi-Instrument Aircraft Campaign. Each meteor was detected at only one position along their trajectory just prior to the point of maximum light emission. We describe the particular aspects of the Aerospace Corp. Mid-wave Infra-Red Imaging Spectrograph (MIRIS) developed for the observation of short duration transient events that impact its ability to detect Leonid meteors. This instrument had its first deployment during the 1998 Leonid MAC. We infer from our observations that the mid-infrared light curves of two Leonid meteors differed from the visible light curve. At the points of detection, the infrared emission in the MIRIS passband was 25 +/- 4 times that at optical wavelengths for both meteors. In addition, we find an upper limit of 800 K for the solid body temperature of the brighter meteor we observed, at the point in the trajectory where we made our mid-wave infrared detection.

  17. 'Endurance Crater' Overview

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This overview of 'Endurance Crater' traces the path of the Mars Exploration Rover Opportunity from sol 94 (April 29, 2004) to sol 205 (August 21, 2004). The route charted to enter the crater was a bit circuitous, but well worth the extra care engineers took to ensure the rover's safety. On sol 94, Opportunity sat on the edge of this impressive, football field-sized crater while rover team members assessed the scene. After traversing around the 'Karatepe' region and past 'Burns Cliff,' the rover engineering team assessed the possibility of entering the crater. Careful analysis of the angles Opportunity would face, including testing an Earth-bound model on simulated martian terrain, led the team to decide against entering the crater at that particular place. Opportunity then backed up before finally dipping into the crater on its 130th sol (June 5, 2004). The rover has since made its way down the crater's inner slope, grinding, trenching and examining fascinating rocks and soil targets along the way. The rover nearly made it to the intriguing dunes at the bottom of the crater, but when it got close, the terrain did not look safe enough to cross.

  18. Size-Frequency Distribution of Small Lunar Craters: Widening with Degradation and Crater Lifetime

    NASA Astrophysics Data System (ADS)

    Ivanov, B. A.

    2018-01-01

    The review and new measurements are presented for depth/diameter ratio and slope angle evolution during small ( D < 1 km) lunar impact craters aging (degradation). Comparative analysis of available data on the areal cratering density and on the crater degradation state for selected craters, dated with returned Apollo samples, in the first approximation confirms Neukum's chronological model. The uncertainty of crater retention age due to crater degradational widening is estimated. The collected and analyzed data are discussed to be used in the future updating of mechanical models for lunar crater aging.

  19. The effect of recombination and attachment on meteor radar diffusion coefficient profiles

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Younger, J. P.; Reid, I. M.; Kim, Y. H.; Kim, J.-H.

    2013-04-01

    Estimates of the ambipolar diffusion coefficient producedusing meteor radar echo decay times display an increasing trend below 80-85 km, which is inconsistent with a diffusion-only theory of the evolution of meteor trails. Data from the 33 MHz meteor radar at King Sejong Station, Antarctica, have been compared with observations from the Aura Earth Observing System Microwave Limb Sounder satellite instrument. It has been found that the height at which the diffusion coefficient gradient reverses follows the height of a constant neutral atmospheric density surface. Numerical simulations of meteor trail diffusion including dissociative recombination with atmospheric ions and three-body attachment of free electrons to neutral molecules indicate that three-body attachment is responsible for the distortion of meteor radar diffusion coefficient profiles at heights below 90 km, including the gradient reversal below 80-85 km. Further investigation has revealed that meteor trails with low initial electron line density produce decay times more consistent with a diffusion-only model of meteor trail evolution.

  20. New insights into asteroid 3200 Phaethon's meteor complex

    NASA Astrophysics Data System (ADS)

    Jakubik, Marian; Neslusan, Lubos

    2015-11-01

    In this work, we study the meteor complex originating from asteroid 3200 Phaethon. Using a modeling of variety of meteoroid streams and following their dynamical evolution, we confirm the presence of two filaments crossing the Earth observed as Geminid and Daytime Sextantid meteor showers. We use numerical integrations of modeled particles performed for several past perihelion passages of the asteroid considering (i) only the gravity of planets and (2) gravity of planets and the Poynting-Robertson effect. We present the results of comparing our models (predicted showers) with observed showers. We also point out discrepancies, their possible solutions and/or new hypothesis concerning the examined meteor complex.

  1. Physics-Based Modeling of Meteor Entry and Breakup

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A., Jr.; Bauschlicher, Charles W., Jr.; Brandis, Aaron M.; Chen, Yih-Kang; Jaffe, Richard L.; Palmer, Grant E.; Saunders, David A.; Stern, Eric C.; hide

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup.Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood.On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/sq cm. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to

  2. Physics-Based Modeling of Meteor Entry and Breakup

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A., Jr.; Bauschlicher, Charles W., Jr.; Brandis, Aaron M.; Chen, Yih-Kanq; Jaffe, Richard L.; Palmer, Grant E.; Saunders, David A.; Stern, Eric C.; hide

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup. Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood. On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heat shields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is 13 kms (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kWcm2. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to 20 kms; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses.With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current simulation tools to

  3. 10Be Content in Suevite Breccia from the Bosumtwi Impact Crater

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Wild, Eva Maria; Michlmayr, Leonard; Koeberl, Christian

    2013-04-01

    Introduction: According to the current understanding of meteorite impact processes, surface target material is transported from a crater in the form of ejecta or is vaporized/melted (e.g., [1]). The formation model of tektites from the surface of the target rocks has been established using the 10Be content of tektites (e.g., [2]), and chemical comparison with the possible target surface material (e.g., [3]); it was also reproduced by computer modeling (e.g., [4]). On the other hand, some observations ([5, 6]) suggest that part of the surface material may be incorporated into the crater-fill. The aim of this study is to check if surface-derived material is present in suevitic breccias to better understand formation mechanisms of fallback breccias. Also, 10Be can be used to trace contamination of rocks in the top layer of the suevitic layer by meteoric (lake) water. This abstract is an update (based on more data now available) of the previous report presented during the Metsoc75 conference. Samples: The Bosumtwi crater was chosen as study site because of its relatively large size (10.5 km in diameter), young age of 1.07 Ma [7], good state of preservation, and availability of core samples. Clasts from suevitic breccia selected for this study come from the LB-07A and LB-08A cores that are located within the crater and represent fallback breccia (e.g., [7]). Of 41 analyzed samples (22 single clasts and 21 matrix samples - 11 of those being monomictic breccia), 36 came from core LB-07A (in the zone outside the central uplift) and represent depths of 333.7 - 407.9 m and 5 are from core LB-08A (on the flank of the central uplift) from depths 239.5 - 264.9 m. Methods: For each sample, 0.8 g of finely grounded material from clasts containing in situ produced and meteoric 10Be was dissolved in a mixture of HF and HNO3 by microwave digestion. A 9Be carrier (1 mg or 0.6 mg, 10Be/9Be ratio: 2.82±0.31*10-15 [2? uncertainty]) was added to the sample, and then Be was chemically

  4. Paradigm lost: Venus crater depths and the role of gravity in crater modification

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.

    1992-01-01

    Previous to Magellan, a convincing case had been assembled that predicted that complex impact craters on Venus were considerably shallower than their counterparts on Mars, Mercury, the Moon, and perhaps even Earth. This was fueled primarily by the morphometric observation that, for a given diameter (D), crater depth (d) seems to scale inversely with surface gravity for the other planets in the inner solar system. The unpredicted depth of fresh impact craters on Venus argues against a simple inverse relationship between surface gravity and crater depth. Factors that could contribute to deep craters on Venus include (1) more efficient excavation on Venus, possibly reflecting rheological effects of the hot venusian environment; (2) more melting and efficient removal of melt from the crater cavity; and (3) enhanced ejection of material out of the crater, possibly as a result of entrainment in an atmosphere set in motion by the passage of the projectile. The broader issue raised by the venusian crater depths is whether surface gravity is the predominant influence on crater depths on any planet. While inverse gravity scaling of crater depths has been a useful paradigm in planetary cratering, the venusian data do not support this model and the terrestrial data are equivocal at best. The hypothesis that planetary gravity is the primary influence over crater depths and the paradigm that terrestrial craters are shallow should be reevaluated.

  5. Impact craters on Titan

    USGS Publications Warehouse

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  6. Impact craters on Titan

    USGS Publications Warehouse

    Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.

  7. About distribution and origin of the peculiar group of sporadic meteors

    NASA Technical Reports Server (NTRS)

    Andreev, V. V.

    1992-01-01

    A particular group of sporadic meteors are picked out from analysis of meteor catalogs derived from results of radar observations in Mogadisho and Kharkov. The semi-major axes are equal or more than 1.73 AU and inclinations of orbits are equal or more than 90 degrees for these meteors. The distributions of radiants, velocities, and elements of orbits were derived. The probable source of meteor bodies of this peculiar group is the long-period comets, in particular, the comets of the Kreutz's group.

  8. BRAMS --- the Belgian RAdio Meteor Stations

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Ranvier, S.; Martinez Picar, A.; Gamby, E.; Calders, S.; Anciaux, M.; De Keyser, J.

    2014-07-01

    BRAMS is a new radio observing facility developed by the Belgian Institute for Space Aeronomy (BISA) to detect and characterize meteors using forward scattering. It consists of a dedicated beacon located in the south-east of Belgium and in 25 identical receiving stations spread over the Belgian territory. The beacon transmits a pure sinusoidal wave at a frequency of 49.97 MHz with a power of 150 watts. A complete description of the BRAMS network and the data produced will be provided. The main scientific goals of the project are to compute fluxes, retrieve trajectories of individual objects, and determine physical parameters (speed, ionization, mass) for some of the observed meteor echoes. All these goals require a good knowledge of the radiation patterns of the transmitting and receiving antennas. Simulations have been made and will be validated with in-situ measurements using a UAV/drone equipped with a transmitter flying in the far-field region. The results will be provided. Each receiving station generates around 1 GB of data per day with typical numbers of sporadic meteor echoes of 1500--2000. An automatic detection method of these meteor echoes is therefore mandatory but is complicated by spurious echoes mostly due to airplanes. The latest developments of this automatic detection method will be presented and compared to manual counts for validation. Strong and weak points of the method will be presented as well as a possible alternative method using neural networks.

  9. Earth Impact Effects Program: Estimating the Regional Environmental Consequences of Impacts On Earth

    NASA Astrophysics Data System (ADS)

    Collins, G. S.; Melosh, H. J.; Marcus, R. A.

    2009-12-01

    The Earth Impact Effects Program (www.lpl.arizona.edu/impacteffects) is a popular web-based calculator for estimating the regional environmental consequences of a comet or asteroid impact on Earth. It is widely used, both by inquisitive members of the public as an educational device and by scientists as a simple research tool. It applies a variety of scaling laws, based on theory, nuclear explosion test data, observations from terrestrial and extraterrestrial craters and the results of small-scale impact experiments and numerical modelling, to quantify the principal hazards that might affect the people, buildings and landscape in the vicinity of an impact. The program requires six inputs: impactor diameter, impactor density, impact velocity prior to atmospheric entry, impact angle, and the target type (sedimentary rock, crystalline rock, or a water layer above rock), as well as the distance from the impact at which the environmental effects are to be calculated. The program includes simple algorithms for estimating the fate of the impactor during atmospheric traverse, the thermal radiation emitted by the impact plume (fireball) and the intensity of seismic shaking. The program also approximates various dimensions of the impact crater and ejecta deposit, as well as estimating the severity of the air blast in both crater-forming and airburst impacts. We illustrate the strengths and limitations of the program by comparing its predictions (where possible) against known impacts, such as Carancas, Peru (2007); Tunguska, Siberia (1908); Barringer (Meteor) crater, Arizona (ca 49 ka). These tests demonstrate that, while adequate for large impactors, the simple approximation of atmospheric entry in the original program does not properly account for the disruption and dispersal of small impactors as they traverse Earth's atmosphere. We describe recent improvements to the calculator to better describe atmospheric entry of small meteors; the consequences of oceanic impacts; and

  10. Kinematic Characteristics of Meteor Showers by Results of the Combined Radio-Television Observations

    NASA Astrophysics Data System (ADS)

    Narziev, Mirhusen

    2016-07-01

    One of the most important tasks of meteor astronomy is the study of the distribution of meteoroid matter in the solar system. The most important component to address this issue presents the results of measurements of the velocities, radiants, and orbits of both showers and sporadic meteors. Radiant's and orbits of meteors for different sets of data obtained as a result of photographic, television, electro-optical, video, Fireball Network and radar observations have been measured repeatedly. However, radiants, velocities and orbits of shower meteors based on the results of combined radar-optical observations have not been sufficiently studied. In this paper, we present a methods for computing the radiants, velocities, and orbits of the combined radar-TV meteor observations carried out at HisAO in 1978-1980. As a result of the two-year cycle of simultaneous TV-radar observations 57 simultaneous meteors have been identified. Analysis of the TV images has shown that some meteor trails appeared as dashed lines. Among the simultaneous meteors of d-Aquariids 10 produced such dashed images, and among the Perseids there were only 7. Using a known method, for such fragmented images of simultaneous meteors - together with the measured radar distance, trace length, and time interval between the segments - allowed to determine meteor velocity using combined method. In addition, velocity of the same meteors was measured using diffraction and radar range-time methods based on the results of radar observation. It has been determined that the mean values of meteoroid velocity based on the combined radar-TV observations are greater in 1 ÷ 3 km / c than the averaged velocity values measured using only radar methods. Orbits of the simultaneously observed meteors with segmented photographic images were calculated on the basis of the average velocity observed using the combined radar-TV method. The measured results of radiants velocities and orbital elements of individual meteors

  11. Infrared and radar signatures of lunar craters - Implications about crater evolution

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.; Shorthill, R. W.; Zisk, S. H.

    1980-01-01

    Geological models accounting for the strongly crater size-dependent IR and radar signatures of lunar crater floors are examined. The simplest model involves the formation and subsequent 'gardening' of an impact melt layer on the crater floor, but while adequate in accounting for the gradual fading of IR temperatures and echo strengths in craters larger than 30 km in diameter, it is inadequate for smaller ones. It is concluded that quantitative models of the evolution of rock populations in regoliths and of the interaction of microwaves with regoliths are needed in order to understand crater evolutionary processes.

  12. The unexpected 2012 Draconid meteor storm

    NASA Astrophysics Data System (ADS)

    Ye, Quanzhi; Wiegert, Paul A.; Brown, Peter G.; Campbell-Brown, Margaret D.; Weryk, Robert J.

    2014-02-01

    An unexpected intense outburst of the Draconid meteor shower was detected by the Canadian Meteor Orbit Radar on 2012 October 8. The peak flux occurred at ˜16:40 UT on October 8 with a maximum of 2.4 ± 0.3 h-1 km-2 (appropriate to meteoroid mass larger than 10-7 kg), equivalent to a ZHRmax ≈ 9000 ± 1000 using 5-min intervals, using a mass distribution index of s = 1.88 ± 0.01 as determined from the amplitude distribution of underdense Draconid echoes. This makes the outburst among the strongest Draconid returns since 1946 and the highest flux shower since the 1966 Leonid meteor storm, assuming that a constant power-law distribution holds from radar to visual meteoroid sizes. The weighted mean geocentric radiant in the time interval of 15-19 h UT, 2012 October 8, was αg = 262.4° 4 ± 0.1°, δg = 55.7° ± 0.1° (epoch J2000.0). Visual observers also reported increased activity around the peak time, but with a much lower rate (ZHR ˜ 200), suggesting that the magnitude-cumulative number relationship is not a simple power law. Ablation modelling of the observed meteors as a population does not yield a unique solution for the grain size and distribution of Draconid meteoroids, but is consistent with a typical Draconid meteoroid of mtotal between 10-6 and 10-4 kg being composed of 10-100 grains. Dynamical simulations indicate that the outburst was caused by dust particles released during the 1966 perihelion passage of the parent comet, 21P/Giacobini-Zinner, although there are discrepancies between the modelled and observed timing of the encounter, presumably caused by approaches of the comet to Jupiter during 1966-1972. Based on the results of our dynamical simulation, we predict possible increased activity of the Draconid meteor shower in 2018, 2019, 2021 and 2025.

  13. Oudemans Crater

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of the interior of Oudemans Crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 1800 UTC (1:00 p.m. EDT) on October 2, 2006, near 9.8 degrees south latitude, 268.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across.

    Oudemans Crater is located at the extreme western end of Valles Marineris in the Sinai Planum region of Mars. The crater measures some 124 kilometers (77 miles) across and sports a large central peak.

    Complex craters like Oudemans are formed when an object, such as an asteroid or comet, impacts the planet. The size, speed and angle at which the object hits all determine the type of crater that forms. The initial impact creates a bowl-shaped crater and flings material (known as ejecta) out in all directions along and beyond the margins of the bowl forming an ejecta blanket. As the initial crater cavity succumbs to gravity, it rebounds to form a central peak while material along the bowl's rim slumps back into the crater forming terraces along the inner wall. If the force of the impact is strong enough, a central peak forms and begins to collapse back into the crater basin, forming a central peak ring.

    The uppermost image in the montage above shows the location of CRISM data on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data was taken inside the crater, on the northeast slope of the central peak.

    The lower left image is an infrared false-color image that reveals several distinctive deposits. The center of the image holds a ruddy-brown deposit that appears to correlates with a ridge running southwest to northeast. Lighter, buff-colored deposits occupy low areas interspersed within the ruddy-brown deposit. The southeast corner holds small hills that form part of the central peak complex.

    The lower right image shows spectral

  14. Comparing Eyewitness-Derived Trajectories of Bright Meteors to Ground Truth Data

    NASA Technical Reports Server (NTRS)

    Moser, D. E.

    2016-01-01

    The NASA Meteoroid Environment Office is a US government agency tasked with analyzing meteors of public interest. When queried about a meteor observed over the United States, the MEO must respond with a characterization of the trajectory, orbit, and size within a few hours. If the event is outside meteor network coverage and there is no imagery recorded by the public, a timely assessment can be difficult if not impossible. In this situation, visual reports made by eyewitnesses may be the only resource available. This has led to the development of a tool to quickly calculate crude meteor trajectories from eyewitness reports made to the American Meteor Society. A description of the tool, example case studies, and a comparison to ground truth data observed by the NASA All Sky Fireball Network are presented.

  15. Linear feature detection algorithm for astronomical surveys – II. Defocusing effects on meteor tracks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew

    Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here in this paper, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor trackmore » and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.« less

  16. Linear feature detection algorithm for astronomical surveys – II. Defocusing effects on meteor tracks

    DOE PAGES

    Bektešević, Dino; Vinković, Dejan; Rasmussen, Andrew; ...

    2017-12-05

    Given the current limited knowledge of meteor plasma micro-physics and its interaction with the surrounding atmosphere and ionosphere, meteors are a highly interesting observational target for high-resolution wide-field astronomical surveys. Such surveys are capable of resolving the physical size of meteor plasma heads, but they produce large volumes of images that need to be automatically inspected for possible existence of long linear features produced by meteors. Here in this paper, we show how big aperture sky survey telescopes detect meteors as defocused tracks with a central brightness depression. We derive an analytic expression for a defocused point source meteor trackmore » and use it to calculate brightness profiles of meteors modelled as uniform brightness discs. We apply our modelling to meteor images as seen by the Sloan Digital Sky Survey and Large Synoptic Survey Telescope telescopes. The expression is validated by Monte Carlo ray-tracing simulations of photons travelling through the atmosphere and the Large Synoptic Survey Telescope telescope optics. We show that estimates of the meteor distance and size can be extracted from the measured full width at half-maximum and the strength of the central dip in the observed brightness profile. However, this extraction becomes difficult when the defocused meteor track is distorted by the atmospheric seeing or contaminated by a long-lasting glowing meteor trail. The full width at half-maximum of satellite tracks is distinctly narrower than meteor values, which enables removal of a possible confusion between satellites and meteors.« less

  17. Cratering on Mars. I - Cratering and obliteration history. II Implications for future cratering studies from Mariner 4 reanalysis

    NASA Technical Reports Server (NTRS)

    Chapman, C. R.

    1974-01-01

    It is pointed out that Mars is especially well adapted to statistical studies of crater morphologies for deciphering its geological history. A framework for understanding planetary geomorphological histories from the diameter-frequency relations of different morphological classes of craters described by Chapmam et al. (1970) is extended in order to understand Martian cratering, erosional, and depositional history. The cratering-obliteration history derived is compared with global interpretations considered by Hartman (1973) and Soderblom et al. (1974). An idealized dust-filling model is employed.

  18. Large Crater Clustering tool

    NASA Astrophysics Data System (ADS)

    Laura, Jason; Skinner, James A.; Hunter, Marc A.

    2017-08-01

    In this paper we present the Large Crater Clustering (LCC) tool set, an ArcGIS plugin that supports the quantitative approximation of a primary impact location from user-identified locations of possible secondary impact craters or the long-axes of clustered secondary craters. The identification of primary impact craters directly supports planetary geologic mapping and topical science studies where the chronostratigraphic age of some geologic units may be known, but more distant features have questionable geologic ages. Previous works (e.g., McEwen et al., 2005; Dundas and McEwen, 2007) have shown that the source of secondary impact craters can be estimated from secondary impact craters. This work adapts those methods into a statistically robust tool set. We describe the four individual tools within the LCC tool set to support: (1) processing individually digitized point observations (craters), (2) estimating the directional distribution of a clustered set of craters, back projecting the potential flight paths (crater clusters or linearly approximated catenae or lineaments), (3) intersecting projected paths, and (4) intersecting back-projected trajectories to approximate the local of potential source primary craters. We present two case studies using secondary impact features mapped in two regions of Mars. We demonstrate that the tool is able to quantitatively identify primary impacts and supports the improved qualitative interpretation of potential secondary crater flight trajectories.

  19. Meteoric water in metamorphic core complexes

    NASA Astrophysics Data System (ADS)

    Teyssier, Christian; Mulch, Andreas

    2015-04-01

    The trace of surface water has been found in all detachment shear zones that bound the Cordilleran metamorphic core complexes of North America. DeltaD values of mica fish in detachment mylonites demonstrate that these synkinematic minerals grew in the presence of meteoric water. Typically deltaD values are very negative (-120 to -160 per mil) corresponding to deltaD values of water that are < -100 per mil given the temperature of water-mica isotopic equilibration (300-500C). From British Columbia (Canada) to Nevada (USA) detachment systems bound a series of core complexes: the Thor-Odin, Valhalla, Kettle-Okanogan, Bitterroot -Anaconda, Pioneer, Raft River, Ruby Mountain, and Snake Range. The bounding shear zones range in thickness from ~100 m to ~1 km, and within the shear zones, meteoric water signature is recognized over 10s to 100s of meters beneath the detachment fault. The age of shearing ranges generally from Eocene in the N (~50-45 Ma) to Oligo-Miocene in the S (25-15 Ma). DeltaD water values derived from mica fish in shear zones are consistent with supradetachment basin records of the same age brackets and can be used for paleoaltimetry if coeval isotopic records from near sea level are available. Results show that a wave of topography (typically 4000-5000 m) developed from N to S along the Cordillera belt from Eocene to Miocene, accompanied by the propagation of extensional deformation and volcanic activity. In addition, each detachment system informs a particular extensional detachment process. For example, the thick Thor-Odin detachment shear zone provides sufficient age resolution to indicate the downward propagation of shearing and the progressive incorporation of footwall rocks into the hanging wall. The Kettle detachment provides a clear illustration of the dependence of fluid circulation on dynamic recrystallization processes. The Raft River system consists of a thick Eocene shear zone that was overprinted by Miocene shearing; channels of meteoric

  20. American Meteor Society Fireball reporting system and mobile application

    NASA Astrophysics Data System (ADS)

    Hankey, M.

    2014-07-01

    The American Meteor Society (AMS) founded in 1911 pioneered the visual study of meteors and has collected data relating to meteor observations and bright fireballs for over 100 years. In December 2010, the online fireball reporting system was upgraded to an interactive application that utilizes Google Maps and other programmatic methods to pinpoint the observer's location, azimuth and elevation values with a high degree of precision. The AMS has collected 10s of 1000s of witness reports relating to 100s of events each year since the new application was released. Three dimensional triangulation methods that average the data collected from witnesses have been developed that can determine the start and end points of the meteor with an accuracy of <50 km (when compared to published solutions provided by operators of all sky cameras). RA and DEC radiant estimates can also be computed for all significant events reported to the AMS. With the release of the mobile application, the AMS is able to collect more precise elevation angles than through the web application. Users can file a new report directly on the phone or update the values submitted through a web report. After web users complete their fireball report online, they are prompted to download the app and update their observation with the more precise data provided by the sensors in the mobile device. The mobile app also provides an accurate means for the witness to report the elapsed time of the fireball. To log this value, the user drags the device across the sky where they saw the fireball. This process is designed to require no button click or user interaction to start and stop the time recording. A count down initiates the process and once the user's phone crosses the plane of azimuth for the end point of the fireball the velocity timer automatically stops. Users are asked to log the recording three times in an effort to minimize error. The three values are then averaged into a final score. Once enough

  1. Radio polarisation measurements of meteor trail echoes with BRAMS

    NASA Astrophysics Data System (ADS)

    Lamy, H.; Ranvier, S.; Anciaux, M.; Calders, S.; De Keyser, J.; Gamby, E.

    2012-04-01

    BRAMS, the Belgian RAdio Meteor Stations, is a network of radio receiving stations using forward scatter techniques to detect and characterize meteors. The transmitter is a dedicated beacon located in Dourbes in the south-west of Belgium. It emits towards the zenith a purely sinusoidal wave circularly polarised, at a frequency of 49.97 MHz and with a power of 150 watts. The main goals of the project are to compute meteoroid flux rates and trajectories. Most receiving stations are using a 3 element Yagi antenna and are therefore only sensitive to one polarisation. The station located in Uccle has also a crossed 3 element Yagi antenna and therefore allows measurements of horizontal and vertical polarisations. We present the preliminary radio polarisation measurements of meteor trail echoes and compare them with the theoretical predictions of Jones & Jones (1991) for oblique scattering of radio waves from meteor trails.

  2. Improving Photometric Calibration of Meteor Video Camera Systems.

    PubMed

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2017-09-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera band pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at ∼ 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to ∼ 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.

  3. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Suggs, Robert

    2017-01-01

    We present the results of new calibration tests performed by the NASA Meteoroid Environment Office (MEO) designed to help quantify and minimize systematic uncertainties in meteor photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in meteor magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the first point, we have measured the linearity response of the MEO's standard meteor video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the meteor's photometric flux within the camera bandpass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at approx. 0.20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0.05 - 0.10 mag in both filtered and unfiltered camera observations with no evidence for lingering systematics. These improvements are essential to accurately measuring photometric masses of individual meteors and source mass indexes.

  4. Physics-Based Modeling of Meteor Entry and Breakup

    NASA Technical Reports Server (NTRS)

    Prabhu, Dinesh K.; Agrawal, Parul; Allen, Gary A.; Brandis, Aaron M.; Chen, Yih-Kanq; Jaffe, Richard L.; Saunders, David A.; Stern, Eric C.; Tauber, Michael E.; Venkatapathy, Ethiraj

    2015-01-01

    A new research effort at NASA Ames Research Center has been initiated in Planetary Defense, which integrates the disciplines of planetary science, atmospheric entry physics, and physics-based risk assessment. This paper describes work within the new program and is focused on meteor entry and breakup. Over the last six decades significant effort was expended in the US and in Europe to understand meteor entry including ablation, fragmentation and airburst (if any) for various types of meteors ranging from stony to iron spectral types. These efforts have produced primarily empirical mathematical models based on observations. Weaknesses of these models, apart from their empiricism, are reliance on idealized shapes (spheres, cylinders, etc.) and simplified models for thermal response of meteoritic materials to aerodynamic and radiative heating. Furthermore, the fragmentation and energy release of meteors (airburst) is poorly understood. On the other hand, flight of human-made atmospheric entry capsules is well understood. The capsules and their requisite heatshields are designed and margined to survive entry. However, the highest speed Earth entry for capsules is less than 13 km/s (Stardust). Furthermore, Earth entry capsules have never exceeded diameters of 5 m, nor have their peak aerothermal environments exceeded 0.3 atm and 1 kW/cm2. The aims of the current work are: (i) to define the aerothermal environments for objects with entry velocities from 13 to greater than 20 km/s; (ii) to explore various hypotheses of fragmentation and airburst of stony meteors in the near term; (iii) to explore the possibility of performing relevant ground-based tests to verify candidate hypotheses; and (iv) to quantify the energy released in airbursts. The results of the new simulations will be used to anchor said risk assessment analyses. With these aims in mind, state-of-the-art entry capsule design tools are being extended for meteor entries. We describe: (i) applications of current

  5. Dusty Crater In False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The theme for the weeks of 1/17 and 1/24 is the north polar region of Mars as seen in false color THEMIS images. Ice/frost will typically appear as bright blue in color; dust mantled ice will appear in tones of red/orange.

    This false color image of a crater rim illustrates just how complete the dust cover can be. The small white/blue regions on the rim are of areas where the dust cover has been removed - due to heating on sun facing slopes or by gravitational effects.

    Image information: VIS instrument. Latitude 70.1, Longitude 352.8 East (7.2 West). 40 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. A Triple Crater

    NASA Image and Video Library

    2017-06-01

    This image from NASA's Mars Reconnaissance Orbiter shows an elongated depression from three merged craters. The raised rims and ejecta indicate that these are impact craters rather than collapse or volcanic landforms. The pattern made by the ejecta and the craters suggest this was a highly oblique (low angle to the surface) impact, probably coming from the west. There may have been three major pieces flying in close formation to make this triple crater. https://photojournal.jpl.nasa.gov/catalog/PIA21652

  7. A survey of southern hemisphere meteor showers

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter; Baggaley, Jack; Crumpton, Ian; Aldous, Peter; Pokorny, Petr; Janches, Diego; Gural, Peter S.; Samuels, Dave; Albers, Jim; Howell, Andreas; Johannink, Carl; Breukers, Martin; Odeh, Mohammad; Moskovitz, Nicholas; Collison, Jack; Ganju, Siddha

    2018-05-01

    Results are presented from a video-based meteoroid orbit survey conducted in New Zealand between Sept. 2014 and Dec. 2016, which netted 24,906 orbits from +5 to -5 magnitude meteors. 44 new southern hemisphere meteor showers are identified after combining this data with that of other video-based networks. Results are compared to showers reported from recent radar-based surveys. We find that video cameras and radar often see different showers and sometimes measure different semi-major axis distributions for the same meteoroid stream. For identifying showers in sparse daily orbit data, a shower look-up table of radiant position and speed as a function of time was created. This can replace the commonly used method of identifying showers from a set of mean orbital elements by using a discriminant criterion, which does not fully describe the distribution of meteor shower radiants over time.

  8. Multi-instrumental observations of the 2014 Ursid meteor outburst

    NASA Astrophysics Data System (ADS)

    Moreno-Ibáñez, Manuel; Trigo-Rodríguez, Josep M.; Madiedo, José María; Vaubaillon, Jérémie; Williams, Iwan P.; Gritsevich, Maria; Morillas, Lorenzo G.; Blanch, Estefanía; Pujols, Pep; Colas, François; Dupouy, Philippe

    2017-06-01

    The Ursid meteor shower is an annual shower that usually shows little activity. However, its Zenith hourly rate sometimes increases, usually either when its parent comet, 8P/Tuttle, is close to its perihelion or its aphelion. Outbursts when the comet is away from perihelion are not common and outbursts when the comet is close to aphelion are extremely rare. The most likely explanation offered to date is based on the orbital mean motion resonances. The study of the aphelion outburst of 2000 December provided a means of testing that hypothesis. A new aphelion outburst was predicted for 2014 December. The SPanish Meteor Network, in collaboration with the French Fireball Recovery and InterPlanetary Observation Network, set up a campaign to monitor this outburst and eventually retrieve orbital data that expand and confirm previous preliminary results and predictions. Despite unfavourable weather conditions over the south of Europe over the relevant time period, precise trajectories from multistation meteor data recorded over Spain were obtained, as well as orbital and radiant information for four Ursid meteors. The membership of these four meteors to the expected dust trails that were to provoke the outburst is discussed, and we characterize the origin of the outburst in the dust trail produced by the comet in the year ad 1392.

  9. Atmospheric motion investigation for vapor trails and radio meteors

    NASA Technical Reports Server (NTRS)

    Bedinger, J.

    1973-01-01

    The dynamics are investigated of the lower thermosphere through comparison of optical observations of motions of ejected vapor trails with radar observations of motions of ionized meteor trails. In particular, the winds obtained from a series of vapor trail observations which occurred at Wallops Island, Virginia during the night of 14-15 December 1970 are to be compared with wind data deduced from radar observations of meteor trails during the same period. The comparison of these data is considered important for two reasons. First, the most widely used methods of measuring winds in the lower thermosphere are the vapor trails and the radar meteors. However, the two techniques differ markedly and the resultant sets of data have been analyzed and presented in different formats. Secondly, and possibly of greater immediate concern is the fact that the radar meteor method appears to be an appropriate approach to the synoptic measurement of winds. During the night of 14-15 December 1970, five vapor trails were ejected from Nike Apache rockets over Wallops Island, Virginia from 2208 EST through 0627 EST. The wind data which were obtained from these trails are presented, and features of the wind profiles which relate to the radar meteor trails results are discussed.

  10. Inamahari Crater

    NASA Image and Video Library

    2017-04-13

    Inamahari Crater on Ceres, the large well-defined crater at the center of this image, is one of the sites where scientists have discovered evidence for organic material. The crater, 42 miles (68 kilometers) in diameter, presents other interesting attributes. It has a polygonal shape and an association with another crater of similar size and geometry called Homshuk (center right), although the latter appears eroded and is likely older. Future studies of Inamahari crater and surroundings may help uncover the mechanisms involved in the exposure of organic material onto Ceres' surface. Inamahari was named for a pair of male and female deities from the ancient Siouan tribe of South Carolina, invoked for a successful sowing season. Homshuk refers to the spirit of corn (maize) from the Popoluca peoples of southern Mexico. Inamahari is located at 14 degrees north latitude, 89 degrees east longitude. This picture was taken by NASA's Dawn on September 25, 2015 from an altitude of about 915 miles (1,470 kilometers). It has a resolution of 450 feet (140 meters) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21402

  11. Meteor Beliefs Project: Three Meteoric Similes in The Argonautica of Apollonius of Rhodes

    NASA Astrophysics Data System (ADS)

    McBeath, A.; Gheorghe, A. D.

    2003-06-01

    Three passages from Apollonius Rhodius' Argonautica which draw on meteoric imagery are discussed. Two different translations are given for each, to show some variations that may occur, which hint at problems of interpretation that may be found when trying to use such materials.

  12. Physical properties of lunar craters

    NASA Astrophysics Data System (ADS)

    Joshi, Maitri P.; Bhatt, Kushal P.; Jain, Rajmal

    2017-02-01

    The surface of the Moon is highly cratered due to impacts of meteorites, asteroids, comets and other celestial objects. The origin, size, structure, age and composition vary among craters. We study a total of 339 craters observed by the Lunar Reconnaissance Orbiter Camera (LROC). Out of these 339 craters, 214 craters are known (named craters included in the IAU Gazetteer of Planetary Nomenclature) and 125 craters are unknown (craters that are not named and objects that are absent in the IAU Gazetteer). We employ images taken by LROC at the North and South Poles and near side of the Moon. We report for the first time the study of unknown craters, while we also review the study of known craters conducted earlier by previous researchers. Our study is focused on measurements of diameter, depth, latitude and longitude of each crater for both known and unknown craters. The diameter measurements are based on considering the Moon to be a spherical body. The LROC website also provides a plot which enables us to measure the depth and diameter. We found that out of 214 known craters, 161 craters follow a linear relationship between depth (d) and diameter (D), but 53 craters do not follow this linear relationship. We study physical dimensions of these 53 craters and found that either the depth does not change significantly with diameter or the depths are extremely high relative to diameter (conical). Similarly, out of 125 unknown craters, 78 craters follow the linear relationship between depth (d) and diameter (D) but 47 craters do not follow the linear relationship. We propose that the craters following the scaling law of depth and diameter, also popularly known as the linear relationship between d and D, are formed by the impact of meteorites having heavy metals with larger dimension, while those with larger diameter but less depth are formed by meteorites/celestial objects having low density material but larger diameter. The craters with very high depth and with very small

  13. Simultaneous impact and lunar craters

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.

    1972-01-01

    The existence of large terrestrial impact crater doublets and crater doublets that have been inferred to be impact craters on Mars suggests that simultaneous impact of two or more bodies can occur at nearly the same point on planetary surfaces. An experimental study of simultaneous impact of two projectiles near one another shows that doublet craters with ridges perpendicular to the bilateral axis of symmetry result when separation between impact points relative to individual crater diameter is large. When separation is progressively less, elliptical craters with central ridges and peaks, and circular craters with deep round bottoms are produced. These craters are similar in structure to many of the large lunar craters. Results suggest that the simultaneous impact of meteoroids near one another may be an important mechanism for the production of central peaks in large lunar craters.

  14. Successive Formation of Impact Craters

    NASA Image and Video Library

    2012-02-16

    This image from NASA Dawn spacecraft shows two overlapping impact craters on asteroid Vesta. The rims of the craters are both reasonably fresh but the larger crater must be older because the smaller crater cuts across the larger crater rim.

  15. Structure and sources of the sporadic meteor background from video observations

    NASA Astrophysics Data System (ADS)

    Jakšová, Ivana; Porubčan, Vladimír; Klačka, Jozef

    2015-10-01

    We investigate and discuss the structure of the sporadic meteor background population in the near-Earth space based on video meteor orbits from the SonotaCo database (SonotaCo 2009, WGN, 37, 55). The selection of the shower meteors was done by the Southworth-Hawkins streams-search criterion (Southworth & Hawkins 1963, Smithson. Contr. Astrophys., 7, 261). Of a total of 117786 orbits, 69.34% were assigned to sporadic background meteors. Our analysis revealed all the known sporadic sources, such as the dominant apex source which is splitting into the northern and southern branch. Part of a denser ring structure about the apex source connecting the antihelion and north toroidal sources is also evident. We showed that the annual activity of the apex source is similar to the annual variation in activity of the whole sporadic background. The antihelion source exhibits a very broad maximum from July until January and the north toroidal source shows three maxima similar to the radar observations by the Canadian Meteor Orbit Radar (CMOR). Potential parent bodies of the sporadic population were searched for by comparison of the distributions of the orbital elements of sporadic meteors, minor planets and comets.

  16. Distributions of underdense meteor trail amplitudes and its application to meteor scatter communication system design

    NASA Astrophysics Data System (ADS)

    Weitzen, J. A.; Bourque, S.; Ostergaard, J. C.; Bench, P. M.; Baily, A. D.

    1991-04-01

    Analysis of data from recent experiments leads to the observation that distributions of underdense meteor trail peak signal amplitudes differ from classic predictions. In this paper the distribution of trail amplitudes in decibels relative 1 W (dBw) is considered, and it is shown that Lindberg's theorem can be used to apply central limit arguments to this problem. It is illustrated that a Gaussian model for the distribution of the logarithm of the peak received signal level of underdense trails provides a better fit to data than classic approaches. Distributions of underdense meteor trail amplitudes at five frequencies are compared to a Gaussian distribution and the classic model. Implications of the Gaussian assumption on the design of communication systems are discussed.

  17. Canuleia Crater

    NASA Image and Video Library

    2012-04-24

    This image from NASA Dawn spacecraft of asteroid Vesta shows Canuleia crater, a large, irregularly shaped crater. Other interesting features of Canuleia include the diffuse bright material that is both inside and outside of its rim.

  18. Small Rayed Crater Ejecta Retention Age Calculated from Current Crater Production Rates on Mars

    NASA Technical Reports Server (NTRS)

    Calef, F. J. III; Herrick, R. R.; Sharpton, V. L.

    2011-01-01

    Ejecta from impact craters, while extant, records erosive and depositional processes on their surfaces. Estimating ejecta retention age (Eret), the time span when ejecta remains recognizable around a crater, can be applied to estimate the timescale that surface processes operate on, thereby obtaining a history of geologic activity. However, the abundance of sub-kilometer diameter (D) craters identifiable in high resolution Mars imagery has led to questions of accuracy in absolute crater dating and hence ejecta retention ages (Eret). This research calculates the maximum Eret for small rayed impact craters (SRC) on Mars using estimates of the Martian impactor flux adjusted for meteorite ablation losses in the atmosphere. In addition, we utilize the diameter-distance relationship of secondary cratering to adjust crater counts in the vicinity of the large primary crater Zunil.

  19. Meteor trail footprint statistics

    NASA Astrophysics Data System (ADS)

    Mui, S. Y.; Ellicott, R. C.

    Footprint statistics derived from field-test data are presented. The statistics are the probability that two receivers will lie in the same footprint. The dependence of the footprint statistics on the transmitter range, link orientation, and antenna polarization are examined. Empirical expressions for the footprint statistics are presented. The need to distinguish the instantaneous footprint, which is the area illuminated at a particular instant, from the composite footprint, which is the total area illuminated during the lifetime of the meteor trail, is explained. The statistics for the instantaneous and composite footprints have been found to be similar. The only significant difference lies in the parameter that represents the probability of two colocated receivers being in the same footprint. The composite footprint statistics can be used to calculate the space diversity gain of a multiple-receiver system. The instantaneous footprint statistics are useful in the evaluation of the interference probability in a network of meteor burst communication nodes.

  20. Radar observations of the Volantids meteor shower

    NASA Astrophysics Data System (ADS)

    Younger, J.; Reid, I.; Murphy, D.

    2016-01-01

    A new meteor shower occurring for the first time on 31 December 2015 in the constellation Volans was identified by the CAMS meteor video network in New Zealand. Data from two VHF meteor radars located in Australia and Antarctica have been analyzed using the great circle method to search for Volantids activity. The new shower was found to be active for at least three days over the period 31 December 2015 - 2 January 2016, peaking at an apparent radiant of R.A. = 119.3 ± 3.7, dec. = -74.5 ± 1.9 on January 1st. Measurements of meteoroid velocity were made using the Fresnel transform technique, yielding a geocentric shower velocity of 28.1 ± 1.8 km s-1. The orbital parameters for the parent stream are estimated to be a = 2.11 AU, e = 0.568, i = 47.2°, with a perihelion distance of q = 0.970 AU.

  1. New approaches to some methodological problems of meteor science

    NASA Technical Reports Server (NTRS)

    Meisel, David D.

    1987-01-01

    Several low cost approaches to continuous radioscatter monitoring of the incoming meteor flux are described. Preliminary experiments were attempted using standard time frequency stations WWVH and CHU (on frequencies near 15 MHz) during nighttime hours. Around-the-clock monitoring using the international standard aeronautical beacon frequency of 75 MHz was also attempted. The techniques are simple and can be managed routinely by amateur astronomers with relatively little technical expertise. Time series analysis can now be performed using relatively inexpensive microcomputers. Several algorithmic approaches to the analysis of meteor rates are discussed. Methods of obtaining optimal filter predictions of future meteor flux are also discussed.

  2. Centrifuge impact cratering experiment 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  3. Craters on comets

    NASA Astrophysics Data System (ADS)

    Vincent, J.; Oklay, N.; Marchi, S.; Höfner, S.; Sierks, H.

    2014-07-01

    This paper reviews the observations of crater-like features on cometary nuclei. ''Pits'' have been observed on almost all cometary nuclei but their origin is not fully understood [1,2,3,4]. It is currently assumed that they are created mainly by the cometary activity with a pocket of volatiles erupting under a dust crust, leaving a hole behind. There are, however, other features which cannot be explained in this way and are interpreted alternatively as remnants of impact craters. This work focusses on the second type of pit features: impact craters. We present an in-depth review of what has been observed previously and conclude that two main types of crater morphologies can be observed: ''pit-halo'' and ''sharp pit''. We extend this review by a series of analysis of impact craters on cometary nuclei through different approaches [5]: (1) Probability of impact: We discuss the chances that a Jupiter Family Comet like 9P/Tempel 1 or the target of Rosetta 67P/Churyumov-Gerasimenko can experience an impact, taking into account the most recent work on the size distribution of small objects in the asteroid Main Belt [6]. (2) Crater morphology from scaling laws: We present the status of scaling laws for impact craters on cometary nuclei [7] and discuss their strengths and limitations when modeling what happens when a rocky projectile hits a very porous material. (3) Numerical experiments: We extend the work on scaling laws by a series of hydrocode impact simulations, using the iSALE shock physics code [8,9,10] for varying surface porosity and impactor velocity (see Figure). (4) Surface processes and evolution: We discuss finally the fate of the projectile and the effects of the impact-induced surface compaction on the activity of the nucleus. To summarize, we find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous

  4. Experimental impact crater morphology

    NASA Astrophysics Data System (ADS)

    Dufresne, A.; Poelchau, M. H.; Hoerth, T.; Schaefer, F.; Thoma, K.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The research group MEMIN (Multidisciplinary Experimental and Impact Modelling Research Network) is conducting impact experiments into porous sandstones, examining, among other parameters, the influence of target pore-space saturation with water, and projectile velocity, density and mass, on the cratering process. The high-velocity (2.5-7.8 km/s) impact experiments were carried out at the two-stage light-gas gun facilities of the Fraunhofer Institute EMI (Germany) using steel, iron meteorite (Campo del Cielo IAB), and aluminium projectiles with Seeberg Sandstone as targets. The primary objectives of this study within MEMIN are to provide detailed morphometric data of the experimental craters, and to identify trends and characteristics specific to a given impact parameter. Generally, all craters, regardless of impact conditions, have an inner depression within a highly fragile, white-coloured centre, an outer spallation (i.e. tensile failure) zone, and areas of arrested spallation (i.e. spall fragments that were not completely dislodged from the target) at the crater rim. Within this general morphological framework, distinct trends and differences in crater dimensions and morphological characteristics are identified. With increasing impact velocity, the volume of craters in dry targets increases by a factor of ~4 when doubling velocity. At identical impact conditions (steel projectiles, ~5km/s), craters in dry and wet sandstone targets differ significantly in that "wet" craters are up to 76% larger in volume, have depth-diameter ratios generally below 0.19 (whereas dry craters are almost consistently above this value) at significantly larger diameters, and their spallation zone morphologies show very different characteristics. In dry craters, the spall zone surfaces dip evenly at 10-20° towards the crater centre. In wet craters, on the other hand, they consist of slightly convex slopes of 10-35° adjacent to the inner depression, and of sub-horizontal tensile

  5. The Importance of Impacts within the Solar System - A Short History

    NASA Astrophysics Data System (ADS)

    Yeomans, D. K.

    2005-08-01

    While early meteorite falls had been observed by Chinese and European observers and lunar craters were identified in the early seventeenth century, the important role of impacts in determining the surface features of the moon and Earth would not be widely recognized for more than three centuries. Despite the fact that Earth's volcanic craters were dissimilar in both size and shape from lunar craters, a volcanic origin for the lunar craters was favored. The impact origin for these craters was not seriously discussed until the early twentieth century. Until then, near-Earth asteroids were unknown and it was difficult to explain why the observed lunar craters had circular rims when those created by impacts should have oblong rims to reflect the oblique approach angle of most impactors. Although Opik first pointed out in 1916 that lunar impactors coming in at any angle would create explosive events that could explain the near circularity of their crater rims, his paper was buried in an obscure journal. In the first half of the twentieth century, the consensus view of astronomers was that volcanic activity was responsible for lunar craters while geologists leaned toward an impact origin. Thus, each group dismissed the mechanism that was most familiar to them. At a time when most astronomers stubbornly refused to acknowledge any impact craters on the moon or Earth, the geologist and entrepreneur Daniel Barringer doggedly championed the impact formation of the Meteor crater near Flagstaff Arizona. It was not until 1980 that Alvarez et al suggested and provided evidence for an impact extinction event that corresponded with the boundary between the Cretaceous and Tertiary periods some 65 million years ago. The issue of an engineering solution for the mitigation of an Earth threatening object (i.e., Project Icarus) was first studied in 1967 by an undergraduate engineering class at MIT.

  6. Detecting Forward-Scattered Radio Signals from Atmospheric Meteors Using Low-Cost Software Defined Radio

    ERIC Educational Resources Information Center

    Snjegota, Ana; Rattenbury, Nicholas James

    2017-01-01

    The forward scattering of radio signals from atmospheric meteors is a known technique used to detect meteor trails. This article outlines the project that used the forward-scattering technique to observe the 2015 August, September, and October meteor showers, as well as sporadic meteors, in the Southern Hemisphere. This project can easily be…

  7. Gale Crater: An Amazonian Impact Crater Lake at the Plateau/Plain Boundary

    NASA Technical Reports Server (NTRS)

    Cabrol, N. A.; Grin, E. A.

    1998-01-01

    Gale is a 140-km diameter impact crater located at the plateau/plain boundary in the Aeolis Northeast subquadrangle of Mars (5S/223W). The crater is bordered in the northward direction by the Elysium Basin, and in eastward direction by Hesperian channels and the Aeolis Mensae 2. The crater displays a rim with two distinct erosion stages: (a) though eroded, the south rim of Gale has an apparent crest line visible from the north to the southwest (b) the west and northwest rims are characterized by a strong erosion that, in some places, partially destroyed the rampart, leaving remnant pits embayed in smooth-like deposits. The same type of deposits is observed north, outside Gale, it also borders the Aeolis Mensae, covers the bottom of the plateau scarp, and the crater floor. The central part of Gale shows a 6400 km2 subround and asymmetrical deposit: (a) the south part is composed of smooth material, (b) the north part shows spectacular terraces, streamlines, and channels. The transition between the two parts of the deposit is characterized by a scarp ranging from 200 to 2000 in high. The highest point of the scarp is at the center of the crater, and probably corresponds to a central peak. Gale crater does not show a major channel directly inflowing. However, several large fluvi systems are bordering the crater, and could be at the origin of the flooding of the crater, or have contributed to. One fluvial system is entering the crater by the southwest rim but cannot be accounted alone for the volume of sediment deposited in the crater. This channel erodes the crater floor deposit, and ends in a irregular-shaped and dark albedo feature. Gale crater shows the morphology of a crater filled during sedimentation episodes, and then eroded Part of the lower sediment deposition contained in Gale might be ancient and not only aqueous in origin. According to the regional geologic history, the sedimentary deposit could be a mixture of aeolian and pyroclastic material, and aqueous

  8. Flooded Crater

    NASA Image and Video Library

    2003-04-04

    This image from NASA Mars Odyssey spacecraft shows a flooded crater in Amazonis Planitia. This crater has been either flooded with mud and or lava. The fluid then ponded up, dried and formed the surface textures we see today.

  9. Plasma distributions in meteor head echoes and implications for radar cross section interpretation

    NASA Astrophysics Data System (ADS)

    Marshall, Robert A.; Brown, Peter; Close, Sigrid

    2017-09-01

    The derivation of meteoroid masses from radar measurements requires conversion of the measured radar cross section (RCS) to meteoroid mass. Typically, this conversion passes first through an estimate of the meteor plasma density derived from the RCS. However, the conversion from RCS to meteor plasma density requires assumptions on the radial electron density distribution. We use simultaneous triple-frequency measurements of the RCS for 63 large meteor head echoes to derive estimates of the meteor plasma size and density using five different possible radial electron density distributions. By fitting these distributions to the observed meteor RCS values and estimating the goodness-of-fit, we determine that the best fit to the data is a 1 /r2 plasma distribution, i.e. the electron density decays as 1 /r2 from the center of the meteor plasma. Next, we use the derived plasma distributions to estimate the electron line density q for each meteor using each of the five distributions. We show that depending on the choice of distribution, the line density can vary by a factor of three or more. We thus argue that a best estimate for the radial plasma distribution in a meteor head echo is necessary in order to have any confidence in derived meteoroid masses.

  10. Meteor Beliefs Project: Meteoric imagery associated with the death of John Brown in 1859

    NASA Astrophysics Data System (ADS)

    Drobnock, G. J.; McBeath, A.; Gheorghe, A. D.

    2009-12-01

    An examination is made of metaphorical meteor imagery used in conjunction with the death of American anti-slavery activist John Brown, who was executed in December 1859. Such imagery continues to be used in this regard into the 21st century.

  11. Meteor astronomy using a forward scatter set-up

    NASA Astrophysics Data System (ADS)

    Wislez, Jean-Marc

    2006-08-01

    An overview of the classical theory of the reflection of radio waves off meteor trails is given: the reflection conditions and mechanisms are discussed, and typical (t,A)-profiles of radio meteors are derived. Various configurations of the receive station(s) are proposed. The goal is to give the radio observer more insight in the possibilities, limitations and relevant parameters of forward scattering, and on how to obtain these through observations.

  12. Hydrothermal Alteration at Lonar Crater, India and Elemental Variations in Impact Crater Clays

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Misra, S.; Narasimham, V.

    2005-01-01

    The role of hydrothermal alteration and chemical transport involving impact craters could have occurred on Mars, the poles of Mercury and the Moon, and other small bodies. We are studying terrestrial craters of various sizes in different environments to better understand aqueous alteration and chemical transport processes. The Lonar crater in India (1.8 km diameter) is particularly interesting being the only impact crater in basalt. In January of 2004, during fieldwork in the ejecta blanket around the rim of the Lonar crater we discovered alteration zones not previously described at this crater. The alteration of the ejecta blanket could represent evidence of localized hydrothermal activity. Such activity is consistent with the presence of large amounts of impact melt in the ejecta blanket. Map of one area on the north rim of the crater containing highly altered zones at least 3 m deep is shown.

  13. Asteroids, Comets, Meteors 1991

    NASA Technical Reports Server (NTRS)

    Harris, Alan W. (Editor); Bowell, Edward (Editor)

    1992-01-01

    Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.

  14. Spallanzani Crater

    NASA Image and Video Library

    2002-07-17

    The craters on Mars display a variety of interior deposits, one of which is shown in this image from NASA Mars Odyssey. Spallanzani Crater is located far enough south that it probably experiences the seasonal growth and retreat of the south polar cap.

  15. An investigation of the cratering-induced motions occurring during the formation of bowl-shaped craters. [using high explosive charges as the cratering source

    NASA Technical Reports Server (NTRS)

    Piekutowski, A. J.

    1980-01-01

    The effects of the dynamic processes which occur during crater formation were examined using small hemispherical high-explosive charges detonated in a tank which had one wall constructed of a thick piece of clear plexiglas. Crater formation and the motions of numerous tracer particles installed in the cratering medium at the medium-wall interface were viewed through the wall of this quarter-space tank and recorded with high-speed cameras. Subsequent study and analysis of particle motions and events recorded on the film provide data needed to develop a time-sequence description of the formation of a bowl-shaped crater. Tables show the dimensions of craters produced in a quarter-space tank compared with dimensions of craters produced in normal half-space tanks. Crater growth rate summaries are also tabulated.

  16. Limits on radio emission from meteors using the MWA

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Hancock, P.; Devillepoix, H. A. R.; Wayth, R. B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kaplan, D. L.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.; Williams, A.; Wu, C.; Ji, Jianghui; Ma, Yuehua

    2018-07-01

    Recently, low-frequency, broad-band radio emission has been observed accompanying bright meteors by the Long Wavelength Array (LWA). The broad-band spectra between 20 and 60 MHz were captured for several events, while the spectral index (dependence of flux density on frequency, with Sν ∝ να) was estimated to be -4 ± 1 during the peak of meteor afterglows. Here we present a survey of meteor emission and other transient events using the Murchison Wide Field Array (MWA) at 72-103 MHz. In our 322 h survey, down to a 5σ detection threshold of 3.5 Jy beam-1, no transient candidates were identified as intrinsic emission from meteors. We derived an upper limit of -3.7 (95 per cent confidence limit) on the spectral index in our frequency range. We also report detections of other transient events, such as reflected FM broadcast signals from small satellites, conclusively demonstrating the ability of the MWA to detect and track space debris on scales as small as 0.1 m in low Earth orbits.

  17. Limits on radio emission from meteors using the MWA

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Hancock, Paul; Devillepoix, Hadrien A. R.; Wayth, Randall B.; Beardsley, A.; Crosse, B.; Emrich, D.; Franzen, T. M. O.; Gaensler, B. M.; Horsley, L.; Johnston-Hollitt, M.; Kaplan, D. L.; Kenney, D.; Morales, M. F.; Pallot, D.; Steele, K.; Tingay, S. J.; Trott, C. M.; Walker, M.; Williams, A.; Wu, C.; Ji, Jianghui; Ma, Yuehua

    2018-04-01

    Recently, low frequency, broadband radio emission has been observed accompanying bright meteors by the Long Wavelength Array (LWA). The broadband spectra between 20 and 60 MHz were captured for several events, while the spectral index (dependence of flux density on frequency, with Sν∝να) was estimated to be -4 ± 1 during the peak of meteor afterglows. Here we present a survey of meteor emission and other transient events using the Murchison Widefield Array (MWA) at 72-103 MHz. In our 322-hour survey, down to a 5σ detection threshold of 3.5 Jy/beam, no transient candidates were identified as intrinsic emission from meteors. We derived an upper limit of -3.7 (95% confidence limit) on the spectral index in our frequency range. We also report detections of other transient events, like reflected FM broadcast signals from small satellites, conclusively demonstrating the ability of the MWA to detect and track space debris on scales as small as 0.1 m in low Earth orbits.

  18. Optical Meteor Fluxes and Application to the 2015 Perseids

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Campbell-Brown, M.; Kingery, A.

    2016-01-01

    This paper outlines new methods to measure optical meteor fluxes for showers and sporadic sources. Many past approaches have found the collecting area of a detector at a fixed 100 km altitude, but this approach considers the full volume, finding the area in two km height intervals based on the position of the shower or sporadic source radiant and the population's velocity. Here, the stellar limiting magnitude is found every 10 minutes during clear periods and converted to a limiting meteor magnitude for the shower or sporadic source having fluxes measured, which is then converted to a limiting mass. The final output is a mass limited flux for meteor showers or sporadic sources. Presented are the results of these flux methods as applied to the 2015 Perseid meteor shower as seen by the Meteoroid Environment Office's eight wide-field cameras. The peak Perseid flux on the night of August 13, 2015, was measured to be 0.002989 meteoroids/km2/hr down to 0.00051 grams, corresponding to a ZHR of 100.7.

  19. Crumpled Crater

    NASA Image and Video Library

    2015-03-30

    It is no secret that Mercury's surface is scarred by abundant tectonic deformation, the vast majority of which is due to the planet's history of cooling and contraction through time. Yet Mercury is also heavily cratered, and hosts widespread volcanic plains. So it's perhaps unsurprising that these three types of landform often intersect-literally-as shown in this scene. Here, an unnamed crater, about 7.5 km (4.7 mi.) in diameter was covered, and almost fully buried, by lava. At some point after, compression of the surface formed scarps and ridges in the area that, when they reached the buried crater, came to describe its curved outline. Many arcuate ridges on Mercury formed this way. In this high-resolution view, we can also see the younger, later population of smaller craters that pock-mark the surface. http://photojournal.jpl.nasa.gov/catalog/PIA19263

  20. Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry

    NASA Astrophysics Data System (ADS)

    Fassett, Caleb I.; Crowley, Malinda C.; Leight, Clarissa; Dyar, M. Darby; Minton, David A.; Hirabayashi, Masatoshi; Thomson, Bradley J.; Watters, Wesley A.

    2017-06-01

    Examining the topography of impact craters and their evolution with time is useful for assessing how fast planetary surfaces evolve. Here, new measurements of depth/diameter (d/D) ratios for 204 craters of 2.5 to 5 km in diameter superposed on Mercury's smooth plains are reported. The median d/D is 0.13, much lower than expected for newly formed simple craters ( 0.21). In comparison, lunar craters that postdate the maria are much less modified, and the median crater in the same size range has a d/D ratio that is nearly indistinguishable from the fresh value. This difference in crater degradation is remarkable given that Mercury's smooth plains and the lunar maria likely have ages that are comparable, if not identical. Applying a topographic diffusion model, these results imply that crater degradation is faster by a factor of approximately two on Mercury than on the Moon, suggesting more rapid landform evolution on Mercury at all scales.Plain Language SummaryMercury and the Moon are both airless bodies that have experienced numerous impact events over billions of years. These impacts form <span class="hlt">craters</span> in a geologic instant. The question examined in this manuscript is how fast these <span class="hlt">craters</span> erode after their formation. To simplify the problem, we examined <span class="hlt">craters</span> of a particular size (2.5 to 5 km in diameter) on a particular geologic terrain type (volcanic smooth plains) on both the Moon and Mercury. We then measured the topography of hundreds of <span class="hlt">craters</span> on both bodies that met these criteria. Our results suggest that <span class="hlt">craters</span> on Mercury become shallower much more quickly than <span class="hlt">craters</span> on the Moon. We estimate that Mercury's topography erodes at a rate at least a factor of two faster than the Moon's.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A31C0055C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A31C0055C"><span>Measurement of the Earth's Radiation Budget components from Russian satellites "<span class="hlt">Meteor</span>-M" № 1 and "<span class="hlt">Meteor</span>-M" № 2</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cherviakov, M.</p> <p>2015-12-01</p> <p>One of the foremost challenges to monitoring the climate system is the ability to make a precise measurement of Earth's radiation budget components from space. Thereupon a new "<span class="hlt">Meteor</span>-M" satellite program has been started in Russia. The first satellite of new generation "<span class="hlt">Meteor</span>-M" № 1 was put into orbit in September, 2009 and second satellite "<span class="hlt">Meteor</span>-M" № 2 - in July, 2014. Some measurements results obtained by the nadir looking medium field of view radiometers IKOR-M which was installed on "<span class="hlt">Meteor</span>-M" satellites are presented. These equipments were created in Saratov State University under the direction of Yu. A. Sklyarov for monitoring of outgoing shortwave radiation (OSR), albedo and absorbed solar radiation (ASR) at TOA. The basic products of data processing are given in the form of global maps of distribution OSR, albedo and ASR. Such maps were made for each month during observation period. Fig. 1 presents the map of global distribution of monthly averaged values of albedo in April, 2014. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October, 2009 to August, 2014 and second - from August, 2014 to the present. Therefore, there is a period when both radiometers work at the same time. TOA fluxes deduced from the "<span class="hlt">Meteor</span>-M" № 1 measurements in August, 2014 show very good agreement with the fluxes determined from "<span class="hlt">Meteor</span>-M" № 2. The seasonal and interannual variations of OSR, albedo and ASR were discussed. The variations between SW radiation budget components seem to be within observational uncertainty and natural variability governed by cloudiness, water vapor and aerosol variations. It was assessed spatial and temporal variations of albedo and ASR over different regions. Latitudinal distributions of albedo and ASR were estimated in more detail. Meridional cross sections over oceans and land were used separately for this estimation. It was shown that the albedo and ASR data received from the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Icar..239..186B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Icar..239..186B"><span>Martian Low-Aspect-Ratio Layered Ejecta (LARLE) <span class="hlt">craters</span>: Distribution, characteristics, and relationship to pedestal <span class="hlt">craters</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barlow, Nadine G.; Boyce, Joseph M.; Cornwall, Carin</p> <p>2014-09-01</p> <p>Low-Aspect-Ratio Layered Ejecta (LARLE) <span class="hlt">craters</span> are a unique landform found on Mars. LARLE <span class="hlt">craters</span> are characterized by a <span class="hlt">crater</span> and normal layered ejecta pattern surrounded by an extensive but thin outer deposit which terminates in a sinuous, almost flame-like morphology. We have conducted a survey to identify all LARLE <span class="hlt">craters</span> ⩾1-km-diameter within the ±75° latitude zone and to determine their morphologic and morphometric characteristics. The survey reveals 140 LARLE <span class="hlt">craters</span>, with the majority (91%) located poleward of 40°S and 35°N and all occurring within thick mantles of fine-grained deposits which are likely ice-rich. LARLE <span class="hlt">craters</span> range in diameter from the cut-off limit of 1 km up to 12.2 km, with 83% being smaller than 5 km. The radius of the outer LARLE deposit displays a linear trend with the <span class="hlt">crater</span> radius and is greatest at higher polar latitudes. The LARLE deposit ranges in length between 2.56 and 14.81 <span class="hlt">crater</span> radii in average extent, with maximum length extending up to 21.4 <span class="hlt">crater</span> radii. The LARLE layer is very sinuous, with lobateness values ranging between 1.45 and 4.35. LARLE <span class="hlt">craters</span> display a number of characteristics in common with pedestal <span class="hlt">craters</span> and we propose that pedestal <span class="hlt">craters</span> are eroded versions of LARLE <span class="hlt">craters</span>. The distribution and characteristics of the LARLE <span class="hlt">craters</span> lead us to propose that impact excavation into ice-rich fine-grained deposits produces a dusty base surge cloud (like those produced by explosion <span class="hlt">craters</span>) that deposits dust and ice particles to create the LARLE layers. Salts emplaced by upward migration of water through the LARLE deposit produce a surficial duricrust layer which protects the deposit from immediate removal by eolian processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA14954.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA14954.html"><span>Fresh Dark Ray <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-10-15</p> <p>The <span class="hlt">crater</span> on asteroid Vesta shown in this image from NASA Dawn spacecraft was emplaced onto the ejecta blanket of two large twin <span class="hlt">craters</span>. Commonly, rays from impact <span class="hlt">craters</span> are brighter than the surrounding surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03907&hterms=pluton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpluton','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03907&hterms=pluton&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpluton"><span>Pandora Fretum <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>[figure removed for brevity, see original site] (Released 26 July 2002) Another in a series of <span class="hlt">craters</span> with unusual interior deposits, this THEMIS image shows an unnamed <span class="hlt">crater</span> in the southern hemisphere Pandora Fretum region near the Hellas Basin. <span class="hlt">Craters</span> with eroded layered deposits are quite common on Mars but the crusty textured domes in the center of the image make this <span class="hlt">crater</span> more unusual. Looking vaguely like granitic intrusions, there erosional style is distinct from the rest of the interior deposit which shows a very obvious layered morphology. While it is unlikely that the domes are granite plutons, it is possible that they do represent some other shallowly emplaced magmatic intrusion. More likely still is that variations in induration of the layered deposit allow for variations in the erosional morphology. Note how the surface of the <span class="hlt">crater</span> floor in the northernmost portion of the image has a texture similar to that of the domes. This may represent an incipient form of the erosion that has produced the domes but has not progressed as far. An analysis of other <span class="hlt">craters</span> in the area may shed light on the origin of the domes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020052596','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020052596"><span><span class="hlt">Meteors</span> as a Delivery Vehicle for Organic Matter to the Early Earth</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jenniskens, Peter; DeVincenzi, D. (Technical Monitor)</p> <p>2001-01-01</p> <p>Only in recent years has a concerted effort been made to study the circumstances under which extraterrestrial organic matter is accreted on Earth by way of <span class="hlt">meteors</span>. <span class="hlt">Meteors</span> are the luminous phenomena associated with the (partial) ablation of <span class="hlt">meteoric</span> matter and represent the dominant pathway from space to Earth, with the possible exception of rare giant impacts of asteroids and comets. <span class="hlt">Meteors</span> dominated the supply of organics to the early Earth if organic matter survived this pathway efficiently. Moreover, <span class="hlt">meteors</span> are a source of kinetic energy that can convert inert atmospheric gases such as CO, N, and H2O into useful compounds, such as HCN and NO. Understanding these processes relies heavily on empirical evidence that is still very limited. Here I report on the observations in hand and discuss their relevance in the context of the origin of life.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008P%26SS...56.1992S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008P%26SS...56.1992S"><span>GT-57633 catalogue of Martian impact <span class="hlt">craters</span> developed for evaluation of <span class="hlt">crater</span> detection algorithms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salamunićcar, Goran; Lončarić, Sven</p> <p>2008-12-01</p> <p><span class="hlt">Crater</span> detection algorithms (CDAs) are an important subject of the recent scientific research. A ground truth (GT) catalogue, which contains the locations and sizes of known <span class="hlt">craters</span>, is important for the evaluation of CDAs in a wide range of CDA applications. Unfortunately, previous catalogues of <span class="hlt">craters</span> by other authors cannot be easily used as GT. In this paper, we propose a method for integration of several existing catalogues to obtain a new <span class="hlt">craters</span> catalogue. The methods developed and used during this work on the GT catalogue are: (1) initial screening of used catalogues; (2) evaluation of self-consistency of used catalogues; (3) initial registration from three different catalogues; (4) cross-evaluation of used catalogues; (5) additional registrations and registrations from additional catalogues; and (6) fine-tuning and registration with additional data-sets. During this process, all <span class="hlt">craters</span> from all major currently available manually assembled catalogues were processed, including catalogues by Barlow, Rodionova, Boyce, Kuzmin, and our previous work. Each <span class="hlt">crater</span> from the GT catalogue contains references to <span class="hlt">crater(s</span>) that are used for its registration. This provides direct access to all properties assigned to <span class="hlt">craters</span> from the used catalogues, which can be of interest even to those scientists that are not directly interested in CDAs. Having all these <span class="hlt">craters</span> in a single catalogue also provides a good starting point for searching for <span class="hlt">craters</span> still not catalogued manually, which is also expected to be one of the challenges of CDAs. The resulting new GT catalogue contains 57,633 <span class="hlt">craters</span>, significantly more than any previous catalogue. From this point of view, GT-57633 catalogue is currently the most complete catalogue of large Martian impact <span class="hlt">craters</span>. Additionally, each <span class="hlt">crater</span> from the resulting GT-57633 catalogue is aligned with MOLA topography and, during the final review phase, additionally registered/aligned with 1/256° THEMIS-DIR, 1/256° MDIM and 1/256° MOC</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001495','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001495"><span>The 2017 <span class="hlt">Meteor</span> Shower Activity Forecast for Earth Orbit</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moorhead, Althea; Cooke, Bill; Moser, Danielle</p> <p>2017-01-01</p> <p>Most <span class="hlt">meteor</span> showers will display typical activity levels in 2017. Perseid activity is expected to be higher than normal but less than in 2016; rates may reach 80% of the peak ZHR in 2016. Despite this enhancement, the Perseids rank 4th in flux for 0.04-cm-equivalent meteoroids: the Geminids (GEM), Daytime Arietids (ARI), and Southern delta Aquariids (SDA) all produce higher fluxes. Aside from heightened Perseid activity, the 2017 forecast includes a number of changes. In 2016, the Meteoroid Environment Office used 14 years of shower flux data to revisit the activity profiles of <span class="hlt">meteor</span> showers included in the annual forecast. Both the list of showers and the shape of certain major showers have been revised. The names and three-letter shower codes were updated to match those in the International Astronomical Union (IAU) <span class="hlt">Meteor</span> Data Center, and a number of defunct or insignificant showers were removed. The most significant of these changes are the increased durations of the Daytime Arietid (ARI) and Geminid (GEM) <span class="hlt">meteor</span> showers. This document is designed to supplement spacecraft risk assessments that incorporate an annual averaged <span class="hlt">meteor</span> shower flux (as is the case with all NASA <span class="hlt">meteor</span> models). Results are presented relative to this baseline and are weighted to a constant kinetic energy. Two showers - the Daytime Arietids (ARI) and the Geminids (GEM) - attain flux levels approaching that of the baseline meteoroid environment for 0.1-cm-equivalent meteoroids. This size is the threshold for structural damage. These two showers, along with the Quadrantids (QUA) and Perseids (PER), exceed the baseline flux for 0.3-cm-equivalent particles, which is near the limit for pressure vessel penetration. Please note, however, that <span class="hlt">meteor</span> shower fluxes drop dramatically with increasing particle size. As an example, the Arietids contribute a flux of about 5x10(exp -6) meteoroids m(exp -2) hr-1 in the 0.04-cm-equivalent range, but only 1x10(exp -8) meteoroids m(sub -2) hr-1 for the 0</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920003687','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920003687"><span>Degradation studies of Martian impact <span class="hlt">craters</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, N. G.</p> <p>1991-01-01</p> <p>The amount of obliteration suffered by Martian impact <span class="hlt">craters</span> is quantified by comparing measurable attributes of the current <span class="hlt">crater</span> shape to those values expected for a fresh <span class="hlt">crater</span> of identical size. <span class="hlt">Crater</span> diameters are measured from profiles obtained using photoclinometry across the structure. The relationship between the diameter of a fresh <span class="hlt">crater</span> and a <span class="hlt">crater</span> depth, floor width, rim height, central peak height, etc. was determined by empirical studies performed on fresh Martian impact <span class="hlt">craters</span>. We utilized the changes in <span class="hlt">crater</span> depth and rim height to judge the degree of obliteration suffered by Martian impact <span class="hlt">craters</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38..532S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38..532S"><span>Method for evaluation of laboratory <span class="hlt">craters</span> using <span class="hlt">crater</span> detection algorithm for digital topography data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salamunićcar, Goran; Vinković, Dejan; Lončarić, Sven; Vučina, Damir; Pehnec, Igor; Vojković, Marin; Gomerčić, Mladen; Hercigonja, Tomislav</p> <p></p> <p>In our previous work the following has been done: (1) the <span class="hlt">crater</span> detection algorithm (CDA) based on digital elevation model (DEM) has been developed and the GT-115225 catalog has been assembled [GRS, 48 (5), in press, doi:10.1109/TGRS.2009.2037750]; and (2) the results of comparison between explosion-induced laboratory <span class="hlt">craters</span> in stone powder surfaces and GT-115225 have been presented using depth/diameter measurements [41stLPSC, Abstract #1428]. The next step achievable using the available technology is to create 3D scans of such labo-ratory <span class="hlt">craters</span>, in order to compare different properties with simple Martian <span class="hlt">craters</span>. In this work, we propose a formal method for evaluation of laboratory <span class="hlt">craters</span>, in order to provide objective, measurable and reproducible estimation of the level of achieved similarity between these laboratory and real impact <span class="hlt">craters</span>. In the first step, the section of MOLA data for Mars (or SELENE LALT for Moon) is replaced with one or several 3D-scans of laboratory <span class="hlt">craters</span>. Once embedment was done, the CDA can be used to find out whether this laboratory <span class="hlt">crater</span> is similar enough to real <span class="hlt">craters</span>, as to be recognized as a <span class="hlt">crater</span> by the CDA. The CDA evaluation using ROC' curve represents how true detection rate (TDR=TP/(TP+FN)=TP/GT) depends on the false detection rate (FDR=FP/(TP+FP)). Using this curve, it is now possible to define the measure of similarity between laboratory and real impact <span class="hlt">craters</span>, as TDR or FDR value, or as a distance from the bottom-right origin of the ROC' curve. With such an approach, the reproducible (formally described) method for evaluation of laboratory <span class="hlt">craters</span> is provided.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IAUTA..29..365J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IAUTA..29..365J"><span>Division F Commission 22: <span class="hlt">Meteors</span>, Meteorites, and Interplanetary Dust</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jenniskens, Peter; Borovička, Jiří; Watanabe, Jun-Ichi; Jopek, Tadeusz; Abe, Shinsuke; Consolmagno, Guy J.; Ishiguro, Masateru; Janches, Diego; Ryabova, Galina O.; Vaubaillon, Jérémie; Zhu, Jin</p> <p>2016-04-01</p> <p>Commission 22 (<span class="hlt">Meteors</span>, Meteorites and Interplanetary Dust) was established at the first IAU General Assembly held in Rome in 1922, with William Frederick Denning as its first President. Denning was an accountant by profession, but as an amateur astronomer he contributed extensively to <span class="hlt">meteor</span> science. Commission 22 thus established a pattern that has continued to this day that non-professional astronomers were welcomed and valued and could play a significant role in its affairs. The field of <span class="hlt">meteors</span>, meteorites and interplanetary dust has played a disproportional role in the astronomical perception of the general public through the majestic displays of our annual <span class="hlt">meteor</span> showers. Those in the field deployed many techniques uncommon in other fields of astronomy, studying the ``vermin of space'', the small solid bodies that pervade interplanetary space and impact Earth's atmosphere, the surface of the Moon, and that of our satellites in orbit. Over time, the field has tackled a wide array of problems, from predicting the encounter with meteoroid streams, to the origin of our meteorites and the nature of the zodiacal cloud. Commission 22 has played an important role in organizing the field through dedicated meetings, a data centre, and working groups that developed professional-amateur relationships and that organized the nomenclature of <span class="hlt">meteor</span> showers. The contribution of Commission 22 to the field is perhaps most readily seen in the work of the presidents that followed in the footsteps of Denning.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21410.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21410.html"><span>Yalode <span class="hlt">Crater</span> on Ceres</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-06-28</p> <p>Yalode <span class="hlt">crater</span> is so large -- at 162 miles, 260 kilometers in diameter -- that a variety of vantage points is necessary to understand its geological context. This view of the northern portion of Yalode is one of many images NASA's Dawn spacecraft has taken of this <span class="hlt">crater</span>. The large impact that formed the <span class="hlt">crater</span> likely involved a lot of heat, which explains the relatively smooth <span class="hlt">crater</span> floor punctuated by smaller <span class="hlt">craters</span>. A couple of larger <span class="hlt">craters</span> in Yalode have polygonal shapes. This type of <span class="hlt">crater</span> shape is frequently found on Ceres and may be indicative of extensive underground fractures. The larger <span class="hlt">crater</span> to the right of center in this image is called Lono (12 miles, 20 kilometers in diameter) and the one below it is called Besua (11 miles, 17 kilometers). Some of the small <span class="hlt">craters</span> are accompanied by ejecta blankets that are more reflective than their surroundings. The strange Nar Sulcus fractures can be seen in the bottom left corner of the picture. Linear features seen throughout the image may have formed when material collapsed above empty spaces underground. These linear features include linear chains of <span class="hlt">craters</span> called catenae. Dawn took this image on September 27, 2015, from 915 miles (1,470 kilometers) altitude. The center coordinates of this image are 32 degrees south latitude and 300 degrees east longitude. Yalode gets its name from a goddess worshipped by women at the harvest rites in the Dahomey culture of western Africa. Besua takes its name from the Egyptian grain god, and Lono from the Hawaiian god of agriculture. https://photojournal.jpl.nasa.gov/catalog/PIA21410</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830005771&hterms=basic+chemistry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbasic%2Bchemistry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830005771&hterms=basic+chemistry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dbasic%2Bchemistry"><span>Chemistry of cometary meteoroids from video-tape records of <span class="hlt">meteor</span> spectra</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Millman, P. M.</p> <p>1982-01-01</p> <p>The chemistry of the cometary meteoroids was studied by closed circuit television observing systems. Vidicon cameras produce basic data on standard video tape and enable the recording of the spectra of faint shower <span class="hlt">meteors</span>, consequently the chemical study is extended to smaller particles and we have a larger data bank than is available from the more conventional method of recording <span class="hlt">meteor</span> spectra by photography. The two main problems in using video tape <span class="hlt">meteor</span> spectrum records are: (1) the video tape recording has a much lower resolution than the photographic technique; (2) video tape is relatively new type of data storage in astronomy and the methods of quantitative photometry have not yet been fully developed in the various fields where video tape is used. The use of the most detailed photographic <span class="hlt">meteor</span> spectra to calibrate the video tape records and to make positive identification of the more prominent chemical elements appearing in the spectra may solve the low resolution problem. Progress in the development of standard photometric techniques for the analysis of video tape records of <span class="hlt">meteor</span> spectra is reported.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..295..140X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..295..140X"><span>Ray <span class="hlt">craters</span> on Ganymede: Implications for <span class="hlt">cratering</span> apex-antapex asymmetry and surface modification processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Luyuan; Hirata, Naoyuki; Miyamoto, Hideaki</p> <p>2017-10-01</p> <p>As the youngest features on Ganymede, ray <span class="hlt">craters</span> are useful in revealing the sources of recent impactors and surface modification processes on the satellite. We examine <span class="hlt">craters</span> with D > 10 km on Ganymede from images obtained by the Voyager and Galileo spacecraft to identify ray <span class="hlt">craters</span> and study their spatial distributions. Furthermore, we carefully select images of appropriate solar and emission angles to obtain unbiased ray <span class="hlt">crater</span> densities. As a result, we find that the density of large ray <span class="hlt">craters</span> (D > 25 km) on the bright terrain exhibits an apex-antapex asymmetry, and its degree of asymmetry is much lower than the theoretical estimation for ecliptic comets. For large <span class="hlt">craters</span> (D > 25 km), ecliptic comets ought to be less important than previously assumed, and a possible explanation is that nearly isotropic comets may play a more important role on Ganymede than previously thought. We also find that small ray <span class="hlt">craters</span> (10 km < D < 25 km) on the bright terrain and ray <span class="hlt">craters</span> (D > 10 km) on the dark terrain show no apex-antapex asymmetry. We interpret that the distribution difference between the terrain types comes from preferential thermal sublimation on the dark terrain, while the distribution difference between large and small ray <span class="hlt">craters</span> suggests that rays of small <span class="hlt">craters</span> are more readily erased by some surface modification processes, such as micrometeorite gardening.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00088.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00088.html"><span>Venus - Stein Triplet <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-01-29</p> <p>NASA Magellan synthetic aperture radar SAR imaged this unique triplet <span class="hlt">crater</span>, or <span class="hlt">crater</span> field during orbits 418-421 on Sept. 21, 1990. The three <span class="hlt">craters</span> appear to have relatively steep walls. http://photojournal.jpl.nasa.gov/catalog/PIA00088</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014acm..conf..597Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014acm..conf..597Y"><span>Comet 209P/LINEAR and the associated Camelopardalids <span class="hlt">meteor</span> shower</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ye, Q.; Hui, M.; Wiegert, P.; Campbell-Brown, M.; Brown, P.; Weryk, R.</p> <p>2014-07-01</p> <p>Previous studies have suggested that comet 209P/LINEAR may produce strong <span class="hlt">meteor</span> activity on the Earth on 2014 May 24. Here we present our observations and simulations prior to the event. We reanalyze the optical observations of P/LINEAR obtained during its 2009 apparition to model the corresponding <span class="hlt">meteor</span> stream. We find that the comet is relatively depleted in dust production, with Afρ at 1-cm level within eight months around its perihelion. A syndyne simulation shows that the optical cometary tail is dominated by larger particles with β˜0.003. Numerical simulation of the cometary dust trails confirms the arrival of particles on 2014 May 24 from some of the 1798--1979 trails, with nominal radiant in the constellation of Camelopardalis. Given that the comet is found to be depleted in dust production, we concluded that a <span class="hlt">meteor</span> storm may be unlikely. However, our simulation also shows that the size distribution of the arrived particles is skewed strongly towards larger particles, which, coupling with the result of the syndyne simulation, suggested that the event (if detectable) may be dominated by bright <span class="hlt">meteors</span>. Preliminary results from the observations of P/LINEAR during its 2014 apparition as well as the Camelopardalids <span class="hlt">meteor</span> shower will also be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850024225','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850024225"><span>MENTOR: Adding an outlying receiver to an ST radar for <span class="hlt">meteor</span>-wind measurement</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roper, R. G.</p> <p>1984-01-01</p> <p>Radar scattering from ionized <span class="hlt">meteor</span> trails has been used for many years as a way to determine mesopause-level winds. Scattering occurs perpendicular to the trails, and since the ionizing efficiency of the incoming meteoroids depends on the cosine of the zenith angle of the radiant, echoes directly overhead are rare. Stratosphere-troposphere (ST) radars normally sample within 15 deg of the vertical, and thus receive few <span class="hlt">meteor</span> echoes. Even the higher powdered mesosphere-stratosphere-troposphere (MST) radars are not good <span class="hlt">meteor</span> radars, although they were used to successfully retrieved <span class="hlt">meteor</span> winds from the Poker Flat, Alaska MST radar by averaging long data intervals. It has been suggested that a receiving station some distance from an ST radar could receive pulses being scattered from <span class="hlt">meteor</span> trails, determine the particular ST beam in which the scattering occurred, measure the radial Doppler velocity, and thus determine the wind field. This concept has been named MENTOR (<span class="hlt">Meteor</span> Echoes; No Transmitter, Only Receivers).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22462.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22462.html"><span>A New Impact <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-05-29</p> <p>NASA's Mars Reconnaissance Orbiter (MRO) keeps finding new impact sites on Mars. This one occurred within the dense secondary <span class="hlt">crater</span> field of Corinto <span class="hlt">Crater</span>, to the north-northeast. The new <span class="hlt">crater</span> and its ejecta have distinctive color patterns. Once the colors have faded in a few decades, this new <span class="hlt">crater</span> will still be distinctive compared to the secondaries by having a deeper cavity compared to its diameter. https://photojournal.jpl.nasa.gov/catalog/PIA22462</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BTSNU..51...53K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BTSNU..51...53K"><span>Monte-Carlo Method Application for Precising <span class="hlt">Meteor</span> Velocity from TV Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kozak, P.</p> <p>2014-12-01</p> <p>Monte-Carlo method (method of statistical trials) as an application for <span class="hlt">meteor</span> observations processing was developed in author's Ph.D. thesis in 2005 and first used in his works in 2008. The idea of using the method consists in that if we generate random values of input data - equatorial coordinates of the <span class="hlt">meteor</span> head in a sequence of TV frames - in accordance with their statistical distributions we get a possibility to plot the probability density distributions for all its kinematical parameters, and to obtain their mean values and dispersions. At that the theoretical possibility appears to precise the most important parameter - geocentric velocity of a <span class="hlt">meteor</span> - which has the highest influence onto precision of <span class="hlt">meteor</span> heliocentric orbit elements calculation. In classical approach the velocity vector was calculated in two stages: first we calculate the vector direction as a vector multiplication of vectors of poles of <span class="hlt">meteor</span> trajectory big circles, calculated from two observational points. Then we calculated the absolute value of velocity independently from each observational point selecting any of them from some reasons as a final parameter. In the given method we propose to obtain a statistical distribution of velocity absolute value as an intersection of two distributions corresponding to velocity values obtained from different points. We suppose that such an approach has to substantially increase the precision of <span class="hlt">meteor</span> velocity calculation and remove any subjective inaccuracies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.6486S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.6486S"><span>Preliminary Results from Initial Investigations of Ceres' <span class="hlt">Cratering</span> Record from Dawn Imaging Data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmedemann, Nico; Michael, Gregory; Ivanov, Boris A.; Kneissl, Thomas; Neesemann, Adrian; Hiesinger, Harald; Jaumann, Ralf; Raymond, Carol A.; Russell, Christopher T.</p> <p>2015-04-01</p> <p> takes much more time than is available and, thus, will not be available at the time of the presentation. First hi-res imaging data will also provide details about <span class="hlt">crater</span> morphologies and the major geologic units that will be analyzed during later stages of the Dawn mission. Acknowledgment: This work has been supported by the German Space Agency (DLR) on behalf of the Federal Ministry of Economic Affairs and Energy, grants 50OW1101 (NS, TK, AN) and 50QM1301 (GM). BAI is supported by Program 22 RAS. References: [1] Russell C.T. et al. (2012) Science, 336, 684-686; [2] Sierks H. et al. (2011) Space Science Reviews, 163, 263-327; [3] Li J.Y. et al. (2006) Icarus, 182, 143-160; [4] Schmedemann N. et al. (2015): 46.LPSC, The Woodlands, #1418; [5] McCord T.B. et al. (2012) Ceres: Its Origin, Evolution and Structure and Dawn's Potential Contribution. In: Russell, C.T, Raymond, C.A. (eds.) The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. Springer, New York, 63-76; [6] Neukum G. and Ivanov B. A. (1994) <span class="hlt">Crater</span> size distribu-tions and impact probabilities on Earth from Lunar, terrestrial planet, and asteroid <span class="hlt">cratering</span> data. In: Gehrels T. (ed) Hazards due to comets and asteroids. University of <span class="hlt">Arizona</span> Press, Tucson, 359-416. [7] Ivanov B.A. (2001) Space Science Reviews, 96, 87-104; [8] Schmedemann N. et al. (2014), 103, 104-130.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930009995','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930009995"><span><span class="hlt">Meteor</span> fireball sounds identified</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Keay, Colin</p> <p>1992-01-01</p> <p>Sounds heard simultaneously with the flight of large <span class="hlt">meteor</span> fireballs are electrical in origin. Confirmation that Extra/Very Low Frequency (ELF/VLF) electromagnetic radiation is produced by the fireball was obtained by Japanese researchers. Although the generation mechanism is not fully understood, studies of the Meteorite Observation and Recovery Project (MORP) and other fireball data indicate that interaction with the atmosphere is definitely responsible and the cut-off magnitude of -9 found for sustained electrophonic sounds is supported by theory. Brief bursts of ELF/VLF radiation may accompany flares or explosions of smaller fireballs, producing transient sounds near favorably placed observers. Laboratory studies show that mundane physical objects can respond to electrical excitation and produce audible sounds. Reports of electrophonic sounds should no longer be discarded. A catalog of over 300 reports relating to electrophonic phenomena associated with <span class="hlt">meteor</span> fireballs, aurorae, and lightning was assembled. Many other reports have been cataloged in Russian. These may assist the full solution of the similar long-standing and contentious mystery of audible auroral displays.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA08783&hterms=duck&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dduck','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA08783&hterms=duck&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dduck"><span>'Victoria <span class="hlt">Crater</span>' from 'Duck Bay'</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2006-01-01</p> <p><p/> NASA's Mars rover Opportunity edged 3.7 meters (12 feet) closer to the top of the 'Duck Bay' alcove along the rim of 'Victoria <span class="hlt">Crater</span>' during the rover's 952nd Martian day, or sol (overnight Sept. 27 to Sept. 28), and gained this vista of the <span class="hlt">crater</span>. The rover's navigation camera took the seven exposures combined into this mosaic view of the <span class="hlt">crater</span>'s interior. This <span class="hlt">crater</span> has been the mission's long-term destination for the past 21 Earth months. <p/> The far side of the <span class="hlt">crater</span> is about 800 meters (one-half mile) away. The rim of the <span class="hlt">crater</span> is composed of alternating promontories, rocky points towering approximately 70 meters (230 feet) above the <span class="hlt">crater</span> floor, and recessed alcoves, such as Duck Bay. The bottom of the <span class="hlt">crater</span> is covered by sand that has been shaped into ripples by the Martian wind. The rocky cliffs in the foreground have been informally named 'Cape Verde,' on the left, and 'Cabo Frio,' on the right. <p/> Victoria <span class="hlt">Crater</span> is about five times wider than 'Endurance <span class="hlt">Crater</span>,' which Opportunity spent six months examining in 2004, and about 40 times wider than 'Eagle <span class="hlt">Crater</span>,' where Opportunity first landed. The great lure of Victoria is an expectation that the thick stack of geological layers exposed in the <span class="hlt">crater</span> walls could reveal the record of past environmental conditions over a much greater span of time than Opportunity has read from rocks examined earlier in the mission. <p/> This view is presented as a cylindrical projection with geometric seam correction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA15660.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA15660.html"><span><span class="hlt">Crater</span> Impacts on Vesta</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-05-10</p> <p>This graphic shows the global distribution of <span class="hlt">craters</span> that hit the giant asteroid Vesta, based on data from NASA Dawn mission. The yellow circles indicate <span class="hlt">craters</span> of 2 miles or wider, with the size of the circles indicating the size of the <span class="hlt">crater</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21915.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21915.html"><span>Kokopelli <span class="hlt">Crater</span> on Ceres</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-14</p> <p>This image obtained by NASA's Dawn spacecraft shows a field of small <span class="hlt">craters</span> next to Kokopelli <span class="hlt">Crater</span>, seen at bottom right in this image, on dwarf planet Ceres. The small <span class="hlt">craters</span> overlay a smooth, wavy material that represents ejecta from nearby Dantu <span class="hlt">Crater</span>. The small <span class="hlt">craters</span> were formed by blocks ejected in the Dantu impact event, and likely from the Kokopelli impact as well. Kokopelli is named after the fertility deity who presides over agriculture in the tradition of the Pueblo people from the southwestern United States. The <span class="hlt">crater</span> measures 21 miles (34 kilometers) in diameter. Dawn took this image during its first extended mission on August 11, 2016, from its low-altitude mapping orbit, at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 20 degrees north latitude, 123 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21915</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016252&hterms=origin+military&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dorigin%2Bmilitary','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016252&hterms=origin+military&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dorigin%2Bmilitary"><span>Named Venusian <span class="hlt">craters</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Russell, Joel F.; Schaber, Gerald G.</p> <p>1993-01-01</p> <p>Schaber et al. compiled a database of 841 <span class="hlt">craters</span> on Venus, based on Magellan coverage of 89 percent of the planet's surface. That database, derived from coverage of approximately 98 percent of Venus' surface, has been expanded to 912 <span class="hlt">craters</span>, ranging in diameter from 1.5 to 280 km. About 150 of the larger <span class="hlt">craters</span> were previously identified by Pioneer Venus and Soviet Venera projects and subsequently formally named by the International Astronomical Union (IAU). Altogether, the <span class="hlt">crater</span> names submitted to the IAU for approval to date number about 550, a little more than half of the number of <span class="hlt">craters</span> identified on Magellan images. The IAU will consider more names as they are submitted for approval. Anyone--planetary scientist or layman--may submit names; however, candidate names must conform to IAU rules. The person to be honored must be deceased for at least three years, must not be a religious figure or a military or political figure of the 19th or 20th century, and, for Venus, must be a woman. All formally and provisionally approved names for Venusian impact <span class="hlt">craters</span>, along with their latitude, longitude, size, and origin of their name, will be presented at LPSC and will be available as handouts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA01454&hterms=first+moon+landing&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfirst%2Bmoon%2Blanding','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA01454&hterms=first+moon+landing&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfirst%2Bmoon%2Blanding"><span>Moon/Mars Landing Commemorative Release: Gusev <span class="hlt">Crater</span> and Ma'adim Vallis</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1998-01-01</p> <p><p/> On July 20, 1969, the first human beings landed on the Moon. On July 20, 1976, the first robotic lander touched down on Mars. This July 20th-- 29 years after Apollo 11 and 22 years since the Viking 1 Mars landing-- we take a look forward toward one possible future exploration site on the red planet.<p/>One of the advantages of the Mars Global Surveyor Mars Orbiter Camera (MOC) over its predecessors on the Viking and Mariner spacecraft is resolution. The ability to see<i>-- resolve--</i>fine details on the martian surface is key to planning future landing sites for robotic and, perhaps, human explorers that may one day visit the planet.<p/>At present, NASA is studying potential landing sites for the Mars Surveyor landers, rovers, and sample return vehicles that are scheduled to be launched in 2001, 2003, and 2005. Among the types of sites being considered for these early 21st Century landings are those with 'exobiologic potential'--that is, locations on Mars that are in some way related to the past presence of water.<p/>For more than a decade, two of the prime candidates suggested by various Mars research scientists are Gusev <span class="hlt">Crater</span> and Ma'adim Vallis. Located in the martian southern <span class="hlt">cratered</span> highlands at 14.7o S, 184.5o W, Gusev <span class="hlt">Crater</span> is a large, ancient, <span class="hlt">meteor</span> impact basin that--after it formed--was breached by Ma'adim Vallis.<p/>Viking Orbiter observations provided some evidence to suggest that a fluid--most likely, water--once flowed through Ma'adim Vallis and into Gusev <span class="hlt">Crater</span>. Some scientists have suggested that there were many episodes of flow into Gusev <span class="hlt">Crater</span> (as well as flow out of Gusev through its topographically-lower northwestern rim). Some have also indicated that there were times when Ma'adim Vallis, also, was full of water such that it formed a long, narrow lake.<p/>The possibility that water flowed into Gusev <span class="hlt">Crater</span> and formed a lake has led to the suggestion that the materials seen on the floor of this <span class="hlt">crater</span>--smooth-surfaced deposits</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P23C2741W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P23C2741W"><span>Using THEMIS thermal infrared observations of rays from Corinto <span class="hlt">crater</span> to study secondary <span class="hlt">crater</span> formation on Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Williams, J. P.</p> <p>2017-12-01</p> <p>Corinto <span class="hlt">crater</span> (16.95°N, 141.72°E), a 13.8 km diameter <span class="hlt">crater</span> in Elysium Planitia, displays dramatic rays in Mars Odyssey's Thermal Emission Imaging System (THEMIS) nighttime infrared imagery where high concentrations of secondary <span class="hlt">craters</span> have altered the thermophysical properties of the martian surface. The THEMIS observations provide a record of secondary <span class="hlt">crater</span> formation in the region and ray segments are identified up to 2000 km ( 145 <span class="hlt">crater</span> radii) distance [1][2]. Secondary <span class="hlt">craters</span> are likely to have the largest influence on model surfaces ages between 0.1 to a few Myr as there is the potential for one or two sizeable <span class="hlt">craters</span> to project secondary <span class="hlt">craters</span> onto those surfaces and thus alter the <span class="hlt">crater</span> size-frequency distribution (CSFD) with an instantaneous spike in <span class="hlt">crater</span> production [3]. Corinto <span class="hlt">crater</span> is estimated to be less than a few Ma [4] placing the formation of its secondaries within this formative time period. Secondary <span class="hlt">craters</span> superposed on relatively young impact <span class="hlt">craters</span> that predate Corinto provide observations of the secondary <span class="hlt">crater</span> populations. <span class="hlt">Crater</span> counts at 520 and 660 km distance from Corinto (38 and 48 <span class="hlt">crater</span> radii respectively), were conducted. Higher <span class="hlt">crater</span> densities were observed within ray segments, however secondary <span class="hlt">craters</span> still influenced the CSFD where ray segments were not apparent, resulting in steepening in the CSFD. Randomness analysis confirms an increase in clustering as diameters decrease suggesting an increasing fraction of secondary <span class="hlt">craters</span> at smaller diameters, both within the ray and outside. The counts demonstrate that even at nearly 50 <span class="hlt">crater</span> radii, Corinto secondaries still influence the observed CSFD, even outside of any obvious rays. <span class="hlt">Crater</span> populations used to derive model ages on many geologically young regions on Mars, such as glacial and periglacial landforms related to obliquity excursions that occur on 106 - 107 yr cycles, should be used cautiously and analyzed for any evidence, either morphologic or</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850015222&hterms=centrifuge&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcentrifuge','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850015222&hterms=centrifuge&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcentrifuge"><span>Centrifuge Impact <span class="hlt">Cratering</span> Experiments</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.</p> <p>1985-01-01</p> <p>The kinematics of <span class="hlt">crater</span> growth, impact induced target flow fields and the generation of impact melt were determined. The feasibility of using scaling relationships for impact melt and <span class="hlt">crater</span> dimensions to determine impactor size and velocity was studied. It is concluded that a coupling parameter determines both the quantity of melt and the <span class="hlt">crater</span> dimensions for impact velocities greater than 10km/s. As a result impactor radius, a, or velocity, U cannot be determined individually, but only as a product in the form of a coupling parameter, delta U micron. The melt volume and <span class="hlt">crater</span> volume scaling relations were applied to Brent <span class="hlt">crater</span>. The transport of melt and the validity of the melt volume scaling relations are examined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010pim8.conf...16A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010pim8.conf...16A"><span>The First Year of Croatian <span class="hlt">Meteor</span> Network</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreic, Zeljko; Segon, Damir</p> <p>2010-08-01</p> <p>The idea and a short history of Croatian <span class="hlt">Meteor</span> Network (CMN) is described. Based on use of cheap surveillance cameras, standard PC-TV cards and old PCs, the Network allows schools, amateur societies and individuals to participate in photographic <span class="hlt">meteor</span> patrol program. The network has a strong educational component and many cameras are located at or around teaching facilities. Data obtained by these cameras are collected and processed by the scientific team of the network. Currently 14 cameras are operable, covering a large part of the croatian sky, data gathering is fully functional, and data reduction software is in testing phase.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880039799&hterms=nitrate+lead&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnitrate%2Blead','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880039799&hterms=nitrate+lead&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dnitrate%2Blead"><span>Antarctic ozone - <span class="hlt">Meteoric</span> control of HNO3</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Prather, Michael J.; Rodriguez, Jose M.</p> <p>1988-01-01</p> <p>Atmospheric circulation leads to an accumulation of debris from <span class="hlt">meteors</span> in the Antarctic stratosphere at the beginning of austral spring. The major component of <span class="hlt">meteoric</span> material is alkaline, comprised predominantly of the oxides of magnesium and iron. These metals may neutralize the natural acidity of stratospheric aerosols, remove nitric acid from the gas phase, and bond it as metal nitrates in the aerosol phase. Removal of nitric acid vapor has been previously shown to be a critical link in the photochemical depletion of ozone in the Antarctic spring, by allowing for increased catalytic loss from chlorine and bromine.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.usgs.gov/imap/2790/pdf/i2790.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/imap/2790/pdf/i2790.pdf"><span><span class="hlt">Crater</span> Lake revealed</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ramsey, David W.; Dartnell, Peter; Bacon, Charles R.; Robinson, Joel E.; Gardner, James V.</p> <p>2003-01-01</p> <p>Around 500,000 people each year visit <span class="hlt">Crater</span> Lake National Park in the Cascade Range of southern Oregon. Volcanic peaks, evergreen forests, and <span class="hlt">Crater</span> Lake’s incredibly blue water are the park’s main attractions. <span class="hlt">Crater</span> Lake partially fills the caldera that formed approximately 7,700 years ago by the eruption and subsequent collapse of a 12,000-foot volcano called Mount Mazama. The caldera-forming or climactic eruption of Mount Mazama drastically changed the landscape all around the volcano and spread a blanket of volcanic ash at least as far away as southern Canada.Prior to the climactic event, Mount Mazama had a 400,000 year history of cone building activity like that of other Cascade volcanoes such as Mount Shasta. Since the climactic eruption, there have been several less violent, smaller postcaldera eruptions within the caldera itself. However, relatively little was known about the specifics of these eruptions because their products were obscured beneath <span class="hlt">Crater</span> Lake’s surface. As the <span class="hlt">Crater</span> Lake region is still potentially volcanically active, understanding past eruptive events is important to understanding future eruptions, which could threaten facilities and people at <span class="hlt">Crater</span> Lake National Park and the major transportation corridor east of the Cascades.Recently, the lake bottom was mapped with a high-resolution multibeam echo sounder. The new bathymetric survey provides a 2m/pixel view of the lake floor from its deepest basins virtually to the shoreline. Using Geographic Information Systems (GIS) applications, the bathymetry data can be visualized and analyzed to shed light on the geology, geomorphology, and geologic history of <span class="hlt">Crater</span> Lake.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006M%26PS...41.1509S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006M%26PS...41.1509S"><span>Martian subsurface properties and <span class="hlt">crater</span> formation processes inferred from fresh impact <span class="hlt">crater</span> geometries</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stewart, Sarah T.; Valiant, Gregory J.</p> <p>2006-10-01</p> <p>The geometry of simple impact <span class="hlt">craters</span> reflects the properties of the target materials, and the diverse range of fluidized morphologies observed in Martian ejecta blankets are controlled by the near-surface composition and the climate at the time of impact. Using the Mars Orbiter Laser Altimeter (MOLA) data set, quantitative information about the strength of the upper crust and the dynamics of Martian ejecta blankets may be derived from <span class="hlt">crater</span> geometry measurements. Here, we present the results from geometrical measurements of fresh <span class="hlt">craters</span> 3-50 km in rim diameter in selected highland (Lunae and Solis Plana) and lowland (Acidalia, Isidis, and Utopia Planitiae) terrains. We find large, resolved differences between the geometrical properties of the freshest highland and lowland <span class="hlt">craters</span>. Simple lowland <span class="hlt">craters</span> are 1.5-2.0 times deeper (≥5σo difference) with >50% larger cavities (≥2σo) compared to highland <span class="hlt">craters</span> of the same diameter. Rim heights and the volume of material above the preimpact surface are slightly greater in the lowlands over most of the size range studied. The different shapes of simple highland and lowland <span class="hlt">craters</span> indicate that the upper ˜6.5 km of the lowland study regions are significantly stronger than the upper crust of the highland plateaus. Lowland <span class="hlt">craters</span> collapse to final volumes of 45-70% of their transient cavity volumes, while highland <span class="hlt">craters</span> preserve only 25-50%. The effective yield strength of the upper crust in the lowland regions falls in the range of competent rock, approximately 9-12 MPa, and the highland plateaus may be weaker by a factor of 2 or more, consistent with heavily fractured Noachian layered deposits. The measured volumes of continuous ejecta blankets and uplifted surface materials exceed the predictions from standard <span class="hlt">crater</span> scaling relationships and Maxwell's Z model of <span class="hlt">crater</span> excavation by a factor of 3. The excess volume of fluidized ejecta blankets on Mars cannot be explained by concentration of ejecta through</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160012086','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160012086"><span>Improving Photometric Calibration of <span class="hlt">Meteor</span> Video Camera Systems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ehlert, Steven; Kingery, Aaron; Suggs, Robert</p> <p>2016-01-01</p> <p>We present the results of new calibration tests performed by the NASA Meteoroid Environment Oce (MEO) designed to help quantify and minimize systematic uncertainties in <span class="hlt">meteor</span> photometry from video camera observations. These systematic uncertainties can be categorized by two main sources: an imperfect understanding of the linearity correction for the MEO's Watec 902H2 Ultimate video cameras and uncertainties in <span class="hlt">meteor</span> magnitudes arising from transformations between the Watec camera's Sony EX-View HAD bandpass and the bandpasses used to determine reference star magnitudes. To address the rst point, we have measured the linearity response of the MEO's standard <span class="hlt">meteor</span> video cameras using two independent laboratory tests on eight cameras. Our empirically determined linearity correction is critical for performing accurate photometry at low camera intensity levels. With regards to the second point, we have calculated synthetic magnitudes in the EX bandpass for reference stars. These synthetic magnitudes enable direct calculations of the <span class="hlt">meteor</span>'s photometric ux within the camera band-pass without requiring any assumptions of its spectral energy distribution. Systematic uncertainties in the synthetic magnitudes of individual reference stars are estimated at 0:20 mag, and are limited by the available spectral information in the reference catalogs. These two improvements allow for zero-points accurate to 0:05 ?? 0:10 mag in both ltered and un ltered camera observations with no evidence for lingering systematics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00472&hterms=created+halo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcreated%2Bhalo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00472&hterms=created+halo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcreated%2Bhalo"><span>Venus - Impact <span class="hlt">Crater</span> 'Jeanne</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1991-01-01</p> <p>This Magellan full-resolution image shows Jeanne <span class="hlt">crater</span>, a 19.5 kilometer (12 mile) diameter impact <span class="hlt">crater</span>. Jeanne <span class="hlt">crater</span> is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The <span class="hlt">crater</span> is surrounded by dark material of two types. The dark area on the southwest side of the <span class="hlt">crater</span> is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the <span class="hlt">crater</span> is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne <span class="hlt">crater</span> also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880005178','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880005178"><span>Hard- and software problems of spaced <span class="hlt">meteor</span> observations by optical electronics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shafiev, R. I.; Mukhamednazarov, S.; Ataev, A. SH.</p> <p>1987-01-01</p> <p>An optical electronic facility is being used for <span class="hlt">meteor</span> observations along with <span class="hlt">meteor</span> radars and astronomical TV. The main parts of the facility are cameras using UM-92 optical electronic image tubes. The three cascade optical electronic image tube with magnetic focusing has a 40 mm cathode and resolution in the center of up to 30 pairs of lines/mm. The photocathode is of a multislit S-20 type. For <span class="hlt">meteor</span> spectra observations, replica gratings of 200 and 300 lines/mm are used as the dispersive element.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010364','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010364"><span>Relative age of Camelot <span class="hlt">crater</span> and <span class="hlt">crater</span> clusters near the Apollo 17 landing site</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lucchitta, B.K.</p> <p>1979-01-01</p> <p>Topographic profiles and depth-diameter ratios from the <span class="hlt">crater</span> Camelot and <span class="hlt">craters</span> of the central cluster in the Apollo 17 landing area suggest that these <span class="hlt">craters</span> are of the same age. Therefore, layers that can be recognized in the deep-drill core and that can be identified as ejecta deposits from Camelot or from the cluster <span class="hlt">craters</span> should yield similar emplacement ages. ?? 1979.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JVGR..357..177G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JVGR..357..177G"><span>High resolution, multi-2D seismic imaging of Solfatara <span class="hlt">crater</span> (Campi Flegrei Caldera, southern Italy) from active seismic data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gammaldi, S.; Amoroso, O.; D'Auria, L.; Zollo, A.</p> <p>2018-05-01</p> <p>A multi-2D imaging of the Solfatara <span class="hlt">Crater</span> inside the Campi Flegrei Caldera, was obtained by the joint interpretation of geophysical evidences and the new active seismic dataset acquired during the RICEN experiment (EU project MEDSUV) in 2014. We used a total of 17,894 first P-wave arrival times manually picked on pre-processed waveforms, recorded along two 1D profiles criss-crossing the inner Solfatara <span class="hlt">crater</span>, and performed a tomographic inversion based on a multi-scale strategy and a Bayesian estimation of velocity parameters. The resulting tomographic images provide evidence for a low velocity (500-1500 m/s) water saturated deeper layer at West near the outcropping evidence of the Fangaia, contrasted by a high velocity (2000-3200 m/s) layer correlated with a consolidated tephra deposit. The transition velocity range (1500-2000 m/s) layer suggests a possible presence of a gas-rich, accumulation volume. Thanks to the mutual P-wave velocity model, we infer a detailed image for the gas migration path to the Earth surface. The gasses coming from the deep hydrothermal plume accumulate in the central and most depressed area of the Solfatara being trapped by the <span class="hlt">meteoric</span> water saturated layer. Therefore, the gasses are transmitted through the buried fault toward the east part of the <span class="hlt">crater</span>, where the ring faults facilitate the release as confirmed by the fumaroles. Starting from the eastern surface evidence of the gas releasing in the Bocca Grande and Bocca Nuova fumaroles, and the presence of the central deeper plume we suggest a fault situated in the central part of the <span class="hlt">crater</span> which seems to represent the main buried conduit among them plays a key role.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED323739.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED323739.pdf"><span>Understanding <span class="hlt">Arizona</span>'s Agencies. Planning for <span class="hlt">Arizona</span>'s Future, Part I.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>O'Connell, Joanne C.; Leftwich, Valerie</p> <p></p> <p>This report is part of a series prepared for planning and developing a comprehensive, coordinated service delivery system for <span class="hlt">Arizona</span> infants and toddlers who are developmentally delayed or at risk of developing handicapping conditions, and their families. It identifies <span class="hlt">Arizona</span> agencies designated to respond to the special needs of young children…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016cosp...41E2131Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016cosp...41E2131Y"><span>Long-time observation of <span class="hlt">meteor</span> induced layers with ionosonde</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yusupov, Kamil; Akchurin, Adel</p> <p>2016-07-01</p> <p>It is considered that the main theory explaining appearance of sporadic E is the theory of wind shear, which means (includes) the presence and movement of nodes converging tidal wind through the height region of the most frequent occurrence Es (120-140km) [Mathew et. all, 1998]. However, the appearance of intense layers, following its name, are sporadic, and such variability cannot to explain by the influence of tidal waves only. Another indication inconsistency theory of wind shear is the appearance of so-called transient Es layers [Maruiama, 2003]. The distinctive feature of this trace is the high critical frequency (> 5 MHz), a constant height, weak amplitude, all trace semitransparent and short lifetime [Maruiama et. all, 2003 and 2008 and references there]. Because of duration, such layer is opposite to the traditional persistent Es layer, which we do not consider in this paper. Various researchers have used different terms for such spontaneous Es, it is <span class="hlt">meteor</span> echo, <span class="hlt">meteor</span> induced Es, spontaneously formed sporadic Es patches resulting of the Fresnel scattering from a region of enhanced plasma density along the <span class="hlt">meteor</span> trail, transitory Es and transient Es. Since the term transient Es is unstable, to avoid confusion, we will stick to this term. Since <span class="hlt">meteor</span> echo is not fully satisfy this term by some parameter, we will describe the properties of transient Es based on the ionogram properties and not from physics of its origin. We used data from our ionosonde with one-minute ionogram repetition rate for 2010-2014 years. For processing performed a method are using to select beatings and the ionosphere reflectivity of the layers by means A-, H-and AΣ-map [Akchurin, 2011; Yusupov, 2014]. This maps allow to collect transient Es appearance over a long-time. Such statistics comparison with <span class="hlt">meteor</span> showers activity showed good agreement. It shows the presence of the transient Es formation mechanism, which coupling with <span class="hlt">meteors</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4832001E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4832001E"><span>A new approach to compute accurate velocity of <span class="hlt">meteors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Egal, Auriane; Gural, Peter; Vaubaillon, Jeremie; Colas, Francois; Thuillot, William</p> <p>2016-10-01</p> <p>The CABERNET project was designed to push the limits of meteoroid orbit measurements by improving the determination of the <span class="hlt">meteors</span>' velocities. Indeed, despite of the development of the cameras networks dedicated to the observation of <span class="hlt">meteors</span>, there is still an important discrepancy between the measured orbits of meteoroids computed and the theoretical results. The gap between the observed and theoretic semi-major axis of the orbits is especially significant; an accurate determination of the orbits of meteoroids therefore largely depends on the computation of the pre-atmospheric velocities. It is then imperative to dig out how to increase the precision of the measurements of the velocity.In this work, we perform an analysis of different methods currently used to compute the velocities and trajectories of the <span class="hlt">meteors</span>. They are based on the intersecting planes method developed by Ceplecha (1987), the least squares method of Borovicka (1990), and the multi-parameter fitting (MPF) method published by Gural (2012).In order to objectively compare the performances of these techniques, we have simulated realistic <span class="hlt">meteors</span> ('fakeors') reproducing the different error measurements of many cameras networks. Some fakeors are built following the propagation models studied by Gural (2012), and others created by numerical integrations using the Borovicka et al. 2007 model. Different optimization techniques have also been investigated in order to pick the most suitable one to solve the MPF, and the influence of the geometry of the trajectory on the result is also presented.We will present here the results of an improved implementation of the multi-parameter fitting that allow an accurate orbit computation of <span class="hlt">meteors</span> with CABERNET. The comparison of different velocities computation seems to show that if the MPF is by far the best method to solve the trajectory and the velocity of a <span class="hlt">meteor</span>, the ill-conditioning of the costs functions used can lead to large estimate errors for noisy</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770044544&hterms=surface+density&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsurface%2Bdensity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770044544&hterms=surface+density&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dsurface%2Bdensity"><span>Phobos - Surface density of impact <span class="hlt">craters</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thomas, P.; Veverka, J.</p> <p>1977-01-01</p> <p>Revised <span class="hlt">crater</span> counts for Phobos are presented which are based on uniform Mariner 9 imagery and Duxbury's (1974) map of the satellite. The contiguous portion of the satellite's surface on which all <span class="hlt">craters</span> down to the limiting resolution of 0.2 to 0.3 km in diameter would be expected to be identified is delineated and found to contain 87 identifiable <span class="hlt">craters</span> larger than 0.2 km in diameter. Analysis of the <span class="hlt">crater</span> size distribution shows that the surface appears to be saturated for <span class="hlt">craters</span> exceeding 1 km in diameter but the <span class="hlt">crater</span> counts definitely fall below the saturation curve for smaller <span class="hlt">craters</span>. Reasons for this fall-off are considered, and it is noted that too few <span class="hlt">craters</span> are visible in Mariner 9 images of Deimos to permit meaningful <span class="hlt">crater</span> counts on that satellite's surface. It is concluded that, contrary to a previous assertion, the surfaces of Phobos and Deimos are not known to be saturated with <span class="hlt">craters</span> larger than 0.2 km in diameter.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19790055295&hterms=functional+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dfunctional%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19790055295&hterms=functional+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dfunctional%2Bstructure"><span>Lunar <span class="hlt">crater</span> volumes - Interpretation by models of impact <span class="hlt">cratering</span> and upper crustal structure</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Croft, S. K.</p> <p>1978-01-01</p> <p>Lunar <span class="hlt">crater</span> volumes can be divided by size into two general classes with distinctly different functional dependence on diameter. <span class="hlt">Craters</span> smaller than approximately 12 km in diameter are morphologically simple and increase in volume as the cube of the diameter, while <span class="hlt">craters</span> larger than about 20 km are complex and increase in volume at a significantly lower rate implying shallowing. Ejecta and interior volumes are not identical and their ratio, Schroeters Ratio (SR), increases from about 0.5 for simple <span class="hlt">craters</span> to about 1.5 for complex <span class="hlt">craters</span>. The excess of ejecta volume causing the increase, can be accounted for by a discontinuity in lunar crust porosity at 1.5-2 km depth. The diameter range of significant increase in SR corresponds with the diameter range of transition from simple to complex <span class="hlt">crater</span> morphology. This observation, combined with theoretical rebound calculation, indicates control of the transition diameter by the porosity structure of the upper crust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009APS..DFD.PK009C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009APS..DFD.PK009C"><span>Granular <span class="hlt">Crater</span> Formation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clark, Abe; Behringer, Robert; Brandenburg, John</p> <p>2009-11-01</p> <p>This project characterizes <span class="hlt">crater</span> formation in a granular material by a jet of gas impinging on a granular material, such as a retro-rocket landing on the moon. We have constructed a 2D model of a planetary surface, which consists of a thin, clear box partially filled with granular materials (sand, lunar and Mars simulants...). A metal pipe connected to a tank of nitrogen gas via a solenoid valve is inserted into the top of the box to model the rocket. The results are recorded using high-speed video. We process these images and videos in order to test existing models and develop new ones for describing <span class="hlt">crater</span> formation. A similar set-up has been used by Metzger et al.footnotetextP. T. Metzger et al. Journal of Aerospace Engineering (2009) We find that the long-time shape of the <span class="hlt">crater</span> is consistent with a predicted catenary shape (Brandenburg). The depth and width of the <span class="hlt">crater</span> both evolve logarithmically in time, suggesting an analogy to a description in terms of an activated process: dD/dt = A (-aD) (D is the <span class="hlt">crater</span> depth, a and A constants). This model provides a useful context to understand the role of the jet speed, as characterized by the pressure used to drive the flow. The box width also plays an important role in setting the width of the <span class="hlt">crater</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eosweb.larc.nasa.gov/project/calipso/gallery/arizona-wildfire','SCIGOV-ASDC'); return false;" href="https://eosweb.larc.nasa.gov/project/calipso/gallery/arizona-wildfire"><span><span class="hlt">Arizona</span> Wildfire</span></a></p> <p><a target="_blank" href="http://eosweb.larc.nasa.gov/">Atmospheric Science Data Center </a></p> <p></p> <p>2013-04-23</p> <p>article title:  Wildfire in <span class="hlt">Arizona</span>     View larger image A CALIPSO vertical profile from space shows the smoke plume on June 3, 2011 from the wildfires currently raging in <span class="hlt">Arizona</span>. It ... nine hours later. The data shows that the Wallow Fire smoke plume reached heights of 5 kilometers (3 miles) high. CALIPSO and Terra ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20140010040&hterms=model+atomic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmodel%2Batomic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20140010040&hterms=model+atomic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmodel%2Batomic"><span>A Global Atmospheric Model of <span class="hlt">Meteoric</span> Iron</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.</p> <p>2013-01-01</p> <p>The first global model of <span class="hlt">meteoric</span> iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of <span class="hlt">meteoric</span> constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The <span class="hlt">meteoric</span> input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical <span class="hlt">meteoric</span> ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014P%26SS...96...71M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014P%26SS...96...71M"><span>Impact <span class="hlt">cratering</span> experiments in brittle targets with variable thickness: Implications for deep pit <span class="hlt">craters</span> on Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Michikami, T.; Hagermann, A.; Miyamoto, H.; Miura, S.; Haruyama, J.; Lykawka, P. S.</p> <p>2014-06-01</p> <p>High-resolution images reveal that numerous pit <span class="hlt">craters</span> exist on the surface of Mars. For some pit <span class="hlt">craters</span>, the depth-to-diameter ratios are much greater than for ordinary <span class="hlt">craters</span>. Such deep pit <span class="hlt">craters</span> are generally considered to be the results of material drainage into a subsurface void space, which might be formed by a lava tube, dike injection, extensional fracturing, and dilational normal faulting. Morphological studies indicate that the formation of a pit <span class="hlt">crater</span> might be triggered by the impact event, and followed by collapse of the ceiling. To test this hypothesis, we carried out laboratory experiments of impact <span class="hlt">cratering</span> into brittle targets with variable roof thickness. In particular, the effect of the target thickness on the <span class="hlt">crater</span> formation is studied to understand the penetration process by an impact. For this purpose, we produced mortar targets with roof thickness of 1-6 cm, and a bulk density of 1550 kg/m3 by using a mixture of cement, water and sand (0.2 mm) in the ratio of 1:1:10, by weight. The compressive strength of the resulting targets is 3.2±0.9 MPa. A spherical nylon projectile (diameter 7 mm) is shot perpendicularly into the target surface at the nominal velocity of 1.2 km/s, using a two-stage light-gas gun. <span class="hlt">Craters</span> are formed on the opposite side of the impact even when no target penetration occurs. Penetration of the target is achieved when <span class="hlt">craters</span> on the opposite sides of the target connect with each other. In this case, the cross section of <span class="hlt">crater</span> somehow attains a flat hourglass-like shape. We also find that the <span class="hlt">crater</span> diameter on the opposite side is larger than that on the impact side, and more fragments are ejected from the <span class="hlt">crater</span> on the opposite side than from the <span class="hlt">crater</span> on the impact side. This result gives a qualitative explanation for the observation that the Martian deep pit <span class="hlt">craters</span> lack a raised rim and have the ejecta deposit on their floor instead. <span class="hlt">Craters</span> are formed on the opposite impact side even when no penetration</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00472.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00472.html"><span>Venus - Impact <span class="hlt">Crater</span> Jeanne</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-11-20</p> <p>This full-resolution image from NASA Magellan spacecraft shows Jeanne <span class="hlt">crater</span>, a 19.5 kilometer (12 mile) diameter impact <span class="hlt">crater</span>. Jeanne <span class="hlt">crater</span> is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The <span class="hlt">crater</span> is surrounded by dark material of two types. The dark area on the southwest side of the <span class="hlt">crater</span> is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the <span class="hlt">crater</span> is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne <span class="hlt">crater</span> also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt. http://photojournal.jpl.nasa.gov/catalog/PIA00472</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21454.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21454.html"><span>A Dragonfly-Shaped <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-02-10</p> <p>The broader scene for this image is the fluidized ejecta from Bakhuysen <span class="hlt">Crater</span> to the southwest, but there's something very interesting going on here on a much smaller scale. A small impact <span class="hlt">crater</span>, about 25 meters in diameter, with a gouged-out trench extends to the south. The ejecta (rocky material ejected from the <span class="hlt">crater</span>) mostly extends to the east and west of the <span class="hlt">crater</span>. This "butterfly" ejecta is very common for <span class="hlt">craters</span> formed at low impact angles. Taken together, these observations suggest that the <span class="hlt">crater</span>-forming impactor came in at a low angle from the north, hit the ground and ejected material to the sides. The top of the impactor may have sheared off ("decapitating" the impactor) and continued downrange, forming the trench. We can't prove that's what happened, but this explanation is consistent with the observations. Regardless of how it formed, it's quite an interesting-looking "dragonfly" <span class="hlt">crater</span>. The map is projected here at a scale of 50 centimeters (19.69 inches) per pixel. [The original image scale is 55.7 centimeters (21.92 inches) per pixel (with 2 x 2 binning); objects on the order of 167 centimeters (65.7 inches) across are resolved.] North is up. http://photojournal.jpl.nasa.gov/catalog/PIA21454</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA12328.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA12328.html"><span><span class="hlt">Crater</span> with Exposed Layers</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-01-17</p> <p>On Earth, geologists can dig holes and pull up core samples to find out what lies beneath the surface. On Mars, geologists cannot dig holes very easily themselves, but a process has been occurring for billions of years that has been digging holes for them: impact <span class="hlt">cratering</span>. Impact <span class="hlt">craters</span> form when an asteroid, meteoroid, or comet crashes into a planet's surface, causing an explosion. The energy of the explosion, and the resulting size of the impact <span class="hlt">crater</span>, depends on the size and density of the impactor, as well as the properties of the surface it hits. In general, the larger and denser the impactor, the larger the <span class="hlt">crater</span> it will form. The impact <span class="hlt">crater</span> in this image is a little less than 3 kilometers in diameter. The impact revealed layers when it excavated the Martian surface. Layers can form in a variety of different ways. Multiple lava flows in one area can form stacked sequences, as can deposits from rivers or lakes. Understanding the geology around impact <span class="hlt">craters</span> and searching for mineralogical data within their layers can help scientists on Earth better understand what the walls of impact <span class="hlt">craters</span> on Mars expose. http://photojournal.jpl.nasa.gov/catalog/PIA12328</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P41D2864R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P41D2864R"><span>Impact <span class="hlt">Craters</span>: Size-Dependent Degration Rates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ravi, S.; Mahanti, P.; Meyer, H. M.; Robinson, M. S.</p> <p>2017-12-01</p> <p>From superposition relations, Shoemaker and Hackman (1) devised the lunar geologic timescale with Copernican and Eratosthenian as the most recent periods. Classifying <span class="hlt">craters</span> into the two periods is key to understanding impactor flux and regolith maturation rates over the last 3 Ga. Both Copernican and Eratosthenian <span class="hlt">craters</span> exhibit crisp morphologies (sharp rims, steep slopes), however, only the former exhibit high reflectance rays and ejecta (1). Based on the Optical Maturity Parameter (OMAT; 2), Grier et al. (3) classified 50 fresh <span class="hlt">craters</span> (D >20 km) into 3 categories - young (OMAT >0.22), intermediate, and old (OMAT <0.16). In our previous work, Copernican <span class="hlt">craters</span> (D > 10) were identified (4) from a catalogue of 11,875 <span class="hlt">craters</span> (5). In this work; we compare two size ranges (D: 5 km - 10 km and 10 km to 15 km) of 177 Copernican <span class="hlt">craters</span> based on the average OMAT, measured near the <span class="hlt">crater</span> rim (3). OMAT is measured at the <span class="hlt">crater</span> rim (as opposed to further away from the <span class="hlt">crater</span>) to minimize the influence of spatial variation of OMAT (6) in our investigation. We found that OMAT values are typically lower for smaller <span class="hlt">craters</span> (5km < D < 10km) in comparison to larger <span class="hlt">craters</span> (10km < D < 15km). However, when compared against morphological freshness (as determined by d/D for simpler <span class="hlt">craters</span>), the smaller <span class="hlt">craters</span> were fresher (higher d/D value). Since the OMAT value decreases with age, <span class="hlt">craters</span> with higher d/D value (morphologically fresher) should have higher OMAT, but this is not the case. We propose that quicker loss of OMAT (over time) for smaller <span class="hlt">craters</span> compared to decrease in d/D with <span class="hlt">crater</span> ageing, is responsible for the observed decreased OMAT for smaller <span class="hlt">craters</span>. (1) Shoemaker and Hackman, 1962 (2) Lucey et al., 2000 (3) Grier et al., 2001 (4) Ravi et al., 2016 (5) Reinhold et al., 2015 (6) Mahanti et al., 2016</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JIMO...40...80H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JIMO...40...80H"><span><span class="hlt">Meteor</span> Beliefs Project: Spears of GodSpears of God</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hendrix, Howard V.; McBeath, Alastair; Gheorghe, Andrei Dorian</p> <p>2012-04-01</p> <p>A selection of genuine or supposedly sky-fallen objects from real-world sources, a mixture of weapons, tools and "magical" objects of heavenly provenance, are drawn from their re-use in the near-future science-fiction novel Spears of God by author Howard V Hendrix, with additional discussion. The book includes other <span class="hlt">meteoric</span> and meteoritic items too, some of which have been the subject of previous <span class="hlt">Meteor</span> Beliefs Project examinations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920033269&hterms=slump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dslump','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920033269&hterms=slump&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dslump"><span>Terrace width variations in complex Mercurian <span class="hlt">craters</span> and the transient strength of <span class="hlt">cratered</span> Mercurian and lunar crust</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Leith, Andrew C.; Mckinnon, William B.</p> <p>1991-01-01</p> <p>The effective cohesion of the <span class="hlt">cratered</span> region during <span class="hlt">crater</span> collapse is determined via the widths of slump terraces of complex <span class="hlt">craters</span>. Terrace widths are measured for complex <span class="hlt">craters</span> on Mercury; these generally increase outward toward the rim for a given <span class="hlt">crater</span>, and the width of the outermost major terrace is generally an increasing function of <span class="hlt">crater</span> diameter. The terrace widths on Mercury and a gravity-driven slump model are used to estimate the strength of the <span class="hlt">cratered</span> region immediately after impact (about 1-2 MPa). A comparison with the previous study of lunar complex <span class="hlt">craters</span> by Pearce and Melosh (1986) indicates that the transient strength of <span class="hlt">cratered</span> Mercurian crust is no greater than that of the moon. The strength estimates vary only slightly with the geometric model used to restore the outermost major terrace to its precollapse configuration and are consistent with independent strength estimates from the simple-to-complex <span class="hlt">crater</span> depth/diameter transition.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050167173','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050167173"><span>The Explorer's Guide to Impact <span class="hlt">Craters</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chuang, F.; Pierazzo, E.; Osinski, G.</p> <p>2005-01-01</p> <p>Impact <span class="hlt">cratering</span> is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact <span class="hlt">craters</span> are the dominant landform. On other planetary bodies impact <span class="hlt">craters</span> are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of <span class="hlt">crater</span> populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact <span class="hlt">cratering</span> has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: How do scientists learn about impact <span class="hlt">cratering</span>? , and What information do impact <span class="hlt">craters</span> provide in understanding the evolution of a planetary surface? Fundamental approaches used by scientists to learn about impact <span class="hlt">cratering</span> include field work at known terrestrial <span class="hlt">craters</span>, remote sensing studies of <span class="hlt">craters</span> on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact <span class="hlt">cratering</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050153817&hterms=1074&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231074','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050153817&hterms=1074&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3D%2526%25231074"><span>The mass and speed dependence of <span class="hlt">meteor</span> air plasma temperatures</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.</p> <p>2004-01-01</p> <p>The speed and mass dependence of <span class="hlt">meteor</span> air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated <span class="hlt">meteoric</span> organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm <span class="hlt">meteors</span> during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the <span class="hlt">meteoric</span> plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15104905','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15104905"><span>The mass and speed dependence of <span class="hlt">meteor</span> air plasma temperatures.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L</p> <p>2004-01-01</p> <p>The speed and mass dependence of <span class="hlt">meteor</span> air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated <span class="hlt">meteoric</span> organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm <span class="hlt">meteors</span> during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the <span class="hlt">meteoric</span> plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995JIMO...23..120R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995JIMO...23..120R"><span>The Leonids: The Lion King of <span class="hlt">Meteor</span> Showers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rao, J.</p> <p>1995-08-01</p> <p>The night of November 12-13, 1833, sparked awareness of the Leonids <span class="hlt">meteor</span> shower as well as the birth of <span class="hlt">meteor</span> astronomy: from much of North America that night, a rain of shooting stars, a shower of flashing light, spread over the entire sky. More than one superstitious person on that spectacular night was certain that the end of the world had come. People kept repeating that the <span class="hlt">meteors</span> were falling "like snowflakes". In the aftermath of the display, it was realized that <span class="hlt">meteors</span> could be produced by an extraterrestrial source: streams or swarms of particle that travel around the Sun in more or less well-defined orbits, grazing, at least at one point, the orbit of our Earth. In 1866, G. Schiaparelli established the orbit of the stream of particles that produce the Leonids, and soon others independently noted a striking resemblance of the Leonids with the orbit of periodic comet Tempel-Tuttle. The comet and <span class="hlt">meteor</span> stream were subsequently found to be following nearly identical orbits with periods of roughly 33 years. A few years earlier (in 1863) it was discovered similarly spectacular Leonid <span class="hlt">meteor</span> displays had occured prior to 1833, with accounts of the Leonids traceable as far back as A.D. 902. Based solely on the 33-year cycle, a prediction for a <span class="hlt">meteor</span> storm in the year 1866 verified. In 1899 a re-enactment of the 1833 storm was confidently expected, despite calculations that demonstrated that the orbit of P/Tempel-Tuttle (and probably the associated Leonid particles) were likely perturbed by the planets Jupiter and Saturn. The failure of a storm to materialize seriously damaged the credibility of astronomers in the eyes of the general public. Since 1899, the Leonids have been following a rather erratic and unpredictable schedule: <span class="hlt">meteor</span> storms unexpectedly occurred in 1900 and 1901; no storm was noted in 1931 and 1932, leading many to believe that Leonid activity had significantly declined. But during the 1960s, they again revived, capped by a short</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-08-28/pdf/2012-20949.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-08-28/pdf/2012-20949.pdf"><span>77 FR 52056 - Notice of Intent To Repatriate Cultural Items: <span class="hlt">Arizona</span> State Museum, University of <span class="hlt">Arizona</span>...</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-08-28</p> <p>... Intent To Repatriate Cultural Items: <span class="hlt">Arizona</span> State Museum, University of <span class="hlt">Arizona</span>, Tucson, AZ AGENCY..., in consultation with the appropriate Indian tribes, has determined that the cultural items meet the... culturally affiliated with the cultural items may contact the <span class="hlt">Arizona</span> State Museum, University of <span class="hlt">Arizona</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70031393','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70031393"><span>Geology of five small Australian impact <span class="hlt">craters</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shoemaker, E.M.; Macdonald, F.A.; Shoemaker, C.S.</p> <p>2005-01-01</p> <p>Here we present detailed geological maps and cross-sections of Liverpool, Wolfe Creek, Boxhole, Veevers and Dalgaranga <span class="hlt">craters</span>. Liverpool <span class="hlt">crater</span> and Wolfe Creek Meteorite <span class="hlt">Crater</span> are classic bowlshaped, Barringer-type <span class="hlt">craters</span>, Liverpool was likely formed during the Neoproterozoic and was filled and covered with sediments soon thereafter. In the Cenozoic, this cover was exhumed exposing the <span class="hlt">crater</span>'s brecciated wall rocks. Wolfe Creek Meteorite <span class="hlt">Crater</span> displays many striking features, including well-bedded ejecta units, <span class="hlt">crater</span>-floor faults and sinkholes, a ringed aeromagnetic anomaly, rim-skirting dunes, and numerous iron-rich shale balls. Boxhole Meteorite <span class="hlt">Crater</span>, Veevers Meteorite <span class="hlt">Crater</span> and Dalgaranga <span class="hlt">crater</span> are smaller, Odessa-type <span class="hlt">craters</span> without fully developed, steep, overturned rims. Boxhole and Dalgaranga <span class="hlt">craters</span> are developed in highly follated Precambrian basement rocks with a veneer of Holocene colluvium. The pre-existing structure at these two sites complicates structural analyses of the <span class="hlt">craters</span>, and may have influenced target deformation during impact. Veevers Meteorite <span class="hlt">Crater</span> is formed in Cenozoic laterites, and is one of the best-preserved impact <span class="hlt">craters</span> on Earth. The <span class="hlt">craters</span> discussed herein were formed in different target materials, ranging from crystalline rocks to loosely consolidated sediments, containing evidence that the impactors struck at an array of angles and velocities. This facilitates a comparative study of the influence of these factors on the structural and topographic form of small impact <span class="hlt">craters</span>. ?? Geological Society of Australia.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740005450','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740005450"><span>Artificial <span class="hlt">meteor</span> ablation studies: Olivine</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Blanchard, M. B.; Cunningham, G. G.</p> <p>1973-01-01</p> <p>Artificial <span class="hlt">meteor</span> ablation was performed on a Mg-rich olivine sample using an arc-heated plasma of ionized air. Experimental conditions simulated a <span class="hlt">meteor</span> traveling about 12 km/sec at an altitude of 70 km. The mineral content of the original olivine sample was 98% olivine (including traces of olivine alteration products) and 2% chromite. Forsterite content of the original olivine was Fo-89. After ablation, the forsterite content had increased to Fo-94 in the recrystallized olivine. In addition, lamella-like intergrowths of magnetite were prevalent constituents. Wherever magnetite occurred, there was an increase in Mg and a corresponding decrease in Fe for the recrystallized olivine. The Allende fusion crust consisted of a recrystallized olivine, which was more Mg-rich and Fe-deficient than the original meteorite's olivine, and abundant magnetite grains. Although troilite and pentlandite were the common opaque mineral constituents in this meteorite, magnetite was the principal opaque mineral found in the fusion crust.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA16630.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA16630.html"><span>Dark <span class="hlt">Crater</span> Rims</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-01-03</p> <p>These mosaic images from NASA Dawn mission show how dark, carbon-rich materials tend to speckle the rims of smaller <span class="hlt">craters</span> or their immediate surroundings on the giant asteroid Vesta; Numisia <span class="hlt">Crater</span> is shown at left.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014me13.conf..243T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014me13.conf..243T"><span>Prediction of <span class="hlt">meteor</span> shower of comet 161P/2004 V2</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tomko, D.; Neslušan, L.</p> <p>2014-07-01</p> <p>We deal with theoretical meteoroid stream of Halley-type comet 161P/2004 V2. For two perihelion passages in the far past, we model the stream and follow its dynamical evolution until the present. We predict the characteristics of potential <span class="hlt">meteor</span> showers according to the dynamical properties of artificial particles currently approaching the orbit of the Earth. Our dynamical study reveals that the comet 161P/2004 V2 could have an associated Earth-observable <span class="hlt">meteor</span> shower, although no significant number of artificial particles are identified with real, photographic, video, or radar <span class="hlt">meteors</span>. However, the mean radiant of the shower is predicted on the southern sky (its declination is about -23 grad) where a relatively low number of real <span class="hlt">meteors</span> has been detected and, therefore, recorded in the databases used. The shower of 161P has a compact radiant area and a relatively large geocentric velocity of ~ 53 km/s.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016pimo.conf..230R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016pimo.conf..230R"><span><span class="hlt">Meteor</span> detections at the Metsähovi Fundamental Geodetic Research Station (Finland)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raja-Halli, A.; Gritsevich, M.; Näränen, J.; Moreno-Ibáñez, M.; Lyytinen, E.; Virtanen, J.; Zubko, N.; Peltoniemi, J.; Poutanen, M.</p> <p>2016-01-01</p> <p>We provide an overview and present some spectacular examples of the recent <span class="hlt">meteor</span> observations at the Metsähovi Geodetic Research Station. In conjunction with the Finnish Fireball Network the all-sky images are used to reconstruct atmospheric trajectories and to calculate the pre-impact <span class="hlt">meteor</span> orbits in the Solar System. In addition, intensive collaborative work is pursued with the <span class="hlt">meteor</span> research groups worldwide. We foresee great potential of this activity also for educational and outreach purposes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22378.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22378.html"><span>Bamberg <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-04-26</p> <p>Today's VIS image shows the western rim of Bamberg <span class="hlt">Crater</span>. The complex nature of the rim is one indication of the relative youth of this <span class="hlt">crater</span> in relation to it's surrounding. Many gullies dissect this rim. Orbit Number: 71254 Latitude: 39.6224 Longitude: 356.451 Instrument: VIS Captured: 2018-01-06 05:00 https://photojournal.jpl.nasa.gov/catalog/PIA22378</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850047917&hterms=dg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddg','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850047917&hterms=dg&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddg"><span>The scaling of complex <span class="hlt">craters</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Croft, S. K.</p> <p>1985-01-01</p> <p>The empirical relation between the transient <span class="hlt">crater</span> diameter (Dg) and final <span class="hlt">crater</span> diameter (Dr) of complex <span class="hlt">craters</span> and basins is estimated using cumulative terrace widths, central uplift diameters, continuous ejecta radii, and transient <span class="hlt">crater</span> reconstructions determined from lunar and terrestrial impact structures. The ratio Dg/Dr is a power law function of Dr, decreasing uniformly from unity at the diameter of the simple-complex <span class="hlt">crater</span> morphology transition to about 0.5 for large multiring basins like Imbrium on the moon. The empirical constants in the Dg/Dr relation are interpreted physically to mean that the position of the final rim relative to the transient <span class="hlt">crater</span>, and hence the extent of collapse, is controlled or greatly influenced by the properties of the zone of dissociated material produced by the impact shock. The continuity of the Dg/Dr relation over the entire spectrum of morphologic types from complex <span class="hlt">craters</span> to multiring basins implies that the rims of all these structures form in the same tectonic environment despite morphologic differences.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110016607','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110016607"><span>French <span class="hlt">Meteor</span> Network for High Precision Orbits of Meteoroids</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.</p> <p>2011-01-01</p> <p>There is a lack of precise meteoroids orbit from video observations as most of the <span class="hlt">meteor</span> stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station <span class="hlt">meteors</span> and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the <span class="hlt">meteor</span> position are illustrated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012LPICo1667.6096F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012LPICo1667.6096F"><span>An Automatic Video <span class="hlt">Meteor</span> Observation Using UFO Capture at the Showa Station</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujiwara, Y.; Nakamura, T.; Ejiri, M.; Suzuki, H.</p> <p>2012-05-01</p> <p>The goal of our study is to clarify <span class="hlt">meteor</span> activities in the southern hemi-sphere by continuous optical observations with video cameras with automatic <span class="hlt">meteor</span> detection and recording at Syowa station, Antarctica.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020051084','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020051084"><span>Impact <span class="hlt">Cratering</span> Calculations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahrens, Thomas J.</p> <p>2002-01-01</p> <p>Many Martian <span class="hlt">craters</span> are surrounded by ejecta blankets which appear to have been fluidized forming lobate and layered deposits terminated by one or more continuous distal scarps, or ramparts. One of the first hypotheses for the formation of so-called rampart ejecta features was shock-melting of subsurface ice, entrainment of liquid water into the ejecta blanket, and subsequent fluidized flow. Our work quantifies this concept. Rampart ejecta found on all but the youngest volcanic and polar regions, and the different rampart ejecta morphologies are correlated with <span class="hlt">crater</span> size and terrain. In addition, the minimum diameter of <span class="hlt">craters</span> with rampart features decreases with increasing latitude indicating that ice laden crust resides closer to the surface as one goes poleward on Mars. Our second goal in was to determine what strength model(s) reproduce the faults and complex features found in large scale gravity driven <span class="hlt">craters</span>. Collapse features found in large scale <span class="hlt">craters</span> require that the rock strength weaken as a result of the shock processing of rock and the later <span class="hlt">cratering</span> shear flows. In addition to the presence of molten silicate in the intensely shocked region, the presence of water, either ambient, or the result of shock melting of ice weakens rock. There are several other mechanisms for the reduction of strength in geologic materials including dynamic tensile and shear induced fracturing. Fracturing is a mechanism for large reductions in strength. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting in the atmosphere produce final <span class="hlt">crater</span> profiles having the major features found in the field measurements (central uplifts, inner ring, terracing and faulting). This was accomplished with undamaged surface strengths (0.1 GPa) and in depth strengths (1.0 GPa).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA04017.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA04017.html"><span>Trouvelot <span class="hlt">Crater</span> Deposit</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2002-12-04</p> <p>Like many of the <span class="hlt">craters</span> in the Oxia Palus region of Mars, Trouvelot <span class="hlt">Crater</span>, shown in this NASA Mars Odyssey image, hosts an eroded, light-toned, sedimentary deposit on its floor. Compared with the much larger example in Becquerel <span class="hlt">Crater</span> to the NE, the Trouvelot deposit has been so eroded by the scouring action of dark, wind-blown sand that very little of it remains. Tiny outliers of bright material separated from the main mass attest to the once, more really extensive coverage by the deposit. A similar observation can be made for White Rock, the best known example of a bright, <span class="hlt">crater</span> interior deposit. The origin of the sediments in these deposits remains enigmatic but they are likely the result of fallout from ash or dust carried by the thin martian atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA04017</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032716','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032716"><span>Degradation of Victoria <span class="hlt">crater</span>, Mars</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Grant, J. A.; Wilson, S.A.; Cohen, B. A.; Golombek, M.P.; Geissler, P.E.; Sullivan, R.J.; Kirk, R.L.; Parker, T.J.</p> <p>2008-01-01</p> <p>The ???750 m diameter and ???75 m deep Victoria <span class="hlt">crater</span> in Meridiani Planum, Mars, is a degraded primary impact structure retaining a ???5 m raised rim consisting of 1-2 m of uplifted rocks overlain by ???3 m of ejecta at the rim crest. The rim is 120-220 m wide and is surrounded by a dark annulus reaching an average of 590 m beyond the raised rim. Comparison between observed morphology and that expected for pristine <span class="hlt">craters</span> 500-750 m across indicates that the original, pristine <span class="hlt">crater</span> was close to 600 m in diameter. Hence, the <span class="hlt">crater</span> has been erosionally widened by ???150 m and infilled by ???50 m of sediments. Eolian processes are responsible for most <span class="hlt">crater</span> modification, but lesser mass wasting or gully activity contributions cannot be ruled out. Erosion by prevailing winds is most significant along the exposed rim and upper walls and accounts for ???50 m widening across a WNW-ESE diameter. The volume of material eroded from the <span class="hlt">crater</span> walls and rim is ???20% less than the volume of sediments partially filling the <span class="hlt">crater</span>, indicating eolian infilling from sources outside the <span class="hlt">crater</span> over time. The annulus formed when ???1 m deflation of the ejecta created a lag of more resistant hematite spherules that trapped <10-20 cm of darker, regional basaltic sands. Greater relief along the rim enabled meters of erosion. Comparison between Victoria and regional <span class="hlt">craters</span> leads to definition of a <span class="hlt">crater</span> degradation sequence dominated by eolian erosion and infilling over time. Copyright 2008 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22264.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22264.html"><span>Investigating Mars: Kaiser <span class="hlt">Crater</span> Dunes</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-02-01</p> <p>This VIS image of the floor of Kaiser <span class="hlt">Crater</span> contains several sand dune shapes and sizes. The "whiter" material is the hard <span class="hlt">crater</span> floor surface. Kaiser <span class="hlt">Crater</span> is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser <span class="hlt">Crater</span> is just one of several large <span class="hlt">craters</span> with extensive dune fields on the <span class="hlt">crater</span> floor. Other nearby dune filled <span class="hlt">craters</span> are Proctor, Russell, and Rabe. Kaiser <span class="hlt">Crater</span> is 207 km (129 miles) in diameter. The dunes are located in the southern part of the <span class="hlt">crater</span> floor. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 39910 Latitude: -46.9063 Longitude: 19.8112 Instrument: VIS Captured: 2010-12-13 11:17 https://photojournal.jpl.nasa.gov/catalog/PIA22264</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22263.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22263.html"><span>Investigating Mars: Kaiser <span class="hlt">Crater</span> Dunes</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-01-31</p> <p>This VIS image of the floor of Kaiser <span class="hlt">Crater</span> contains a large variety of sand dune shapes and sizes. The "whiter" material is the hard <span class="hlt">crater</span> floor surface. Kaiser <span class="hlt">Crater</span> is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser <span class="hlt">Crater</span> is just one of several large <span class="hlt">craters</span> with extensive dune fields on the <span class="hlt">crater</span> floor. Other nearby dune filled <span class="hlt">craters</span> are Proctor, Russell, and Rabe. Kaiser <span class="hlt">Crater</span> is 207 km (129 miles) in diameter. The dunes are located in the southern part of the <span class="hlt">crater</span> floor. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 35430 Latitude: -46.8699 Longitude: 19.4731 Instrument: VIS Captured: 2009-12-09 14:09 https://photojournal.jpl.nasa.gov/catalog/PIA22263</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997MNRAS.288..995J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997MNRAS.288..995J"><span>Theoretical and observational determinations of the ionization coefficient of <span class="hlt">meteors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jones, William</p> <p>1997-07-01</p> <p>We examine the problem of the determination of the ionization coefficient beta from both the theoretical and observational points of view. In the past, theoretical evaluations of beta in terms of the relevant scattering cross-sections have used the Massey-Sida formula, which we show to give results which are plainly incorrect. We derive an integral equation for beta and compare the results of its application to copper and iron with laboratory simulations. Agreement for the variation of the ionization coefficient with velocity is good. The ionization coefficient has been determined observationally by Verniani & Hawkins from a comparison of radar and visual observations, employing the luminous efficiency tau also obtained observationally by Verniani. However, this determination of tau would appear to be invalidated by fragmentation. There is good evidence that the radiation of cometary <span class="hlt">meteors</span> is dominated by that of iron in the visual range, and we have accordingly re-analysed the data of Verniani & Hawkins using the luminous efficiency of iron obtained in simulation experiments. However, it is not possible to choose an iron concentration which gives agreement between the determination of the ionization coefficient by this means and its determination from the theoretical equation in terms of either scattering coefficients or simulation methods. The observational ionization coefficients are much lower than predicted by the present theory and we provisionally explain this as a consequence of transfer of charge from the <span class="hlt">meteoric</span> ion to a molecule of the air. It is now possible for the <span class="hlt">meteoric</span> atom to be re-ionized, but it is also possible at sufficiently high initial line densities for significant dissociative recombination of the electrons and nitrogen or oxygen to take place. This recombination will not take place in <span class="hlt">meteor</span> trains simulated in an ionization chamber. We thus conclude that the present theory is limited to faint radio <span class="hlt">meteors</span> at lower velocities (v<~35</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.P23B1374K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.P23B1374K"><span>Cataloging of <span class="hlt">Craters</span> on Enceladus</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karpes, B. A.; Stoddard, P. R.</p> <p>2008-12-01</p> <p>The surface of Saturn's satellite Enceladus is unique in terms of the amount of geologic activity that is taking place on what many had once assumed would be a cold and dead icy moon. Instead of a cold, <span class="hlt">cratered</span> surface we have found a surface scarred with signs of tectonic activity in the form of numerous long rifts and fractures and we have seen cryovolcanic activity emanating from the south polar region. Using mostly Cassini images (a few of the map images are from Voyager), we are currently in the process of creating a comprehensive catalog of <span class="hlt">craters</span> that, we believe, will be an invaluable tool in aiding our understanding of this enigmatic moon. The catalog will give the location of all <span class="hlt">craters</span> measuring at least one-half degree (~2.2 km) in diameter. In addition to location and size, the catalog will also note deformation of the <span class="hlt">craters</span>, both in terms of rifting and ellipticity. The deformations can give us insight to the tectonic history (i.e. many of the <span class="hlt">craters</span> show post impact rifting) as well as giving us a further tool to study tectonic stresses across the surface. Areas of differing resolution are highlighted as they are an important limiting factor in determining <span class="hlt">crater</span> densities. It is for this reason that <span class="hlt">crater</span> sizes of one-half degree were chosen as they are more identifiable in lower resolution areas than <span class="hlt">craters</span> that are much smaller. We intend to study <span class="hlt">crater</span> distribution and have so far noted high <span class="hlt">crater</span> densities between 216° W and 144° W and between 10° S and 10° N approximately centered around 180° longitude (the antipode to the sub-Saturnian point). In addition to our study of <span class="hlt">crater</span> distribution we believe this catalog, upon completion, will be useful in the study of surface processes and surface heating of Enceladus.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA14611.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA14611.html"><span>Line of <span class="hlt">Craters</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-06-04</p> <p>NASA Cassini spacecraft takes a close look at a row of <span class="hlt">craters</span> on Saturn moon Tethys during the spacecraft April 14, 2012, flyby of the moon. Three large <span class="hlt">craters</span> are visible along the terminator between day and night on Tethys.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA12935.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA12935.html"><span>Fresh Copernican <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2009-12-21</p> <p>A subset of NAC Image M112162602L showing landslides bottom covering impact melt on the floor top of a fresh Copernican-age <span class="hlt">crater</span> at the edge of Oceanus Procellarum and west of Balboa <span class="hlt">crater</span> taken by NASA Lunar Reconnaissance Orbiter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004NCimC..27..359S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004NCimC..27..359S"><span>UV <span class="hlt">meteor</span> observation from a space platform</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Scarsi, P.</p> <p>2004-07-01</p> <p>The paper reports on the evaluation of the <span class="hlt">meteor</span> light curve in the 300-400 nm UV band produced by meteoroids and space debris interacting with the Earth atmosphere; the aim is to assess the visibility of the phenomenon by a near-Earth space platform and to estimate the capability for measuring the solid-body influx on the Earth from outer space. The simulations have been conceived on the basis of general processes only, without introducing a priori observational inputs: the calibration with real data can be made in orbit by validation with "characterized" <span class="hlt">meteor</span> streams. Computations are made for different values of the entry velocity (12 to 72 km/s) and angle of impact of the meteoroid when entering the atmosphere, with initial-mass values ranging from 10-12 kg to the kg size encompassing the transition from micrometeorites ( m < 10-9-10-8kg) to the "ablation" regime typical of larger masses. The data are presented using units in UV Magnitudo to facilitate direct comparison with the common literature in the field. The results concern observations of the atmosphere up to M UV = 18 by a height of 400 km above the Earth surface (average for the International Space Station--ISS), with reference to the mission "Extreme Universe Space Observatory--EUSO" designed as an external payload for the module "Columbus" of the European Space Agency. <span class="hlt">Meteors</span> represent for EUSO an observable as a slow UV phenomenon with seconds to minutes characteristic time duration, to be compared to the fast phenomenon typical of the Extensive Air Shower (EAS) induced by the energetic cosmic radiation, ranging from microseconds to milliseconds. Continuous wide-angle observation by EUSO with its high inclination orbit and sensitivity reaching M UV = 18 will allow the in-depth exploration of the <span class="hlt">meteor</span> "sporadic" component and to isolate the contribution of minor "streams".</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03832&hterms=knife&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dknife','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03832&hterms=knife&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dknife"><span>Galle <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>(Released 19 June 2002) The Science This image is of part of Galle <span class="hlt">Crater</span>, located at 51.9S, 29.5W. This image was taken far enough south and late enough into the southern hemisphere fall to catch observe water ice clouds partially obscuring the surface. The most striking aspect of the surface is the dissected layered unit to the left in the image. Other areas also appear to have layering, but they are either more obscured by clouds or are less well defined on the surface. The layers appear to be mostly flat lying and layer boundaries appear as topographic lines would on a map, but there are a few areas where it appears that these layers have been deformed to some level. Other areas of the image contain rugged, mountainous terrain as well as a separate pitted terrain where the surface appears to be a separate unit from the mountains and the layered terrain. The Story Galle <span class="hlt">Crater</span> is officially named after a German astronomer who, in 1846, was the first to observe the planet Neptune. It is better known, however, as the 'Happy Face <span class="hlt">Crater</span>.' The image above focuses on too small an area of the <span class="hlt">crater</span> to see its beguiling grin, but you can catch the rocky line of a 'half-smile' in the context image to the right (to the left of the red box). While water ice clouds make some of the surface harder to see, nothing detracts from the fabulous layering at the center left-hand edge of the image. If you click on the above image, the scalloped layers almost look as if a giant knife has swirled through a landscape of cake frosting. These layers, the rugged, mountains near them, and pits on the surface (upper to middle section of the image on the right-hand side) all create varying textures on the <span class="hlt">crater</span> floor. With such different features in the same place, geologists have a lot to study to figure out what has happened in the <span class="hlt">crater</span> since it formed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22147.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22147.html"><span>Investigating Mars: Rabe <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-21</p> <p>This is a false color image of Rabe <span class="hlt">Crater</span>. In this combination of filters "blue" typically means basaltic sand. This VIS image crosses the entire <span class="hlt">crater</span> and demonstrates how extensive the dunes are on the floor of Rabe <span class="hlt">Crater</span>. Rabe <span class="hlt">Crater</span> is 108 km (67 miles) across. <span class="hlt">Craters</span> of similar size often have flat floors. Rabe <span class="hlt">Crater</span> has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the <span class="hlt">crater</span> is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the <span class="hlt">crater</span> forming a large sand sheet with surface dune forms as well as individual dunes where the <span class="hlt">crater</span> floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 67013 Latitude: -43.2572 Longitude: 34</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9971E..2MK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9971E..2MK"><span><span class="hlt">Meteor</span> tracking via local pattern clustering in spatio-temporal domain</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kukal, Jaromír.; Klimt, Martin; Švihlík, Jan; Fliegel, Karel</p> <p>2016-09-01</p> <p>Reliable <span class="hlt">meteor</span> detection is one of the crucial disciplines in astronomy. A variety of imaging systems is used for <span class="hlt">meteor</span> path reconstruction. The traditional approach is based on analysis of 2D image sequences obtained from a double station video observation system. Precise localization of <span class="hlt">meteor</span> path is difficult due to atmospheric turbulence and other factors causing spatio-temporal fluctuations of the image background. The proposed technique performs non-linear preprocessing of image intensity using Box-Cox transform as recommended in our previous work. Both symmetric and asymmetric spatio-temporal differences are designed to be robust in the statistical sense. Resulting local patterns are processed by data whitening technique and obtained vectors are classified via cluster analysis and Self-Organized Map (SOM).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020575','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020575"><span><span class="hlt">Meteoric</span> sphaerosiderite lines and their use for paleohydrology and paleoclimatology</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ludvigson, Greg A.; Gonzalez, Luis A.; Metzger, R.A.; Witzke, B.J.; Brenner, Richard L.; Murillo, A.P.; White, T.S.</p> <p>1998-01-01</p> <p>Sphaerosiderite, a morphologically distinct millimeter-scale spherulitic siderite (FeCO3), forms predominantly in wetland soils and sediments, and is common in the geologic record. Ancient sphaerosiderites are found in paleosol horizons within coal-bearing stratigraphic intervals and, like their modern counterparts, are interpreted as having formed in water-saturated environments. Here we report on sphaerosiderites from four different stratigraphic units, each of which has highly variable 13C and relatively stable 18O compositions. The unique isotopic trends are analogous to well-documented <span class="hlt">meteoric</span> calcite lines, which we define here as <span class="hlt">meteoric</span> sphaerosiderite lines. <span class="hlt">Meteoric</span> sphaerosiderite lines provide a new means of constraining ground-water ??18O and thus allow evaluation of paleohydrology and paleoclimate in humid continental settings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EPSC....9..454R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EPSC....9..454R"><span>The Variability of <span class="hlt">Crater</span> Identification Among Expert and Community <span class="hlt">Crater</span> Analysts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robbins, S. J.; Antonenko, I.; Kirchoff, M. R.; Chapman, C. R.; Fassett, C. I.; Herrick, R. R.; Singer, K.; Zanetti, M.; Lehan, C.; Huang, D.; Gay, P.</p> <p>2014-04-01</p> <p>Statistical studies of impact <span class="hlt">crater</span> populations have been used to model ages of planetary surfaces for several decades [1]. This assumes that <span class="hlt">crater</span> counts are approximately invariant and a "correct" population will be identified if the analyst is skilled and diligent. However, the reality is that <span class="hlt">crater</span> identification is somewhat subjective, so variability between analysts, or even a single analyst's variation from day-to-day, is expected [e.g., 2, 3]. This study was undertaken to quantify that variability within an expert analyst population and between experts and minimally trained volunteers.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.4393C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.4393C"><span><span class="hlt">Meteoric</span> 10Be as a tool to investigate human induced soil fluxes: a conceptual model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; De Vente, Joris; Boix-Fayos, Carolina; Minella, Jean; Baken, Stijn; Smolders, Erik</p> <p>2014-05-01</p> <p>The use of <span class="hlt">meteoric</span> 10Be as a tool to understand long term landscape behavior is becoming increasingly popular. Due its high residence time, <span class="hlt">meteoric</span> 10Be allows in principle to investigate in situ erosion rates over time scales exceeding the period studied with classical approaches such as 137Cs. The use of <span class="hlt">meteoric</span> 10Be strongly contributes to the traditional interpretation of sedimentary archives which cannot be unequivocally coupled to sediment production and could provide biased information over longer time scales (Sadler, 1981). So far, <span class="hlt">meteoric</span> 10Be has successfully been used in geochemical fingerprinting of sediments, to date soil profiles, to assess soil residence times and to quantify downslope soil fluxes using accumulated 10Be inventories along a hill slope. However, less attention is given to the potential use of the tracer to directly asses human induced changes in soil fluxes through deforestation, cultivation and reforestation. A good understanding of the processes governing the distribution of <span class="hlt">meteoric</span> 10Be both within the soil profile and at landscape scale is essential before <span class="hlt">meteoric</span> 10Be can be successfully applied to assess human impact. We developed a spatially explicit 2D-model (Be2D) in order to gain insight in <span class="hlt">meteoric</span> 10Be movement along a hillslope that is subject to human disturbance. Be2D integrates both horizontal soil fluxes and vertical <span class="hlt">meteoric</span> 10Be movement throughout the soil prolife. Horizontal soil fluxes are predicted using (i) well studied geomorphical laws for natural erosion and soil formation as well as (ii) human accelerated water and tillage erosion. Vertical movement of <span class="hlt">meteoric</span> 10Be throughout the soil profile is implemented by inserting depth dependent retardation calculated using experimentally determined partition coefficients (Kd). The model was applied to different environments such as (i) the Belgian loess belt, characterized by aeolian deposits enriched in inherited <span class="hlt">meteoric</span> 10Be, (ii) highly degraded and stony</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19917.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19917.html"><span>Dark, Recurring Streaks on Walls of Garni <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-09-28</p> <p>Dark narrow streaks, called "recurring slope lineae," emanate from the walls of Garni <span class="hlt">Crater</span> on Mars, in this view constructed from observations by the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. The dark streaks here are up to few hundred yards, or meters, long. They are hypothesized to be formed by flow of briny liquid water on Mars. The image was produced by first creating a 3-D computer model (a digital terrain map) of the area based on stereo information from two HiRISE observations, and then draping an image over the land-shape model. The vertical dimension is exaggerated by a factor of 1.5 compared to horizontal dimensions. The draped image is a red waveband (monochrome) product from HiRISE observation ESP_031059_1685, taken on March 12, 2013 at 11.5 degrees south latitude, 290.3 degrees east longitude. Other image products from this observation are at http://hirise.lpl.<span class="hlt">arizona</span>.edu/ESP_031059_1685. http://photojournal.jpl.nasa.gov/catalog/PIA19917</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20252.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20252.html"><span><span class="hlt">Craters</span> - False Color</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-02-04</p> <p>The THEMIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. This image captured by NASA 2001 Mars Odyssey spacecraft shows a group of unnamed <span class="hlt">craters</span> north of Fournier <span class="hlt">Crater</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986RaSc...21..501C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986RaSc...21..501C"><span>Polarization rotation in <span class="hlt">meteor</span> burst communication systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cannon, P. S.</p> <p>1986-06-01</p> <p>Theoretical modeling of several <span class="hlt">meteor</span> burst communication (MBC) paths indicates that polarization rotation losses are significant for a linearly polarized system operating near 40 MHz. Losses for a hybrid system with physical installation problems, consisting of linearly polarized transmitting and circularly polarized receiving antennas, were found to be less. Both ionospheric Faraday rotation polarization changes, and underdense <span class="hlt">meteor</span> trail scattering wave polarization rotation, are considered. These losses are found to cause a 15-70 percent data throughput reduction of the value predicted for the situation without polarization rotation, in the two 40-MHz linearly polarized links considered for noon summer solstice conditions during high solar sunspot number periods. Qualitative experimental confirmation is provided through a cross polarization approach.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21591.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21591.html"><span>Secondary <span class="hlt">Craters</span> in Bas Relief</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-04-17</p> <p>NASA's Mars Reconnaissance Orbiter (MRO) captured this region of Mars, sprayed with secondary <span class="hlt">craters</span> from 10-kilometer Zunil <span class="hlt">Crater</span> to the northwest. Secondary <span class="hlt">craters</span> form from rocks ejected at high speed from the primary <span class="hlt">crater</span>, which then impact the ground at sufficiently high speed to make huge numbers of much smaller <span class="hlt">craters</span> over a large region. In this scene, however, the secondary <span class="hlt">crater</span> ejecta has an unusual raised-relief appearance like bas-relief sculpture. How did that happen? One idea is that the region was covered with a layer of fine-grained materials like dust or pyroclastics about 1 to 2 meters thick when the Zunil impact occurred (about a million years ago), and the ejecta served to harden or otherwise protect the fine-grained layer from later erosion by the wind. https://photojournal.jpl.nasa.gov/catalog/PIA21591</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-31_Draconids.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-31_Draconids.html"><span>ScienceCast 31: Draconid <span class="hlt">Meteor</span> Outburst</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-10-05</p> <p>Forecasters say Earth is heading for a stream of dust from Comet 21P/Giacobini-Zinner. A close encounter with the comet's fragile debris could spark a <span class="hlt">meteor</span> outburst over parts of our planet on October 8th.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22144.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22144.html"><span>Investigating Mars: Rabe <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-18</p> <p>The majority of the dune field in Rabe <span class="hlt">Crater</span> consists of a sand sheet with dune forms on the surface. The sand sheet is where a thick layer of sand has been concentrated. As continued winds blow across the sand surface it creates dune forms. The depth of the sand sheet prevents excavation to the <span class="hlt">crater</span> floor and the dune forms all appear connected. Rabe <span class="hlt">Crater</span> is 108 km (67 miles) across. <span class="hlt">Craters</span> of similar size often have flat floors. Rabe <span class="hlt">Crater</span> has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the <span class="hlt">crater</span> is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the <span class="hlt">crater</span> forming a large sand sheet with surface dune forms as well as individual dunes where the <span class="hlt">crater</span> floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 58024 Latitude: -43.6954 Longitude: 34.8236 Instrument: VIS Captured: 2015-01-12 09:48 https://photojournal.jpl.nasa.gov/catalog/PIA22144</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014acm..conf..426P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014acm..conf..426P"><span>The Chelyabinsk <span class="hlt">meteor</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Popova, O.; Jenniskens, P.; Shuvalov, V.; Emel'yanenko, V.; Rybnov, Y.; Kharlamov, V.; Kartashova, A.; Biryukov, E.; Khaibrakhmanov, S.</p> <p>2014-07-01</p> <p>A review is given about what was learned about the 0.5-Mt Chelyabinsk airburst of 15 February 2013 by field studies, the analysis of recovered meteorites, and numerical models of meteoroid fragmentation and airburst propagation. Previous events with comparable or larger energy in recent times include only the 0.5-Mt -sized 3 August 1963 <span class="hlt">meteor</span> over the south Atlantic, for which only an infrasound signal was recorded, and the famous Tunguska impact of 1908. Estimates of the initial kinetic energy of the Tunguska impact range from 3 to 50 Mt, due to the lack of good observations at the time. The Chelyabinsk event is much better documented than both, and provides a unique opportunity to calibrate the different approaches used to model meteoroid entry and calculate the damaging effects of a shock wave from a large meteoroid impact. A better understanding of what happened might help future impact hazard mitigation efforts by calibrating models of what might happen under somewhat different circumstances. The initial kinetic energy is estimated from infrasonic signals and the fireball's lightcurve, as well as the extent of the glass damage on the ground. Analysis of video observations of the fireball and the shadow movements provided an impact trajectory and a record of the <span class="hlt">meteor</span> lightcurve, which describes how that energy was deposited in the atmosphere. Ablation and fragmentation scenarios determine the success of attempts to reproduce the observed <span class="hlt">meteor</span> lightcurve and deceleration profile by numerical modeling. There was almost no deceleration until peak brightness. Meteoroid fragmentation occurred in different forms, some part of the initial mass broke in well separated fragments, the surviving fragments falling on the ground as meteorites. The specific conditions during energy deposition determined the fraction of surviving mass. The extent of the glass damage was mapped by visiting over 50 villages in the area. A number of numerical simulations were conducted that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/29588','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/29588"><span>Geologic associations of <span class="hlt">Arizona</span> willow in the White Mountains, <span class="hlt">Arizona</span></span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Jonathan W. Long; Alvin L. Medina</p> <p>2007-01-01</p> <p>The <span class="hlt">Arizona</span> willow (Salix arizonica Dorn) is a rare species growing in isolated populations at the margins of the Colorado Plateau. Although its habitat in the White Mountains of <span class="hlt">Arizona</span> has been mischaracterized as basaltic, the area is actually a complex mixture of felsic, basaltic and epiclastic formations. Comparing the distribution of the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930005204','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930005204"><span>Low-emissivity impact <span class="hlt">craters</span> on Venus</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weitz, C. M.; Elachi, C.; Moore, H. J.; Basilevsky, A. T.; Ivanov, B. A.; Schaber, G. G.</p> <p>1992-01-01</p> <p>An analysis of 144 impact <span class="hlt">craters</span> on Venus has shown that 11 of these have floors with average emissivities lower than 0.8. The remaining <span class="hlt">craters</span> have emissivities between 0.8 and 0.9, independent of the specific backscatter cross section of the <span class="hlt">crater</span> floors. These 144 impact <span class="hlt">craters</span> were chosen from a possible 164 <span class="hlt">craters</span> with diameters greater than 30 km as identified by researchers for 89 percent of the surface of Venus. We have only looked at <span class="hlt">craters</span> below 6053.5 km altitude because a mineralogical change causes high reflectivity/low emissivity above the altitude. We have also excluded all <span class="hlt">craters</span> with diameters smaller than 30 km because the emissivity footprint at periapsis is 16 x 24 km and becomes larger at the poles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFMED51A0004P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFMED51A0004P"><span>The Explorer's Guide to Impact <span class="hlt">Craters</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pierazzo, E.; Osinski, G.; Chuang, F.</p> <p>2004-12-01</p> <p>Impact <span class="hlt">cratering</span> is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, or fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact <span class="hlt">craters</span> are the dominant landform. On other planetary bodies impact <span class="hlt">craters</span> are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of <span class="hlt">crater</span> populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact <span class="hlt">cratering</span> has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: ``How do scientists learn about impact <span class="hlt">cratering</span>?'', and ``What information do impact <span class="hlt">craters</span> provide in understanding the evolution of a planetary surface?'' Fundamental approaches used by scientists to learn about impact <span class="hlt">cratering</span> include field work at known terrestrial <span class="hlt">craters</span>, remote sensing studies of <span class="hlt">craters</span> on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact <span class="hlt">cratering</span>. We will provide students, science teachers, and the general public an opportunity to experience the scientific endeavor of understanding and exploring impact <span class="hlt">craters</span> through a multi-level approach including images, videos, and rock samples. This type of interactive learning can also be made available to the general public in the form of a website, which can be addressed worldwide at any time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21152.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21152.html"><span>Palikir <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-10-27</p> <p>Today's VIS image is of Palikir <span class="hlt">Crater</span> in Terra Sirenum. The inner rim of the <span class="hlt">crater</span> is dissected with numerous gullies. In higher resolution images from other imagers these gullies are the location of changing linea, which appear to grow and retreat as seasons change. Orbit Number: 65311 Latitude: -41.6177 Longitude: 202.206 Instrument: VIS Captured: 2016-09-03 13:12 http://photojournal.jpl.nasa.gov/catalog/PIA21152</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20092.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20092.html"><span>Central Pit <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-11-13</p> <p><span class="hlt">Crater</span> floors can have a range of features, from flat to a central peak or a central pit. This image from NASA 2001 Mars Odyssey spacecraft shows an unnamed <span class="hlt">crater</span> in Terra Sabaea has a central pit. This unnamed <span class="hlt">crater</span> in Terra Sabaea has a central pit. The different floor features develop do due several factors, including the size of the impactor, the geology of the surface material and the geology of the materials at depth. Orbit Number: 60737 Latitude: 22.3358 Longitude: 61.2019 Instrument: VIS Captured: 2015-08-23 20:13 http://photojournal.jpl.nasa.gov/catalog/PIA20092</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014pim4.conf...39A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014pim4.conf...39A"><span>FreeTure: A Free software to capTure <span class="hlt">meteors</span> for FRIPON</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Audureau, Yoan; Marmo, Chiara; Bouley, Sylvain; Kwon, Min-Kyung; Colas, François; Vaubaillon, Jérémie; Birlan, Mirel; Zanda, Brigitte; Vernazza, Pierre; Caminade, Stephane; Gattecceca, Jérôme</p> <p>2014-02-01</p> <p>The Fireball Recovery and Interplanetary Observation Network (FRIPON) is a French project started in 2014 which will monitor the sky, using 100 all-sky cameras to detect <span class="hlt">meteors</span> and to retrieve related meteorites on the ground. There are several detection software all around. Some of them are proprietary. Also, some of them are hardware dependent. We present here the open source software for <span class="hlt">meteor</span> detection to be installed on the FRIPON network's stations. The software will run on Linux with gigabit Ethernet cameras and we plan to make it cross platform. This paper is focused on the <span class="hlt">meteor</span> detection method used for the pipeline development and the present capabilities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..266..384J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..266..384J"><span>CAMS newly detected <span class="hlt">meteor</span> showers and the sporadic background</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jenniskens, P.; Nénon, Q.; Gural, P. S.; Albers, J.; Haberman, B.; Johnson, B.; Morales, R.; Grigsby, B. J.; Samuels, D.; Johannink, C.</p> <p>2016-03-01</p> <p>The Cameras for Allsky <span class="hlt">Meteor</span> Surveillance (CAMS) video-based meteoroid orbit survey adds 60 newly identified showers to the IAU Working List of <span class="hlt">Meteor</span> Showers (numbers 427, 445-446, 506-507, and part of 643-750). 28 of these are also detected in the independent SonotaCo survey. In total, 230 <span class="hlt">meteor</span> showers and shower components are identified in CAMS data, 177 of which are detected in at least two independent surveys. From the power-law size frequency distribution of detected showers, we extrapolate that 36% of all CAMS-observed <span class="hlt">meteors</span> originated from ∼700 showers above the N = 1 per 110,000 shower limit. 71% of mass falling to Earth from streams arrives on Jupiter-family type orbits. The transient Geminids account for another 15%. All meteoroids not assigned to streams form a sporadic background with highest detected numbers from the apex source, but with 98% of mass falling in from the antihelion source. Even at large ∼7-mm sizes, a Poynting-Robertson drag evolved population is detected, which implies that the Grün et al. collisional lifetimes at these sizes are underestimated by about a factor of 10. While these large grains survive collisions, many fade on a 104-y timescale, possibly because they disintegrate into smaller particles by processes other than collisions, leaving a more resilient population to evolve.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21911.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21911.html"><span>Emesh <span class="hlt">Crater</span> on Ceres</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-11-02</p> <p>This image taken by NASA's Dawn spacecraft shows Emesh, a <span class="hlt">crater</span> on Ceres. Emesh, named after the Sumerian god of vegetation and agriculture, is 12 miles (20 kilometers) wide. Located at the edge of the Vendimia Planitia, the floor of this <span class="hlt">crater</span> is asymmetrical with terraces distributed along the eastern rim. Additionally, this image shows many subtle linear features that are likely the surface expressions of faults. These faults play a big role in shaping Ceres' <span class="hlt">craters</span>, leading to non-circular <span class="hlt">craters</span> such as Emesh. To the left of Emesh in this view, a much older <span class="hlt">crater</span> of similar size has mostly been erased by impacts and their ejecta. Dawn took this image on May 11, 2016, from its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 11 degrees north latitude, 158 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21911</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EM%26P..111..105N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EM%26P..111..105N"><span>IAU MDC Photographic <span class="hlt">Meteor</span> Orbits Database: Version 2013</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neslušan, L.; Porubčan, V.; Svoreň, J.</p> <p>2014-05-01</p> <p>A new 2013 version of the IAU MDC photographic <span class="hlt">meteor</span> orbits database which is an upgrade of the current 2003 version (Lindblad et al. 2003, EMP 93:249-260) is presented. To the 2003 version additional 292 orbits are added, thus the new version of the database consists of 4,873 <span class="hlt">meteors</span> with their geophysical and orbital parameters compiled in 41 catalogues. For storing the data, a new format enabling a more simple treatment with the parameters, including the errors of their determination is applied. The data can be downloaded from the IAU MDC web site: http://www.astro.sk/IAUMDC/Ph2013/</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22265.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22265.html"><span>Investigating Mars: Kaiser <span class="hlt">Crater</span> Dunes</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-02-02</p> <p>This is a false color image of Kaiser <span class="hlt">Crater</span>. In this combination of filters "blue" typically means basaltic sand. This VIS image crosses 3/4 of the <span class="hlt">crater</span> and demonstrates how extensive the dunes are on the floor of Kaiser <span class="hlt">Crater</span>. Kaiser <span class="hlt">Crater</span> is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser <span class="hlt">Crater</span> is just one of several large <span class="hlt">craters</span> with extensive dune fields on the <span class="hlt">crater</span> floor. Other nearby dune filled <span class="hlt">craters</span> are Proctor, Russell, and Rabe. Kaiser <span class="hlt">Crater</span> is 207 km (129 miles) in diameter. The dunes are located in the southern part of the <span class="hlt">crater</span> floor. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 66602 Latitude: -47.0551 Longitude: 19.446 Instrument: VIS Captured: 2016-12-18 21:42 https://photojournal.jpl.nasa.gov/catalog/PIA22265</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA476971','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA476971"><span>Theoretical and Observational Studies of <span class="hlt">Meteor</span> Interactions with the Ionosphere</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-06-01</p> <p>within an order of magnitude. The histograms of scattering mass, calculated from data collected at the ALTAIR rada are contained in Figure 1 . These...RTO-MP-IST-056 12 - 1 UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Theoretical and Observational Studies of <span class="hlt">Meteor</span> Interactions with the...Observational Studies of <span class="hlt">Meteor</span> Interactions with the Ionosphere. In Characterising the Ionosphere (pp. 12- 1 – 12-12). Meeting Proceedings RTO-MP-IST-056</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..288...69H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..288...69H"><span>Spatial distribution of impact <span class="hlt">craters</span> on Deimos</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirata, Naoyuki</p> <p>2017-05-01</p> <p>Deimos, one of the Martian moons, has numerous impact <span class="hlt">craters</span>. However, it is unclear whether <span class="hlt">crater</span> saturation has been reached on this satellite. To address this issue, we apply a statistical test known as nearest-neighbor analysis to analyze the <span class="hlt">crater</span> distribution of Deimos. When a planetary surface such as the Moon is saturated with impact <span class="hlt">craters</span>, the spatial distribution of <span class="hlt">craters</span> is generally changed from random to more ordered. We measured impact <span class="hlt">craters</span> on Deimos from Viking and HiRISE images and found (1) that the power law of the size-frequency distribution of the <span class="hlt">craters</span> is approximately -1.7, which is significantly shallower than those of potential impactors, and (2) that the spatial distribution of <span class="hlt">craters</span> over 30 m in diameter cannot be statistically distinguished from completely random distribution, which indicates that the surface of Deimos is inconsistent with a surface saturated with impact <span class="hlt">craters</span>. Although a <span class="hlt">crater</span> size-frequency distribution curve with a slope of -2 is generally interpreted as indicating saturation equilibrium, it is here proposed that two competing mechanisms, seismic shaking and ejecta emplacement, have played a major role in erasing <span class="hlt">craters</span> on Deimos and are therefore responsible for the shallow slope of this curve. The observed <span class="hlt">crater</span> density may have reached steady state owing to the obliterations induced by the two competing mechanisms. Such an occurrence indicates that the surface is saturated with impact <span class="hlt">craters</span> despite the random distribution of <span class="hlt">craters</span> on Deimos. Therefore, this work proposes that the age determined by the current <span class="hlt">craters</span> on Deimos reflects neither the age of Deimos itself nor that of the formation of the large concavity centered at its south pole because <span class="hlt">craters</span> should be removed by later impacts. However, a few of the largest <span class="hlt">craters</span> on Deimos may be indicative of the age of the south pole event.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EP%26S...70....2E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EP%26S...70....2E"><span>Autonomous spectrographic system to analyse the main elements of fireballs and <span class="hlt">meteors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Espartero, Francisco Ángel; Martínez, Germán; Frías, Marta; Montes Moya, Francisco Simón; Castro-Tirado, Alberto Javier</p> <p>2018-01-01</p> <p>We present a <span class="hlt">meteor</span> observation system based on imaging CCD cameras, wide-field optics and a diffraction grating. This system is composed of two independent spectrographs with different configurations, which allows us to capture images of fireballs and <span class="hlt">meteors</span> with several fields of view and sensitivities. The complete set forms a small autonomous observatory, comprised of a sealed box with a sliding roof, weather station and computers for data storing and reduction. Since 2014, several <span class="hlt">meteors</span> have been studied using this facility, such as the Alcalá la Real fireball recorded on 30 September 2016.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22261.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22261.html"><span>Investigating Mars: Kaiser <span class="hlt">Crater</span> Dunes</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-01-29</p> <p>This VIS image of Kaiser <span class="hlt">Crater</span> shows a region of the dunes with varied appearances. The different dune forms developed due to different amounts of available sand, different wind directions, and the texture of the <span class="hlt">crater</span> floor. The dune forms change from the bottom to the top of the image - large long connected dunes, to large individual dunes, to the very small individual dunes at the top of the image. Kaiser <span class="hlt">Crater</span> is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser <span class="hlt">Crater</span> is just one of several large <span class="hlt">craters</span> with extensive dune fields on the <span class="hlt">crater</span> floor. Other nearby dune filled <span class="hlt">craters</span> are Proctor, Russell, and Rabe. Kaiser <span class="hlt">Crater</span> is 207 km (129 miles) in diameter. The dunes are located in the southern part of the <span class="hlt">crater</span> floor. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 71,000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 17686 Latitude: -46.6956 Longitude: 19.8394 Instrument: VIS Captured: 2005-12-09 13:25 https://photojournal.jpl.nasa.gov/catalog/PIA22261</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22173.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22173.html"><span>Investigating Mars: Kaiser <span class="hlt">Crater</span> Dunes</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-01-24</p> <p>This VIS image of Kaiser <span class="hlt">Crater</span> shows individual dunes and where the dunes have coalesced into longer dune forms. The addition of sand makes the dunes larger and the intra-dune areas go from sand-free to complete coverage of the hard surface of the <span class="hlt">crater</span> floor. With a continued influx of sand the region will transition from individual dunes to a sand sheet with surface dune forms. Kaiser <span class="hlt">Crater</span> is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser <span class="hlt">Crater</span> is just one of several large <span class="hlt">craters</span> with extensive dune fields on the <span class="hlt">crater</span> floor. Other nearby dune filled <span class="hlt">craters</span> are Proctor, Russell, and Rabe. Kaiser <span class="hlt">Crater</span> is 207 km (129 miles) in diameter. The dunes are located in the southern part of the <span class="hlt">crater</span> floor. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 1423 Latitude: -46.9573 Longitude: 18.6192 Instrument: VIS Captured: 2002-04-10 16:44 https://photojournal.jpl.nasa.gov/catalog/PIA22173</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613010G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613010G"><span>Seismic characterization of the Chelyabinsk <span class="hlt">meteor</span>'s terminal explosion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>González, Álvaro; Heimann, Sebastian; Wang, Rongjiang; Cesca, Simone; Dahm, Torsten</p> <p>2014-05-01</p> <p>On February 15th, 2013, an exceptionally large <span class="hlt">meteor</span> in the region of Chelyabinsk, Russia, produced a powerful shock wave which caused unprecedented damage to people and property, the strongest atmospheric infrasound signal ever recorded, and remarkable ground motion. Here we describe and model the resulting Rayleigh waves, recorded at broadband seismic stations at distances from ~230 to ~4,100 km. Our full-waveform modeling uses a seismogram simulation code specifically tailored to consider wave propagation in the atmosphere and solid Earth, and the coupling at the interface between them. An isotropic point-like airburst reproduces very well the available seismic observations, without requiring a more complex explanation, such as a moving source. The measured seismic shaking was generated by direct coupling of the atmospheric shock wave to the ground, and then it propagated outwards faster than the atmospheric shock wave itself, at up to 3.9 km/s. The best-fitting airburst location (61.22° E, 54.88° N) is SW of Chelyabinsk city, exactly at the terminal part of the <span class="hlt">meteor</span>'s trajectory, just after it experienced a dramatic flare, with apparent brightness larger than the Sun's. We estimated the <span class="hlt">meteor</span>'s ground path from published trajectory data, eyewitness observations, and detailed satellite imagery of the exact location where a major meteorite fragment landed, in the frozen Lake Chebarkul (60.32074° E, 54.95966° N). Fixing the source origin time allowed us calculating that the explosion took place in the stratosphere, at an altitude of 22.5 ± 1.5 km. This value is lower than the reported altitude of peak brightness (about 29.5 km), but more consistent with the observations of shock wave travel times. Such results highlight the importance of terminal energy release down to lower altitude. We analyzed a surveillance video recorded inside a factory (61.347° E, 54.902° N) at Korkino, a locality close to the airburst. It shows a time delay of 87.5 seconds</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRA..123.3183Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRA..123.3183Y"><span>Estimation of Mesospheric Densities at Low Latitudes Using the Kunming <span class="hlt">Meteor</span> Radar Together With SABER Temperatures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yi, Wen; Xue, Xianghui; Reid, Iain M.; Younger, Joel P.; Chen, Jinsong; Chen, Tingdi; Li, Na</p> <p>2018-04-01</p> <p>Neutral mesospheric densities at a low latitude have been derived during April 2011 to December 2014 using data from the Kunming <span class="hlt">meteor</span> radar in China (25.6°N, 103.8°E). The daily mean density at 90 km was estimated using the ambipolar diffusion coefficients from the <span class="hlt">meteor</span> radar and temperatures from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument. The seasonal variations of the <span class="hlt">meteor</span> radar-derived density are consistent with the density from the Mass Spectrometer and Incoherent Scatter (MSIS) model, show a dominant annual variation, with a maximum during winter, and a minimum during summer. A simple linear model was used to separate the effects of atmospheric density and the <span class="hlt">meteor</span> velocity on the <span class="hlt">meteor</span> radar peak detection height. We find that a 1 km/s difference in the vertical <span class="hlt">meteor</span> velocity yields a change of approximately 0.42 km in peak height. The strong correlation between the <span class="hlt">meteor</span> radar density and the velocity-corrected peak height indicates that the <span class="hlt">meteor</span> radar density estimates accurately reflect changes in neutral atmospheric density and that <span class="hlt">meteor</span> peak detection heights, when adjusted for meteoroid velocity, can serve as a convenient tool for measuring density variations around the mesopause. A comparison of the ambipolar diffusion coefficient and peak height observed simultaneously by two co-located <span class="hlt">meteor</span> radars indicates that the relative errors of the daily mean ambipolar diffusion coefficient and peak height should be less than 5% and 6%, respectively, and that the absolute error of the peak height is less than 0.2 km.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012224','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012224"><span>Low-velocity impact <span class="hlt">craters</span> in ice and ice-saturated sand with implications for Martian <span class="hlt">crater</span> count ages.</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Croft, S.K.; Kieffer, S.W.; Ahrens, T.J.</p> <p>1979-01-01</p> <p>We produced a series of decimeter-sized impact <span class="hlt">craters</span> in blocks of ice near 0oC and -70oC and in ice-saturated sand near -70oC as a preliminary investigation of <span class="hlt">cratering</span> in materials analogous to those found on Mars and the outer solar satellites. <span class="hlt">Crater</span> diameters in the ice-saturated sand were 2 times larger than <span class="hlt">craters</span> in the same energy and velocity range in competent blocks of granite, basalt and cement. <span class="hlt">Craters</span> in ice were c.3 times larger. Martian impact <span class="hlt">crater</span> energy versus diameter scaling may thus be a function of latitude. -from Authors</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA08784&hterms=duck&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dduck','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA08784&hterms=duck&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dduck"><span>'Victoria <span class="hlt">Crater</span>' from 'Duck Bay' (Stereo)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2006-01-01</p> <p><p/> [figure removed for brevity, see original site] Figure 1 <p/> [figure removed for brevity, see original site] Figure 2 <p/> NASA's Mars rover Opportunity edged 3.7 meters (12 feet) closer to the top of the 'Duck Bay' alcove along the rim of 'Victoria <span class="hlt">Crater</span>' during the rover's 952nd Martian day, or sol (overnight Sept. 27 to Sept. 28), and gained this vista of the <span class="hlt">crater</span>. The rover's navigation camera took the seven exposures combined into this mosaic view of the <span class="hlt">crater</span>'s interior. This <span class="hlt">crater</span> has been the mission's long-term destination for the past 21 Earth months. <p/> The far side of the <span class="hlt">crater</span> is about 800 meters (one-half mile) away. The rim of the <span class="hlt">crater</span> is composed of alternating promontories, rocky points towering approximately 70 meters (230 feet) above the <span class="hlt">crater</span> floor, and recessed alcoves, such as Duck Bay. The bottom of the <span class="hlt">crater</span> is covered by sand that has been shaped into ripples by the Martian wind. The rocky cliffs in the foreground have been informally named 'Cape Verde,' on the left, and 'Cabo Frio,' on the right. <p/> Victoria <span class="hlt">Crater</span> is about five times wider than 'Endurance <span class="hlt">Crater</span>,' which Opportunity spent six months examining in 2004, and about 40 times wider than 'Eagle <span class="hlt">Crater</span>,' where Opportunity first landed. The great lure of Victoria is an expectation that the thick stack of geological layers exposed in the <span class="hlt">crater</span> walls could reveal the record of past environmental conditions over a much greater span of time than Opportunity has read from rocks examined earlier in the mission. <p/> The stereo-anaglyph view presented here is a cylindrical projection with geometric seam correction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970023492','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970023492"><span>Impact <span class="hlt">Cratering</span> Calculations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ahrens, Thomas J.</p> <p>1997-01-01</p> <p>Understanding the physical processes of impact <span class="hlt">cratering</span> on planetary surfaces and atmospheres as well as collisions of finite-size self-gravitating objects is vitally important to planetary science. The observation has often been made that <span class="hlt">craters</span> are the most ubiquitous landform on the solid planets and the satellites. The density of <span class="hlt">craters</span> is used to date surfaces on planets and satellites. For large ringed basin <span class="hlt">craters</span> (e.g. Chicxulub), the issue of identification of exactly what 'diameter' transient <span class="hlt">crater</span> is associated with this structure is exemplified by the arguments of Sharpton et al. (1993) versus those of Hildebrand et al. (1995). The size of a transient <span class="hlt">crater</span>, such as the K/T extinction <span class="hlt">crater</span> at Yucatan, Mexico, which is thought to be the source of SO,-induced sulfuric acid aerosol that globally acidified surface waters as the result of massive vaporization of CASO, in the target rock, is addressed by our present project. The impact process excavates samples of planetary interiors. The degree to which this occurs (e.g. how deeply does excavation occur for a given <span class="hlt">crater</span> diameter) has been of interest, both with regard to exposing mantle rocks in <span class="hlt">crater</span> floors, as well as launching samples into space which become part of the terrestrial meteorite collection (e.g. lunar meteorites, SNC's from Mars). Only in the case of the Earth can we test calculations in the laboratory and field. Previous calculations predict, independent of diameter, that the depth of excavation, normalized by <span class="hlt">crater</span> diameter, is d(sub ex)/D = 0.085 (O'Keefe and Ahrens, 1993). For Comet Shoemaker-Levy 9 (SL9) fragments impacting Jupiter, predicted excavation depths of different gas-rich layers in the atmosphere, were much larger. The trajectory and fate of highly shocked material from a large impact on the Earth, such as the K/T bolide is of interest. Melosh et al. (1990) proposed that the condensed material from the impact upon reentering the Earth's atmosphere induced. radiative</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21753.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21753.html"><span>Juling and Kupalo <span class="hlt">Craters</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-08-17</p> <p>This region on Ceres, located in the vicinity of Toharu <span class="hlt">Crater</span>, presents two small <span class="hlt">craters</span>: Juling at top (12 miles, 20 kilometers in diameter) and Kupalo at bottom (16 miles, 26 kilometers in diameter). Both <span class="hlt">craters</span> are relatively young, as indicated by their sharp rims. These features are located at about the same latitude (about 38 degrees south) as Tawals <span class="hlt">Crater</span> and show similar <span class="hlt">crater</span> shapes and rugged terrain. These features may reflect the presence of ice below the surface. Subtle bright features can be distinguished in places. These likely were excavated by small impacts and landslides along the slopes of the <span class="hlt">crater</span> rims. This suggests that a different type of material, likely rich in salts, is present in the shallow subsurface. Juling is named after the Sakai/Orang Asli spirit of the crops from Malaysia, and Kupalo gets its name from the Russian god of vegetation and of the harvest. NASA's Dawn spacecraft acquired this picture on August 24, 2016. The image was taken during Dawn's extended mission, from its low altitude mapping orbit at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 38 degrees south latitude, 165 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21753</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED323741.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED323741.pdf"><span><span class="hlt">Arizona</span>'s Parents Speak Out. Planning for <span class="hlt">Arizona</span>'s Future, Part III.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>O'Connell, Joanne C.; And Others</p> <p></p> <p>This report is the final in a series designed to assist in the planning and development of a comprehensive, coordinated service delivery system for <span class="hlt">Arizona</span> infants and toddlers who are developmentally delayed or at risk of developing handicapping conditions, and their families, as outlined in Public Law 99-457. It documents the needs of <span class="hlt">Arizona</span>'s…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMSA41A1551C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMSA41A1551C"><span>Satellite Investigation of Atmospheric Metal Deposition During <span class="hlt">Meteor</span> Showers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Correira, J.; Aikin, A. C.; Grebowsky, J. M.</p> <p>2008-12-01</p> <p>Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the magnesium column densities and any connection to possible enhanced mass deposition during a <span class="hlt">meteor</span> shower. We derive a time dependent mass flux rate due to <span class="hlt">meteor</span> showers using published estimates of mass density and activity profiles of <span class="hlt">meteor</span> showers. An average daily mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities from the years 1996 - 2001.There appears to be little correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ACP....10..909C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ACP....10..909C"><span>Metal concentrations in the upper atmosphere during <span class="hlt">meteor</span> showers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.</p> <p>2010-02-01</p> <p>Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a <span class="hlt">meteor</span> shower. Time-dependent mass influx rates are derived for all the major <span class="hlt">meteor</span> showers using published estimates of mass density and temporal profiles of <span class="hlt">meteor</span> showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ACPD....918705C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ACPD....918705C"><span>Metal concentrations in the upper atmosphere during <span class="hlt">meteor</span> showers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Correira, J.; Aikin, A. C.; Grebowsky, J. M.; Burrows, J. P.</p> <p>2009-09-01</p> <p>Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spectrometer on the ERS-2 satellite, we investigate short term variations in the vertical magnesium column densities in the atmosphere and any connection to possible enhanced mass deposition during a <span class="hlt">meteor</span> shower. Time-dependent mass influx rates are derived for all the major <span class="hlt">meteor</span> showers using published estimates of mass density and temporal profiles of <span class="hlt">meteor</span> showers. An average daily sporadic background mass flux rate is also calculated and used as a baseline against which calculated shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal vertical column densities of Mg and Mg+ from the years 1996-2001. There is no correlation between theoretical mass flux rates and changes in the Mg and Mg+ metal column densities. A possible explanation for the lack of a shower related increase in metal concentrations may be differences in the mass regimes dominating the average background mass flux and shower mass flux.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Geomo.296...11M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Geomo.296...11M"><span>Snow-avalanche impact <span class="hlt">craters</span> in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite <span class="hlt">craters</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.</p> <p>2017-11-01</p> <p>This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between <span class="hlt">craters</span> produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact <span class="hlt">craters</span> (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The <span class="hlt">craters</span> are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. <span class="hlt">Crater</span> diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on <span class="hlt">crater</span> size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the <span class="hlt">crater</span>, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled <span class="hlt">craters</span>. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact <span class="hlt">craters</span> is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary <span class="hlt">craters</span> or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of <span class="hlt">crater</span> formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with <span class="hlt">cratering</span> by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a <span class="hlt">crater</span> of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a <span class="hlt">crater</span> of similar size</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930005117','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930005117"><span>Bright <span class="hlt">crater</span> outflows: Possible emplacement mechanisms</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chadwick, D. John; Schaber, Gerald G.; Strom, Robert G.; Duval, Darla M.</p> <p>1992-01-01</p> <p>Lobate features with a strong backscatter are associated with 43 percent of the impact <span class="hlt">craters</span> cataloged in Magellan's cycle 1. Their apparent thinness and great lengths are consistent with a low-viscosity material. The longest outflow yet identified is about 600 km in length and flows from the 90-km-diameter <span class="hlt">crater</span> Addams. There is strong evidence that the outflows are largely composed of impact melt, although the mechanisms of their emplacement are not clearly understood. High temperatures and pressures of target rocks on Venus allow for more melt to be produced than on other terrestrial planets because lower shock pressures are required for melting. The percentage of impact <span class="hlt">craters</span> with outflows increases with increasing <span class="hlt">crater</span> diameter. The mean diameter of <span class="hlt">craters</span> without outflows is 14.4 km, compared with 27.8 km for <span class="hlt">craters</span> with outflows. No <span class="hlt">craters</span> smaller than 3 km, 43 percent of <span class="hlt">craters</span> in the 10- to 30-km-diameter range, and 90 percent in the 80- to 100-km-diameter range have associated bright outflows. More melt is produced in the more energetic impact events that produce larger <span class="hlt">craters</span>. However, three of the four largest <span class="hlt">craters</span> have no outflows. We present four possible mechanisms for the emplacement of bright outflows. We believe this 'shotgun' approach is justified because all four mechanisms may indeed have operated to some degree.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA15121.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA15121.html"><span>Vesta <span class="hlt">Cratered</span> Landscape: Double <span class="hlt">Crater</span> and <span class="hlt">Craters</span> with Bright Ejecta</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-11-23</p> <p>This image from NASA Dawn spacecraft is dominated by a double <span class="hlt">crater</span> which may have been formed by the simultaneous impact of a binary asteroid. Binary asteroids are asteroids that orbit their mutual center of mass.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20696.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20696.html"><span>Shadowed <span class="hlt">Craters</span> on Ceres</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-07-08</p> <p>At the poles of Ceres, scientists have found <span class="hlt">craters</span> that are permanently in shadow (indicated by blue markings). Such <span class="hlt">craters</span> are called "cold traps" if they remain below about minus 240 degrees Fahrenheit (minus 151 degrees Celsius). These shadowed <span class="hlt">craters</span> may have been collecting ice for billions of years because they are so cold. This image was created using data from NASA's Dawn spacecraft. http://photojournal.jpl.nasa.gov/catalog/PIA20696</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930043867&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dbarlow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930043867&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dbarlow"><span>The Martian impact <span class="hlt">cratering</span> record</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Strom, Robert G.; Croft, Steven K.; Barlow, Nadine G.</p> <p>1992-01-01</p> <p>A detailed analysis of the Martian impact <span class="hlt">cratering</span> record is presented. The major differences in impact <span class="hlt">crater</span> morphology and morphometry between Mars and the moon and Mercury are argued to be largely the result of subsurface volatiles on Mars. In general, the depth to these volatiles may decrease with increasing latitude in the southern hemisphere, but the base of this layer may be at a more or less constant depth. The Martial crustal dichotomy could have been the result of a very large impact near the end of the accretion of Mars. Monte Carlo computer simulations suggest that such an impact was not only possible, but likely. The Martian highland <span class="hlt">cratering</span> record shows a marked paucity of <span class="hlt">craters</span> less than about 30 km in diameter relative to the lunar highlands. This paucity of <span class="hlt">craters</span> was probably the result of the obliteration of <span class="hlt">craters</span> by an early period of intense erosion and deposition by aeolian, fluvial, and glacial processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991IJRSP..20...82R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991IJRSP..20...82R"><span>Winds in the <span class="hlt">meteor</span> zone over Trivandrum</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reddi, C. R.; Rajeev, K.; Ramakumar, Geetha</p> <p>1991-04-01</p> <p>The height profiles of the zonal and meridional wind obtained from the <span class="hlt">meteor</span> wind radar data recorded at Trivandrum (8 deg 36 min N, 77 deg E) are presented. Large wind shears were found to exist in the <span class="hlt">meteor</span> zone over Trivandrum. The profiles showed quasi-sinusoidal variations with altitude and vertical wavelength of the oscillation in the range 15-25 km. Further, there was a large day-to-day variability in the profiles obtained for the same local time on consecutive days. The results are discussed in the light of the winds due to tides and equatorial waves in the low latitudes. The implications of the large wind shears with reference to the local wind effects on the equatorial electrojet are outlined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110016596','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110016596"><span>The New <span class="hlt">Meteor</span> Radar at Penn State: Design and First Observations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Urbina, J.; Seal, R.; Dyrud, L.</p> <p>2011-01-01</p> <p>In an effort to provide new and improved <span class="hlt">meteor</span> radar sensing capabilities, Penn State has been developing advanced instruments and technologies for future <span class="hlt">meteor</span> radars, with primary objectives of making such instruments more capable and more cost effective in order to study the basic properties of the global <span class="hlt">meteor</span> flux, such as average mass, velocity, and chemical composition. Using low-cost field programmable gate arrays (FPGAs), combined with open source software tools, we describe a design methodology enabling one to develop state-of-the art radar instrumentation, by developing a generalized instrumentation core that can be customized using specialized output stage hardware. Furthermore, using object-oriented programming (OOP) techniques and open-source tools, we illustrate a technique to provide a cost-effective, generalized software framework to uniquely define an instrument s functionality through a customizable interface, implemented by the designer. The new instrument is intended to provide instantaneous profiles of atmospheric parameters and climatology on a daily basis throughout the year. An overview of the instrument design concepts and some of the emerging technologies developed for this <span class="hlt">meteor</span> radar are presented.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22136537-large-crater-asteroid-steins-really-impact-crater','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22136537-large-crater-asteroid-steins-really-impact-crater"><span>IS THE LARGE <span class="hlt">CRATER</span> ON THE ASTEROID (2867) STEINS REALLY AN IMPACT <span class="hlt">CRATER</span>?</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Morris, A. J. W.; Price, M. C.; Burchell, M. J., E-mail: m.j.burchell@kent.ac.uk</p> <p></p> <p>The large <span class="hlt">crater</span> on the asteroid (2867) Steins attracted much attention when it was first observed by the Rosetta spacecraft in 2008. Initially, it was widely thought to be unusually large compared to the size of the asteroid. It was quickly realized that this was not the case and there are other examples of similar (or larger) <span class="hlt">craters</span> on small bodies in the same size range; however, it is still widely accepted that it is a <span class="hlt">crater</span> arising from an impact onto the body which occurred after its formation. The asteroid (2867) Steins also has an equatorial bulge, usually consideredmore » to have arisen from redistribution of mass due to spin-up of the body caused by the YORP effect. Conversely, it is shown here that, based on catastrophic disruption experiments in laboratory impact studies, a similarly shaped body to the asteroid Steins can arise from the break-up of a parent in a catastrophic disruption event; this includes the presence of a large <span class="hlt">crater</span>-like feature and equatorial bulge. This suggests that the large <span class="hlt">crater</span>-like feature on Steins may not be a <span class="hlt">crater</span> from a subsequent impact, but may have arisen directly from the fragmentation process of a larger, catastrophically disrupted parent.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780057835&hterms=TNT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTNT','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780057835&hterms=TNT&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DTNT"><span><span class="hlt">Cratering</span> motions and structural deformation in the rim of the Prairie Flat multiring explosion <span class="hlt">crater</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roddy, D. J.; Ullrich, G. W.; Sauer, F. M.; Jones, G. H. S.</p> <p>1977-01-01</p> <p><span class="hlt">Cratering</span> motions and structural deformation are described for the rim of the Prairie Flat multiring <span class="hlt">crater</span>, 85.5 m across and 5.3 m deep, which was formed by the detonation of a 500-ton TNT surface-tangent sphere. The terminal displacement and motion data are derived from marker cans and velocity gages emplaced in drill holes in a three-dimensional matrix radial to the <span class="hlt">crater</span>. The integration of this data with a detailed geologic cross section, mapped from deep trench excavations through the rim, provides a composite view of the general sequence of motions that formed a transiently uplifted rim, overturned flap, inverted stratigraphy, downfolded rim, and deformed strata in the <span class="hlt">crater</span> walls. Preliminary comparisons with laboratory experimental <span class="hlt">cratering</span> and with numerical simulations indicate that explosion <span class="hlt">craters</span> of the Prairie Flat-type generated by surface and near-surface energy sources tend to follow predictable motion sequences and produce comparable structural deformation. More specifically, central uplift and multiring impact <span class="hlt">craters</span> with morphologies and structures comparable to Prairie Flat are inferred to have experienced similar deformational histories of the rim, such as uplift, overturning, terracing, and downfolding.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..297....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..297....1S"><span>Results of the first continuous <span class="hlt">meteor</span> head echo survey at polar latitudes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schult, Carsten; Stober, Gunter; Janches, Diego; Chau, Jorge L.</p> <p>2017-11-01</p> <p>We present the first quasi continuous <span class="hlt">meteor</span> head echo measurements obtained during a period of over two years using the Middle Atmosphere ALOMAR Radar System (MAARSY). The measurements yield information on the altitude, trajectory, vector velocity, radar cross section, deceleration and dynamical mass of every single event. The large statistical amount of nearly one million <span class="hlt">meteor</span> head detections provide an excellent overview of the elevation, altitude, velocity and daily count rate distributions during different times of the year at polar latitudes. Only 40% of the <span class="hlt">meteors</span> were detected within the full width half maximum of the specific sporadic <span class="hlt">meteor</span> sources. Our observation of the sporadic <span class="hlt">meteors</span> are compared to the observations with other radar systems and a <span class="hlt">meteor</span> input function (MIF). The best way to compare different radar systems is by comparing the radar cross section (RCS), which is the main detection criterion for each system. In this study we aim to compare our observations with a MIF, which provides information only about the meteoroid mass. Thus, we are using a statistical approach for the elevation and velocity dependent visibility and a specific mass selection. The predicted absolute count rates from the MIF are in a good agreement with the observation when it is assumed that the radar system is only sensitive to meteoroids with masses higher than one microgram. The analysis of the dynamic masses seems to be consistent with this assumption since the count rate of events with smaller masses are low and decrease even more by using events with relatively small errors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22142.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22142.html"><span>Investigating Mars: Rabe <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-14</p> <p>This VIS image of Rabe <span class="hlt">Crater</span> is dominated by the extensive dunes that cover the <span class="hlt">crater</span> floor. To the top of the image part of the pit is visible, as well as a small peninsula that has been eroded into the upper level floor materials. On the upper elevation on the side left of the peninsula the dunes cascade onto the lower pit elevation. There is also a slight arc to the dunes on the pit floor due to how the peninsula changed the wind pattern. Rabe <span class="hlt">Crater</span> is 108 km (67 miles) across. <span class="hlt">Craters</span> of similar size often have flat floors. Rabe <span class="hlt">Crater</span> has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the <span class="hlt">crater</span> is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the <span class="hlt">crater</span> forming a large sand sheet with surface dune forms as well as individual dunes where the <span class="hlt">crater</span> floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 52206 Latitude: -43.6573 Longitude: 34.9551 Instrument: VIS Captured: 2013</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22141.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22141.html"><span>Investigating Mars: Rabe <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-13</p> <p>Dunes cover the majority of this image of Rabe <span class="hlt">Crater</span>. As the dunes are created by wind action the forms of the dunes record the wind direction. Dunes will have a long low angle component and a short high angle side. The steep side is called the slip face. The wind blows up the long side of the dune. In this VIS image the slip faces are illuminated more than the longer side. In this part of the <span class="hlt">crater</span> the winds were generally moving from the lower right corner of the image towards the upper left. Rabe <span class="hlt">Crater</span> is 108 km (67 miles) across. <span class="hlt">Craters</span> of similar size often have flat floors. Rabe <span class="hlt">Crater</span> has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the <span class="hlt">crater</span> is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the <span class="hlt">crater</span> forming a large sand sheet with surface dune forms as well as individual dunes where the <span class="hlt">crater</span> floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 35105 Latitude: -43</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010404','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010404"><span>Moon-Mercury: Relative preservation states of secondary <span class="hlt">craters</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scott, D.H.</p> <p>1977-01-01</p> <p>Geologic mapping of the Kuiper quadrangle of Mercury and other geologic studies of the planet indicate that secondary <span class="hlt">craters</span> are much better preserved than those on the moon around primary <span class="hlt">craters</span> of similar size and morphology. Among the oldest recognized secondary <span class="hlt">craters</span> on the moon associated with <span class="hlt">craters</span> 100 km across or less are those of Posidonius, Atlas and Plato; these <span class="hlt">craters</span> have been dated as middle to late Imbrian in age. Many <span class="hlt">craters</span> on Mercury with dimensions, morphologies and superposed <span class="hlt">crater</span> densities similar to these lunar <span class="hlt">craters</span> have fields and clusters of fresher appearing secondary <span class="hlt">craters</span>. The apparent differences between secondary-<span class="hlt">crater</span> morphology and parent <span class="hlt">crater</span> may be due in part to: (1) rapid isostatic adjustment of the parent <span class="hlt">crater</span>; (2) different impact fluxes between the two planets; and (or) (3) to the greater concentration of Mercurian secondaries around impact areas, thereby accentuating <span class="hlt">crater</span> forms. Another factor which may contribute to the better state of preservation of Mercurian secondaries relative to the moon is the difference in <span class="hlt">crater</span> ejecta velocities on both bodies. These velocities have been calculated for fields of secondary <span class="hlt">craters</span> at about equal ranges from lunar and Mercurian parent <span class="hlt">craters</span>. Results show that ejection velocities of material producing most of the secondary <span class="hlt">craters</span> are rather low (<1 km/s) but velocities on Mercury are about 50% greater than those on the moon for equivalent ranges. Higher velocities may produce morphologically enhanced secondary <span class="hlt">craters</span> which may account for their better preservation with time. ?? 1977.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017M%26PS...52..493H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017M%26PS...52..493H"><span>Martian <span class="hlt">cratering</span> 11. Utilizing decameter scale <span class="hlt">crater</span> populations to study Martian history</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hartmann, W. K.; Daubar, I. J.</p> <p>2017-03-01</p> <p>New information has been obtained in recent years regarding formation rates and the production size-frequency distribution (PSFD) of decameter-scale primary Martian <span class="hlt">craters</span> formed during recent orbiter missions. Here we compare the PSFD of the currently forming small primaries (P) with new data on the PSFD of the total small <span class="hlt">crater</span> population that includes primaries and field secondaries (P + fS), which represents an average over longer time periods. The two data sets, if used in a combined manner, have extraordinary potential for clarifying not only the evolutionary history and resurfacing episodes of small Martian geological formations (as small as one or few km2) but also possible episodes of recent climatic change. In response to recent discussions of statistical methodologies, we point out that <span class="hlt">crater</span> counts do not produce idealized statistics, and that inherent uncertainties limit improvements that can be made by more sophisticated statistical analyses. We propose three mutually supportive procedures for interpreting <span class="hlt">crater</span> counts of small <span class="hlt">craters</span> in this context. Applications of these procedures support suggestions that topographic features in upper meters of mid-latitude ice-rich areas date only from the last few periods of extreme Martian obliquity, and associated predicted climate excursions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21920.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21920.html"><span>Juling <span class="hlt">Crater</span>'s Floor</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-03-14</p> <p>This view from NASA's Dawn mission shows the floor of Ceres' Juling <span class="hlt">Crater</span>. The <span class="hlt">crater</span> floor shows evidence of the flow of ice and rock, similar to rock glaciers in Earth's polar regions. Dawn acquired the picture with its framing camera on Aug. 30, 2016. https://photojournal.jpl.nasa.gov/catalog/PIA21920</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21908.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21908.html"><span>Axomama <span class="hlt">Crater</span> on Ceres</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-10-06</p> <p>This image from NASA's Dawn spacecraft highlights Axomama <span class="hlt">Crater</span>, the small <span class="hlt">crater</span> shown to the right of center. It is 3 miles (5 kilometers) in diameter and located just inside the western rim of Dantu <span class="hlt">Crater</span>. Axomama is one of the newly named <span class="hlt">craters</span> on Ceres. Its sharp edges indicate recent emplacement by a small impact. This picture also shows details on the floor of Dantu, which comprises most of the image. The many fractures and the central pit (see also PIA20303) are reminiscent of Occator <span class="hlt">Crater</span> and could point to a similar formation history, involving activity driven by the presence of liquid water in the subsurface. Axomama is named after the Incan goddess of potato, or "Potato-mother." NASA's Dawn spacecraft acquired this picture during its extended mission on July 24, 2016, from its low altitude mapping orbit at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 24 degrees north latitude, 131 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21908</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001ESASP.495..419E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001ESASP.495..419E"><span>Effects of meteoroid fragmentation on radar observations of <span class="hlt">meteor</span> trails</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elford, W. Graham; Campbell, L.</p> <p>2001-11-01</p> <p>Radar reflections from <span class="hlt">meteor</span> trails often differ from the predictions of simple models. There is general consensus that these differences are probably the result of fragmentation of the meteoroid. Several examples taken from different types of <span class="hlt">meteor</span> radar observations are considered in order to test the validity of the fragmentation hypothesis. The absence of the expected Fresnel oscillations in many observations of transverse scatter from <span class="hlt">meteor</span> trails is readily explained by assuming a number of ablating fragments spread out along the trails. Observations of amplitude fluctuations in head echoes from "down-the-beam" meteoroids are explained by gross fragmentation of a meteoroid into two or more pieces. Another down-the-beam event is modeled by simulation of the differential retardation of two fragments of different mass, giving reasonable agreement between the observed and predicted radar signals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26126271','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26126271"><span><span class="hlt">METEOR</span>: An Enterprise Health Informatics Environment to Support Evidence-Based Medicine.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Puppala, Mamta; He, Tiancheng; Chen, Shenyi; Ogunti, Richard; Yu, Xiaohui; Li, Fuhai; Jackson, Robert; Wong, Stephen T C</p> <p>2015-12-01</p> <p>The aim of this paper is to propose the design and implementation of next-generation enterprise analytics platform developed at the Houston Methodist Hospital (HMH) system to meet the market and regulatory needs of the healthcare industry. For this goal, we developed an integrated clinical informatics environment, i.e., Methodist environment for translational enhancement and outcomes research (<span class="hlt">METEOR</span>). The framework of <span class="hlt">METEOR</span> consists of two components: the enterprise data warehouse (EDW) and a software intelligence and analytics (SIA) layer for enabling a wide range of clinical decision support systems that can be used directly by outcomes researchers and clinical investigators to facilitate data access for the purposes of hypothesis testing, cohort identification, data mining, risk prediction, and clinical research training. Data and usability analysis were performed on <span class="hlt">METEOR</span> components as a preliminary evaluation, which successfully demonstrated that <span class="hlt">METEOR</span> addresses significant niches in the clinical informatics area, and provides a powerful means for data integration and efficient access in supporting clinical and translational research. <span class="hlt">METEOR</span> EDW and informatics applications improved outcomes, enabled coordinated care, and support health analytics and clinical research at HMH. The twin pressures of cost containment in the healthcare market and new federal regulations and policies have led to the prioritization of the meaningful use of electronic health records in the United States. EDW and SIA layers on top of EDW are becoming an essential strategic tool to healthcare institutions and integrated delivery networks in order to support evidence-based medicine at the enterprise level.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ttt..work...24S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ttt..work...24S"><span>Titan's Impact <span class="hlt">Cratering</span> Record: Erosion of Ganymedean (and other) <span class="hlt">Craters</span> on a Wet Icy Landscape</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schenk, P.; Moore, J.; Howard, A.</p> <p>2012-04-01</p> <p>We examine the <span class="hlt">cratering</span> record of Titan from the perspective of icy satellites undergoing persistent landscape erosion. First we evaluate whether Ganymede (and Callisto) or the smaller low-gravity neighboring icy satellites of Saturn are the proper reference standard for evaluating Titan’s impact <span class="hlt">crater</span> morphologies, using topographic and morphometric measurements (Schenk, 2002; Schenk et al. (2004) and unpublished data). The special case of Titan’s largest <span class="hlt">crater</span>, Minrva, is addressed through analysis of large impact basins such as Gilgamesh, Lofn, Odysseus and Turgis. Second, we employ a sophisticated landscape evolution and modification model developed for study of martian and other planetary landforms (e.g., Howard, 2007). This technique applies mass redistribution principles due to erosion by impact, fluvial and hydrological processes to a planetary landscape. The primary advantage of our technique is the possession of a limited but crucial body of areal digital elevation models (DEMs) of Ganymede (and Callisto) impact <span class="hlt">craters</span> as well as global DEM mapping of Saturn’s midsize icy satellites, in combination with the ability to simulate rainfall and redeposition of granular material to determine whether Ganymede <span class="hlt">craters</span> can be eroded to resemble Titan <span class="hlt">craters</span> and the degree of erosion required. References: Howard, A. D., “Simulating the development of martian highland landscapes through the interaction of impact <span class="hlt">cratering</span>, fluvial erosion, and variable hydrologic forcing”, Geomorphology, 91, 332-363, 2007. Schenk, P. "Thickness constraints on the icy shells of the galilean satellites from impact <span class="hlt">crater</span> shapes". Nature, 417, 419-421, 2002. Schenk, P.M., et al. "Ages and interiors: the <span class="hlt">cratering</span> record of the Galilean satellites". In: Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 427-456, 2004.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030067009&hterms=TURTLES&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTURTLES','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030067009&hterms=TURTLES&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTURTLES"><span>Numerical Simulations of Silverpit <span class="hlt">Crater</span> Collapse</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Collins, G. S.; Ivanov, B. A.; Turtle, E. P.; Melosh, H. J.</p> <p>2003-01-01</p> <p>The Silverpit <span class="hlt">crater</span> is a recently discovered, 60-65 Myr old complex <span class="hlt">crater</span>, which lies buried beneath the North Sea, about 150 km east of Britain. High-resolution images of Silverpit's subsurface structure, provided by three-dimensional seismic reflection data, reveal an inner-<span class="hlt">crater</span> morphology similar to that expected for a 5-8 km diameter terrestrial <span class="hlt">crater</span>. The <span class="hlt">crater</span> walls show evidence of terrace-style slumping and there is a distinct central uplift, which may have produced a central peak in the pristine <span class="hlt">crater</span> morphology. However, Silverpit is not a typical 5-km diameter terrestrial <span class="hlt">crater</span>, because it exhibits multiple, concentric rings outside the main cavity. External concentric rings are normally associated with much larger impact structures, for example Chicxulub on Earth, or Orientale on the Moon. Furthermore, external rings associated with large impacts on the terrestrial planets and moons are widely-spaced, predominantly inwardly-facing, asymmetric scarps. However, the seismic data show that the external rings at Silverpit represent closely-spaced, concentric faultbound graben, with both inwardly and outwardly facing fault-scarps. This type of multi-ring structure directly analogous to the Valhalla-type multi-ring basins found on the icy satellites. Thus, the presence and style of the multiple rings at Silverpit is surprising given both the size of the <span class="hlt">crater</span> and its planetary setting. A further curiosity of the Silverpit structure is that the external concentric rings appear to be extensional features on the West side of the <span class="hlt">crater</span> and compressional features on the East side. The <span class="hlt">crater</span> also lies in a local depression, thought to be created by postimpact movement of a salt layer buried beneath the <span class="hlt">crater</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21754.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21754.html"><span>Juling <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-08-25</p> <p>This high-resolution image of Juling <span class="hlt">Crater</span> on Ceres reveals, in exquisite detail, features on the rims and <span class="hlt">crater</span> floor. The <span class="hlt">crater</span> is about 1.6 miles (2.5 kilometers) deep and the small mountain, seen left of the center of the <span class="hlt">crater</span>, is about 0.6 miles (1 kilometers) high. The many features indicative of the flow of material suggest the subsurface is rich in ice. The geological structure of this region also generally suggests that ice is involved. The origin of the small depression seen at the top of the mountain is not fully understood but might have formed as a consequence of a landslide, visible on the northeastern flank. Dawn took this image during its extended mission on August 25, 2016, from its low-altitude mapping orbit at a distance of about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 36 degrees south latitude, 167 degrees east longitude. Juling is named after the Sakai/Orang Asli spirit of the crops from Malaysia. NASA's Dawn spacecraft acquired this picture on August 24, 2016. The image was taken during Dawn's extended mission, from its low altitude mapping orbit at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 38 degrees south latitude, 165 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21754</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770054896&hterms=conversion+rate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dconversion%2Brate%2527','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770054896&hterms=conversion+rate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dconversion%2Brate%2527"><span>Relative <span class="hlt">crater</span> production rates on planets</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hartmann, W. K.</p> <p>1977-01-01</p> <p>The relative numbers of impacts on different planets, estimated from the dynamical histories of planetesimals in specified orbits (Wetherill, 1975), are converted by a described procedure to <span class="hlt">crater</span> production rates. Conversions are dependent on impact velocity and surface gravity. <span class="hlt">Crater</span> retention ages can then be derived from the ratio of the <span class="hlt">crater</span> density to the <span class="hlt">crater</span> production rate. The data indicate that the terrestrial planets have <span class="hlt">crater</span> production rates within a factor ten of each other. As an example, for the case of Mars, least-squares fits to <span class="hlt">crater</span>-count data suggest an average age of 0.3 to 3 billion years for two types of channels. The age of Olympus Mons is discussed, and the effect of Tharsis volcanism on channel formation is considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhDT.........6R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhDT.........6R"><span>Planetary Surface Properties, <span class="hlt">Cratering</span> Physics, and the Volcanic History of Mars from a New Global Martian <span class="hlt">Crater</span> Database</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robbins, Stuart James</p> <p></p> <p>Impact <span class="hlt">craters</span> are arguably the primary exogenic planetary process contributing to the surface evolution of solid bodies in the solar system. <span class="hlt">Craters</span> appear across the entire surface of Mars, and they are vital to understanding its crustal properties as well as surface ages and modification events. They allow inferences into the ancient climate and hydrologic history, and they add a key data point for the understanding of impact physics. Previously available databases of Mars impact <span class="hlt">craters</span> were created from now antiquated datasets, automated algorithms with biases and inaccuracies, were limited in scope, and/or complete only to multikilometer diameters. This work presents a new global database for Mars that contains 378,540 <span class="hlt">craters</span> statistically complete for diameters D ≳ 1 km. This detailed database includes location and size, ejecta morphology and morphometry, interior morphology and degradation state, and whether the <span class="hlt">crater</span> is a secondary impact. This database allowed exploration of global <span class="hlt">crater</span> type distributions, depth, and morphologies in unprecedented detail that were used to re-examine basic <span class="hlt">crater</span> scaling laws for the planet. The inclusion of hundreds of thousands of small, approximately kilometer-sized impacts facilitated a detailed study of the properties of nearby fields of secondary <span class="hlt">craters</span> in relation to their primary <span class="hlt">crater</span>. It also allowed the discovery of vast distant clusters of secondary <span class="hlt">craters</span> over 5000 km from their primary <span class="hlt">crater</span>, Lyot. Finally, significantly smaller <span class="hlt">craters</span> were used to age-date volcanic calderas on the planet to re-construct the timeline of the last primary eruption events from 20 of the major Martian volcanoes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22146.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22146.html"><span>Investigating Mars: Rabe <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-20</p> <p>This is a false color image of Rabe <span class="hlt">Crater</span>. In this combination of filters "blue" typically means basaltic sand. Rabe <span class="hlt">Crater</span> is 108 km (67 miles) across. <span class="hlt">Craters</span> of similar size often have flat floors. Rabe <span class="hlt">Crater</span> has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the <span class="hlt">crater</span> is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the <span class="hlt">crater</span> forming a large sand sheet with surface dune forms as well as individual dunes where the <span class="hlt">crater</span> floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 52231 Latitude: -43.6665 Longitude: 34.2627 Instrument: VIS Captured: 2013-09-22 14:29 https://photojournal.jpl.nasa.gov/catalog/PIA22146</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22148.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22148.html"><span>Investigating Mars: Rabe <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-22</p> <p>This is a false color image of Rabe <span class="hlt">Crater</span>. In this combination of filters "blue" typically means basaltic sand. Rabe <span class="hlt">Crater</span> is 108 km (67 miles) across. <span class="hlt">Craters</span> of similar size often have flat floors. Rabe <span class="hlt">Crater</span> has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the <span class="hlt">crater</span> is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the <span class="hlt">crater</span> forming a large sand sheet with surface dune forms as well as individual dunes where the <span class="hlt">crater</span> floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 67144 Latitude: -43.5512 Longitude: 34.5951 Instrument: VIS Captured: 2017-02-01 12:57 https://photojournal.jpl.nasa.gov/catalog/PIA22148</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22145.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22145.html"><span>Investigating Mars: Rabe <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-19</p> <p>This is a false color image of Rabe <span class="hlt">Crater</span>. In this combination of filters "blue" typically means basaltic sand. Rabe <span class="hlt">Crater</span> is 108 km (67 miles) across. <span class="hlt">Craters</span> of similar size often have flat floors. Rabe <span class="hlt">Crater</span> has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the <span class="hlt">crater</span> is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the <span class="hlt">crater</span> forming a large sand sheet with surface dune forms as well as individual dunes where the <span class="hlt">crater</span> floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 51157 Latitude: -43.6787 Longitude: 34.3985 Instrument: VIS Captured: 2013-06-26 05:33 https://photojournal.jpl.nasa.gov/catalog/PIA22145</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22140.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22140.html"><span>Investigating Mars: Rabe <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-12</p> <p>In this VIS image of the floor of Rabe <span class="hlt">Crater</span> the step down into the pit is visible in the sinuous ridges on the left side of the image. The appearance of the exposed side of the cliffs does not look like a volcanic, difficult to erode material, but rather an easy to erode material such as layered sediments. Rabe <span class="hlt">Crater</span> is 108 km (67 miles) across. <span class="hlt">Craters</span> of similar size often have flat floors. Rabe <span class="hlt">Crater</span> has some areas of flat floor, but also has a large complex pit occupying a substantial part of the floor. The interior fill of the <span class="hlt">crater</span> is thought to be layered sediments created by wind and or water action. The pit is eroded into this material. The eroded materials appear to have stayed within the <span class="hlt">crater</span> forming a large sand sheet with surface dune forms as well as individual dunes where the <span class="hlt">crater</span> floor is visible. The dunes also appear to be moving from the upper floor level into the pit. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 34456 Latitude: -43.7164 Longitude: 34.4056 Instrument: VIS Captured: 2009-09-20 09:38 https://photojournal.jpl.nasa.gov/catalog/PIA22140</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150022348','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150022348"><span><span class="hlt">Meteor</span> Shower Forecast Improvements from a Survey of All-Sky Network Observations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moorhead, Althea V.; Sugar, Glenn; Brown, Peter G.; Cooke, William J.</p> <p>2015-01-01</p> <p>Meteoroid impacts are capable of damaging spacecraft and potentially ending missions. In order to help spacecraft programs mitigate these risks, NASA's Meteoroid Environment Office (MEO) monitors and predicts meteoroid activity. Temporal variations in near-Earth space are described by the MEO's annual <span class="hlt">meteor</span> shower forecast, which is based on both past shower activity and model predictions. The MEO and the University of Western Ontario operate sister networks of all-sky <span class="hlt">meteor</span> cameras. These networks have been in operation for more than 7 years and have computed more than 20,000 <span class="hlt">meteor</span> orbits. Using these data, we conduct a survey of <span class="hlt">meteor</span> shower activity in the "fireball" size regime using DBSCAN. For each shower detected in our survey, we compute the date of peak activity and characterize the growth and decay of the shower's activity before and after the peak. These parameters are then incorporated into the annual forecast for an improved treatment of annual activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.4519J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.4519J"><span>Nucleation of nitric acid hydrates in polar stratospheric clouds by <span class="hlt">meteoric</span> material</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>James, Alexander D.; Brooke, James S. A.; Mangan, Thomas P.; Whale, Thomas F.; Plane, John M. C.; Murray, Benjamin J.</p> <p>2018-04-01</p> <p>Heterogeneous nucleation of crystalline nitric acid hydrates in polar stratospheric clouds (PSCs) enhances ozone depletion. However, the identity and mode of action of the particles responsible for nucleation remains unknown. It has been suggested that <span class="hlt">meteoric</span> material may trigger nucleation of nitric acid trihydrate (NAT, or other nitric acid phases), but this has never been quantitatively demonstrated in the laboratory. <span class="hlt">Meteoric</span> material is present in two forms in the stratosphere: smoke that results from the ablation and re-condensation of vapours, and fragments that result from the break-up of meteoroids entering the atmosphere. Here we show that analogues of both materials have a capacity to nucleate nitric acid hydrates. In combination with estimates from a global model of the amount of <span class="hlt">meteoric</span> smoke and fragments in the polar stratosphere we show that <span class="hlt">meteoric</span> material probably accounts for NAT observations in early season polar stratospheric clouds in the absence of water ice.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED458699.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED458699.pdf"><span>Five Shoes Waiting To Drop on <span class="hlt">Arizona</span>'s Future. <span class="hlt">Arizona</span> Policy Choices.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Arizona State Univ., Tempe. Morrison Inst. for Public Policy.</p> <p></p> <p>This fourth annual publication looks at five trends that threaten <span class="hlt">Arizona</span>'s future: (1) a talent shakeup where well-educated young professional and highly skilled immigrants leave the states; (2) the Latino education dilemma, manifest by the fact that only half of <span class="hlt">Arizona</span> Latinos obtain a high-school diploma; (3) a fuzzy economic identity…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JIMO...44..170M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JIMO...44..170M"><span>Results of the IMO Video <span class="hlt">Meteor</span> Network - April 2016</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Molau, S.; Crivello, S.; Goncalves, R.; Saraiva, C.; Stomeo, E.; Kac, J.</p> <p>2016-10-01</p> <p>In 2016 April, a total of 78 video cameras of the IMO Video <span class="hlt">Meteor</span> Network recorded more than 16 000 <span class="hlt">meteors</span> in almost 7 700 hours of observing time. The flux density profile of the Lyrids 2016 is presented and compared to the average for the years 2011-2015. The flux density increased significantly as twilight set in on the morning of 2016 April 22. A similar increase was also seen in 2012. The population index of the Lyrids is also derived from observations around the shower maximum.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA22172.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA22172.html"><span>Investigating Mars: Kaiser <span class="hlt">Crater</span> Dunes</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2018-01-23</p> <p>Kaiser <span class="hlt">Crater</span> is located in the southern hemisphere in the Noachis region west of Hellas Planitia. Kaiser <span class="hlt">Crater</span> is just one of several large <span class="hlt">craters</span> with extensive dune fields on the <span class="hlt">crater</span> floor. Other nearby dune filled <span class="hlt">craters</span> are Proctor, Russell, and Rabe. Kaiser <span class="hlt">Crater</span> is 207 km (129 miles) in diameter. The dunes are located in the southeastern part of the <span class="hlt">crater</span> floor. Most of the individual dunes in Kaiser <span class="hlt">Crater</span> are barchan dunes. Barchan dunes are crescent shaped with the points of the crescent pointing downwind. The sand is blown up the low angle side of the dune and then tumbles down the steep slip face. This dune type forms on hard surfaces where there is limited amounts of sand. Barchan dunes can merge together over time with increased sand in the local area. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside <span class="hlt">craters</span> and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 1036 Latitude: -46.7795 Longitude: 20.2075 Instrument: VIS Captured: 2002-03-09 20:07 https://photojournal.jpl.nasa.gov/catalog/PIA22172</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910013683','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910013683"><span>Martian <span class="hlt">crater</span> counts on Elysium Mons</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mcbride, Kathleen; Barlow, Nadine G.</p> <p>1990-01-01</p> <p>Without returned samples from the Martian surface, relative age chronologies and stratigraphic relationships provide the best information for determining the ages of geomorphic features and surface regions. <span class="hlt">Crater</span>-size frequency distributions of six recently mapped geological units of Elysium Mons were measured to establish their relative ages. Most of the <span class="hlt">craters</span> on Elysium Mons and the adjacent plains units are between 500 and 1000 meters in diameter. However, only <span class="hlt">craters</span> 1 km in diameter or larger were used because of inadequate spatial resolution of some of the Viking images and to reduce probability of counting secondary <span class="hlt">craters</span>. The six geologic units include all of the Elysium Mons construct and a portion of the plains units west of the volcano. The surface area of the units studied is approximately 128,000 sq km. Four of the geologic units were used to create <span class="hlt">crater</span> distribution curves. There are no <span class="hlt">craters</span> larger than 1 km within the Elysium Mons caldera. <span class="hlt">Craters</span> that lacked raised rims, were irregularly shaped, or were arranged in a linear pattern were assumed to be endogenic in origin and not counted. A <span class="hlt">crater</span> frequency distribution analysis is presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740011357','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740011357"><span>The cometary and asteroidal origins of <span class="hlt">meteors</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kresak, L.</p> <p>1973-01-01</p> <p>A quantitative examination of the gravitational and nongravitational changes of orbits shows that for larger interplanetary bodies the perturbations by Jupiter strongly predominate over all other effects, which include perturbations by other planets, splitting of comet nuclei and jet effects of cometary ejections. The structure of <span class="hlt">meteor</span> streams, indicates that the mutual compensation of the changes in individual elements entering the Jacobian integral, which is characteristic for the comets, does not work among the meteoroids. It appears that additional forces of a different kind must exert appreciable influence on the motion of interplanetary particles of meteoroid size. Nevertheless, the distribution of the Jacobian constant in various samples of <span class="hlt">meteor</span> orbits furnishes some information on the type of their parent bodies and on the relative contribution of individual sources.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940023803','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940023803"><span>Some implications of large impact <span class="hlt">craters</span> and basins on Venus for terrestrial ringed <span class="hlt">craters</span> and planetary evolution</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mckinnon, W. B.; Alexopoulos, J. S.</p> <p>1994-01-01</p> <p>Approximately 950 impact <span class="hlt">craters</span> have been identified on the surface of Venus, mainly in Magellan radar images. From a combination of Earth-based Arecibo, Venera 15/1, and Magellan radar images, we have interpreted 72 as unequivocal peak-ring <span class="hlt">craters</span> and four as multiringed basins. The morphological and structural preservation of these <span class="hlt">craters</span> is high owing to the low level of geologic activity on the venusian surface (which is in some ways similar to the terrestrial benthic environment). Thus these <span class="hlt">craters</span> should prove crucial to understanding the mechanics of ringed <span class="hlt">crater</span> formation. They are also the most direct analogs for <span class="hlt">craters</span> formed on the Earth in Phanerozoic time, such as Chicxulub. We summarize our findings to date concerning these structures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRE..123..113S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRE..123..113S"><span><span class="hlt">Crater</span> Mound Formation by Wind Erosion on Mars</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Steele, L. J.; Kite, E. S.; Michaels, T. I.</p> <p>2018-01-01</p> <p>Most of Mars' ancient sedimentary rocks by volume are in wind-eroded sedimentary mounds within impact <span class="hlt">craters</span> and canyons, but the connections between mound form and wind erosion are unclear. We perform mesoscale simulations of different <span class="hlt">crater</span> and mound morphologies to understand the formation of sedimentary mounds. As <span class="hlt">crater</span> depth increases, slope winds produce increased erosion near the base of the <span class="hlt">crater</span> wall, forming mounds. Peak erosion rates occur when the <span class="hlt">crater</span> depth is ˜2 km. Mound evolution depends on the size of the host <span class="hlt">crater</span>. In smaller <span class="hlt">craters</span> mounds preferentially erode at the top, becoming more squat, while in larger <span class="hlt">craters</span> mounds become steeper sided. This agrees with observations where smaller <span class="hlt">craters</span> tend to have proportionally shorter mounds and larger <span class="hlt">craters</span> have mounds encircled by moats. If a large-scale sedimentary layer blankets a <span class="hlt">crater</span>, then as the layer recedes across the <span class="hlt">crater</span> it will erode more toward the edges of the <span class="hlt">crater</span>, resulting in a crescent-shaped moat. When a 160 km diameter mound-hosting <span class="hlt">crater</span> is subject to a prevailing wind, the surface wind stress is stronger on the leeward side than on the windward side. This results in the center of the mound appearing to "march upwind" over time and forming a "bat-wing" shape, as is observed for Mount Sharp in Gale <span class="hlt">crater</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050153818&hterms=organic+chemistry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dorganic%2Bchemistry','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050153818&hterms=organic+chemistry&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dorganic%2Bchemistry"><span><span class="hlt">Meteors</span> do not break exogenous organic molecules into high yields of diatomics</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jenniskens, Peter; Schaller, Emily L.; Laux, Christophe O.; Wilson, Michael A.; Schmidt, Greg; Rairden, Rick L.</p> <p>2004-01-01</p> <p>Meteoroids that dominate the Earth's extraterrestrial mass influx (50-300 microm size range) may have contributed a unique blend of exogenous organic molecules at the time of the origin of life. Such meteoroids are so large that most of their mass is ablated in the Earth's atmosphere. In the process, organic molecules are decomposed and chemically altered to molecules differently from those delivered to the Earth's surface by smaller (<50 microm) micrometeorites and larger (>10 cm) meteorites. The question addressed here is whether the organic matter in these meteoroids is fully decomposed into atoms or diatomic compounds during ablation. If not, then the ablation products made available for prebiotic organic chemistry, and perhaps early biology, might have retained some memory of their astrophysical nature. To test this hypothesis we searched for CN emission in <span class="hlt">meteor</span> spectra in an airborne experiment during the 2001 Leonid <span class="hlt">meteor</span> storm. We found that the <span class="hlt">meteor</span>'s light-emitting air plasma, which included products of <span class="hlt">meteor</span> ablation, contained less than 1 CN molecule for every 30 <span class="hlt">meteoric</span> iron atoms. This contrasts sharply with the nitrogen/iron ratio of 1:1.2 in the solid matter of comet 1P/Halley. Unless the nitrogen content or the abundance of complex organic matter in the Leonid parent body, comet 55P/Tempel-Tuttle, differs from that in comet 1P/Halley, it appears that very little of that organic nitrogen decomposes into CN molecules during <span class="hlt">meteor</span> ablation in the rarefied flow conditions that characterize the atmospheric entry of meteoroids approximately 50 microm-10 cm in size. We propose that the organics of such meteoroids survive instead as larger compounds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018P%26SS..151...85L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018P%26SS..151...85L"><span>Geological mapping of lunar highland <span class="hlt">crater</span> Lalande: Topographic configuration, morphology and <span class="hlt">cratering</span> process</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Liu, ChangQing; Bi, Xiangyu</p> <p>2018-02-01</p> <p>Highland <span class="hlt">crater</span> Lalande (4.45°S, 8.63°W; D = 23.4 km) is located on the PKT area of the lunar near side, southeast of the Mare Insularum. It is a complex <span class="hlt">crater</span> in Copernican era and has three distinguishing features: high silicic anomaly, the highest Th abundance and special landforms on its floor. There are some low-relief bulges on the left of Lalande's floor with regular circle or ellipse shapes. They are ∼250-680 m wide and ∼30-91 m high with maximum flank slopes >20°. There are two possible scenarios for the formation of these low-relief bulges which are impact melt products or young silicic volcanic eruptions. We estimated the absolute model ages of the ejecta deposits, several melt ponds and the hummocky floor and determined the ratio of diameter and depth of the <span class="hlt">crater</span> Lalande. In addition, we found some similar bugle features within other Copernican-aged <span class="hlt">craters</span> and there were no volcanic source vents on Lalande's floor. Thus, we hypothesized that these low-relief bulges were most consistent with an origin of impact melts during the <span class="hlt">crater</span> formation instead of small and young volcanic activities occurring on the floor. Based on Kaguya Terrain Camera (TC) ortho-mosaic and Digital Terrain Model (DTM) data produced by TC imagery in stereo, geological units and some linear features on the floor and wall of Lalande have been mapped. Eight geological units are organized by <span class="hlt">crater</span> floor units: hummocky floor, central peak and low-relief bulges; and <span class="hlt">crater</span> wall units: terraced walls, channeled and veneered walls, interior walls, mass wasting areas, blocky areas, and melt ponds. These geological units and linear features provided us a chance to understand some details of the <span class="hlt">cratering</span> process and elevation differences on the floor. We proposed that subsidence due to melt cooling, late-stage wall collapse and rocks uplifted from beneath the surface could be the possible causes of the observed elevation differences on Lalande's floor.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170001959','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170001959"><span>Investigating Evolved Compositions Around Wolf <span class="hlt">Crater</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greenhagen, B. T.; Cahill, J. T. S.; Jolliff, B. L.; Lawrence, S. J.; Glotch, T. D.</p> <p>2017-01-01</p> <p>Wolf <span class="hlt">crater</span> is an irregularly shaped, approximately 25 km <span class="hlt">crater</span> in the south-central portion of Mare Nubium on the lunar nearside. While not previously identified as a lunar "red spot", Wolf <span class="hlt">crater</span> was identified as a Th anomaly by Lawrence and coworkers. We have used data from the Lunar Reconnaissance Orbiter (LRO) to determine the area surrounding Wolf <span class="hlt">crater</span> has composition more similar to highly evolved, non-mare volcanic structures than typical lunar crustal lithology. In this presentation, we will investigate the geomorphology and composition of the Wolf <span class="hlt">crater</span> and discuss implications for the origin of the anomalous terrain.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA02937.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA02937.html"><span>Heavily <span class="hlt">Cratered</span> Terrain at South Pole</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2000-08-05</p> <p>NASA Mariner 10 photo reveals a heavily <span class="hlt">cratered</span> terrain on Mercury with a prominent scrap extending several hundred kilometers across the upper left. A <span class="hlt">crater</span>, nested in a larger <span class="hlt">crater</span>, is at top center.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.457.1289S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.457.1289S"><span>Physical characteristics of faint <span class="hlt">meteors</span> by light curve and high-resolution observations, and the implications for parent bodies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Subasinghe, Dilini; Campbell-Brown, Margaret D.; Stokan, Edward</p> <p>2016-04-01</p> <p>Optical observations of faint <span class="hlt">meteors</span> (10-7 < mass < 10-4 kg) were collected by the Canadian Automated <span class="hlt">Meteor</span> Observatory between 2010 April and 2014 May. These high-resolution (metre scale) observations were combined with two-station light-curve observations and the meteoroid orbit to classify <span class="hlt">meteors</span> and attempt to answer questions related to meteoroid fragmentation, strength, and light-curve shape. The F parameter was used to classify the <span class="hlt">meteor</span> light-curve shape; the observed morphology was used to classify the fragmentation mode; and the Tisserand parameter described the origin of the meteoroid. We find that most <span class="hlt">meteor</span> light curves are symmetric (mean F parameter 0.49), show long distinct trails (continuous fragmentation), and are cometary in origin. <span class="hlt">Meteors</span> that show no obvious fragmentation (presumably single body objects) show mostly symmetric light curves, surprisingly, and this indicates that light-curve shape is not an indication of fragility or fragmentation behaviour. Approximately 90 per cent of <span class="hlt">meteors</span> observed with high-resolution video cameras show some form of fragmentation. Our results also show, unexpectedly, that <span class="hlt">meteors</span> which show negligible fragmentation are more often on high-inclination orbits (I > 60°) than low-inclination ones. We also find that dynamically asteroidal <span class="hlt">meteors</span> fragment as often as dynamically cometary <span class="hlt">meteors</span>, which may suggest mixing in the early Solar system, or contamination between the dynamic groups.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014DPS....4641310H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014DPS....4641310H"><span>Modeling the Provenance of <span class="hlt">Crater</span> Ejecta</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Ya-Huei; Minton, David A.</p> <p>2014-11-01</p> <p>The <span class="hlt">cratering</span> history of the Moon provides a way to study the violent early history of our early solar system. Nevertheless, we are still limited in our ability to interpret the lunar <span class="hlt">cratering</span> history because the complex process of generation and subsequent transportation and destruction of impact melt products is relatively poorly understood. Here we describe a preliminary model for the transport of datable impact melt products by <span class="hlt">craters</span> over Gy timescales on the lunar surface. We use a numerical model based on the Maxwell Z-model to model the exhumation and transport of ejecta material from within the excavation flow of a transient <span class="hlt">crater</span>. We describe our algorithm for rapidly estimating the provenance of ejecta material for use in a Monte Carlo <span class="hlt">cratering</span> code capable of simulating lunar <span class="hlt">cratering</span> over Gy timescales.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA04410.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA04410.html"><span><span class="hlt">Crater</span> Wall and Floor</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-02-18</p> <p>The impact <span class="hlt">crater</span> observed in this NASA Mars Odyssey image taken in Terra Cimmeria suggests sediments have filled the <span class="hlt">crater</span> due to the flat and smooth nature of the floor compared to rougher surfaces at higher elevations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/5939','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/5939"><span><span class="hlt">Arizona</span> motor vehicle crash facts, 2003</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2004-01-01</p> <p>This publication is an annual statistical review of the motor vehicle crashes in the State of <span class="hlt">Arizona</span> for calendar year : 2003. The results are compiled from <span class="hlt">Arizona</span> Traffic Accident Reports submitted to the <span class="hlt">Arizona</span> Department of : Transportation by ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/5937','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/5937"><span><span class="hlt">Arizona</span> motor vehicle crash facts, 2005</span></a></p> <p><a target="_blank" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2006-01-01</p> <p>This publication is an annual statistical review of the motor vehicle crashes in the State of <span class="hlt">Arizona</span> for calendar year 2005. : The results are compiled from <span class="hlt">Arizona</span> Traffic Accident Reports submitted to the <span class="hlt">Arizona</span> Department of Transportation by : ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.2987K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.2987K"><span>On the electrophonic generation of audio frequency sound by <span class="hlt">meteors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kelley, Michael C.; Price, Colin</p> <p>2017-04-01</p> <p>Recorded for centuries, people can hear and see <span class="hlt">meteors</span> nearly concurrently. Electromagnetic energy clearly propagates at the speed of light and converts to sound (called electrophonics) when coupled to metals. An explanation for the electromagnetic energy source is suggested. Coma ions around the <span class="hlt">meteor</span> head can easily travel across magnetic field lines up to 120 km. The electrons, however, are tied to magnetic field lines, since they must gyrate around the field above 75 km. A large ambipolar electric field must be generated to conserve charge neutrality. This localized electric field maps to the E region then drives a large Hall current that launches the electromagnetic wave. Using antenna theory and following, a power flux of over 10-8 W/m2 at the ground is found. Electrophonic conversion to sound efficiency then needs to be only 0.1% to explain why humans can hear and see <span class="hlt">meteors</span> nearly concurrently.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016pimo.conf..267S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016pimo.conf..267S"><span><span class="hlt">Meteor</span> reporting made easy- The Fireballs in the Sky smartphone app</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sansom, E.; Ridgewell, J.; Bland, P.; Paxman, J.</p> <p>2016-01-01</p> <p>Using smartphone technology, the award-winning 'Fireballs in the Sky' app provides a new approach to public <span class="hlt">meteor</span> reporting. Using the internal GPS and sensors of a smartphone, a user can record the start and end position of a <span class="hlt">meteor</span> sighting with a background star field as reference. Animations are used to visualize the duration and characteristics of the <span class="hlt">meteor</span>. The intuitive application can be used in situ, providing a more accurate eye witness account than after-the-fact reports (although reports may also be made through a website interface). Since its launch in 2013, the app has received over 2000 submissions, including 73 events which were reported by multiple users. The app database is linked to the Desert Fireball Network in Australia (DFN), meaning app reports can be confirmed by DFN observatories. Supporting features include an integrated <span class="hlt">meteor</span> shower tool that provides updates on active showers, their visibility based on moon phase, as well as a tool to point the user toward the radiant. The locations of reports are also now shown on a live map on the Fireballs in the Sky webpage.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>