Sample records for methacrylic acid gelatin

  1. Gelatin Methacrylate Microspheres for Growth Factor Controlled Release

    PubMed Central

    Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.

    2014-01-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489

  2. Methacrylated gelatin/hyaluronan-based hydrogels for soft tissue engineering

    PubMed Central

    Kessler, Lukas; Gehrke, Sandra; Winnefeld, Marc; Huber, Birgit; Hoch, Eva; Walter, Torsten; Wyrwa, Ralf; Schnabelrauch, Matthias; Schmidt, Malte; Kückelhaus, Maximilian; Lehnhardt, Marcus; Hirsch, Tobias; Jacobsen, Frank

    2017-01-01

    In vitro–generated soft tissue could provide alternate therapies for soft tissue defects. The aim of this study was to evaluate methacrylated gelatin/hyaluronan as scaffolds for soft tissue engineering and their interaction with human adipose–derived stem cells (hASCs). ASCs were incorporated into methacrylated gelatin/hyaluronan hydrogels. The gels were photocrosslinked with a lithium phenyl-2,4,6-trimethylbenzoylphosphinate photoinitiator and analyzed for cell viability and adipogenic differentiation of ASCs over a period of 30 days. Additionally, an angiogenesis assay was performed to assess their angiogenic potential. After 24 h, ASCs showed increased viability on composite hydrogels. These results were consistent over 21 days of culture. By induction of adipogenic differentiation, the mature adipocytes were observed after 7 days of culture, their number significantly increased until day 28 as well as expression of fatty acid binding protein 4 and adiponectin. Our scaffolds are promising as building blocks for adipose tissue engineering and allowed long viability, proliferation, and differentiation of ASCs. PMID:29318000

  3. Barrier layers against oxygen transmission on the basis of electron beam cured methacrylated gelatin

    NASA Astrophysics Data System (ADS)

    Scherzer, Tom

    1997-08-01

    The development of barrier layers against oxygen transmission on the basis of radiation-curable methacrylated gelatin will be reported. The electron beam cured gelatin coatings show an extremely low oxygen permeability and a high resistance against boiling water. Moreover, the methacrylated gelatins possess good adhesion characteristics. Therefore, they are suited as barrier adhesives in laminates for food packaging applications. If substrate foils from biodegradable polymers are used, the development of completely biodegradable packaging materials seems to be possible.

  4. Synthesis and Characterization of Gelatin-Based Crosslinkers for the Fabrication of Superabsorbent Hydrogels

    PubMed Central

    Amonpattaratkit, Penphitcha; Khunmanee, Sureerat; Kim, Dong Hyun; Park, Hansoo

    2017-01-01

    In this work, crosslinkers were prepared by conjugating high- and low-molecular-weight gelatin with different mole ratios of itaconic acid (IA) with double bonds. Then, the gelatin-itaconic acid (gelatin-IA) crosslinkers were compared with the gelatin-methacrylate (gelatin-MA) crosslinkers. The molecular weights and structures of gelatin-MA and gelatin-IA were confirmed using gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR). Additionally, the swelling ratio and biodegradation properties of the hydrogels using IA as starting monomers and gelatin-IA and gelatin-MA as crosslinkers were investigated. Both hydrogels prepared with high and low molecular weights of gelatin-IA showed higher swelling ratios than those prepared with the gelatin-MA. The results also showed that absorbent hydrogels with different biodegradabilities and swelling ratios could be prepared by changing the ratio of the gelatin-based crosslinkers. PMID:28773186

  5. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the following...

  6. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the following...

  7. Methacrylate derivatives incorporating pyroglutamic acid.

    PubMed

    Smith, Tara J; Mathias, Lon J

    2002-01-01

    Methacrylates containing pyroglutamic acid were synthesized in good yields. Methyl alpha-pyroglutamyl methylacrylate (PyMM) and methyl alpha-pyroglutamidoundecanoyl methylacrylate (PyUM) give very fast photopolymerization rates both in homopolymerizations and with widely used commercial monomers N-vinyl pyrrolidinone (NVP) and hydroxyethyl methacrylate (HEMA). Soluble or cross-linked homopolymers can be obtained depending upon polymerization temperature. Pyroglutamic methacrylates polymerize without added initiator in the melt. Solution cast, photocured, and thermally cured coatings gave good to excellent adhesion to poly(ethylene terephthalate) and glass surfaces.

  8. A nonaqueous potentiometric titration study of the dissociation of t-butyl methacrylate-methacrylic acid copolymers.

    PubMed

    Nakatani, Kiyoharu; Yamashita, Jun; Sekine, Tomomi; Toriumi, Minoru; Itani, Toshiro

    2003-05-01

    The dissociation of t-butyl methacrylate-methacrylic acid copolymers in dimethyl sulfoxide was analyzed by a nonaqueous potentiometric titration technique. The negative logarithm of the dissociation constant of the monomer unit of a methacrylic acid (MAA) monotonously increased with the increasing degree of dissociation corresponding to the titrant/MAA amount ratio, and was highly influenced by the copolymerization ratio. The results are discussed in terms of the suppression of the dissociation of MAA by a neighboring charged methacrylate anion unit.

  9. Direct-write Bioprinting of Cell-laden Methacrylated Gelatin Hydrogels

    PubMed Central

    Bertassoni, Luiz E.; Cardoso, Juliana C.; Manoharan, Vijayan; Cristino, Ana L.; Bhise, Nupura S.; Araujo, Wesleyan A.; Zorlutuna, Pinar; Vrana, Nihal E.; Ghaemmaghami, Amir M.

    2014-01-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least 8 days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms. PMID:24695367

  10. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels.

    PubMed

    Bertassoni, Luiz E; Cardoso, Juliana C; Manoharan, Vijayan; Cristino, Ana L; Bhise, Nupura S; Araujo, Wesleyan A; Zorlutuna, Pinar; Vrana, Nihal E; Ghaemmaghami, Amir M; Dokmeci, Mehmet R; Khademhosseini, Ali

    2014-06-01

    Fabrication of three dimensional (3D) organoids with controlled microarchitectures has been shown to enhance tissue functionality. Bioprinting can be used to precisely position cells and cell-laden materials to generate controlled tissue architecture. Therefore, it represents an exciting alternative for organ fabrication. Despite the rapid progress in the field, the development of printing processes that can be used to fabricate macroscale tissue constructs from ECM-derived hydrogels has remained a challenge. Here we report a strategy for bioprinting of photolabile cell-laden methacrylated gelatin (GelMA) hydrogels. We bioprinted cell-laden GelMA at concentrations ranging from 7 to 15% with varying cell densities and found a direct correlation between printability and the hydrogel mechanical properties. Furthermore, encapsulated HepG2 cells preserved cell viability for at least eight days following the bioprinting process. In summary, this work presents a strategy for direct-write bioprinting of a cell-laden photolabile ECM-derived hydrogel, which may find widespread application for tissue engineering, organ printing and the development of 3D drug discovery platforms.

  11. Properties of electrospun pollock gelatin/poly(vinyl alcohol) and pollock gelatin/poly(lactic acid) fibers

    USDA-ARS?s Scientific Manuscript database

    Pollock gelatin/poly(vinyl alcohol) (PVA) fibers were electrospun using deionized water as the solvent and pollock gelatin/poly(lactic acid) (PLA) fibers were electrospun using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. The chemical, thermal, and thermal stability properties were exami...

  12. Evaluation of gelatin-hyaluronic acid composite hydrogels for accelerating wound healing.

    PubMed

    Wu, Song; Deng, Liang; Hsia, Hanson; Xu, Kai; He, Yu; Huang, Qiangru; Peng, Yi; Zhou, Zhihua; Peng, Cheng

    2017-05-01

    Excellent wound dressings maintain a warm and moist environment, thus accelerating wound healing. In this study, we cross-linked gelatin and hyaluronic acid with ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride in different ratios (gelatin/hyaluronic acid = 8:2, gelatin/hyaluronic acid = 5:5, gelatin/hyaluronic acid = 2:8), and explored the effects and mechanisms of gelatinhyaluronic acid hydrogels on wound healing. This was done by examining dressing properties, such as fluid uptake ability, water vapor transmission rate, and the rate of water evaporation. We further verified biological function by using in vitro and in vivo wound models. The hydrogels display appropriate fluid uptake ability and good water vapor transmission rate and rate of water evaporation all of which can provide an adequate moisture environment for wound healing. Cell cytotoxicity and proliferation tests show that the hydrogels have no cytotoxicity, furthermore, gelatin/hyaluronic acid = 8:2 hydrogels have the potential to promote cell proliferation. Animal wound models demonstrate that the hydrogels can effectively promote wound healing in vivo, in particular, the gelatin/hyaluronic acid = 8:2 group which promoted the most rapid healing. Accordingly, gelatin-hyaluronic acid dressings, especially the gelatin/hyaluronic acid = 8:2 hydrogels, have a promising outlook for clinical applications in wound healing.

  13. Biobased methacrylic acid via selective catalytic decarboxylation of itaconic acid

    USDA-ARS?s Scientific Manuscript database

    We report a bio-based route to methacrylic acid via selective decarboxylation of itaconic acid utilizing catalytic ruthenium carbonyl propionate in an aqueous solvent system. High selectivity (>90%) was achieved at low catalyst loading (0.1 mol %) with high substrate concentration (5.5 M) at low tem...

  14. VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding.

    PubMed

    Occhetta, Paola; Visone, Roberta; Russo, Laura; Cipolla, Laura; Moretti, Matteo; Rasponi, Marco

    2015-06-01

    The ability to replicate in vitro the native extracellular matrix (ECM) features and to control the three-dimensional (3D) cell organization plays a fundamental role in obtaining functional engineered bioconstructs. In tissue engineering (TE) applications, hydrogels have been successfully implied as biomatrices for 3D cell embedding, exhibiting high similarities to the natural ECM and holding easily tunable mechanical properties. In the present study, we characterized a promising photocrosslinking process to generate cell-laden methacrylate gelatin (GelMA) hydrogels in the presence of VA-086 photoinitiator using a ultraviolet LED source. We investigated the influence of prepolymer concentration and light irradiance on mechanical and biomimetic properties of resulting hydrogels. In details, the increasing of gelatin concentration resulted in enhanced rheological properties and shorter polymerization time. We then defined and validated a reliable photopolymerization protocol for cell embedding (1.5% VA-086, LED 2 mW/cm2) within GelMA hydrogels, which demonstrated to support bone marrow stromal cells viability when cultured up to 7 days. Moreover, we showed how different mechanical properties, derived from different crosslinking parameters, strongly influence cell behavior. In conclusion, this protocol can be considered a versatile tool to obtain biocompatible cell-laden hydrogels with properties easily adaptable for different TE applications. © 2014 Wiley Periodicals, Inc.

  15. Composite poly(methyl methacrylate-methacrylic acid-2-hydroxyethyl methacrylate) latex for immunoassay. The case of plasminogen.

    PubMed

    Miksa, B; Wilczynska, M; Cierniewski, C; Basinska, T; Slomkowski, S

    1995-01-01

    Poly(methyl methacrylate-methacrylic acid-2-hydroxyethyl methacrylate) latex (ACRYLAT) was synthesized by radical precipitation polymerization. The mass median diameter (MMD) and the geometrical standard deviation (GSD) of the ACRYLAT particles were 138 nm and 1.2, respectively. The concentration of the titrable carboxylic groups in the surface layer of latex particles was equal to 8.41 x 10(-6) mol m-2. Latex was able to bind up to 2.82 x 10(-7) mol of 1-aminopyrene per 1 m2 of the surface of the latex particles due to the ionic interactions between carboxylate anions and ammonium cations of protonated 1-aminopyrene. ACRYLAT was able to immobilize covalently human serum albumin in amounts up to 0.23 mg m-2. Aggregation of ACRYLAT with immobilized HSA, induced with specific antibodies (anti-HSA), was investigated turbidimetrically. The results indicated that in the model turbidimetric immunoassay, ACRYLAT coated with HSA can be used for the detection of anti-HSA in the goat anti-HSA serum diluted from 50 to 7000-fold. Immobilization of rabbit antibodies to plasminogen (anti-Plg) to ACRYLAT via the epsilon-aminocaproic acid linkers provided particles which were used for the development of the turbidimetric immunoassay for plasminogen. In this assay plasminogen could be detected in concentration ranging from 0.75 to 75 micrograms ml-1 in the blood plasma.

  16. Obtainment and partial characterization of biodegradable gelatin films with tannic acid, bentonite and glycerol.

    PubMed

    Ortiz-Zarama, Maria A; Jiménez-Aparicio, Antonio R; Solorza-Feria, Javier

    2016-08-01

    Research studies concerning the overall effect of the addition of plasticizers, cross-linking and strengthening agents in gelatin film-forming mixtures are very scarce. Also, there are no studies focused on the interactions among their individual components, or showing what sort of effects they might cause all together. A gelatin film obtained from a composite consisting of tannic acid, bentonite and glycerol was evaluated. Nine gelatin films were manufactured by the casting method, using these materials, following a 2(3) factorial design with five replicates on the central point. The interactions among gelatin, tannic acid and bentonite caused a decrease in hydrogen bonds, while the polar groups of the gelatin chains were less exposed to interactions with water molecules. There was an increase in temperature and enthalpy of gelatin denaturation, due to increasing tannic acid and bentonite concentration. Tactoids were found in the gelatin films, caused mainly by bentonite polydispersion. A synergistic effect among tannic acid, bentonite and glycerol, which overall improved the measured gelatin film properties, was found. The best film formulation was that with 40, 150 and 250 g kg(-1) gelatin of tannic acid, bentonite and glycerol respectively, displaying a tensile strength of 38 MPa, an elongation at break of 136%, water vapor permeability of 1.28 × 10(-12) g (Pa s m)(-1) and solubility of 23.4%. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  17. Bio-based production of methacrylic acid

    USDA-ARS?s Scientific Manuscript database

    Methacrylic acid (MAA) is an important industrial chemical commodity, with annual production exceeding 3 million metric tons and a market value surpassing $9 billion. The primary use of MAA is the conversion to ester derivatives, which are further converted into numerous useful polymers. Despite the...

  18. Amino acid and proximate composition of fish bone gelatin from different warm-water species: A comparative study

    NASA Astrophysics Data System (ADS)

    Atma, Y.

    2017-03-01

    Research on fish bone gelatin has been increased in the last decade. The quality of gelatin depends on its physicochemical properties. Fish bone gelatin from warm-water fishes has a superior amino acid composition than cold-water fishes. The composition of amino acid can determine the strength and stability of gelatin. Thus, it is important to analyze the composition of amino acid as well as proximate composition for potential gelatin material. The warm water fish species used in this study were Grass carp, Pangasius catfish, Catfish, Lizard fish, Tiger-toothed croaker, Pink perch, Red snapper, Brown spotted grouper, and King weakfish. There werre five dominant amino acid in fish bone gelatin including glycine (21.2-36.7%), proline (8.7-11.7%), hydroxyproline (5.3-9.6%), alanine (8.48-12.9%), and glutamic acid (7.23-10.15%). Different warm-water species has some differences in amino acid composition. The proximate composition showed that fishbone gelatin from Pangasius catfish has the highest protein content. The water composition of all fishbone gelatin was well suited to the standard. Meanwhile, based on ash content, only gelatin from gelatin Pangasius catfish met the standard for food industries.

  19. Bio-based methacrylic acid via catalytic decarboxylation of itaconic and citric acids

    USDA-ARS?s Scientific Manuscript database

    Methacrylic acid is an important commodity monomer for the plastics industry that is produced industrially from acetone, hydrogen cyanide and concentrated sulfuric acid via the acetone cyanohydrin (ACH) process. Disadvantages to the ACH process include nonrenewable starting materials, stoichiometric...

  20. Evaluation of tilapia skin gelatin as a mammalian gelatin replacer in acid milk gels and low-fat stirred yogurt.

    PubMed

    Pang, Zhihua; Deeth, Hilton; Yang, Hongshun; Prakash, Sangeeta; Bansal, Nidhi

    2017-05-01

    Tilapia skin gelatin (TSG) was studied in a 3-stage process (cooling, annealing, and heating) for pure gelatin gels and in a 4-stage process (acidification, cooling, annealing, and heating) for acid milk gels and cultured yogurt. The aim was to evaluate the use of TSG as a replacement for mammalian gelatin in yogurt. In pure TSG gels, stronger gels with higher melting temperatures were formed with increasing TSG concentrations. Compared with bovine gelatin (BG), which gelled at a concentration of 2.5%, TSG gels had lower gelling (14.1°C) and melting (24°C) temperatures but comparable storage moduli during annealing. In acid milk gels, addition of TSG increased the firmness of the gels with increasing concentration. Gelling and melting points of TSG in milk gels were observed at sufficient concentrations during cooling and heating. Strands and sheets were observed in the electron micrographs of milk gels with 1% TSG and a very dense structure was observed with 2.5% TSG. Yogurt with 0.4% TSG had similar viscosity, consistency, pseudoplasticity, and thixotropy as yogurt containing 0.4% BG; no difference was perceived by sensory panelists according to a triangle test. Addition of 0.4% TSG completely prevented whey separation from the acid milk gel and yogurt. The results suggest that TSG could be a suitable replacement for mammalian gelatin in low-fat stirred yogurt. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Study of gelatin supplemented diet on amino acid homeostasis in the horse.

    PubMed

    Coenen, M; Appelt, K; Niemeyer, A; Vervuert, I

    2006-08-01

    Gelatin supplementation is a common measure in an attempt to assist cartilage repair, but little scientific evidence exists to support its efficacy. To investigate the effects of gelatin administration on post prandial homeostasis. Twelve Standardbred horses (mean 404 kg bwt) were fed a hay-concentrate diet supplemented by soy bean meal and oil (control [C], n = 6) or with the addition of 60 g gelatin/day (G, n = 6). The horses were trained by an alternate order of interval and prolonged exercise every second day. The velocities of the treadmill corresponding to 2 and 10 mmol lactate/l blood were derived from lactate curves during a standardised exercise test at the start and middle of the 64 day training period. Blood samples for amino acid analysis were obtained weekly at rest (2 h post prandial). In the second part of the training period, a post prandial sampling was conducted on a day without exercise (prior feeding up to 8 h post prandial). Plasma free amino acids (AA) were determined by HPLC. The change from pre- to the training diet induced an increase in many AA during the total training period. At rest free glycine and proline in blood increased with gelatin supplementation during 7 days after the start of supplementation. The AA in plasma showed a post prandial curve with peak concentrations 2-3 h after feeding. Significant post prandial effects of gelatin intake were detectable for glycine, proline and arginine. The AA from gelatin are absorbed quickly and become available for AA metabolism. It is evident that in the horse, gelatin influences the homeostasis of those amino acids required for cartilage synthesis. Further research is needed to elucidate the utilisation of those amino acids for the prevention or repair of cartilage damage.

  2. Interactions of quercetin, curcumin, epigallocatechin gallate and folic acid with gelatin.

    PubMed

    Yang, Tingting; Yang, Huiru; Fan, Yan; Li, Bafang; Hou, Hu

    2018-06-15

    Some small bioactive molecules from food show the potential health benefits, but with poor chemical stability and bioavailability. The interactions between small molecules and gelatin were investigated. Fluorescence experiments demonstrated that the bimolecular quenching constants (k q ) of complexes (gelatin-quercetin, gelatin-curcumin, gelatin-epigallocatechin gallate, gelatin-folic acid) were 3.7 × 10 12  L·mol -1 ·s -1 , 1.4 × 10 12  L·mol -1 ·s -1 , 2.7 × 10 12  L·mol -1 ·s -1 and 8.5 × 10 12  L·mol -1 ·s -1 , indicating that fluorescence quenching did not arise from a dynamical mechanism, but from gelatin-small molecules binding. Furthermore, the affinity with gelatin was ranked in the order of folic acid > quercetin > epigallocatechin gallate > curcumin. Fluorescence spectroscopy, ultraviolet and visible absorption spectroscopy, FTIR and circular dichroism showed that the interactions between small molecules and gelatin did not significantly alter the conformation and secondary structure of gelatin. Non-covalent interactions may result in the binding of gelatin with small molecules. The interactions were considered to be through two modes: (1) small molecules bound within the hydrophobic pockets of gelatin; (2) small molecules surrounded the gelatin molecule mainly through hydrogen bonds and hydrophobic interactions. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Dosimetry Evolution in Teletherapy: Polimer Gel

    NASA Astrophysics Data System (ADS)

    Hamann, J. H.; Peixoto, J. G. P.

    2018-03-01

    Polymer gels evolution and chemical composition used in dosimetry. Type Composition First gels Folin’s Phenol or Gallic Acid Polymer Gel Agarose and N,N’-methylene-bis-acrylamide BANANA Bis, acrylamide, nitrous oxide and agarose BANG-1TM Bis, acrylamide, nitrogen and gelatin BANG-2TM Bis, acrylic acid, sodium hydroxide, nitrogen and gelatin BANG-3TM Bis, methacrylate acid, sodium hydroxide, nitrogen and gelatin MAGIC Methacrylate acid, ascorbic acid, gelatin and copper sulphate

  4. Conversion of (Meth)acrylic acids to methane granular sludge: Initiation by specific anerobic microflora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtarkman, N.B.; Obraztova, A.Y.; Laurinavichyus, K.S.

    1995-03-01

    The role of a specific anaerobic microflora in the initiation of degradation of (meth)acrylic acids to methane by granular sludge from a UASB reactor was investigated. Associations of anaerobic bacteria isolated from the anaerobic sludge, which was used for a long time for treatment of wastewater from (meth)acrylate production, were able to realize the initial stage of (meth)acrylic acid decomposition, i.e., a conversion of acrylic and methacrylic acids to propionic and isobutyric acids, respectively. When added to granules, these association played a role of an {open_quotes}initiator{close_quotes} of the degradation process, which was then continued by the granular sludge microflora utilizingmore » propionate and isobutyrate. Some characteristics of the granules adapted to propionate or isobutyrate are presented. The rates of propionate and isobutyrate consumption by adapted granules is, respectively, 21 and 53 times higher than the values obtained for nonadapted granules. A combined use of {open_quotes}initiating{close_quotes} bacteria and adapted granules provided degradation of (meth)acrylic acids with a maximum methane yield. The possibility is discussed of employing the granules, which are adapted to short-chain fatty acids, and the {open_quotes}initiating{close_quotes} bacteria, which accomplish the initial steps of the organic material decomposition to lower fatty acids, for the conversion of various chemical compounds to methane. 10 refs., 3 figs., 2 tabs.« less

  5. Non-toxic agarose/gelatin-based microencapsulation system containing gallic acid for antifungal application.

    PubMed

    Lam, P-L; Gambari, R; Kok, S H-L; Lam, K-H; Tang, J C-O; Bian, Z-X; Lee, K K-H; Chui, C-H

    2015-02-01

    Aspergillus niger (A. niger) is a common species of Aspergillus molds. Cutaneous aspergillosis usually occurs in skin sites near intravenous injection and approximately 6% of cutaneous aspergillosis cases which do not involve burn or HIV-infected patients are caused by A. niger. Biomaterials and biopharmaceuticals produced from microparticle-based drug delivery systems have received much attention as microencapsulated drugs offer an improvement in therapeutic efficacy due to better human absorption. The frequently used crosslinker, glutaraldehyde, in gelatin-based microencapsulation systems is considered harmful to human beings. In order to tackle the potential risks, agarose has become an alternative polymer to be used with gelatin as wall matrix materials of microcapsules. In the present study, we report the eco-friendly use of an agarose/gelatin-based microencapsulation system to enhance the antifungal activity of gallic acid and reduce its potential cytotoxic effects towards human skin keratinocytes. We used optimal parameter combinations, such as an agarose/gelatin ratio of 1:1, a polymer/oil ratio of 1:60, a surfactant volume of 1% w/w and a stirring speed of 900 rpm. The minimum inhibitory concentration of microencapsulated gallic acid (62.5 µg/ml) was significantly improved when compared with that of the original drug (>750 µg/ml). The anti-A. niger activity of gallic acid -containing microcapsules was much stronger than that of the original drug. Following 48 h of treatment, skin cell survival was approximately 90% with agarose/gelatin microcapsules containing gallic acid, whereas cell viability was only 25-35% with free gallic acid. Our results demonstrate that agarose/gelatin-based microcapsules containing gallic acid may prove to be helpful in the treatment of A. niger-induced skin infections near intravenous injection sites.

  6. Pediatric poisonings from household products: hydrofluoric acid and methacrylic acid.

    PubMed

    Perry, H E

    2001-04-01

    Household products continue to be a cause of poisoning morbibidity and mortality. Young children frequently are exposed to cleaning products and cosmetics in the course of exploring their environment. Most of these exposures are insignificant, but some result in death or permanent disability. This review discusses two products that have been responsible for serious injury and death in children: hydrofluoric acid and methacrylic acid. It also discusses federal initiatives designed to protect children from these and other household hazards.

  7. Study and characterization of powder mackerel (Scomberomorus commerson) bone gelatin through hydrolysis of hydrochloric acid

    NASA Astrophysics Data System (ADS)

    Mardawati, E.; Sugandi, H.; Kayaputri, I. L.; Cahyana, Y.; Wira, D. W.; Pujianto, T.; Kastaman, R.

    2018-02-01

    Gelatin is one of the most common food additives in the food and beverage industry. Gelatin is generally made of leather or pig bones, causing concerns about the halal and safety of its product. Mackerel fish bone (Scomberomorus commerson) is a waste fish that has not been utilized well and it contains 18.6% of collagen so that it can be made into gelatin. The purpose of this research is to know the relation between HCl concentration with physical and chemical characteristics of gelatin and to know the best HCl concentration for gelatin production. Based on the physical and chemical analysis of gelatin, it is known that the concentration of hydrochloric acid influences the yield, viscosity, gel strength and pH produced. The higher HCl concentration there will be decrease in the pH value, gel strength, viscosity and protein. The yield will rise to the optimum point then decrease with respect to the high HCl concentration. Gelatin with 2% HCl concentration was the best treatment, with pH value 3.83, viscosity 3.65cP, gel strength 190.50 blooms which fulfilled British Standard, yield 10.16%, protein content 43.34%. It has functional group such as amino acids glycine, proline and hydroxyproline and 15 other amino acids, the gelatin group uptake in the region of amide wave numbers A, amides I, II and III, with a gelatin molecular weight of 290.35 g/mol.

  8. Thrombin immobilization to methacrylic acid grafted poly(3-hydroxybutyrate) and its in vitro application.

    PubMed

    Akkaya, Alper; Pazarlioglu, Nurdan

    2013-01-01

    Poly(3-hydroxybutyrate) is nontoxic and biodegradable, with good biocompatibility and potential support for long-term implants. For this reason, it is a good support for enzyme immobilization. Enzyme immobilization could not be done directly because poly(3-hydroxybutyrate) has no functional groups. Therefore, modification should be done for enzyme immobilization. In this study, methacrylic acid was graft polymerized to poly(3-hydroxybutyrate) and thrombin was immobilized to polymethacrylic acid grafted poly(3-hydroxybutyrate). In fact, graft polymerization of methacrylic acid to poly(3-hydroxybutyrate) and thrombin immobilization was a model study. Biomolecule immobilized poly(3-hydroxybutyrate) could be used as an implant. Thrombin was selected as a biomolecule for this model study and it was immobilized to methacrylic acid grafted poly(3-hydroxybutyrate). Then the developed product was used to stop bleeding.

  9. 2-hydroxyethyl metahcrylate/gelatin based superporous hydrogels for tissue regeneration

    NASA Astrophysics Data System (ADS)

    Tomić, Simonida Lj.; Babić, Marija M.; Vuković, Jovana S.; Perišić, Marija D.; Filipović, Vuk V.; Davidović, Sladjana Z.; Filipović, Jovanka M.

    2016-05-01

    In this study, superporous hydrogels were synthesized by free radical polymerization of 2-hydroxyethyl methacrylate without and in the presence of gelatin. Highly porous hydrogel structures were obtained by two different techniques: using a gas blowing agent, sodium bicarbonate, and a cryogenic treatment followed by freeze-drying. After the gel synthesis, gelatin molecules were covalently immobilised onto PHEMA via glytaraldehyde activation. All samples were characterized for morphological, mechanical, swelling and antibacterial properties. The results obtained show that samples with gelatin show better properties in comparison with PHEMA samples, which make these materials highly attractive for developing hydrogel scaffolds for tissue regeneration.

  10. Biodegradable organic acid-crosslinked alkali-treated gelatins with anti-thrombogenic and endothelialization properties

    PubMed Central

    Inoue, Motoki; Sasaki, Makoto; Taguchi, Tetsushi

    2012-01-01

    Gelatins were crosslinked with organic acids and treated with alkali to impart to them endothelialization and anti-thrombogenic properties. These matrices were characterized by biochemical and physicochemical techniques. The amounts of residual amino groups in the matrices decreased with increasing crosslinker concentration. The matrices with the highest crosslinking densities showed excellent endothelial cell adhesion and proliferation. In addition, the adhesion of platelets and formation of fibrin networks on the matrices were suppressed with increasing crosslinker concentration. The matrices also exhibited excellent biodegradability, and the degradation rate decreased with increasing crosslinking density. All the organic acid-crosslinked alkali-treated gelatins showed excellent anti-thrombogenic and endothelialization properties, superior to those of glutaraldehyde-crosslinked alkali-treated gelatins. PMID:27877542

  11. Extraction and physicochemical characterization of broiler (Gallus gallus domesticus) skin gelatin compared to commercial bovine gelatin.

    PubMed

    Aykin-Dinçer, E; Koç, A; Erbas, M

    2017-09-01

    Gelatin was extracted from broiler (Gallus gallus domesticus) skins and analyzed to compare its physicochemical properties with those of commercial bovine gelatin. The average yield of broiler skin gelatin was 6.5% on a wet weight basis. Broiler skin gelatin had more α1-and α2-chains than β-chain and contained high molecular weight (γ-chain) polymers. Glycine was the dominant amino acid in broiler skin gelatin (20.26%), followed by proline (Pro) (15.12%) then hydroxyproline (Hyp) (11.36%). Compared to commercial bovine gelatin, broiler skin gelatin had less total imino acids (Pro and Hyp) but a higher (33.65 vs. 31.38°C) melting temperature (P < 0.01). The differences in physical properties between the broiler and commercial bovine gelatins appeared to be associated with differences in their amino acid composition and molecular weight distribution. The sensory evaluation results revealed that broiler skin gelatin could be a potential alternative to commercial bovine gelatin, useful in various food products. © 2017 Poultry Science Association Inc.

  12. Autonomous healing materials based on epoxidized natural rubber and ethylene methacrylic acid ionomers

    NASA Astrophysics Data System (ADS)

    Arifur Rahman, Md; Penco, Maurizio; Peroni, Isabella; Ramorino, Giorgio; Janszen, Gerardus; Di Landro, Luca

    2012-03-01

    The development of autonomous healing material has an enormous scientific and technological interest. In this context, this research work deals with the investigation of autonomous healing behavior of epoxidized natural rubber (ENR) and its blends with ethylene methacrylic acid ionomers. The autonomous healing behavior of ENR and its blends containing two different ionomers [poly(ethylene-co-methacrylic acid sodium salt) (EMNa) and poly(ethylene-co-methacrylic acid zinc salt) (EMZn)] has been studied by ballistic puncture tests. Interestingly, EMNa/ENR blends exhibit complete healing just after the ballistic test but EMZn/ENR blends do not show full self-repairing. The healing efficiency has been evaluated by optical microscopy and a depressurized air-flow test. The healing mechanism has been investigated by characterizing thermal and mechanical properties of the blends. The chemical structure studied by FTIR and thermal analysis show that the ion content of ionomers and functionality of ENR has a significant influence on the self-healing behavior.

  13. Acrylates and Methacrylates,

    DTIC Science & Technology

    1987-09-15

    and methacrylic acids and especially their esters. Acrylic and methacrylic monomers can be polymerized and copolymerized with other vinyl monomers by...contributed to reduction in the cost/value of these monomers and to expansion of the market for sale. For the first time acrylic acid was obtained in...a-dibromopropionic acid . In the Soviet Union for the development of the method of * production of acrylates the synthesis of methylacrylate began in

  14. A hybrid composite system of biphasic calcium phosphate granules loaded with hyaluronic acid-gelatin hydrogel for bone regeneration.

    PubMed

    Faruq, Omar; Kim, Boram; Padalhin, Andrew R; Lee, Gun Hee; Lee, Byong-Taek

    2017-10-01

    An ideal bone substitute should be made of biocompatible materials that mimic the structure, characteristics, and functions of natural bone. Many researchers have worked on the fabrication of different bone scaffold systems including ceramic-polymer hybrid system. In the present study, we incorporated hyaluronic acid-gelatin hydrogel to micro-channeled biphasic calcium phosphate granules as a carrier to improve cell attachment and proliferation through highly interconnected porous structure. This hybrid system is composed of ceramic biphasic calcium phosphate granules measuring 1 mm in diameter with seven holes and hyaluronic acid-gelatin hydrogel. This combination of biphasic calcium phosphate and hyaluronic acid-gelatin retained suitable characteristics for bone regeneration. The resulting scaffold had a porosity of 56% with a suitable pore sizes. The mechanical strength of biphasic calcium phosphate granule increased after loading hyaluronic acid-gelatin from 4.26 ± 0.43 to 6.57 ± 0.25 MPa, which is highly recommended for cancellous bone substitution. Swelling and degradation rates decreased in the hybrid scaffold compared to hydrogel due to the presence of granules in hybrid scaffold. In vitro cytocompatibility studies were observed by preosteoblasts (MC3T3-E1) cell line and the result revealed that biphasic calcium phosphate/hyaluronic acid-gelatin significantly increased cell growth and proliferation compared to biphasic calcium phosphate granules. Analysis of micro-computed tomography data and stained tissue sections from the implanted samples showed that the hybrid scaffold had good osseointegration and better bone formation in the scaffold one and two months postimplantation. Histological section confirmed the formation of dense collagenous tissue and new bone in biphasic calcium phosphate/hyaluronic acid-gelatin scaffolds at two months. Our study demonstrated that such hybrid biphasic calcium phosphate/hyaluronic acid-gelatin scaffold is a

  15. Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon.

    PubMed

    Zuo, Yicong; Liu, Xiaolu; Wei, Dan; Sun, Jing; Xiao, Wenqian; Zhao, Huan; Guo, Likun; Wei, Qingrong; Fan, Hongsong; Zhang, Xingdong

    2015-05-20

    Modular tissue engineering holds great potential in regenerating natural complex tissues by engineering three-dimensional modular scaffolds with predefined geometry and biological characters. In modular tissue-like construction, a scaffold with an appropriate mechanical rigidity for assembling fabrication and high biocompatibility for cell survival is the key to the successful bioconstruction. In this work, a series of composite hydrogels (GH0, GH1, GH2, and GH3) based on a combination of methacrylated gelatin (GelMA) and hydroxyapatite (HA) was exploited to enhance hydrogel mechanical rigidity and promote cell functional expression for osteon biofabrication. These composite hydrogels presented a lower swelling ratio, higher mechanical moduli, and better biocompatibility when compared to the pure GelMA hydrogel. Furthermore, on the basis of the composite hydrogel and photolithograph technology, we successfully constructed an osteon-like concentric double-ring structure in which the inner ring encapsulating human umbilical vascular endothelial cells (HUVECs) was designed to imitate blood vessel tubule while the outer ring encapsulating human osteoblast-like cells (MG63s) acts as part of bone. During the coculture period, MG63s and HUVECs exhibited not only satisfying growth status but also the enhanced genic expression of osteogenesis-related and angiogenesis-related differentiations. These results demonstrate this GelMA-HA composite hydrogel system is promising for modular tissue engineering.

  16. Doxorubicin-loaded microgels composed of cinnamic acid-gelatin conjugate and cinnamic acid-Pluronic F127 conjugate.

    PubMed

    Zhang, Hong; Kim, Jin-Chul

    2016-01-01

    Microgels were prepared by cinnamic acid-gelatin (type B) conjugate (CA-GelB) and cinnamic acid-Pluronic F127 conjugate (CA-Plur). (1)H NMR confirmed that CA was conjugated to gelatin and the gelatin to CA residue molar ratio was estimated to be 1:4.7 by a colorimetric method. CA-Plur of which the CA residue to Plur molar ratio was 1.2:1 was used as a thermo-sensitive polymer. The CA residues of CA-Plur/CA-GelB mixture were readily photo-dimerized to form microgels by UV irradiation. The isoelectric point of the microgel was found to be pH 5.8 and the hydrodynamic diameter decreased when the suspension temperature increased. The microgel could hardly retard the release of doxorubicin (DOX) at pH 3.0 and pH 5.0, but it could suppress and control the release at pH 7.4 possibly due to electrostatic attraction. Meanwhile, the release of DOX at pH 7.4 was less suppressed when the medium temperature was higher, possibly because of thermal thinning of Pluronic chain layer.

  17. The properties of gelatin-poly (gamma-glutamic acid) hydrogels as biological glues.

    PubMed

    Hsu, Shan-Hui; Lin, Chen-Huan

    2007-01-01

    The influence of the molecular weight and the type of gelatin (A or B), as well as the molecular weight of poly (gamma-glutamic acid) (gamma-PGA), on the properties of gelatin/gamma-PGA mixed bioadhesives were studied. The gelation of the system was enhanced by a crosslinker, 1-(3-dimethylaminopropyl)-3-(ethylcarbodiimide) hydrochloride (EDC). The gelation time of the bioadhesives was analyzed using rheological measurements. The results indicated that the type of gelatin was a critical factor in determining the gelation time of the biological glues. The mixed glues had greater bonding strength and smaller gelation times as the molecular weight of gamma-PGA or gelatin increased. The swelling ratio decreased and the denaturation temperature increased upon raising the EDC concentration, indicating a greater degree of crosslinking at higher EDC concentrations. The mixed glues crosslinked with various concentrations of EDC (1.7-2.5%) showed no cytotoxicity to fibroblasts. In addition, no significant inflammatory response was observed in the rat subcutaneous implantation. The bioadhesives based on gelatin/gamma-PGA remained at the site for 7 days while the fibrin glue had almost completely degraded. By choosing the appropriate gelatin type and higher molecular weight gamma-PGA in the mixtures, the gelatin/gamma-PGA biological glues could serve as soft tissue adhesives. Rheological characterization was essential in the evaluation of biological glues.

  18. Influence of gelatinization on the extraction of phenolic acids from wheat fractions

    USDA-ARS?s Scientific Manuscript database

    The effect of gelatinization on the analysis of phenolic acids from wheat bran, whole-wheat, and refined flour samples was investigated using two extraction procedures, namely, ultrasonic (UAE) and microwave (MAE). The total phenolic acid (TPA) concentration quantity in wheat bran (2711-2913 µg/g) w...

  19. Extraction and electrospinning of gelatin from fish skin.

    PubMed

    Songchotikunpan, Panida; Tattiyakul, Jirarat; Supaphol, Pitt

    2008-04-01

    Ultra-fine gelatin fibers were successfully fabricated by electrospinning from the solutions of Nile tilapia (Oreochromis niloticus) skin-extracted gelatin in either acetic acid or formic acid aqueous solutions. The extracted gelatin contained 7.3% moisture, 89.4% protein, 0.3% lipid, and 0.4% ash contents (on the basis of wet weight), while the bloom gel strength, the shear viscosity, and the pH values were 328 g, 17.8 mPa s, and 5.0, respectively. Both the acid concentration and the concentration of the gelatin solutions strongly influenced the properties of the as-prepared solutions and the obtained gelatin fibers. At low acid concentrations (i.e., 15% (w/v) extracted gelatin solutions in 10 and 20% (v/v) acetic acid solvents or 10-60% (v/v) formic acid solvents), a combination between smooth and beaded fibers was observed. At low concentrations of the gelatin solutions in either 40% (v/v) acetic acid solvent or 80% (v/v) formic acid solvent (i.e., 5-11%, w/v), either discrete beads or beaded fibers were obtained, while, at higher concentrations (i.e., 14-29%, w/v), only smooth or a combination of smooth and beaded fibers were obtained. The average diameters of the obtained fibers, regardless of the types of the acid solvents used, ranged between 109 and 761 nm. Lastly, cross-linking of the obtained gelatin fiber mats with glutaraldehyde vapor caused slight shrinkage from their original dimension, and the cross-linked gelatin fiber mats became stiffer.

  20. Use of Gallic Acid to Enhance the Antioxidant and Mechanical Properties of Active Fish Gelatin Film.

    PubMed

    Limpisophon, Kanokrat; Schleining, Gerhard

    2017-01-01

    This study explores the potential roles of gallic acid in fish gelatin film for improving mechanical properties, UV barrier, and providing antioxidant activities. Glycerol, a common used plasticizer, also impacts on mechanical properties of the film. A factorial design was used to investigate the effects of gallic acid and glycerol concentrations on antioxidant activities and mechanical properties of fish gelatin film. Increasing the amount of gallic acid increased the antioxidant capacities of the film measured by radical scavenging assay and the ferric reducing ability of plasma assay. The released antioxidant power of gallic acid from the film was not reduced by glycerol. The presence of gallic acid not only increased the antioxidant capacity of the film, but also increased the tensile strength, elongation at break, and reduced UV absorption due to interaction between gallic acid and protein by hydrogen bonding. Glycerol did not affect the antioxidant capacities of the film, but increased the elasticity of the films. Overall, this study revealed that gallic acid entrapped in the fish gelatin film provided antioxidant activities and improved film characteristics, namely UV barrier, strength, and elasticity of the film. © 2016 Institute of Food Technologists®.

  1. Optical Properties of Synthesized Nanoparticles ZnS Using Methacrylic Acid as the Capping Agent

    NASA Astrophysics Data System (ADS)

    Nazerdeylami, Somayeh; Saievar Iranizad, Esmaiel; Molaei, Mehdi

    Optical analysis (UV-vis spectroscopy) of solution of ZnS nanoparticles prepared at room temperature by a chemical capping method using methacrylic acid (MAA) capping agent at concentration of 0.05, 0.2, 0.5 and 1.17 molar is investigated. The spectroscopy results indicate increasing of band gap of ZnS through increasing concentration of the methacrylic acid as capping agent in the solution. According to the relation of Effective Mass Approximation, it is concluded that the size of nanoparticles decreased with the increasing concentration of the capping agent in the tested solutions. The size of the particles is found to be in 1.77-2.05 nm range.

  2. Laser damage threshold of gelatin and a copper phthalocyanine doped gelatin optical limiter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brant, M.C.; McLean, D.G.; Sutherland, R.L.

    1996-12-31

    The authors demonstrate optical limiting in a unique guest-host system which uses neither the typical liquid or solid host. Instead, they dope a gelatin gel host with a water soluble Copper (II) phthalocyaninetetrasulfonic acid, tetrasodium salt (CuPcTs). They report on the gelatin`s viscoelasticity, laser damage threshold, and self healing of this damage. The viscoelastic gelatin has mechanical properties quite different than a liquid or solid. The authors` laser measurements demonstrate that the single shot damage threshold of the undoped gelatin host increases with decreasing gelatin concentration. The gelatin also has a much higher laser damage threshold than a stiff acrylic.more » Unlike brittle solids, the soft gelatin self heals from laser induced damage. Optical limiting test also show the utility of a gelatin host doped with CuPcTs. The CuPcTs/gelatin matrix is not damaged at incident laser energies 5 times the single shot damage threshold of the gelatin host. However, at this high laser energy the CuPcTs is photo bleached at the beam waist. The authors repair photo bleached sites by annealing the CuPcTs/gelatin matrix.« less

  3. Synthesis and characterization of hydrolysed starch-g-poly(methacrylic acid) composite.

    PubMed

    Zahran, Magdy K; Ahmed, Enas M; El-Rafie, Mohamed H

    2016-06-01

    A novel method for the synthesis of starch-g-poly(methacrylic acid) composite was adopted by graft polymerization of hydrolysed starch (HS) and methacrylic acid (MAA) in aqueous medium using an efficient sodium perborate (SPB)-thiourea (TU) redox initiation system. The parameters influencing the redox system efficiency and thence the polymerization method were considered. These parameters comprehended the concentrations of MAA, SPB, TU and SPB/TU molar ratio as well as the polymerization temperature. The polymerization reaction was scrutinized through calculation of the MAA total conversion percent (TC%). The resultant poly(MAA-HS) composite was assessed by evaluating the polymer criteria (the graft yield, GY%; the grafting efficiency, GE%; the homopolymer, HP%; and the total conversion). The comportment of the apparent viscosity of the cooked poly(MAA)-starch composite paste, obtained under diverse polymerization conditions, was examined. Tentative mechanisms, which depict all occasions that happen amid the entire course of the polymerization reaction, have been proffered. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Alterations in juvenile diploid and triploid African catfish skin gelatin yield and amino acid composition: Effects of chlorpyrifos and butachlor exposures.

    PubMed

    Karami, Ali; Karbalaei, Samaneh; Zad Bagher, Fariba; Ismail, Amin; Simpson, Stuart L; Courtenay, Simon C

    2016-08-01

    Skin is a major by-product of the fisheries and aquaculture industries and is a valuable source of gelatin. This study examined the effect of triploidization on gelatin yield and proximate composition of the skin of African catfish (Clarias gariepinus). We further investigated the effects of two commonly used pesticides, chlorpyrifos (CPF) and butachlor (BUC), on the skin gelatin yield and amino acid composition in juvenile full-sibling diploid and triploid African catfish. In two separate experiments, diploid and triploid C. gariepinus were exposed for 21 days to graded CPF [mean measured: 10, 16, or 31 μg/L] or BUC concentrations [Mean measured: 22, 44, or 60 μg/L]. No differences in skin gelatin yield, amino acid or proximate compositions were observed between diploid and triploid control groups. None of the pesticide treatments affected the measured parameters in diploid fish. In triploids, however, gelatin yield was affected by CPF treatments while amino acid composition remained unchanged. Butachlor treatments did not alter any of the measured variables in triploid fish. To our knowledge, this study is the first to investigate changes in the skin gelatin yield and amino acid composition in any animal as a response to polyploidization and/or contaminant exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Extraction and characterization of gelatin from the feet of Pekin duck (Anas platyrhynchos domestica) as affected by acid, alkaline, and enzyme pretreatment.

    PubMed

    Abedinia, Ahmadreza; Ariffin, Fazilah; Huda, Nurul; Nafchi, Abdorreza Mohammadi

    2017-05-01

    The effects of different pretreatments on yield and composition of extraction, physicochemical, and rheological properties of duck feet gelatin (DFG) were investigated. Gelatins were extracted from the whole feet of Pekin duck with an average yield of 4.09%, 3.65%, and 5.75% for acidic (Ac-DFG), alkaline (Al-DFG), and enzymatic (En-DFG) pretreatment on a wet weight basis, respectively. Proteins at 81.38%, 79.41%, 82.55%, and 87.38% were the major composition for Ac-DFG, Al-DFG, En-DFG, and bovine, respectively. Amino acid analysis showed glycine as the predominant amino acid in Ac-DFG, followed by hydroxyproline, proline, and alanine for Ac-DFG, Al-DFG, and En-DFG, respectively. Rheological analysis indicated that the maximum elastic modulus (9972.25Pa) and loss modulus (4956.28Pa) for Ac-DFG gelatin were significantly higher than those of other gelatins. Extracted gelatins contained α 1 and α 2 chains as the predominant components, and enzymatic gelatin had low molecular weight peptides. Fourier transform infrared spectroscopy showed that the peak of the gelatins was mainly positioned in the amide band region (amides I, II, and III). A considerable loss of molecular-order triple helical structure was also observed after pepsin treatment. In summary, duck feet gelatin has potential to replace as mammalian gelatin in food and pharmaceutical industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of ultraviolet irradiation on bonding strength between Co-Cr alloy and citric acid-crosslinked gelatin matrix.

    PubMed

    Inoue, Motoki; Sasaki, Makoto; Katada, Yasuyuki; Taguchi, Tetsushi

    2014-02-01

    Novel techniques for creating a strong bond between polymeric matrices and biometals are required. We immobilized polymeric matrices on the surface of biometal for drug-eluting stents through covalent bond. We performed to improve the bonding strength between a cobalt-chromium alloy and a citric acid-crosslinked gelatin matrix by ultraviolet irradiation on the surface of cobalt-chromium alloy. The ultraviolet irradiation effectively generated hydroxyl groups on the surface of the alloy. The bonding strength between the gelatin matrix and the alloy before ultraviolet irradiation was 0.38 ± 0.02 MPa, whereas it increased to 0.48 ± 0.02 MPa after ultraviolet irradiation. Surface analysis showed that the citric acid derivatives occurred on the surface of the cobalt-chromium alloy through ester bond. Therefore, ester bond formation between the citric acid derivatives active esters and the hydroxyl groups on the cobalt-chromium alloy contributed to the enhanced bonding strength. Ultraviolet irradiation and subsequent immobilization of a gelatin matrix using citric acid derivatives is thus an effective way to functionalize biometal surfaces.

  7. Non-Covalent Photo-Patterning of Gelatin Matrices Using Caged Collagen Mimetic Peptides

    PubMed Central

    Li, Yang; Hoa San, Boi; L. Kessler, Julian; Hwan Kim, Jin; Xu, Qingguo; Hanes, Justin; Yu, Seungju Michael

    2015-01-01

    Advancements in photolithography have enabled us to spatially encode biochemical cues in biocompatible platforms such as synthetic hydrogels. Conventional patterning works through photo-activated chemical reactions on inert polymer networks. However, these techniques cannot be directly applied to protein hydrogels without chemically altering the protein scaffolds. To this end, we developed a non-covalent photo-patterning strategy for gelatin (denatured collagen) hydrogels utilizing a caged collagen mimetic peptide (caged CMP) which binds to gelatin strands through UV activated, triple helix hybridization. Here we present 2D and 3D photo-patterning of gelatin hydrogels enabled by the caged CMPs as well as creation of concentration gradients of CMPs. We show that photo-patterning of PEG-conjugated caged CMPs can be used to spatially control cell adhesion on gelatin films. CMP’s specificity for binding to gelatin allows patterning of almost any synthetic or natural gelatin-containing matrix, such as zymograms, gelatin-methacrylate hydrogels, and even a corneal tissue. Since the CMP is a chemically and biologically inert peptide which is proven to be an ideal carrier for bioactive molecules, our patterning method provides a radically new tool for immobilizing drugs to natural tissues and for functionalizing scaffolds for complex tissue formation. PMID:25476588

  8. Synthesis and Characterization of Types A and B Gelatin Methacryloyl for Bioink Applications

    PubMed Central

    Lee, Bae Hoon; Lum, Nathaniel; Seow, Li Yuan; Lim, Pei Qi; Tan, Lay Poh

    2016-01-01

    Gelatin methacryloyl (GelMA) has been increasingly considered as an important bioink material due to its tailorable mechanical properties, good biocompatibility, and ability to be photopolymerized in situ as well as printability. GelMA can be classified into two types: type A GelMA (a product from acid treatment) and type B GelMA (a product from alkali treatment). In current literature, there is little research on the comparison of type A GelMA and type B GelMA in terms of synthesis, rheological properties, and printability for bioink applications. Here, we report the synthesis, rheological properties, and printability of types A and B GelMA. Types A and B GelMA samples with different degrees of substitution (DS) were prepared in a controllable manner by a time-lapse loading method of methacrylic anhydride (MAA) and different feed ratios of MAA to gelatin. Type B GelMA tended to have a slightly higher DS compared to type A GelMA, especially in a lower feed ratio of MAA to gelatin. All the type A and type B GelMA solutions with different DS exhibited shear thinning behaviours at 37 °C. However, only GelMA with a high DS had an easy-to-extrude feature at room temperature. The cell-laden printed constructs of types A and B GelMA at 20% w/v showed around 75% cell viability. PMID:28773918

  9. Preparation and Characterization of Gelatin Nanofibers Containing Silver Nanoparticles

    PubMed Central

    Jeong, Lim; Park, Won Ho

    2014-01-01

    Ag nanoparticles (NPs) were synthesized in formic acid aqueous solutions through chemical reduction. Formic acid was used for a reducing agent of Ag precursor and solvent of gelatin. Silver acetate, silver tetrafluoroborate, silver nitrate, and silver phosphate were used as Ag precursors. Ag+ ions were reduced into Ag NPs by formic acid. The formation of Ag NPs was characterized by a UV-Vis spectrophotometer. Ag NPs were quickly generated within a few minutes in silver nitrate (AgNO3)/formic acid solution. As the water content of formic acid aqueous solution increased, more Ag NPs were generated, at a higher rate and with greater size. When gelatin was added to the AgNO3/formic acid solution, the Ag NPs were stabilized, resulting in smaller particles. Moreover, gelatin limits further aggregation of Ag NPs, which were effectively dispersed in solution. The amount of Ag NPs formed increased with increasing concentration of AgNO3 and aging time. Gelatin nanofibers containing Ag NPs were fabricated by electrospinning. The average diameters of gelatin nanofibers were 166.52 ± 32.72 nm, but these decreased with the addition of AgNO3. The average diameters of the Ag NPs in gelatin nanofibers ranged between 13 and 25 nm, which was confirmed by transmission electron microscopy (TEM). PMID:24758929

  10. Recycling of plastic wastes with poly (ethylene-co-methacrylic acid) copolymer as compatibilizer and their conversion into high-end product.

    PubMed

    Rajasekaran, Divya; Maji, Pradip K

    2018-04-01

    This paper deals with the utilization of plastic wastes to a useful product. The major plastic pollutants that are considered to be in maximum use i.e. PET bottle and PE bags have been taken for consideration for recycling. As these two plastic wastes are not compatible, poly (ethylene-co-methacrylic acid) copolymer has been used as compatibilizer to process these two plastic wastes. Effect of dose of poly (ethylene-co-methacrylic acid) copolymer as compatibilizer has been studied here. It has been shown that only 3 wt% of poly (ethylene-co-methacrylic acid) copolymer is sufficient to make 3:1 mass ratio of PET bottle and polyethylene bags compatible. Compatibility has been examined through mechanical testing, thermal and morphological analysis. After analysing the property of recyclates, better mechanical and thermal property has been observed. Almost 500% of tensile property has been improved by addition of 3 wt% of poly (ethylene-co-methacrylic acid) copolymer in 3:1 mass ratio blend of PET bottle and PE bags than that of pristine blend. Morphological analysis by FESEM and AFM has also confirmed the compatibility of the blend. Experimental data showed better performance than available recycling process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Synthesis and properties study of the uniform nonspherical styrene/methacrylic acid copolymer latex particles.

    PubMed

    Wang, Wenqin; Ren, Guohong; Yang, Yanqiong; Cai, Wujin; Chen, Tao

    2015-01-13

    A facile method to prepare the nonspherical amphiphilic random copolymer of poly(styrene-co-methacrylic acid) (poly(St-co-PMAA)) latex particles with well-defined shapes and high yields by one-step batch emulsifier-free polymerization was demonstrated. In our strategy, only varying the molar ratio of styrene (St) to methacrylic acid (MAA), no seed-particles, no cross-linker, and no multistep control procedures were needed. Due to the presence of carboxyl groups on the surface of (poly(St-co-PMAA) latex particles, these latex particles can be used as templates for fabricating core-shell nonspherical functional materials, such as poly(St-co-PMAA)@SiO2 and poly(St-co-PMAA)@polypyrrole). The corresponding nonspherical hollow structures (SiO2 and polypyrrole) could be obtained after removal of the templates. In addition, poly(St-co-PMAA) latex particles exhibit interesting morphologies in ethanol.

  12. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye

    2011-02-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  13. Dual-Responsive pH and Temperature Sensitive Nanoparticles Based on Methacrylic Acid and Di(ethylene glycol) Methyl Ether Methacrylate for the Triggered Release of Drugs.

    PubMed

    Khine, Yee Yee; Jiang, Yanyan; Dag, Aydan; Lu, Hongxu; Stenzel, Martina H

    2015-08-01

    A series of thermo-and pH-responsive poly(methyl methacrylate)-block-poly[methacrylic acid-co-di(ethylene glycol) methyl ether methacrylate] PMMA-b-P[MAA-co-DEGMA] block copolymers were synthesized by RAFT polymerization and self-assembled into micelles. The molar ratio of MAA was altered from 0-12% in order to modulate the lower critical solution temperature (LCST) of PDEGMA. The release of the drug albendazole from the micelle was strongly dependent on the temperature and the LCST value of the polymer. Systems below the LCST released the drug slowly while increasing the temperature above the LCST or decreasing the pH value to 5 resulted in the burst-like release of the drug. ABZ delivered in this pH-responsive drug carrier had a higher toxicity than the free drug or the drug delivered in a non-responsive drug carrier. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Buffer capacity of 4% succinylated gelatin does not provide any advantages over acidic 6% hydroxyethyl starch 130/0.4 for acid-base balance during experimental mixed acidaemia in a porcine model.

    PubMed

    Esche, V; Russ, M; Melzer, S; Grossmann, B; Boemke, W; Unger, J K

    2008-11-01

    Four percent gelatine is an alkaline compound due to NH2 groups, whereas 6% hydroxyethyl starch 130/0.4 (HES130) has acidic features. We investigated whether these solutions lead to differences in acid-base balance in pigs during acidaemia and correction of pH. Anaesthetized pigs were randomized to HES130 or gelatine infusion (n = 5 per group). Animals received acid infusion (0.4 M solution of lactic acid and HCl diluted in normal saline) and low tidal volume ventilation (6-7 mL kg(-1), PaCO2 of 80-85 mmHg, pH 7.19-7.24). Measurements were made before and after induction of acidaemia, before and after correction of pH with haemofiltration (continuous venovenous haemofiltration) and tris-hydroxymethylaminomethane infusion. We measured parameters describing acid-base balance according to Stewart's approach, ketone body formation, oxygen delivery, haemodynamics, diuresis and urinary pH. Acid-base balance did not differ significantly between the groups. In HES130-treated pigs, the haemodilution-based drop of haemoglobin (1.4 +/- 1.0 g dL(-1), median +/- SD) was paralleled by an increase in the cardiac output (0.5 +/- 0.4 L min(-1). Lacking increases in cardiac output, gelatine-treated pigs demonstrated a reduction in oxygen delivery (149.4 +/- 106.0 mL min(-1)). Tris-hydroxymethylaminomethane volumes required for pH titration to desired values were significantly higher in the gelatine group (0.7 +/- 0.1 mL kg(-1) h(-1) vs. HES130: 0.5 +/- 0.2 mL kg(-1) h(-1)). The buffer capacity of gelatine did not lead to favourable differences in acid-base balance in comparison to HES130.

  15. Fabrication and characterization of electrospun gelatin nanofibers crosslinked with oxidized phenolic compounds.

    PubMed

    Tavassoli-Kafrani, Elham; Goli, Sayed Amir Hossein; Fathi, Milad

    2017-10-01

    In this study, the ability of oxidized phenolic compounds of tannic, gallic, ferulic and caffeic acids to crosslink gelatin (G) was investigated. The electrospun crosslinked gelatin nanofibers were assessed in terms of gelatin solution properties, fiber morphology, thermal properties, FTIR spectra, XRD pattern and antioxidant activity. Tannic acid showed the most crosslinking activity towards gelatin (13.3 vs 7.44, 4.65, and 3.45% for caffeic, gallic and ferulic, respectively). Crosslinking enhanced roughly electrical conductivity of gelatin solution while the surface tension and viscosity reduced. According to scanning electron microscopy (SEM) results, the fibrous structure of crosslinked gelatin nanofibers didn't change while their diameter increased to the highest value of 280nm for gelatin-tannic. Gelatin-gallic sample showed the highest total phenolic content (86.3mg gallic acid equivalent/g) and antioxidant activity (86.5%). Surprisingly, from differential scanning calorimetry (DSC) curves, it was found that crosslinking led to the reduction of thermal stability of gelatin nanofibers. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Preparation of surfactant-free nanoparticles of methacrylic acid copolymers used for film coating.

    PubMed

    Nguyen, Cung An; Konan-Kouakou, Yvette Niamien; Allémann, Eric; Doelker, Eric; Quintanar-Guerrero, David; Fessi, Hatem; Gurny, Robert

    2006-07-28

    The aim of the present study was to prepare surfactant-free pseudolatexes of various methacrylic acid copolymers. These aqueous colloidal dispersions of polymeric materials for oral administration are intended for film coating of solid dosage forms or for direct manufacturing of nanoparticles. Nanoparticulate dispersions were produced by an emulsification-diffusion method involving the use of partially water-miscible solvents and the mutual saturation of the aqueous and organic phases prior to the emulsification in order to reduce the initial thermodynamic instability of the emulsion. Because of the self-emulsifying properties of the methacrylic acid copolymers, it was possible to prepare aqueous dispersions of colloidal size containing up to 30% wt/vol of Eudragit RL, RS, and E using 2-butanone or methyl acetate as partially water-miscible solvents, but without any surfactant. However, in the case of the cationic Eudragit E, protonation of the tertiary amine groups by acidification of the aqueous phase was necessary to improve the emulsion stability in the absence of surfactant and subsequently to prevent droplet coalescence during evaporation. In addition, a pseudolatex of Eudragit E was used to validate the coating properties of the formulation for solid dosage forms. Film-coated tablets of quinidine sulfate showed a transparent glossy continuous film that was firmly attached to the tablet. The dissolution profile of quinidine sulfate from the tablets coated with the Eudragit E pseudolatex was comparable to that of tablets coated with an acetonic solution of Eudragit E. Furthermore, both types of coating ensured similar taste masking. The emulsification-evaporation method used was shown to be appropriate for the preparation of surfactant-free colloidal dispersions of the 3 types of preformed methacrylic acid copolymers; the dispersions can subsequently be used for film coating of solid dosage forms.

  17. Physicochemical and functional properties of gelatin extracted from Yak skin.

    PubMed

    Xu, Mengqi; Wei, Lixin; Xiao, Yuancan; Bi, Hongtao; Yang, Hongxia; Du, Yuzhi

    2017-02-01

    Different molecular weight distribution (MWD) gelatin was extracted from Yak skin after enzymatic pretreatments and their physicochemical and functional properties (SDS-PAGE, UV-vis absorption spectra, DSC, FT-IR, Amino acid analysis, AFM, emulsibility and foamability) were analyzed. The gelatin was extracted by pepsin and got different MWD of Yak skin gelatin by controlling the enzymolysis time. The SDS-PAGE showed the MWD of the Yak skin gelatin. The UV-vis absorption turned out that the broad MWD of Yak skin gelatin had a higher maximum absorption peaks. The FT-IR and AFM indicated that the gelatin structures and microstructures changed with the change of the MWD. The broad MWD of the Yak skin gelatin had a higher denaturation temperature (T D ), and it was higher than most of the other mammals and marine biological gelatin. The broad MWD gelatin also had higher imino acids (proline and hydroxyproline) contents and lower foamability and emulsibility compared to the narrow MWD gelatin. These findings, obtained for the first time for Yak skin gelatin, showed that it has great potential for application as an alternative to commercial gelatin due to its good thermotolerance, particularly in the applications of the biological materials, stabilizer of thermo-tolerant and so on. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mucoadhesive hydrogel microparticles based on poly (methacrylic acid-vinyl pyrrolidone)-chitosan for oral drug delivery.

    PubMed

    Sajeesh, S; Sharma, Chandra P

    2011-05-01

    The study was aimed at the evaluation of N-vinyl pyrrolidone (NVP) incorporated polymethacrylic acid-chitosan microparticles for oral drug delivery applications. Poly (methacrylic acid)-chitosan (PMC) and poly(methacrylic acid-vinyl pyrrolidone)-chitosan (PMVC) microparticles were prepared by an ionic-gelation method. Mucoadhesion behaviour of these particles was evaluated by ex-vivo adhesion method using freshly excised rat intestinal tissue. Cytotoxicity and absorption enhancing property of PMC and PMVC particles were evaluated on Caco 2 cell monolayers. Protease enzyme inhibition capability and insulin loading/release properties of these hydrogel particles was evaluated under in vitro experimental conditions. Addition of NVP units enhanced the mucoadhesion behavior of PMC particles on isolated rat intestinal tissue. Both PMC and PMVC particles were found non-toxic on Caco 2 cell monolayers and PMC particles was more effective in improving paracellular transport of fluorescent dextran across Caco 2 cell monolayers as compared to PMVC particles. However, protease inhibition efficacy of PMC particles was not significantly affected with NVP addition. NVP incorporation improved the insulin release properties of PMC microparticles at acidic pH. Hydrophilic modification seems to be an interesting approach in improving mucoadhesion capability of PMC microparticles.

  19. The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: Effect on complement activation.

    PubMed

    Wells, Laura A; Guo, Hongbo; Emili, Andrew; Sefton, Michael V

    2017-02-01

    Polymer beads made of 45% methacrylic acid co methyl methacrylate (MAA beads) promote vascular regenerative responses in contrast to control materials without methacrylic acid (here polymethyl methacrylate beads, PMMA). In vitro and in vivo studies suggest that MAA copolymers induce differences in macrophage phenotype and polarization and inflammatory responses, presumably due to protein adsorption differences between the beads. To explore differences in protein adsorption in an unbiased manner, we used high resolution shotgun mass spectrometry to identify and compare proteins that adsorb from human plasma or serum onto MAA and PMMA beads. From plasma, MAA beads adsorbed many complement proteins, such as C1q, C4-related proteins and the complement inhibitor factor H, while PMMA adsorbed proteins, such as albumin, C3 and apolipoproteins. Because of the differences in complement protein adsorption, follow-up studies focused on using ELISA to assess complement activation. When incubated in serum, MAA beads generated significantly lower levels of soluble C5b9 and C3a/C3a desarg in comparison to PMMA beads, indicating a decrease in complement activation with MAA beads. The differences in adsorbed protein on the two materials likely alter subsequent cell-material interactions that ultimately result in different host responses and local vascularization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    NASA Astrophysics Data System (ADS)

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-08-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10-20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules.

  1. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    PubMed Central

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-01-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10–20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules. PMID:27503340

  2. Magnetic pH-responsive poly(methacrylic acid-co-acrylic acid)-co-polyvinylpyrrolidone magnetic nano-carrier for controlled delivery of fluvastatin.

    PubMed

    Amoli-Diva, Mitra; Pourghazi, Kamyar; Mashhadizadeh, Mohammad Hossein

    2015-02-01

    A novel pH-responsive polymer, poly(methacrylic acid-co-acrylic acid)-co-polyvinyl-pyrrolidone (polymeric nano-carrier) was synthesized and used for encapsulation of 3-aminopropyl triethoxysilane modified Fe3O4 nanoparticles to prepare a new magnetic nano-carrier. The loading and release characteristics of both polymeric and magnetic nano-carriers were investigated using fluvastatin as the model drug. The loading behavior of the carriers was studied by varying concentration of fluvastatin in aqueous medium at 25°C and their release was followed spectrophotometrically (at 304 nm) at 37°C in three different solutions (buffered at pH1.2, 5.5 and 7.2) to simulate gastric and intestine medium. The effect of different parameters on the release of fluvastatin such as the amount of methacrylic acid monomer, cross-linker amount, initiator amount, and magnetic nanoparticles content was also studied. Considering the release kinetics and mechanism of the magnetic nanocarrier besides swelling behavior study of the polymeric nano-carrier reveal Fickian pattern and diffusion controlled mechanism for delivery of fluvastatin. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Unbiased phosphoproteomic method identifies the initial effects of a methacrylic acid copolymer on macrophages

    PubMed Central

    Chamberlain, Michael Dean; Wells, Laura A.; Lisovsky, Alexandra; Guo, Hongbo; Isserlin, Ruth; Talior-Volodarsky, Ilana; Mahou, Redouan; Emili, Andrew; Sefton, Michael V.

    2015-01-01

    An unbiased phosphoproteomic method was used to identify biomaterial-associated changes in the phosphorylation patterns of macrophage-like cells. The phosphorylation differences between differentiated THP1 (dTHP1) cells treated for 10, 20, or 30 min with a vascular regenerative methacrylic acid (MAA) copolymer or a control methyl methacrylate (MM) copolymer were determined by MS. There were 1,470 peptides (corresponding to 729 proteins) that were differentially phosphorylated in dTHP1 cells treated with the two materials with a greater cellular response to MAA treatment. In addition to identifying pathways (such as integrin signaling and cytoskeletal arrangement) that are well known to change with cell–material interaction, previously unidentified pathways, such as apoptosis and mRNA splicing, were also discovered. PMID:26261332

  4. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2006-02-14

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  5. pH-sensitive methacrylic copolymers and the production thereof

    DOEpatents

    Mallapragada, Surya K.; Anderson, Brian C.; Bloom, Paul D.; Sheares Ashby, Valerie V.

    2007-01-09

    The present invention provides novel multi-functional methacrylic copolymers that exhibit cationic pH-sensitive behavior as well as good water solubility under acidic conditions. The copolymers are constructed from tertiary amine methacrylates and poly(ethylene glycol) containing methacrylates. The copolymers are useful as gene vectors, pharmaceutical carriers, and in protein separation applications.

  6. Citral stabilization and characterization of nanoemulsions stabilized by a mixture of gelatin and Tween 20 in an acidic system.

    PubMed

    Tian, Huaixiang; Li, Danfeng; Xu, Ting; Hu, Jing; Rong, Yuzhi; Zhao, Bo

    2017-07-01

    Citral is one of the most important flavor compounds in fresh juice and lemon oil. Unfortunately, citral is chemically unstable and degrades over time in aqueous solutions. Here, citral nanoemulsions including a mixture of gelatin and Tween 20 as emulsifiers were produced in an effort to maintain the stability of citral in an acidic system. The mean droplet size and polydispersity index of the citral nanoemulsion were 467.83 nm and 0.259 respectively when the mass ratio of gelatin/Tween 20 was 3:1 and the total emulsifier concentration of the emulsion system was 10 g kg -1 . The citral nanoemulsion remained stable during storage for 14 days at 30 °C. Therefore this nanoemulsion system effectively protected citral from degradation and decreased the formation of off-flavor compounds (e.g. p-cymene, p-cresol and p-methylacetophenone) relative to a single emulsifier. The mixture of gelatin and Tween 20 enhanced the stability of citral under acidic conditions and could be used as an effective emulsifier to protect citral from degradation under acidic environments in the food industry. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. OH radical induced depolymerization of poly(methacrylic acid)

    NASA Astrophysics Data System (ADS)

    Ulanski, Piotr; Bothe, Eberhard; von Sonntag, Clemens

    1999-05-01

    Hydroxyl radicals (generated pulse radiolytically in dilute N 2O-saturated aqueous solutions) react with poly(methacrylic acid) producing two kinds of radicals. The primary radical is converted into a secondary one by H-abstraction ( k=3.5 × 10 2 s -1) as monitored by changes in the UV spectrum. Subsequently, the secondary radicals undergo chain scission ( k=1.8 s -1 at pH 7-9). This process has been followed both by spectrophotometry as well as by conductometry. In competition with the bimolecular decay of the radicals the ensuing end-chain radicals undergo efficient depolymerization resulting in the release of monomer. Since the lifetime of the radicals is much longer at high pH, where the polymer attains a rod-like conformation, depolymerization is most efficient in basic solution.

  8. Preparation and characterisation of Chlorogenic acid-gelatin: A type of biologically active film for coating preservation.

    PubMed

    Fu, Shalu; Wu, Chunhua; Wu, Tiantian; Yu, Haixia; Yang, Shuibing; Hu, Yaqin

    2017-04-15

    Chlorogenic acid (CGA), a type of plant polyphenol, was conjugated onto gelatin (Gel) to prepare a novel coating material for the preservation of fresh seafood. The optimal reaction molar ratio of CGA to gelatin (4:1) was determined according to the CGA content in the CGA-Gel conjugate. CGA was confirmed to be successfully conjugated onto gelatin by 1 H nuclear magnetic resonance and Fourier transform-infrared spectroscopy. The antioxidant activity of CGA-Gel was proven to be higher than that of the free CGA in 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) radical scavenging, hydrogen peroxide scavenging, ferric ion reducing power and lipid oxidation assays. The minimum inhibitory concentrations (MIC) of CGA against Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes and Staphylococcus aureus were 1, 1, 2 and 2mg/mL, respectively. The antibacterial activity of CGA-Gel was unaffected by conjugation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Design, synthesis and characterization of poly (methacrylic acid-niclosamide) and its effect on arterial function.

    PubMed

    Ma, Rui; Ma, Zhen-Gang; Zhen, Chang-Lin; Shen, Xin; Li, Shan-Liang; Li, Li; Zheng, Yu-Feng; Dong, De-Li; Sun, Zhi-Jie

    2017-08-01

    We have found that niclosamide induced relaxation of constricted artery. However, niclosamide is insoluble, the low bioavailability and the resultant low plasma concentration limit its potential exertion in vivo. The aim of the present study is to synthesize a soluble poly (methacrylic acid-niclosamide) polymer (PMAN) and study the effects of PMAN on arterial function in vitro and the blood pressure and heart rate of rats in vivo. We synthesized the poly (methacrylic acid-niclosamide) polymer (PMAN), the chemical structure of which was identified by FTIR and 1 H NMR spectra. The average molecular weight and polydispersity index of PMAN were 5138 and 1.193 respectively. Compared with niclosamide, the water solubility of niclosamide in PMAN was significantly increased. PMAN showed dose-dependent vasorelaxation effect on rat mesenteric arteries with intact or denuded endothelium in phenylephrine (PE) and high K + (KPSS)-induced vasoconstriction models in vitro. The efficacy of vasorelaxant effect and the cytotoxic effect of PMAN on vascular smooth muscle cells (A10) were lower than that of niclosamide. The LD 50 of PMAN in mice (iv) was 80mg/kg. Venous injection of PMAN (equivalent 5mg niclosamide per kg) showed acute reduction of the rat blood pressure and heart rate in vivo. In conclusion, the solubility of niclosamide was increased in the way of poly (methacrylic acid-niclosamide) polymer, which relaxes the constricted arteries in vitro and reduces the rat blood pressure and heart rate in vivo, indicating that modifying niclosamide solubility through polymerization is a feasible approach to improve its pharmacokinetic profiles for potential clinic application. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Controlled release of tyrosol and ferulic acid encapsulated in chitosan-gelatin films after electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Benbettaïeb, Nasreddine; Assifaoui, Ali; Karbowiak, Thomas; Debeaufort, Frédéric; Chambin, Odile

    2016-01-01

    This work deals with the study of the release kinetics of antioxidants (ferulic acid and tyrosol) incorporated into chitosan-gelatin edible films after irradiation processes. The aim was to determine the influence of electron beam irradiation (at 60 kGy) on the retention of antioxidants in the film, their release in water (pH=7) at 25 °C, in relation with the barrier and mechanical properties of biopolymer films. The film preparation process coupled to the irradiation induced a loss of about 20% of tyrosol but did not affect the ferulic acid content. However, 27% of the ferulic acid remained entrapped in the biopolymer network during the release experiments whereas all tyrosol was released. Irradiation induced a reduction of the release rate for both compounds, revealing that cross-linking occurred during irradiation. This was confirmed by the mechanical properties enhancement which tensile strength value significantly increased and by the reduction of permeabilities. Although molecular weights, molar volume and molecular radius of the two compounds are very similar, the effective diffusivity of tyrosol was 40 times greater than that of ferulic acid. The much lower effective diffusion coefficient of ferulic acid as determined from the release kinetics was explained by the interactions settled between ferulic acid molecules and the gelatin-chitosan matrix. As expected, the electron beam irradiation allowed modulating the retention and then the release of antioxidants encapsulated.

  11. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    PubMed

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Gelatin based bio-films prepared from grey triggerfish' skin influenced by enzymatic pretreatment.

    PubMed

    Souissi, Nabil; Abdelhedi, Ola; Mbarek, Aïcha; Kammoun, Wassim; Kechaou, Hela; Nasri, Moncef

    2017-12-01

    Gelatins from grey triggerfish skin were extracted with different methods. The treatment by pepsin (PG) improved the yield of extraction when compared with untreated gelatin (UG) and acidic gelatin (AG). The outputs of gelatins AG, UG and PG, obtained respectively, with acitic acid, glycine buffer and glycine buffer added with 5U of pepsin/g of the skin beforehand treated by alkali, were 6.9%, 7.9% and 9.7%, respectively. The enzymatic treatment of the alkali-pretreated skin of grey triggerfish altered the electrophoresis profile, biophysical, gellification, rheological and thermal properties of the prepared gelatins extracted under acidic condition. However, the untreated gelatin obtained without pepsin exhibited the highest transition and enthaply temperatures. In addition, the properties of the prepared films were interconnected to their microstructure as demonstrated by scanning electron microscopy. Furthermore, films with PG and UG had a regular surface and a more condensed structure, whereas films prepared with AG had rougher surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthesis of acrylates and methacrylates from coal-derived syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spivey, J.J.; Gogate, M.R.; Jang, B.W.L.

    1995-12-31

    Acrylates and methacrylates are among the most widely used chemical intermediates in the world. One of the key chemicals of this type is methyl methacrylate. Of the 4 billion pounds produced each year, roughly 85% is made using the acetone-cyanohydrin process, which requires handling of large quantities of hydrogen cyanide and produces ammonium sulfate wastes that pose an environmental disposal challenge. The U.S. Department of Energy and Eastman Chemical Company are sharing the cost of research to develop an alternative process for the synthesis of methyl methacrylate from syngas. Research Triangle Institute is focusing on the synthesis and testing ofmore » active catalysts for the condensation reactions, and Bechtel is analyzing the costs to determine the competitiveness of several process alternatives. Results thus far show that the catalysts for the condensation of formaldehyde and the propionate are key to selectively producing the desired product, methacrylic acid, with a high yield. These condensation catalysts have both acid and base functions and the strength and distribution of these acid-base sites controls the product selectivity and yield.« less

  14. Acid-Labile Poly(glycidyl methacrylate)-Based Star Gene Vectors.

    PubMed

    Yang, Yan-Yu; Hu, Hao; Wang, Xing; Yang, Fei; Shen, Hong; Xu, Fu-Jian; Wu, De-Cheng

    2015-06-10

    It was recently reported that ethanolamine-functionalized poly(glycidyl methacrylate) (PGEA) possesses great potential applications in gene therapy due to its good biocompatibility and high transfection efficiency. Importing responsivity into PGEA vectors would further improve their performances. Herein, a series of responsive star-shaped vectors, acetaled β-cyclodextrin-PGEAs (A-CD-PGEAs) consisting of a β-CD core and five PGEA arms linked by acid-labile acetal groups, were proposed and characterized as therapeutic pDNA vectors. The A-CD-PGEAs owned abundant hydroxyl groups to shield extra positive charges of A-CD-PGEAs/pDNA complexes, and the star structure could decrease charge density. The incorporation of acetal linkers endowed A-CD-PGEAs with pH responsivity and degradation. In weakly acidic endosome, the broken acetal linkers resulted in decomposition of A-CD-PGEAs and morphological transformation of A-CD-PGEAs/pDNA complexes, lowering cytotoxicity and accelerating release of pDNA. In comparison with control CD-PGEAs without acetal linkers, A-CD-PGEAs exhibited significantly better transfection performances.

  15. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A [Santa Fe, NM; Martinez, Rodolfo A [Santa Fe, NM; Unkefer, Clifford J [Los Alamos, NM

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  16. Gelatin-based microcarriers as embryonic stem cell delivery system in bone tissue engineering: an in-vitro study.

    PubMed

    Tielens, S; Declercq, H; Gorski, T; Lippens, E; Schacht, E; Cornelissen, M

    2007-03-01

    Mouse embryonic stem cells were cultured on commercially available biodegradable macroporous microcarriers. A culture period of 1-2 weeks was needed to colonize the microcarriers. Embryonic stem cells retained their pluripotency for up to 14 days when cultured in medium supplemented with leukemia inhibitory factor. Replacing this medium by differentiation medium for 2 weeks initiated osteogenic differentiation. Encapsulation of the cell-loaded microcarriers in photopolymerizable polymers (methacrylate-endcapped poly-D,L-lactide-co-caprolactone), triacetin/hydroxyethylmethacrylate (HEMA) as solvent and with/without gelatin as porogen, resulted in a homogeneous distribution of the microcarriers in the polymer. As observed by transmission electron microscopy, viability of the cells was optimal when gelatin was omitted and when using triacetin instead of HEMA.

  17. Optimization and characterization of gelatin and chitosan extracted from fish and shrimp waste

    NASA Astrophysics Data System (ADS)

    Ait Boulahsen, M.; Chairi, H.; Laglaoui, A.; Arakrak, A.; Zantar, S.; Bakkali, M.; Hassani, M.

    2018-05-01

    Fish and seafood processing industries generate large quantities of waste which are at the origin of several environmental, economic and social problems. However fish waste could contain high value-added substances such as biopolymers. This work focuses on optimizing the gelatin and chitosan extraction from tilapia fish skins and shrimp shells respectively. The gelatin extraction process was optimized using alkali acid treatment prior to thermal hydrolysis. Three different acids were tested at different concentrations. Chitosan was obtained after acid demineralization followed by simultaneous hydrothermal deproteinization and deacetylation by an alkali treatment with different concentrations of HCl and NaOH. The extracted gelatin and chitosan with the highest yield were characterized by determining their main physicochemical properties (Degree of deacetylation, viscosity, pH, moisture and ash content). Results show a significant influence of the acid type and concentration on the extraction yield of gelatin and chitosan, with an average yield of 12.24% and 3.85% respectively. Furthermore, the obtained physicochemical properties of both extracted gelatin and chitosan were within the recommended standard values of the commercial ones used in the industry.

  18. Fish gelatin.

    PubMed

    Boran, Gokhan; Regenstein, Joe M

    2010-01-01

    Gelatin is a multifunctional ingredient used in foods, pharmaceuticals, cosmetics, and photographic films as a gelling agent, stabilizer, thickener, emulsifier, and film former. As a thermoreversible hydrocolloid with a narrower gap between its melting and gelling temperatures, both of which are below human body temperature, gelatin provides unique advantages over carbohydrate-based gelling agents. Gelatin is mostly produced from pig skin, and cattle hides and bones. Some alternative raw materials have recently gained attention from both researchers and the industry not just because they overcome religious concerns shared by Jews and Muslims but also because they provide, in some cases, technological advantages over mammalian gelatins. Fish skins from a number of fish species are among the other sources that have been comprehensively studied as sources for gelatin production. Fish skins have a significant potential for the production of high-quality gelatin with different melting and gelling temperatures over a much wider range than mammalian gelatins, yet still have a sufficiently high gel strength and viscosity. Gelatin quality is industrially determined by gel strength, viscosity, melting or gelling temperatures, the water content, and microbiological safety. For gelatin manufacturers, yield from a particular raw material is also important. Recent experimental studies have shown that these quality parameters vary greatly depending on the biochemical characteristics of the raw materials, the manufacturing processes applied, and the experimental settings used for quality control tests. In this review, the gelatin quality achieved from different fish species is reviewed along with the experimental procedures used to determine gelatin quality. In addition, the chemical structure of collagen and gelatin, the collagen-gelatin conversion, the gelation process, and the gelatin market are discussed. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Modification of gelatin-DNA interaction for optimised DNA extraction from gelatin and gelatin capsule.

    PubMed

    Mohamad, Nurhidayatul Asma; Mustafa, Shuhaimi; El Sheikha, Aly Farag; Khairil Mokhtar, Nur Fadhilah; Ismail, Amin; Ali, Md Eaqub

    2016-05-01

    Poor quality and quantity of DNA extracted from gelatin and gelatin capsules often causes failure in the determination of animal species using PCR. Gelatin, which is mainly derived from porcine and bovine, has been a matter of concern among customers in order to fulfill religious obligation and safety precaution against several transmissible infectious diseases associated with bovine species. Thus, optimised DNA extraction from gelatin is very important for successful real-time PCR detection of gelatin species. In this work, the DNA extraction method was optimised in terms of lysis incubation period and inclusion of pre-treatment pH modification of samples. The yield of DNA extracted from porcine gelatin was significantly increased when the pH of the samples was adjusted to pH 8.5 prior to DNA precipitation with isopropanol. The optimal pH for DNA precipitation from bovine gelatin solution was then determined at the original pH range of solution: pH 7.6 to 8. A DNA fragment of approximately 300 base pairs was available for PCR amplification. DNA extracted from gelatin and commercially available capsules has been successfully utilised for species detection using real-time PCR assay. However, significant adulterations of porcine and bovine in pure gelatin and capsules have been detected, which require further analytical techniques for validation. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    NASA Astrophysics Data System (ADS)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling

  1. Continuous process of preparation of n-butyl(meth)acrylate by esterification of (meth)acrylic acid by butanol on thermostable sulfo-cation exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.

    1987-11-10

    The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.

  2. Contribution of the net charge to the regulatory effects of amino acids and epsilon-poly(L-lysine) on the gelatinization behavior of potato starch granules.

    PubMed

    Ito, Azusa; Hattori, Makoto; Yoshida, Tadashi; Takahashi, Koji

    2006-01-01

    The effects of lysine (Lys), monosodium glutamate (GluNa), glycine, alanine and epsilon-poly(L-lysine) (PL) with different degrees of polymerization on the gelatinization behavior of potato starch granules were investigated by DSC, viscosity and swelling measurements, microscopic observation, and measurement of the retained amino acid amount to clarify the contribution of the net charge to their regulatory effects on the gelatinization behavior. The amino acids and PL each contributed to an increase in the gelatinization temperature, and a decrease in the peak viscosity and swelling. These effects strongly depended on the absolute value of their net charge. The disappearance of a negative or positive net charge by adjusting the pH value weakened the contribution. The swelling index and size of the potato starch granules changed according to replacement of the swelling medium. The amino acids and PL were easily retained by the swollen potato starch granules according to replacement of the outer solution of the starch granules.

  3. Extraction and characterization of gelatin from two edible Sudanese insects and its applications in ice cream making.

    PubMed

    Mariod, Abdalbasit Adam; Fadul, Hadia

    2015-07-01

    Three methods were used for extraction of gelatin from two insects, melon bug (Coridius viduatus) and sorghum bug (Agonoscelis versicoloratus versicoloratus). Extraction of insect gelatin using hot water gave higher yield reached up to 3.0%, followed by mild acid extraction which gave 1.5% and distilled water extraction which gave only 1.0%, respectively. The obtained gelatins were characterized by FTIR and the spectra of insect's gelatin seem to be similar when compared with commercial gelatin. Amide II bands of gelatins from melon and sorghum bug appeared around at 1542-1537 cm(-1). Slight differences in the amino acid composition of gelatin extracted from the two insects were observed. Ice cream was made by using 0.5% insect's gelatin and compared with that made using 0.5% commercial gelatin as stabilizing agent. The properties of the obtained ice cream produced using insects gelatin were significantly different when compared with that made using commercial gelatin. © The Author(s) 2014.

  4. Radiological properties of normoxic polymer gel dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venning, A.J.; Nitschke, K.N.; Keall, P.J.

    2005-04-01

    The radiological properties of the normoxic polymer gel dosimeters MAGIC, MAGAS, and MAGAT [methacrylic and ascorbic acid in gelatin initiated by copper; methacrylic acid gelatine gel with ascorbic acid; and methacrylic acid gelatine and tetrakis (hydroxymethyl) phosphonium chloride, respectively] have been investigated. The radiological water equivalence was determined by comparing the polymer gel macroscopic photon and electron interaction cross sections over the energy range from 10 keV to 20 MeV and by Monte Carlo modeling of depth doses. Normoxic polymer gel dosimeters have a high gelatine and monomer concentration and therefore mass density (kg m{sup -3}) up to 3.8% highermore » than water. This results in differences between the cross-section ratios of the normoxic polymer gels and water of up to 3% for the attenuation, energy absorption, and collision stopping power coefficient ratios through the Compton dominant energy range. The mass cross-section ratios were within 2% of water except for the mass attenuation and energy absorption coefficients ratios, which showed differences with water of up to 6% for energies less than 100 keV. Monte Carlo modeling was undertaken for the polymer gel dosimeters to model the electron and photon transport resulting from a 6 MV photon beam. The absolute percentage differences between gel and water were within 1% and the relative percentage differences were within 3.5%. The results show that the MAGAT gel formulation is the most radiological water equivalent of the normoxic polymer gel dosimeters investigated due to its lower mass density measurement compared with MAGAS and MAGIC gels.« less

  5. Extraction optimization and characterization of gelatine from fish dry skin of Spanish mackerel (Scomberromorus commersoni)

    NASA Astrophysics Data System (ADS)

    Kusumaningrum, I.; Pranoto, Y.; Hadiwiyoto, S.

    2018-04-01

    This work was to optimized gelatin extraction from dry skin of Spanish mackerel (Scomberromorus commersoni) using Response Surface Methodology (RSM). The aim of this study was to determine the optimal condition of temperature and time for extraction process and properties of the gelatin extracted from dry mackerel skin. The optimal condition for extraction was 59.71°C for 4.25 hours. Results showed that predicted yield by RSM was 13.69% and predicted gel strength was 291.93 Bloom, whereas the actual experiment for yield and gel strength were 13.03% and 291.33 Bloom, respectively. The gelatin extracted from dried skin were analyzed for their proximate composition, yield, gel strength, viscosity, color, and amino acid composition. The results of dried skin gelatin properties compared to the commercial gelatin. Gelatin extracted from the dried skin gave content lower moisture, ash and protein content but higher fat compared to commercial gelatin. This study also shows that the gelatin extracted from the dried skin gave higher gel strength and pH but the lower amino acid composition compared to commercial gelatin.

  6. Triblock copolyampholytes from 5-(N,N-dimethyl amino)isoprene styrene, and methacrylic acid: Synthesis and solution properties

    NASA Astrophysics Data System (ADS)

    Bieringer, R.; Abetz, V.; Müller, A. H. E.

    ABC triblock copolymers of the type poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(tert-butyl methacrylate) (AiST) were synthesized and hydrolyzed to yield poly[5-(N,N-dimethyl amino)isoprene]-block-polystyrene-block-poly(methacrylic acid) (AiSA) triblock copolyampholytes. Due to a complex solubility behavior the solution properties of these materials had to be investigated in THF/water solvent mixtures. Potentiometric titrations of AiSA triblock copolyampholytes showed two inflection points with the A block being deprotonated prior to the Ai hydrochloride block thus forming a polyzwitterion at the isoelectric point (iep). The aggregation behavior was studied by dynamic light scattering (DLS) and freeze-fracture/transmission electron microscopy (TEM). Large vesicular structures with almost pH-independent radii were observed.

  7. Expression and characterization of a low molecular weight recombinant human gelatin: development of a substitute for animal-derived gelatin with superior features.

    PubMed

    Olsen, David; Jiang, Jenny; Chang, Robert; Duffy, Robert; Sakaguchi, Masahiro; Leigh, Scott; Lundgard, Robert; Ju, Julia; Buschman, Frank; Truong-Le, Vu; Pham, Binh; Polarek, James W

    2005-04-01

    Gelatin is used as a stabilizer in several vaccines. Allergic reactions to gelatins have been reported, including anaphylaxis. These gelatins are derived from animal tissues and thus represent a potential source of contaminants that cause transmissible spongiform encephalopathies. We have developed a low molecular weight human sequence gelatin that can substitute for the animal sourced materials. A cDNA fragment encoding 101 amino acids of the human proalpha1 (I) chain was amplified, cloned into plasmid pPICZalpha, integrated into Pichia pastoris strain X-33, and isolates expressing high levels of recombinant gelatin FG-5001 were identified. Purified FG-5001 was able to stabilize a live attenuated viral vaccine as effectively as porcine gelatin. This prototype recombinant gelatin was homogeneous with respect to molecular weight but consisted of several charge isoforms. These isoforms were separated by cation exchange chromatography and found to result from a combination of truncation of the C-terminal arginine and post-translational phosphorylation. Site-directed mutagenesis was used to identify the primary site of phosphorylation as serine residue 546; serine 543 was phosphorylated at a low level. A new construct was designed encoding an engineered gelatin, FG-5009, with point mutations that eliminated the charge heterogeneity. FG-5009 was not recognized by antigelatin IgE antibodies from children with confirmed gelatin allergies, establishing the low allergenic potential of this gelatin. The homogeneity of FG-5009, the ability to produce large quantities in a reproducible manner, and its low allergenic potential make this a superior substitute for the animal gelatin hydrolysates currently used to stabilize many pharmaceuticals.

  8. Increased cellular uptake of lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles due to surface modification with folic acid.

    PubMed

    Feuser, Paulo Emilio; Arévalo, Juan Marcelo Carpio; Junior, Enio Lima; Rossi, Gustavo Rodrigues; da Silva Trindade, Edvaldo; Rocha, Maria Eliane Merlin; Jacques, Amanda Virtuoso; Ricci-Júnior, Eduardo; Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H Hermes

    2016-12-01

    Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid were synthesized by miniemulsion polymerization in just one step. In vitro biocompatibility and cytotoxicity assays on L929 (murine fibroblast), human red blood, and HeLa (uterine colon cancer) cells were performed. The effect of folic acid at the nanoparticles surface was evaluated through cellular uptake assays in HeLa cells. Results showed that the presence of folic acid did not affect substantially the polymer particle size (~120 nm), the superparamagnetic behavior, the encapsulation efficiency of lauryl gallate (~87 %), the Zeta potential (~38 mV) of the polymeric nanoparticles or the release profile of lauryl gallate. The release profile of lauryl gallate from superparamagnetic poly(methyl methacrylate) nanoparticles presented an initial burst effect (0-1 h) followed by a slow and sustained release, indicating a biphasic release system. Lauryl gallate loaded in superparamagnetic poly(methyl methacrylate) nanoparticles with folic acid did not present cytotoxicity effects on L929 and human red blood cells. However, free lauryl gallate presented significant cytotoxic effects on L929 and human red blood cells at all tested concentrations. The presence of folic acid increased the cytotoxicity of lauryl gallate loaded in nanoparticles on HeLa cells due to a higher cellular uptake when HeLa cells were incubated at 37 °C. On the other hand, when the nanoparticles were incubated at low temperature (4 °C) cellular uptake was not observed, suggesting that the uptake occurred by folate receptor mediated energy-dependent endocytosis. Based on presented results our work suggests that this carrier system can be an excellent alternative in targeted drug delivery by folate receptor.

  9. Isolation of fish skin and bone gelatin from tilapia (Oreochromis niloticus): Response surface approach

    NASA Astrophysics Data System (ADS)

    Arpi, N.; Fahrizal; Novita, M.

    2018-03-01

    In this study, gelatin from fish collagen, as one of halal sources, was extracted from tilapia (Oreochromis niloticus) skin and bone, by using Response Surface Methodology to optimize gelatin extraction conditions. Concentrations of alkaline NaOH and acid HCl, in the pretreatment process, and temperatures in extraction process were chosen as independent variables, while dependent variables were yield, gel strength, and emulsion activity index (EAI). The result of investigation showed that lower NaOH pretreatment concentrations provided proper pH extraction conditions which combine with higher extraction temperatures resulted in high gelatin yield. However, gelatin emulsion activity index increased proportionally to the decreased in NaOH concentrations and extraction temperatures. No significant effect of the three independent variables on the gelatin gel strength. RSM optimization process resulted in optimum gelatin extraction process conditions using alkaline NaOH concentration of 0.77 N, acid HCl of 0.59 N, and extraction temperature of 66.80 °C. The optimal solution formula had optimization targets of 94.38%.

  10. The lymphoproliferative response to enzymatically digested gelatin in subjects with gelatin hypersensitivity.

    PubMed

    Kumagai, T; Nakayama, T; Kamada, M; Igarashi, C; Yuri, K; Furukawa, H; Wagatuma, K; Tsutsumi, H; Chiba, S; Kojima, H; Saito, A; Okui, T; Yano, S

    2000-10-01

    This study was designed to evaluate the immunogenic characteristics of enzymatically digested gelatin, 'FreAlagin', employing the lymphoproliferative response in subjects with gelatin hypersensitivity. Our purpose was to assess the response of primed lymphocytes to the newly developed FreAlagin and compare it to the response to conventional gelatin. A gelatin-specific lymphocyte proliferation test (LPT) was performed in 110 children with adverse reactions to gelatin-containing vaccines, who showed positive gelatin-specific cell-mediated immunity and were thus diagnosed as having gelatin hypersensitivity. Gelatin-specific IgE was measured in all subjects. The antigenic activity of FreAlagin to lymphocytes was compared with that of conventional bovine gelatin. Positive and negative control specimens were obtained from the patients with anaphylaxis and from subjects inoculated with gelatin-free vaccine who showed no adverse reactions in order to establish the fluorometric ELISA system to determine IgE antibody to gelatin and LPT. The lymphocyte activity against FreAlagin was much less than that to Wako gelatin and more than half of the subjects who reacted positively to Wako gelatin had a negative LPT to FreAlagin. Although 47% of the subjects had positive LPTs to FreAlagin, all but two still had lower SIs to FreAlagin compared with Wako gelatin. We conclude that the antigenic activity of FreAlagin as measured by the cell-mediated immune response is significantly less than that of conventional bovine gelatin. However, it is still necessary to perform clinical trials to show a reduced or absent clinical reactivity to FreAlagin in sensitized patients to conventional gelatin.

  11. Properties of gelatin film from horse mackerel (Trachurus japonicus) scale.

    PubMed

    Le, Thuy; Maki, Hiroki; Takahashi, Kigen; Okazaki, Emiko; Osako, Kazufumi

    2015-04-01

    Optimal conditions for extracting gelatin and preparing gelatin film from horse mackerel scale, such as extraction temperature and time, as well as the protein concentration of film-forming solutions were investigated. Yields of extracted gelatin at 70 °C, 80 °C, and 90 °C for 15 min to 3 h were 1.08% to 3.45%, depending on the extraction conditions. Among the various extraction times and temperatures, the film from gelatin extracted at 70 °C for 1 h showed the highest tensile strength and elongation at break. Horse mackerel scale gelatin film showed the greatly low water vapor permeability (WVP) compared with mammalian or fish gelatin films, maybe due to its containing a slightly higher level of hydrophobic amino acids (total 653 residues per 1000 residues) than that of mammalian, cold-water fish and warm-water fish gelatins. Gelatin films from different preparation conditions showed excellent UV barrier properties at wavelength of 200 nm, although the films were transparent at visible wavelength. As a consequence, it can be suggested that gelatin film from horse mackerel scale extracted at 70 °C for 1 h can be applied to food packaging material due to its lowest WVP value and excellent UV barrier properties. © 2015 Institute of Food Technologists®

  12. Synthesis of mucoadhesive thiolated gelatin using a two-step reaction process.

    PubMed

    Duggan, Sarah; O'Donovan, Orla; Owens, Eleanor; Cummins, Wayne; Hughes, Helen

    2015-04-01

    Using a novel two-step approach, the thiolation of gelatin for mucoadhesive drug delivery has been achieved. The initial step involved the amination of native gelatin via an amine to carboxylic acid coupling reaction with ethylene diamine, followed by thiolation with Traut's reagent. The resulting thiolated product showed an increase in thiol content of up to 10-fold in comparison with control gelatin samples. Improved cohesion and mucoadhesion in comparison with unmodified and control gelatin samples was also observed. This reaction process was observed to be influenced by both the temperature and the pH of the amination reaction, affecting both amine content and product yield. Swelling ability, cohesion and mucoadhesion were all observed to be strongly dependent on the thiol content of the samples but also, importantly, the molecular weight (MW) of the gelatin used. Gelatin with a MW of 20-25 kDa proved to be optimal in creating this novel mucoadhesive gelatin material. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Synthesis of poly(alkenoic acid) with L-leucine residue and methacrylate photopolymerizable groups useful in formulating dental restorative materials.

    PubMed

    Buruiana, Tinca; Nechifor, Marioara; Melinte, Violeta; Podasca, Viorica; Buruiana, Emil C

    2014-01-01

    To develop resin-modified glass ionomer materials, we synthesized methacrylate-functionalized acrylic copolymer (PAlk-LeuM) derived from acrylic acid, itaconic acid and N-acryloyl-L-leucine using (N-methacryloyloxyethylcarbamoyl-N'-4-hydroxybutyl) urea as the modifying agent. The spectroscopic (proton/carbon nuclear magnetic resonance, Fourier transform infrared spectroscopy) characteristics, and the gel permeation chromatography/Brookfield viscosity measurements were analysed and compared with those of the non-modified copolymer (PAlk-Leu). The photocurable copolymer (PAlk-LeuM, ~14 mol% methacrylate groups) and its precursor (PAlk-Leu) were incorporated in dental ionomer compositions besides diglycidyl methacrylate of bisphenol A (Bis-GMA) or an analogue of Bis-GMA (Bis-GMA-1), triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The kinetic data obtained by photo-differential scanning calorimetry showed that both the degree of conversion (60.50-75.62%) and the polymerization rate (0.07-0.14 s(-1)) depend mainly on the amount of copolymer (40-50 wt.%), and conversions over 70% were attained in the formulations with 40 wt.% PAlk-LeuM. To formulate light-curable cements, each organic composition was mixed with filler (90 wt.% fluoroaluminosilicate/10 wt.% hydroxyapatite) into a 2.7:1 ratio (powder/liquid ratio). The light-cured specimens exhibited flexural strength (FS), compressive strength (CS) and diametral tensile strength (DTS) varying between 28.08 and 64.79 MPa (FS), 103.68-147.13 MPa (CS) and 16.89-31.87 MPa (DTS). The best values for FS, CS and DTS were found for the materials with the lowest amount of PAlk-LeuM. Other properties such as the surface hardness, water sorption/water solubility, surface morphology and fluorescence caused by adding the fluorescein monomer were also evaluated.

  14. Electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon.

    PubMed

    Topuz, Fuat; Uyar, Tamer

    2017-11-01

    The electrospinning of gelatin with tunable fiber morphology from round to flat/ribbon was shown, and the detailed studies were conducted to correlate the fiber morphology with electrospinning process parameters and gelatin concentration in electrospinning solution. Particularly, variations in the applied voltage and the concentration of gelatin led to the transition of fiber shape from round to flat/ribbon. The formation of flat-shaped fibers was attributed to rapid evaporation of the solvent (formic acid) from the fiber matrix with increasing the applied voltage and gelatin concentration. On the other hand, round fibers were due to the steady evaporation of formic acid throughout the cross-section of fibers. WAXS analysis revealed that the loss of triple-helical crystalline structure in gelatin after the electrospinning process. The gelatin fibers were cross-linked through treatment with toluene 2,4-diisocyanate (TDI) in a mixed solution of acetone and pyridine, and XPS confirmed the cross-linking of the fibers over an increased carbon content on the elemental composition of the fiber surface due to the incorporated TDI moieties. Overall, this study focuses on morphological tuning of gelatin electrospun fibers towards a flat/ribbon-like structure by variation of electrospinning parameters and polymer concentration, and thus, the proposed concept can be adapted towards flattened/ribbon-like fibers of other protein-based systems by electrospinning. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis and characterization of new composite materials based on poly(methacrylic acid) and hydroxyapatite with applications in dentistry.

    PubMed

    Cucuruz, Andrei Tiberiu; Andronescu, Ecaterina; Ficai, Anton; Ilie, Andreia; Iordache, Florin

    2016-08-30

    The use of methacrylic acid (MAA) in medicine was poorly investigated in the past but can be of great importance because the incorporation of hydroxyapatite (HA) can lead to new composite materials with good properties due to the strong electrostatic interactions between carboxylate groups of polymer and Ca(2+) ions from HA. The scope of this study was to determine the potential of using composite materials based on poly(methacrylic acid) (PMAA) and hydroxyapatite in dentistry. Two routes of synthesis were taken into account: i) HA was synthesised in situ and ii) commercial HA was used. Fourier transform infrared spectroscopy and X-ray diffraction were used for compositional assessments. Scanning electron microscopy was performed to determine the morphology and differential thermal analysis (DTA) coupled with thermogravimetric analysis (TG) was used to study the thermal behaviour and to observe quantitative changes. In-vitro tests were also performed in order to evaluate the biocompatibility of both PMAA/HA composites by monitoring the development potential of human endothelial cells using MTT assay and fluorescent microscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Gelatin Nano-coating for Inhibiting Surface Crystallization of Amorphous Drugs.

    PubMed

    Teerakapibal, Rattavut; Gui, Yue; Yu, Lian

    2018-01-05

    Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. For indomethacin (weak acid, pK a  = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pK a  = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.

  17. Modification of Cys-418 of pyruvate formate-lyase by methacrylic acid, based on its radical mechanism.

    PubMed

    Plaga, W; Vielhaber, G; Wallach, J; Knappe, J

    2000-01-21

    The recently determined crystal structure of pyruvate formate-lyase (PFL) suggested a new view of the mechanism of this glycyl radical enzyme, namely that intermediary thiyl radicals of Cys-418 and Cys-419 participate in different ways [Becker, A. et al. (1999) Nat. Struct. Biol. 6, 969-975]. We report here a suicide reaction of PFL that occurs with the substrate-analog methacrylate with retention of the protein radical (K(I)=0.42 mM, k(i)=0.14 min(-1)). Using [1-(14)C]methacrylate (synthesized via acetone cyanhydrin), the reaction end-product was identified by peptide mapping and cocrystallization experiments as S-(2-carboxy-(2S)-propyl) substituted Cys-418. The stereoselectivity of the observed Michael addition reaction is compatible with a radical mechanism that involves Cys-418 thiyl as nucleophile and Cys-419 as H-atom donor, thus supporting the functional assignments of these catalytic amino acid residues derived from the protein structure.

  18. Gelatin-containing diphtheria-tetanus-pertussis (DTP) vaccine causes sensitization to gelatin in the recipients.

    PubMed

    Kumagai, T; Ozaki, T; Kamada, M; Igarashi, C; Yuri, K; Furukawa, H; Wagatuma, K; Chiba, S; Sato, M; Kojima, H; Saito, A; Okui, T; Yano, S

    2000-02-14

    Gelatin-specific T cell response was performed to determine whether a series of vaccinations with gelatin-containing DTP is a primary sensitization process in gelatin allergy. Thirty-seven recipients with gelatin-containing DTP who developed adverse reactions after vaccination and eight recipients of DTP without gelatin who also developed adverse reactions were studied. In addition, 10 subjects receiving gelatin-containing vaccine and 10 subjects inoculated with non-gelatin vaccine who did not show any adverse reactions were also investigated. All subjects inoculated with gelatin-containing DTP vaccine showed positive T cell responses against gelatin, however, occurrence of adverse reactions did not correlate with T cell responses. We conclude that DTP vaccine containing gelatin induces sensitization to gelatin in the recipients, but the mechanism of local reactions remains unknown.

  19. Non-antigenic and low allergic gelatin produced by specific digestion with an enzyme-coupled matrix.

    PubMed

    Sakai, Y; Yamato, R; Onuma, M; Kikuta, T; Watanabe, M; Nakayama, T

    1998-04-01

    Porcine gelatin (heat-denatured collagen) was digested with a bioreactor using an enzyme-coupled matrix (ECM) with purified collagenase. The digested gelatin, FreAlagin type R (M.W. range 200-10000 Da), was further purified by an HPLC system depending upon molecular size. The molecular weight range of the purified fractions, FreAlagin type P and type AD, were 200-500 and 2000-10000 Da, respectively, and glycine was the N-terminal amino acid of both types (> or =93%). ECM has the capability of digesting gelatin at a specific point in the sequence before glycine, and it was determined that FreAlagin type P consists of a tri-peptide fraction with the amino acid sequence Gly-X-Y. No types of FreAlagin exhibited any reactivity with gelatin-specific IgG antibody raised in guinea pigs, and they also possessed an extremely low reactivity with gelatin-specific IgE antibody from the sera of patients who had experienced an anaphylactic reaction against gelatin after vaccination or after eating gelatin-containing foods. From these results, it was determined that FreAlagin types R and AD were non-antigenic, low-allergic gelatins. FreAlagin type R, and especially type AD, had strong adsorption-blocking activity comparable to the level of bovine serum albumin, whereas type P and glycine had virtually no adsorption-blocking activity. Therefore, the new types of gelatin, FreAlagin types R and AD, are suitable for pharmaceutical use to avoid gelatin allergy.

  20. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    PubMed Central

    2011-01-01

    Herein, the generation of gold, silver, and silver–gold (Ag–Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV–visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device. PMID:27502645

  1. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Liu, Xiaoheng; Wang, Xin

    2011-12-01

    Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.

  2. Evaluation of the deformation behavior of binary systems of methacrylic acid copolymers and hydroxypropyl methylcellulose using a compaction simulator.

    PubMed

    Tatavarti, Aditya S; Muller, Francis X; Hoag, Stephen W

    2008-02-04

    Methacrylic acid copolymers have been shown to enhance release of weakly basic drugs from rate controlling polymer matrices through the mechanism of microenvironmental pH modulation. Since these matrices are typically formed through a compaction process, an understanding of the deformation behavior of these polymers in there neat form and in combination with rate controlling polymers such as HPMC is critical to their successful formulation. Binary mixes of two methacrylic acid copolymers, Eudragit L100 and L100-55 in combination with HPMC K4M were subjected to compaction studies on a compaction simulator. The deformation behavior of the powder mixes was analyzed based on pressure-porosity relationships, strain rate sensitivity (SRS), residual die wall force data and work of compaction. Methacrylic acid copolymers, L100-55 and L-100 and the hydrophilic polymer, HPMC K4M exhibited Heckel plots representative of plastic deformation although L-100 exhibited significantly greater resistance to densification as evident from the high yield pressure values ( approximately 120MPa). The yield pressures for the binary mixes were linearly related to the weight fractions of the components. All powder mixes exhibited significant speed sensitivity with SRS values ranging from 21.7% to 42.4%. The residual die-wall pressures indicated that at slow speeds (1mm/s) and at lower pressures (<150MPa), HPMC possesses significant elastic behavior. However, the good compacts formed at this punch speed indicate significant plastic deformation and bond formation which is able to predominate over the elastic recovery component. The apparent mean yield pressure values, the residual die-wall forces and the net work of compaction exhibited a linear relationship with mixture composition, thereby indicating predictability of these parameters based on the behavior of the neat materials.

  3. Synthesis and Property of Ag(NP)/catechin/Gelatin Nanofiber

    NASA Astrophysics Data System (ADS)

    Nasir, Muhamad; Apriani, Dita

    2017-12-01

    Nanomaterial play important role future industry such as for the medical, food, pharmaceutical and cosmetic industry. Ag (NP) and catechin exhibit antibacterial property. Ag(NP) with diameter around 15 nm was synthesis by microwaved method. We have successfully produce Ag(NP)/catechin/gelatin nanofiber composite by electrospinning process. Ag(NP)/catechin/gelatin nanofiber was synthesized by using gelatin from tuna fish, polyethylene oxide (PEO), acetic acid as solvent and silver nanoparticle(NP)/catechin as bioactive component, respectively. Morphology and structure of bioactive catechin-gelatin nanofiber were characterized by scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR), respectively. SEM analysis showed that morphology of nanofiber composite was smooth and had average diameter 398.97 nm. FTIR analysis results were used to confirm structure of catechin-gelatin nanofiber. It was confirmed by FTIR that specific vibration band peak amide A (N-H) at 3286,209 cm-1, amide B (N-H) 3069,396 cm-1, amide I (C=O) at 1643,813 cm-1, amide II (N-H and CN) at 1538,949 cm-1, amide III (C-N) at 1276,789 cm-1, C-O-C from polyethylene oxide at 1146,418 cm-1, respectively. When examined to S. Aureus bacteria, Ag/catechin/gelatin nanofiber show inhabitation performance around 40.44%. Ag(NP)/catechin/gelatin nanofiber has potential application antibacterial medical application.

  4. Enhanced Immunomodulatory Activity of Gelatin-Encapsulated Rubus coreanus Miquel Nanoparticles

    PubMed Central

    Seo, Yong Chang; Choi, Woon Yong; Lee, Choon Geun; Cha, Seon Woo; Kim, Young Ock; Kim, Jin-Chul; Drummen, Gregor P. C.; Lee, Hyeon Yong

    2011-01-01

    The aim of this work was to investigate the immunomodulatory activities of Rubus coreanus Miquel extract-loaded gelatin nanoparticles. The mean size of the produced nanoparticles was 143 ± 18 nm with a bandwidth of 76 nm in the size distribution and a maximum size of ~200 nm, which allows effective nanoparticle uptake by cells. Confocal imaging confirmed this, since the nanoparticles were internalized within 30 min and heterogeneously distributed throughout the cell. Zeta-potential measurements showed that from pH = 5 onwards, the nanoparticles were highly negatively charged, which prevents agglomeration to clusters by electrostatic repulsion. This was confirmed by TEM imaging, which showed a well dispersed colloidal solution. The encapsulation efficiency was nearly 60%, which is higher than for other components encapsulated in gelatin nanoparticles. Measurements of immune modulation in immune cells showed a significant effect by the crude extract, which was only topped by the nanoparticles containing the extract. Proliferation of B-, T- and NK cells was notably enhanced by Rubus coreanus-gelatin nanoparticles and in general ~2–3 times higher than control and on average ~2 times higher than ferulic acid. R. coreanus-gelatin nanoparticles induced cytokine secretion (IL-6 and TNF-α) from B- and T-cells on average at a ~2–3 times higher rate compared with the extract and ferulic acid. In vivo immunomodulatory activity in mice fed with R. coreanus-gelatin nanoparticles at 1 mL/g body weight showed a ~5 times higher antibody production compared to control, a ~1.3 times higher production compared to the extract only, and a ~1.6 times higher production compared to ferulic acid. Overall, our results suggest that gelatin nanoparticles represent an excellent transport vehicle for Rubus coreanus extract and extracts from other plants generally used in traditional Asian medicine. Such nanoparticles ensure a high local concentration that results in enhancement of immune

  5. Reactivity of the immunoglobulin E in bovine gelatin-sensitive children to gelatins from various animals

    PubMed Central

    Sakaguchi, M; Hori, H; Ebihara, T; Irie, S; Yanagida, M; Inouye, S

    1999-01-01

    It has been reported that most children who showed anaphylaxis to measles, mumps and rubella vaccines containing bovine gelatin as a stabilizer have anti-bovine gelatin IgE. The present study was designed to investigate the reactivity of IgE in bovine gelatin-sensitive children to gelatins from various animals, and the antigenic cross-reactivity between the gelatins. Serum samples taken from 10 children who showed anaphylaxis to vaccines containing bovine gelatin were used in this study. The level of anti-bovine gelatin IgE in these serum samples ranged from 11·0 to 251 Ua/ml. The IgE in most of the children reacted to kangaroo and mouse gelatins, to which they had had little or no exposure as a food or a vaccine stabilizer. The IgE binding to kangaroo and mouse gelatins was completely inhibited by bovine gelatin, whereas reciprocal inhibition was not complete, indicating that antigenic cross-reactivity is present between the mammalian gelatins. Only one child had strong IgE reactivity to fish gelatins, and this reactivity was not inhibited by bovine gelatin, indicating that no antigenic cross-reactivity exists between bovine and fish gelatins. Most of the children who displayed sensitivity to bovine gelatin showed IgE reactivity to other mammalian gelatins. This reactivity may be due primarily to the antigenic cross-reactivity between mammalian gelatins. PMID:10233707

  6. Preparation and physicochemistry properties of smart edible films based on gelatin-starch nanoparticles.

    PubMed

    Tao, Furong; Shi, Chengmei; Cui, Yuezhi

    2018-04-24

    Among the natural polymers able to form edible films, starch and gelatin (Gel) are potential sources. Corn starch is a polysaccharide widely produced around the world, and gelatin differs from other hydrocolloids as a fully digestible protein, containing nearly all the essential amino acids, except tryptophan. Based on this, with advantages such as abundance, relatively low cost, biodegradability, and edibility, studies considering alternative systems for food protection that utilize biopolymers have increased significantly in the recent years. A novel macromolecular crosslinker Starch-BTCAD-NHS (starch - butanetetracarboxylic acid dianhydride - N-hydroxysuccinimide, SBN) was successfully prepared to modify gelatin film. Compared with the blank gelatin films, the resulting SBN-Gel films exhibited the improved surface hydrophobicity, the higher tense strength and elongation-at-break, the lower Young's modulus values, the greater opacity, the poorer water vapor uptake properties and better anti-degradation capacity. The modified gelatin film material with advanced properties obtained in this work was safe, stable eco-friendly and biorefractory, and was an ideal choice to form a packaging in food industry. Also, the crosslinking SBN-gelatin coating was effective in reducing the corruption and extending the shelf life for the peeled apple substantially. This article is protected by copyright. All rights reserved.

  7. Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration.

    PubMed

    Nagiah, Naveen; Madhavi, Lakshmi; Anitha, R; Anandan, C; Srinivasan, Natarajan Tirupattur; Sivagnanam, Uma Tirichurapalli

    2013-10-01

    The morphology of fibers synthesized through electrospinning has been found to mimic extracellular matrix. Coaxially electrospun fibers of gelatin (sheath) coated poly (3-hydroxybutyric acid) (PHB) (core) was developed using 2,2,2 trifluoroethanol(TFE) and 1,1,1,3,3,3 hexafluoro-2-propanol(HFIP) as solvents respectively. The coaxial structure and coating of gelatin with PHB fibers was confirmed through transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Thermal stability of the coaxially electrospun fibers was analyzed using thermogravimetric analysis(TGA), differential scanning calorimetry(DSC) and differential thermogravimetric analysis(DTA). Complete evaporation of solvent and gelatin grafting over PHB fibers was confirmed through attenuated total reflection-Fourier transformed infrared spectroscopy (ATR-FTIR). The coaxially electrospun fibers exhibited competent tensile properties for skin regeneration with high surface area and porosity. In vitro degradation studies proved the stability of fibers and its potential applications in tissue engineering. The fibers supported the growth of human dermal fibroblasts and keratinocytes with normal morphology indicating its potential as a scaffold for skin regeneration. © 2013.

  8. Gelatin

    MedlinePlus

    Gelatin contains collagen, which is one of the materials that make up cartilage and bone. This is why some people think ... Collagen Hydrolysate, Collagène Dénaturé, Collagène Hydrolysé, Collagène Marin Hydrolysé, Denatured Collagen, Gelatina, Gelatine, Gélatine, Gélatine Hydrolysée, Hydrolised ...

  9. Solubility of drugs in the presence of gelatin: effect of drug lipophilicity and degree of ionization.

    PubMed

    Kallinteri, P; Antimisiaris, S G

    2001-06-19

    The solubility of seven drugs (nitrofurantoin, chlorothiazide, phenobarbital, prednisolone, griseofulvin, diazepam and piroxicam) in the absence and presence of gelatin was measured, at three different pH values (3.7, 5.0 and 7.0) at 37 degrees C. Drugs studied had different physicochemical properties (log P, pK(a), aqueous solubility) and their solubility in presence of 0.1 and 0.5% (w/v) hydrolyzed (and in some cases common) gelatin was estimated. Results show that the solubility of all drugs is significantly enhanced, especially in the presence of 0.5% gelatin. This gelatin-induced enhancement in drug solubility is higher in the pH in which acidic drugs are less ionized, especially for the less lipophilic acidic drugs (nitrofurantoin, chlorothiazide). In all cases, drug solubility in presence of gelatin is correlated with their aqueous solubility. Therefore, the established relationships between aqueous and gelatin solubility can be employed to derive an estimate of the drug solubility in presence of gelatin once its aqueous solubility is known. With the exception of piroxicam which is highly ionized and phenobarbital which is relatively soluble, there seems to be a tendency for larger gelatin-induced increases in solubility as drug lipophilicity increases or aqueous solubility decreases.

  10. Blending lecithin and gelatin improves the formation of thymol nanodispersions.

    PubMed

    Xue, Jia; Zhong, Qixin

    2014-04-02

    Delivery systems of lipophilic antimicrobials such as thymol prepared with generally recognized-as-safe ingredients are needed to enhance the microbiological safety of low-acid (pH > 4.6) foods. Nanodispersions with particle diameters below 100 nm are particularly demanded because of the low turbidity and physical stability. In this study, thymol dispersions were prepared by gelatin and soy lecithin on an individual basis or in combination. Dispersions prepared with the lecithin-gelatin blend were translucent and stable at pH 5.0-8.0, contrasting with turbid and unstable dispersions when the emulsifiers were used individually. The synergistic surface activity of gelatin and lecithin was due to complex formation that effectively prevented particle size change due to coalescence and Ostwald ripening. Electrostatic interactions were observed to be the colloidal force responsible for preventing particle aggregation. The studied generally recognized-as-safe nanodispersions have great potential to deliver lipophilic antimicrobials such as thymol in low-acid foods to enhance food safety.

  11. Performance of high amylose starch-composited gelatin films influenced by gelatinization and concentration.

    PubMed

    Wang, Wenhang; Wang, Kun; Xiao, Jingdong; Liu, Yaowei; Zhao, Yana; Liu, Anjun

    2017-01-01

    In order to study the impact of starch in film performance, high amylose corn starch was composited in gelatin films under different gelatinization conditions and, in high and low concentrations (10 and 50wt.%). It was found that hot water gelatinized starch (Gel-Shw) increased film mechanical strength and was dependent upon the starch concentration. The addition of an alkali component to the starch significantly enhanced the swelling of the starch granules and expedited the gelatinization process. Incorporation of starch, especially the alkalized starch (Sha), into the gelatin films decreased film solubility which improved its water resistance and water vapor permeability (WVP). Multiple techniques (DSC, TGA, FT-IR, and XRD) were used to characterize the process and results, including the crosslinking of the dissolved starch molecules and the particles formed from gelatinized starch during retrogradation process, which played an important role in improving the thermal stability of the composited gelatin films. Overall, the starch-gelatin composition provides a potential approach to improve gelatin film performance and benefit its applications in the food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Synthesis carbon foams prepared from gelatin (CFG) for cadmium ion adsorption

    NASA Astrophysics Data System (ADS)

    Ulfa, M.; Ulfa, D. K.

    2018-01-01

    In this paper, carbon foam from gelatin (CFG) was synthesized by acid-catalyzed carbonization of gelatin solution on mild condition by the simple method. Gelatin (Ge) were used as sacrificial template and source of carbon. Sulphuric acid was used as acid catalyst. Carbon foam CFG sample were characterized by scanning electron microscope (SEM), nitrogen adsorption desorption and FTIR for knowing textural and structural properties of the sample. Carbon foam CFG sample demonstrated macro pipes-channel like with pore size that varies between 30-40 μ and surface area m 60-100 m2g-1. The carbon foams CFG sample were tested by using adsorption process for obtained their performance for decreasing Cd(II) ions from aqueous solutions. The adsorption capacities for cadmium was 46.7 mg/g obtained by using adsorbent dose 50 mg, initial concentration 50 ppm, contact time, 3 h; room temperature, stirring rate 150 rpm) which reached equilibrium at 55 min. Adsorption process fits using using Lagergren and Ho and McKay equation and measuring data

  13. Extraction and characterization of gelatin biopolymer from black tilapia (Oreochromis mossambicus) scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sockalingam, K., E-mail: gd130106@siswa.uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my

    2015-07-22

    Black tilapia (Oreochromis mossambicus) fish wastes (scales) were evaluated for its suitability as sources of gelatin. Scales were subjected to acid treatment for demineralization before it undergoes thermal extraction process. The raw scales were characterized via Scanning Electron Microscopy (SEM), which demarcated the cycloid pattern of the scales. SEM images also reveal the presence of collagen fiber in the fish scale. The black tilapia fish scales yields 11.88 % of gelatin, indicating the possibility of this fish species as sources of gelatin. Further characterizations were done on both raw scale and extracted gelatin through Fourier Transform Infrared Spectroscopy (FTIR) andmore » proximate analysis. The scale gelatin shows high protein content (86.9 %) with low moisture (8.2 %) and ash (1.4 %). This further proves the effectiveness of the demineralization and extraction method used. The black tilapia fish scale is found to be a prospective source of gelatin with good chemical and functional properties.« less

  14. Efficient production of artificially designed gelatins with a Bacillus brevis system.

    PubMed

    Kajino, T; Takahashi, H; Hirai, M; Yamada, Y

    2000-01-01

    Artificially designed gelatins comprising tandemly repeated 30-amino-acid peptide units derived from human alphaI collagen were successfully produced with a Bacillus brevis system. The DNA encoding the peptide unit was synthesized by taking into consideration the codon usage of the host cells, but no clones having a tandemly repeated gene were obtained through the above-mentioned strategy. Minirepeat genes could be selected in vivo from a mixture of every possible sequence encoding an artificial gelatin by randomly ligating the mixed sequence unit and transforming it into Escherichia coli. Larger repeat genes constructed by connecting minirepeat genes obtained by in vivo selection were also stable in the expression host cells. Gelatins derived from the eight-unit and six-unit repeat genes were extracellularly produced at the level of 0.5 g/liter and easily purified by ammonium sulfate fractionation and anion-exchange chromatography. The purified artificial gelatins had the predicted N-terminal sequences and amino acid compositions and a solgel property similar to that of the native gelatin. These results suggest that the selection of a repeat unit sequence stable in an expression host is a shortcut for the efficient production of repetitive proteins and that it can conveniently be achieved by the in vivo selection method. This study revealed the possible industrial application of artificially designed repetitive proteins.

  15. Gelatin- and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behavior on the hydrogels.

    PubMed

    Van Nieuwenhove, Ine; Salamon, Achim; Adam, Stefanie; Dubruel, Peter; Van Vlierberghe, Sandra; Peters, Kirsten

    2017-04-01

    Tissue regeneration often occurs only to a limited extent. By providing a three-dimensional matrix serving as a surrogate extracellular matrix that promotes adult stem cell adhesion, proliferation and differentiation, scaffold-guided tissue regeneration aims at overcoming this limitation. In this study, we applied hydrogels made from crosslinkable gelatin, the hydrolyzed form of collagen, and functionalized starch which were characterized in depth and optimized as described in Van Nieuwenhove et al., 2016. "Gelatin- and Starch-Based Hydrogels. Part A: Hydrogel Development, Characterization and Coating", Carbohydrate Polymers 152:129-39. Collagen is the main structural protein in animal connective tissue and the most abundant protein in mammals. Starch is a carbohydrate consisting of a mixture of amylose and amylopectin. Hydrogels were developed with varying chemical composition (ratio of starch to gelatin applied) and different degrees of methacrylation of the applied gelatin phase. The hydrogels used exhibited no adverse effect on viability of the stem cells cultured on them. Moreover, initial cell adhesion did not differ significantly between them, while the strongest proliferation was observed on the hydrogel with the highest degree of cross-linking. On the least crosslinked and thus most flexible hydrogels, the highest degree of adipogenic differentiation was found, while osteogenic differentiation was the strongest on the most rigid, starch-blended hydrogels. Hydrogel coating with extracellular matrix compounds aggrecan or fibronectin prior to cell seeding exhibited no significant effects. Thus, gelatin-based hydrogels can be optimized regarding maximum promotion of either adipogenic or osteogenic stem cell differentiation in vitro, which makes them promising candidates for in vivo evaluation in clinical studies aiming at either soft or hard tissue regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement

    PubMed Central

    Zhou, Xiaoyue; Park, Shin-Hye; Mao, Hongli; Isoshima, Takashi; Wang, Yi; Ito, Yoshihiro

    2015-01-01

    Phosphonated gelatin was prepared for surface modification of titanium to stimulate cell functions. The modified gelatin was synthesized by coupling with 3-aminopropylphosphonic acid using water-soluble carbodiimide and characterized by 31P nuclear magnetic resonance and gel permeation chromatography. Circular dichroism revealed no differences in the conformations of unmodified and phosphonated gelatin. However, the gelation temperature was changed by the modification. Even a high concentration of modified gelatin did not form a gel at room temperature. Time-of-flight secondary ion mass spectrometry showed direct bonding between the phosphonated gelatin and the titanium surface after binding. The binding behavior of phosphonated gelatin on the titanium surface was quantitatively analyzed by a quartz crystal microbalance. Ellipsometry showed the formation of a several nanometer layer of gelatin on the surface. Contact angle measurement indicated that the modified titanium surface was hydrophobic. Enhancement of the attachment and spreading of MC-3T3L1 osteoblastic cells was observed on the phosphonated gelatin-modified titanium. These effects on cell adhesion also led to growth enhancement. Phosphonation of gelatin was effective for preparation of a cell-stimulating titanium surface. PMID:26366080

  17. Versatility of Alkyne-Modified Poly(Glycidyl Methacrylate) Layers for Click Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soto-Cantu, Dr. Erick; Lokitz, Bradley S; Hinestrosa Salazar, Juan Pablo

    2011-01-01

    Functional soft interfaces are of interest for a variety of technologies. We describe three methods for preparing substrates with alkyne groups, which show versatility for 'click' chemistry reactions. Two of the methods have the same root: formation of thin, covalently attached, reactive interfacial layers of poly(glycidyl methacrylate) (PGMA) via spin coating onto silicon wafers followed by reactive modification with either propargylamine or 5-hexynoic acid. The amine or the carboxylic acid moieties react with the epoxy groups of PGMA, creating interfacial polymer layers decorated with alkyne groups. The third method consists of using copolymers comprising glycidyl methacrylate and propargyl methacrylate (pGP).more » The pGP copolymers are spin coated and covalently attached on silicon wafers. For each method, we investigate the factors that control film thickness and content of alkyne groups using ellipsometry, and study the nanophase structure of the films using neutron reflectometry. Azide-terminated polymers of methacrylic acid and 2-vinyl-4,4-dimethylazlactone synthesized via reversible addition-fragmentation chain transfer polymerization were attached to the alkyne-modified substrates using 'click' chemistry, and grafting densities in the range of 0.007-0.95 chains nm{sup -2} were attained. The maximum density of alkyne groups attained by functionalization of PGMA with propargylamine or 5-hexynoic acid was approximately 2 alkynes nm{sup -3}. The alkyne content obtained by the three decorating approaches was sufficiently high that it was not the limiting factor for the click reaction of azide-capped polymers.« less

  18. Influence of Various Phenolic Compounds on Properties of Gelatin Film Prepared from Horse Mackerel Trachurus japonicus Scales.

    PubMed

    Le, Thuy; Maki, Hiroki; Okazaki, Emiko; Osako, Kazufumi; Takahashi, Kigen

    2018-06-15

    Influence of various phenolic compounds on physical properties and antioxidant activity of gelatin film from horse mackerel Trachurus japonicus scales was investigated. Tensile strength (TS) of the film was enhanced whereas elongation at break was declined by adding 1% to 5% phenolic compounds. Rutin was the most effective to improve the TS compared to the other tested phenolic compounds including ferulic acid, caffeic acid, gallic acid, and catechin. Gelatin films with the phenolic compounds showed the excellent UV barrier properties. FTIR spectra exhibited that wavenumber of amide-A band of films decreased with formation of hydrogen bonding between amino groups of gelatin and hydroxyl groups of the phenolic compounds. Gelatin film incorporated with rutin which has the largest number of hydroxyl groups among the tested compounds demonstrated the lowest wavenumber for the amide-A peak. It is indicated that hydroxyl groups contained in the phenolic compounds contribute to formation of hydrogen bonds involved in improvement of the mechanical properties of the films. The incorporation of the phenolic compounds with gelatin films also led to the increasing of total phenolic contents and DPPH radical scavenging activities. Thus, it is concluded that phenolic compounds can promote the quality of gelatin film. Properties of gelatin film derived from horse mackerel scales can be improved by adding of phenolic compounds. Phenolic compounds containing a large number of hydroxyl groups should be selected to enhance physical properties of the gelatin film. A biodegradable film prepared from horse mackerel gelatin incorporated with phenolic compounds, which has good physical properties and antioxidant properties, can solve environmental problems caused by synthetic plastic materials. © 2018 Institute of Food Technologists®.

  19. Gelatin-induced T-cell activation in children with nonanaphylactic-type reactions to vaccines containing gelatin.

    PubMed

    Taniguchi, K; Fujisawa, T; Ihara, T; Kamiya, H

    1998-12-01

    Many cases of anaphylactic or nonanaphylactic reactions have been reported to measles-mumps-rubella vaccine or its component vaccines that contain gelatin as a stabilizer. Increased levels of specific IgE antibodies to gelatin have been reported in children with anaphylactic reactions. However, IgE is not increased in cases of nonanaphylactic reaction, and the mechanisms of the reaction are still controversial. The study was aimed to elucidate the relationship between nonanaphylactic reaction and gelatin. We investigated in vitro induction of activated memory helper T cells (CD4(+ )CD25(+ )CD45RO+ cells) in response to gelatin in children with nonanaphylactic reactions to vaccines containing gelatin. In patients with delayed-type sensitivity to gelatin confirmed with a positive skin test response, CD4(+ )CD25(+ )CD45RO+ cells were significantly more strongly induced in culture containing gelatin than in control cultures. However, there was no significant difference between cultures with gelatin and those with control solvent in patients without reactions after vaccination. Of 76 patients with nonanaphylactic reactions after immunization with vaccine containing gelatin, 61 had an increased lymphocyte stimulation index to gelatin versus control children. These results suggest the possibility that nonanaphylactic reactions to gelatin-containing vaccine in Japan might be mediated by delayed hypersensitivity reactions against gelatin.

  20. Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion.

    PubMed

    Alves, P; Pinto, S; Kaiser, Jean-Pierre; Bruinink, Arie; de Sousa, Hermínio C; Gil, M H

    2011-02-01

    The material performance, in a biological environment, is mainly mediated by its surface properties and by the combination of chemical, physical, biological, and mechanical properties required, for a specific application. In this study, the surface of a thermoplastic polyurethane (TPU) material (Elastollan(®)1180A50) was activated either by plasma or by ultra-violet (UV) irradiation. After surface activation, methacrylic acid (MAA) was linked to the surface of TPU in order to improve its reactivity and to reduce cell adhesion. Grafted surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), by atomic force microscopy (AFM) and by contact angle measurements. Blood compatibility studies and cell adhesion tests with human bone marrow cells (HBMC) were also performed. If was found that UV grafting method led to better results than the plasma activation method, since cell adhesion was reduced when methacrylic acid was grafted to the TPU surface by UV. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  2. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  3. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  4. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  5. 40 CFR 721.10153 - Modified methyl methacrylate, 2-hydroxyethyl methacrylate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl methacrylate polymer (generic). 721.10153 Section 721.10153 Protection of Environment...-hydroxyethyl methacrylate polymer (generic). (a) Chemical substance and significant new uses subject to... methacrylate polymer (PMN P-08-6) is subject to reporting under this section for the significant new uses...

  6. Composite Polylactic-Methacrylic Acid Copolymer Nanoparticles for the Delivery of Methotrexate

    PubMed Central

    Sibeko, Bongani; Choonara, Yahya E.; du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Khan, Riaz A.; Kumar, Pradeep; Ndesendo, Valence M. K.; Iyuke, Sunny E.; Pillay, Viness

    2012-01-01

    The purpose of this study was to develop poly(lactic acid)-methacrylic acid copolymeric nanoparticles with the potential to serve as nanocarrier systems for methotrexate (MTX) used in the chemotherapy of primary central nervous system lymphoma (PCNSL). Nanoparticles were prepared by a double emulsion solvent evaporation technique employing a 3-Factor Box-Behnken experimental design strategy. Analysis of particle size, absolute zeta potential, polydispersity (Pdl), morphology, drug-loading capacity (DLC), structural transitions through FTIR spectroscopy, and drug release kinetics was undertaken. Molecular modelling elucidated the mechanisms of the experimental findings. Nanoparticles with particle sizes ranging from 211.0 to 378.3 nm and a recovery range of 36.8–86.2 mg (Pdl ≤ 0.5) were synthesized. DLC values were initially low (12 ± 0.5%) but were finally optimized to 98 ± 0.3%. FTIR studies elucidated the comixing of MTX within the nanoparticles. An initial burst release (50% of MTX released in 24 hours) was obtained which was followed by a prolonged release phase of MTX over 84 hours. SEM images revealed near-spherical nanoparticles, while TEM micrographs revealed the presence of MTX within the nanoparticles. Stable nanoparticles were formed as corroborated by the chemometric modelling studies undertaken. PMID:22919501

  7. Flavonoids preservation and release by methacrylic acid-grafted (N-vinyl-pyrrolidone).

    PubMed

    Parisi, Ortensia Ilaria; Puoci, Francesco; Iemma, Francesca; Curcio, Manuela; Cirillo, Giuseppe; Spizzirri, Umile Gianfranco; Picci, Nevio

    2013-01-01

    Flavonoids preservation and release. Synthesis of a polymeric material able to prevent thermal and photo degradation of a flavonoid model compound, such as (+)-catechin, and suitable for a controlled/sustained delivery of this molecule in gastro-intestinal simulating fluids. Methacrylic acid (MAA) was grafted onto poly(N-vinyl-pyrrolidone) (PVP) by a free radical grafting procedure involving a single-step reaction at room temperature. For this purpose, hydrogen peroxide/ascorbic acid redox pair was employed as water-soluble and biocompatible initiator system. FT-IR spectra confirmed the insertion of MAA onto the polymeric chain. Stability studies, performed under various conditions, such as freeze-thaw cycles, exposure to strong light, thermal stability studies under constant humidity and with light protection at different temperatures, showed the preservative properties of the polymeric material towards flavonoids. Furthermore, the biocompatibility was highlighted by Hen's Egg Test-Chorioallantoic Membrane assay and in vitro release studies demonstrated the possibility to employ PVP-MAA copolymer as a device for gastro-intestinal release of flavonoids. The coupling of good preservative properties together with biocompatibility and the usefulness as carrier in controlled release make this kind of material very interesting from an industrial point of view for different applications in food, pharmaceutical, and cosmetic fields.

  8. Thermosensitive hydrogel made of ferulic acid-gelatin and chitosan glycerophosphate.

    PubMed

    Cheng, Yung-Hsin; Yang, Shu-Hua; Liu, Chia-Ching; Gefen, Amit; Lin, Feng-Huei

    2013-02-15

    Reactive oxygen species-induced oxidative stress is involved in apoptosis of nucleus pulposus (NP) cells that can alter cellular phenotype and accelerate disc degeneration. Ferulic acid (FA) possesses an excellent antioxidant and anti-inflammatory properties. In the study, we developed the thermosensitive FA-gelatin/chitosan/glycerol phosphate (FA-G/C/GP) hydrogel which was applied as a sustained release system of FA to treat NP cells from the damage caused by oxidative stress. The gelation temperature of the FA-G/C/GP hydrogel was 32.17 °C. NP cells submitted to oxidative stress promoted by H(2)O(2), and post-treated with FA-G/C/GP exhibited down-regulation of MMP-3 and up-regulation aggrecan and type II collagen in mRNA level. The sulfated-glycosaminoglycan production was increased and the apoptosis was inhibited in the post-treatment group. The results suggest that the thermosensitive FA-G/C/GP hydrogel can treat NP cells from the damage caused by oxidative stress and may apply in minimally invasive surgery for NP regeneration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate... generically as polymers of styrene, cyclohexyl methacrylate and substituted methacrylate (PMNs P-97-143/144...

  10. Controlled release of ascorbic acid from gelatin hydrogel attenuates abdominal aortic aneurysm formation in rat experimental abdominal aortic aneurysm model.

    PubMed

    Tanaka, Akiko; Hasegawa, Tomomi; Morimoto, Keisuke; Bao, Wulan; Yu, Jie; Okita, Yutaka; Tabata, Yasuhiko; Okada, Kenji

    2014-09-01

    Abdominal aortic aneurysms (AAAs) are associated with oxidative stress and inflammatory response. We investigated the hypothesis that the known antioxidant ascorbic acid, which can also promote elastin and collagen production by smooth muscle cells, would prevent AAA formation in a rat model. An intraluminal elastase and extraluminal calcium chloride-induced rat AAA model was used, and the animals were divided into three groups: control (group C, n = 18), the aorta wrapped with a saline-impregnated gelatin hydrogel sheet (group G, n = 18), and the aorta wrapped with a gelatin hydrogel sheet incorporating ascorbic acid (group A, n = 18). Wrapping of the sheet was completed at the end of treatment for AAA creation. The aortic dilatation ratio was measured, and aortic tissues were further examined for oxidative stress and oxidative DNA damage using biochemical and histologic techniques. Aortic dilatation at both 4 and 8 weeks was inhibited in group A (dilatation ratio [%] at 4 weeks: 186.2 ± 21.8 in group C, 152.3 ± 10.2 in group G, 126.8 ± 11.6 in group A; P < .0001; dilatation ratio [%] at 8 weeks: 219.3 ± 37.5 in group C, 194.0 ± 11.6 in group G, 145.7 ± 8.3 in group A; P = .0002). Elastin and collagen content were significantly preserved in group A (elastin, P = .0015; collagen, P < .0001). The messenger RNA expressions of matrix metalloproteinase (MMP)-9, monocyte chemotactic protein-1, interleukin-1β, and tissue necrosis factor-α (P = .0024, P < .0001, P < .0001, and P < .0001, respectively) were downregulated in group A (P = .0024), whereas tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 were both upregulated in group A (TIMP-1, P = .0014; TIMP-2, P < .0001). Gelatin zymography showed activities of pro-MMP-2, MMP-2, and MMP-9 were significantly suppressed in group C (P < .0001 for each). Reactive oxygen species expression and 8-hydroxydeoxyguanosine and cluster of differentiation 68 staining were significantly suppressed in group A (reactive

  11. Synthesis and characterization of microparticles based on poly-methacrylic acid with glucose oxidase for biosensor applications.

    PubMed

    Hervás Pérez, J P; López-Ruiz, B; López-Cabarcos, E

    2016-01-01

    In the line of the applicability of biocompatible monomers pH and temperature dependent, we assayed poly-methacrylic acid (p-MAA) microparticles as immobilization system in the design of enzymatic biosensors. Glucose oxidase was used as enzyme model for the study of microparticles as immobilization matrices and as biological material in the performance of glucose biosensors. The enzyme immobilization method was optimized by investigating the influence of monomer concentration and cross-linker content (N',N'-methylenebisacrylamide), used in the preparation of the microparticles in the response of the biosensors. The kinetics of the polymerization and the effects of the temperature were studied, also the conversion of the polymerization was determinates by a weight method. The structure of the obtained p-MAA microparticles were studied through scanning electron microscopy (SEM) and differential scanning microscopy (DSC). The particle size measurements were performed with a Galai-Cis 1 particle analyzer system. Furthermore, the influence of the swelling behavior of hydrogel matrix as a function of pH and temperature were studied. Analytical properties such as sensitivity, linear range, response time and detection limit were studied for the glucose biosensors. The sensitivity for glucose detection obtained with poly-methacrylic acid (p-MAA) microparticles was 11.98mAM(-1)cm(-2) and 10μM of detection limit. A Nafion® layer was used to eliminate common interferents of the human serum such as uric and ascorbic acids. The biosensors were used to determine glucose in human serum samples with satisfactory results. When stored in a frozen phosphate buffer solution (pH 6.0) at -4°C, the useful lifetime of all biosensors was at least 550 days. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Tunable Physical Properties of Ethylcellulose/Gelatin Composite Nanofibers by Electrospinning.

    PubMed

    Liu, Yuyu; Deng, Lingli; Zhang, Cen; Feng, Fengqin; Zhang, Hui

    2018-02-28

    In this work, the ethylcellulose/gelatin blends at various weight ratios in water/ethanol/acetic acid solution were electrospun to fabricate nanofibers with tunable physical properties. The solution compatibility was predicted based on Hansen solubility parameters and evaluated by rheological measurements. The physical properties were characterized by scanning electron microscopy, porosity, differential scanning calorimetry, thermogravimetry, Fourier transform infrared spectroscopy, and water contact angle. Results showed that the entangled structures among ethylcellulose and gelatin chains through hydrogen bonds gave rise to a fine morphology of the composite fibers with improved thermal stability. The fibers with higher gelatin ratio (75%), possessed hydrophilic surface (water contact angle of 53.5°), and adequate water uptake ability (1234.14%), while the fibers with higher ethylcellulose proportion (75%) tended to be highly water stable with a hydrophobic surface (water contact angle of 129.7°). This work suggested that the composite ethylcellulose/gelatin nanofibers with tunable physical properties have potentials as materials for bioactive encapsulation, food packaging, and filtration applications.

  13. New Poly(amino acid methacrylate) Brush Supports the Formation of Well-Defined Lipid Membranes

    PubMed Central

    2015-01-01

    A novel poly(amino acid methacrylate) brush comprising zwitterionic cysteine groups (PCysMA) was utilized as a support for lipid bilayers. The polymer brush provides a 12-nm-thick cushion between the underlying hard support and the aqueous phase. At neutral pH, the zeta potential of the PCysMA brush was ∼−10 mV. Cationic vesicles containing >25% DOTAP were found to form a homogeneous lipid bilayer, as determined by a combination of surface analytical techniques. The lipid mobility as measured by FRAP (fluorescence recovery after photobleaching) gave diffusion coefficients of ∼1.5 μm2 s–1, which are comparable to those observed for lipid bilayers on glass substrates. PMID:25746444

  14. Surface modification of poly(L-lactic acid) to improve its cytocompatibility via assembly of polyelectrolytes and gelatin.

    PubMed

    Lin, Yuan; Wang, Luling; Zhang, Peibiao; Wang, Xin; Chen, Xuesi; Jing, Xiabin; Su, Zhaohui

    2006-03-01

    Poly(L-lactide) (PLLA) surface was modified via aminolysis by poly(allylamine hydrochloride) (PAH) at high pH and subsequent electrostatic self-assembly of poly(sodium styrenesulfonate) (PSS) and PAH, and the process was monitored by X-ray photoelectron spectroscopy (XPS) and contact angle measurement. These modified PLLAs were then used as charged substrates for further incorporation of gelatin to improve their cytocompatibility. The amphoteric nature of the gelatin was exploited and the gelatin was adsorbed to the negatively charged PLLA/PSS and positively charged PLLA/PAH at pH=3.4 and 7.4, respectively. XPS and water contact angle data indicated that the gelatin adsorption at pH=3.4 resulted in much higher surface coverage by gelatin than at pH=7.4. All the modified PLLA surfaces became more hydrophilic than the virgin PLLA. Chondrocyte culture was used to test the cell attachment, cell morphology and cell viability on the modified PLLA substrates. The results showed that the PAH and PSS modified PLLA exhibited better cytocompatibility than virgin PLLA, and the incorporation of the gelatin on these modified PLLA substrates further improved their cytocompatibility, with the PLLA/PSS substrate treated with the gelatin at pH=3.4 being the best, exceeding the chondrocyte compatibility of the tissue culture polystyrene.

  15. Enhanced rates of enzymatic saccharification and catalytic synthesis of biofuel substrates in gelatinized cellulose generated by trifluoroacetic acid

    DOE PAGES

    Shiga, Tânia M.; Xiao, Weihua; Yang, Haibing; ...

    2017-12-27

    The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conversion to biofuel substrates. Low-temperature swelling of cotton linter cellulose in TFA at subzero temperatures followed by gentle heating to 55 degrees C dissolves the microfibril structure and forms composites of crystalline and amorphous gels upon addition of ethanol. The extent of gelatinization of crystalline cellulose was determined by reduction of birefringence in darkfield microscopy, loss of X-ray diffractability,more » and loss of resistance to acid hydrolysis. Upon freeze-drying, an additional degree of crystallinity returned as mostly cellulose II. Both enzymatic digestion with a commercial cellulase cocktail and maleic acid/AlCl3-catalyzed conversion to 5-hydroxymethylfurfural and levulinic acid were markedly enhanced with the low-temperature swollen cellulose. Only small improvements in rates and extent of hydrolysis and catalytic conversion were achieved upon heating to fully dissolve cellulose. Low-temperature swelling of cellulose in TFA substantially reduces recalcitrance of crystalline cellulose to both enzymatic digestion and catalytic conversion. In a closed system to prevent loss of fluorohydrocarbons, the relative ease of recovery and regeneration of TFA by distillation makes it a potentially useful agent in large-scale deconstruction of biomass, not only for enzymatic depolymerization but also for enhancing rates of catalytic conversion to biofuel components and useful bio-products.« less

  16. Enhanced rates of enzymatic saccharification and catalytic synthesis of biofuel substrates in gelatinized cellulose generated by trifluoroacetic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiga, Tânia M.; Xiao, Weihua; Yang, Haibing

    The crystallinity of cellulose is a principal factor limiting the efficient hydrolysis of biomass to fermentable sugars or direct catalytic conversion to biofuel components. We evaluated the impact of TFA-induced gelatinization of crystalline cellulose on enhancement of enzymatic digestion and catalytic conversion to biofuel substrates. Low-temperature swelling of cotton linter cellulose in TFA at subzero temperatures followed by gentle heating to 55 degrees C dissolves the microfibril structure and forms composites of crystalline and amorphous gels upon addition of ethanol. The extent of gelatinization of crystalline cellulose was determined by reduction of birefringence in darkfield microscopy, loss of X-ray diffractability,more » and loss of resistance to acid hydrolysis. Upon freeze-drying, an additional degree of crystallinity returned as mostly cellulose II. Both enzymatic digestion with a commercial cellulase cocktail and maleic acid/AlCl3-catalyzed conversion to 5-hydroxymethylfurfural and levulinic acid were markedly enhanced with the low-temperature swollen cellulose. Only small improvements in rates and extent of hydrolysis and catalytic conversion were achieved upon heating to fully dissolve cellulose. Low-temperature swelling of cellulose in TFA substantially reduces recalcitrance of crystalline cellulose to both enzymatic digestion and catalytic conversion. In a closed system to prevent loss of fluorohydrocarbons, the relative ease of recovery and regeneration of TFA by distillation makes it a potentially useful agent in large-scale deconstruction of biomass, not only for enzymatic depolymerization but also for enhancing rates of catalytic conversion to biofuel components and useful bio-products.« less

  17. Impact of immobilizing of low molecular weight hyaluronic acid within gelatin-based hydrogel through enzymatic reaction on behavior of enclosed endothelial cells.

    PubMed

    Khanmohammadi, Mehdi; Sakai, Shinji; Taya, Masahito

    2017-04-01

    The hydrogels having the ability to promote migration and morphogenesis of endothelial cells (ECs) are useful for fabricating vascularized dense tissues in vitro. The present study explores the immobilization of low molecular weight hyaluronic acid (LMWHA) derivative within gelatin-based hydrogel to stimulate migration of ECs. The LMWHA derivative possessing phenolic hydroxyl moieties (LMWHA-Ph) was bound to gelatin-based derivative hydrogel through the horseradish peroxidase-catalyzed reaction. The motility of ECs was analyzed by scratch migration assay and microparticle-based cell migration assay. The incorporated LMWHA-Ph molecules within hydrogel was found to be preserved stably through covalent bonds during incubation. The free and immobilized LMWHA-Ph did not lose an inherent stimulatory effect on human umbilical vein endothelial cells (HUVECs). The immobilized LMWHA-Ph within gelatin-based hydrogel induced the high motility of HUVECs, accompanied by robust cytoskeleton extension, and cell subpopulation expressing CD44 cell receptor. In the presence of immobilized LMWHA-Ph, the migration distance and the number of existing HUVECs were demonstrated to be encouraged in dose-dependent and time-dependent manners. Based on the results obtained in this work, it was concluded that the enzymatic immobilization of LMWHA-Ph within gelatin-based hydrogel represents a promising approach to promote ECs' motility and further exploitation for vascular tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. RP-HPLC method using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate incorporated with normalization technique in principal component analysis to differentiate the bovine, porcine and fish gelatins.

    PubMed

    Azilawati, M I; Hashim, D M; Jamilah, B; Amin, I

    2015-04-01

    The amino acid compositions of bovine, porcine and fish gelatin were determined by amino acid analysis using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as derivatization reagent. Sixteen amino acids were identified with similar spectral chromatograms. Data pre-treatment via centering and transformation of data by normalization were performed to provide data that are more suitable for analysis and easier to be interpreted. Principal component analysis (PCA) transformed the original data matrix into a number of principal components (PCs). Three principal components (PCs) described 96.5% of the total variance, and 2 PCs (91%) explained the highest variances. The PCA model demonstrated the relationships among amino acids in the correlation loadings plot to the group of gelatins in the scores plot. Fish gelatin was correlated to threonine, serine and methionine on the positive side of PC1; bovine gelatin was correlated to the non-polar side chains amino acids that were proline, hydroxyproline, leucine, isoleucine and valine on the negative side of PC1 and porcine gelatin was correlated to the polar side chains amino acids that were aspartate, glutamic acid, lysine and tyrosine on the negative side of PC2. Verification on the database using 12 samples from commercial products gelatin-based had confirmed the grouping patterns and the variables correlations. Therefore, this quantitative method is very useful as a screening method to determine gelatin from various sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Electro-Responsive Behaviour Multi-Wall Nanotubes/Gelatin Composites and Cross-Linked Gelatin Electrospun Mats

    DTIC Science & Technology

    2008-02-11

    sample , could explain large swelling in blend samples which might enhance ions diffusion and lead to an increase of bending. 21 References [1...1 Final Report on Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats...12-10-2007 4. TITLE AND SUBTITLE Electro-responsive behaviour multi-wall nanotubes/gelatin composites and cross-linked gelatin electrospun mats

  20. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking.

    PubMed

    Sakai, Shinji; Ohi, Hiromi; Hotta, Tomoki; Kamei, Hidenori; Taya, Masahito

    2018-02-01

    Bioprinting has a great potential to fabricate three-dimensional (3D) functional tissues and organs. In particular, the technique enables fabrication of 3D constructs containing stem cells while maintaining cell proliferation and differentiation abilities, which is believed to be promising in the fields of tissue engineering and regenerative medicine. We aimed to demonstrate the utility of the bioprinting technique to create hydrogel constructs consisting of hyaluronic acid (HA) and gelatin derivatives through irradiation by visible light to fabricate 3D constructs containing human adipose stem cells (hADSCs). The hydrogel was obtained from a solution of HA and gelatin derivatives possessing phenolic hydroxyl moieties in the presence of ruthenium(II) tris-bipyridyl dication and sodium ammonium persulfate. hADSCs enclosed in the bioprinted hydrogel construct elongated and proliferated in the hydrogel. In addition, their differentiation potential was confirmed by examining the expression of pluripotency marker genes and cell surface marker proteins, and differentiation to adipocytes in adipogenic differentiation medium. Our results demonstrate the great potential of the bioprinting method and the resultant hADSC-laden HA/gelatin constructs for applications in tissue engineering and regenerative medicine. © 2017 Wiley Periodicals, Inc.

  1. Preparation of dumbbell manganese dioxide/gelatin composites and their application in the removal of lead and cadmium ions.

    PubMed

    Wang, Xiu; Huang, Kai; Chen, Ying; Liu, Jiafa; Chen, Shan; Cao, Jianlei; Mei, Surong; Zhou, Yikai; Jing, Tao

    2018-05-15

    The nano-sized sorbents restrict their practical application in flow-through system due to excessive pressure. In this study, dumbbell MnO 2 /gelatin composites were synthesized based on the protein-assisted synthesis technology. Then they were immobilized on the amino-modified polymethyl methacrylate (PMMA) plate. SEM, TEM, XRD, XPS and FT-IR were employed to study the surface properties and the adsorption mechanism of MnO 2 /gelatin composites. Adsorption experiments for Pb(II) and Cd(II) ions were performed to study the adsorption isotherms, kinetics, and thermodynamics as well as the influencing factors. The maximum adsorption capacities of Pb(II) and Cd(II) ions were 318.7 mg g -1 and 105.1 mg g -1 respectively. The adsorption process met the pseudo-second-order kinetic model. Subsequently, MnO 2 /gelatin composites modified plates were used to remove the heavy metal ions in surface water and wastewater samples. The removal efficiencies of Pb(II) ion was changed from 83% (wastewater) to 100% (surface water), when the initial concentration was 10 mg L -1 . This device exhibited great application prospect in the removal of heavy metals taking advantage of its high removal efficiency, excellent stability and reusability and ease of operation. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. PREPARATION, DRUG RELEASE, AND CELL GROWTH INHIBITION OF A GELATIN – DOXORUBICIN CONJUGATE

    PubMed Central

    Wu, Darren C.; Cammarata, Christopher R.; Park, Hyun Joo; Rhodes, Brian T.; Ofner, Clyde M.

    2013-01-01

    Purpose To demonstrate the feasibility of a novel macromolecular delivery system for doxorubicin (DOX) which combines pH dependent DOX release with a high molecular weight and biodegradable gelatin carrier. Methods DOX was conjugated to gelatin using an acid labile hydrazone bond and a glycylglycine linker. The gelatin-doxorubicin conjugate (G-DOX) was evaluated for hydrazide and DOX content by spectrophotometry, molecular weight by HPLC-SEC, in vitro DOX release at various pH, and cell growth inhibition using EL4 mouse lymphoma and PC3 human prostate cells. Results G-DOX hydrazide and DOX content was 47% and 5-7%, respectively of theoretical gelatin carboxylic acid sites. During preparation of G-DOX, the molecular weight decreased to 22 kDa. DOX release was 48% in pH 4.8 phosphate buffer, 22% at pH 6.5, but 10% at pH 7.4. The G-DOX IC50 values in EL4 and PC3 cells were 0.26 μM and 0.77 μM, respectively; the latter value 3 times greater than that of free DOX. Conclusions A 22 kDa macromolecular DOX conjugate containing 3.4-5.0% w/w DOX has been prepared. The pH dependent drug release in combination with a biodegradable gelatin carrier offer potential therapeutic advantages of enhanced tumor cell localization and reduced systemic toxicities of the drug. PMID:23686374

  3. Tunable poly(methacrylic acid-co-acrylamide) nanoparticles through inverse emulsion polymerization.

    PubMed

    Zhong, Justin X; Clegg, John R; Ander, Eric W; Peppas, Nicholas A

    2018-06-01

    Environmentally responsive biomaterials have played key roles in the design of biosensors and drug delivery vehicles. Their physical response to external stimuli, such as temperature or pH, can transduce a signal or trigger the release of a drug. In this work, we designed a robust, highly tunable, pH-responsive nanoscale hydrogel system. We present the design and characterization of poly(methacrylic acid-co-acrylamide) hydrogel nanoparticles, crosslinked with methylenebisacrylamide, through inverse emulsion polymerization. The effects of polymerization parameters (i.e., identities and concentrations of monomer and surfactant) and polymer composition (i.e., weight fraction of ionic and crosslinking monomers) on the nanoparticles' bulk and environmentally responsive properties were determined. We generated uniform, spherical nanoparticles which, through modulation of crosslinking, exhibit a volume swelling of 1.77-4.07, relative to the collapsed state in an acidic environment. We believe our system has potential as a base platform for the targeted, injectable delivery of hydrophilic therapeutics. With equal importance, however, we hope that our systematic analysis of the individual impacts of polymerization and purification conditions on nanoparticle composition, morphology, and performance can be used to expedite the development of alternate hydrophilic nanomaterials for a range of biomedical applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1677-1686, 2018. © 2018 Wiley Periodicals, Inc.

  4. An In Vivo Study of Composite Microgels Based on Hyaluronic Acid and Gelatin for the Reconstruction of Surgically Injured Rat Vocal Folds

    ERIC Educational Resources Information Center

    Coppoolse, Jiska M. S.; Van Kooten, T. G.; Heris, Hossein K.; Mongeau, Luc; Li, Nicole Y. K.; Thibeault, Susan L.; Pitaro, Jacob; Akinpelu, Olubunm; Daniel, Sam J.

    2014-01-01

    Purpose: The objective of this study was to investigate local injection with a hierarchically microstructured hyaluronic acid-gelatin (HA-Ge) hydrogel for the treatment of acute vocal fold injury using a rat model. Method: Vocal fold stripping was performed unilaterally in 108 Sprague-Dawley rats. A volume of 25 µl saline (placebo controls),…

  5. The Development of Novel Recombinant Human Gelatins as Replacements for Animal-Derived Gelatin in Pharmaceutical Applications

    NASA Astrophysics Data System (ADS)

    Olsen, David; Chang, Robert; Williams, Kim E.; Polarek, James W.

    We have developed a recombinant expression system to produce a series of novel recombinant human gelatins that can substitute for animal sourced gelatin preparations currently used in pharmaceutical and nutraceutical applications. This system allows the production of human sequence gelatins, or, if desired, gelatins from any other species depending on the availability of the cloned gene. The gelatins produced with this recombinant system are of defined molecular weight, unlike the animal-sourced gelatins, which consist of numerous polypeptides of varying size. The fermentation and purification process used to prepare these recombinant gelatins does not use any human- or animal-derived components and thus this recombinant material should be free from viruses and agents that cause transmissible spongiform encephalopathies. The recombinant gelatins exhibit lot-to-lot reproducibility and we have performed extensive analytical testing on them. We have demonstrated the utility of these novel gelatins as biological stabilizers and plasma expanders, and we have shown they possess qualities that are important in applications where gel formation is critical. Finally, we provide examples of how our system allows the engineering of these recombinant gelatins to optimize the production process.

  6. Demonstration of vessels in CNS and other organs by AMG silver enhancement of colloidal gold particles dispersed in gelatine.

    PubMed

    Danscher, G; Andreasen, A

    1997-12-01

    We present a new autometallographic technique for demonstrating vessels and other small cavities at light microscopy (LM) and electron microscopy (EM) levels. It is possible to obtain detailed knowledge of the 3-D appearance of the vascular system by exchanging blood with a 40 degrees C, 8% gelatine solution containing colloidal gold particles (gold gelatine solution, GGS) and ensuing silver enhancement of the gold particles by autometallography (AMG). The GGS-AMG technique demonstrates the vascular system as a dark web that can be studied in cryostat, vibratome, methacrylate, paraffin and Epon sections at all magnifications. The infused GGS becomes increasingly viscous and finally becomes rigid when the temperature falls below 20 degrees C. An additional advantage of this technique is the fact that none of the tested counterstains or immunotechniques interfere with this AMG approach. The GGS-AMG technique is demonstrated on rat brains but can be applied to any organ. We believe that the present technique is valuable for both experimental studies and routine pathology.

  7. Volatile methacrylates in dental practices.

    PubMed

    Marquardt, Wolfgang; Seiss, Mario; Hickel, Reinhard; Reichl, Franz X

    2009-04-01

    In recent years, an increase of occupational respiratory diseases, such as asthma caused by methacrylates, has been observed in dental personnel. In this study, the exposure of dental personnel to various volatile methacrylates was investigated. The air levels of methacrylates were measured during filling treatment while bonding agents were used in 4 dental practices in Munich, Germany. Short-term air sampling (15 min) was performed using solid phase microextraction (SPME). The SPME fibers were coated with carbowax/divinyl benzene to enrich the analytes. For analysis, the analytes were thermically desorbed from the fiber and subsequently analyzed directly by gas chromatography/mass spectrometry. The methacrylates methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA), ethylene glycol dimethacrylate (EGDMA), and triethylene glycol dimethacrylate (TEG-DMA) were identified in the air of dental practices. The exposure levels of the four methacrylates varied during the filling treatments. The maximum concentrations found were 0.4 mg/m3 for MMA, 45 microg/m3 for HEMA, 13 microg/m3 for EGDMA, and 45 microg/m3 for TEG-DMA. The detection of TEG-DMA correlated with the application of bonding agents during performance of dental fillings. Exposure levels of different methacrylates were observed at all investigated dental practices. The maximum levels of MMA measured in this study were at least 200 times lower than the toxicologically relevant maximum allowable concentrations defined in various countries. Nevertheless, the exposure levels of methacrylates should be kept as low as possible due to the allergenic potential of some methacrylates.

  8. IgE sensitization to gelatin: the probable role of gelatin-containing diphtheria-tetanus-acellular pertussis (DTaP) vaccines.

    PubMed

    Sakaguchi, M; Inouye, S

    2000-04-03

    We recently found that most events of anaphylaxis to live attenuated viral vaccines containing gelatin as a stabilizer might be caused by the gelatin. However, the mechanism that the children were sensitized to gelatin was unclear. In Japan, both diphtheria-tetanus-acellular pertussis (DTaP) vaccines with and without gelatin are available. We explored the possibility that gelatin-containing DTaP vaccines before live viral vaccines sensitize children to gelatin. We received the serum samples of 87 children who had systemic immediate-type reactions including anaphylaxis to the vaccines from both physicians and vaccine manufacturers throughout Japan. We then surveyed the DTaP vaccination histories of the children who demonstrated anti-gelatin IgE. Of the above 87 children, 79 (91%) had anti-gelatin IgE. We successfully collected DTaP vaccination histories including the manufacturers' names and numbers of doses on 55 children. Only one child had not received any DTaP vaccine, the other 54 had received gelatin-containing DTaP vaccines and none received gelatin-free DTaP vaccines. We concluded that there was a strong causal relationship between gelatin-containing DTaP vaccination, anti-gelatin IgE production, and risk of anaphylaxis following subsequent immunization with live viral vaccines which contain a larger amount of gelatin.

  9. Poly methacrylic acid modified CDHA nanocomposites as potential pH responsive drug delivery vehicles.

    PubMed

    Victor, Sunita Prem; Sharma, Chandra P

    2013-08-01

    The objective of this study was to prepare pH sensitive polymethacrylic acid-calcium deficient hydroxyapatite (CDHA) nanocomposites. The CDHA nanoparticles were prepared by coprecipitation method. The modification of CDHA by methacrylic acid (MA) was achieved by AIBN initiated free radical polymerization with sodium bisulphite as catalyst followed by emulsion technique. These nanocomposites with a half life of 8h consisted of high aspect ratio, needle like particles and exhibited an increase in swelling behaviour with pH. The in vivo potential of the nanocomposites was evaluated in vitro by the results of cell aggregation, protein adsorption, MTT assay and haemolytic activity. The invitro loading and release studies using albumin as a model drug indicate that the nanocomposites gave better loading when compared to the CDHA nanoparticles and altered the drug release rates. The nanocomposites also exhibited good uptake on C6 glioma cells as studied by fluorescence microscopy. The results obtained suggest that these nanocomposites have great potential for oral controlled protein delivery and can be extended further for intracellular drug delivery applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Efficient gas barrier properties of multi-layer films based on poly(lactic acid) and fish gelatin.

    PubMed

    Hosseini, Seyed Fakhreddin; Javidi, Zahra; Rezaei, Masoud

    2016-11-01

    Multi-layer film structures of poly(lactic acid) (PLA) and fish gelatin (FG), prepared using the solvent casting technique, were studied in an effort to produce bio-based films with low oxygen (OP) and water vapor permeability (WVP). The scanning electron microscopy (SEM) images of triple-layer film showed that the outer PLA layers are being closely attached to the inner FG layer to make continuous film. The OP of multi-layer film (5.02cm 3 /m 2 daybar) decreased more than 8-fold compared with that of the PLA film, and the WVP of multi-layer film (0.125gmm/kPah m 2 ) also decreased 11-fold compared with that of the FG film. Lamination with PLA profoundly increased the water resistance of the bare gelatin film. Meanwhile, the tensile strength of the triple-layer film (25±2.13MPa) was greater than that of FG film (7.48±1.70MPa). At the same time, the resulting film maintains high optical clarity. Differential scanning calorimetry (DSC) analysis also revealed that the materials were compatible showing only one T g which decreased with FG deposition. This material exhibits an environmental-friendliness potential and a high versatility in food packaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Gelatin-specific cellular immune responses persist for more than 3 years after priming with gelatin containing DTaP vaccine.

    PubMed

    Kumagai, T; Kamada, M; Igarashi, C; Yuri, K; Furukawa, H; Nagata, N; Saito, A; Okui, T; Yano, S

    2002-10-01

    Gelatin-specific cell-mediated immunity develops in subjects inoculated with gelatin containing DTaP vaccine. However, it is not yet known whether such established sensitization to gelatin disappears or persists with time. The aim of this study was to follow the patients with gelatin sensitization elicited by DTaP vaccination for their lymphocyte responsiveness and IgE, IgG antibody specific to gelatin over several years and to compare the activities with those at the time of enrollment into the study. We studied 28 subjects who developed positive lymphocyte proliferation test (LPT) after receiving gelatin containing DTaP vaccine and eight subjects who had a negative LPT after inoculation of non-gelatin DTaP. Determination of IgE, IgG antibodies and specific lymphoproliferative response directed against gelatin were performed at enrollment and on follow up. None of the subjects had antibody to gelatin at enrollment and none developed gelatin IgE or IgG during follow-up. There was no significant difference in the SIs of the subjects receiving gelatin DTaP (P = 0.150, 95% CI, -0.198-0.032), whereas lymphocyte activity to gelatin increased between enrollment and follow-up in the subjects with non-gelatin DTaP (P = 0.011, 95% CI, 0.063-0.338). Gelatin-specific lymphocyte activity persists at comparable levels for more than 3 years in subjects who acquire a positive LPT response to gelatin after receiving primary DTaP vaccine containing gelatin. Furthermore, five out of eight subjects initially with negative LPT to gelatin have been shown to acquire specific LPT with time.

  12. Extraction of high value added gelatin biopolymer from black tilapia (Oreochromis mossambicus) head bones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sockalingam, K., E-mail: gd130106@siswa.uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my

    Black tilapia (Oreochromis mossambicus) fish head bones were evaluated for its possibilities in extracting gelatin. Head bones were subjected to pre-treatment with 3% of hydrochloric acid (HCl) for demineralization before undergoes thermal extraction process. The raw head bones were characterized via Scanning Electron Microscopy (SEM) in order to investigate the external and internal surface morphology. SEM images also reveal the presence of collagen fiber with 1 µm diameter in the head bone. The black tilapia fish head bones yields 5.75 % of gelatin in wet weight basis, indicating the possibility of this fish species as sources of gelatin. Further characterizations weremore » done on both raw head bones and extracted gelatin through Fourier Transform Infrared Spectroscopy (FTIR) and proximate analysis. The head bones gelatin shows high protein (10.55%) and ash (3.11 %) content with low moisture. This further proves the effectiveness of demineralization and extraction method used. The black tilapia fish head bones are found to be a prospective source of gelatin with good chemical and functional properties.« less

  13. Gelatin controversies in food, pharmaceuticals, and personal care products: Authentication methods, current status, and future challenges.

    PubMed

    Ali, Eaqub; Sultana, Sharmin; Hamid, Sharifah Bee Abd; Hossain, Motalib; Yehya, Wageeh A; Kader, Abdul; Bhargava, Suresh K

    2018-06-13

    Gelatin is a highly purified animal protein of pig, cow, and fish origins and is extensively used in food, pharmaceuticals, and personal care products. However, the acceptability of gelatin products greatly depends on the animal sources of the gelatin. Porcine and bovine gelatins have attractive features but limited acceptance because of religious prohibitions and potential zoonotic threats, whereas fish gelatin is welcomed in all religions and cultures. Thus, source authentication is a must for gelatin products but it is greatly challenging due to the breakdown of both protein and DNA biomarkers in processed gelatins. Therefore, several methods have been proposed for gelatin identification, but a comprehensive and systematic document that includes all of the techniques does not exist. This up-to-date review addresses this research gap and presents, in an accessible format, the major gelatin source authentication techniques, which are primarily nucleic acid and protein based. Instead of presenting these methods in paragraph form which needs much attention in reading, the major methods are schematically depicted, and their comparative features are tabulated. Future technologies are forecasted, and challenges are outlined. Overall, this review paper has the merit to serve as a reference guide for the production and application of gelatin in academia and industry and will act as a platform for the development of improved methods for gelatin authentication.

  14. Molecular beacon-based real-time PCR method for detection of porcine DNA in gelatin and gelatin capsules.

    PubMed

    Mohamad, Nurhidayatul Asma; Mustafa, Shuhaimi; Khairil Mokhtar, Nur Fadhilah; El Sheikha, Aly Farag

    2018-03-05

    The pharmaceutical industry has boosted gelatin consumption worldwide. This is supported by the availability of cost-effective gelatin production from porcine by-products. However, cross-contamination of gelatin materials, where porcine gelatin was unintentionally included in the other animal sources of gelatin, has caused significant concerns about halal authenticity. The real-time polymerase chain reaction (PCR) has enabled a highly specific and sensitive animal species detection method in various food products. Hence, such a technique was employed in the present study to detect and quantify porcine DNA in gelatin using a molecular beacon probe, with differences in performance between mitochondrial (cytochrome b gene) and chromosomal DNA-(MPRE42 repetitive element) based porcine-specific PCR assays being compared. A higher sensitivity was observed in chromosomal DNA (MPRE-PCR assay), where this assay allows the detection of gelatin DNA at amounts as as low as 1 pg, whereas mitochondrial DNA (CBH-PCR assay) can only detect at levels down to 10 pg of gelatin DNA. When an analysis with commercial gelatin and gelatin capsule samples was conducted, the same result was observed, with a significantly more sensitive detection being provided by the repetitive element of chromosomal DNA. The present study has established highly sensitive DNA-based porcine detection systems derived from chromosomal DNA that are feasible for highly processed products such as gelatin and gelatin capsules containing a minute amount of DNA. This sensitive detection method can also be implemented to assist the halal authentication process of various food products available on the market. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. Effect of sodium lauryl sulfate in dissolution media on dissolution of hard gelatin capsule shells.

    PubMed

    Zhao, Fang; Malayev, Vyacheslav; Rao, Venkatramana; Hussain, Munir

    2004-01-01

    Sodium lauryl sulfate (SLS) is a commonly used surfactant in dissolution media for poorly water soluble drugs. However, it has occasionally been observed that SLS negatively impacts the dissolution of drug products formulated in gelatin capsules. This study investigated the effect of SLS on the dissolution of hard gelatin capsule shells. The USP paddle method was used with online UV monitoring at 214 nm (peptide bond). Empty size #0 capsule shells were held to the bottom of the dissolution vessel by magnetic three-prong sinkers. SLS significantly slowed down the dissolution of gelatin shells at pH < 5. Visually, the gelatin shells transformed into some less-soluble precipitate under these conditions. This precipitate was found to contain a higher sulfur content than the gelatin control sample by elemental analysis, indicating that SLS is part of the precipitate. Additionally, the slowdown of capsule shell dissolution was shown to be dependent on the SLS concentration and the ionic strength of the media. SLS interacts with gelatin to form a less-soluble precipitate at pH < 5. The use of SLS in dissolution media at acidic pH should be carefully evaluated for gelatin capsule products.

  16. Effects of food on a gastrically degraded drug: azithromycin fast-dissolving gelatin capsules and HPMC capsules.

    PubMed

    Curatolo, William; Liu, Ping; Johnson, Barbara A; Hausberger, Angela; Quan, Ernest; Vendola, Thomas; Vatsaraj, Neha; Foulds, George; Vincent, John; Chandra, Richa

    2011-07-01

    Commercial azithromycin gelatin capsules (Zithromax®) are known to be bioequivalent to commercial azithromycin tablets (Zithromax®) when dosed in the fasted state. These capsules exhibit a reduced bioavailability when dosed in the fed state, while tablets do not. This gelatin capsule negative food effect was previously proposed to be due to slow and/or delayed capsule disintegration in the fed stomach, resulting in extended exposure of the drug to gastric acid, leading to degradation to des-cladinose-azithromycin (DCA). Azithromycin gelatin capsules were formulated with "superdisintegrants" to provide fast-dissolving capsules, and HPMC capsule shells were substituted for gelatin capsule shells, in an effort to eliminate the food effect. Healthy volunteers were dosed with these dosage forms under fasted and fed conditions; pharmacokinetics were evaluated. DCA pharmacokinetics were also evaluated for the HPMC capsule subjects. In vitro disintegration of azithromycin HPMC capsules in media containing food was evaluated and compared with commercial tablets and commercial gelatin capsules. When the two fast-dissolving capsule formulations were dosed to fed subjects, the azithromycin AUC was 38.9% and 52.1% lower than after fasted-state dosing. When HPMC capsules were dosed to fed subjects, the azithromycin AUC was 65.5% lower than after fasted-state dosing. For HPMC capsules, the absolute fasting-state to fed-state decrease in azithromycin AUC (on a molar basis) was similar to the increase in DCA AUC. In vitro capsule disintegration studies revealed extended disintegration times for commercial azithromycin gelatin capsules and HPMC capsules in media containing the liquid foods milk and Ensure®. Interaction of azithromycin gelatin and HPMC capsules with food results in slowed disintegration in vitro and decreased bioavailability in vivo. Concurrent measurement of serum azithromycin and the acid-degradation product DCA demonstrates that the loss of azithromycin

  17. Resistance of dichromated gelatin as photoresist

    NASA Astrophysics Data System (ADS)

    Lin, Pang; Yan, Yingbai; Jin, Guofan; Wu, Minxian

    1999-09-01

    Based on the photographic chemistry, chemically hardening method was selected to enhance the anti-etch capability of gelatin. With the consideration of hardener and permeating processing, formaldehyde is the most ideal option due to the smallest molecule size and covalent cross-link with gelatin. After hardened in formaldehyde, the resistance of the gelatin was obtained by etched in 1% HF solution. The result showed that anti-etch capability of the gelatin layer increased with tanning time, but the increasing rate reduced gradually and tended to saturation. Based on the experimental results, dissolving-flaking hypothesis for chemically hardening gelatin was presented. Sol-gel coatings were etched with 1% HF solution. Compared with the etching rate of gelatin layer, it showed that gelatin could be used as resist to fabricate optical elements in sol-gel coating. With the cleaving-etch method and hardening of dichromated gelatin (DCG), DCG was used as a photoresist for fabricating sol-gel optical elements. As an application, a sol-gel random phase plate was fabricated.

  18. Addition of zinc methacrylate in dental polymers: MMP-2 inhibition and ultimate tensile strength evaluation.

    PubMed

    Henn, Sandrina; de Carvalho, Rodrigo Varella; Ogliari, Fabrício Aulo; de Souza, Ana Paula; Line, Sergio Roberto Peres; da Silva, Adriana Fernandes; Demarco, Flávio Fernando; Etges, Adriana; Piva, Evandro

    2012-04-01

    This study evaluated the effect of zinc methacrylate (ZM) on the inhibition of matrix metalloproteinase 2 (MMP-2) and the ultimate tensile strength (UTS) of an experimental polymer. Enzymes secreted from mouse gingival tissues were analyzed by gelatin zymography in buffers containing 5 mM CaCl(2) (Tris-CaCl(2)) in 50 mM Tris-HCl buffer with various concentrations of ZM (0.5, 1, 2, 4, 8, and 16 mM). The matrix metalloproteinases present in the conditioned media were characterized by immunoprecipitation. The polymer UTS evaluation was performed in eight groups with various concentrations of ZM (0, 0.5, 1, 2.5, 5, 10, 20, and 30 wt.%), in a mechanical testing machine. MMP-2 (62 kDa) was detected in the zymographic assays and inhibited by ZM in all tested concentrations. UTS data were submitted to one-way ANOVA and Tukey's test (α = 0.05), and no significant differences were observed among groups, except in the polymer containing 30% ZM, presenting a significantly lower value when compared with the control group (p < 0.05). The results suggest that ZM inhibits MMP-2 expression in all concentrations tested, while small concentrations did not affect the ultimate tensile strength of the polymer. Zinc methacrylate is a metalloproteinase inhibitor that can be copolymerized with other methacrylate monomers. Yet, the addition of ZM did not affect the resin bond strength. Thus, in vivo tests should be performed to evaluate the performance of this material.

  19. A Hybrid Methacrylate-Sodium Carboxymethylcellulose Interpolyelectrolyte Complex: Rheometry and in Silico Disposition for Controlled Drug Release

    PubMed Central

    Ngwuluka, Ndidi Chinyelu; Choonara, Yahya Essop; Kumar, Pradeep; Modi, Girish; du Toit, Lisa Claire; Pillay, Viness

    2013-01-01

    The rheological behavioral changes that occurred during the synthesis of an interpolyelectrolyte complex (IPEC) of methacrylate copolymer and sodium carboxymethylcellulose were assessed. These changes were compared with the rheological behavior of the individual polymers employing basic viscosity, yield stress, stress sweep, frequency sweep, temperature ramp as well as creep and recovery testing. The rheological studies demonstrated that the end-product of the complexation of low viscous methacrylate copolymer and entangled solution of sodium carboxymethylcellulose generated a polymer, which exhibited a solid-like behavior with a three-dimensional network. Additionally, the rheological profile of the sodium carboxymethylcellulose and methacrylate copolymer with respect to the effect of various concentrations of acetic acid on the synthesis of the IPEC was elucidated using molecular mechanics energy relationships (MMER) by exploring the spatial disposition of carboxymethylcellulose and methacrylate copolymer with respect to each other and acetic acid. The computational results corroborated well with the experimental in vitro drug release data. Results have shown that the IPEC may be suitable polymeric material for achieving controlled zero-order drug delivery. PMID:28788332

  20. Use and application of gelatin as potential biodegradable packaging materials for food products.

    PubMed

    Nur Hanani, Z A; Roos, Y H; Kerry, J P

    2014-11-01

    The manufacture and potential application of biodegradable films for food application has gained increased interest as alternatives to conventional food packaging polymers due to the sustainable nature associated with their availability, broad and abundant source range, compostability, environmentally-friendly image, compatibility with foodstuffs and food application, etc. Gelatin is one such material and is a unique and popularly used hydrocolloid by the food industry today due to its inherent characteristics, thereby potentially offering a wide range of further and unique industrial applications. Gelatin from different sources have different physical and chemical properties as they contain different amino acid contents which are responsible for the varying characteristics observed upon utilization in food systems and when being utilized more specifically, in the manufacture of films. Packaging films can be successfully produced from all gelatin sources and the behaviour and characteristics of gelatin-based films can be altered through the incorporation of other food ingredients to produce composite films possessing enhanced physical and mechanical properties. This review will present the current situation with respect to gelatin usage as a packaging source material and the challenges that remain in order to move the manufacture of gelatin-based films nearer to commercial reality. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems

    NASA Astrophysics Data System (ADS)

    Curcio, Manuela; Altimari, Ilaria; Spizzirri, Umile Gianfranco; Cirillo, Giuseppe; Vittorio, Orazio; Puoci, Francesco; Picci, Nevio; Iemma, Francesca

    2013-04-01

    Native gelatin, N, N'-ethylenebisacrylamide, and sodium methacrylate were inserted into a spherical crosslinked structure by a solvent-free emulsion polymerization method, in which sunflower seed oil containing different amounts of lecithin was selected as continuous phase. Nanogels were characterized by morphological analysis, particle size distribution, and determination of swelling degree. Different dimensional distributions (100-500 nm) and water affinities were obtained by varying the amount of surfactant in the polymerization feed. Nanogels were non-toxic on human bone marrow mesenchymal stromal cells and enzymatically stable in the gastric tract, with weight losses ranging from 58 to 20 % in pancreatin solution. Release profiles of diclofenac sodium salt from the nanogels were evaluated at different pH and found to depend on crosslinking degree and drug-polymer interactions; while in pancreatin solution, a complete release of the drug was observed. The release mechanism and the diffusional contribution were evaluated by semiempirical equations.

  2. Effect of Duck Feet Gelatin Concentration on Physicochemical, Textural, and Sensory Properties of Duck Meat Jellies

    PubMed Central

    2014-01-01

    This study was conducted to determine the effect of duck feet gelatin concentration on the physicochemical, textural and sensory properties of duck meat jellies. Duck feet gelatin was prepared with acidic swelling and hot water extraction. In this study, four duck meat jellies were formulated with 3, 4, 5, and 6% duck feet gelatin, respectively. In the preliminary experiment, the increase in duck feet gelatin ranged from 5 to 20%, resulting in a significant (p<0.001) increase in the color score, but a decline in the hardness and dispersibility satisfaction scores. An increase in the added amount of duck feet gelatin contributed to decreased lightness and increased protein content in duck meat jellies. Regarding the textural properties, increase in the added amount of duck feet gelatin highly correlated with the hardness in the center (p<0.01, R2=0.91), and edge (p<0.01, R2=0.89), of duck meat jellies. Meanwhile, the increase in duck feet gelatin decreased the score for textural satisfaction; duck meat jellies containing 6% duck feet gelatin had a significantly lower textural satisfaction score, than those containing 3% duck feet gelatin (p<0.05). Furthermore, a significant difference in the overall acceptance of duck meat jellies formulated with 5% duck feet gelatin was observed, as compared to those prepared with 3% duck feet gelatin. Therefore, this study suggested that duck feet gelatin is a useful ingredient for manufacturing cold-cut meat products. In consideration of the sensory acceptance, the optimal level of duck feet gelatin in duck meat jellies was determined to be 5%. PMID:26761181

  3. Use of Methacrylic Acid-Containing Hydrogels to Increase Protein Transport Across the Intestinal Epithelium

    NASA Astrophysics Data System (ADS)

    Blanchette, James; Lopez, Jennifer; Park, Kinam; Peppas, Nicholas

    2002-03-01

    Oral protein delivery requires protection from the harsh environment of the stomach, release in the small intestine and passage from the intestinal lumen into the circulation. Hydrogels that swell in response to the pH change when passing from the stomach to the small intestine can accomplish the first two points. The ability to enhance the permeability of intestinal epithelial cells is currently under investigation. Methacrylic acid-containing hydrogels have shown the ability to bind calcium ions that decreases the concentration of free extracellular calcium for these epithelial cells. This change triggers a number of intracellular events including rearrangement of the cytoskeleton leading to increased permeability. Studies done on Caco-2 cells (human colon adenocarcinoma) measuring changes in transepithelial resistance are used to assess the effect of the polymer-cell interactions on the integrity of intestinal epithelial cell monolayers.

  4. Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels.

    PubMed

    Mittal, H; Jindal, R; Kaith, B S; Maity, A; Ray, S S

    2015-01-22

    This study reports the microwave-assisted synthesis of gum-ghatti (Gg)-grafted poly(acrylamide-co-methacrylic acid) (AAm-co-MAA) hydrogels for the development of biodegradable flocculants and adsorbents. The synthesized hydrogels were characterized using TGA, FTIR and SEM. TGA studies revealed that the synthesized hydrogels were thermally more stable than pristine Gg and exhibited maximum swelling capacity of 1959% at 60°C in neutral pH. The optimal Gg-cl-P(AAm-co-MAA) hydrogel was successfully employed for the removal of saline water from various petroleum fraction-saline emulsions. The maximum flocculation efficiency was achieved in an acidic clay suspension with a 15 mg polymer dose at 40°C. Moreover, the synthesized hydrogel adsorbed 94% and 75% of Pb(2+) and Cu(2+), respectively, from aqueous solutions. Finally, the Gg-cl-P(AAm-co-MAA) hydrogel could be degraded completely within 50 days. In summary, the Gg-cl-P(AAm-co-MAA) hydrogel was demonstrated to have potential for use as flocculants and heavy metal absorbents for industrial waste water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  6. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  7. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  8. 40 CFR 721.9492 - Polymers of styrene, cyclohexyl methacrylate and substituted methacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polymers of styrene, cyclohexyl... Significant New Uses for Specific Chemical Substances § 721.9492 Polymers of styrene, cyclohexyl methacrylate...) The chemical substances identified generically as polymers of styrene, cyclohexyl methacrylate and...

  9. Synthesis and evaluation of chitosan-graft-poly (2-hydroxyethyl methacrylate-co-itaconic acid) as a drug carrier for controlled release of tramadol hydrochloride

    PubMed Central

    Subramanian, Kaliappa gounder; Vijayakumar, Vediappan

    2011-01-01

    Chitosan-graft-poly (2-hydroxyethyl methacrylate-co-itaconic acid) has been synthesized for different feed ratios of 2-hydroxyethyl methacrylate and itaconic acid and characterized by FT-IR, thermogravimetry and swelling in simulated biological fluids (SBF) and evaluated as a drug carrier with model drug, tramadol hydrochloride (TRM). Grafting decreased the thermal stability of chitosan. FT-IR spectra of tablet did not reveal any molecular level (i.e. at <10 nm scale) drug–polymer interaction. But differential scanning calorimetric studies indicated a probable drug–polymer interaction at a scale >100 nm level. The observed Korsmeyer–Peppas’s power law exponents (0.19–1.21) for the in vitro release profiles of TRM in SBF and other drugs such as 5-fluorouracil (FU), paracetamol (PCM) and vanlafaxine hydrochloride (VNF) with the copolymer carriers revealed an anomalous drug release mechanism. The decreased release rates for the grafted chitosan and the enhanced release rate for the grafts with increasing itaconic acid content in the feed were more likely attributed to the enhanced drug–matrix interaction and polymer–SBF interactions, respectively. The different release profiles of FU, PCM, TRM and VNF with the copolymer matrix are attributed to the different chemical structures of drugs. The above features suggest the graft copolymer’s candidature for use as a promising oral drug delivery system. PMID:23960799

  10. Synthesis and characterization of functionalized methacrylates for coatings and biomedical applications

    NASA Astrophysics Data System (ADS)

    Shemper, Bianca Sadicoff

    The research presented in this dissertation involves the design of polymers for biomaterials and for coatings applications. The development of non-wettable, hard UV-curing, or reactive coatings is discussed. The biomaterials section involves the syntheses of linear and star-like polymers of the functionalized monomer poly(propylene glycol) monomethacrylate (PPGM) via atom transfer radical polymerization (ATRP) (Chapter II). Its copolymerization with a perfluoroalkyl ethyl methacrylate monomer (1H,1H,2H,2H-heptadecafluorodecyl methacrylate) and the syntheses of linear and star-like amphiphilic copolymers containing the fluorinated monomer and poly(ethyleneglycol) methyl ether methacrylate (MPEGMA) are discussed in Chapter III. The four-arm amphiphilic block copolymer obtained showed unique associative properties leading to micellization in selective solvents. Chapter IV includes research involving the design of films with low surface energy by incorporating fluorine into the polymer. The synthesis, characterization and polymerization of a perfluoroalkylether-substituted methacrylic acid (C8F7) are discussed, and the properties of coatings obtained after its photopolymerization on different substrates are evaluated to confirm formation of low-surface energy polymeric coatings. Subsequently, hard coatings based on methyl (alpha-hydroxymethyl)acrylate (MHMA) were prepared via photopolymerization using UV-light. Firstly, mechanistic investigations into the photopolymerization behavior of (alpha-hydroxymethyl)acrylates (RHMA's) are reported (Chapter V). RHMA derivatives were photopolymerized with various multifunctional acrylates and methacrylates and the effect of crosslinker type and degree of functionality on photopolymerization rates and conversions was investigated. Then, in Chapter VI the synthesis of a series of new crosslinkers is described and their photopolymerization kinetics was investigated in bulk. The effect of these novel crosslinkers on the

  11. Silica-gelatin hybrid sol-gel coatings: a proteomic study with biocompatibility implications.

    PubMed

    Araújo-Gomes, N; Romero-Gavilán, F; Lara-Sáez, I; Elortza, F; Azkargorta, M; Iloro, I; Martínez-Ibañez, M; Martín de Llano, J J; Gurruchaga, M; Goñi, I; Suay, J; Sánchez-Pérez, A M

    2018-05-21

    Osseointegration, including the foreign body reaction to biomaterials, is an immune-modulated, multifactorial, and complex healing process in which various cells and mediators are involved. The buildup of the osseointegration process is immunological and inflammation-driven, often triggered by the adsorption of proteins on the surfaces of the biomaterials and complement activation. New strategies for improving osseointegration use coatings as vehicles for osteogenic biomolecules delivery from implants. Natural polymers, such as gelatin, can mimic collagen I and enhance the biocompatibility of a material. In this experimental study, two different base sol-gel formulations and their combination with gelatin, were applied as coatings on sandblasted, acid-etched titanium (SAE-Ti) substrates and their biological potential as osteogenic biomaterials was tested. We examined the proteins adsorbed onto each surface and their in vitro and in vivo effects. In vitro results showed an improvement in cell proliferation and mineralization in gelatin-containing samples. In vivo testing showed the presence of a looser connective tissue layer in those coatings with substantially more complement activation proteins adsorbed, especially those containing gelatin. Vitronectin and FETUA, proteins associated with mineralization process, were significantly more adsorbed in gelatin coatings. This article is protected by copyright. All rights reserved.

  12. Silver-halide gelatin holograms

    NASA Astrophysics Data System (ADS)

    Chang, B. J.; Winick, K.

    1980-05-01

    The use of a silver-halide gelatin for volume phase holograms having a wide spectral response and lower exposure requirements than alternatives and using commercially available silver salts, is proposed. The main difference between the dichromated gelatin and silver-halide processes is the creation of a hologram latent image, which is given in the form of a hardness differential between exposed and unexposed regions in the silver halide hologram; the differential is in turn created by the reaction products of either tanning development or tanning bleach, which harden the gelatin with link-bonds between molecules.

  13. Acyl-gelatins for cell-hybrid biomaterials: preparation of gelatins with high melting point and affinity for hydrophobic surfaces.

    PubMed

    Miyamoto, Keiichi; Chinzei, Hiroko; Komai, Takashi

    2002-12-01

    In the development of cell-hybrid biomaterials, the functional activity of cells depends on the selective binding of cells to artificial ligands on the biomaterials. The extracellular matrix (ECM) is the most important ligand for cell activity. ECM is known to contain collagen, one of whose constituents is gelatin. Although natural gelatin has good cell attachment properties, the melting point of gelatin hydrogel is lower than body temperature. Thus, non-chemically cross-linked gelatin hydrogel is not a biomaterial that is used for prostheses. In the present study, we report the preparation of acyl-gelatin hydrogels with high melting point (>37 degrees C) and high affinity for hydrophobic surfaces for easy handling for transportation and adhesion activities on the hydrophobic surfaces. In addition, the doubling time of endothelial cells on the coated cell culture plate was faster than that of natural gelatin owing to the higher adhesion activity of acyl-gelatin. The results clearly demonstrated that the acyl-gelatin acted as an interface that enabled cell adhesion to artificial materials surfaces.

  14. Halal authenticity of gelatin using species-specific PCR.

    PubMed

    Shabani, Hessam; Mehdizadeh, Mehrangiz; Mousavi, Seyed Mohammad; Dezfouli, Ehsan Ansari; Solgi, Tara; Khodaverdi, Mahdi; Rabiei, Maryam; Rastegar, Hossein; Alebouyeh, Mahmoud

    2015-10-01

    Consumption of food products derived from porcine sources is strictly prohibited in Islam. Gelatin, mostly derived from bovine and porcine sources, has many applications in the food and pharmaceutical industries. To ensure that food products comply with halal regulations, development of valid and reliable analytical methods is very much required. In this study, a species-specific polymerase chain reaction (PCR) assay using conserved regions of mitochondrial DNA (cytochrome b gene) was performed to evaluate the halal authenticity of gelatin. After isolation of DNA from gelatin powders with known origin, conventional PCR using species-specific primers was carried out on the extracted DNA. The amplified expected PCR products of 212 and 271 bp were observed for porcine and bovine gelatin, respectively. The sensitivity of the method was tested on binary gelatin mixtures containing 0.1%, 1%, 10%, and 100% (w/w) of porcine gelatin within bovine gelatin and vice versa. Although most of the DNA is degraded due to the severe processing steps of gelatin production, the minimum level of 0.1% w/w of both porcine and bovine gelatin was detected. Moreover, eight food products labeled as containing bovine gelatin and eight capsule shells were subjected to PCR examination. The results showed that all samples contained bovine gelatin, and the absence of porcine gelatin was verified. This method of species authenticity is very useful to verify whether gelatin and gelatin-containing food products are derived from halal ingredients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Trout skin gelatin-based edible film development.

    PubMed

    Kim, Dayeon; Min, Sea C

    2012-09-01

    Edible biopolymer films were developed from gelatin extracted from trout skin (TSG) using thermal protein denaturation conditions and plasticizer (glycerol) concentration as variables. The amino acid composition of the TSG, elastic modulus, viscous modulus, and the viscosity of film-forming solutions, and tensile properties, water vapor permeability, solubility in water, and color of TSG-based films were determined. A 6.8% (w/w, wet basis) trout skin-extracted gelatin solution containing 9, 17, or 23% (w/w, dry basis) glycerol was heated at 80, 90, or 100 °C for 30, 45, or 60 min to prepare a film-forming solution. TSG can be characterized as a gelatin containing high contents of methionine and aspartic acid. The gelation temperature of the film-forming solution was 7 °C and the solution was subjected to heating to form a stable matrix for a film. Increased heating time of the film-forming solution reduced the film solubility (P < 0.05). Heating at 90 °C for 30 min was suggested as the requirement for film formation. As the concentration of glycerol in the film increased, film strength and moisture barrier properties decreased, while film stretchability increased (P < 0.05). Trout skin by-products can be used as a natural protein source for fabricating biopolymer films stable at ambient conditions with certain physical and moisture barrier properties by controlling thermal treatment conditions and glycerol concentrations. The fishing industry produces a significant amount of waste, including fish skin, due to fish processing. Trout skin waste has potential value as a protein source that can be used to form biopolymer edible films for packaging low and intermediate water activity food products, and thus may have practical applications in the food industry, which could be one way to cut waste disposal in the trout processing industry. © 2012 Institute of Food Technologists®

  16. Characterization by Tin-Specific Size Exclusion Chromatography of the Free Radical Copolymerization of Tributyltin Methacrylate and Methyl Methacrylate,

    DTIC Science & Technology

    1980-12-11

    Characterization by Tin-Specific Size Exclusion Chromatography of the Free Radical Copolymerization of Tributyltin Methacrylate and -~~~ ~~ ety Me aryate1...81 ~ 9 1 7 29 2 ABSTRACT Copolymers of tributyltin methacrylate (TBTM) and methyl methacrylate (MMA) comprise an important class of biocidal slow...exclusion chromatography (SEC); tin-specific graphite furnace atomic absorp- tion (GFAA); tributyltin methacrylate; ultraviolet absorbance; weight

  17. T-style keratoprosthesis based on surface-modified poly (2-hydroxyethyl methacrylate) hydrogel for cornea repairs.

    PubMed

    Xiang, Jun; Sun, Jianguo; Hong, Jiaxu; Wang, Wentao; Wei, Anji; Le, Qihua; Xu, Jianjiang

    2015-05-01

    Corneal disease is a common cause of blindness, and keratoplasty is considered as an effective treatment method. However, there is a severe shortage of donor corneas worldwide. This paper presents a novel T-style design of a keratoprosthesis and its preparation methods, in which a mechanically and structurally effective artificial cornea is made based on a poly(2-hydroxyethyl methacrylate) hydrogel. The porous skirt was modified with hyaluronic acid and cationized gelatin, and the bottom of the optical column was coated with poly(ethylene glycol). The physical properties of the T-style Kpro were analyzed using ultraviolet and visible spectrophotometry and electron scanning microscopy. The surface chemical properties were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The surface modification in the spongy skirt promoted cell adhesion and produced a firm bond between the corneal tissue and the implant device, while the surface modification in the optic column resisted cell adhesion and prevented retroprosthetic membrane formation. Through improved surgical techniques, the novel T-style keratoprosthesis provides enough mechanical stability to facilitate long-term biointegration with the host environment. In vivo implantation experiments showed that the T-style keratoprosthesis is a promising cornea alternative for patients with severe limbal stem cell deficiency and corneal opacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Preparation of methacrylic acid-modified rice husk improved by an experimental design and application for paraquat adsorption.

    PubMed

    Hsu, Shih-Tong; Chen, Lung-Chuan; Lee, Cheng-Chieh; Pan, Ting-Chung; You, Bing-Xuan; Yan, Qi-Feng

    2009-11-15

    Methacrylic acid (MAA) grafted rice husk was synthesized using graft copolymerization with Fenton's reagent as the redox initiator and applied to the adsorption of paraquat. The highest grafting percentage of 44.3% was obtained using the traditional kinetic method. However, a maximum grafting percentage of 65.3% was calculated using the central composite design. Experimental results based on the recipes predicted from the statistical analysis are consistent with theoretical calculations. A representative polymethacrylic acid-g-rice husk (PMAA-g-rice husk) copolymer was hydrolyzed to a salt type and applied to the adsorption of paraquat. The adsorption equilibrium data correlate more closely with the Langmuir isotherm than with the Freundlich equation. The maximum adsorption capacity of modified rice husk is 292.5mg/g-adsorbent. This value exceeds those for Fuller's earth and activated carbon, which are the most common binding agents used for paraquat. The samples at various stages were characterized by solid-state (13)C NMR spectroscopy.

  19. Detection of porcine DNA in gelatine and gelatine-containing processed food products-Halal/Kosher authentication.

    PubMed

    Demirhan, Yasemin; Ulca, Pelin; Senyuva, Hamide Z

    2012-03-01

    A commercially available real-time PCR, based on a multi-copy target cytochrome b (cyt b) using porcine specific primers, has been validated for the Halal/Kosher authentication of gelatine. Extraction and purification of DNA from gelatine were successfully achieved using the SureFood® PREP Animal system, and real-time PCR was carried out using SureFood® Animal ID Pork Sens kit. The minimum level of adulteration that could be detected was 1.0% w/w for marshmallows and gum drops. A small survey was undertaken of processed food products such as gum drops, marshmallows and Turkish delight, believed to contain gelatine. Of fourteen food products from Germany, two samples were found to contain porcine gelatine, whereas of twenty-nine samples from Turkey twenty-eight were negative. However, one product from Turkey contained porcine DNA and thus was not Halal, and neither was the use of porcine gelatine indicated on the product label. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The effect of extended polymer chains on the properties of transparent multi-walled carbon nanotubes/poly(methyl methacrylate/acrylic acid) film

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M.; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wei, Ming-Hsiung; Wu, Sheng-Yen

    2010-05-01

    Optically transparent and electrically conductive thin films composed of multi-walled carbon nanotube (MWCNT) reinforced polymethyl methacrylate/acrylic acid (PMMA/AA) were fabricated using a wire coating technique. Poly(acrylic acid) controls the level of MWCNT dispersion in aqueous mixtures and retains the well-dispersed state in the polymer matrix after solidification resulting from extended polymer chains by adjusting the pH value. The exfoliating the MWCNT bundles by extended polymer chains results in the excellent dispersion of MWCNT. It causes a lower surface electrical resistance at the same MWCNT content. The hydrophilic functional groups (-COO - NA + ) also caused a decrease in the crystallization of PMMA and led to an increase in the transmittance.

  1. The effect of extended polymer chains on the properties of transparent multi-walled carbon nanotubes/poly(methyl methacrylate/acrylic acid) film.

    PubMed

    Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wei, Ming-Hsiung; Wu, Sheng-Yen

    2010-05-07

    Optically transparent and electrically conductive thin films composed of multi-walled carbon nanotube (MWCNT) reinforced polymethyl methacrylate/acrylic acid (PMMA/AA) were fabricated using a wire coating technique. Poly(acrylic acid) controls the level of MWCNT dispersion in aqueous mixtures and retains the well-dispersed state in the polymer matrix after solidification resulting from extended polymer chains by adjusting the pH value. The exfoliating the MWCNT bundles by extended polymer chains results in the excellent dispersion of MWCNT. It causes a lower surface electrical resistance at the same MWCNT content. The hydrophilic functional groups (-COO( - )NA( + )) also caused a decrease in the crystallization of PMMA and led to an increase in the transmittance.

  2. Characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam

    NASA Astrophysics Data System (ADS)

    Bong, Jihye; Shin, Dongho; Kwon, Soo-Il

    2014-01-01

    The characteristics of a normoxic polymethacrylic acid gel dosimeter for a 72-MeV proton beam were evaluated. A polymer gel dosimeter was synthesized using gelatin, methacrylic acid, hydroquinone, tetrakis(hydroxymethyl) phosphonium chloride, and highly purified distilled water. The dosimeter was manufactured by placement in a polyethylene (PE) container. Irradiated dosimeters were analyzed to determine the transverse relaxation time (T2) using a 1.5-T MRI. A calibration curve was obtained as a function of the absorbed dose. A Bragg curve made by irradiating the gel with mono-energy was compared with the results for a parallel plate ionization chamber. The spread-out Bragg peak (SOBP) range and distal dose fall-off (DDF) were comparatively analyzed by comparing the irradiated gel with a spread-out Bragg peak against with the ion chamber. Lastly, the gel's usefulness as a dosimeter for therapeutic radiation quality assurance was evaluated by obtaining its practical field size, flatness, and symmetry, through comparison of the profiles of the gel and ion chamber.

  3. Photochemically-induced acid generation from 18-molybdodiphosphate and 18-tungstodiphosphate within poly(2-hydroxyethyl methacrylate) films.

    PubMed

    Douvas, Antonios M; Kapella, Anna; Dimotikali, Dimitra; Argitis, Panagiotis

    2009-06-01

    The capability of ammonium 18-molybdodiphosphate, (NH(4))(6)P(2)Mo(18)O(62) (Mo(18)(6-)), and ammonium 18-tungstodiphosphate, (NH(4))(6)P(2)W(18)O(62) (W(18)(6-)), to photochemically generate acid within films of a polymer with hydroxylic functional groups (namely, within poly(2-hydroxyethyl methacrylate) (PHEMA) films) is demonstrated. Upon UV irradiation, both 2:18 polyoxometalates (POMs) investigated are reduced with concomitant oxidation of PHEMA and generation of acid, which subsequently catalyzes the cross-linking of PHEMA. The photoacid generation is mainly evidenced by monitoring the protonation of an appropriate acid indicator (4-dimethylamino-4'-nitrostilbene) with UV spectroscopy and by photolithographic imaging experiments. By comparing the efficiency of both POMs to induce acid-catalyzed cross-linking of PHEMA under similar conditions, the W(18)(6-) ion is found to be more efficient in photoacid generation than the Mo(18)(6-) ion. Imaging of the POM-containing PHEMA films through UV photolithographic processing is demonstrated. In that process, both POMs can be entirely leached during the development step by using pure water as a developer, resulting in patterned PHEMA films. This characteristic renders the investigated POMs attractive materials for applications, especially in the area of biomaterials, where removal of the photoacid generator from the film at the end of the process is desirable.

  4. Synthesis and characterization of Ag+-decorated poly(glycidyl methacrylate) microparticle design for the adsorption of nucleic acids.

    PubMed

    Erol, Kadir; Uzunoglu, Aytekin; Köse, Kazım; Sarıca, Büşra; Avcı, Emre; Köse, Dursun A

    2018-04-01

    In this study, we report on the adsorption of RNA and DNA molecules by exploiting the high binding affinity of these nucleic acids to Ag + ions anchored on magnetic poly(glycidyl methacrylate) (PGMA) microparticles. PGMA microparticles were synthesized and modified with nicotinamide which enabled to anchor Ag + ions on the surface. The successful preparation of PGMA was confirmed by the presence of characteristic FTIR peaks. The ESR results showed that the incorporation of FeNi salt to the polymeric structure provided a magnetic property to the microparticles. The amount of nicotinamide and Ag + ions used to modify the surface of the particles were found to be 1.79 wt% and 52.6 mg Ag/g microparticle, respectively. The high affinity of nucleic acids to Ag + ions were exploited for the adsorption studies. At the optimum working conditions, the adsorption capacity of microparticles was found to be 40.1 and 11.48 mg nucleic acid/g microparticle for RNA and DNA, respectively. Our study indicated that the use of novel Ag + -decorated magnetic PGMA particles can be successfully employed as adsorbents for fast, easy, and cost-friendly adsorption of nucleic acids with high purity as well as high in quantity. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Binding of leachable components of polymethyl methacrylate (PMMA) and peptide on modified SPR chip

    NASA Astrophysics Data System (ADS)

    Szaloki, M.; Vitalyos, G.; Harfalvi, J.; Hegedus, Cs

    2013-12-01

    Many types of polymers are often used in dentistry, which may cause allergic reaction, mainly methyl methacrylate allergy due to the leachable, degradable components of polymerized dental products. The aim of this study was to investigate the interaction between the leachable components of PMMA and peptides by Fourier-transform Surface Plasmon Resonance (FT SPR). In our previous work binding of oligopeptides (Ph.D.-7 and Ph.D.-12 Peptide Library Kit) was investigated to PMMA surface by phage display technique. It was found that oligopeptides bounded specifically to PMMA surface. The most common amino acids were leucine and proline inside the amino acids sequences of DNA of phages. The binding of haptens, as formaldehyde and methacrylic acid, to frequent amino acids was to investigate on the modified gold SPR chip. Self assembled monolayer (SAM) modified the surface of gold chip and ensured the specific binding between the haptens and amino acids. It was found that amino acids bounded to modified SPR gold and the haptens bounded to amino acids by creating multilayer on the chip surface. By the application of phage display and SPR modern bioanalytical methods the interaction between allergens and peptides can be investigated.

  6. Controlled release of sphingosine-1-phosphate agonist with gelatin hydrogels for macrophage recruitment.

    PubMed

    Murakami, Masahiro; Saito, Takashi; Tabata, Yasuhiko

    2014-11-01

    The objective of this study is to design a drug delivery system (DDS) for the in vivo promotion of macrophage recruitment. As the drug, a water-insoluble agonist of sphingosine-1-phosphate type 1 receptor (SEW2871) was selected. SEW2871 (SEW) was water-solubilized by micelle formation with gelatin grafted by L-lactic acid oligomer. SEW micelles were mixed with gelatin, followed by dehydrothermal crosslinking of gelatin to obtain gelatin hydrogels incorporating SEW micelles. SEW was released from the hydrogels incorporating SEW micelles in vitro and in vivo. The water-solubilized SEW showed in vitro macrophage migration activity. When implanted into the back subcutis or the skin wound defect of mice, the hydrogel incorporating SEW micelles promoted macrophage migration toward the tissue around the implanted site to a significantly great extent compared with SEW-free hydrogel and that mixed with SEW micelles. The hydrogel is a promising DDS to enhance macrophage recruitment in vivo. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. In vitro evaluation of crosslinked electrospun fish gelatin scaffolds.

    PubMed

    Gomes, S R; Rodrigues, G; Martins, G G; Henriques, C M R; Silva, J C

    2013-04-01

    Gelatin from cold water fish skin was electrospun, crosslinked and investigated as a substrate for the adhesion and proliferation of cells. Gelatin was first dissolved in either water or concentrated acetic acid and both solutions were successfully electrospun. Cross-linking was achieved via three different routes: glutaraldehyde vapor, genipin and dehydrothermal treatment. Solution's properties (surface tension, electrical conductivity and viscosity) and scaffold's properties (chemical bonds, weight loss and fiber diameters) were measured. Cellular viability was analyzed culturing 3T3 fibroblasts plated on the scaffolds and grown up to 7 days. The cells were fixed and observed with SEM or stained for DNA and F-actin and observed with confocal microscopy. In all scaffolds, the cells attached and spread with varying degrees. The evaluation of cell viability showed proliferation of cells until confluence in scaffolds crosslinked by glutaraldehyde and genipin; however the rate of growth in genipin crosslinked scaffolds was slow, recovering only by day five. The results using the dehydrothermal treatment were the less satisfactory. Our results show that glutaraldehyde treated fish gelatin is the most suitable substrate, of the three studied, for fibroblast adhesion and proliferation. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Thermally Switchable Thin Films of an ABC Triblock Copolymer of Poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Shanju; Liu, Zhan; Bucknall, David G.

    2011-01-01

    The thermo-responsive behavior of polymer films consisting of novel linear triblock copolymers of poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBuMA-PMMA-P2FEMA) are reported using differential scanning calorimetry (DSC), atomic forcing microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contacting angle (CA) measurements. The surface morphology, wettability and chemical structure of thin films of these triblock copolymers on silicon wafers as a function of temperature have been investigated. It has been shown that the wettability of the films is thermally switchable. Detailed structural analysis shows that thermo-responsive surface composition changes are produced. The underlying mechanism of the thermoresponsive behavior is discussed.

  9. Biosynthesis and Characterization of Nanocellulose-Gelatin Films

    PubMed Central

    Taokaew, Siriporn; Seetabhawang, Sutasinee; Siripong, Pongpun; Phisalaphong, Muenduen

    2013-01-01

    A nanocellulose-gelatin (bacterial cellulose gelatin (BCG)) film was developed by a supplement of gelatin, at a concentration of 1%–10% w/v, in a coconut-water medium under the static cultivation of Acetobacter xylinum. The two polymers exhibited a certain degree of miscibility. The BCG film displayed dense and uniform homogeneous structures. The Fourier transform infrared spectroscopy (FTIR) results demonstrated interactions between the cellulose and gelatin. Incorporation of gelatin into a cellulose nanofiber network resulted in significantly improved optical transparency and water absorption capacity of the films. A significant drop in the mechanical strengths and a decrease in the porosity of the film were observed when the supplement of gelatin was more than 3% (w/v). The BCG films showed no cytotoxicity against Vero cells. PMID:28809339

  10. Instrumental texture profile analysis of gelatin gel extracted from grouper skin and commercial (bovine and porcine) gelatin gels.

    PubMed

    Rahman, Mohammad Shafiur; Al-Mahrouqi, Abdullah Issa

    2009-01-01

    Mechanical compression was used to study the gelling characteristics of gelatin gels. Texture profile analysis (TPA) showed that the hardness of fish and mammalian gelatin increased significantly as the concentrations of gels increased. TPA attributes of 10% fish skin gel showed significant differences from those obtained from 20% and 30% gels. In bovine and porcine cases, such generic trends were not observed. Mechanical characteristics of 10% gels of gelatin from fish skin, determined from one cycle compression, were significantly lower than other sources of gelatin gels, while bovine and porcine gels did not show any significant differences. In the case of TPA, hardness of bovine gelatin gel was highest at 41 N for 10% gel, followed by porcine (30 N) then fish skin (5 N) gelatin gels. The gels prepared from different sources did not show any generic trends when all other mechanical attributes were considered.

  11. 21 CFR 522.1020 - Gelatin solution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Gelatin solution. 522.1020 Section 522.1020 Food... Gelatin solution. (a) Specifications. It is sterile and each 100 cubic centimeters contains 8 grams of gelatin in an 0.85 percent sodium chloride solution. (b) Sponsor. See No. 000856 in § 510.600(c) of this...

  12. 21 CFR 522.1020 - Gelatin solution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Gelatin solution. 522.1020 Section 522.1020 Food... Gelatin solution. (a) Specifications. It is sterile and each 100 cubic centimeters contains 8 grams of gelatin in an 0.85 percent sodium chloride solution. (b) Sponsor. See No. 000856 in § 510.600(c) of this...

  13. 21 CFR 522.1020 - Gelatin solution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Gelatin solution. 522.1020 Section 522.1020 Food... Gelatin solution. (a) Specifications. It is sterile and each 100 cubic centimeters contains 8 grams of gelatin in an 0.85 percent sodium chloride solution. (b) Sponsor. See No. 000856 in § 510.600(c) of this...

  14. 21 CFR 522.1020 - Gelatin solution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gelatin solution. 522.1020 Section 522.1020 Food... Gelatin solution. (a) Specifications. It is sterile and each 100 cubic centimeters contains 8 grams of gelatin in an 0.85 percent sodium chloride solution. (b) Sponsor. See No. 000856 in § 510.600(c) of this...

  15. The use of poly(methacrylic acid) nanogel to control the release of amoxycillin with lower cytotoxicity.

    PubMed

    Liu, Tao; Liu, Hongxi; Wu, Zhimin; Chen, Tao; Zhou, Lin; Liang, Yuanyuan; Ke, Bo; Huang, Hongxing; Jiang, Zhenyou; Xie, Mingqiang; Wu, Ting

    2014-10-01

    In order to control the release of amoxycillin (AM) with lower cytotoxicity and higher activity, ethylene glycol dimethacrylate was used as the cross-linker, and a series of poly(methacrylic acid) (PMAA) nanogels were prepared to load the AM. Then, the morphology, size, in vitro release property, long-term antibacterial performance, cytotoxicity, stability and activity of this novel AM/PMAA nanogel were investigated. The results showed that the AM/PMAA nanogel sustainably released AM with long-term antibacterial activity. Moreover, the AM/PMAA nanogel could improve the stability of AM. More importantly, this AM/PMAA nanogel showed slighter cytotoxicity than AM alone, suggesting that the AM/PMAA nanogel was a more useful dosage form than AM for infectious diseases. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  16. Gelatin capsule in stomach (image)

    MedlinePlus

    ... detect the presence of intestinal parasites. A weighted gelatin capsule attached to a string is swallowed and left in place. After about 4 hours, the gelatin capsule is pulled out of the stomach by ...

  17. Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium.

    PubMed

    de Oliveira, Fernanda Midori; Segatelli, Mariana Gava; Tarley, César Ricardo Teixeira

    2016-02-01

    In the present study a hybrid molecularly imprinted poly(methacrylic acid-trimethylolpropane trimethacrylate)-silica (MIP) was synthesized and modified with (3-glycidyloxypropyl)trimethoxysilane (GPTMS) with posterior opening of epoxy ring to provide hydrophilic properties of material in the extraction of folic acid from aqueous medium. The chemical and structural aggregates of hybrid material were characterized by means of Fourier Transform Infrared (FT-IR), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Thermogravimetric analysis (TGA) and textural data. Selectivity data of MIP were compared to non-imprinted polymer (NIP) through competitive sorption studies in the presence of caffeine, paracetamol or 4-aminobenzamide yielding relative selectivity coefficients (k′) higher than one unit, thus confirming the selective character of MIP even in the presence of structurally smaller compounds than the folic acid. The lower hydrophobic sorption by bovine serum albumin (BSA) in the MIP as compared to unmodified MIP proves the hydrophilicity of polymer surface by using GPTMS with opening ring. Under acid medium(pH 1.5) the sorption of folic acid onto MIP from batch experiments was higher than the one achieved for NIP. Equilibrium sorption of folic acid was reached at 120 min for MIP, NIP and MIP without GPTMS and kinetic sorption data were well described by pseudo-second-order, Elovich and intraparticle diffusion models. Thus, these results indicate the existence of different binding energy sites in the polymers and a complex mechanism consisting of both surface sorption and intraparticle transport of folic acid within the pores of polymers.

  18. Vitamin C-enriched gelatin supplementation before intermittent activity augments collagen synthesis.

    PubMed

    Shaw, Gregory; Lee-Barthel, Ann; Ross, Megan Lr; Wang, Bing; Baar, Keith

    2017-01-01

    Musculoskeletal injuries are the most common complaint in active populations. More than 50% of all injuries in sports can be classified as sprains, strains, ruptures, or breaks of musculoskeletal tissues. Nutritional and/or exercise interventions that increase collagen synthesis and strengthen these tissues could have an important effect on injury rates. This study was designed to determine whether gelatin supplementation could increase collagen synthesis. Eight healthy male subjects completed a randomized, double-blinded, crossover-design study in which they consumed either 5 or 15 g of vitamin C-enriched gelatin or a placebo control. After the initial drink, blood was taken every 30 min to determine amino acid content in the blood. A larger blood sample was taken before and 1 h after consumption of gelatin for treatment of engineered ligaments. One hour after the initial supplement, the subjects completed 6 min of rope-skipping to stimulate collagen synthesis. This pattern of supplementation was repeated 3 times/d with ≥6 h between exercise bouts for 3 d. Blood was drawn before and 4, 24, 48, and 72 h after the first exercise bout for determination of amino-terminal propeptide of collagen I content. Supplementation with increasing amounts of gelatin increased circulating glycine, proline, hydroxyproline, and hydroxylysine, peaking 1 h after the supplement was given. Engineered ligaments treated for 6 d with serum from samples collected before or 1 h after subjects consumed a placebo or 5 or 15 g gelatin showed increased collagen content and improved mechanics. Subjects who took 15 g gelatin 1 h before exercise showed double the amino-terminal propeptide of collagen I in their blood, indicating increased collagen synthesis. These data suggest that adding gelatin to an intermittent exercise program improves collagen synthesis and could play a beneficial role in injury prevention and tissue repair. This trial was registered at the Australian New Zealand Clinical

  19. Tuning Surface Properties of Poly(methyl methacrylate) Film Using Poly(perfluoromethyl methacrylate)s with Short Perfluorinated Side Chains.

    PubMed

    Sohn, Eun-Ho; Ha, Jong-Wook; Lee, Soo-Bok; Park, In Jun

    2016-09-27

    To control the surface properties of a commonly used polymer, poly(methyl methacrylate) (PMMA), poly(perfluoromethyl methacrylate)s (PFMMAs) with short perfluorinated side groups (i.e., -CF3, -CF2CF3, -(CF3)2, -CF2CF2CF3) were used as blend components because of their good solubility in organic solvents, low surface energies, and high optical transmittance. The surface energies of the blend films of PFMMA with the -CF3 group and PMMA increased continuously with increasing PMMA contents from 17.6 to 26.0 mN/m, whereas those of the other polymer blend films remained at very low levels (10.2-12.6 mN/m), similar to those of pure PFMMAs, even when the blends contained 90 wt %PMMA. Surface morphology and composition measurements revealed that this result originated from the different blend structures, such as lateral and vertical phase separations. We expect that these PFMMAs will be useful in widening the applicable window of PMMA.

  20. Exposure to volatile methacrylates in dental personnel.

    PubMed

    Hagberg, Stig; Ljungkvist, Göran; Andreasson, Harriet; Karlsson, Stig; Barregård, Lars

    2005-06-01

    Dental personnel are exposed to acrylates due to the acrylic resin-based composites and bonding agents used in fillings. It is well known that these compounds can cause contact allergy in dental personnel. However, in the 1990s, reports emerged on asthma also caused by methacrylates. The main volatile acrylates in dentistry are 2-hydroxyethyl methacrylate and methyl methacrylate. The aim of this study was to quantify the exposure to these acrylates in Swedish dental personnel. We studied the exposure to 2-hydroxyethyl methacrylate and methyl methacrylate in five randomly selected public dental clinics and at the Faculty of Odontology at Göteborg University. In total, 21 whole-day and 46 task-specific short-term (1-18 min) measurements were performed. The median 8-hour time-weighted averages were 2.5 microg/m3 (dentists) and 2.9 microg/m3 (dental nurses) for 2-hydroxyethyl methacrylate, and 0.8 microg/m3 (dentists) and 0.3 microg/m3 (dental nurses) for methyl methacrylate. The maximum short-term exposure levels were 79 microg/m3 for 2-hydroxyethyl methacrylate and 15 microg/m3 for methyl methacrylate, similar in dentists and dental nurses. The observed levels are much lower than in complete denture fabrication. We found only one previous study in dentistry and it showed similar results (though it reported short-term measurements only). Irritant effects would not be expected in healthy people at these levels. Nevertheless, occupational respiratory diseases due to methacrylates may occur in dental personnel, and improvements in the handling of these chemicals in dentistry are warranted. This includes better vials for the bonding agents and avoiding evaporation from discarded materials.

  1. Electrospun Blends of Gelatin and Gelatin-dendrimer Conjugates as a Wound Dressing and Drug Delivery Platform

    PubMed Central

    Dongargaonkar, Alpana A.; Bowlin, Gary L.; Yang, Hu

    2013-01-01

    In this work, we report a new nanofiber construct based on electrospun blends of gelatin and gelatin-dendrimer conjugates. Highly branched star-shaped polyamidoamine (PAMAM) dendrimer G3.5 was covalently conjugated to gelatin via EDC/NHS chemistry. Blends of gelatin and gelatin-dendrimer conjugates mixed with various loading levels of silver acetate (0, 0.83, 1.65, and 3.30% w/w) were successfully electrospun into nanofiber constructs (NCs). The NCs were further converted into semi-interpenetrating networks (sIPNs) with photoreactive polyethylene glycol diacrylate (Mn=575 gmol-1) (PEG DA575). They were characterized in terms of fiber morphology, diameter, pore size, permeability, degradation, and mechanical properties. The resulting sIPN NCs retained nanofiber morphology, possessed similar fiber diameters to counterpart NCs, and gained improved structural stability. The sIPN NCs also showed good swelling capacity owing to porous structures and were permeable to aqueous solutions. Silvercontaining sIPN NCs allowed sustained silver release and showed antimicrobial activity against two common types of pathogens—Staphylococcus aureus and Pseudomonas aeruginosa. Incorporation of dendrimers into the gelatin nanofibers through covalent conjugation not only expands drug loading capacity of nanofiber constructs but provides tremendous flexibility for developing multifunctional electrospun dressing materials. PMID:24127747

  2. Gelatin as Biomaterial for Tissue Engineering.

    PubMed

    Echave, Mari C; Saenz del Burgo, Laura; Pedraz, Jose L; Orive, Gorka

    2017-01-01

    Tissue engineering is considered one of the most important therapeutic strategies of regenerative medicine. The main objective of these new technologies is the development of substitutes made with biomaterials that are able to heal, repair or regenerate injured or diseased tissues and organs. These constructs seek to unlock the limited ability of human tissues and organs to regenerate. In this review, we highlight the convenient intrinsic properties of gelatin for the design and development of advanced systems for tissue engineering. Gelatin is a natural origin protein derived from collagen hydrolysis. We outline herein a state of the art of gelatin-based composites in order to overcome limitations of this polymeric material and modulate the properties of the formulations. Control release of bioactive molecules, formulations with conductive properties or systems with improved mechanical properties can be obtained using gelatin composites. Many studies have found that the use of calcium phosphate ceramics and diverse synthetic polymers in combination with gelatin improve the mechanical properties of the structures. On the other hand, polyaniline and carbon-based nanosubstrates are interesting molecules to provide gelatin-based systems with conductive properties, especially for cardiac and nerve tissue engineering. Finally, this review provides an overview of the different types of gelatin-based structures including nanoparticles, microparticles, 3D scaffolds, electrospun nanofibers and in situ gelling formulations. Thanks to the significant progress that has already been made, along with others that will be achieved in a near future, the safe and effective clinical implementation of gelatin-based products is expected to accelerate and expand shortly. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Anaphylaxis to gelatin-containing rectal suppositories.

    PubMed

    Sakaguchi, M; Inouye, S

    2001-12-01

    Some children--though the number is few-have been sensitized with gelatin. To investigate the relationship between the presence of antigelatin IgE and anaphylaxis to gelatin-containing rectal suppository, we measured antigelatin IgE in the sera of the children with anaphylaxis. Ten children showed systemic allergic reactions, including anaphylaxis, to a chloral hydrate rectal suppository containing gelatin (231 mg/dose) that had been used as a sedative. These children's clinical histories and serum samples were submitted from physicians to the National Institute of Infectious Diseases during a 2-year period from 1996 to 1997. Of the 10 children, 5 showed apparent anaphylaxis, including hypotension and/or cyanosis, along with urticaria or wheezing; 2 showed both urticaria and wheezing without hypotension or cyanosis; the other 3 showed only urticaria. All of the children had antigelatin IgE (mean value +/- SD, 7.9 +/- 8.4 Ua/mL). As a control, samples from 250 randomly selected children had no antigelatin IgE. These findings suggest that the 10 children's systemic allergic reactions to this suppository were caused by the gelatin component. Gelatin-containing suppositories must be used with the same caution as gelatin-containing vaccines and other medications.

  4. Gelatin-Based Materials in Ocular Tissue Engineering.

    PubMed

    Rose, James B; Pacelli, Settimio; Haj, Alicia J El; Dua, Harminder S; Hopkinson, Andrew; White, Lisa J; Rose, Felicity R A J

    2014-04-17

    Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology.

  5. Gelatin-Based Materials in Ocular Tissue Engineering

    PubMed Central

    Rose, James B.; Pacelli, Settimio; El Haj, Alicia J.; Dua, Harminder S.; Hopkinson, Andrew; White, Lisa J.; Rose, Felicity R. A. J.

    2014-01-01

    Gelatin has been used for many years in pharmaceutical formulation, cell culture and tissue engineering on account of its excellent biocompatibility, ease of processing and availability at low cost. Over the last decade gelatin has been extensively evaluated for numerous ocular applications serving as cell-sheet carriers, bio-adhesives and bio-artificial grafts. These different applications naturally have diverse physical, chemical and biological requirements and this has prompted research into the modification of gelatin and its derivatives. The crosslinking of gelatin alone or in combination with natural or synthetic biopolymers has produced a variety of scaffolds that could be suitable for ocular applications. This review focuses on methods to crosslink gelatin-based materials and how the resulting materials have been applied in ocular tissue engineering. Critical discussion of recent innovations in tissue engineering and regenerative medicine will highlight future opportunities for gelatin-based materials in ophthalmology. PMID:28788609

  6. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity.

    PubMed

    Poldervaart, Michelle T; Goversen, Birgit; de Ruijter, Mylene; Abbadessa, Anna; Melchels, Ferry P W; Öner, F Cumhur; Dhert, Wouter J A; Vermonden, Tina; Alblas, Jacqueline

    2017-01-01

    In bone regenerative medicine there is a need for suitable bone substitutes. Hydrogels have excellent biocompatible and biodegradable characteristics, but their visco-elastic properties limit their applicability, especially with respect to 3D bioprinting. In this study, we modified the naturally occurring extracellular matrix glycosaminoglycan hyaluronic acid (HA), in order to yield photo-crosslinkable hydrogels with increased mechanical stiffness and long-term stability, and with minimal decrease in cytocompatibility. Application of these tailor-made methacrylated hyaluronic acid (MeHA) gels for bone tissue engineering and 3D bioprinting was the subject of investigation. Visco-elastic properties of MeHA gels, measured by rheology and dynamic mechanical analysis, showed that irradiation of the hydrogels with UV light led to increased storage moduli and elastic moduli, indicating increasing gel rigidity. Subsequently, human bone marrow derived mesenchymal stromal cells (MSCs) were incorporated into MeHA hydrogels, and cell viability remained 64.4% after 21 days of culture. Osteogenic differentiation of MSCs occurred spontaneously in hydrogels with high concentrations of MeHA polymer, in absence of additional osteogenic stimuli. Addition of bone morphogenetic protein-2 (BMP-2) to the culture medium further increased osteogenic differentiation, as evidenced by increased matrix mineralisation. MeHA hydrogels demonstrated to be suitable for 3D bioprinting, and were printed into porous and anatomically shaped scaffolds. Taken together, photosensitive MeHA-based hydrogels fulfilled our criteria for cellular bioprinted bone constructs within a narrow window of concentration.

  7. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity

    PubMed Central

    Poldervaart, Michelle T.; Goversen, Birgit; de Ruijter, Mylene; Abbadessa, Anna; Melchels, Ferry P. W.; Öner, F. Cumhur; Dhert, Wouter J. A.; Vermonden, Tina

    2017-01-01

    In bone regenerative medicine there is a need for suitable bone substitutes. Hydrogels have excellent biocompatible and biodegradable characteristics, but their visco-elastic properties limit their applicability, especially with respect to 3D bioprinting. In this study, we modified the naturally occurring extracellular matrix glycosaminoglycan hyaluronic acid (HA), in order to yield photo-crosslinkable hydrogels with increased mechanical stiffness and long-term stability, and with minimal decrease in cytocompatibility. Application of these tailor-made methacrylated hyaluronic acid (MeHA) gels for bone tissue engineering and 3D bioprinting was the subject of investigation. Visco-elastic properties of MeHA gels, measured by rheology and dynamic mechanical analysis, showed that irradiation of the hydrogels with UV light led to increased storage moduli and elastic moduli, indicating increasing gel rigidity. Subsequently, human bone marrow derived mesenchymal stromal cells (MSCs) were incorporated into MeHA hydrogels, and cell viability remained 64.4% after 21 days of culture. Osteogenic differentiation of MSCs occurred spontaneously in hydrogels with high concentrations of MeHA polymer, in absence of additional osteogenic stimuli. Addition of bone morphogenetic protein-2 (BMP-2) to the culture medium further increased osteogenic differentiation, as evidenced by increased matrix mineralisation. MeHA hydrogels demonstrated to be suitable for 3D bioprinting, and were printed into porous and anatomically shaped scaffolds. Taken together, photosensitive MeHA-based hydrogels fulfilled our criteria for cellular bioprinted bone constructs within a narrow window of concentration. PMID:28586346

  8. Contact allergy to epoxy (meth)acrylates.

    PubMed

    Aalto-Korte, Kristiina; Jungewelter, Soile; Henriks-Eckerman, Maj-Len; Kuuliala, Outi; Jolanki, Riitta

    2009-07-01

    Contact allergy to epoxy (meth)acrylates, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (bis-GMA), 2,2-bis[4-(2-hydroxy-3-acryloxypropoxy)phenyl]-propane (bis-GA), 2,2-bis[4-(methacryl-oxyethoxy)phenyl] propane (bis-EMA), 2,2-bis[4-(methacryloxy)phenyl]-propane (bis-MA), and glycidyl methacrylate (GMA) is often manifested together with contact allergy to diglycidyl ether of bisphenol A (DGEBA) epoxy resin. To analyse patterns of concomitant allergic reactions to the five epoxy (meth)acrylates in relation to exposure. We reviewed the 1994-2008 patch test files at the Finnish Institute of Occupational Health (FIOH) for reactions to the five epoxy (meth)acrylates, and examined the patients' medical records for exposure. Twenty-four patients had an allergic reaction to at least one of the studied epoxy (meth)acrylates, but specific exposure was found only in five patients: two bis-GMA allergies from dental products, two bis-GA allergies from UV-curable printing inks, and one bis-GA allergy from an anaerobic glue. Only 25% of the patients were negative to DGEBA epoxy resin. The great majority of allergic patch test reactions to bis-GMA, bis-GA, GMA and bis-EMA were not associated with specific exposure, and cross-allergy to DGEBA epoxy resin remained a probable explanation. However, independent reactions to bis-GA indicated specific exposure. Anaerobic sealants may induce sensitization not only to aliphatic (meth)acrylates but also to aromatic bis-GA.

  9. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes.

    PubMed

    Ren, Ke; Wang, Yi; Sun, Tao; Yue, Wen; Zhang, Hongyu

    2017-09-01

    Guided bone regeneration (GBR) membranes have been proved of great benefit for bone tissue engineering due to the improvement of cell attachment and proliferation. To develop GBR membranes with better biocompatibility and more proper degradation ability, here we fabricated polycaprolactone (PCL, polymer)/gelatin (protein) hybrid nanofibrous GBR membranes via electrospinning, followed by crosslinking with genipin. Acetic acid (HAc) was utilized to resolve the phase separation of PCL and gelatin, therefore homogeneous PCL/gelatin hybrid nanofibers with different ratios were successfully prepared. FTIR, XPS, TGA, DSC results proved that the proportion of PCL and gelatin in the as-spun nanofiber membranes could be simply adjusted by changing the weight ratio of PCL and gelatin in the spinning solution. SEM and AFM images demonstrated that all the nanofibers possessed uniform and smooth structures both in two dimension (2D) and three dimension (3D). The mechanical tests showed that these nanofibers exhibited appropriate tensile and strength properties, which were suitable for bone tissue engineering. CCK-8 and SEM images revealed that all the membranes were biocompatible to MC3T3-e1 cells. In addition, the in vitro osteogenesis characterizations, alizarin red in normal medium and osteogenesis medium, indicated that the nanofibers could promote bone formation. Therefore, all these results could suggest that our design of electrospun polymer/protein nanofiber membranes was effective for guided bone regeneration. Copyright © 2017. Published by Elsevier B.V.

  10. Is chlorhexidine-methacrylate as effective as chlorhexidine digluconate in preserving resin dentin interfaces?

    PubMed

    Abu Nawareg, Manar; Elkassas, Dina; Zidan, Ahmed; Abuelenain, Dalia; Abu Haimed, Tariq; Hassan, Ali H; Chiba, Ayaka; Bock, Thorsten; Agee, Kelli; Pashley, David H

    2016-02-01

    The aim of the current study was to evaluate the effect of 2% CHX and 2% CHX-methacrylate compared to the resin-dentin bonds created by a two-step etch-and-rinse adhesive system after 24h, 6min and 12min. Microtensile bond strengths and interfacial nanoleakage within resin-dentin interfaces created by Adper Single Bond 2, with or without CHX or CHX-methacrylate pre-treatment for 30s on acid-etched dentin surfaces, were evaluated after 24h, 6min and 12min of storage in distilled water at 37°C. Twelve months of storage resulted in a significant decrease in microtensile bond strength in the control group, and significant increases in silver nanoleakage. In contrast, Single Bond 2+CHX, and to a greater extent CHX-methacrylate, significantly reduced the rate of deterioration of resin-dentin interfaces over the 12min water storage period, in terms of bond strength. Similar to Single Bond 2+CHX, Single Bond+CHX-methacrylates reduced the degradation of resin-bonded interfaces over a 12 month storage period. Thus it can be concluded that Single Bond 2+CHX-methacrylate may be important to improve durability of bonded interfaces and therefore, prolong the life span of adhesive restorations. Although CHX primers have been shown to enhance the durability of etch-and-rinse adhesives, that protection is lost after 2h. The use of CHX-methacrylate should last much longer since it may copolymerize with adhesive monomers, unlike CHX. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Molecular interactions in gelatin/chitosan composite films.

    PubMed

    Qiao, Congde; Ma, Xianguang; Zhang, Jianlong; Yao, Jinshui

    2017-11-15

    Gelatin and chitosan were mixed at different mass ratios in solution forms, and the rheological properties of these film-forming solutions, upon cooling, were studied. The results indicate that the significant interactions between gelatin and chitosan promote the formation of multiple complexes, reflected by an increase in the storage modulus of gelatin solution. Furthermore, these molecular interactions hinder the formation of gelatin networks, consequently decreasing the storage modulus of polymer gels. Both hydrogen bonds and electrostatic interactions are formed between gelatin and chitosan, as evidenced by the shift of the amide-II bands of polymers. X-ray patterns of composite films indicate that the contents of triple helices decrease with increasing chitosan content. Only one glass transition temperature (T g ) was observed in composite films with different composition ratios, and it decreases gradually with an increase in chitosan proportion, indicating that gelatin and chitosan have good miscibility and form a wide range of blends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Poly(vinyl chloride) catheters modified with pH-responsive poly(methacrylic acid) with affinity for antimicrobial agents

    NASA Astrophysics Data System (ADS)

    Zuñiga-Zamorano, Ivette; Meléndez-Ortiz, H. Iván; Costoya, Alejandro; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Bucio, Emilio

    2018-01-01

    Radiation-grafting of pH-responsive methacrylic acid (MAA) onto poly(vinyl chloride) (PVC) was carried out by the pre-irradiation method using gamma rays, which demonstrated to be an efficient and fast procedure for obtaining PVC-g-MAA copolymers. The influence of preparation conditions, such as absorbed dose, monomer concentration, reaction time, and reaction temperature on the grafting yield was studied. The grafting of MAA onto PVC catheters was confirmed by means of Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), and differential scanning calorimetry (DSC). The pH-responsiveness of the grafted copolymers (critical point 8.5) was measured by swelling under cyclic changes in the pH of the medium. Interestingly, PVC-g-MAA showed enhanced capability to immobilize benzalkonium chloride and, particularly, ciprofloxacin and to sustain the release this antimicrobial agent at both acid and alkaline pH. Tests carried out with Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus point out that the developed functionalized catheters may play a role in the prevention/management of urinary tract infections.

  13. Morphology, orientation, and mechanical properties of gelatin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, T.N.; Tsou, A.H.

    1996-12-31

    Gelatin is a polypeptide derived from degradation and disorganization of collagen fibers and is the primary binder in photographic emulsions. Gelatin provides the mechanical integrity and strength to the photographic emulsion allowing for packaging, handling, and photofinishing operations. Gelatin films generated from aqueous-solution casting can exist in a semicrystalline or an amorphous state. When a gelatin solution is cooled below its helix-coil transition temperature, partial renaturation of gelatin to form triple helices can occur. The degree of renaturation in a coated film is dependent upon the drying temperature and the drying rate. During the drying process, gelatin crystals can bemore » formed by lateral association of the triple helices through a mechanism of nucleation and growth of a fringed micelle structure. X-ray scattering techniques have been utilized to examine the morphology and orientation of gelatin films. Based on X-ray diffraction data, it is observed that aggregates of triple-helix rods lie parallel to the film plane but are symmetrically distributed within the film plane. Since a material`s physical and mechanical properties are related to its structure, it is necessary to understand and to characterize the morphological development in gelatin film formation. In this study, an X-ray diffractometer and pole figure goniometer were utilized to examine the structural development and orientation anisotropy in solid-state gelatin films. Also, in this study, the in-plane mechanical properties of a gelatin film were determined from a uniaxial tensile test, and the gelatin film properties in the thickness direction were extracted from an indentation test based on the finite element analysis of the indentation results using a viscoelastic material model.« less

  14. ELASTICITY, DOUBLE REFRACTION AND SWELLING OF ISOELECTRIC GELATIN

    PubMed Central

    Kunitz, M.

    1930-01-01

    found that the optical modulus of elasticity is the same both for gels cast on slides and in frames, although the mode of swelling is different in the two forms of gels. Gels removed from their glass supports after apparent swelling equilibrium, when placed in dilute buffer, begin to swell gradually in all three dimensions and the double refraction decreases slowly, though it persists for a long time. But the double refraction per unit change in dimension and per unit concentration still remains the same as before, thus proving that the internal elastic stress as indicated by the double refraction is brought about by the resistance of the gel itself to deformation. A study was also made on the effect of salts, acid and base on the double refraction of a 10 per cent gel during swelling. The experiments show that below M/8 salts affect very slightly the optical modulus of elasticity of the gel. At higher concentrations of salts the elasticity of the gel is reduced by some salts and increased by others, while such salts as sodium acetate and sodium and ammonium sulfates do not change the elasticity of the gels at all during swelling. The investigated salts may thus be arranged in this respect in the following approximate series: CaCl2, NaI, NaSCN, NaBr, AlCl3, NaCl, Na acetate, Na2SO4, (NH4)2SO4, Al2SO4 and MgSO4. The first five in the series decrease the elasticity while the last two in the series increase the elasticity of the gels during swelling. Acids and bases in higher concentrations exert a powerful influence on the reduction of the elasticity of the gel but in the range of pH between 2.0 and 10.0 the elasticity remains unaffected. The general conclusions to be drawn from these studies are as follows: 1. Swelling or shrinking produces elastic stresses in gels of gelatin, tensile in the first case and compressive in the second case, both being proportional to the percentage change in the dimensions of the gel. 2. Unsupported gels when immersed in aqueous solutions

  15. Effect of extraction temperature on characteristics of chicken legskin gelatin

    NASA Astrophysics Data System (ADS)

    Sompie, M.; Triasih, A.

    2018-01-01

    Gelatin is a denaturalized protein that is derived from collagen by acidic or alkaline hydrolysis and is an important functional biopolymer that has a very broad application in many industrial fields. Its functional properties depend on processing conditions as well as the raw material. The objective of the research was to study effect of extraction temperature on characteristics of native chicken legskin gelatin. This study used Completely Randomized Design (CRD) with four treatments (T1 = 500C, T2 = 550C, T3 = 600C, T4 = 650C) and five replications. Statistical analysis were carried out by one Anova and the mean difference was tested using Duncan’s Multiple Range Test. The result of research indicated that, extraction temperature had significant effect (P<0.05) on yield, gel strength, viscocity and protein content of chicken legskin gelatin, but it had no significant effect (P>0.05) on water content. It was concluded that the use of extraction temperature 600C was (yields 13.75, gel strength 78.75 g bloom, viscosity 6.52 cP, protein content 84.23% and water content 6.20%).

  16. Fatty Acid-Based Monomers as Styrene Replacements for Liquid Molding Resins

    DTIC Science & Technology

    2005-05-01

    fatty acid length and unsaturation level on resin and polymer properties. Fig. 2. The addition of fatty acids ( oleic acid ) to glycidyl methacylate to...the synthetic route used to form the methacrylated fatty acids (MFA). The carboxylic acid of fatty acids undergoes a simple addition reaction with... form methacrylated fatty acid monomer

  17. Preservation and storage of prepared ballistic gelatine.

    PubMed

    Mattijssen, E J A T; Alberink, I; Jacobs, B; van den Boogaard, Y

    2016-02-01

    The use of ballistic gelatine, generally accepted as a human muscle tissue simulant in wound ballistic studies, might be improved by adding a preservative (Methyl 4-hydroxybenzoate) which inhibits microbial growth. This study shows that replacing a part of the gelatine powder by the preservative does not significantly alter the penetration depth of projectiles. Storing prepared blocks of ballistic gelatine over time decreased the penetration depth of projectiles. Storage of prepared gelatine for 4 week already showed a significant effect on the penetration depth of projectiles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Vitamin C–enriched gelatin supplementation before intermittent activity augments collagen synthesis12

    PubMed Central

    Shaw, Gregory; Lee-Barthel, Ann; Ross, Megan LR; Wang, Bing; Baar, Keith

    2017-01-01

    Background: Musculoskeletal injuries are the most common complaint in active populations. More than 50% of all injuries in sports can be classified as sprains, strains, ruptures, or breaks of musculoskeletal tissues. Nutritional and/or exercise interventions that increase collagen synthesis and strengthen these tissues could have an important effect on injury rates. Objective: This study was designed to determine whether gelatin supplementation could increase collagen synthesis. Design: Eight healthy male subjects completed a randomized, double-blinded, crossover-design study in which they consumed either 5 or 15 g of vitamin C–enriched gelatin or a placebo control. After the initial drink, blood was taken every 30 min to determine amino acid content in the blood. A larger blood sample was taken before and 1 h after consumption of gelatin for treatment of engineered ligaments. One hour after the initial supplement, the subjects completed 6 min of rope-skipping to stimulate collagen synthesis. This pattern of supplementation was repeated 3 times/d with ≥6 h between exercise bouts for 3 d. Blood was drawn before and 4, 24, 48, and 72 h after the first exercise bout for determination of amino-terminal propeptide of collagen I content. Results: Supplementation with increasing amounts of gelatin increased circulating glycine, proline, hydroxyproline, and hydroxylysine, peaking 1 h after the supplement was given. Engineered ligaments treated for 6 d with serum from samples collected before or 1 h after subjects consumed a placebo or 5 or 15 g gelatin showed increased collagen content and improved mechanics. Subjects who took 15 g gelatin 1 h before exercise showed double the amino-terminal propeptide of collagen I in their blood, indicating increased collagen synthesis. Conclusion: These data suggest that adding gelatin to an intermittent exercise program improves collagen synthesis and could play a beneficial role in injury prevention and tissue repair. This trial

  19. Genipin-modified gelatin nanocarriers as swelling controlled drug delivery system for in vitro release of cytarabine.

    PubMed

    Khan, Huda; Shukla, R N; Bajpai, A K

    2016-04-01

    The aim of the present investigation was to design biocompatible gelatin nanoparticles, capable of releasing the cytarabine drug in a controllable way by regulating the extent of swelling of nanoparticles. In order to achieve the proposed objectives, gelatin (Type A, derived from acid cured tissue) was modified by crosslinking with genipin and nanoparticles of crosslinked gelatin were prepared using single water in oil (W/O) emulsion technique. The nanoparticles were characterized by techniques like FTIR, SEM, TEM, particles size analysis, and surface potential measurements. The nanoparticle chemical architecture was found to influence drug-releasing capacity. The influence of experimental conditions such as pH and simulated physiological fluids as the release medium was also investigated on the release profiles of cytarabine. It is possible to fabricate high-performance materials, by designing of controlled size gelatin nanoparticles with good biocompatible properties along with desired drug release profiles. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam

    PubMed Central

    Hara, Kanae; Fujisawa, Kenji; Nagai, Hirokazu; Takamaru, Natsumi; Ohe, Go; Tsuru, Kanji; Ishikawa, Kunio; Miyamoto, Youji

    2016-01-01

    Carbonate apatite (CO3Ap) foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO3Ap foam for bone replacement, CO3Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanical strength increased significantly with the gelatin reinforcement. The compressive strength of gelatin-free CO3Ap foam was 74 kPa whereas that of the gelatin-reinforced CO3Ap foam, fabricated using 30 mass % gelatin solution, was approximately 3 MPa. Heat treatment for crosslinking gelatin had little effect on the mechanical strength of the foam. The gelatin-reinforced foam did not maintain its shape when immersed in a saline solution as this promoted swelling of the gelatin; however, in the same conditions, the heat-treated gelatin-reinforced foam proved to be stable. It is concluded, therefore, that heat treatment is the key to the fabrication of stable gelatin-reinforced CO3Ap foam. PMID:28773832

  1. Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam.

    PubMed

    Hara, Kanae; Fujisawa, Kenji; Nagai, Hirokazu; Takamaru, Natsumi; Ohe, Go; Tsuru, Kanji; Ishikawa, Kunio; Miyamoto, Youji

    2016-08-23

    Carbonate apatite (CO₃Ap) foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO₃Ap foam for bone replacement, CO₃Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanical strength increased significantly with the gelatin reinforcement. The compressive strength of gelatin-free CO₃Ap foam was 74 kPa whereas that of the gelatin-reinforced CO₃Ap foam, fabricated using 30 mass % gelatin solution, was approximately 3 MPa. Heat treatment for crosslinking gelatin had little effect on the mechanical strength of the foam. The gelatin-reinforced foam did not maintain its shape when immersed in a saline solution as this promoted swelling of the gelatin; however, in the same conditions, the heat-treated gelatin-reinforced foam proved to be stable. It is concluded, therefore, that heat treatment is the key to the fabrication of stable gelatin-reinforced CO₃Ap foam.

  2. Poly(Lactic Acid) Hemodialysis Membranes with Poly(Lactic Acid)-block-Poly(2-Hydroxyethyl Methacrylate) Copolymer As Additive: Preparation, Characterization, and Performance.

    PubMed

    Zhu, Lijing; Liu, Fu; Yu, Xuemin; Xue, Lixin

    2015-08-19

    Poly(lactic acid) (PLA) hemodialysis membranes with enhanced antifouling capability and hemocompatibility were developed using poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) (PLA-PHEMA) copolymers as the blending additive. PLA-PHEMA block copolymers were synthesized via reversible addition-fragmentation (RAFT) polymerization from aminolyzed PLA. Gel permeation chromatography (GPC) and (1)H-nuclear magnetic resonance ((1)H NMR) were applied to characterize the synthesized products. By blending PLA with the amphiphilic block copolymer, PLA/PLA-PHEMA membranes were prepared by nonsolvent induced phase separation (NIPS) method. Their chemistry and structure were characterized with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM). The results revealed that PLA/PLA-PHEMA membranes with high PLA-PHEMA contents exhibited enhanced hydrophilicity, water permeability, antifouling and hemocompatibility. Especially, when the PLA-PHEMA concentration was 15 wt %, the water flux of the modified membrane was about 236 L m(-2) h(-1). Its urea and creatinine clearance was more than 0.70 mL/min, lysozyme clearance was about 0.50 mL/min, BSA clearance was as less as 0.31 mL/min. All the results suggest that PLA-PHEMA copolymers had served as effective agents for optimizing the property of PLA-based membrane for hemodialysis applications.

  3. Chitosan microsphere scaffold tethered with RGD-conjugated poly(methacrylic acid) brushes as effective carriers for the endothelial cells.

    PubMed

    Yang, Zhenyi; Yuan, Shaojun; Liang, Bin; Liu, Yang; Choong, Cleo; Pehkonen, Simo O

    2014-09-01

    Endothelial cell-matrix interactions play a vital role in promoting vascularization of engineered tissues. The current study reports a facile and controllable method to develop a RGD peptide-functionalized chitosan microsphere scaffolds for rapid cell expansion of human umbilical vein endothelial cells (HUVECs). Functional poly(methacrylic acid) (PMAA) brushes are grafted from the chitosan microsphere surfaces via surface-initiated ATRP. Subsequent conjugation of RGD peptides on the pendent carboxyl groups of PMAA side chain is accomplished by carbodiimide chemistry to facilitate biocompatibility of the 3D CS scaffolding system. In vitro cell-loading assay of HUVECs exhibits a significant improvment of cell adhesion, spreading, and proliferation on the RGD peptide-immobilized CS microsphere surfaces. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Urticaria following varicella vaccine associated with gelatin allergy.

    PubMed

    Singer, S; Johnson, C E; Mohr, R; Holowecky, C

    1999-01-28

    An uncommon reaction to varicella vaccine has been urticaria. Based on two reports of urticaria believed to be due to gelatin in recipients of measles-mumps-rubella vaccine, we suspected gelatin as the cause of generalized urticaria in two children after varicella vaccination. Intradermal testing with gelatin yielded a wheal and flare reaction in both children. We conclude that children known to be allergic to gelatin should not receive Oka/Merck varicella vaccine (VARIVAX).

  5. Rejoining of cut wounds by engineered gelatin-keratin glue.

    PubMed

    Thirupathi Kumara Raja, S; Thiruselvi, T; Sailakshmi, G; Ganesh, S; Gnanamani, A

    2013-08-01

    Rejoining of cut tissue ends of a critical site challenges clinicians. The toxicity, antigenicity, low adhesive strength, flexibility, swelling and cost of the currently employed glue demands an alternative. Engineered gelatin-keratin glue (EGK-glue) described in the present study was found to be suitable for wet tissue approximation. EGK-glue was prepared by engineering gelatin with caffeic acid using EDC and conjugating with keratin by periodate oxidation. UV-visible, (1)H NMR and circular dichroism analyses followed by experiments on gelation time, rheology, gel adhesive strength (in vitro), wet tissue approximation (in vivo), H&E staining of tissue sections at scheduled time intervals and tensile strength of the healed skin were carried out to assess the effectiveness of the EGK-glue in comparison with fibrin glue and cyanoacrylate. Results of UV-visible, NMR and CD analyses confirmed the functionalization and secondary structural changes. Increasing concentration of keratin reduces the gelation time (<15s). Lap-shear test demonstrates the maximum adhesive strength of 16.6±1.2kPa. Results of hemocompatibility and cytocompatibility studies suggested the suitability of the glue for clinical applications. Tissue approximation property assessed using the incision wound model (Wistar strain) in comparison with cyanoacrylate and fibrin glue suggested, that EGK-glue explicitly accelerates the rejoining of tissue with a 1.86 fold increase in skin tensile strength after healing. Imparting quinone moiety to gelatin-keratin conjugates through caffeic acid and a weaker oxidizing agent provides an adhesive glue with appreciable strength, and hemocompatible, cytocompatible and biodegradable properties, which, rejoin the cut tissue ends effectively. EGK-glue obtained in the present study finds wide biomedical/clinical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The partial substitution of digestible protein with gelatinized starch as an energy source reduces susceptibility to lipid oxidation in rainbow trout (Oncorhynchus mykiss) and sea bass (Dicentrarchus labrax) muscle.

    PubMed

    Alvarez, M J; López-Bote, C J; Diez, A; Corraze, G; Arzel, J; Dias, J; Kaushik, S J; Bautista, J M

    1999-12-01

    We evaluated the influence of dietary gelatinized starch and protein on the fatty acid composition of muscle in rainbow trout and European sea bass and on the susceptibility of flesh to lipid peroxidation. The possibility that flesh peroxidation could be accounted for by lipogenesis and the deposition of fat was also explored. The inclusion of gelatinized starch in the diet of rainbow trout improved growth with respect to that observed in fish fed crude starch (P<.001). This was especially noticeable at the lowest concentration of dietary protein tested (P = .037); suggesting that gelatinized starch may partially replace protein in the production of energy without inducing a negative effect on growth. However, in European sea bass, the gelatinization of starch and dietary protein concentration showed no significant effect on final body weight. The intramuscular neutral lipid concentration of the sea bass was reduced by the gelatinization of dietary starch (P = .034). The highest dietary protein concentration increased the proportion of saturated fatty acids in the neutral (P = .0742) and polar (P = .0033) lipid fractions. The dietary inclusion of high levels of protein in rainbow trout led to a lower concentration of total (n-3) (P = .0457) and (n-6) (P = .0522) fatty acids and a higher concentration of total monounsaturated fatty acids (P = .0006). The inclusion of gelatinized starch led to a lower concentration of (n-3) fatty acids (P = .0034) and a higher concentration of saturated fatty acids (P = .0007). The polar fraction was hardly affected by the same treatment. A significantly lower susceptibility of the dorsal muscle to oxidation was observed in groups of European sea bass fed gelatinized starch (P<.01). A similar trend was observed in rainbow trout, although differences were not significant. The findings suggest that the digestible protein concentration of nutrient-dense diets for rainbow trout and European sea bass can be reduced with a beneficial

  7. Density Functional Theory (DFT) Study of Molecularly Imprinted Polymer (MIP) Methacrylic Acid (MAA) with D-Glucose

    NASA Astrophysics Data System (ADS)

    Wungu, T. D. K.; Marsha, S. E.; Widayani; Suprijadi

    2017-07-01

    In order to find an alternative biosensor material which enables to detect the glucose level, therefore in this study, the interaction between Methacrylic Acid (MAA) based Molecularly Imprinted Polymer (MIP) with D-Glucose is investigated using the Density Functional Theory (DFT). The aim of this study is to determine whether a molecule of the MAA can be functioned as a bio-sensing of glucose. In this calculation, the Gaussian 09 with B3LYP and 631+G(d) basis sets is used to calculate all electronic properties. It is found that the interaction between a molecule of MAA and a molecule of D-Glucose was observed through the shortened distance between the two molecules. The binding energy of MAA/D-glucose and the Mulliken population analysis are investigated for checking possible interaction. From analysis, the MAA based MIP can be used as a bio-sensing material.

  8. 40 CFR 721.10527 - Perfluoroalkylethyl methacrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as perfluoroalkylethyl methacrylate copolymer (PMN P-11-646) is subject to reporting under this... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkylethyl methacrylate... Specific Chemical Substances § 721.10527 Perfluoroalkylethyl methacrylate copolymer (generic). (a) Chemical...

  9. 40 CFR 721.10527 - Perfluoroalkylethyl methacrylate copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as perfluoroalkylethyl methacrylate copolymer (PMN P-11-646) is subject to reporting under this... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkylethyl methacrylate... Specific Chemical Substances § 721.10527 Perfluoroalkylethyl methacrylate copolymer (generic). (a) Chemical...

  10. 40 CFR 721.10619 - Perfluoroalkylethyl methacrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as perfluoroalkylethyl methacrylate copolymer (PMN P-11-653) is subject to reporting under this... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkylethyl methacrylate... Specific Chemical Substances § 721.10619 Perfluoroalkylethyl methacrylate copolymer (generic). (a) Chemical...

  11. 40 CFR 721.10619 - Perfluoroalkylethyl methacrylate copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as perfluoroalkylethyl methacrylate copolymer (PMN P-11-653) is subject to reporting under this... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkylethyl methacrylate... Specific Chemical Substances § 721.10619 Perfluoroalkylethyl methacrylate copolymer (generic). (a) Chemical...

  12. GELATIN CARRIERS FOR DRUG AND CELL DELIVERY IN TISSUE ENGINEERING

    PubMed Central

    Santoro, Marco; Tatara, Alexander M.; Mikos, Antonios G.

    2014-01-01

    The ability of gelatin to form complexes with different drugs has been investigated for controlled release applications. Gelatin parameters, such as crosslinking density and isoelectric point, have been tuned in order to optimize gelatin degradation and drug delivery kinetics. In recent years, focus has shifted away from the use of gelatin in isolation towards the modification of gelatin with functional groups and the fabrication of material composites with embedded gelatin carriers. In this review, we highlight some of the latest work being performed in these areas and comment on trends in the field. Specifically, we discuss gelatin modifications for immune system evasion, drug stabilization, and targeted delivery, as well as gelatin composite systems based on ceramics, naturally-occurring polymers, and synthetic polymers. PMID:24746627

  13. The Material Properties of Gelatin Gels

    DTIC Science & Technology

    1975-03-01

    Since the gelatin gel is soluble in water, a seare’h was conducted to find a liquid that would be totally inert to the gel, and that had a dei,sity less...amount of foam removed from a gelatin batch. For example, in the 0.0% gelatin p-paration, 43g of foam was recovered out of a total of of water *.id...indeed, some hakples appeared totally unchanged iafter 75 dtas ale the container. Another particular container had only gtwo aplea on the lower level

  14. Development of novel sibutramine base-loaded solid dispersion with gelatin and HPMC: physicochemical characterization and pharmacokinetics in beagle dogs.

    PubMed

    Lim, Hyun-Tae; Balakrishnan, Prabagar; Oh, Dong Hoon; Joe, Kwan Hyung; Kim, Young Ran; Hwang, Doo Hyung; Lee, Yong-Bok; Yong, Chul Soon; Choi, Han-Gon

    2010-09-15

    To develop a novel sibutramine base-loaded solid dispersion with enhanced solubility and bioavailability, various solid dispersions were prepared using a spray drying technique with hydrophilic polymers such as gelatin, HPMC and citric acid. Their solubility, thermal characteristics and crystallinity were investigated. The dissolution and pharmacokinetics of the sibutramine base-loaded solid dispersion were then compared with a sibutramine hydrochloride monohydrate-loaded commercial product (Reductil). The solid dispersions prepared with gelatin gave higher drug solubility than those prepared without gelatin, irrespective of the amount of polymer. The sibutramine base-loaded solid dispersions containing hydrophilic polymer and citric acid showed higher drug solubility compared to sibutramine base and sibutramine hydrochloride monohydrate. Among the formulations tested, the solid dispersion composed of sibutramine base/gelatin/HPMC/citric acid at the weight ratio of 1/0.8/0.2/0.5 gave the highest solubility of 5.03+/-0.24 mg/ml. Our DSC and powder X-ray diffraction results showed that the drug was present in an altered amorphous form in this solid dispersion. The difference factor (f(1)) values between solid dispersion and commercial product were 2.82, 6.65 and 6.31 at pH 1.2, 4.0 and 6.8, respectively. Furthermore, they had the similarity factor (f(2)) value of 65.68, 53.43 and 58.97 at pH 1.2, 4.0 and 6.8, respectively. Our results suggested that the solid dispersion and commercial product produced a similar correlation of dissolution profiles at all pH ranges. The AUC, C(max) and T(max) of the parent drug and metabolite I and II from the solid dispersion were not significantly different from those of the commercial product, suggesting that the solid dispersion might be bioequivalent to the commercial product in beagle dogs. Thus, the sibutramine base-loaded solid dispersion prepared with gelatin, HPMC and citric acid is a promising candidate for improving the

  15. Preactivated thiolated poly(methacrylic acid-co-ethyl acrylate): synthesis and evaluation of mucoadhesive potential.

    PubMed

    Hauptstein, Sabine; Bonengel, Sonja; Rohrer, Julia; Bernkop-Schnürch, Andreas

    2014-10-15

    The study was aimed to developed and investigate a novel polymer for intestinal drug delivery with improved mucoadhesive properties. Therefore Eudragit® L 100-55 (poly(methacrylic acid-co-ethyl acrylate)) was thiolated by covalent attachment of L-cysteine. The immobilized thiol groups were preactivated by disulfide bond formation with 2-mercaptonicotinic acid. Resulting derivative (Eu-S-MNA) was investigated in terms of mucoadhesion via three different methods: tensile studies, rotating cylinder studies and rheological synergism method, as well as water-uptake capacity and cytotoxicity. Different derivatives were obtained with increasing amount of bound L-cysteine (60, 140 and 266 μmol/g polymer) and degree of preactivation (33, 45 and 51 μmol/g polymer). Tensile studies revealed a 30.5-, 35.3- and 52.2-fold rise of total work of adhesion for the preactivated polymers compared to the unmodified Eudragit. The adhesion time on the rotating cylinder was prolonged up to 17-fold in case of thiolated polymer and up to 34-fold prolonged in case of the preactivated polymer. Rheological synergism revealed remarkable interaction of all investigated modified derivatives with mucus. Further, water-uptake studies showed an over 7h continuing weight gain for the modified polymers whereat disintegration took place for the unmodified polymer within the first hour. Cell viability studies revealed no impact of modification. Accordingly, the novel preactivated thiolated Eudragit-derivative seems to be a promising excipient for intestinal drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Transcriptome Analysis of Gelatin Seed Treatment as a Biostimulant of Cucumber Plant Growth

    PubMed Central

    Wilson, H. T.; Xu, K.; Taylor, A. G.

    2015-01-01

    The beneficial effects of gelatin capsule seed treatment on enhanced plant growth and tolerance to abiotic stress have been reported in a number of crops, but the molecular mechanisms underlying such effects are poorly understood. Using mRNA sequencing based approach, transcriptomes of one- and two-week-old cucumber plants from gelatin capsule treated and nontreated seeds were characterized. The gelatin treated plants had greater total leaf area, fresh weight, frozen weight, and nitrogen content. Pairwise comparisons of the RNA-seq data identified 620 differentially expressed genes between treated and control two-week-old plants, consistent with the timing when the growth related measurements also showed the largest differences. Using weighted gene coexpression network analysis, significant coexpression gene network module of 208 of the 620 differentially expressed genes was identified, which included 16 hub genes in the blue module, a NAC transcription factor, a MYB transcription factor, an amino acid transporter, an ammonium transporter, a xenobiotic detoxifier-glutathione S-transferase, and others. Based on the putative functions of these genes, the identification of the significant WGCNA module and the hub genes provided important insights into the molecular mechanisms of gelatin seed treatment as a biostimulant to enhance plant growth. PMID:26558288

  17. Gelatin Nanoparticles with Enhanced Affinity for Calcium Phosphate.

    PubMed

    Farbod, Kambiz; Diba, Mani; Zinkevich, Tatiana; Schmidt, Stephan; Harrington, Matthew J; Kentgens, Arno P M; Leeuwenburgh, Sander C G

    2016-05-01

    Gelatin nanoparticles can be tuned with respect to their drug loading efficiency, degradation rate, and release kinetics, which renders these drug carriers highly suitable for a wide variety of biomedical applications. The ease of functionalization has rendered gelatin an interesting candidate material to introduce specific motifs for selective targeting to specific organs, but gelatin nanoparticles have not yet been modified to increase their affinity to mineralized tissue. By means of conjugating bone-targeting alendronate to biocompatible gelatin nanoparticles, a simple method is developed for the preparation of gelatin nanoparticles which exhibit strong affinity to mineralized surfaces. It has been shown that the degree of alendronate functionalization can be tuned by controlling the glutaraldehyde crosslinking density, the molar ratio between alendronate and glutaraldehyde, as well as the pH of the conjugation reaction. Moreover, it has been shown that the affinity of gelatin nanoparticles to calcium phosphate increases considerably upon functionalization with alendronate. In summary, gelatin nanoparticles have been developed, which exhibit great potential for use in bone-specific drug delivery and regenerative medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Preparation and characterization of hydroxyapatite/gelatin composite membranes for immunoisolation

    NASA Astrophysics Data System (ADS)

    Chen, Jyh-Ping; Chang, Feng-Nian

    2012-12-01

    Composite membranes are fabricated from hydroxyapatite (HAP) and gelatin for immunoisolation of cells. The films were fabricated by crosslinking 5 wt%, 10 wt%, and 20 wt% gelatin with 1 wt% glutaraldehyde (GA) in the presence of HAP. Fourier transform infrared spectroscopy analysis confirms imide bond formation between GA and gelatin, while the crystal structure of HAP powder remains unchanged from X-ray diffraction analysis. The degree of crosslinking depends on crosslinking time and gelatin concentration. For 5% and 10% gelatin, the degree of crosslinking levels off at 90% within 48 h. From scanning electron microscopy micrographs, the microstructure of the composite membrane depends on the amount of gelatin used in the crosslinking reaction. The mechanical strength of the composite membrane could be enhanced by increasing the gelatin concentration. BET analysis indicates that pore size of the micropores on the surface HAP/gelatin agglomerates decreases with increasing gelatin concentration. However, the macropore, through which diffusion of molecules occurs, is larger at higher gelatin concentrations. The permeability coefficients of different molecules through a HAP/gelatin composite membrane increase with increasing gelatin concentration and is inversely correlated with the molecular weight of the molecule. For immunoisolation of cells, the diffusion of large molecules stimulated by the immune system can be rejected by a chamber constructed from the HAP/gelatin membrane. Insulinoma cells were encapsulated in alginate-poly-L-lysine-alginate microcapsules and enclosed in a HAP/gelatin chamber. The chamber did not impair the viability and function of insulinoma cells and cells can secrete insulin in response to glucose concentration change. The chamber is therefore useful for the physiologically controlled secretion of insulin in response to the blood glucose level. Intraperitoneal transplantation of the chamber into streptozotocin-induced diabetic SD rats could

  19. Solubilization of bovine gelatin using power ultrasound: gelation without heating.

    PubMed

    Farahnaky, Asgar; Zendeboodi, Fatemeh; Azizi, Rezvan; Mesbahi, Gholamreza; Majzoobi, Mahsa

    2017-04-01

    The aim of this study was to investigate the efficacy of power ultrasound without using any heating stage in solubilizeing gelatin dispersions, and to characterize the mechanical and microstructural properties of the resulting gels using texture analysis and scanning electron microscopy, respectively. Usually to prepare a gel from gelatin, a primary heating stage of at about 40C or above is required to solubilize gelatin macromolecules. In this study solubilizing gelatin dispersions using power ultrasound without any heating was successfully performed. For solubilising gelatin, an ultrasound equipment with a frequency of 20 kHz, amplitude of 100% and power range of 50-150 W was used. Aqueous gelatin dispersions (4% w/v) were subjected to ultrasound for different times (40-240 s) at a constant temperature of 13C. Applying ultrasound to gelatin dispersions caused increases in water absorption and water solubility of the hydrocolloid. The textural parameters of the resulting gelatin gels, increased with increasing time and power of ultrasound. Moreover, a generalized Maxwell model with three elements was used for calculating relaxation times of the gels. The microstructural observations by SEM showed that the structural cohesiveness of the gels increased by increasing ultrasonication time. Ultrasound-assisted solubilization of gelatin can have emerging implications for industrial uses in pharmaceuticals, food and non-food systems. Usually to prepare a gel from gelatin, a primary heating stage of at about 40C or above is required to solubilize gelatin macromolecules. Therefore, the use of gelatin as a hydrocolloid in food processings or pharmaceutical formulations which lack a heating step has been a technological and practical challenge. In this study solubilizing gelatin dispersions using power ultrasound without any heating was successfully performed. Ultrasound-assisted solubilisation of gelatin can have emerging implications for industrial uses in pharmaceuticals

  20. Healing of skin wounds with a chitosan-gelatin sponge loaded with tannins and platelet-rich plasma.

    PubMed

    Lu, Bitao; Wang, Tianyou; Li, Zhiquan; Dai, Fangying; Lv, Lingmei; Tang, Fengling; Yu, Kun; Liu, Jiawei; Lan, Guangqian

    2016-01-01

    A chitosan-gelatin sponge (CSGT) was prepared using a chitosan/ascorbic acid solution blend containing gelatin, followed by crosslinking with tannin acid and freeze-drying, thereby combining the chitosan sponge and gelatin sponge. The structure of the CSGT was observed by scanning electron microscopy and was shown to have uniform and abundant pores measuring about 145-240μm in size. We also characterized the sponges by infrared spectroscopy, thermogravimetric analysis, mechanical property tests, swelling behavior analysis, water retention capacity tests, antibacterial property analysis, and cytotoxicity tests. Our data showed that the CSGT had good thermostability and mechanical properties as well as efficient water absorption and retention capacities. Moreover, the CSGT could effectively inhibit the growth of Escherichia coli and Staphylococcus aureus with low toxicity. In animal experiments, macroscopic observations and histological examinations showed that the wound covered by the CSGT healed quickly. Additionally, loading of the CSGT with platelet-rich plasma resulted in further acceleration of wound healing. Therefore, the CSGT and the CSGT with platelet-rich plasma were suitable for application as a wound dressing and may have potential for use in various biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Composite particles formed by complexation of poly(methacrylic acid) - stabilized magnetic fluid with chitosan: Magnetic material for bioapplications.

    PubMed

    Safarik, Ivo; Stepanek, Miroslav; Uchman, Mariusz; Slouf, Miroslav; Baldikova, Eva; Nydlova, Leona; Pospiskova, Kristyna; Safarikova, Mirka

    2016-10-01

    A simple procedure for the synthesis of magnetic fluid (ferrofluid) stabilized by poly(methacrylic acid) has been developed. This ferrofluid was used to prepare a novel type of magnetically responsive chitosan-based composite material. Both ferrofluid and magnetic chitosan composite were characterized by a combination of microscopy (optical microscopy, TEM, SEM), scattering (static and dynamic light scattering, SANS) and spectroscopy (FTIR) techniques. Magnetic chitosan was found to be a perspective material for various bioapplications, especially as a magnetic carrier for immobilization of enzymes and cells. Lipase from Candida rugosa was covalently attached after cross-linking and activation of chitosan using glutaraldehyde. Baker's yeast cells (Saccharomyces cerevisiae) were incorporated into the chitosan composite during its preparation; both biocatalysts were active after reaction with appropriate substrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Controlled Fabrication of Gelatin Nanoparticles as Drug Carriers

    NASA Astrophysics Data System (ADS)

    Jahanshahi, M.; Sanati, M. H.; Minuchehr, Z.; Hajizadeh, S.; Babaei, Z.

    2007-08-01

    In recent years, significant effort has been devoted to develop nanotechnology for drug delivery since it offers a suitable means of delivering small molecular weight drugs, as well as macromolecules such as proteins, peptides or genes by either localized or targeted delivery to the tissue of interest. Nanotechnology focuses on formulating therapeutic agents in biocompatible nanocomposites such as nanoparticles, nanocapsules, micellar systems, and conjugates. Protein nanoparticles (BSA, HAS and gelatin) generally vary in size from 50-300 nm and they hold certain advantages such as greater stability during storage, stability in vivo, non-toxicity, non-antigen and ease to scale up during manufacture over the other drug delivery systems. The primary structure of gelatin offers many possibilities for chemical modification and covalent drug attachment. Here nanoparticles of gelatin type A were prepared by a two-step desolvation method as a colloidal drug delivery system and the essential parameters in fabrication were considered. Gelatin was dissolved in 25 mL distilled water under room temperature range. Then acetone was added to the gelatin solution as a desolvating agent to precipitate the high molecular weight (HMW) gelatin. The supernatant was discarded and the HMW gelatin re-dissolved by adding 25 mL distilled water and stirring at 600 rpm. Acetone were added drop-wise to form nanoparticles. At the end of the process, glutaraldehyde solution was used for preparing nanoparticles as a cross-linking agent, and stirred for 12h at 600 rpm. For purification stage we use centrifuge with 600rpm for 3 times. The objective of the present study is consideration of some factors such as temperature, gelatin concentration, agitation speed and the amount of acetone and their effects on size and distribution of nanoparticles. Among the all conditions, 60° C, 50 mg/ml gelatin concentration, 75 ml acetone had the best result and the nanoparticle size was under 170 nm. The effect

  3. Removal of gelatin from live vaccines and DTaP-an ultimate solution for vaccine-related gelatin allergy.

    PubMed

    Kuno-Sakai, Harumi; Kimura, Mikio

    2003-12-01

    From the early 1990s infants started to receive acellular pertussis vaccine combined with diphtheria and tetanus toxoids (DTaP) before live vaccines such as measles, rubella, and mumps vaccines, which contained gelatin as a stabilizer. Then, an increasing number of cases of anaphylactic/allergic reactions to those live vaccines were reported. Almost all these cases had a previous history of receiving three or four doses of DTaP containing gelatin.Anaphylactic/allergic reactions to live measles vaccine were analyzed using information obtained from the Reporting System, a retrospective study, as well as from the Monitoring System, a prospective study. Dramatic decreases in anaphylactic/allergic reactions to live measles vaccines were observed immediately after each manufacturer marketed gelatin-free or gelatin (hypo-allergic)-containing live measles vaccine, and since the end of 1998 reports on anaphylactic/allergic reactions to live measles vaccine have almost ceased.

  4. Release of Cyclic Phosphatidic Acid from Gelatin-based Hydrogels Inhibit Colon Cancer Cell Growth and Migration

    PubMed Central

    Tsukahara, Tamotsu; Murakami-Murofushi, Kimiko

    2012-01-01

    Microparticle and nanoparticle formulations are widely used to improve the bioavailability of low-solubility drugs and as vehicles for organ- and tissue-specific targeted drug delivery. We investigated the effect of a novel, controlled-release form of a bioactive lipid, cyclic phosphatidic acid (cPA), on human colon cancer cell line functions. We encapsulated cPA in gelatin-based hydrogels and examined its ability to inhibit the viability and migration of HT-29 and DLD-1 cells in vitro and the LPA-induced activity of the transcription factor peroxisome proliferator-activated receptor gamma (PPARγ). The hydrogel delivery system prolonged cPA release into the culture medium. Accordingly, cPA-hydrogel microspheres substantially inhibited LPA-induced PPARγ activity and cell growth and migration compared with that of cells cultured with cPA alone. Thus, hydrogel microspheres are a potential system for stable and efficient delivery of bioactive lipids such as cPA and may offer a new strategy for targeted colon cancer treatment. PMID:23008752

  5. Preparation and Characterization of an Olive Flounder (Paralichthys olivaceus) Skin Gelatin and Polylactic Acid Bilayer Film.

    PubMed

    Lee, Ka-Yeon; Song, Kyung Bin

    2017-03-01

    Olive flounder skin gelatin (OSG) was used as a film base material. A bilayer film of OSG and polylactic acid (PLA) was prepared using solvent casting method to enhance the film properties. Physical properties of the OSG-PLA film were increased compared with the nonaugmented OSG film. In particular, the PLA lamination decreased water vapor permeability from 2.17 to 0.92 × 10 -9 g·m/m 2 ·s·Pa, as well as of the water solubility from 16.62% to 9.27%, in the bilayer film relative to the OSG film. The oxygen permeability of the OSG-PLA bilayer film was held low by the OSG film, compensating for the high oxygen permeability of the PLA layer. Therefore, the OSG-PLA bilayer film with its enhanced physical properties and high water and oxygen barrier properties can be applied as a food packaging material. © 2017 Institute of Food Technologists®.

  6. A tissue engineering approach for prenatal closure of myelomeningocele: comparison of gelatin sponge and microsphere scaffolds and bioactive protein coatings.

    PubMed

    Watanabe, Miho; Li, Hiaying; Roybal, Jessica; Santore, Matthew; Radu, Antonetta; Jo, Jun-Ichiro; Kaneko, Michio; Tabata, Yasuhiko; Flake, Alan

    2011-04-01

    Myelomeningocele (MMC) is a common and devastating malformation. As an alternative to fetal surgical repair, tissue engineering has the potential to provide a less invasive approach for tissue coverage applicable at an earlier stage of gestation. We have previously evaluated the use of gelatin hydrogel composites composed of gelatin sponges and sheets as a platform for tissue coverage of the MMC defect in the retinoic acid induced fetal rat model of MMC. In the current study, we compare our previous composite with gelatin microspheres as a scaffold for tissue ingrowth and cellular adhesion within the amniotic fluid environment. We also examine the relative efficacy of various bioactive protein coatings on the adhesion of amniotic fluid cells to the construct within the amniotic cavity. We conclude from this study that gelatin microspheres are as effective as gelatin sponges as a scaffold for cellular ingrowth and amniotic fluid cell adhesion and that collagen type I and fibronectin coatings enhance amniotic fluid cell adhesion to the gelatin-based scaffolds. These findings support the potential for the development of a tissue-engineered injectable scaffold that could be applied by ultrasound-guided injection, much earlier and less invasively than sponge or sheet-based composites.

  7. Optimization of gelatine extraction from grass carp (Catenopharyngodon idella) fish skin by response surface methodology.

    PubMed

    Kasankala, Ladislaus M; Xue, Yan; Weilong, Yao; Hong, Sun D; He, Qian

    2007-12-01

    To establish the optimum gelatine extraction conditions from grass carp fish skin, response surface methodology (RSM) was adopted in this study. The effects of concentration of HCl (%, A), pre-treatment time (h, B), extraction temperature ( degrees C, C) and extraction time (h, D) were studied. The responses were yield (%) and gel strength (g). A=1.19%, B=24 h, C=52.61 degrees C and D=5.12h were determined as the optimum conditions while the predicted responses were 19.83% yield and 267 g gel strength. Gelling and melting points were 19.5 degrees C and 26.8 degrees C, respectively. Moreover, grass carp gelatine showed high contents of imino acids (proline and hydroxyproline) 19.47%. RSM provided a powerful tool to optimize the extraction parameters and the results may be adapted for industrial extraction of gelatine from grass carp fish skins.

  8. Improvement of feed pellet characteristics by dietary pre-gelatinized starch and their subsequent effects on growth and physiology in tilapia.

    PubMed

    Kanmani, Naga; Romano, Nicholas; Ebrahimi, Mahdi; Nurul Amin, S M; Kamarudin, Mohd Salleh; Karami, Ali; Kumar, Vikas

    2018-01-15

    A 9-week study was conducted to compare dietary corn starch (CS) or tapioca starch (TS), with or without being pre-gelatinized (PG), on the growth, feeding efficiencies, plasma and muscle biochemistry, intestinal short chain fatty acids (SCFA), and liver glycogen of triplicate groups of 20 red hybrid tilapia (Orecohromis sp.). Various pellet characteristics were evaluated, along with their surface and cross sectional microstructure. The PG diets had significantly higher water stability, bulk density, and protein solubility, along with a smoother surface. Tilapia fed the TS diet had lower growth than had all other tilapia, but were significantly improved when diet was pre-gelatinized. In the PG treatments, intestinal SCFA significantly decreased while plasma glucose, cholesterol and triglycerides, as well as liver glycogen, significantly increased. Fish fed the CS diet had significantly more long chain polyunsaturated fatty acid than had those fed by other treatments. Pre-gelatinization may improve fish productivity and offer greater flexibility during aquafeed production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ammonium methacrylate

    Integrated Risk Information System (IRIS)

    Ammonium methacrylate ; CASRN 16325 - 47 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcin

  10. pH-responsive polymeric micelles of poly(ethylene glycol)-b-poly(alkyl(meth)acrylate-co-methacrylic acid): influence of the copolymer composition on self-assembling properties and release of candesartan cilexetil.

    PubMed

    Satturwar, Prashant; Eddine, Mohamad Nasser; Ravenelle, François; Leroux, Jean-Christophe

    2007-03-01

    The objective of the present study was to investigate the influence of chemical structure and molecular weight of pH-sensitive block copolymers on their self-assembling properties, the loading and the release of candesartan cilexetil (CDN). Block copolymers of poly(ethylene glycol) and t-butyl methacrylate, iso-butyl acrylate, n-butyl acrylate or propyl methacrylate were synthesized by atom transfer radical polymerization. pH-sensitivity was obtained by hydrolysis of t-butyl groups. The poorly water-soluble drug CDN was incorporated in the micelles and the in vitro drug release was evaluated as a function of pH. The critical aggregation concentration of hydrolyzed copolymers (pK(a)=6.2-6.6) was higher compared to the unhydrolyzed ones. Dynamic light scattering studies and atomic force microscopy images revealed uniform size micelles with aggregation numbers ranging from 60 to 160. The entrapment efficiency of CDN was generally found to be above 90%, with drug loading levels reaching approximately 20% (w/w). Differential scanning calorimetry studies showed the amorphous nature of entrapped CDN. The release of CDN from pH-sensitive micelles was triggered upon an increase in pH from 1.2 to 7.2. These findings suggest that the PEG-b-poly(alkyl(meth)acrylate-co-methacrylic acid)s can self-assemble to form micelles which exhibit high loading capacities for CDN and release the drug in a pH-dependent fashion.

  11. A study of the gamma radiation induced molecular weight changes in poly (phenyl methacrylate), poly (methyl methacrylate) and their copolymers

    NASA Astrophysics Data System (ADS)

    Hussain, R.; Mohammad, D.

    The homopolymers and copolymers of phenyl methacrylate and methyl methacrylate synthesized by free radical polymerization were characterized by infra red and nuclear magnetic resonance spectroscopy. The molecular weight changes produced as a result of gamma irradiation in an argon atmosphere were monitored as a function of dose absorbed by the sample. The radiation induced effects have been discussed in terms of G(Scission), energy absorbed per break and number of bonds broken per gram in a polymer sample. The results reveal that poly (phenyl methacrylate) is more stable than poly (methyl methacrylate) while, the radiation stability of the copolymers depends upon the concentrations of the respective monomers.

  12. The physico-chemical properties of pangas catfish (Pangasius pangasius) skin gelatin

    NASA Astrophysics Data System (ADS)

    Pradarameswari, K. A.; Zaelani, K.; Waluyo, E.; Nurdiani, R.

    2018-04-01

    Gelatin can be used as emulsifier and stabilizer in food products. Until now, the most widely used raw materials for the production of gelatin industry are cow bone, cow skin and pig skin. Fish gelatin has been highlighted as a better alternative to replace mammals gelatin based on ethical and religious perspective. Fish gelatin was extracted from Pangas catfish skin to determine its physico-chemical properties. Different temperatures (45 °C, 50 °C, 55 °C) were employed during gelatin extraction. Higher temperature increased the yield and fat contents of Pangas catfish skin gelatin. In contrary, higher water, protein, ash contents were observed during lower temperature. Temperature significantly (p < 0.05) affected the gel strength, viscosity, melting point, and gelling point of fish skin gelatin. Based on the FTIR spectrum catfish skin gelatin functional groups can be identified as N-H, O-H, C = H, C-O and C-H.

  13. Methyl methacrylate

    Integrated Risk Information System (IRIS)

    Methyl methacrylate ; CASRN 80 - 62 - 6 ( 03 / 02 / 98 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments f

  14. Polymeric micelles based on poly(methacrylic acid) block-containing copolymers with different membrane destabilizing properties for cellular drug delivery.

    PubMed

    Mebarek, Naila; Aubert-Pouëssel, Anne; Gérardin, Corine; Vicente, Rita; Devoisselle, Jean-Marie; Bégu, Sylvie

    2013-10-01

    Poly(methacrylic acid)-b-poly(ethylene oxide) are double hydrophilic block copolymers, which are able to form micelles by complexation with a counter-polycation, such as poly-l-lysine. A study was carried out on the ability of the copolymers to interact with model membranes as a function of their molecular weights and as a function of pH. Different behaviors were observed: high molecular weight copolymers respect the membrane integrity, whereas low molecular weight copolymers with a well-chosen asymmetry degree can induce a membrane alteration. Hence by choosing the appropriate molecular weight, micelles with distinct membrane interaction behaviors can be obtained leading to different intracellular traffics with or without endosomal escape, making them interesting tools for cell engineering. Especially micelles constituted of low molecular weight copolymers could exhibit the endosomal escape property, which opens vast therapeutic applications. Moreover micelles possess a homogeneous nanometric size and show variable properties of disassembly at acidic pH, of stability in physiological conditions, and finally of cyto-tolerance. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Effects of L-ascorbic acid on physicochemical characteristics of wheat starch.

    PubMed

    Majzoobi, Mahsa; Radi, Mohsen; Farahnaky, Asgar; Tongdang, Tawee

    2012-03-01

    The main objective of this study was to determine the effects of l-ascorbic acid, as a permitted additive in bakery products, on characteristics of wheat starch. Suspensions of wheat starch (30%, w/w) in water containing 140 mg/kg ascorbic acid before and after gelatinization were prepared and studied using different techniques. The results of scanning electron microscopy showed that some spots appeared on the surface of the starch granules as a result of the addition of ascorbic acid. However, no changes in the starch crystalline pattern and its degree of crystallinity were observed by X-ray diffraction technique. For ungelatinized samples, no difference in the pasting properties of the samples was determined by the rapid visco analyzer, whereas for the gelatinized samples, peak and final viscosities decreased for the samples contained ascorbic acid. Determination of the intrinsic viscosities of the samples showed that addition of ascorbic acid to the gelatinized samples reduced the intrinsic viscosity. In general, it was found that ascorbic acid had some degradation effects on wheat starch molecules particularly after gelatinization. © 2012 Institute of Food Technologists®

  16. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature.

  17. Curcumin delivery from poly(acrylic acid-co-methyl methacrylate) hollow microparticles prevents dopamine-induced toxicity in rat brain synaptosomes.

    PubMed

    Yoncheva, Krassimira; Kondeva-Burdina, Magdalena; Tzankova, Virginia; Petrov, Petar; Laouani, Mohamed; Halacheva, Silvia S

    2015-01-01

    The potential of poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) copolymers to form hollow particles and their further formulation as curcumin delivery system have been explored. The particles were functionalized by crosslinking the acrylic acid groups via bis-amide formation with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP) which simultaneously incorporated reversibility due to the presence of disulfide bonds within the crosslinker. Optical micrographs showed the formation of spherical hollow microparticles with a size ranging from 1 to 7 μm. Curcumin was loaded by incubation of its ethanol solution with aqueous dispersions of the cross-linked particles and subsequent evaporation of the ethanol. Higher loading was observed in the microparticles with higher content of hydrophobic PMMA units indicating its influence upon the loading of hydrophobic molecules such as curcumin. The in vitro release studies in a phosphate buffer showed no initial burst effect and sustained release of curcumin that correlated with the swelling of the particles under these conditions. The capacity of encapsulated and free curcumin to protect rat brain synaptosomes against dopamine-induced neurotoxicity was examined. The encapsulated curcumin showed greater protective effects in rat brain synaptosomes as measured by synaptosomal viability and increased intracellular levels of glutathione. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Quality changes of sea bass slices wrapped with gelatin film incorporated with lemongrass essential oil.

    PubMed

    Ahmad, Mehraj; Benjakul, Soottawat; Sumpavapol, Punnanee; Nirmal, Nilesh Prakash

    2012-04-16

    Microbiological, chemical and physical changes of sea bass slices wrapped with gelatin film incorporated with 25% (w/w) lemongrass essential oil (LEO) during storage of 12 days at 4 °C were investigated. Sea bass slices wrapped with LEO film had the retarded growth of lactic acid bacteria (LAB), psychrophilic bacteria and spoilage microorganisms including H₂S-producing bacteria and Enterobacteriaceae throughout storage of 12 days in comparison with the control and those wrapped with gelatin film without LEO (G film) (P<0.05). Lowered changes of colour, K value, total volatile base nitrogen (TVB) and TBARS value were also found in LEO film wrapped samples, compared with those wrapped with G film and control, respectively. Therefore, the incorporation of LEO into gelatin film could enhance the antimicrobial and antioxidative properties of the film, thereby maintaining the qualities and extending the shelf-life of the sea bass slices stored at refrigerated temperature. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Transglutaminase-induced crosslinking of gelatin-calcium carbonate composite films.

    PubMed

    Wang, Yuemeng; Liu, Anjun; Ye, Ran; Wang, Wenhang; Li, Xin

    2015-01-01

    The effects of transglutaminase (TGase) on the rheological profiles and interactions of gelatin-calcium carbonate solutions were studied. In addition, mechanical properties, water vapour permeability and microstructures of gelatin-calcium carbonate films were also investigated and compared. Fluorescence data suggested that the interaction of TGase and gelation-calcium carbonate belonged to a static quenching mechanism, and merely one binding site between TGase and gelatin-calcium carbonate was identified. Moreover, differential scanning calorimetry (DSC), the mechanical properties and the water vapour permeability studies revealed that TGase favoured the strong intramolecular polymerisation of the peptides in gelatin. The microstructures of the surfaces and cross sections in gelatin-calcium carbonate films were shown by scanning electron microscope (SEM) micrographs. The results of the fourier transform infrared spectroscopy (FTIR) indicated that TGase caused conformational changes in the proteins films. Therefore, TGase successfully facilitated the formation of gelatin-calcium carbonate composite films. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Dextran and gelatin based photocrosslinkable tissue adhesive.

    PubMed

    Wang, Tao; Nie, Jun; Yang, Dongzhi

    2012-11-06

    A two-component tissue adhesive based on biocompatible and bio-degradable polymers (oxidized urethane dextran (Dex-U-AD) and gelatin) was prepared and photocrosslinked under the ultraviolet (UV) irradiation. The adhesive could adhere to surface of gelatin, which simulated the human tissue steadily. The structures of above Dex-U-AD were characterized by FTIR, (1)H NMR spectroscopy and XRD. The adhesion property of result products was evaluated by lap-shear test. The maximum adhesion strength could reach to 4.16±0.72 MPa which was significantly higher than that of fibrin glue. The photopolymerization process of Dex-U-AD/gelatin was monitored by real time infrared spectroscopy (RTIR). It took less than 5 min to complete the curing process. The cytotoxicity of Dex-U-AD/gelatin also was evaluated which indicated that Dex-U-AD/gelatin gels were nontoxic to L929 cell. The relationship between all the above-mentioned properties and degree of oxidization of Dex-U-AD was assessed. The obtained products have the potential to serve as tissue adhesive in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Improved selective cholesterol adsorption by molecularly imprinted poly(methacrylic acid)/silica (PMAA-SiO₂) hybrid material synthesized with different molar ratios.

    PubMed

    Clausen, Débora Nobile; Pires, Igor Matheus Ruiz; Tarley, César Ricardo Teixeira

    2014-11-01

    The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Preparation of dual-stimuli-responsive liposomes using methacrylate-based copolymers with pH and temperature sensitivities for precisely controlled release.

    PubMed

    Sugimoto, Takumi; Yamazaki, Naoko; Hayashi, Takaaki; Yuba, Eiji; Harada, Atsushi; Kotaka, Aki; Shinde, Chiharu; Kumei, Takayuki; Sumida, Yasushi; Fukushima, Mitsuhiro; Munekata, Yuki; Maruyama, Keiichi; Kono, Kenji

    2017-07-01

    Dual-signal-sensitive copolymers were synthesized by copolymerization of methoxy diethylene glycol methacrylate, methacrylic acid, and lauroxy tetraethylene glycol methacrylate, which respectively provide temperature sensitivity, pH sensitivity, and anchoring to liposome surfaces. These novel copolymers, with water solubility that differs depending on temperature and pH, are soluble in water under neutral pH and low-temperature conditions, but they become water-insoluble and form aggregates under acidic pH and high-temperature conditions. Liposomes modified with these copolymers exhibited enhanced content release at weakly acidic pH with increasing temperature, although no temperature-dependent content release was observed in neutral conditions. Interaction between the copolymers and the lipid monolayer at the air-water interface revealed that the copolymer chains penetrate more deeply into the monolayer with increasing temperature at acidic pH than at neutral pH, where the penetration of copolymer chains was moderate and temperature-independent at neutral pH. Interaction of the copolymer-modified liposomes with HeLa cells demonstrated that the copolymer-modified liposomes were adsorbed quickly and efficiently onto the cell surface and that they were internalized more gradually than the unmodified liposomes through endocytosis. Furthermore, the copolymer-modified liposomes enhanced the content release in endosomes with increasing temperature, but no such temperature-dependent enhancement of content release was observed for unmodified liposomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal

    PubMed Central

    Xing, Qi; Yates, Keegan; Vogt, Caleb; Qian, Zichen; Frost, Megan C.; Zhao, Feng

    2014-01-01

    The usage of gelatin hydrogel is limited due to its instability and poor mechanical properties, especially under physiological conditions. Divalent metal ions present in gelatin such as Ca2+ and Fe2+ play important roles in the gelatin molecule interactions. The objective of this study was to determine the impact of divalent ion removal on the stability and mechanical properties of gelatin gels with and without chemical crosslinking. The gelatin solution was purified by Chelex resin to replace divalent metal ions with sodium ions. The gel was then chemically crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Results showed that the removal of divalent metal ions significantly impacted the formation of the gelatin network. The purified gelatin hydrogels had less interactions between gelatin molecules and form larger-pore network which enabled EDC to penetrate and crosslink the gel more efficiently. The crosslinked purified gels showed small swelling ratio, higher crosslinking density and dramatically increased storage and loss moduli. The removal of divalent ions is a simple yet effective method that can significantly improve the stability and strength of gelatin hydrogels. The in vitro cell culture demonstrated that the purified gelatin maintained its ability to support cell attachment and spreading. PMID:24736500

  4. Preparation and characterization of pH sensitive crosslinked Linseed polysaccharides-co-acrylic acid/methacrylic acid hydrogels for controlled delivery of ketoprofen.

    PubMed

    Shabir, Farya; Erum, Alia; Tulain, Ume Ruqia; Hussain, Muhammad Ajaz; Ahmad, Mahmood; Akhter, Faiza

    2017-01-01

    Some pH responsive polymeric matrix of Linseed ( Linum usitatissimum ), L. hydrogel (LSH) was prepared by free radical polymerization using potassium persulfate (KPS) as an initiator, N,N -methylene bisacrylamide (MBA) as a crosslinker, acrylic acid (AA) and methacrylic acid (MAA) as monomers; while ketoprofen was used as a model drug. Different formulations of LSH-co-AA and LSH-co-MAA were formulated by varying the concentration of crosslinker and monomers. Structures obtained were thoroughly characterized using Fourier transforms infrared (FTIR) spectroscopy, XRD analysis and Scanning electron microscopy. Sol-gel fractions, porosity of the materials and ketoprofen loading capacity were also measured. Swelling and in vitro drug release studies were conducted at simulated gastric fluids, i.e., pH 1.2 and 7.4. FTIR evaluation confirmed successful grafting of AA and MAA to LSH backbone. XRD studies showed retention of crystalline structure of ketoprofen in LSH-co-AA and its amorphous dispersion in LSH-co-MAA. Gel content was increased by increasing MBA and monomer content; whereas porosity of hydrogel was increased by increasing monomer concentration and decreased by increasing MBA content. Swelling of copolymer hydrogels was high at pH 7.4 and low at pH 1.2. Ketoprofen release showed an increasing trend by increasing monomer content; however it was decreased with increasing MBA content. Sustained release of ketoprofen was noted from copolymers and release followed Korsmeyer-Peppas model.

  5. A clinical analysis of gelatin allergy and determination of its causal relationship to the previous administration of gelatin-containing acellular pertussis vaccine combined with diphtheria and tetanus toxoids.

    PubMed

    Nakayama, T; Aizawa, C; Kuno-Sakai, H

    1999-02-01

    The number of patients with allergic reactions after administration of gelatin-containing live vaccines is increasingly reported in Japan. These allergic reactions appear to be caused by gelatin allergy. It is still unknown how the patients were sensitized to gelatin. To determine the incidence of gelatin allergy and to identify contributing factors to gelatin allergy, we investigated the following clinical aspects: the development of IgE antibodies to gelatin and the relationship of the patients' past history of acellular pertussis vaccine combined with diphtheria and tetanus toxoid (DTaP) to the development of gelatin allergy. We evaluated 366 patient reports, submitted from 1994 to 1997, of adverse reactions after immunization with monovalent measles, mumps, and rubella vaccines containing 0.2% gelatin as stabilizer. On the basis of physician reports, the patients were categorized as to the nature of the adverse reaction. We determined the presence of IgE antibodies to gelatin and obtained past immunization history. The 366 reported patients were categorized as follows: 34 with anaphylaxis, 76 with urticaria, 215 with nonurticarial generalized eruption, and 41 with local reactions only. In 206 patients from whom serum was available, IgE antibodies to gelatin were detected in 25 of 27 (93%) with anaphylaxis, 27 of 48 (56%) with urticaria, and 8 of 90 (9%) with a generalized eruption. None of a group of 41 patients with only local reactions at the injected site and none of a control group of 29 subjects with no adverse reaction had such antibodies. Among 202 patients for whom prior vaccine information was available, all had received DTaP vaccines. Among those for whom the prior DTaP vaccine could be determined to contain gelatin or be free of gelatin, 155 of 158 (98%) subjects had received gelatin-containing DTaP vaccines. This rate is higher than would be expected on the basis of the market share of gelatin-containing (vs gelatin-free) DTaP vaccines (75

  6. Analysis of HLA in children with gelatin allergy.

    PubMed

    Sakaguchi, M; Nakayama, T; Kaku, H; Taniguchi, K; Saito, S; Kimura, A; Inouye, S

    2002-05-01

    Systemic immediate reactions including anaphylaxis to gelatin in vaccines have been reported. However, the number of such reports is very small compared with the number of children exposed to gelatin. The present study was designed to investigate whether susceptibility or resistance to gelatin allergy is associated with human leukocyte antigen (HLA) class II gene. Blood samples were obtained from 49 patients with gelatin allergy and specific IgE to gelatin. DNA-based HLA class II typing was performed to determine the DRB1, DQB1 and DPB1 alleles. Genotype frequencies were compared with those found in 240 unrelated controls. The frequency of DQB1*0303 (55.1%) was significantly higher in the patients than in the control subjects (32.1%). The frequency of DPB1*0402 was also significantly higher in the patients (32.7%) than in the control subjects (15.4%). On the other hand, the frequency of subjects carrying DRB1*15 (DRB1*1501 and DRB1*1502) was significantly lower among the patients group (18.4%) than among the controls (40.8%). We found that DQB1*0303 and DPB1*0402 were positively associated with the IgE response for gelatin, while DRB1*15 was negatively associated with it.

  7. Systemic allergic reactions to gelatin included in vaccines as a stabilizer.

    PubMed

    Sakaguchi, M; Inouye, S

    2000-10-01

    Most of the children who showed systemic immediate-type reactions, including anaphylactic shock, to measles, mumps, rubella, and varicella vaccines had IgE antibodies to gelatin; thus we suspected that the allergic symptoms are caused by gelatin antigen, which is usually included in these live-virus vaccines as a stabilizer. We hypothesized that the anti-gelatin IgE is elicited by immunization with DTaP (diphtheria-tetanus-acellular pertussis) vaccines, which contained a small amount of gelatin as a spillover protein after purification of pertussis toxin. To test this hypothesis, we conducted a case-control study to determine whether children with anti-gelatin IgE had received gelatin-containing DTaP vaccines, and it was indeed found that all such children in the study had immunization histories that included the gelatin-containing DTaP vaccines. Based on these findings, the vaccine manufacturers had removed gelatin from all the DTaP and live-virus vaccines produced in Japan by 2000.

  8. Microencapsulation of sulforaphane from broccoli seed extracts by gelatin/gum arabic and gelatin/pectin complexes.

    PubMed

    García-Saldaña, Jesús S; Campas-Baypoli, Olga N; López-Cervantes, Jaime; Sánchez-Machado, Dalia I; Cantú-Soto, Ernesto U; Rodríguez-Ramírez, Roberto

    2016-06-15

    Sulforaphane is a phytochemical that has received attention in recent years due to its chemopreventive properties. However, the uses and applications of this compound are very limited, because is an unstable molecule that is degraded mainly by changes in temperature and pH. In this research, the use of food grade polymers for microencapsulation of sulforaphane was studied by a complex coacervation method using the interaction of oppositely charged polymers as gelatin/gum arabic and gelatin/pectin. The polymers used were previously characterized in moisture content, ash and nitrogen. The encapsulation yield was over 80%. The gelatin/pectin complex had highest encapsulation efficiency with 17.91%. The presence of sulforaphane in the complexes was confirmed by FTIR and UV/visible spectroscopy. The materials used in this work could be a new and attractive option for the protection of sulforaphane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. In vivo hemostatic efficacy of polyurethane foam compared to collagen and gelatin.

    PubMed

    Broekema, Ferdinand I; van Oeveren, Wim; Selten, Maaike H A; Meijer, Rolf J H; de Wolf, Joost T M; Bos, Rudolf R M

    2013-05-01

    Topical hemostatic agents are used in all surgical disciplines. Most of these hemostats are based on animal-derived products like collagen and gelatin. They carry the potential risk of pathogen transmission. A newly developed biodegradable, fully synthetic hemostatic agent based on polyurethane foam (PU) with 55 % polyethylene glycol (PEG) would prevent these potential risks. The hemostatic efficacy of this new agent was compared to gelatin and collagen in humans who underwent extraction of an upper and lower molar (split-mouth model). After extraction of a molar in the maxilla and mandible, a PU foam and collagen or gelatin were inserted in the extraction socket for 2 min. Hereafter, the agents were removed and stored in ethylenediaminetetraacetic acid to stop coagulation. Then, the concentration of coagulation parameters thrombin-antithrombin III (TAT) complexes, fibrinogen, and thromboxane B2 (TxB2) in blood extracts from the agents was measured. The concentrations were also determined in baseline blood samples which were collected from the extraction socket. The concentrations of TAT and TxB2 were significantly increased, and fibrinogen concentration was significantly reduced compared to baseline wound blood concentrations indicating enhanced hemostasis. No significant differences were seen in the concentrations of these coagulation parameters in the three different hemostatic agents. These results show that PU combined with 55 % PEG is a promising alternative for the animal-derived hemostatic agents. The synthetic hemostatic agent could replace the animal-derived products like collagen and gelatin and therewith prevent the potential risk of pathogen transmission.

  10. Comparison of ballistic impact effects between biological tissue and gelatin.

    PubMed

    Jin, Yongxi; Mai, Ruimin; Wu, Cheng; Han, Ruiguo; Li, Bingcang

    2018-02-01

    Gelatin is commonly used in ballistic testing as substitute for biological tissue. Comparison of ballistic impact effects produced in the gelatin and living tissue is lacking. The work in this paper was aimed to compare the typical ballistic impact effects (penetration trajectory, energy transfer, temporary cavity) caused by 4.8mm steel ball penetrating the 60kg porcine hind limbs and 10wt% gelatin. The impact event in the biological tissue was recorded by high speed flash X-ray machine at different delay time, while the event in the gelatin continuously recorded by high speed video was compared to that in the biological tissue. The collected results clearly displayed that the ballistic impact effects in the muscle and gelatin were similar for the steel ball test; as for instance, the projectile trajectory in the two targets was basically similar, the process of energy transfer was highly coincident, and the expansion of temporary cavity followed the same pattern. This study fully demonstrated that choosing gelatin as muscle simulant was reasonable. However, the maximum temporary cavity diameter in the gelatin was a little larger than that in the muscle, and the expansion period of temporary cavity was longer in the gelatin. Additionally, the temporary cavity collapse process in the two targets followed different patterns, and the collapse period in the gelatin was two times as long as that in the muscle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A novel gelatin hydrogel carrier sheet for corneal endothelial transplantation.

    PubMed

    Watanabe, Ryou; Hayashi, Ryuhei; Kimura, Yu; Tanaka, Yuji; Kageyama, Tomofumi; Hara, Susumu; Tabata, Yasuhiko; Nishida, Kohji

    2011-09-01

    We examined the feasibility of using gelatin hydrogels as carrier sheets for the transplantation of cultivated corneal endothelial cells. The mechanical properties, transparency, and permeability of gelatin hydrogel sheets were compared with those of atelocollagen sheets. Immunohistochemistry (ZO-1, Na(+)/K(+)-ATPase, and N-cadherin), hematoxylin and eosin staining, and scanning electron microscopy were performed to assess the integrity of corneal endothelial cells that were cultured on gelatin hydrogel sheets. The gelatin hydrogel sheets displayed greater transparency, elastic modulus, and albumin permeability compared to those of atelocollagen sheets. The corneal endothelial cells on gelatin hydrogel sheets showed normal expression levels of ZO-1, Na(+)/K(+)-ATPase, and N-cadherin. Hematoxylin and eosin staining revealed the formation of a continuous monolayer of cells attached to the gelatin hydrogel sheet. Scanning electron microscopy observations showed that the corneal endothelial cells were arranged in a regular, mosaic, and polygonal pattern with normal cilia. These results indicate that the gelatin hydrogel sheet is a promising material to transport corneal endothelial cells during transplantation.

  12. Backfilling-Free Strategy for Biopatterning on Intrinsically Dual-Functionalized Poly[2-Aminoethyl Methacrylate-co-Oligo(Ethylene Glycol) Methacrylate] Films.

    PubMed

    Lee, Bong Soo; Lee, Juno; Han, Gyeongyeop; Ha, EunRae; Choi, Insung S; Lee, Jungkyu K

    2016-07-20

    We demonstrated protein and cellular patterning with a soft lithography technique using poly[2-aminoethyl methacrylate-co-oligo(ethylene glycol) methacrylate] films on gold surfaces without employing a backfilling process. The backfilling process plays an important role in successfully generating biopatterns; however, it has potential disadvantages in several interesting research and technical applications. To overcome the issue, a copolymer system having highly reactive functional groups and bioinert properties was introduced through a surface-initiated controlled radical polymerization with 2-aminoethyl methacrylate hydrochloride (AMA) and oligo(ethylene glycol) methacrylate (OEGMA). The prepared poly(AMA-co-OEGMA) film was fully characterized, and among the films having different thicknesses, the 35 nm-thick biotinylated, poly(AMA-co-OEGMA) film exhibited an optimum performance, such as the lowest nonspecific adsorption and the highest specific binding capability toward proteins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties.

    PubMed

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Nasri-Nasrabadi, Bijan; Ghaedi, Kamran; Salehi, Hossein; Dolatshahi-Pirouz, Alireza; Arpanaei, Ayyoob

    2016-09-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974±68nm for the pure PLGA scaffolds vs 832±70, 764±80, and 486±64 for the PLGA/gelatin, PLGA/10wt% MSNPs, and the PLGA/gelatin/10wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Molecular Imprinted Polymer of Methacrylic Acid Functionalised β-Cyclodextrin for Selective Removal of 2,4-Dichlorophenol

    PubMed Central

    Surikumaran, Hemavathy; Mohamad, Sharifah; Sarih, Norazilawati Muhamad

    2014-01-01

    This work describes methacrylic acid functionalized β-cyclodextrin (MAA-βCD) as a novel functional monomer in the preparation of molecular imprinted polymer (MIP MAA-βCD) for the selective removal of 2,4-dichlorophenol (2,4-DCP). The polymer was characterized using Fourier Transform Infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller (BET) and Field Emission Scanning Electron Microscopy (FESEM) techniques. The influence of parameters such as solution pH, contact time, temperature and initial concentrations towards removal of 2,4-DCP using MIP MAA-βCD have been evaluated. The imprinted material shows fast kinetics and the optimum pH for removal of 2,4-DCP is pH 7. Compared with the corresponding non-imprinted polymer (NIP MAA-βCD), the MIP MAA-βCD exhibited higher adsorption capacity and outstanding selectivity towards 2,4-DCP. Freundlich isotherm best fitted the adsorption equilibrium data of MIP MAA-βCD and the kinetics followed a pseudo-second-order model. The calculated thermodynamic parameters showed that adsorption of 2,4-DCP was spontaneous and exothermic under the examined conditions. PMID:24727378

  15. Gelatin-Modified Polyurethanes for Soft Tissue Scaffold

    PubMed Central

    Kucińska-Lipka, Justyna; Janik, Helena

    2013-01-01

    Recently, in the field of biomaterials for soft tissue scaffolds, the interest of their modification with natural polymersis growing. Synthetic polymers are often tough, and many of them do not possess fine biocompatibility. On the other hand, natural polymers are biocompatible but weak when used alone. The combination of natural and synthetic polymers gives the suitable properties for tissue engineering requirements. In our study, we modified gelatin synthetic polyurethanes prepared from polyester poly(ethylene-butylene adipate) (PEBA), aliphatic 1,6-hexamethylene diisocyanate (HDI), and two different chain extenders 1,4-butanediol (BDO) or 1-ethoxy-2-(2-hydroxyethoxy)ethanol (EHEE). From a chemical point of view, we replaced expensive components for building PU, such as 2,6-diisocyanato methyl caproate (LDI) and 1,4-diisocyanatobutane (BDI), with cost-effective HDI. The gelatin was added in situ (in the first step of synthesis) to polyurethane to increase biocompatibility and biodegradability of the obtained material. It appeared that the obtained gelatin-modified PU foams, in which chain extender was BDO, had enhanced interactions with media and their hydrolytic degradation profile was also improved for tissue engineering application. Furthermore, the gelatin introduction had positive impact on gelatin-modified PU foams by increasing their hemocompatibility. PMID:24363617

  16. Electrospun polycaprolactone/gelatin composites with enhanced cell-matrix interactions as blood vessel endothelial layer scaffolds.

    PubMed

    Jiang, Yong-Chao; Jiang, Lin; Huang, An; Wang, Xiao-Feng; Li, Qian; Turng, Lih-Sheng

    2017-02-01

    During the fabrication of tissue engineering scaffolds and subsequent tissue regeneration, surface bioactivity is vital for cell adhesion, spreading, and proliferation, especially for endothelium dysfunction repair. In this paper, synthetic polymer polycaprolactone (PCL) was blended with natural polymer gelatin at four different weight ratios followed by crosslinking (i.e., 100:0, 70:30, 50:50, 30:70, labeled as PCL-C, P7G3-C, P5G5-C, and P3G7-C) to impart enhanced bioactivity and tunable mechanical properties. The PCL/gelatin blends were first dissolved in 2,2,2-trifluroethanol (TFE) and supplementary acetic acid (1% relative to TFE) solvent, electrospun, and then cross-linked to produce PBS-proof fibrous scaffolds. Scanning electron micrographs (SEM) indicated that fibers of each sample were smooth and homogeneous, with the fiber diameters increasing from 1.01±0.51μm to 1.61±0.46μm as the content of gelatin increased. While thermal resistance and crystallization of the blends were affected by the presence of gelatin, as reflected by differential scanning calorimetry (DSC) results, water contact angle (WCA) tests confirmed that the scaffold surfaces became more hydrophilic. Tensile tests showed that PCL-C and P7G3-C scaffolds had mechanical properties comparable to those of human coronary arteries. As for cytocompatibility, skeleton staining images showed that human mesenchymal stem cells (hMSCs) had more favorable binding sites on PCL/gelatin scaffolds than those on PCL scaffolds. Cell proliferation assays revealed that P7G3-C scaffolds could support the most number of hMSCs. The results of this study demonstrated the enhanced cell-matrix interactions and potential use of electrospun PCL/gelatin scaffolds in the tissue engineering field, especially in wound dressings and endothelium regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Glycation and transglutaminase mediated glycosylation of fish gelatin peptides with glucosamine enhance bioactivity.

    PubMed

    Hong, Pui Khoon; Gottardi, Davide; Ndagijimana, Maurice; Betti, Mirko

    2014-01-01

    A mixture of novel glycopeptides from glycosylation between cold water fish skin gelatin hydrolysates and glucosamine (GlcN) via transglutaminase (TGase), as well as glycation between fish gelatin hydrolysate and GlcN were identified by their pattern of molecular distribution using MALDI-TOF-MS. Glycated/glycosylated hydrolysates showed superior bioactivity to their original hydrolysates. Alcalase-derived fish skin gelatin hydrolysate glycosylated with GlcN in the presence of TGase at 25°C (FAT25) possessed antioxidant activity when tested in a linoleic acid oxidation system, when measured according to its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity and when tested at the cellular level with human hepatocarcinoma (HepG2) cells as target cells. In addition, Alcalase-derived glycosylated hydrolysates showed specificity toward the inhibition of Escherichia coli (E. coli). The Flavourzyme-derived glycopeptides prepared at 37°C (FFC37 and FFT37) showed better DPPH scavenging activity than their native hydrolysates. The glycated Flavourzyme-derived hydrolysates were found to act as potential antimicrobial agents when incubated with E. coli and Bacillus subtilis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Rifle bullet penetration into ballistic gelatin.

    PubMed

    Wen, Yaoke; Xu, Cheng; Jin, Yongxi; Batra, R C

    2017-03-01

    The penetration of a rifle bullet into a block of ballistic gelatin is experimentally and computationally studied for enhancing our understanding of the damage caused to human soft tissues. The gelatin is modeled as an isotropic and homogeneous elastic-plastic linearly strain-hardening material that obeys a polynomial equation of state. Effects of numerical uncertainties on penetration characteristics are found by repeating simulations with minute variations in the impact speed and the angle of attack. The temporary cavity formed in the gelatin and seen in pictures taken by two high speed cameras is found to compare well with the computed one. The computed time histories of the hydrostatic pressure at points situated 60 mm above the line of impact are found to have "two peaks", one due to the bullet impact and the other due to the bullet tumbling. Contours of the von Mises stress and of the effective plastic strain in the gelatin block imply that a very small region adjacent to the cavity surface is plastically deformed. The angle of attack is found to noticeably affect the penetration depth at the instant of the bullet tumbling through 90°. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. DEGRADATION OF POLY(METHYL METHACRYLATE) IN SOLUTION

    EPA Science Inventory

    The rate of degradation of poly(methyl methacrylate) (PMMA) to methyl methacrylate (MMA) was investigated in the liquid phase with toluene as the solvent. The degradation experiments were carried out in a tubular flow reactor at 1000 psig (6.8 MPa) and at four different temperat...

  20. Gelatin prepared from tuna skin: a risk factor for fish allergy or sensitization?

    PubMed

    André, Françoise; Cavagna, Sylvie; André, Claude

    2003-01-01

    Although fish gelatin may represent a useful alternative to bovine or porcine gelatin, the clearly recognized high prevalence of fish allergy could increase the risk of anaphylaxis to gelatin. The rationale for investigating tuna gelatin rather than gelatin from more allergenic fishes is the availability of an industrial gelatin under development. The infrequent occurrence of tuna allergy should influence the safety of a derived product. The present study investigated IgE antibodies to tuna-skin-derived gelatin in adults and children with documented fish allergy or sensitization. Serum samples were taken from 100 consecutive patients with fish allergy or sensitization and tested for IgE antibodies against hydrolyzed or nonhydrolyzed gelatin extracted from tuna skin as compared to extracts from tuna flesh, tuna skin as well as bovine or porcine gelatin. Patients with tuna allergies or sensitization were sensitive to the same tuna species (yellowfin) as that from which the gelatin was obtained. IgE antibodies to these various extracts were analyzed using SDS-PAGE and immunoblotting. Only 3 of the 100 serum samples tested gave evidence of reactivity to gelatin extracted from tuna skin. Cross-reactivity between bovine/porcine and fish gelatin was not observed. The risk of adverse reactions to tuna skin gelatin seems to be significantly lower than the risk of fish allergy. Fish gelatin may represent a valuable alternative to bovine or porcine gelatin. Copyright 2003 S. Karger AG, Basel

  1. Winner of the society for biomaterials student award in the Ph.D. category for the annual meeting of the society for biomaterials, april 11-14, 2018, Atlanta, GA: Development of a bimodal, in situ crosslinking method to achieve multifactor release from electrospun gelatin.

    PubMed

    Kishan, Alysha; Walker, Taneidra; Sears, Nick; Wilems, Thomas; Cosgriff-Hernandez, Elizabeth

    2018-05-01

    To better mimic native tissue microenvironments, current efforts have moved beyond single growth factor delivery to more complex multiple growth factor delivery with distinct release profiles. Electrospun gelatin, a widely investigated drug delivery vehicle, requires postprocessing crosslinking techniques that generate a mesh with uniform crosslinking density, limiting the ability to deliver multiple factors at different rates. Herein, we describe a method to independently control release of multiple factors from a single electrospun gelatin mesh. Two in situ crosslinking modalities, photocrosslinking of methacyrlated gelatin and reactive crosslinking of gelatin with a diisocyanate, are coelectrospun to generate distinct fiber populations with different crosslinking chemistry and density in a single mesh. The photocrosslinked gelatin-methacrylate resulted in a relatively rapid release of a model protein (48 ± 12% at day 1, 96 ± 3% at day 10) due to diffusion of embedded protein from the crosslinked fibers. The reactive crosslinking system displayed a more sustained release (7 ± 5% at day 1, 33 ± 2% at day 10) that was attributed to the conjugation of protein to gelatin with the diisocyanate, requiring degradation of gelatin prior to diffusion out of the fibers. Both modalities displayed tunable release profiles. Subsequent release studies of a cospun mesh with two different crosslinked fiber populations confirmed that the cospun mesh displayed multifactor release with independent release profiles. Overall, this bimodal, in situ crosslinking approach enables the delivery of multiple factors with distinct release kinetics from a single mesh and is expected to have broad utility in tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1155-1164, 2018. © 2018 Wiley Periodicals, Inc.

  2. Effects of structural imperfection on gelatinization characteristics of amylopectin starches with A- and B-type crystallinity.

    PubMed

    Genkina, Natalia K; Wikman, Jeanette; Bertoft, Eric; Yuryev, Vladimir P

    2007-07-01

    The aim of the present work was to investigate the effect of physical structures on the properties of starch granules. Starches with a high amylopectin content possessing A- and B-type crystallinity were chosen for the study. The gelatinization temperature decreased in the following order: maize (A) > potato (B) > wheat (A) > barley (A), which did not reflect a correlation with the type of crystallinity. Low values of gelatinization temperature were accompanied with high free surface energy of the crystallites. It is proposed that these data are caused by different types of imperfections in starch crystals. Annealing resulted in an enhancement of the gelatinization temperature and a decrease of the free surface energy of the crystallites for all starches reflecting a partial improvement of crystalline perfection. A limited acid hydrolysis (lintnerization) of the starches decreased the gelatinization temperature because of a partial disruption of the crystalline lamellae and an increase of the amount of defects on the edges of the crystallites. Annealing of the lintnerized starches improved the structure of maize and potato starch, giving them similar structural and physicochemical parameters, which was opposite the behavior of the annealed sample from wheat. The possible nature of removable and nonremovable defects inside the crystalline region of the starch granules is discussed. It is concluded that, besides the allomorphic A- and B-types of crystal packing, physical defects in the crystals possess a major impact on starch gelatinization.

  3. Co-localisation of advanced glycation end products and D-β-aspartic acid-containing proteins in gelatinous drop-like corneal dystrophy.

    PubMed

    Kaji, Yuichi; Oshika, Tetsuro; Takazawa, Yutaka; Fukayama, Masashi; Fujii, Noriko

    2012-08-01

    Gelatinous drop-like corneal dystrophy (GDLD), also known as familial subepithelial corneal amyloidosis, is an autosomal recessive disorder that causes progressive corneal opacity due to accumulation of amyloid fibrils in the corneal stroma. Genetic analyses have revealed that a mutation in membrane component chromosome 1 surface marker 1 gene is responsible for GDLD. However, the mechanism of amyloid formation in the corneal stroma remains unclear. The present study attempted to reveal the role of advanced glycation end products (AGE) and d-amino acids in amyloid formation in GDLD. Informed consent was obtained from five patients with GDLD, three patients with bullous keratopathy and three patients with interstitial keratitis and all the specimens were analysed. Localisation of amyloid fibrils was analysed using Congo-red and thioflavin T staining. In addition, the localisation of AGE (N(ε)-carboxy(methyl)-L-lysine, pyrraline and pentosidine) and D-β-aspartic acid-containing proteins, a major form of d-amino acid-containing proteins, was analysed immunohistochemically. In all GDLD specimens, strong immunoreactivity to AGE and D-β-aspartic acid-containing proteins was detected in the subepithelial amyloid-rich region. In contrast, amyloid fibrils, AGE, or D-amino acid-containing proteins were slightly detected in the corneal stroma of patients with bullous keratopathy and interstitial keratitis. Abnormally accumulated proteins rich in AGE and D-β-aspartic acid co-localise in the amyloid lesions in GDLD. These results indicate that non-enzymatic post-translational modifications of proteins, including AGE formation and isomerisation of aspartyl residues, will be the cause as well as the result of amyloid fibril formations in GDLD.

  4. Grafting of Chitosan and Chitosantrimethoxylsilylpropyl Methacrylate on Single Walled Carbon Nanotubes-Synthesis and Characterization

    PubMed Central

    Carson, Laura; Kelly-Brown, Cordella; Stewart, Melisa; Oki, Aderemi; Regisford, Gloria; Stone, Julia; Traisawatwong, Pasakorn; Durand-Rougely, Clarissa; Luo, Zhiping

    2011-01-01

    Acid functionalized single walled carbon nanotubes (CNTs) were grafted to chitosan by first reacting the oxidized CNTs with thionyl chloride to form acyl-chlorinated CNTs. This product was subsequently dispersed in chitosan and covalently grafted to form CNT-chitosan. CNT-chitosan was further grafted onto 3-trimethoxysilylpropyl methacrylate by free radical polymerization conditions, to yield CNT-g-chitosan-g-3-trimethoxysilylpropyl methacrylate (TMSPM), hereafter referred to as CNT-chitosan-3-TMSPM. These composites were characterized by Fourier Transform Infrared Resonance Spectroscopy (FTIR), carbon-13 nuclear magnetic resonance (13C NMR), Thermogravimetric Analysis (TGA), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite showed improved thermal stability and could be of great potential use in bone tissue engineering. PMID:21765959

  5. 21 CFR 882.5300 - Methyl methacrylate for cranioplasty.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate for cranioplasty. (a) Identification. Methyl methacrylate for cranioplasty (skull repair) is a self-curing acrylic that a surgeon uses to repair a skull defect in a patient. At the time of surgery...

  6. Enzymatic regulation of functional vascular networks using gelatin hydrogels

    PubMed Central

    Chuang, Chia-Hui; Lin, Ruei-Zeng; Tien, Han-Wen; Chu, Ya-Chun; Li, Yen-Cheng; Melero-Martin, Juan M.; Chen, Ying-Chieh

    2015-01-01

    To manufacture tissue engineering-based functional tissues, scaffold materials that can be sufficiently vascularized to mimic the functionality and complexity of native tissues are needed. Currently, vascular network bioengineering is largely carried out using natural hydrogels as embedding scaffolds, but most natural hydrogels have poor mechanical stability and durability, factors that critically limit their widespread use. In this study, we examined the suitability of gelatin-phenolic hydroxyl (gelatin-Ph) hydrogels that can be enzymatically crosslinked, allowing tuning of the storage modulus and the proteolytic degradation rate, for use as injectable hydrogels to support the human progenitor cell-based formation of a stable and mature vascular network. Porcine gelatin-Ph hydrogels were found to be cytocompatible with human blood-derived endothelial colony-forming cells and white adipose tissue-derived mesenchymal stem cells, resulting in >87% viability, and cell proliferation and spreading could be modulated by using hydrogels with different proteolytic degradability and stiffness. In addition, gelatin was extracted from mouse dermis and murine gelatin-Ph hydrogels were prepared. Importantly, implantation of human cell-laden porcine or murine gelatin-Ph hydrogels into immunodeficient mice resulted in the rapid formation of functional anastomoses between the bioengineered human vascular network and the mouse vasculature. Furthermore, the degree of enzymatic crosslinking of the gelatin-Ph hydrogels could be used to modulate cell behavior and the extent of vascular network formation in vivo. Our report details a technique for the synthesis of gelatin-Ph hydrogels from allogeneic or xenogeneic dermal skin and suggests that these hydrogels can be used for biomedical applications that require the formation of microvascular networks, including the development of complex engineered tissues. PMID:25749296

  7. Properties of active gelatin films incorporated with rutin-loaded nanoemulsions.

    PubMed

    Dammak, Ilyes; de Carvalho, Rosemary Aparecida; Trindade, Carmen Sílvia Fávaro; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José

    2017-05-01

    Physico-chemical, mechanical, barrier, release profiles and antioxidant properties of composite gelatin based-films incorporated with rutin-loaded oil-in-water nanoemulsion, at various concentrations (5, 10, 15, or 20% (based on the weight of the gelatin powder)) were studied. All the gelatin/rutin-loaded nanoemulsion films displayed higher tensile strength and higher elongation at break than the gelatin control film. The composite films did not show significant differences in thickness, color, brightness and transparency. The structural properties evaluated by FTIR showed that the rutin-loaded nanoemulsion achieved complete miscibility within the gelatin matrix. All the gelatin/nanoemulsion films exhibited compact and homogenous microstructure. In addition, these films showed high antioxidant activities monitored by DPPH radical scavenging and reducing power activities. The Korsmeyer-Peppas model described well the rutin release profile. Rutin release was mainly governed by Fickian diffusion with simultaneous interfering swelling and disintegration phenomena. These results indicate that nanoemulsions-in-gelatin systems can function as potential active packaging systems to enhance shelf life of food products and then to provide a high-quality products (fresh/safe). Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Projectile penetration into ballistic gelatin.

    PubMed

    Swain, M V; Kieser, D C; Shah, S; Kieser, J A

    2014-01-01

    Ballistic gelatin is frequently used as a model for soft biological tissues that experience projectile impact. In this paper we investigate the response of a number of gelatin materials to the penetration of spherical steel projectiles (7 to 11mm diameter) with a range of lower impacting velocities (<120m/s). The results of sphere penetration depth versus projectile velocity are found to be linear for all systems above a certain threshold velocity required for initiating penetration. The data for a specific material impacted with different diameter spheres were able to be condensed to a single curve when the penetration depth was normalised by the projectile diameter. When the results are compared with a number of predictive relationships available in the literature, it is found that over the range of projectiles and compositions used, the results fit a simple relationship that takes into account the projectile diameter, the threshold velocity for penetration into the gelatin and a value of the shear modulus of the gelatin estimated from the threshold velocity for penetration. The normalised depth is found to fit the elastic Froude number when this is modified to allow for a threshold impact velocity. The normalised penetration data are found to best fit this modified elastic Froude number with a slope of 1/2 instead of 1/3 as suggested by Akers and Belmonte (2006). Possible explanations for this difference are discussed. © 2013 Published by Elsevier Ltd.

  9. Helix aspersa gelatin as an emulsifier and emulsion stabilizer: functional properties and effects on pancreatic lipolysis.

    PubMed

    Zarai, Zied; Balti, Rafik; Sila, Assaâd; Ben Ali, Yassine; Gargouri, Youssef

    2016-01-01

    Emulsions are widely used in food and pharmaceutical applications for the encapsulation, solubilization, entrapment, and controlled delivery of active ingredients. In order to fulfill the increasing demand for clean label excipients, natural polymers could be used to replace the potentially irritative synthetic surfactants used in emulsion formulation. In the present study, we have studied the properties of oil-in-water emulsions prepared with land snail gelatin (LSG) as the sole emulsifying agent, extracted and described for the first time. LSG was evaluated in terms of proximate composition, oil and water holding capacity, emulsifying and foaming properties, color and amino acid composition. Emulsions of trioctanoylglycerol (TC8) and olive oil were made at different gelatin/oil ratios and changes in droplet-size distribution were determined. The superior emulsifying properties of LSG, the susceptibility of gelatin protein emulsions increasing flocculation on storage, and the coalescence of gelatin emulsions following centrifugation were demonstrated. Furthermore, the effect of LSG on the activity of turkey pancreatic lipase (TPL) was evaluated through the pH-stat methodology with TC8 and olive oil emulsions. The LSG affected the TPL activity in a concentration-dependent way. Our results showed that LSG, comparably to gum arabic, increases the pancreatic lipase activity and improves its stability at the oil-water interface.

  10. Poly(hydroxyethyl methacrylate-co-methacryloylglutamic acid) nanospheres for adsorption of Cd2+ ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Esen, Cem; Şenay, Raziye Hilal; Feyzioğlu, Esra; Akgöl, Sinan

    2014-02-01

    Poly(2-hydroxyethyl methacrylate-co- N-methacryloyl-( l)-glutamic acid) p(HEMA-MAGA) nanospheres have been synthesized, characterized, and used for the adsorption of Cd2+ ions from aqueous solutions. Nanospheres were prepared by surfactant free emulsion polymerization. The p(HEMA-MAGA) nanospheres were characterized by SEM, FTIR, zeta size, and elemental analysis. The specific surface area of nanospheres was found to be 1,779 m2/g. According to zeta size analysis results, average size of nanospheres is 147.3 nm with poly-dispersity index of 0.200. The goal of this study was to evaluate the adsorption performance of p(HEMA-MAGA) nanospheres for Cd2+ ions from aqueous solutions by a series of batch experiments. The Cd2+ concentration was determined by inductively coupled plasma-optical emission spectrometer. Equilibrium sorption experiments indicated a Cd2+ uptake capacity of 44.2 mg g-1 at pH 4.0 at 25 °C. The adsorption of Cd2+ ions increased with increasing pH and reached a plateau value at around pH 4.0. The data were successfully modeled with a Langmuir equation. A series of kinetics experiments was then carried out and a pseudo-second order equation was used to fit the experimental data. Desorption experiments which were carried out with nitric acid showed that the p(HEMA-MAGA) nanospheres could be reused without significant losses of their initial properties in consecutive adsorption and elution operations.

  11. Gelatine tannate in the management of acute gastroenteritis in children: a randomised controlled trial.

    PubMed

    Kołodziej, Maciej; Bebenek, Dorota; Konarska, Zofia; Szajewska, Hania

    2018-05-24

    To assess the efficacy of gelatine tannate (a complex of tannic acid with astringent and anti-inflammatory properties, and a protective gelatine) for the treatment of acute gastroenteritis (AGE) in children. Randomised, double-blind, placebo-controlled trial. Intention-to-treat analysis. Two paediatric hospitals in Warsaw. Children younger than 5 years of age with AGE, defined as a change in stool consistency to a loose or liquid form (according to the Bristol Stool Form Scale or Amsterdam Stool Form Scale) and/or an increase in the frequency of evacuations (≥3 in 24 hours), lasting for no longer than 5 days. Seventy-two children were assigned to receive gelatine tannate (n=36) or placebo (n=36) in addition to standard rehydration therapy. The gelatine tannate was administered at an age-dependent dose (250-500 mg), and both study products were taken four times per day for 5 days. The main outcome measure was duration of diarrhoea. Secondary outcomes included the need for intravenous rehydration, need for hospitalisation of outpatients, number of watery stools per day, vomiting, weight gain, adverse events, recurrence of diarrhoea, severity of diarrhoea according to the Vesikari Scale and use of concomitant medications. Sixty-four children (89%) completed the intervention and were included in the analysis. The duration of diarrhoea after randomisation was similar in the gelatine tannate and placebo groups (75.6±27.8 vs 75.5±29.0 hours, respectively, mean difference 0.1 hours, 95% CI -14.1 to 14.3 hours). There was no significant difference between groups in the number of watery stools per day throughout the study period. There were also no differences in any other secondary outcome measures between groups. In children with AGE younger than 5 years of age, gelatine tannate was ineffective as an adjunct to rehydration therapy. NCT02280759. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights

  12. Preparation and characterization of lysine-immobilized poly(glycidyl methacrylate) nanoparticle-coated capillary for the separation of amino acids by open tubular capillary electrochromatography.

    PubMed

    Xu, Liang; Cui, Pengfei; Wang, Dongmei; Tang, Cheng; Dong, Linyi; Zhang, Can; Duan, Hongquan; Yang, Victor C

    2014-01-03

    In this study, poly(glycidyl methacrylate) (PGMA) nanoparticles (NPs) were prepared and chemically immobilized for the first time onto a capillary inner wall for open tubular capillary electrochromatography (OTCEC). The immobilization of PGMA NPs onto the capillary was attained by a ring-opening reaction between the NPs and an amino-silylated fused capillary inner surface. Scanning electron micrographs clearly demonstrated that the NPs were bound to the capillary inner surface in a dense monolayer. The PGMA NP-coated column was then functionalized by lysine (Lys). After fuctionalization, the capillary can afford strong anodic electroosmotic flow, especially in acidic running buffers. Separations of three amino acids (including tryptophan, tyrosine and phenylalanine) were performed in NP-modified, monolayer Lys-functionalized and bare uncoated capillaries. Results indicated that the NP-coated column can provide more retention and higher resolution for analytes due to the hydrophobic interaction between analytes and the NP-coating. Run-to-run and column-to-column reproducibilities in the separation of the amino acids using the NP-modified column were also demonstrated. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Starch hydrogels: The influence of the amylose content and gelatinization method.

    PubMed

    Biduski, Bárbara; Silva, Wyller Max Ferreria da; Colussi, Rosana; Halal, Shanise Lisie de Mello El; Lim, Loong-Tak; Dias, Álvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2018-07-01

    Gelatinization and retrogradation, influenced by amylose and amylopectin ratio, are important characteristics for starch hydrogels elaboration. The objective of this study was to evaluate the influence of amylose content and the gelatinization method on the physicochemical characteristics of native and cross-linked rice starch hydrogels. The native and cross-linked starches were gelatinized with heating or alkaline solution, added polyvinyl alcohol, frozen and then freeze-dried. The cross-linked starch had a low final viscosity (101.38 RVU), which made the heat-induced gelatinized hydrogel readily disintegrated in water. However, modified starch hydrogels obtained by alkaline-induced gelatinization resulted in a more rigid structure than the native starch hydrogels. In addition, the starch sample with high amylose content had lower water absorption (322.2%) due to the greater stiffness of the hydrogel structure that resisted swelling. The alkaline-gelatinization resulted in stiffer hydrogels with lower water absorption (322.2 to 534.8%), while the heat-gelatinized behaved as a superabsorbent (658.7 to 1068.5%). The variability of the hydrogels properties of this study can enable a range of applications due to different amylose contents and gelatinization methods. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Preparation and biocompatibility of a chitin nanofiber/gelatin composite film.

    PubMed

    Ogawa, Yoko; Azuma, Kazuo; Izawa, Hironori; Morimoto, Minoru; Ochi, Kosuke; Osaki, Tomohiro; Ito, Norihiko; Okamoto, Yoshiharu; Saimoto, Hiroyuki; Ifuku, Shinsuke

    2017-11-01

    The development of chitin-based materials with favorable mechanical properties and biocompatibility is an important research goal owing to the wide-ranging practical applications. In this study, a composite film was prepared using chitin nanofibers and gelatin. The CNF/gelatin composite film was highly viscous and had a fine nanofiber structure. The transmittances indicated high transparency, regardless of nanofiber content. The water content of the CNF/gelatin composite film increased linearly as the gelatin content increased. Although the CNF/gelatin composite film did not induce severe inflammation, it strongly induced fibroblast proliferation, indicating high biocompatibility. Based on these results, the films are suitable for biological applications, e.g., tissue engineering, medicines, and cosmetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Structure evolution of gelatin particles induced by pH and ionic strength.

    PubMed

    Xu, Jing; Li, Tianduo; Tao, Furong; Cui, Yuezhi; Xia, Yongmei

    2013-03-01

    Microstructure of gelatin particles played a key role in determining the physicochemical properties of gelatin. Ionic strength and pH as systematic manners were considered to affect gelatin particles structure on the micrometer scale. Scanning electron microscopy was used for depicting the morphologies of gelatin particles. Increasing pH to 10.0 or decreasing pH to 4.0, spherical, spindle, and irregular aggregates of gelatin particles at 2, 6, 10, and 14% solution (w/w) were all transformed to spindle aggregates. When NaCl was added to the system, the molecular chains of gelatin possibly rearranged themselves in a stretched state, and the ribbon aggregates was observed. The structural transitions of gelatin aggregates were strongly depended on the electrostatic repulsion. In the gelatin-sodium dodecyl sulfate (SDS) case, the micrometer scale of aggregates was larger and the different degrees of cross-links were induced through hydrophobic interaction and electrostatic repulsion. Copyright © 2012 Wiley Periodicals, Inc.

  16. Predicting the chromatographic retention of polymers: poly(methyl methacrylate)s and polyacryate blends.

    PubMed

    Bashir, Mubasher A; Radke, Wolfgang

    2007-09-07

    The suitability of a retention model especially designed for polymers is investigated to describe and predict the chromatographic retention behavior of poly(methyl methacrylate)s as a function of mobile phase composition and gradient steepness. It is found that three simple yet rationally chosen chromatographic experiments suffice to extract the analyte specific model parameters necessary to calculate the retention volumes. This allows predicting accurate retention volumes based on a minimum number of initial experiments. Therefore, methods for polymer separations can be developed in relatively short time. The suitability of the virtual chromatography approach to predict the separation of polymer blend is demonstrated for the first time using a blend of different polyacrylates.

  17. [Anaphylaxis after vaccination due to hypersensitivity to gelatin].

    PubMed

    Kamin, W; Staubach, P; Klär-Hlawatsch, B; Erdnüss, F; Knuf, M

    2006-01-01

    Most allergic reactions after vaccination occur in patients sensitive to egg protein. Therefore this subject is well investigated, and the majority of common vaccines today contain only traces of egg protein. In contrast, there is little knowledge of hypersensitivities to other substances frequently contained in vaccines, e. g. antibiotics, phenol, gelatin and different preservatives. Here we report the case of a boy who had an anaphylactic reaction after being vaccinated against measles, mumps, rubella (MMR), and tick-born encephalitis (TBE) simultaneously. Different tests finally revealed a hypersensitivity to gelatin. This should be kept in mind especially during emergency care, since gelatin containing products like Haemaccel, Gelifundol or Gelofusin are widely used as colloid for resuscitation. If type 1 reactions after vaccination occur, gelatin should be taken into account as the causative agent. A medical alert card is recommended for such patients.

  18. Spiral crystal growth of potassium dichromate in gelatin

    NASA Astrophysics Data System (ADS)

    Suda, Jun-Ichiro; Matsushita, Mitsugu

    1995-02-01

    Huge spiral crystals of potassium dichromate (K2Cr2O7) have been found to grow three-dimensionally in a gelatin medium when gelatin containing K2Cr2O7 was dried slowly in a test tube at a low temperature. These spirals were all right-handed, and their widths, axial pitches and lengths were 2-3 mm, 5-6 mm and 20-25 mm, repectively. When the gelatin concentration in the medium was decreased, ordinary plate-like crystals were observed to grow, instead of the spiral crystals. To the best of our knowledge, inorganic compounds such as K2Cr2O7 have so far not been reported to form such huge spiral crystals. It is conjectured that collagen molecules, which compose the gelatin medium and have right-handed triple helix structure lead to the growth of spiral crystals.

  19. Graphene oxide decorated electrospun gelatin nanofibers: Fabrication, properties and applications.

    PubMed

    Jalaja, K; Sreehari, V S; Kumar, P R Anil; Nirmala, R James

    2016-07-01

    Gelatin nanofiber fabricated by electrospinning process is found to mimic the complex structural and functional properties of natural extracellular matrix for tissue regeneration. In order to improve the physico-chemical and biological properties of the nanofibers, graphene oxide is incorporated in the gelatin to form graphene oxide decorated gelatin nanofibers. The current research effort is focussed on the fabrication and evaluation of physico-chemical and biological properties of graphene oxide-gelatin composite nanofibers. The presence of graphene oxide in the nanofibers was established by transmission electron microscopy (TEM). We report the effect of incorporation of graphene oxide on the mechanical, thermal and biological performance of the gelatin nanofibers. The tensile strength of gelatin nanofibers was increased from 8.29±0.53MPa to 21±2.03MPa after the incorporation of GO. In order to improve the water resistance of nanofibers, natural based cross-linking agent, namely, dextran aldehyde was employed. The cross-linked composite nanofibers showed further increase in the tensile strength up to 56.4±2.03MPa. Graphene oxide incorporated gelatin nanofibers are evaluated for bacterial activity against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria and cyto compatibility using mouse fibroblast cells (L-929 cells). The results indicate that the graphene oxide incorporated gelatin nanofibers do not prevent bacterial growth, nevertheless support the L-929 cell adhesion and proliferation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Stress transfer and matrix-cohesive fracture mechanism in microfibrillated cellulose-gelatin nanocomposite films.

    PubMed

    Quero, Franck; Padilla, Cristina; Campos, Vanessa; Luengo, Jorge; Caballero, Leonardo; Melo, Francisco; Li, Qiang; Eichhorn, Stephen J; Enrione, Javier

    2018-09-01

    Microfibrillated cellulose (MFC) obtained from eucalyptus was embedded in gelatin from two sources; namely bovine and salmon gelatin. Raman spectroscopy revealed that stress is transferred more efficiently from bovine gelatin to the MFC when compared to salmon gelatin. Young's modulus, tensile strength, strain at failure and work of fracture of the nanocomposite films were improved by ∼67, 131, 43 y 243% respectively when using salmon gelatin as matrix material instead of bovine gelatin. Imaging of the tensile fracture surface of the MFC-gelatin nanocomposites revealed that crack formation occurs predominantly within bovine and salmon gelatin matrices rather than within the MFC or at the MFC/gelatin interface. This suggests that the mechanical failure mechanism in these nanocomposite materials is predominantly governed by a matrix-cohesive fracture mechanism. Both strength and flexibility are desirable properties for composite coatings made from gelatin-based materials, and so the findings of this study could assist in their utilization in the food and pharmaceutical industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Optimisation of gelatin extraction from Unicorn leatherjacket (Aluterus monoceros) skin waste: response surface approach.

    PubMed

    Hanjabam, Mandakini Devi; Kannaiyan, Sathish Kumar; Kamei, Gaihiamngam; Jakhar, Jitender Kumar; Chouksey, Mithlesh Kumar; Gudipati, Venkateshwarlu

    2015-02-01

    Physical properties of gelatin extracted from Unicorn leatherjacket (Aluterus monoceros) skin, which is generated as a waste from fish processing industries, were optimised using Response Surface Methodology (RSM). A Box-Behnken design was used to study the combined effects of three independent variables, namely phosphoric acid (H3PO4) concentration (0.15-0.25 M), extraction temperature (40-50 °C) and extraction time (4-12 h) on different responses like yield, gel strength and melting point of gelatin. The optimum conditions derived by RSM for the yield (10.58%) were 0.2 M H3PO4 for 9.01 h of extraction time and hot water extraction of 45.83 °C. The maximum achieved gel strength and melting point was 138.54 g and 22.61 °C respectively. Extraction time was found to be most influencing variable and had a positive coefficient on yield and negative coefficient on gel strength and melting point. The results indicated that Unicorn leatherjacket skins can be a source of gelatin having mild gel strength and melting point.

  2. Comparison of porcine thorax to gelatine blocks for wound ballistics studies.

    PubMed

    Mabbott, A; Carr, D J; Champion, S; Malbon, C

    2016-09-01

    Tissue simulants are typically used in ballistic testing as substitutes for biological tissues. Many simulants have been used, with gelatine amongst the most common. While two concentrations of gelatine (10 and 20 %) have been used extensively, no agreed standard exists for the preparation of either. Comparison of ballistic damage produced in both concentrations is lacking. The damage produced in gelatine is also questioned, with regards to what it would mean for specific areas of living tissue. The aim of the work discussed in this paper was to consider how damage caused by selected pistol and rifle ammunition varied in different simulants. Damage to gelatine blocks 10 and 20 % in concentration were tested with 9 mm Luger (9 × 19 full metal jacket; FMJ) rounds, while damage produced by .223 Remington (5.56 × 45 Federal Premium® Tactical® Bonded®) rounds to porcine thorax sections (skin, underlying tissue, ribs, lungs, ribs, underlying tissue, skin; backed by a block of 10 % gelatine) were compared to 10 and 20 % gelatine blocks. Results from the .223 Remington rifle round, which is one that typically expands on impact, revealed depths of penetration in the thorax arrangement were significantly different to 20 % gelatine, but not 10 % gelatine. The level of damage produced in the simulated thoraxes was smaller in scale to that witnessed in both gelatine concentrations, though greater debris was produced in the thoraxes.

  3. Antibiotic-Releasing Porous Polymethylmethacrylate/Gelatin/Antibiotic Constructs for Craniofacial Tissue Engineering

    PubMed Central

    Shi, Meng; Kretlow, James D.; Spicer, Patrick P.; Tabata, Yasuhiko; Demian, Nagi; Wong, Mark E.; Kasper, F. Kurtis; Mikos, Antonios G.

    2011-01-01

    An antibiotic-releasing porous polymethylmethacrylate (PMMA) construct was developed to maintain the bony space and prime the wound site in the initial step of a two-stage regenerative medicine approach toward reconstructing significant bony or composite craniofacial tissue defects. Porous polymethylmethacrylate (PMMA) constructs incorporating gelatin microparticles (GMPs) were fabricated by the sequential assembly of GMPs, the antibiotic colistin, and a clinically used bone cement formulation of PMMA powder and methylmethacrylate liquid. PMMA/gelatin/antibiotic constructs with varying gelatin incorporation and drug content were investigated to elucidate the relationship between material composition and construct properties (porosity and drug release kinetics). The porosity of PMMA/gelatin/antibiotic constructs ranged between 7.6±1.8–38.4±1.4% depending on the amount of gelatin incorporated and the drug solution added for gelatin swelling. The constructs released colistin over 10 or 14 days with an average release rate per day above 10 µg/ml. The porosity and in vitro colistin release kinetics of PMMA/gelatin/antibiotic constructs were tuned by varying the material composition and fabrication parameters. This study demonstrates the potential of gelatin-incorporating PMMA constructs as a functional space maintainer for both promoting tissue healing/coverage and addressing local infections, enabling better long-term success of the definitive regenerated tissue construct. PMID:21295086

  4. Fabrication of an ultrafine fish gelatin nanofibrous web from an aqueous solution by electrospinning.

    PubMed

    Kwak, Hyo Won; Shin, Munju; Lee, Jeong Yun; Yun, Haesung; Song, Dae Woong; Yang, Yesol; Shin, Bong-Seob; Park, Young Hwan; Lee, Ki Hoon

    2017-09-01

    Electrospinning of aqueous gelatin solution obtained from bovine or porcine sources has been difficult to achieve without additional facilities, such as a temperature control oven or heating cover. Gelatin from cold-water fish has low contents of proline (Pro) and hydroxyproline (Hyp) compared with mammalian-derived gelatin. For this reason, the fish-derived gelatin maintains a sol state without showing gelation behavior at room temperature. In the present study, we prepared an ultrafine fish gelatin nanofibrous web by electrospinning from aqueous solutions without any additive polymers or temperature control facilities. The concentration and viscosity of fish gelatin are the most important factor in determining the electrospinnability and fiber diameter. Electrospinning of aqueous fish gelatin has the highest nanofiber productivity compared to other organic solvent systems. Using glutaraldehyde vapor (GTA), the water stability was improved and substantial enhancement was achieved in the mechanical properties. Finally, the cytotoxicity of a fish gelatin nanofibrous scaffold was evaluated based on a cell proliferation study by culturing human dermal fibroblasts (HDFs) compared with a fish gelatin film and nanofibrous mat from mammalian gelatin. The result shows better initial cell attachment and proliferation compared with the fish gelatin film and no significant difference compared with mammalian-derived gelatin nanofibrous mat. We expect that electrospinning of aqueous fish gelatin could be an effective alternative mammalian gelatin source. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Co-localisation of advanced glycation end products and d-β-aspartic acid-containing proteins in gelatinous drop-like corneal dystrophy

    PubMed Central

    Oshika, Tetsuro; Takazawa, Yutaka; Fukayama, Masashi; Fujii, Noriko

    2012-01-01

    Purpose Gelatinous drop-like corneal dystrophy (GDLD), also known as familial subepithelial corneal amyloidosis, is an autosomal recessive disorder that causes progressive corneal opacity due to accumulation of amyloid fibrils in the corneal stroma. Genetic analyses have revealed that a mutation in membrane component chromosome 1 surface marker 1 gene is responsible for GDLD. However, the mechanism of amyloid formation in the corneal stroma remains unclear. The present study attempted to reveal the role of advanced glycation end products (AGE) and d-amino acids in amyloid formation in GDLD. Methods Informed consent was obtained from five patients with GDLD, three patients with bullous keratopathy and three patients with interstitial keratitis and all the specimens were analysed. Localisation of amyloid fibrils was analysed using Congo-red and thioflavin T staining. In addition, the localisation of AGE (Nɛ-carboxy(methyl)-l-lysine, pyrraline and pentosidine) and d-β-aspartic acid-containing proteins, a major form of d-amino acid-containing proteins, was analysed immunohistochemically. Results In all GDLD specimens, strong immunoreactivity to AGE and d-β-aspartic acid-containing proteins was detected in the subepithelial amyloid-rich region. In contrast, amyloid fibrils, AGE, or d-amino acid-containing proteins were slightly detected in the corneal stroma of patients with bullous keratopathy and interstitial keratitis. Conclusions Abnormally accumulated proteins rich in AGE and d-β-aspartic acid co-localise in the amyloid lesions in GDLD. These results indicate that non-enzymatic post-translational modifications of proteins, including AGE formation and isomerisation of aspartyl residues, will be the cause as well as the result of amyloid fibril formations in GDLD. PMID:22694960

  6. [A case of anaphylaxis induced by gelatin-contained gel capsule cold medicine].

    PubMed

    Tanaka, Masako; Inomata, Naoko; Matsuura, Midori; Ishida, Shuichi; Suzuki, Aki; Sohara, Mizue; Aihara, Michiko

    2014-11-01

    We report here a 20-year old woman who referred to our clinic for identify the responsible antigen of anaphylaxis. Five days before the reaction, she had a cold and had taken a gel capsule cold medicine, Stona IB Gel®. On the day of the reaction, she took a dose of Stona IB Gel® after eating yogurt. Five minutes after oral administration, she developed a heat sensation and pruritus on her neck, with flushing, abdominal pains, breathing difficulties, and syncope. The specific IgE antibodies measured by ImmunoCAP® were all negative except for gelatin. Prick-prick skin testing revealed positive responses to Stona IB Gel®, gelatin KS and gelatin RP600, of which the latter two were included in the Stona IB Gel® capsule. From these test results, she was diagnosed with anaphylaxis due to gelatin, and to date she has had no further allergic symptoms since avoiding foods containing gelatin. In infancy she had received four vaccinations against diphtheria, pertussis and tetanus, which contained gelatin as a stabilizer. However, she had not developed allergic symptoms until this time. We hypothesize that she might be sensitized to gelatin by taking Stona IB Gel® during the preceding 4 days. This is the first case of anaphylaxis from the ingestion of an oral medication containing gelatin in Japan. Allergic reactions to gelatin are comparatively rare, but according to the past reports, the reactions were severe. Since many kinds of foods, cosmetics, pharmaceutical products, and medication contain gelatin, it is important to be aware of gelatin allergy.

  7. Influence of lyophilization factors and gelatin concentration on pore structures of atelocollagen/gelatin sponge biomaterial.

    PubMed

    Yang, Longqiang; Tanabe, Koji; Miura, Tadashi; Yoshinari, Masao; Takemoto, Shinji; Shintani, Seikou; Kasahara, Masataka

    2017-07-26

    This study aimed to investigate influences of lyophilization factors and gelatin concentration on pore structures of ACG sponge. ACG sponges of different freezing temperatures (-30, -80 and -196 o C), freezing times (1, 2 and 24 h), gelatin concentrations (0.6%AC+0.15%G, 0.6%AC+0.6%G and 0.6%AC+2.4%G), and with 500 μM fluvastatin were fabricated. Pore structures including porosity and pore size were analyzed by scanning electron microscopy and ImageJ. The cytotoxic effects of ACG sponges were evaluated in vitro. Freezing temperature did not affect porosity while high freezing temperature (-30 o C) increased pore size. The high gelatin concentration group (0.6%AC+2.4%G) had decreased porosity and pore size. Freezing time and 500 μM fluvastatin did not affect pore structures. The cytotoxicity and cell proliferation assays revealed that ACG sponges had no cytotoxic effects on human mesenchymal stromal cell growth and proliferation. These results indicate that ACG sponge may be a good biomaterial scaffold for bone regeneration.

  8. On the role of methacrylic acid copolymers in the intracellular delivery of antisense oligonucleotides.

    PubMed

    Yessine, Marie-Andrée; Meier, Christian; Petereit, Hans-Ulrich; Leroux, Jean-Christophe

    2006-05-01

    The delivery of active biomacromolecules to the cytoplasm is a major challenge as it is generally hindered by the endosomal/lysosomal barrier. Synthetic titratable polyanions can overcome this barrier by destabilizing membrane bilayers at pH values typically found in endosomes. This study investigates how anionic polyelectrolytes can enhance the cytoplasmic delivery of an antisense oligonucleotide (ODN). Novel methacrylic acid (MAA) copolymers were examined for their pH-sensitive properties and ability to destabilize cell membranes in a pH-dependent manner. Ternary complex formulations prepared with the ODN, a cationic lipid and a MAA copolymer were systematically characterized with respect to their size, zeta potential, antisense activity, cytotoxicity and cellular uptake using the A549 human lung carcinoma cell line. The MAA copolymer substantially increased the activity of the antisense ODN in inhibiting the expression of protein kinase C-alpha. Uptake, cytotoxicity and antisense activity were strongly dependent on copolymer concentration. Metabolic inhibitors demonstrated that endocytosis was the major internalization pathway of the complexes, and that endosomal acidification was essential for ODN activity. Confocal microscopy analysis of cells incubated with fluorescently-labeled complexes revealed selective delivery of the ODN, but not of the copolymer, to the cytoplasm/nucleus. This study provides new insight into the mechanisms of intracellular delivery of macromolecular drugs, using synthetic anionic polyelectrolytes.

  9. Biomimetic Engineering of Nanofibrous Gelatin Scaffolds with Noncollagenous Proteins for Enhanced Bone Regeneration

    PubMed Central

    Sun, Yao; Jiang, Yong; Liu, Qilin; Gao, Tian; Feng, Jian Q.; Dechow, Paul; D'Souza, Rena N.; Qin, Chunlin

    2013-01-01

    Biomimetic approaches are widely used in scaffolding designs to enhance tissue regeneration. In this study, we integrated noncollagenous proteins (NCPs) from bone extracellular matrix (ECM) with three-dimensional nanofibrous gelatin (NF-Gelatin) scaffolds to form an artificial matrix (NF-Gelatin-NCPs) mimicking both the nano-structured architecture and chemical composition of natural bone ECM. Through a chemical coupling process, the NCPs were evenly distributed over all the surfaces (inner and outer) of the NF-gelatin-NCPs. The in vitro study showed that the number of osteoblasts (MC3T3-E1) on the NF-Gelatin-NCPs was significantly higher than that on the NF-Gelatin after being cultured for 14 days. Both the alkaline phosphatase (ALP) activity and the expression of osteogenic genes (OPN, BSP, DMP1, CON, and Runx2) were significantly higher in the NF-Gelatin-NCPs than in the NF-Gelatin at 3 weeks. Von Kossa staining, backscattered scanning electron microscopy, and microcomputed tomography all revealed a higher amount of mineral deposition in the NF-Gelatin-NCPs than in the NF-Gelatin after in vitro culturing for 3 weeks. The in vivo calvarial defect study indicated that the NF-Gelatin-NCPs recruited more host cells to the defect and regenerated a higher amount of bone than the controls after implantation for 6 weeks. Immunohistochemical staining also showed high-level mineralization of the bone matrix in the NF-Gelatin-NCPs. Taken together, both the in vitro and in vivo results confirmed that the incorporation of NCPs onto the surfaces of the NF-Gelatin scaffold significantly enhanced osteogenesis and mineralization. Biomimetic engineering of the surfaces of the NF-Gelatin scaffold with NCPs, therefore, is a promising strategy to enhance bone regeneration. PMID:23469769

  10. Solution blow spinning of food-grade gelatin nanofibers

    USDA-ARS?s Scientific Manuscript database

    The primary advantage of nanofibers over larger diameter fibers is the larger surface area to volume ratio. This study evaluated solution blow spinning (SBS) processing conditions for obtaining food-grade gelatin nanofibers from mammalian and fishery by-products, such as pork skin gelatins (PGs) and...

  11. Comparison of water gel desserts from fish skin and pork gelatins using instrumental measurements.

    PubMed

    Zhou, Peng; Regenstein, Joe M

    2007-05-01

    The objective of this study was to compare water gel desserts from various gelatins using instrumental measurements. The puncture test and texture profile analysis (TPA) with compression were determined at 25% and 75% deformation; the melting properties were determined rheologically by monitoring the change of storage modulus (G') with increasing temperature. The measurements with 25% deformation were always nondestructive, while measurements with 75% deformation were mostly destructive. Desserts made from Alaska pollock gelatin (AG) or gelatin mixtures containing AG were more resistant to the destruction caused by the large deformation than tilapia gelatin and pork gelatins. In addition, the gel dessert made from AG melted at a lower temperature than those from tilapia skin gelatin and pork gelatins, while desserts made from gelatin mixtures reflected the melting properties of the separate gelatins.

  12. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic.../methyl methacrylate polymers. The vinylidene chloride/methyl acrylate/methyl methacrylate polymers (CAS...

  13. Hybrid chitosan-ß-glycerol phosphate-gelatin nano-/micro fibrous scaffolds with suitable mechanical and biological properties for tissue engineering.

    PubMed

    Lotfi, Marzieh; Bagherzadeh, Roohollah; Naderi-Meshkin, Hojjat; Mahdipour, Elahe; Mafinezhad, Asghar; Sadeghnia, Hamid Reza; Esmaily, Habibollah; Maleki, Masoud; Hasssanzadeh, Halimeh; Ghayaour-Mobarhan, Majid; Bidkhori, Hamid Reza; Bahrami, Ahmad Reza

    2016-03-01

    Scaffold-based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano-/microfibrous scaffold, made from a mixture of chitosan-ß-glycerol phosphate-gelatin (chitosan-GP-gelatin) using a standard electrospinning set-up was developed. Gelatin-acid acetic and chitosan ß-glycerol phosphate-HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin-only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non-toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell-based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan-GP-gelatin fibrous scaffolds for engineering three-dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc.

  14. IgE antibody to fish gelatin (type I collagen) in patients with fish allergy.

    PubMed

    Sakaguchi, M; Toda, M; Ebihara, T; Irie, S; Hori, H; Imai, A; Yanagida, M; Miyazawa, H; Ohsuna, H; Ikezawa, Z; Inouye, S

    2000-09-01

    Most children with anaphylaxis to measles, mumps, and rubella vaccines had shown sensitivity to bovine gelatin that was included in the vaccines. Recently, it was found that bovine type I collagen, which is the main content in the gelatin, is a major allergen in bovine gelatin allergy. Fish meat and skin also contain type I collagen. The present study was designed to investigate IgE antibody to fish gelatin in children with fish allergy. Serum samples were taken from patients in 3 groups: (1) 10 patients with fish allergy and specific IgE to fish meat; (2) two patients with allergies to both fish meat and bovine gelatin and specific IgE to fish meat and bovine gelatin; and (3) 15 patients with atopic dermatitis and specific IgE to fish meat. Various fish gelatins (type I collagen) were prepared from fish skin. IgE antibody to fish gelatin was analyzed by using ELISA and immunoblotting. Of 10 patients with fish allergy, 3 had specific IgE to fish gelatin. Of two patients with fish allergy and bovine gelatin allergy, all had specific IgE to fish gelatin. Of 15 patients with atopic dermatitis and specific IgE to fish meat, 5 had specific IgE to fish gelatin. Furthermore, IgE from pooled serum of the patients reacted with both the alpha1 and alpha2 chains of fish type I collagen in immunoblots. There is cross-reactivity among gelatins from various fishes, but there is little cross-reactivity between fish and bovine gelatins. Some fish-sensitive patients possessed IgE antibody to fish gelatin. Fish gelatin (type I collagen) might be an allergen in subjects with fish allergy.

  15. Distribution, composition and functions of gelatinous tissues in deep-sea fishes.

    PubMed

    Gerringer, Mackenzie E; Drazen, Jeffrey C; Linley, Thomas D; Summers, Adam P; Jamieson, Alan J; Yancey, Paul H

    2017-12-01

    Many deep-sea fishes have a gelatinous layer, or subdermal extracellular matrix, below the skin or around the spine. We document the distribution of gelatinous tissues across fish families (approx. 200 species in ten orders), then review and investigate their composition and function. Gelatinous tissues from nine species were analysed for water content (96.53 ± 1.78% s.d.), ionic composition, osmolality, protein (0.39 ± 0.23%), lipid (0.69 ± 0.56%) and carbohydrate (0.61 ± 0.28%). Results suggest that gelatinous tissues are mostly extracellular fluid, which may allow animals to grow inexpensively. Further, almost all gelatinous tissues floated in cold seawater, thus their lower density than seawater may contribute to buoyancy in some species. We also propose a new hypothesis: gelatinous tissues, which are inexpensive to grow, may sometimes be a method to increase swimming efficiency by fairing the transition from trunk to tail. Such a layer is particularly prominent in hadal snailfishes (Liparidae); therefore, a robotic snailfish model was designed and constructed to analyse the influence of gelatinous tissues on locomotory performance. The model swam faster with a watery layer, representing gelatinous tissue, around the tail than without. Results suggest that the tissues may, in addition to providing buoyancy and low-cost growth, aid deep-sea fish locomotion.

  16. Distribution, composition and functions of gelatinous tissues in deep-sea fishes

    PubMed Central

    Drazen, Jeffrey C.; Linley, Thomas D.; Summers, Adam P.; Jamieson, Alan J.; Yancey, Paul H.

    2017-01-01

    Many deep-sea fishes have a gelatinous layer, or subdermal extracellular matrix, below the skin or around the spine. We document the distribution of gelatinous tissues across fish families (approx. 200 species in ten orders), then review and investigate their composition and function. Gelatinous tissues from nine species were analysed for water content (96.53 ± 1.78% s.d.), ionic composition, osmolality, protein (0.39 ± 0.23%), lipid (0.69 ± 0.56%) and carbohydrate (0.61 ± 0.28%). Results suggest that gelatinous tissues are mostly extracellular fluid, which may allow animals to grow inexpensively. Further, almost all gelatinous tissues floated in cold seawater, thus their lower density than seawater may contribute to buoyancy in some species. We also propose a new hypothesis: gelatinous tissues, which are inexpensive to grow, may sometimes be a method to increase swimming efficiency by fairing the transition from trunk to tail. Such a layer is particularly prominent in hadal snailfishes (Liparidae); therefore, a robotic snailfish model was designed and constructed to analyse the influence of gelatinous tissues on locomotory performance. The model swam faster with a watery layer, representing gelatinous tissue, around the tail than without. Results suggest that the tissues may, in addition to providing buoyancy and low-cost growth, aid deep-sea fish locomotion. PMID:29308245

  17. New dichromated gelatin technologies for diffraction optical element fabrication

    NASA Astrophysics Data System (ADS)

    Vigovsky, Yury N.; Malov, Alexander N.; Malov, Sergey N.; Feshchenko, Valeriy S.; Konop, Sergey P.

    1998-01-01

    The hologram recording mechanism in the dichromated gelatin layers are discussed. A new technologies are described for red rainbow hologram recording in the photographic emulsion and selfdeveloped dichromated gelatin--glycerol layers. A new method is suggested and experimentally approbated for relief plastic replica of the rainbow hologram fabrication based on the tanning developed or bleached photographic emulsion. This method is modification of the old photographic `bromoil' process. Some aspects of the noncoherent hologram coping on the dichromated gelatin films are discussed too.

  18. 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels

    PubMed Central

    Fu, Yao; Xu, Kedi; Zheng, Xiaoxiang; Giacomin, A. Jeffrey; Mix, Adam W.; Kao, Weiyuan John

    2012-01-01

    The combined use of natural ECM components and synthetic materials offers an attractive alternative to fabricate hydrogel-based tissue engineering scaffolds to study cell-matrix interactions in three-dimensions (3D). A facile method was developed to modify gelatin with cysteine via a bifunctional PEG linker, thus introducing free thiol groups to gelatin chains. A covalently crosslinked gelatin hydrogel was fabricated using thiolated gelatin and poly(ethylene glycol) diacrylate (PEGdA) via thiol-ene reaction. Unmodified gelatin was physically incorporated in a PEGdA-only matrix for comparison. We sought to understand the effect of crosslinking modality on hydrogel physicochemical properties and the impact on 3D cell entrapment. Compared to physically incorporated gelatin hydrogels, covalently crosslinked gelatin hydrogels displayed higher maximum weight swelling ratio (Qmax), higher water content, significantly lower cumulative gelatin dissolution up to 7 days, and lower gel stiffness. Furthermore, fibroblasts encapsulated within covalently crosslinked gelatin hydrogels showed extensive cytoplasmic spreading and the formation of cellular networks over 28 days. In contrast, fibroblasts encapsulated in the physically incorporated gelatin hydrogels remained spheroidal. Hence, crosslinking ECM protein with synthetic matrix creates a stable scaffold with tunable mechanical properties and with long-term cell anchorage points, thus supporting cell attachment and growth in the 3D environment. PMID:21955690

  19. Dehydration of pollock skin prior to gelatin production

    USDA-ARS?s Scientific Manuscript database

    Alaska pollock (Theragra chalcogramma) is the U.S.A.'s largest commercial fishery, with an annual catch of over 1 million tons. During pollock processing, the skins are discarded or made into fish meal, despite their value for gelatin production. The absence of gelatin-processing facilities in Alask...

  20. Preparation and characterization of gelatin/chitosan/carbodiimide films

    USDA-ARS?s Scientific Manuscript database

    In prior studies, we examined the effects of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and water-dispersible polycarbodiimides (pCDIs) on the properties of gels produced from gelatin and a gelatin/chitosan blend that may be suitable for a role in leather processing. Those studies showed m...

  1. Treatment of wet blue with fillers produced from quebracho-modified gelatin

    USDA-ARS?s Scientific Manuscript database

    Gelatin modified with quebracho to produce high molecular weight, high viscosity products was investigated as a filler in leather processing. The uptake of quebracho/gelatin product by the wet blue was on the average about 55% of the 10% gelatin/quebracho product offered; the reaction appeared to be...

  2. Flow-induced conformational changes in gelatin structure and colloidal stabilization.

    PubMed

    Akbulut, Mustafa; Reddy, Naveen K; Bechtloff, Bernd; Koltzenburg, Sebastian; Vermant, Jan; Prud'homme, Robert K

    2008-09-02

    Flow can change the rate at which solutes adsorb on surfaces by changing mass transfer to the surface, but moreover, flow can induce changes in the conformation of macromolecules in solution by providing sufficient stresses to perturb the segmental distribution function. However, there are few studies where the effect of flow on macromolecules has been shown to alter the structure of macromolecules adsorbed on surfaces. We have studied how the local energy dissipation alters the adsorption of gelatin onto polystyrene nanoparticles ( r = 85 nm). The change in the nature of the adsorbed layer is manifest in the change in the ability of the nanoparticles to resist aggregation. Circular dichroism spectroscopy was used to assess conformational changes in gelatin, and dynamic light scattering was used to assess the colloid stability. Experiments were conducted in a vortex jet mixer where energy density and mixing times have been quantified; mixing of the gelatin and unstable nanoparticles occurs on the order of milliseconds. The adsorption of the gelatin provides steric stabilization to the nanoparticles. We found that the stability of the gelatin-adsorbed nanoparticles increased with increasing mixing velocities: when the mixing velocities were changed from 0.9 to 550 m/s, the radius of the nanoclusters (aggregates) formed 12 h after the mixing decreased from 2620 to 600 nm. Increasing temperature also gave rise to similar trends in the stability behavior with increasing temperature, leading to increasing colloid stability. Linear flow birefringence studies also suggested that the velocity fields in the mixer are sufficiently strong to produce conformational changes in the gelatin. These results suggest that the energy dissipation produced by mixing can activate conformational changes in gelatin to alter its adsorption on the surfaces of nanoparticles. Understanding how such conformational changes in gelatin can be driven by local fluid mechanics and how these changes

  3. UV treatments on the physicochemical properties of tilapia skin and pig skin gelatin.

    PubMed

    Wu, C K; Tsai, J S; Chen, Z Y; Sung, W C

    2015-06-01

    Tilapia skin gelatin, pig skin gelatin, and their mousse premixes were exposed to UV irradiation for 103, 206, and 309 kJ/cm(2). All samples after 309 kJ/cm(2) exposure exhibited a significant increase in gel strength, gel forming ability as well as viscosity of solutions. It was shown that UV treatment could also improve the pig skin gelatin foam stability and foam formation ability compared to those of tilapia skin gelatin. Nevertheless, the panelists gave the lowest scores to mousse made with 309 kJ/cm(2) UV-irradiated premix mousse pig skin gelatin. Tilapia skin gelatin could be used as a substitute ingredient for premix mousse made from pig skin gelatin. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications.

    PubMed

    Dawlee, S; Jayakrishnan, A; Jayabalan, M

    2009-12-01

    A new class of radiopaque copolymer using methyl methacrylate (MMA) and glycidyl methacrylate (GMA) monomers was synthesized and characterized. The copolymer was made radiopaque by the epoxide ring opening of GMA using the catalyst o-phenylenediamine and the subsequent covalent attachment of elemental iodine. The copolymer was characterized by Fourier transform infrared (FTIR) spectra, energy dispersive X-ray analysis using environmental scanning electron microscope (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). X-ray visibility of the copolymer was checked by X-radiography. Blood compatibility and cytotoxicity of the newly synthesized copolymer were also evaluated. The iodinated copolymer was thermally stable, blood compatible, non-cytotoxic, and highly radiopaque. The presence of bulky iodine group created a new copolymer with modified properties for potential use in biomedical applications.

  5. Design and evaluation of clickable gelatin-oleic nanoparticles using fattigation-platform for cancer therapy.

    PubMed

    Meghani, Nilesh M; Amin, Hardik H; Park, Chulhun; Park, Jun-Bom; Cui, Jing-Hao; Cao, Qing-Ri; Lee, Beom-Jin

    2018-07-10

    The principles of bioorthogonal click chemistry and metabolic glycoengineering were applied to produce targeted anti-cancer drug delivery via fattigation-platform-based gelatin-oleic nanoparticles. A sialic acid precursor (Ac 4 ManNAz) was introduced to the cell surface. Gelatin and oleic acid were conjugated by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry with the subsequent covalent attachment of dibenzocyclooctyne (DBCO) in a click reaction on the cell surface. The physicochemical properties, drug release, in vitro cytotoxicity, and cellular uptake of DBCO-conjugated gelatin oleic nanoparticles (GON-DBCO; particle size, ∼240 nm; zeta potential, 6 mV) were evaluated. Doxorubicin (DOX) was used as a model drug and compared with the reference product, Caelyx®. A549 and MCF-7 cell lines were used for the in vitro studies. GON-DBCO showed high DOX loading and encapsulation efficiencies. In A549 cells, the IC50 value for GON-DBCO-DOX (1.29 µg/ml) was six times lower than that of Caelyx® (10.54 µg/ml); in MCF-7 cells, the IC50 values were 1.78 µg/ml and 2.84 µg/ml, respectively. Confocal microscopy confirmed the click reaction between GON-DBCO and Ac4ManNAz on the cell surface. Flow cytometry data revealed that the intracellular uptake of GON-DBCO-DOX was approximately two times greater than that of GON-DOX and Caelyx®. Thus, the newly designed GON-DBCO-DOX provided a safe and efficient drug delivery system to actively target the anticancer agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Design and in vitro evaluation of a novel poly(methacrylic acid)/metronidazole antibacterial nanogel as an oral dosage form.

    PubMed

    Chen, Tao; Chen, Liang; Li, Haicheng; Chen, Yuhui; Guo, Huixin; Shu, Yang; Chen, Zhiyu; Cai, Changhui; Guo, Lina; Zhang, Xianen; Zhou, Lin; Zhong, Qiu

    2014-06-01

    To overcome the undesirable side-effects of metronidazole (MTZ), ethylene glycol dimethacrylate is used as the cross-linker, and a series of poly(methacrylic acid) (PMAA) nanogels were prepared to load the MTZ. We investigated the morphology, size, in vitro release property in the simulated gastrointestinal medium, long-term antibacterial performance against Bacteroides fragilis, cytotoxicity, stability and activity of this novel MTZ/PMAA nanogel. The results indicate that the MTZ/PMAA nanogel sustained the release of MTZ in long-term antibacterial activity in the simulated gastrointestinal medium. This MTZ/PMAA nanogel exhibits less cytotoxicity than MTZ alone, suggesting that MTZ/PMAA nanogel is a more useful dosage form than MTZ for mild-to-moderate Clostridium difficile infections. The novel aspects of this study include the synthesis of a nanogel and the three-phase study of the release profile, which might be useful for other researchers in this field. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  7. The effects of hyaluronic acid incorporated as a wetting agent on lysozyme denaturation in model contact lens materials.

    PubMed

    Weeks, Andrea; Boone, Adrienne; Luensmann, Doerte; Jones, Lyndon; Sheardown, Heather

    2013-09-01

    Conventional and silicone hydrogels as models for contact lenses were prepared to determine the effect of the presence of hyaluronic acid on lysozyme sorption and denaturation. Hyaluronic acid was loaded into poly(2-hydroxyethyl methacrylate) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) hydrogels, which served as models for conventional and silicone hydrogel contact lens materials. The hyaluronic acid was cross-linked using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide in the presence of dendrimers. Active lysozyme was quantified using a Micrococcus lysodeikticus assay while total lysozyme was determined using 125-I radiolabeled protein. To examine the location of hyaluronic acid in the gels, 6-aminofluorescein labeled hyaluronic acid was incorporated into the gels using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide chemistry and the gels were examined using confocal laser scanning microscopy. Hyaluronic acid incorporation significantly reduced lysozyme sorption in poly(2-hydroxyethyl methacrylate) (p < 0.00001) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) (p < 0.001) hydrogels, with the modified materials sorbing only 20% and 16% that of the control, respectively. More importantly, hyaluronic acid also decreased lysozyme denaturation in poly(2-hydroxyethyl methacrylate) (p < 0.005) and poly(2-hydroxyethyl methacrylate)/TRIS--methacryloxypropyltris (trimethylsiloxy silane) (p < 0.02) hydrogels. The confocal laser scanning microscopy results showed that the hyaluronic acid distribution was dependent on both the material type and the molecular weight of hyaluronic acid. This study demonstrates that hyaluronic acid incorporated as a wetting agent has the potential to reduce lysozyme sorption and denaturation in contact lens applications. The distribution of hyaluronic acid within hydrogels appears to affect denaturation, with more surface mobile, lower

  8. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and Drug...

  9. 21 CFR 73.3127 - Vinyl alcohol/methyl methacrylate-dye reaction products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Vinyl alcohol/methyl methacrylate-dye reaction... Vinyl alcohol/methyl methacrylate-dye reaction products. (a) Identity. The color additives are formed by... methacrylate-dye reaction product listed under this section into commerce shall submit to the Food and Drug...

  10. Gelatinization kinetic of waxy starches under pressure according to ionic strength

    NASA Astrophysics Data System (ADS)

    Simonin, Hélène; Guyon, Claire; de Lamballerie, Marie; Lebail, Alain

    2010-12-01

    High pressure is a potential technology for the texturization of food products at ambient temperature. In this area, waxy starches are particularly interesting because they gelatinize quickly under sufficient pressure. However, gelatinization may be influenced by other components in the food matrix. Here, we investigate the influence of increasing ionic strength on gelatinization rate and kinetics at 500 MPa for waxy corn and waxy rice starches. We show that increasing ionic strength strongly retards and inhibits starch gelatinization under pressure and leads to heterogeneous gels with remnant granules.

  11. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from M w = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer M w smooths the hydrogen-bonded filmmore » surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small M w PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all M w but being somewhat more widely distributed in the films templated with higher M w PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less

  12. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    DOE PAGES

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; ...

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from M w = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer M w smooths the hydrogen-bonded filmmore » surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small M w PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all M w but being somewhat more widely distributed in the films templated with higher M w PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less

  13. Final report of the safety assessment of methacrylate ester monomers used in nail enhancement products.

    PubMed

    2005-01-01

    Methacrylate ester monomers are used in as artificial nail builders in nail enhancement products. They undergo rapid polymerization to form a hard material on the nail that is then shaped. While Ethyl Methacrylate is the primary monomer used in nail enhancement products, other methacrylate esters are also used. This safety assessment addresses 22 other methacrylate esters reported by industry to be present in small percentages as artificial nail builders in cosmetic products. They function to speed up polymerization and/or form cross-links. Only Tetrahydrofurfuryl Methacrylate was reported to the FDA to be in current use. The polymerization rates of these methacrylate esters are within the same range as Ethyl Methacrylate. While data are not available on all of these methacrylate esters, the available data demonstrated little acute oral, dermal, or i.p. toxicity. In a 28-day inhalation study on rats, Butyl Methacrylate caused upper airway irritation; the NOAEL was 1801 mg/m3. In a 28-day oral toxicity study on rats, t-Butyl Methacrylate had a NOAEL of 20 mg/kg/day. Beagle dogs dosed with 0.2 to 2.0 g/kg/day of C12 to C18 methacrylate monomers for 13 weeks exhibited effects only in the highest dose group: weight loss, emesis, diarrhea, mucoid feces, or salivation were observed. Butyl Methacrylate (0.1 M) and Isobutyl Methacrylate (0.1 M) are mildly irritating to the rabbit eye. HEMA is corrosive when instilled in the rabbit eye, while PEG-4 Dimethacrylate and Trimethylolpropane Trimethacrylate are minimally irritating to the eye. Dermal irritation caused by methacrylates is documented in guinea pigs and rabbits. In guinea pigs, HEMA, Isopropylidenediphenyl Bisglycidyl Methacrylate, Lauryl Methacrylate, and Trimethylolpropane Trimethacrylate are strong sensitizers; Butyl Methacrylate, Cyclohexyl Methacrylate, Hexyl Methacrylate, and Urethane Methacrylate are moderate sensitizers; Hydroxypropyl Methacrylate is a weak sensitizer; and PEG-4 Dimethacrylate and

  14. Recent advances in the use of gelatin in biomedical research.

    PubMed

    Su, Kai; Wang, Chunming

    2015-11-01

    The biomacromolecule, gelatin, has increasingly been used in biomedicine-beyond its traditional use in food and cosmetics. The appealing advantages of gelatin, such as its cell-adhesive structure, low cost, off-the-shelf availability, high biocompatibility, biodegradability and low immunogenicity, among others, have made it a desirable candidate for the development of biomaterials for tissue engineering and drug delivery. Gelatin can be formulated in the form of nanoparticles, employed as size-controllable porogen, adopted as surface coating agent and mixed with synthetic or natural biopolymers forming composite scaffolds. In this article, we review recent advances in the versatile applications of gelatin within biomedical context and attempt to draw upon its advantages and potential challenges.

  15. Evaporation-based method for preparing gelatin foams with aligned tubular pore structures.

    PubMed

    Frazier, Shane D; Srubar, Wil V

    2016-05-01

    Gelatin-based foams with aligned tubular pore structures were prepared via liquid-to-gas vaporization of tightly bound water in dehydrated gelatin hydrogels. This study elucidates the mechanism of the foaming process by investigating the secondary (i.e., helical) structure, molecular interactions, and water content of gelatin films before and after foaming using X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry and thermogravimetric analysis (TGA), respectively. Experimental data from gelatin samples prepared at various gelatin-to-water concentrations (5-30 wt.%) substantiate that resulting foam structures are similar in pore diameter (approximately 350 μm), shape, and density (0.05-0.22 g/cm(3)) to those fabricated using conventional methods (e.g., freeze-drying). Helical structures were identified in the films but were not evident in the foamed samples after vaporization (~150 °C), suggesting that the primary foaming mechanism is governed by the vaporization of water that is tightly bound in secondary structures (i.e., helices, β-turns, β-sheets) that are present in dehydrated gelatin films. FTIR and TGA data show that the foaming process leads to more disorder and reduced hydrogen bonding to hydroxyl groups in gelatin and that no thermal degradation of gelatin occurs before or after foaming. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Viscoelastic shock wave in ballistic gelatin behind soft body armor.

    PubMed

    Liu, Li; Fan, Yurun; Li, Wei

    2014-06-01

    Ballistic gelatins are widely used as a surrogate of biological tissue in blunt trauma tests. Non-penetration impact tests of handgun bullets on the 10wt% ballistic gelatin block behind soft armor were carried out in which a high-speed camera recorded the crater׳s movement and pressure sensors imbedded in the gelatin block recorded the pressure waves at different locations. The observed shock wave attenuation indicates the necessity of considering the gelatin׳s viscoelasticity. A three-element viscoelastic constitutive model was adopted, in which the relevant parameters were obtained via fitting the damping free oscillations at the beginning of the creep-mode of rheological measurement, and by examining the data of published split Hopkinson pressure bar (SHPB) experiments. The viscoelastic model is determined by a retardation time of 5.5×10(-5)s for high oscillation frequencies and a stress relaxation time of 2.0-4.5×10(-7)s for shock wave attenuation. Using the characteristic-line method and the spherical wave assumption, the propagation of impact pressure wave front and the subsequent unloading profile can be simulated using the experimental velocity boundary condition. The established viscoelastic model considerably improves the prediction of shock wave attenuation in the ballistic gelatin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Radiation induced graft copolymerization of methyl methacrylate onto chrome-tanned pig skins

    NASA Astrophysics Data System (ADS)

    Pietrucha, K.; Pȩkala, W.; Kroh, J.

    Graft copolymerization of methyl methacrylate (MMA) onto chrome-tanned pig skins was carried out by the irradiation with 60Co ?-rays. The grafted polymethyl methacrylate (PMMA) chains were isolated by acid hydrolysis of the collagen backbone in order to characterize the graft copolymers. Proof of grafting was obtained through the detection of amino acid endgroups in the isolated grafts by reaction with ninhydrin. The grafting yield of MMA in aqueous emulsion was found to be higher than that for pure MMA and MMA in acetone. The degree of grafting increases with increasing monomer concentration in emulsion and reaches maximum at radiation dose ca 15 kGy. The yield of grafting is very high - ca 90% of monomer converts into copolymer and only 10% is converted into homopolymer. The present paper reports the physical properties of chrome-tanned pig skins after graft polymerization with MMA in emulsion. Modified leathers are more resistant against water absorption and abrasion in comparison with unmodified ones. They have more uniform structure over the whole surface, greater thickness and stiffness. The results reported seem to indicate that MMA may be used in the production of shoe upper and sole leathers. The mechanism of some of the processes occuring during radiation grafting of MMA in water emulsion on tanned leathers has been also suggested and discussed.

  18. Analytical methods for gelatin differentiation from bovine and porcine origins and food products.

    PubMed

    Nhari, Raja Mohd Hafidz Raja; Ismail, Amin; Che Man, Yaakob B

    2012-01-01

    Usage of gelatin in food products has been widely debated for several years, which is about the source of gelatin that has been used, religion, and health. As an impact, various analytical methods have been introduced and developed to differentiate gelatin whether it is made from porcine or bovine sources. The analytical methods comprise a diverse range of equipment and techniques including spectroscopy, chemical precipitation, chromatography, and immunochemical. Each technique can differentiate gelatins for certain extent with advantages and limitations. This review is focused on overview of the analytical methods available for differentiation of bovine and porcine gelatin and gelatin in food products so that new method development can be established. © 2011 Institute of Food Technologists®

  19. Dichromated Gelatine as a Material of Optical Element

    NASA Astrophysics Data System (ADS)

    Lee, Hyuk-Soo; Cho, Dong-Hyun; Choi, Yong-Jin; Son, Jung-Young; Park, Seung-Han

    1999-04-01

    In the fabrication process of optical elements (OEs) by the laser scanning method using a dichromated gelatin (DCG) photoplate, the expansion and drying stress of gelatine caused by inhomogeneous liquid flow inside the gelatine affects the shape of OEs. The reason this inhomogeneous liquid flow exists in the energy oversaturated parts of OEs is the presence of surplus energy. In order to obtain the OEs of desired spherical lens shape, the drying stress should be reduced and therefore the maximum energy of the illuminating laser should be defined not to cause the surplus energy. The maximum energy is investigated according to the relative concentrations of (NH4)2Cr2O7 to DCG. The use of photoplates with a relative concentration of (NH4)2Cr2O7 to gelatin of more than 20% has some advantages when making the lens raster, especially a short-focal-length lens raster. It is also very important to increase the drying time to reduce the total drying stress by maintaining high humidity during the drying process.

  20. Gelatin/graphene systems for low cost energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landi, Giovanni; Fedi, Filippo; Sorrentino, Andrea

    2014-05-15

    In this work, we introduce the possibility to use a low cost, biodegradable material for temporary energy storage devices. Here, we report the use of biologically derived organic electrodes composed of gelatin ad graphene. The graphene was obtained by mild sonication in a mixture of volatile solvents of natural graphite flakes and subsequent centrifugation. The presence of exfoliated graphene sheets was detected by atomic force microscopy (AFM) and Raman spectroscopy. The homogeneous dispersion in gelatin demonstrates a good compatibility between the gelatin molecules and the graphene particles. The electrical characterization of the resulting nanocomposites suggests the possible applications as materialsmore » for transient, low cost energy storage device.« less

  1. Minimum estimated incidence in Japan of anaphylaxis to live virus vaccines including gelatin.

    PubMed

    Sakaguchi, M; Nakayama, T; Fujita, H; Toda, M; Inouye, S

    2000-10-15

    We have previously found that most occurrences of anaphylaxis to live virus vaccines are caused by gelatin present in the vaccines as a stabilizer. After we published the evidence for the role of gelatin in anaphylaxis, vaccine manufacturers in Japan began to eliminate gelatin from live virus vaccines. In the present study, we tried to estimate its incidence before the gelatin elimination was started. Physicians and vaccine manufacturers submitted serum samples from children with anaphylaxis to measles, mumps, rubella or varicella vaccine to National Institute of Infectious Diseases (NIID) for 3 years from April 1994 to March 1997. Specific IgE to gelatin was assayed at NIID or two manufacturers by the CAP and ELISA methods. There were 44 children with life-threatening severe anaphylaxis (airway obstruction or anaphylactic shock) during the 3-year period, 41 of whom had anti-gelatin IgE. There were 64 children with mild anaphylaxis (without airway obstruction); 62 had anti-gelatin IgE. There were 100 children with only systemic cutaneous signs; 81 had anti-gelatin IgE. The estimates for the incidence of the severe anaphylaxis in 1994-1996 are: 6.84, 7.31, 4. 36, and 10.3 cases per million doses of gelatin-containing measles, rubella, mumps, and varicella vaccines, respectively.

  2. Analysis of the major epitope of the alpha2 chain of bovine type I collagen in children with bovine gelatin allergy.

    PubMed

    Hori, Hisae; Hattori, Shunji; Inouye, Sakae; Kimura, Akinori; Irie, Shinkichi; Miyazawa, Hiroshi; Sakaguchi, Masahiro

    2002-10-01

    Anaphylaxis to measles, mumps, and rubella vaccines has been reported. It has been found that most of these reactions to live vaccines are caused by type I allergy with the bovine gelatin present in the vaccines as an allergen. Gelatin mainly includes denatured type I collagen, which consists of alpha1 and alpha2 chains. We previously reported that allergic reactions to gelatin are caused by the type I collagen alpha2 (alpha2[I]) chain. To aid in the development of gelatin that has little or no allergenicity in human subjects, we investigated epitopes of bovine alpha2(I) chain with use of IgE in gelatin-sensitive children. Serum samples were collected from 15 patients who had systemic allergic reactions to vaccines and high levels of specific IgE to bovine gelatin. Eleven overlapping recombinant proteins that cover bovine alpha2(I) were prepared with a bacterial expression vector. We examined IgE reactivity to these recombinant proteins by means of ELISA. Fifteen peptides covering a major reactive recombinant protein were synthesized. The IgE-reacting epitope was identified by means of IgE-ELISA inhibition with these synthetic peptides and pooled serum from the patients. We found that of the 15 patients, 13 showed IgE reactivity to a recombinant protein (no. 3) spanning the central region of the collagenous domain ((418)Gly-(662)Pro). Furthermore, all 13 patients showed IgE reactivity to the 4-kd recombinant protein (no. 3a) spanning the region from (461)Pro to (500)Glu. In IgE-ELISA inhibition we found that a minimum IgE epitope of gelatin allergen was composed of the 10-amino-acid sequence (485)Ile-Pro-Gly-Glu-Phe-Gly-Leu-Pro-Gly-Pro(494). This sequence is not observed in the human type I collagen alpha1 and alpha2 chains, nor is it found in the bovine type I collagen alpha1 chain. We found that Ile-Pro-Gly-Glu-Phe-Gly-Leu-Pro-Gly-Pro is a major IgE epitope of the alpha2 chain of bovine type I collagen in patients with gelatin allergy. The degree of anaphylaxis

  3. Catalase purification from rat liver with iron-chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) cryogel discs.

    PubMed

    Göktürk, Ilgım; Perçin, Işık; Denizli, Adil

    2016-08-17

    In this study, iron-chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-glutamic acid) (PHEMAGA/Fe(3+)) cryogel discs were prepared. The PHEMAGA/Fe(3+) cryogel discs were characterized by elemental analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, swelling tests, and surface area measurements. The PHEMAGA/Fe(3+) cryogel discs had large pores ranging from 10 to 100 µm with a swelling degree of 9.36 g H2O/g cryogel. Effects of pH, temperature, initial catalase concentration, and flow rate on adsorption capacity of the PHEMAGA/Fe(3+) cryogel discs were investigated. Maximum catalase adsorption capacity (62.6 mg/g) was obtained at pH 7.0, 25°C, and 3 mg/ml initial catalase concentration. The PHEMAGA/Fe(3+) cryogel discs were also tested for the purification of catalase from rat liver. After tissue homogenization, purification of catalase was performed using the PHEMAGA/Fe(3+) cryogel discs and catalase was obtained with a yield of 54.34 and 16.67 purification fold.

  4. Chitosan-functionalised poly(2-hydroxyethyl methacrylate) core-shell microgels as drug delivery carriers: salicylic acid loading and release.

    PubMed

    Mahattanadul, Natshisa; Sunintaboon, Panya; Sirithip, Piyawan; Tuchinda, Patoomratana

    2016-09-01

    This work presents the evaluation of chitosan-functionalised poly(2-hydroxyethyl methacrylate) (CS/PHEMA) core-shell microgels as drug delivery carriers. CS/PHEMA microgels were prepared by emulsifier-free emulsion polymerisation with N,N '-methylenebisacrylamide (MBA) as a crosslinker. The study on drug loading, using salicylic acid (SA) as a model drug, was performed. The results showed that the encapsulation efficiency (EE) increased as drug-to-microgel ratio was increased. Higher EE can be achieved with the increase in degree of crosslinking, by increasing the amount of MBA from 0.01 g to 0.03 g. In addition, the highest EE (61.1%) was observed at pH 3. The highest release of SA (60%) was noticed at pH 2.4, while the lowest one (49.4%) was obtained at pH 7.4. Moreover, the highest release of SA was enhanced by the presence of 0.2 M NaCl. The pH- and ionic-sensitivity of CS/PHEMA could be useful as a sustained release delivery device, especially for oral delivery.

  5. Quantitative detection of bovine and porcine gelatin difference using surface plasmon resonance based biosensor

    NASA Astrophysics Data System (ADS)

    Wardani, Devy P.; Arifin, Muhammad; Suharyadi, Edi; Abraha, Kamsul

    2015-05-01

    Gelatin is a biopolymer derived from collagen that is widely used in food and pharmaceutical products. Due to some religion restrictions and health issues regarding the gelatin consumption which is extracted from certain species, it is necessary to establish a robust, reliable, sensitive and simple quantitative method to detect gelatin from different parent collagen species. To the best of our knowledge, there has not been a gelatin differentiation method based on optical sensor that could detect gelatin from different species quantitatively. Surface plasmon resonance (SPR) based biosensor is known to be a sensitive, simple and label free optical method for detecting biomaterials that is able to do quantitative detection. Therefore, we have utilized SPR-based biosensor to detect the differentiation between bovine and porcine gelatin in various concentration, from 0% to 10% (w/w). Here, we report the ability of SPR-based biosensor to detect difference between both gelatins, its sensitivity toward the gelatin concentration change, its reliability and limit of detection (LOD) and limit of quantification (LOQ) of the sensor. The sensor's LOD and LOQ towards bovine gelatin concentration are 0.38% and 1.26% (w/w), while towards porcine gelatin concentration are 0.66% and 2.20% (w/w), respectively. The results show that SPR-based biosensor is a promising tool for detecting gelatin from different raw materials quantitatively.

  6. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration

    NASA Astrophysics Data System (ADS)

    Halima Shamaz, Bibi; Anitha, A.; Vijayamohan, Manju; Kuttappan, Shruthy; Nair, Shantikumar; Nair, Manitha B.

    2015-10-01

    Porous nanohydroxyapatite (nanoHA) is a promising bone substitute, but it is brittle, which limits its utility for load bearing applications. To address this issue, herein, biodegradable electrospun microfibrous sheets of poly(L-lactic acid)-(PLLA)-polyvinyl alcohol (PVA) were incorporated into a gelatin-nanoHA matrix which was investigated for its mechanical properties, the physical integration of the fibers with the matrix, cell infiltration, osteogenic differentiation and bone regeneration. The inclusion of sacrificial fibers like PVA along with PLLA and leaching resulted in improved cellular infiltration towards the center of the scaffold. Furthermore, the treatment of PLLA fibers with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide enhanced their hydrophilicity, ensuring firm anchorage between the fibers and the gelatin-HA matrix. The incorporation of PLLA microfibers within the gelatin-nanoHA matrix reduced the brittleness of the scaffolds, the effect being proportional to the number of layers of fibrous sheets in the matrix. The proliferation and osteogenic differentiation of human adipose-derived mesenchymal stem cells was augmented on the fibrous scaffolds in comparison to those scaffolds devoid of fibers. Finally, the scaffold could promote cell infiltration, together with bone regeneration, upon implantation in a rabbit femoral cortical defect within 4 weeks. The bone regeneration potential was significantly higher when compared to commercially available HA (Surgiwear™). Thus, this biomimetic, porous, 3D composite scaffold could be offered as a promising candidate for bone regeneration in orthopedics.

  7. State diagram of salmon (Salmo salar) gelatin films.

    PubMed

    Díaz, Paulo; López, Daniel; Matiacevich, Silvia; Osorio, Fernando; Enrione, Javier

    2011-11-01

    A state diagram presents different physical states of a biomaterial as a function of solid content and temperature. Despite their technological interest, little information is available on protein systems such as gelatin/water mixtures. The objective of this work was to develop state diagrams of salmon gelatin (SG) and bovine gelatin (BG) in order to determine maximal freeze concentration parameters (T'(g) , T'(m) and X(s') ) and to relate possible differences to their biochemical characteristics. Biochemical characterisation of SG showed lower molecular weight and iminoacid concentration compared with BG. Likewise, the glass transition temperature (T(g) ) was lower for SG at X(s) > 0.8, which was associated with its lower molecular weight. Unexpectedly, the depression of freezing temperature (T(f) ) was greater for SG at X(s) > 0.1, which was associated with its higher ash content. Isothermal annealing produced effective values of T'(g) ≈ - 52 °C, T'(m) ≈ - 46 °C and X'(s) ≈ 0.6 for both gelatins. Interestingly, the enthalpy change associated with T'(m) (ΔH T m) was significantly higher for SG than for BG after annealing, indicating a higher proportion of ice present at about - 50 °C. Maximal freeze concentration parameters were similar between the two gelatins, though differences in biochemical properties were evident. The results show that there are likely different ways of interaction of SG and BG with water. Copyright © 2011 Society of Chemical Industry.

  8. Relationship between red meat allergy and sensitization to gelatin and galactose-α-1,3-galactose.

    PubMed

    Mullins, Raymond James; James, Hayley; Platts-Mills, Thomas A E; Commins, Scott

    2012-05-01

    We have observed patients clinically allergic to red meat and meat-derived gelatin. We describe a prospective evaluation of the clinical significance of gelatin sensitization, the predictive value of a positive test result, and an examination of the relationship between allergic reactions to red meat and sensitization to gelatin and galactose-α-1,3-galactose (α-Gal). Adult patients evaluated in the 1997-2011 period for suspected allergy/anaphylaxis to medication, insect venom, or food were skin tested with gelatin colloid. In vitro (ImmunoCAP) testing was undertaken where possible. Positive gelatin test results were observed in 40 of 1335 subjects: 30 of 40 patients with red meat allergy (12 also clinically allergic to gelatin), 2 of 2 patients with gelatin colloid-induced anaphylaxis, 4 of 172 patients with idiopathic anaphylaxis (all responded to intravenous gelatin challenge of 0.02-0.4 g), and 4 of 368 patients with drug allergy. Test results were negative in all patients with venom allergy (n = 241), nonmeat food allergy (n = 222), and miscellaneous disorders (n = 290). ImmunoCAP results were positive to α-Gal in 20 of 24 patients with meat allergy and in 20 of 22 patients with positive gelatin skin test results. The results of gelatin skin testing and anti-α-Gal IgE measurements were strongly correlated (r = 0.46, P < .01). α-Gal was detected in bovine gelatin colloids at concentrations of approximately 0.44 to 0.52 μg/g gelatin by means of inhibition RIA. Most patients allergic to red meat were sensitized to gelatin, and a subset was clinically allergic to both. The detection of α-Gal in gelatin and correlation between the results of α-Gal and gelatin testing raise the possibility that α-Gal IgE might be the target of reactivity to gelatin. The pathogenic relationship between tick bites and sensitization to red meat, α-Gal, and gelatin (with or without clinical reactivity) remains uncertain. Copyright © 2012 American Academy of Allergy, Asthma

  9. Sensitization to gelatin in children with systemic non-immediate-type reactions to varicella vaccines.

    PubMed

    Sakaguchi, M; Miyazawa, H; Inouye, S

    2000-03-01

    We recently found that four children who experienced systemic immediate-type reactions to varicella vaccine with gelatin had anti-gelatin IgE. We also found systemic non-immediate-type allergic reactions, which mainly consist of systemic cutaneous signs, appearing several hours or more after the vaccination. To investigate the relationship between immune responses to gelatin and non-immediate-type reactions to gelatin-containing varicella vaccines, we measured anti-gelatin IgE and IgG in the sera of the children with these allergic reactions. Serum samples were taken from 21 children who showed non-immediate-type reactions to varicella vaccines. As a positive control, serum samples were taken from 33 children who showed immediate-type reactions to varicella vaccine and had anti-gelatin IgE. As a negative control, serum samples were taken from 50 children who showed no reaction to the vaccine. We then examined anti-gelatin IgE and IgG in sera of the children. Of 21 children with non-immediate-type reactions, two (10%) had anti-gelatin IgE and six (29%) had anti-gelatin IgG. In the positive control group, all 33 children with immediate-type reactions had anti-gelatin IgG as well as IgE. In the negative control group, all 50 children who showed no allergic reaction to varicella vaccines had neither anti-gelatin IgE nor IgG. These results suggest that the possibility exists that some non-immediate-type reactions to varicella vaccine are caused by immune reactions to gelatin.

  10. Osteogenic differentiation of preosteoblasts on a hemostatic gelatin sponge

    PubMed Central

    Kuo, Zong-Keng; Lai, Po-Liang; Toh, Elsie Khai-Woon; Weng, Cheng-Hsi; Tseng, Hsiang-Wen; Chang, Pei-Zen; Chen, Chih-Chen; Cheng, Chao-Min

    2016-01-01

    Bone tissue engineering provides many advantages for repairing skeletal defects. Although many different kinds of biomaterials have been used for bone tissue engineering, safety issues must be considered when using them in a clinical setting. In this study, we examined the effects of using a common clinical item, a hemostatic gelatin sponge, as a scaffold for bone tissue engineering. The use of such a clinically acceptable item may hasten the translational lag from laboratory to clinical studies. We performed both degradation and biocompatibility studies on the hemostatic gelatin sponge, and cultured preosteoblasts within the sponge scaffold to demonstrate its osteogenic differentiation potential. In degradation assays, the gelatin sponge demonstrated good stability after being immersed in PBS for 8 weeks (losing only about 10% of its net weight and about 54% decrease of mechanical strength), but pepsin and collagenases readily biodegraded it. The gelatin sponge demonstrated good biocompatibility to preosteoblasts as demonstrated by MTT assay, confocal microscopy, and scanning electron microscopy. Furthermore, osteogenic differentiation and the migration of preosteoblasts, elevated alkaline phosphatase activity, and in vitro mineralization were observed within the scaffold structure. Each of these results indicates that the hemostatic gelatin sponge is a suitable scaffold for bone tissue engineering. PMID:27616161

  11. The use of haemostatic gelatin sponges in veterinary surgery.

    PubMed

    Charlesworth, T M; Agthe, P; Moores, A; Anderson, D M

    2012-01-01

    To describe the use of absorbable gelatin sponges as haemostatic implants in clinical veterinary surgical cases and to document any related postoperative complications. Practice databases were searched for the product names "Gelfoam" and "Spongostan". Patient records were retrieved and data regarding patient signalment, surgical procedure, National Resource Council (NRC) wound classification, source of haemorrhage, pre- and postoperative body temperature, postoperative complications, time to discharge and details of any postoperative imaging were recorded and reviewed. Follow-up information was obtained by repeat clinical examination or telephone interview with either the owner or referring veterinary surgeon. Cases with incomplete surgical records or those which were not recovered from anaesthesia were excluded from the analysis. Fifty cases (44 dogs and 6 cats) satisfied the inclusion criteria. Satisfactory haemostasis was achieved in 49 cases with one case requiring reoperation during which a second gelatin sponge was used. There were no detected hypersensitivity responses or confirmed postoperative complications relating to the use of gelatin sponges during the follow-up period (median 13 months). This is the first review of the use of gelatin sponges in clinical veterinary surgery and suggests that gelatin sponges are safe to use in cats and dogs. © 2011 British Small Animal Veterinary Association.

  12. Food allergy to gelatin in children with systemic immediate-type reactions, including anaphylaxis, to vaccines.

    PubMed

    Sakaguchi, M; Nakayama, T; Inouye, S

    1996-12-01

    Anaphylaxis to measles-mumps-rubella vaccines has been reported. We have suspected that most such reactions are caused by gelatin contained in the vaccines. To confirm the relation between systemic allergic reactions to vaccines and the presence of anti-gelatin IgE, we measured anti-gelatin IgE in children who demonstrated allergy to gelatin-containing vaccines. Furthermore, to clarify the relation between allergic reactions to gelatin in vaccines and foods, we surveyed the occurrence of allergic reactions to gelatin-containing foods in the same children. Serum samples were taken from 26 children who had systemic immediate-type reactions, including anaphylactic shock, to vaccines and the same number of children without allergic reactions. Specific IgE to gelatin in these samples was measured. We then surveyed whether these children had allergic reactions to gelatin-containing foods before and after vaccination. Twenty-four of the 26 children with allergic reactions to vaccines had anti-gelatin IgE ranging from 1.2 to 250 Ua/ml. Seven had allergic reactions on ingestion of gelatin-containing foods. Of these, two had reactions before vaccination, and five had reactions after vaccination. All the control children without allergic reactions to vaccines had no anti-gelatin IgE. We reconfirmed a strong relationship between systemic immediate-type allergic reactions, including anaphylaxis, to vaccines and the presence of specific IgE to gelatin. Moreover, some of the children also had allergic reactions to food gelatin before or after vaccination.

  13. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering.

    PubMed

    Chen, Shangwu; Zhang, Qin; Nakamoto, Tomoko; Kawazoe, Naoki; Chen, Guoping

    2016-03-01

    Engineering of cartilage tissue in vitro using porous scaffolds and chondrocytes provides a promising approach for cartilage repair. However, nonuniform cell distribution and heterogeneous tissue formation together with weak mechanical property of in vitro engineered cartilage limit their clinical application. In this study, gelatin porous scaffolds with homogeneous and open pores were prepared using ice particulates and freeze-drying. The scaffolds were used to culture bovine articular chondrocytes to engineer cartilage tissue in vitro. The pore structure and mechanical property of gelatin scaffolds could be well controlled by using different ratios of ice particulates to gelatin solution and different concentrations of gelatin. Gelatin scaffolds prepared from ≥70% ice particulates enabled homogeneous seeding of bovine articular chondrocytes throughout the scaffolds and formation of homogeneous cartilage extracellular matrix. While soft scaffolds underwent cellular contraction, stiff scaffolds resisted cellular contraction and had significantly higher cell proliferation and synthesis of sulfated glycosaminoglycan. Compared with the gelatin scaffolds prepared without ice particulates, the gelatin scaffolds prepared with ice particulates facilitated formation of homogeneous cartilage tissue with significantly higher compressive modulus. The gelatin scaffolds with highly open pore structure and good mechanical property can be used to improve in vitro tissue-engineered cartilage.

  14. Potential Use in Forensics of a Novel Hybrid Gelatin-Dynamic Impact Assessment.

    PubMed

    Zecheru, Teodora; Dena, Alexandru; Cîrmaci, Marius; Său, Ciprian; Zaharia, Cătălin; Lăzăroaie, Claudiu

    2018-05-01

    Ballistic gelatin as simulant of the human body and organs is a support in forensics. After having obtained very good results for a new gelatin-based composite in terms of physicochemical and rheological properties, this study focused on this material's mechanical behavior during stabbing and shooting versus bovine and porcine organs and standard ballistic gelatin. The hybrid gelatin has a predominantly elastic behavior at 23°C, whereas the elastic modulus becomes practically constant in the 10-0.1 Hz frequency range. In terms of stabbing behavior, the small variations obtained between porcine organs and surrogate are below 5%, the perforation indicating a good similarity. From the ballistic test results using 10 × 28T rubber balls, it has been seen that the hybrid ballistic gelatin conducts to more reliable and reproducible values of perforation/penetration versus standard gelatin, making from it a real candidate for use in forensic tests. © 2017 American Academy of Forensic Sciences.

  15. Rheological behavior, emulsifying properties and structural characterization of phosphorylated fish gelatin.

    PubMed

    Huang, Tao; Tu, Zong-Cai; Shangguan, Xinchen; Wang, Hui; Sha, Xiaomei; Bansal, Nidhi

    2018-04-25

    Rheological, microstructural and emulsifying properties of fish gelatin phosphorylated using sodium trimetaphosphate (STMP) were studied. Phosphorylation was carried out at 50 °C for 0, 0.5, 1 or 2 h. Rheological behaviors indicated that phosphorylation decreased gelation rate constant (k gel ) and apparent viscosity of gelatin solutions. Phosphorylation time was inversely proportional to tan δ; gelling and melting points of fish gelatin gels; however gel properties could be improved by short time of phosphorylation. Scanning electron microscopy and atomic force microscopy revealed that longer time of phosphorylation resulted in looser gel network with more aggregation. Longer phosphorylation time could stabilize fish gelatin emulsions, and endowed emulsions with smaller particle size and lower coefficient viscosity, but higher ζ-potential values. These results suggested that phosphorylation could be applied to obtain fish gelatin with varying functional properties suitable for numerous industrial applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. On the importance of Bloom number of gelatin to the development of biodegradable in situ gelling copolymers for intracameral drug delivery.

    PubMed

    Chou, Shih-Feng; Luo, Li-Jyuan; Lai, Jui-Yang; Ma, David Hui-Kang

    2016-09-10

    To overcome the drawbacks associated with conventional antiglaucoma eye drops, this work demonstrated the feasibility of an effective alternative strategy to administer pilocarpine directly via intracameral injections of drug-containing biodegradable in situ gelling GN copolymers composed of gelatin and poly(N-isopropylacrylamide). Specifically, this study aims to understand the importance of Bloom number of gelatin, a physicochemical parameter, to the development of GN carriers for intracameral drug delivery in glaucoma therapy. Our results showed that both imino acid and triple-helix contents increased with increasing Bloom index from 75-100 to 300. The drug encapsulation efficiency in response to temperature-triggered phase transition in GN copolymers was affected by the Bloom index of gelatin. In addition, the differences in protein secondary structure significantly influenced the degradation rates of GN carriers, which were highly correlated with drug release profiles. The increase in released pilocarpine concentration led to a high intracellular calcium level in rabbit ciliary smooth muscle cell cultures, indicating a beneficial pharmacological response to a drug. Irrespective of Bloom number of gelatin, all carrier materials exhibited excellent in vitro and in vivo biocompatibility with corneal endothelium. In a glaucomatous rabbit model, intracameral injections of pilocarpine-containing GN synthesized from gelatins with various Bloom numbers had different abilities to improve ocular hypertension and induce pupillary constriction, indicating distinct antiglaucoma efficacies due to in vivo drug release. It is concluded that the effects on pharmacological treatment using GN carriers for intracameral pilocarpine administration demonstrate a strong dependence on the Bloom number of gelatin. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Analysis of residual monomers in dendritic methacrylate copolymers and composites by HPLC and headspace-GC/MS.

    PubMed

    Viljanen, Eeva K; Langer, Sarka; Skrifvars, Mikael; Vallittu, Pekka K

    2006-09-01

    The aim of this study was to analyze the residual monomer content of photopolymerized dendritic methacrylate copolymers and particulate filler composites. Headspace-gas chromatography/mass spectrometry (HS-GC/MS) was compared with high performance liquid chromatography (HPLC). The resin mixtures consisted of a dendritic methacrylate monomer, methyl methacrylate and acetoacetoxyethyl methacrylate in varied proportions. In addition, one of the composites contained 1,4-butanediol dimethacrylate. Camphorquinone and 2-(N,N-dimethylamino)ethyl methacrylate were used as the light-activated initiator system. The content of residual methyl methacrylate and acetoacetoxyethyl methacrylate after 40 s photopolymerization were analyzed with HPLC and HS-GC/MS. The content of residual methyl methacrylate decreased and residual acetoacetoxyethyl methacrylate increased with increasing concentration of acetoacetoxyethyl methacrylate in the resin mixture. The results with both methods had the same trend. The addition of acetoacetoxyethyl methacrylate enhanced the copolymerization of methyl methacrylate, but did not decrease the total residual monomer content. The HS-GC/MS method was found to be a feasible method in the analysis of low-boiling residuals in dental polymers.

  18. Effectiveness of a new gelatin sealant system for dural closure.

    PubMed

    Kawai, Hisashi; Nakagawa, Ichiro; Nishimura, Fumihiko; Motoyama, Yasushi; Park, Young-Su; Nakamura, Mitsutoshi; Nakase, Hiroyuki; Suzuki, Shuko; Ikada, Yoshito

    2014-10-01

    Watertight dural closure is imperative after neurosurgical procedures because inadequately treated leakage of cerebrospinal fluid (CSF) can have serious consequences. In this study, the authors test the use of a new gelatin glue as a dural sealant in in vitro and in vivo canine models of transdural CSF leakage. The in vitro model was sutured semicircles of canine dura mater and artificial dural substitute. The sutures were sealed with gelatin glue (n  =  20), fibrin glue (n  =  20), or a polyethylene glycol (PEG)-based hydrogel sealant (n  =  20). Each sample was set in a device to measure water pressure, and pressure was increased until leakage occurred. Bonding strength was subjectively evaluated. The in vivo model was dogs who underwent dural excision and received either no sealant (control group; n  =  5) or gelatin glue sealant (n  =  5) before dural closure. Twenty-eight days post-surgery, the maximum intracranial pressure was measured at the cisterna magna using Valsalva maneuver and tissue adhesion was evaluated. The water pressure at which leakage occurred in the in vitro model was higher with gelatin glue (76·5 ± 39·8 mmHg) than with fibrin glue (38·3 ± 27·4 mmHg, P < 0·001) or the PEG-based hydrogel sealant (46·3 ± 20·9 mmHg, P  =  0·007). Bonding strength was higher for the gelatin glue than fibrin glue (P < 0·001) or PEG-based hydrogel sealant (P  =  0·001). The maximum intracranial pressure in the in vivo model was higher for the gelatin glue group (59·0 ± 2·2 mmHg) than the control group (13·8 ± 4·0 mmHg, P < 0·001). Tissue adhesion was lower for the gelatin glue group than the control group (P  =  0·005). The new gelatin glue provides an effective watertight closure when used as an adjunct to sutured dural repair.

  19. Possible influences on bullet trajectory deflection in ballistic gelatine.

    PubMed

    Riva, Fabiano; Kerkhoff, Wim; Bolck, Annabel; Mattijssen, Erwin J A T

    2017-02-01

    The influence of the distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots on a bullet's trajectory, when passing through ballistic gelatine, was studied. No significant difference in deflection was found when trajectories of 9mm Luger bullets, fired at a 3.5cm distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots, were compared to trajectories of bullets fired 7cm or more away from any of the aforementioned aspects. A surprisingly consistent 6.5° absolute deflection angle was found when these bullets passed through 22.5 to 23.5cm of ballistic gelatine. The projection angle, determined by the direction of the deflection, appeared to be random. The consistent absolute angle, in combination with the random projection angle, resulted in a cone-like deflection pattern. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Synthesis, characterization, and morphology study of poly(acrylamide-co-acrylic acid)-grafted-poly(styrene-co-methyl methacrylate) "raspberry"-shape like structure microgels by pre-emulsified semi-batch emulsion polymerization.

    PubMed

    Ramli, Ros Azlinawati; Hashim, Shahrir; Laftah, Waham Ashaier

    2013-02-01

    A novel microgels were polymerized using styrene (St), methyl methacrylate (MMA), acrylamide (AAm), and acrylic acid (AAc) monomers in the presence of N,N'-methylenebisacrylamide (MBA) cross-linker. Pre-emulsified monomer was first prepared followed by polymerizing monomers using semi-batch emulsion polymerization. Fourier Transform Infrared Spectroscopy (FTIR) and (1)H Nuclear Magnetic Resonance (NMR) were used to determine the chemical structure and to indentify the related functional group. Grafting and cross-linking of poly(acrylamide-co-acrilic acid)-grafted-poly(styrene-co-methyl methacrylate) [poly(AAm-co-AAc)-g-poly(St-co-MMA)] microgels are approved by the disappearance of band at 1300 cm(-1), 1200 cm(-1) and 1163 cm(-1) of FTIR spectrum and the appearance of CH peaks at 5.5-5.7 ppm in (1)H NMR spectrum. Scanning Electron Microscope (SEM) images indicated that poly(St-co-MMA) particle was lobed morphology coated by cross-linked poly(AAm-co-AAc) shell. Furthermore, SEM results revealed that poly(AAm-co-AAc)-g-poly(St-co-MMA) is composite particle that consist of "raspberry"-shape like structure core. Internal structures of the microgels showed homogeneous network of pores, an extensive interconnection among pores, thicker pore walls, and open network structures. Water absorbency test indicated that the sample with particle size 0.43 μm had lower equilibrium water content, % than the sample with particle size 7.39 μm. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Safety and immunogenicity of gelatin-free varicella vaccine in epidemiological and serological studies in Japan.

    PubMed

    Ozaki, Takao; Nishimura, Naoko; Muto, Taichiro; Sugata, Ken; Kawabe, Shinji; Goto, Kensei; Koyama, Kuniaki; Fujita, Hiroyuki; Takahashi, Yoshiyuki; Akiyama, Masataka

    2005-01-26

    Following gelatin-containing varicella vaccine (1994-1999: 1,410,000 distributed doses), 28 serious anaphylactic reactions and 139 non-serious allergic reactions were reported, with no serious and only five non-serious reactions following gelatin-free vaccine (1999-2000: 1,300,000 distributed doses). All nine sera available from children with serious reactions tested positive for gelatin-specific IgE, whereas 55 of the 70 available from those with non-serious reactions were positive, with one false positive. There was no correlation between gelatin-specific IgE antibody titers and severity of allergic reaction. Post-immunization anti-varicella antibody titers were comparable for both gelatin-free and gelatin-containing vaccine groups. The new gelatin-free varicella vaccine is thought to be safe, with similar immunogenicity to the earlier gelatin-containing vaccine.

  2. The relationship between red meat allergy and sensitization to gelatin and galactose-alpha-1,3-galactose

    PubMed Central

    Mullins, Raymond James; James, Hayley; Platts-Mills, Thomas A.E.; Commins, Scott

    2012-01-01

    Background We have observed patients clinically allergic to red meat and meat-derived gelatin. Objective We describe a prospective evaluation of the clinical significance of gelatin sensitization, the predictive value of a positive test and an examination of the relationship between allergic reactions to red meat and sensitization to gelatin and alpha-Gal. Methods Adult patients evaluated 1997-2011 for suspected allergy/anaphylaxis to medication, insect venom or food were skin tested with gelatin colloid. In vitro (ImmunoCap) testing was undertaken where possible. Results Positive gelatin tests were observed in 40/1335 individuals; 30/40 patients with red meat allergy (12 also clinically allergic to gelatin); 2/2 with gelatin colloid anaphylaxis; 4/172 with idiopathic anaphylaxis (all responded to intravenous gelatin challenge of 0.02 to 0.4g); 4/368 with drug allergy. Testing was negative in all patients with venom allergy (n=241), non-meat food allergy (n=222), and miscellaneous disorders (n=290). ImmunoCap was positive to alpha-Gal in 20/24 meat allergics and in 20/22 with positive gelatin skin tests. The results of gelatin skin testing and anti-alpha-Gal IgE were strongly correlated (r=0.46; P<0.01). Alpha-Gal was detected in bovine gelatin colloids at concentrations of ~ 0.44 to 0.52ug/gm gelatin by inhibition radioimmunoassay. Conclusion Most patients allergic to red meat were sensitized to gelatin and a subset was clinically allergic to both. The detection of alpha-Gal in gelatin and correlation between the results of alpha-Gal and gelatin testing raises the possibility that alpha-Gal IgE may be the target of reactivity to gelatin. The pathogenic relationship between tick bites and sensitization to red meat, alpha-Gal and gelatin (with or without clinical reactivity) remains uncertain. PMID:22480538

  3. The use of gelatine in wound ballistics research.

    PubMed

    Carr, D J; Stevenson, T; Mahoney, P F

    2018-04-25

    Blocks of gelatine are used in both lethality and survivability studies for broadly the same reason, i.e. comparison of ammunition effects using a material that it is assumed represents (some part of) the human body. The gelatine is used to visualise the temporary and permanent wound profiles; elements of which are recognised as providing a reasonable approximation to wounding in humans. One set of researchers aim to improve the lethality of the projectile, and the other to understand the effects of the projectile on the body to improve survivability. Research areas that use gelatine blocks are diverse and include ammunition designers, the medical and forensics communities and designers of ballistic protective equipment (including body armour). This paper aims to provide an overarching review of the use of gelatine for wound ballistics studies; it is not intended to provide an extensive review of wound ballistics as that already exists, e.g. Legal Med 23:21-29, 2016. Key messages are that test variables, projectile type (bullet, fragmentation), impact site on the body and intermediate layers (e.g. clothing, personal protective equipment (PPE)) can affect the resulting wound profiles.

  4. Recrystallization characteristics of high hydrostatic pressure gelatinized normal and waxy corn starch.

    PubMed

    Li, Wenhao; Tian, Xiaoling; Wang, Peng; Saleh, Ahmed S M; Luo, Qingui; Zheng, Jianmei; Ouyang, Shaohui; Zhang, Guoquan

    2016-02-01

    High hydrostatic pressure (HHP) can lead to starch gelatinization at room temperature, while the retrogradation mechanism of HHP gelatinized starch is not well known. HHP gelatinized normal and waxy corn starches were stored at room temperature for 192 h in order to investigate the retrogradation characteristics. The scanning electron microscopy (SEM), polarised light microscopy and differential scanning calorimetric (DSC) analysis showed that the pressurization of normal and waxy corn starch suspensions with concentration of 30% (w/v) at 600 MPa for 15 min resulted in a complete gelatinization. In addition, the pressure-gelatinized normal and waxy corn starch gels were stored and subjected to X-ray diffraction (XRD) analysis, resistant starch content determination, swelling power and pasting behavior. The retrograded normal maize and waxy maize starch showed a substantial loss of A-type crystallinity. Both pressure-gelatinized normal and waxy corn starches showed an increase in resistant starch content and relative crystallinity degree with the increase of storage time. In addition, restricted starch swelling power and lower pasting viscosities were observed for these two retrograded starches. The amylose molecule within starch granules has been regarded as the main factor to affect the structural and physicochemical properties during the retrogradation process of HHP-gelatinized starch granules. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Electrospun Polyurethane-Core and Gelatin-Shell Coaxial Fibre Coatings for Miniature Implantable Biosensors

    PubMed Central

    Wang, Ning; Burugapalli, Krishna; Wijesuriya, Shavini; Far, Mahshid Yazdi; Song, Wenhui; Moussy, Francis; Zheng, Yudong; Ma, Yanxuan; Wu, Zhentao; Li, Kang

    2014-01-01

    The aim of this study was to introduce bioactivity to the electrospun coating for implantable glucose biosensors. Coaxial fibre membranes having polyurethane as the core and gelatin as the shell were produced using a range of polyurethane concentrations (2, 4, 6 & 8% wt/v) while keeping gelatin concentration (10% wt/v) constant in 2,2,2-trifluoroethanol. The gelatin shell was stabilized using glutaraldehyde vapour. The formation of core-shell structure was confirmed using TEM, SEM and FTIR. The coaxial fibre membranes showed uniaxial tensile properties intermediate to that of the pure polyurethane and the gelatin fibre membranes. The gelatin shell increased hydrophilicity and glucose transport flux across the coaxial fibre membranes. The coaxial fibre membranes having small fibre diameter (541 nm) and a thick gelatin shell (52%) did not affect the sensor sensitivity, but decreased sensor’s linearity in the long run. In contrast, thicker coaxial fibre membranes (1133 nm) having a thin gelatin shell (34%) maintained both sensitivity and linearity till 84 days of the study period. To conclude, polyurethane-gelatin co-axial fibre membranes, due to their faster permeability to glucose, tailorable mechanical properties and bioactivity are potential candidates for coatings to favourably modify the host responses to extend the reliable in vivo lifetime of implantable glucose biosensors. PMID:24346001

  6. Study on encapsulation of chlorine dioxide in gelatin microsphere for reducing release rate

    PubMed Central

    Ci, Ying; Wang, Lin; Guo, Yanchuan; Sun, Ruixue; Wang, Xijie; Li, Jinyou

    2015-01-01

    Objective: This study aims to explore the effects of encapsulation of chlorine dioxide in a hydrophilic biodegradable polymer gelatin to reduce its release rate. Methods: An emulsification-coacervation method was adopted. The characterizations of chlorine dioxide-gelatin microspheres were described. Using UV-vis spectrophotometer the λmax of chlorine dioxide was observed at 358 nm. The particle size and distribution of chlorine oxide-gelatin microspheres was measured by a dynamic light scattering (DLS) method, the diameter was (1400~1900) nm. The entrapment of chlorine dioxide-gelatin microspheres was confirmed by IR. The surface morphology, size, and shape of chlorine dioxide-gelatin microspheres were analyzed using Scanning electron microscope (SEM). Results: It showed that the encapsulated microspheres size was around 2000 nm with uniform distribution. The percentage entrapment of chlorine dioxide in the encapsulated samples was about 80~85%. A slow release study of chlorine dioxide from the encapsulated biopolymer (gelatin) in air was also carried out, which showed continuous release up to ten days. Conclusions: It can be concluded that it is possible to make a slow release formulation of ClO2 by entrapped in a hydrophilic biodegradable polymer gelatin. ClO2-gelatin microspheres can stable release low concentration ClO2 gas over an extended period. PMID:26550151

  7. Biopreservation of Myoglobin in Crowded Environment: A Comparison between Gelatin and Trehalose Matrixes.

    PubMed

    Semeraro, Enrico F; Giuffrida, Sergio; Cottone, Grazia; Cupane, Antonio

    2017-09-21

    Biopreservation by sugar and/or polymeric matrixes is a thoroughly studied research topic with wide technological relevance. Ternary amorphous systems containing both saccharides and proteins are extensively exploited to model the in vivo biopreservation process. With the aim of disentangling the effect of saccharides and polypeptidic crowders (such as gelatin) on the preservation of a model protein, we present here a combined differential scanning calorimetry and UV-vis spectrophotometry study on samples of myoglobin embedded in amorphous gelatin and trehalose + gelatin matrixes at different hydrations, and compare them with amorphous myoglobin-only and myoglobin-trehalose samples. The results point out the different effects of gelatin, which acts mainly as a crowding agent, and trehalose, which acts mainly by direct interaction. Gelatin is able to improve effectively the protein thermal stability at very low hydration; however, it has small effects at medium to high hydration. Consistently, gelatin appears to be more effective than trehalose against massive denaturation in the long time range, while the mixed trehalose + collagen matrix is most effective in preserving protein functionality, outdoing both gelatin-only and trehalose-only matrixes.

  8. Zeolitic imidazolate framework-methacrylate composite monolith characterization by inverse gas chromatography.

    PubMed

    Yusuf, Kareem; Badjah-Hadj-Ahmed, Ahmed Yacine; Aqel, Ahmad; Aouak, Taieb; ALOthman, Zeid Abdullah

    2016-04-22

    Thermodynamic characterization of butyl methacrylate-co-ethylene dimethacrylate neat monolith and zeolitic imidazolate framework-8 incorporated with butyl methacrylate-co-ethylene dimethacrylate composite monolith were studied using inverse gas chromatography at infinite dilution under 1MPa column pressure and various column temperatures. The free energy of adsorption (ΔGA), enthalpy of adsorption (ΔHA) and entropy of adsorption (ΔSA) were determined using a series of n-alkanes. The dispersive component of surface energy (γS(D)) was estimated by Dorris-Gray and Schultz et al. The composite monolith showed a more energetic surface than the neat monolith. The acidic, KA, and basic, KD, parameters for both materials were estimated using a group of polar probes. A basic character was concluded with more basic behavior for the neat monolith. Flory-Huggins parameter, χ, was taken as a measure of miscibility between the probes with the low molecular weight and the high molecular weight monolith. Inverse gas chromatography provides a better understanding of the role of incorporated zeolitic imidazolate framework (ZIF-8) into the polymer matrix in its monolithic form. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Novel formulations of ballistic gelatin. 1. Rheological properties.

    PubMed

    Zecheru, Teodora; Său, Ciprian; Lăzăroaie, Claudiu; Zaharia, Cătălin; Rotariu, Traian; Stănescu, Paul-Octavian

    2016-06-01

    Ballistic gelatin is the simulant of the human body during field tests in forensics and other related fields, due to its physical and mechanical similarities to human trunk and organs. Since the ballistic gelatin used in present has important issues to overcome, an alternative approach is the use of gelatin-polymer composites, where a key factor is the insertion of biocompatible materials, which replicate accurately the human tissues. In order to be able to obtain an improved material in terms of mechanical performances by an easy industrial-scale technology, before the verification of the ballistic parameters by shooting in agreement with military standards, one of the best and cheapest solutions is to perform a thorough check of their rheological properties, in standard conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Micromolded Gelatin Hydrogels for Extended Culture of Engineered Cardiac Tissues

    PubMed Central

    McCain, Megan L.; Agarwal, Ashutosh; Nesmith, Haley W.; Nesmith, Alexander P.; Parker, Kevin Kit

    2014-01-01

    Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro, which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies. PMID:24731714

  11. Recent advancement of gelatin nanoparticles in drug and vaccine delivery.

    PubMed

    Sahoo, Nityananda; Sahoo, Ranjan Ku; Biswas, Nikhil; Guha, Arijit; Kuotsu, Ketousetuo

    2015-11-01

    Novel drug delivery system using nanoscale materials with a broad spectrum of applications provides a new therapeutic foundation for technological integration and innovation. Nanoparticles are suitable drug carrier for various routes of administration as well as rapid recognition by the immune system. Gelatin, the biological macromolecule is a versatile drug/vaccine delivery carrier in pharmaceutical field due to its biodegradable, biocompatible, non-antigenicity and low cost with easy availability. The surface of gelatin nanoparticles can be modified with site-specific ligands, cationized with amine derivatives or, coated with polyethyl glycols to achieve targeted and sustained release drug delivery. Compared to other colloidal carriers, gelatin nanoparticles are better stable in biological fluids to provide the desired controlled and sustained release of entrapped drug molecules. The current review highlights the different formulation aspects of gelatin nanoparticles which affect the particle characteristics like zeta potential, polydispersity index, entrapment efficacy and drug release properties. It has also given emphasis on the major applications of gelatin nanoparticles in drug and vaccine delivery, gene delivery to target tissues and nutraceutical delivery for improving the poor bioavailabity of bioactive phytonutrients. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Effects of Pressure-shift Freezing on the Structural and Physical Properties of Gelatin Hydrogel Matrices

    PubMed Central

    Kim, Byeongsoo; Gil, Hyung Bae; Min, Sang-Gi; Lee, Si-Kyung; Choi, Mi-Jung

    2014-01-01

    This study investigates the effects of the gelatin concentration (10-40%, w/v), freezing temperatures (from -20℃ to -50℃) and freezing methods on the structural and physical properties of gelatin matrices. To freeze gelatin, the pressure-shift freezing (PSF) is being applied at 0.1 (under atmospheric control), 50 and 100 MPa, respectively. The freezing point of gelatin solutions decrease with increasing gelatin concentrations, from -0.2℃ (10% gelatin) to -6.7℃ (40% gelatin), while the extent of supercooling did not show any specific trends. The rheological properties of the gelatin indicate that both the storage (G') and loss (G") moduli were steady in the strain amplitude range of 0.1-10%. To characterize gelatin matrices formed by the various freezing methods, the ice crystal sizes which were being determined by the scanning electron microscopy (SEM) are affected by the gelatin concentrations. The ice crystal sizes are affected by gelatin concentrations and freezing temperature, while the size distributions of ice crystals depend on the freezing methods. Smaller ice crystals are being formed with PSF rather than under the atmospheric control where the freezing temperature is above -40℃. Thus, the results of this study indicate that the PSF processing at a very low freezing temperature (-50℃) offers a potential advantage over commercial atmospheric freezing points for the formation of small ice crystals. PMID:26760743

  13. Flexural properties of ethyl or methyl methacrylate-UDMA blend polymers.

    PubMed

    Kanie, Takahito; Kadokawa, Akihiko; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2010-10-01

    Light-curing polyethyl methacrylate (PEMA)-urethane dimethacrylate (UDMA) resins and polymethyl methacrylate (PMMA)-UDMA resins were prepared by two processes. For first step, PEMA or PMMA powders were fully dissolved in ethyl methacrylate (EMA) or methyl methacrylate (MMA) and then the PEMA-EMA/PMMA-MMA mixtures were mixed with UDMA. The flexural properties of cured PEMA-UDMA and PMMA-UDMA polymers were measured using two PEMA (Mw: 300,000-400,000 and 650,000-1,000,000) and three PMMA (Mw: 30,000-60,000, 350,000 and 650,000-1,000,000) powders with different molecular weight, four mixing ratios of PMMA-MMA, and three mixing ratios of PMMA-MMA mixture and UDMA oligomer. Polymers with PMMA(Mw: 350,000) MMA=25/50, and with PMMA(Mw: 350,000)-MMA/UDMA=1/2 and =1/1, showed no-fracture in a flexural test at 1 mm/min and flexural strength and flexural modulus showed no significant difference compared with those of commercially available heat- and self-curing acrylic resins (p>0.01). Within limitation of this investigation, methyl methacrylate-UDMA blend polymer of this composition is available for denture base resin.

  14. Physical and biological properties of a novel anti-adhesion material made of thermally cross-linked gelatin film: Investigation of the usefulness as anti-adhesion material.

    PubMed

    Horii, Tsunehito; Tsujimoto, Hiroyuki; Miyamoto, Hiroe; Yamanaka, Koki; Tanaka, Shota; Torii, Hiroko; Ozamoto, Yuki; Takamori, Hideki; Nakamachi, Eiji; Ikada, Yoshito; Hagiwara, Akeo

    2018-02-01

    To create more useful, effective and safer anti-adhesion materials, we developed a thermally cross-linked gelatin film. In this study, we examined the physical properties of the film such as the physical strength and the adhesiveness to reveal the handling properties and biological properties, such as the anti-adhesion effect, the influence on cell proliferation, and the cytotoxicity to reveal the anti-adhesion mechanism, especially in comparison with the conventional hyaluronic acid and carboxymethylcellulose film (the conventional film). A tensile test under dry and wet conditions and shearing stress test showed that the gelatin film has significant higher maximum tensile stress and fracture strain than the conventional film. In the study using a rat model of cecum adhesion, the anti-adhesion effect of the gelatin film was significantly superior to that of the conventional film. In the cell proliferation test, the number of fibroblast cells on the gelatin film increased at each time point, while no cell proliferation was observed on the conventional film. Furthermore, in the cytotoxicity test using a colony assay and Live/Dead assay, the extract of the gelatin film had no cytotoxicity, while the extract of the conventional film had cytotoxicity considerably. These results suggest that the gelatin film provides better handling than the conventional film, due to better physical strength and ductility of the film. In addition, the gelatin film has a significantly greater anti-adhesion effect than the conventional film without any cytotoxicity. Therefore, the gelatin film is quite favorable as an anti-adhesion material. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 689-696, 2018. © 2017 Wiley Periodicals, Inc.

  15. Effect of egg albumen protein addition on physicochemical properties and nanostructure of gelatin from fish skin.

    PubMed

    Cai, Luyun; Feng, Jianhui; Peng, Xichun; Regenstein, Joe M; Li, Xiuxia; Li, Jianrong; Zhao, Wei

    2016-12-01

    The physicochemical properties and nanostructure of mixtures of egg albumen protein (EAP) and gelatin from under-utilised grass carp ( Ctenopharyngodon idella ) skins were studied. The gelatin with 1% EAP had an acceptable gel strength. The addition of 5% EAP significantly increased the melting and gelling temperatures of gelatin gels. Additionally, the colour turned white and the crystallinity was higher in gelatin gels with gradient concentrations of EAP (1, 3, and 5%). Gelatin with 5% EAP had the highest G' values while gelatin with 1% EAP had the lowest G' values. Atomic force microscopy showed the heterogeneous nanostructure of fish gelatin, and a simple coacervate with a homogeneous distribution was only observed with the addition of 1% EAP, indicating interaction between gelatin and EAP. These results showed that EAP effect fish gelatin's physicochemical and nanostructure properties and has potential applications in foods and pharmaceuticals.

  16. 40 CFR 721.10517 - Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl methacrylates, polymer with... Substances § 721.10517 Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide... reporting. (1) The chemical substance identified generically as alkyl methacrylates, polymer with...

  17. Occupational methacrylate and acrylate allergy--cross-reactions and possible screening allergens.

    PubMed

    Aalto-Korte, Kristiina; Henriks-Eckerman, Maj-Len; Kuuliala, Outi; Jolanki, Riitta

    2010-12-01

    Acrylic resin monomers, especially acrylates and methacrylates, are important occupational allergens. To analyse patterns of concomitant patch test reactions to acrylic monomers in relation to exposure, and to suggest possible screening allergens. We reviewed the patch test files for the years 1994-2009 at the Finnish Institute of Occupational Health for allergic reactions to acrylic monomers, and analysed the clinical records of sensitized patients. In a group of 66 patients allergic to an acrylic monomer, the most commonly positive allergens were three methacrylates, namely ethyleneglycol dimethacrylate (EGDMA), 2-hydroxyethyl methacrylate (2-HEMA) and 2-hydroxypropyl methacrylate (2-HPMA), and an acrylate, namely diethyleneglycol diacrylate (DEGDA). The patterns of concomitant reactions imply that exposure to methacrylates may induce cross-reactivity to acrylates, whereas exposure to acrylates usually does not lead to cross-allergy to methacrylates. Screening for triethyleneglycol diacrylate (TREGDA) in the baseline series was found to be useful, as 3 of 8 patients with diagnosed occupational acrylate allergy might have been missed without the screening. A short screening series of four allergens, EGDMA, DEGDA, 2-HPMA and pentaerythritol triacrylate (PETA), would have screened 93% of our 66 patients; each of the remaining 5 patients reacted to different acrylic monomer(s). © 2010 John Wiley & Sons A/S.

  18. Study of pH-responsive microgels containing methacrylic acid: effects of particle composition and added calcium.

    PubMed

    Dalmont, Helene; Pinprayoon, Orawan; Saunders, Brian R

    2008-03-18

    pH-responsive microgel dispersions contain cross-linked polymer particles that swell when the pH approaches the pKa of the ionic monomer incorporated within the particles. In recent work from our group, it was demonstrated that the mechanical properties of degenerated intervertebral discs (IVDs) could be restored to normal values by injection of pH-responsive microgel dispersions (Saunders, J. M.; Tong, T.; LeMaitre, C.; Freemont, A. J.; Saunders, B. R. Soft Matter 2007, 3, 486). These dispersions change from a fluid to a gel with increasing pH. The present work investigates the pH-dependent properties of dispersions of microgel particles containing MAA (methacrylic acid) and also the effects of added Ca2+. Two microgels are discussed: microgel A is poly(EA/MAA/AM) (EA and AM are ethyl acrylate and allyl methacrylate), and microgel B is poly(EA/MAA/BDDA) (butanediol diacrylate). The pH-dependent particle properties investigated include hydrodynamic diameters and electrophoretic mobilities. The critical coagulation concentrations (CCC) of dilute dispersions and the elastic modulus (G') of concentrated, gelled microgel dispersions were also investigated. In the absence of added Ca2+, the particle swelling and G' were smallest and largest, respectively, for microgel A. The changes in hydrodynamic diameter and mobility with pH were explained in terms of a core-shell swelling mechanism. Added Ca2+ was found to significantly decrease the CCCs, extents of particle swelling, and magnitude of the electrophoretic mobility. This was attributed to the ionic cross-linking of neighboring RCOO- groups by Ca2+. It is suggested that the formation of ionic cross-links is inefficient within the microgel particles because of the presence of covalent cross-links that oppose the large-scale conformational rearrangement of neighboring RCOO- groups. The effect of Ca2+ on the properties of the gelled dispersions is important from the viewpoint of potential application in vivo. Rheological

  19. Effects of dietary gelatin hydrolysates on bone mineral density in magnesium-deficient rats.

    PubMed

    Noma, Teruyuki; Takasugi, Satoshi; Shioyama, Miho; Yamaji, Taketo; Itou, Hiroyuki; Suzuki, Yoshio; Sakuraba, Keishoku; Sawaki, Keisuke

    2017-09-05

    The major types of commercially available gelatin hydrolysates are prepared from mammals or fish. Dietary gelatin hydrolysates from mammals were reported to improve bone mineral density (BMD) in some animal models. In contrast, there is limited study showing the effects of dietary gelatin hydrolysates from fish on BMD. The quantity and structure of peptides in the plasma after oral administration of gelatin hydrolysates depend on the gelatin source, which suggests that the biological activity of gelatin hydrolysates depend on the gelatin source. This study examined the effects of fish-derived gelatin hydrolysate (FGH) or porcine-derived gelatin hydrolysate (PGH) intake on BMD and intrinsic biomechanical properties in magnesium (Mg)-deficient rats as a model showing the decrease in both BMD and intrinsic biomechanical properties. Four-week-old male Wistar rats were assigned into four groups: a normal group was fed a normal diet (48 mg Mg/100 g diet), a Mg-deficient (MgD) group was fed a MgD diet (7 mg Mg/100 g diet), a FGH group was fed a MgD + FGH diet (5% FGH), and a PGH group was fed a MgD + PGH diet (5% PGH) for 8 weeks. At the end of the study, BMD and intrinsic biomechanical properties of the femur were measured. The MgD group showed significantly lower Young's modulus, an intrinsic biomechanical property, and trabecular BMD of the femur than the normal group; however, the MgD diet did not affect cortical BMD and cortical thickness. Both the FGH and the PGH groups showed significantly higher cortical thickness and ultimate displacement of the femur than the normal group, but neither type of gelatin hydrolysate affected Young's modulus. Furthermore, the FGH group, but not the PGH group, showed significantly higher trabecular BMD than the MgD group. This study indicates that FGH and PGH increase cortical thickness but only FGH prevents the decrease in trabecular BMD seen in Mg-deficient rats, while neither type of gelatin hydrolysate affect intrinsic

  20. Relating the variation of secondary structure of gelatin at fish oil-water interface to adsorption kinetics, dynamic interfacial tension and emulsion stability.

    PubMed

    Liu, Huihua; Wang, Bo; Barrow, Colin J; Adhikari, Benu

    2014-01-15

    The objectives of this study were to quantify the relationship between secondary structure of gelatin and its adsorption at the fish-oil/water interface and to quantify the implication of the adsorption on the dynamic interfacial tension (DST) and emulsion stability. The surface hydrophobicity of the gelatin solutions decreased when the pH increased from 4.0 to 6.0, while opposite tend was observed in the viscosity of the solution. The DST values decreased as the pH increased from 4.0 to 6.0, indicating that higher positive charges (measured trough zeta potential) in the gelatin solution tended to result in higher DST values. The adsorption kinetics of the gelatin solution was examined through the calculated diffusion coefficients (Deff). The addition of acid promoted the random coil and β-turn structures at the expense of α-helical structure. The addition of NaOH decreased the β-turn and increased the α-helix and random coil. The decrease in the random coil and triple helix structures in the gelatin solution resulted into increased Deff values. The highest diffusion coefficients, the highest emulsion stability and the lowest amount of random coil and triple helix structures were observed at pH=4.8. The lowest amount of random coil and triple helix structures in the interfacial protein layer correlated with the highest stability of the emulsion (highest ESI value). The lower amount of random coil and triple helix structures allowed higher coverage of the oil-water interface by relatively highly ordered secondary structure of gelatin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Optimization of physico-chemical properties of gelatin extracted from fish skin of rainbow trout (Onchorhynchus mykiss).

    PubMed

    Tabarestani, H Shahiri; Maghsoudlou, Y; Motamedzadegan, A; Mahoonak, A R Sadeghi

    2010-08-01

    Physico-chemical properties of gelatin extracted from rainbow trout (Onchorhynchus mykiss) skin were optimized using response surface methodology (RSM). Central rotatable composite design was applied to study the combined effects of NaOH concentration (0.01-0.21 N), acetic acid concentration (0.01-0.21 N) and pre-treatment time (1-3h) on yield, molecular weight distribution, gel strength, viscosity and melting point of gelatin. Regression models were developed to predict the variables. Predict values of multiple response at optimal condition were that yield=9.36%, alpha(1)/alpha(2) chain ratio=1.76, beta chain percent=32.81, gel strength=459 g, viscosity=3.2 mPa s and melting point=20.4 degrees C. The optimal condition was obtained using 0.19 N NaOH and 0.121 N acetic acid for 3h. The results showed that the concentration of H(+) during pre-treatment had significant effect on molecular weight distribution, melting point and gel strength. The concentration of OH(-) had significant effect on viscosity and for extraction yield, pretreatment time was the critical factor. (c) 2010 Elsevier Ltd. All rights reserved.

  2. The Bright Side of Gelatinous Blooms: Nutraceutical Value and Antioxidant Properties of Three Mediterranean Jellyfish (Scyphozoa).

    PubMed

    Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Meli, Federica; Piraino, Stefano

    2015-07-29

    Jellyfish are recorded with increasing frequency and magnitude in many coastal areas and several species display biological features comparable to the most popular Asiatic edible jellyfish. The biochemical and antioxidant properties of wild gelatinous biomasses, in terms of nutritional and nutraceutical values, are still largely unexplored. In this paper, three of the most abundant and commonly recorded jellyfish species (Aurelia sp.1, Cotylorhiza tuberculata and Rhizostoma pulmo) in the Mediterranean Sea were subject to investigation. A sequential enzymatic hydrolysis of jellyfish proteins was set up by pepsin and collagenase treatments of jellyfish samples after aqueous or hydroalcoholic protein extraction. The content and composition of proteins, amino acids, phenolics, and fatty acids of the three species were recorded and compared. Protein content (mainly represented by collagen) up to 40% of jellyfish dry weight were found in two of the three jellyfish species (C. tuberculata and R. pulmo), whereas the presence of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) was significantly higher in the zooxanthellate jellyfish C. tuberculata only. Remarkable antioxidant ability was also recorded from both proteinaceous and non proteinaceous extracts and the hydrolyzed protein fractions in all the three species. The abundance of collagen, peptides and other bioactive molecules make these Mediterranean gelatinous biomasses a largely untapped source of natural compounds of nutraceutical, cosmeceutical and pharmacological interest.

  3. The Bright Side of Gelatinous Blooms: Nutraceutical Value and Antioxidant Properties of Three Mediterranean Jellyfish (Scyphozoa)

    PubMed Central

    Leone, Antonella; Lecci, Raffaella Marina; Durante, Miriana; Meli, Federica; Piraino, Stefano

    2015-01-01

    Jellyfish are recorded with increasing frequency and magnitude in many coastal areas and several species display biological features comparable to the most popular Asiatic edible jellyfish. The biochemical and antioxidant properties of wild gelatinous biomasses, in terms of nutritional and nutraceutical values, are still largely unexplored. In this paper, three of the most abundant and commonly recorded jellyfish species (Aurelia sp.1, Cotylorhiza tuberculata and Rhizostoma pulmo) in the Mediterranean Sea were subject to investigation. A sequential enzymatic hydrolysis of jellyfish proteins was set up by pepsin and collagenase treatments of jellyfish samples after aqueous or hydroalcoholic protein extraction. The content and composition of proteins, amino acids, phenolics, and fatty acids of the three species were recorded and compared. Protein content (mainly represented by collagen) up to 40% of jellyfish dry weight were found in two of the three jellyfish species (C. tuberculata and R. pulmo), whereas the presence of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) was significantly higher in the zooxanthellate jellyfish C. tuberculata only. Remarkable antioxidant ability was also recorded from both proteinaceous and non proteinaceous extracts and the hydrolyzed protein fractions in all the three species. The abundance of collagen, peptides and other bioactive molecules make these Mediterranean gelatinous biomasses a largely untapped source of natural compounds of nutraceutical, cosmeceutical and pharmacological interest. PMID:26230703

  4. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals.

    PubMed

    Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P

    2018-08-01

    The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Glycol Methacrylate Embedding for the Histochemical Study of the Gastrointestinal Tract of Dogs Naturally Infected with Leishmania Infantum

    PubMed Central

    Pinto, A.J.W.; de Amorim, I.F.G.; Pinheiro, L.J.; Madeira, I.M.V.M.; Souza, C.C.; Chiarini-Garcia, H.; Caliari, M.V.

    2015-01-01

    In canine visceral leishmaniasis a diffuse chronic inflammatory exudate and an intense parasite load throughout the gastrointestinal tract (GIT) has been previously reported. However, these studies did not allow a properly description of canine cellular morphology details. The aim of our study was to better characterize these cells in carrying out a qualitative and quantitative histological study in the gastrointestinal tract of dogs naturally infected with Leishmania infantum by examining gut tissues embedded in glycol methacrylate. Twelve infected adult dogs were classified in asymptomatic and symptomatic. Five uninfected dogs were used as controls. After necropsy, three samples of each gut segment, including oesophagus, stomach, duodenum, jejunum, ileum, cecum, colon, and rectum were collected and fixed in Carnoy’s solution for glycol methacrylate protocols. Sections were stained with hematoxylin-eosin, toluidine blue borate, and periodic acid-Schiff stain. Leishmania amastigotes were detected by immunohistochemistry employed in both glycol methacrylate and paraffin embedded tissues. The quantitative histological analysis showed higher numbers of plasma cells, lymphocytes and macrophages in lamina propria of all segments of GIT of infected dogs compared with controls. The parasite load was more intense and cecum and colon, independently of the clinical status of these dogs. Importantly, glycol methacrylate embedded tissue stained with toluidine blue borate clearly revealed mast cell morphology, even after mast cell degranulation. Infected dogs showed lower numbers of mast cells in all gut segments than controls. Despite the glycol methacrylate (GMA) protocol requires more attention and care than the conventional paraffin processing, this embedding procedure proved to be especially suitable for the present histological study, where it allowed to preserve and observe cell morphology in fine detail. PMID:26708180

  6. Synthesis and Characterization of Carboxymethylcellulose-Methacrylate Hydrogel Cell Scaffolds

    PubMed Central

    Reeves, Robert; Ribeiro, Andreia; Lombardo, Leonard; Boyer, Richard; Leach, Jennie B.

    2012-01-01

    Many carbohydrates pose advantages for tissue engineering applications due to their hydrophilicity, degradability, and availability of chemical groups for modification. For example, carboxymethylcellulose (CMC) is a water-soluble cellulose derivative that is degradable by cellulase. Though this enzyme is not synthesized by mammalian cells, cellulase and the fragments derived from CMC degradation are biocompatible. With this in mind, we created biocompatible, selectively degradable CMC-based hydrogels that are stable in routine culture, but degrade when exposed to exogenous cellulase. Solutions of CMC-methacrylate and polyethylene glycol dimethacrylate (PEG-DM) were co-crosslinked to form stable hydrogels; we found that greater CMC-methacrylate content resulted in increased gel swelling, protein diffusion and rates of degradation by cellulase, as well as decreased gel shear modulus. CMC-methacrylate/PEG-DM gels modified with the adhesive peptide RGD supported fibroblast adhesion and viability. We conclude that hydrogels based on CMC-methacrylate are suitable for bioengineering applications where selective degradability may be favorable, such as cell scaffolds or controlled release devices. PMID:22708058

  7. Preparation of poly(methyl methacrylate) microcapsules by in situ polymerization on the surface of calcium carbonate particles.

    PubMed

    Sato, Katsuhiko; Nakajima, Tatsuya; Anzai, Jun-ichi

    2012-12-01

    Poly(methyl methacrylate) (PMMA) microcapsules were prepared by the in situ polymerization of methyl methacrylate (MMA) and N,N'-methylenebisacrylamide on the surface of calcium carbonate (CaCO(3)) particles, followed by the dissolution of the CaCO(3) core in ethylenediaminetetraacetic acid solution. The microcapsules were characterized using fluorescence microscopy, atomic force microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. The average sizes of the CaCO(3) particles and PMMA capsules were 3.8±0.6 and 4.0±0.6 μm, respectively. A copolymer consisting of MMA and rhodamine B-bearing MMA was also used to prepare microcapsules for fluorescent microscopy observations. Fluorescein isothiocyanate-labeled bovine serum albumin was enclosed in the PMMA microcapsules and its release properties were studied. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    PubMed

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  9. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels

    NASA Astrophysics Data System (ADS)

    Faghihi, Shahab; Gheysour, Mahsa; Karimi, Alireza; Salarian, Reza

    2014-02-01

    Hydrogels have found many practical uses in drug release, wound dressing, and tissue engineering. However, their applications are restricted due to their weak mechanical properties. The role of graphene oxide nanosheets (GONS) as reinforcement agent in poly (acrylic acid) (PAA)/Gelatin (Gel) composite hydrogels is investigated. Composite hydrogels are synthesized by thermal initiated redox polymerization method. Samples are then prepared with 20 and 40 wt. % of PAA, an increasing amount of GONS (0.1, 0.2, and 0.3 wt. %), and a constant amount of Gel. Subsequently, cylindrical hydrogel samples are subjected to a series of compression tests in order to measure their elastic modulus, maximum stress and strain. The results exhibit that the addition of GONS increases the Young's modulus and maximum stress of hydrogels significantly as compared with control (0.0 wt. % GONS). The highest Young's modulus is observed for hydrogel with GO (0.2 wt. %)/PAA (20 wt. %), whereas the highest maximum stress is detected for GO (0.2 wt. %)/PAA (40 wt. %) specimen. The addition of higher amounts of GONS leads to a decrease in the maximum stress of the hydrogel GO (0.3 wt. %)/PAA (40 wt. %). No significant differences are detected for the maximum strain among the hydrogel samples, as the amount of GONS increased. These results suggest that the application of GONS could be used to improve mechanical properties of hydrogel materials. This study may provide an alternative for the fabrication of low-cost graphene/polymer composites with enhanced mechanical properties beneficial for tissue engineering applications.

  10. Effect of gelatin sponge with colloid silver on bone healing in infected cranial defects.

    PubMed

    Dong, Yuliang; Liu, Weiqing; Lei, Yiling; Wu, Tingxi; Zhang, Shiwen; Guo, Yuchen; Liu, Yuan; Chen, Demeng; Yuan, Quan; Wang, Yongyue

    2017-01-01

    Oral infectious diseases may lead to bone loss, which makes it difficult to achieve satisfactory restoration. The rise of multidrug resistant bacteria has put forward severe challenges to the use of antibiotics. Silver (Ag) has long been known as a strong antibacterial agent. In clinic, gelatin sponge with colloid silver is used to reduce tooth extraction complication. To investigate how this material affect infected bone defects, methicillin-resistant Staphylococcus aureus (MRSA) infected 3-mm-diameter cranial defects were created in adult female Sprague-Dawley rats. One week after infection, the defects were debrided of all nonviable tissue and then implanted with gelatin sponge with colloid silver (gelatin/Ag group) or gelatin alone (gelatin group). At 2 and 3days after debridement, significantly lower mRNA expression levels of IL-6 and TNF-α and lower plate colony count value were detected in gelatin/Ag group than control. Micro-CT analysis showed a significant increase of newly formed bone volume fraction (BV/TV) in gelatin/Ag treated defects. The HE stained cranium sections also showed a faster rate of defect closure in gelatin/Ag group than control. These findings demonstrated that gelatin sponge with colloid silver can effectively reduce the infection caused by MRSA in cranial defects and accelerate bone healing process. Copyright © 2016. Published by Elsevier B.V.

  11. Structural studies on aqueous gelatin solutions: Implications in designing a thermo-responsive nanoparticulate formulation.

    PubMed

    Ahsan, Saad M; Rao, Ch Mohan

    2017-02-01

    Gelatin as a polymer has found extensive application in the pharmaceutical industry. It is also being used, as a matrix molecule, for nanoparticle based drug delivery applications. Gelatin nanoparticles synthesised, keeping the native structure intact, show interesting properties. Synthesizing such nanoparticles requires an understanding of the structural features of gelatin under conditions of nanoparticle synthesis and preserving them during the process. To address this we have carried out an extensive characterization of gelatin using circular dichroism (CD) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) under various reaction conditions that are utilized in the desolvation method for gelatin nanoparticle synthesis. We investigated the gel-sol transition, hysteresis and gelatin fibre morphology under different pH and temperature conditions. We also investigated the temperature and pH dependence of triple-helix to random-coil transition in gelatin. We finally demonstrate the synthesis of gelatin nanoparticles with native gelatin. These nanoparticles show shrinkage in size (∼90nm) with increase in temperature from 30°C (369.4 ±19.8) to 40°C (282.3±9.8). Our results suggest that by carefully selecting the reaction conditions, it is possible to synthesise nanoparticles having partially folded structures and with a varying degree of sensitivity towards temperature and pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A gelatin composite scaffold strengthened by drug-loaded halloysite nanotubes.

    PubMed

    Ji, Lijun; Qiao, Wei; Zhang, Yuheng; Wu, Huayu; Miao, Shiyong; Cheng, Zhilin; Gong, Qianming; Liang, Ji; Zhu, Aiping

    2017-09-01

    Mechanical properties and anti-infection are two of the most concerned issues for artificial bone grafting materials. Bone regeneration porous scaffolds with sustained drug release were developed by freeze-drying the mixture of nanosized drug-loaded halloysite nanotubes (HNTs) and gelatin. The scaffolds showed porous structure and excellent biocompatibility. The mechanical properties of the obtained composite scaffolds were enhanced significantly by HNTs to >300%, comparing to those of gelatin scaffold, and match to those of natural cancellous bones. The ibuprofen-loaded HNTs incorporated in the scaffolds allowed extended drug release over 100h, comparing to 8h when directly mixed the drug into the gelatin scaffold. The biological properties of the composite scaffolds were investigated by culturing MG63 cells on them. The HNTs/gelatin scaffolds with excellent mechanical properties and sustained drug release could be a promising artificial bone grating material. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Drug delivery with microsecond laser pulses into gelatin.

    PubMed

    Shangguan, H; Casperson, L W; Shearin, A; Gregory, K W; Prahl, S A

    1996-07-01

    Photo acoustic drug delivery is a technique for localized drug delivery by laser-induced hydrodynamic pressure following cavitation bubble expansion and collapse. Photoacoustic drug delivery was investigated on gelatin-based thrombus models with planar and cylindrical geometries by use of one microsecond laser pulses. Solutions of a hydrophobic dye in mineral oil permitted monitoring of delivered colored oil into clear gelatin-based thrombus models. Cavitation bubble development and photoacoustic drug delivery were visualized with flash photography. This study demonstrated that cavitation is the governing mechanism for photoacoustic drug delivery, and the deepest penetration of colored oil in gels followed the bubble collapse. Spatial distribution measurements revealed that colored oil could be driven a few millimeters into the gels in both axial and radial directions, and the penetration was less than 500 µm when the gelatin structure was not fractured.

  14. Atmospheric Pressure Non-Equilibrium Plasma as a Green Tool to Crosslink Gelatin Nanofibers

    NASA Astrophysics Data System (ADS)

    Liguori, Anna; Bigi, Adriana; Colombo, Vittorio; Focarete, Maria Letizia; Gherardi, Matteo; Gualandi, Chiara; Oleari, Maria Chiara; Panzavolta, Silvia

    2016-12-01

    Electrospun gelatin nanofibers attract great interest as a natural biomaterial for cartilage and tendon repair despite their high solubility in aqueous solution, which makes them also difficult to crosslink by means of chemical agents. In this work, we explore the efficiency of non-equilibrium atmospheric pressure plasma in stabilizing gelatin nanofibers. We demonstrate that plasma represents an innovative, easy and environmentally friendly approach to successfully crosslink gelatin electrospun mats directly in the solid state. Plasma treated gelatin mats display increased structural stability and excellent retention of fibrous morphology after immersion in aqueous solution. This method can be successfully applied to induce crosslinking both in pure gelatin and genipin-containing gelatin electrospun nanofibers, the latter requiring an even shorter plasma exposure time. A complete characterization of the crosslinked nanofibres, including mechanical properties, morphological observations, stability in physiological solution and structural modifications, has been carried out in order to get insights on the occurring reactions triggered by plasma.

  15. Gelation and thermal characteristics of microwave extracted fish gelatin-natural gum composite gels.

    PubMed

    Binsi, P K; Nayak, Natasha; Sarkar, P C; Joshy, C G; Ninan, George; Ravishankar, C N

    2017-02-01

    In this study, the gelation and thermal characteristics of microwave extracted fish scale gelatin blended with natural gums such as gum arabic (AG), xanthan gum (XG), guar gum (GG), and tragacanth gum (TG) was evaluated. The nature of interaction and behavior of gelatin in presence of various gums was confirmed by particle size analysis, viscosity profile, FT-IR analysis and turbidity measurements. DSC data revealed that addition of AG, TG and GG remarkably improved the thermal stability of fish gelatin gel. The composite gels of TG, AG, and XG exhibited higher hardness and bloom strength values as compared to pure fish gelatin implying its textural synergy. Based on qualitative descriptive analysis, TG was found to be superior in improving the stability of fish gelatin gel, closely followed by AG. The results suggest that addition of these gums can reduce syneresis and retard melting of gelatin gels at ambient temperature, which are otherwise soft and thermally unstable.

  16. Diisocyanate mediated polyether modified gelatin drug carrier for controlled release

    PubMed Central

    Vijayakumar, Vediappan; Subramanian, Kaliappagounder

    2013-01-01

    Gelatin is an extensively studied biopolymer hydrogel drug carrier due to its biocompatibility, biodegradability and non-toxicity of its biodegraded products formed in vivo. But with the pristine gelatin it is difficult to achieve a controlled and desirable drug release characteristics due to its structural and thermal lability and high solubility in aqueous biofluids. Hence it is necessary to modify its solubility and structural stability in biofluids to achieve controlled release features with improved drug efficacy and broader carrier applications. In the present explorations an effort is made in this direction by cross linking gelatin to different extents using hitherto not studied isocyanate terminated poly(ether) as a macrocrosslinker prepared from poly(ethylene glycol) and isophorone diisocyanate in dimethyl sulfoxide. The crosslinked samples were analyzed for structure by Fourier transform-infrared spectroscopy, thermal behavior through thermogravimetric analysis and differential scanning calorimetry. The cross linked gelatins were biodegradable, insoluble and swellable in biofluids. They were evaluated as a carrier for in vitro drug delivery taking theophylline as a model drug used in asthma therapy. The crosslinking of gelatin decreased the drug release rate by 10–20% depending upon the extent of crosslinking. The modeled drug release characteristics revealed an anomalous transport mechanism. The release rates for ampicillin sodium, 5-fluorouracil and theophylline drugs in a typical crosslinked gelatin carrier were found to depend on the solubility and hydrophobicity of the drugs, and the pH of the fluid. The observed results indicated that this material can prove its mettle as a viable carrier matrix in drug delivery applications. PMID:24493973

  17. Synthesis and evaluation of alendronate-modified gelatin biopolymer as a novel osteotropic nanocarrier for gene therapy.

    PubMed

    Mekhail, George M; Kamel, Amany O; Awad, Gehanne As; Mortada, Nahed D; Rodrigo, Rowena L; Spagnuolo, Paul A; Wettig, Shawn D

    2016-09-01

    To synthesize an osteotropic alendronate functionalized gelatin (ALN-gelatin) biopolymer for nanoparticle preparation and targeted delivery of DNA to osteoblasts for gene therapy applications. Alendronate coupling to gelatin was confirmed using Fourier transform IR, (31)PNMR, x-ray diffraction (XRD) and differential scanning calorimetry. ALN-gelatin biopolymers prepared at various alendronate/gelatin ratios were utilized to prepare nanoparticles and were optimized in combination with DNA and gemini surfactant for transfecting both HEK-293 and MG-63 cell lines. Gelatin functionalization was confirmed using the above methods. Uniform nanoparticles were obtained from a nanoprecipitation technique. ALN-gelatin/gemini/DNA complexes exhibited higher transfection efficiency in MG-63 osteosarcoma cell line compared with the positive control. ALN-gelatin is a promising biopolymer for bone targeting of either small molecules or gene therapy applications.

  18. Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer

    NASA Astrophysics Data System (ADS)

    Kalkandelen, C.; Ozbek, B.; Ergul, N. M.; Akyol, S.; Moukbil, Y.; Oktar, F. N.; Ekren, N.; Kılıc, O.; Kılıc, B.; Gunduz, O.

    2017-12-01

    In the present study, gelatine scaffolds were manufactured by using modified 3D (3 Dimensional) printing machine and the effect of different parameters on scaffold structure were investigated. Such as; temperature, viscosity and surface tension of the gelatine solutions. The varying of gelatine solutions (1, 3, 5, 10, 15 and 20 wt.%) were prepared and characterized. It has been detected that, viscosity of those solutions were highly influenced by temperature and gelatine concentration. Specific CAD (Computer Assistant Design) model which has 67% porosity and original design were created via computer software. However, at high temperatures gelatine solutions caused like liquid but at the lower temperatures were observed the opposite behaviour. In addition to that, viscosity of 1,3,5 wt.% solutions were not enough to build a structure and 20 wt.% gelatine solution too hard to handle, because of the sudden viscosity changes with temperature. Even though, scaffold of the 20 wt.% gelatine solution printed hardly but it was observed the best printed solutions, which were 10 and 15 wt.% gelatine solutions. As a result, 3D printing of gelatine were found the values of the best temperature, viscosity, surface tension and gelatine concentration such as 25-35 °C, 36-163 cP, 46-59 mN/m and 15 wt.% gelatine concentration respectively.

  19. Deposition kinetics and characterization of stable ionomers from hexamethyldisiloxane and methacrylic acid by plasma enhanced chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urstöger, Georg; Resel, Roland; Coclite, Anna Maria, E-mail: anna.coclite@tugraz.at

    2016-04-07

    A novel ionomer of hexamethyldisiloxane and methacrylic acid was synthesized by plasma enhanced chemical vapor deposition (PECVD). The PECVD process, being solventless, allows mixing of monomers with very different solubilities, and for polymers formed at high deposition rates and with high structural stability (due to the high number of cross-links and covalent bonding to the substrate) to be obtained. A kinetic study over a large set of parameters was run with the aim of determining the optimal conditions for high stability and proton conductivity of the polymer layer. Copolymers with good stability over 6 months' time in air and watermore » were obtained, as demonstrated by ellipsometry, X-Ray reflectivity, and FT-IR spectroscopy. Stable coatings showed also proton conductivity as high as 1.1 ± 0.1 mS cm{sup −1}. Chemical analysis showed that due to the high molecular weight of the chosen precursors, it was possible to keep the plasma energy-input-per-mass low. This allowed limited precursor fragmentation and the functional groups of both monomers to be retained during the plasma polymerization.« less

  20. Massive Consumption of Gelatinous Plankton by Mediterranean Apex Predators

    PubMed Central

    Cardona, Luis; Álvarez de Quevedo, Irene; Borrell, Assumpció; Aguilar, Alex

    2012-01-01

    Stable isotopes of carbon and nitrogen were used to test the hypothesis that stomach content analysis has systematically overlooked the consumption of gelatinous zooplankton by pelagic mesopredators and apex predators. The results strongly supported a major role of gelatinous plankton in the diet of bluefin tuna (Thunnus thynnus), little tunny (Euthynnus alletteratus), spearfish (Tetrapturus belone) and swordfish (Xiphias gladius). Loggerhead sea turtles (Caretta caretta) in the oceanic stage and ocean sunfish (Mola mola) also primarily relied on gelatinous zooplankton. In contrast, stable isotope ratios ruled out any relevant consumption of gelatinous plankton by bluefish (Pomatomus saltatrix), blue shark (Prionace glauca), leerfish (Lichia amia), bonito (Sarda sarda), striped dolphin (Stenella caerueloalba) and loggerhead sea turtles (Caretta caretta) in the neritic stage, all of which primarily relied on fish and squid. Fin whales (Balaenoptera physalus) were confirmed as crustacean consumers. The ratios of stable isotopes in albacore (Thunnus alalunga), amberjack (Seriola dumerili), blue butterfish (Stromaeus fiatola), bullet tuna (Auxis rochei), dolphinfish (Coryphaena hyppurus), horse mackerel (Trachurus trachurus), mackerel (Scomber scombrus) and pompano (Trachinotus ovatus) were consistent with mixed diets revealed by stomach content analysis, including nekton and crustaceans, but the consumption of gelatinous plankton could not be ruled out completely. In conclusion, the jellyvorous guild in the Mediterranean integrates two specialists (ocean sunfish and loggerhead sea turtles in the oceanic stage) and several opportunists (bluefin tuna, little tunny, spearfish, swordfish and, perhaps, blue butterfish), most of them with shrinking populations due to overfishing. PMID:22470416

  1. Massive consumption of gelatinous plankton by Mediterranean apex predators.

    PubMed

    Cardona, Luis; Álvarez de Quevedo, Irene; Borrell, Assumpció; Aguilar, Alex

    2012-01-01

    Stable isotopes of carbon and nitrogen were used to test the hypothesis that stomach content analysis has systematically overlooked the consumption of gelatinous zooplankton by pelagic mesopredators and apex predators. The results strongly supported a major role of gelatinous plankton in the diet of bluefin tuna (Thunnus thynnus), little tunny (Euthynnus alletteratus), spearfish (Tetrapturus belone) and swordfish (Xiphias gladius). Loggerhead sea turtles (Caretta caretta) in the oceanic stage and ocean sunfish (Mola mola) also primarily relied on gelatinous zooplankton. In contrast, stable isotope ratios ruled out any relevant consumption of gelatinous plankton by bluefish (Pomatomus saltatrix), blue shark (Prionace glauca), leerfish (Lichia amia), bonito (Sarda sarda), striped dolphin (Stenella caerueloalba) and loggerhead sea turtles (Caretta caretta) in the neritic stage, all of which primarily relied on fish and squid. Fin whales (Balaenoptera physalus) were confirmed as crustacean consumers. The ratios of stable isotopes in albacore (Thunnus alalunga), amberjack (Seriola dumerili), blue butterfish (Stromaeus fiatola), bullet tuna (Auxis rochei), dolphinfish (Coryphaena hyppurus), horse mackerel (Trachurus trachurus), mackerel (Scomber scombrus) and pompano (Trachinotus ovatus) were consistent with mixed diets revealed by stomach content analysis, including nekton and crustaceans, but the consumption of gelatinous plankton could not be ruled out completely. In conclusion, the jellyvorous guild in the Mediterranean integrates two specialists (ocean sunfish and loggerhead sea turtles in the oceanic stage) and several opportunists (bluefin tuna, little tunny, spearfish, swordfish and, perhaps, blue butterfish), most of them with shrinking populations due to overfishing.

  2. Determine Age-structure of Gelatinous Zooplankton Using Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Bi, H.; Shahrestani, S.; He, Y.

    2016-02-01

    Gelatinous are delicate and transparent by nature, but are conspicuous in many ecosystems when in bloom. Their proliferations are a bothersome and costly nuisance and influencing important food webs and species interactions. More importantly, gelatinous zooplankton respond to climate change rapidly and understanding their upsurge needs information on their recruitment and population dynamics which in turn require their age-structure. However, ageing gelatinous zooplankton is often restricted by the fact that they shrink under unfavorable conditions. In the present study, we examine the potential of using optical coherence tomography (OCT) to age gelatinous zooplankton. OCT is a non-invasive imaging technique that uses light waves to examine 2D or 3D structure of target objects at a resolution of 3-5 µm. We were able to successfully capture both 3D and 2D images of sea nettle muscle fibers. Preliminary results on ctenophores will be discussed. Overall, this non-destructive sampling allows us to scan and capture images of mesoglea from jellyfish cultured in the lab, using the same individual repeatedly through time, documenting its growth which will provide precise measurements to construct an age key that will be applied to gelatinous zooplankton captured in the field. Coupled with information on abundance, we can start to quantify their recruitment timing and success rate.

  3. Micromolded gelatin hydrogels for extended culture of engineered cardiac tissues.

    PubMed

    McCain, Megan L; Agarwal, Ashutosh; Nesmith, Haley W; Nesmith, Alexander P; Parker, Kevin Kit

    2014-07-01

    Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro, which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A study of optical, mechanical and electrical properties of poly(methacrylic acid)/TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    AL-Baradi, Ateyyah M.; Al-Shehri, Samar F.; Badawi, Ali; Merazga, Amar; Atta, A. A.

    2018-06-01

    This work is concerned with the study of the effect of titanium dioxide (TiO2) nanofillers on the optical, mechanical and electrical properties of poly(methacrylic acid) (PMAA) networks as a function of TiO2 concentration and crosslink density. The structure of the prepared samples was investigated by X-ray diffractometry (XRD) and Transmittance Electron Microscope (TEM). XRD results showed a single phase for the nanocomposites indicating that no large TiO2 aggregates in the polymer matrix. The optical properties of the prepared samples including the absorption, transmittance, energy band gap and refractive index were explored using Spectrophotometer. These measurements showed that there is a red-shift in the absorption caused by the increase of TiO2 concentration. However, the crosslink density in the polymer plays no role in changing the absorption. The energy band gap (Eg) decreases with increasing the concentration of TiO2 in the polymer matrix; whereas Eg increases with increasing the crosslink density. Moreover, the mechanical properties of PMAA/TiO2 nanocomposites by Dynamic Mechanical Analysis (DMA) showed that the viscoelasticity of PMAA decreases with adding TiO2 nanoparticles and the glass transition temperature (Tg) was also found to drop from 130 °C to 114 °C. Finally, the DC conductivity of the obtained systems was found to increase with increasing TiO2 nanoparticles in the matrix.

  5. 21 CFR 522.1020 - Gelatin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Specifications. Each 100 milliliters contains 8 grams of gelatin in a 0.85 percent sodium chloride solution. (b) Sponsor. See No. 054771 in § 510.600(c) of this chapter. (c) Conditions of use—(1) Amount. The exact...

  6. Comparative study of chitosan and chitosan-gelatin scaffold for tissue engineering

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Dehiya, Brijnandan S.; Sindhu, Anil

    2017-12-01

    A number of orthopedic disorders and bone defect issues are solved by scaffold-based therapy in tissue engineering. The biocompatibility of chitosan (polysaccharide) and its similarity with glycosaminoglycan makes it a bone-grafting material. The current work focus on the synthesis of chitosan and chitosan-gelatin scaffold for hard tissue engineering. The chitosan and chitosan-gelatin scaffold have shown improved specific surface area, density, porosity, mechanical properties, biodegradability and absorption. These scaffolds can lead to the development or artificial fabrication of hard tissue alternates. The porous scaffold samples were prepared by freeze-drying method. The microstructure, mechanical and degradable properties of chitosan and chitosan-gelatin scaffolds were analyzed and results revealed that the scaffolds prepared from chitosan-gelatin can be utilized as a useful matrix for tissue engineering.

  7. Dynamic Load Measurement of Ballistic Gelatin Impact Using an Instrumented Tube

    NASA Technical Reports Server (NTRS)

    Seidt, J. D.; Periira, J. M.; Hammer, J. T.; Gilat, A.; Ruggeri, C. R.

    2012-01-01

    Bird strikes are a common problem for the aerospace industry and can cause serious damage to an aircraft. Ballistic gelatin is frequently used as a surrogate for actual bird carcasses in bird strike tests. Numerical simulations of these tests are used to supplement experimental data, therefore it is necessary to use numerical modeling techniques that can accurately capture the dynamic response of ballistic gelatin. An experimental technique is introduced to validate these modeling techniques. A ballistic gelatin projectile is fired into a strike plate attached to a 36 in. long sensor tube. Dynamic load is measured at two locations relative to the strike plate using strain gages configured in a full Wheatstone bridge. Data from these experiments are used to validate a gelatin constitutive model. Simulations of the apparatus are analyzed to investigate its performance.

  8. Preparation and characterization of reactive blends of poly(lactic acid), poly(ethylene-co-vinyl alcohol), and poly(ethylene-co-glycidyl methacrylate)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warangkhana, Phromma; Rathanawan, Magaraphan, E-mail: rathanawan.k@chula.ac.th; Jana Sadhan, C., E-mail: janas@uakron.edu

    The ternary blends of poly(lactic acid) (PLA), poly(ethylene-co-vinyl alcohol) (EVOH), and poly(ethylene-co-glycidyl methacrylate) (EGMA) were prepared. The role of EGMA as a compatibilizer was evaluated. The weight ratio of PLA:EVOH was 80:20 and the EGMA loadings were varied from 5-20 phr. The blends were characterized as follows: thermal properties by differential scanning calorimetry, morphology by scanning electron microscopy, and mechanical properties by pendulum impact tester, and universal testing machine. The glass transition temperature of PLA blends did not change much when compared with that of PLA. The blends of PLA/EGMA and EVOH/EGMA showed EGMA dispersed droplets where the latter ledmore » to poor impact properties. However, the tensile elongation at break and tensile toughness substantially increased upon addition of EGMA to blends of PLA and EVOH. It was noted in tensile test samples that both PLA and EVOH domains fibrillated significantly to produce toughness.« less

  9. Modified gum arabic cross-linked gelatin scaffold for biomedical applications.

    PubMed

    Sarika, P R; Cinthya, Kuriakose; Jayakrishnan, A; Anilkumar, P R; James, Nirmala Rachel

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Application of Bio-digestion for Capsule Gelatin-- From the Pharmaceutical Wastes to the Manure

    NASA Astrophysics Data System (ADS)

    Pan, C.; Huang, S.; Chang, Y.; Wen, J.

    2013-12-01

    The purpose of this study was to bio-digest the capsule gelatin from the waste of pharmaceutical processes such as cutting and stamping for capsule shells producing. We screened soil bacterial flora for capsule gelatin biolysis, and found the most competent one named Yuntech-7. A 15% (w/w) of capsule gelatin could fully digested by Yuntech-7 for 3 days growth with an N-limited medium in a 37°C incubator. In order to recycle and reuse the gelatin waste, the different percentages of capsule gelatin were co-composted with the vegetable residues to produce manure in an anaerobic fermentation by an extra Yuntech-7 inoculation. After 14 days incubation, we collected the filtrate to examine the contents of N, P, and K. The data shows that the P and K keep the same value by roughly between the blank and the control sets, but the total N values were approximately a 5-fold increase in 20% and a 10-fold increase in 40% of capsule gelatin integrated. We suggested that the capsule gelatin was majorly decomposed by Yuntech-7, because the total N value was no observable change in the capsule gelatin and vegetable residues co-compost with a Yuntech-7-free condition. We also performed some field tests using the capsule gelatin generated liquid manure, and the preliminary test shows the plants got great benefits on culture size and in environmental resistance. In conclusion, the process in bio-digestion of waste capsule gelatin by soil bacteria, Yuntech-7, was produced a valuable manure not only aliment the plants but also complement the soil bacterial populations.

  11. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation

    PubMed Central

    Zhang, Hao; Tian, Yong; Zhu, Zhenshu; Xu, Huae; Li, Xiaolin; Zheng, Donghui; Sun, Weihao

    2016-01-01

    Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer. PMID:27226240

  12. A strong association between HLA-DR9 and gelatin allergy in the Japanese population.

    PubMed

    Kumagai, T; Yamanaka, T; Wataya, Y; Saito, A; Okui, T; Yano, S; Tsutsumi, H; Chiba, S; Wakisaka, A

    2001-04-30

    The frequency of HLA class I and II phenotypes was determined among 23 patients with positive gelatin IgE, eight of whom developed anaphylaxis, 18 patients who did not have gelatin IgE but who experienced non-immediate reactions after exposure to gelatin. HLA-DR9, which is unique to Orientals, was present in 56.5% of the gelatin IgE positive patients, as compared to control population frequency of 24% (P < 0.002). In the non-immediate reaction group, who did not generate IgE, phenotype distribution resembled controls. HLA-DR9 positive individuals have a relative risk of 4.1 for developing gelatin allergy with positive IgE.

  13. Drug delivery with microsecond laser pulses into gelatin

    NASA Astrophysics Data System (ADS)

    Shangguan, Hanqun; Casperson, Lee W.; Shearin, Alan; Gregory, Kenton W.; Prahl, Scott A.

    1996-07-01

    Photoacoustic drug delivery is a technique for localized drug delivery by laser-induced hydrodynamic pressure following cavitation bubble expansion and collapse. Photoacoustic drug delivery was investigated on gelatin-based thrombus models with planar and cylindrical geometries by use of one microsecond laser pulses. Solutions of a hydrophobic dye in mineral oil permitted monitoring of delivered colored oil into clear gelatin-based thrombus models. Cavitation bubble development and photoacoustic drug delivery were visualized with flash photography. This study demonstrated that cavitation is the governing mechanism for photoacoustic drug delivery, and the deepest penetration of colored oil in gels followed the bubble collapse. Spatial distribution measurements revealed that colored oil could be driven a few millimeters into the gels in both axial and radial directions, and the penetration was less than 500 mu m when the gelatin structure was not fractured. localized drug delivery, cavitation bubble, laser thrombolysis.

  14. Physiochemical and functional properties of chum salmon (Oncorhynchus keta) skin gelatin extracted at different temperatures.

    PubMed

    Liu, Yang; Xia, Lining; Jia, Hui; Li, Qi; Jin, Wengang; Dong, Xiuping; Pan, Jinfeng

    2017-12-01

    Aquatic source gelatins are gaining more attention due to the advantages in safety and religion acceptability compared with mammalian sources. For understanding the effects of extracting temperature on gelatins from chum salmon (Oncorhynchus keta) skins (GCSS), gelatins were extracted at temperatures from 40 to 90°C and the physiochemical properties of GCSS were investigated. GCSS yield increased while imino acids content declined as the increase of temperature. GCSS40, 50 and 60 showed strong β-, α1- and α2-chains but the three faded in GCSS70, 80 and 90, with the presence of low molecular weight fragments. Amides A, I and III were shifted to higher wavenumber in GCSS70, 80 and 90 compared with that of GCSS40, 50 and 60. X-ray diffraction showed lower intensity of peak at 7° in GCSS80 and 90 than in the other GCSS. Gel strength declined while a*, b* and ΔE* value increased as temperature increased. Foam expansion and stability of GCSS40, 50 and 60 were lower than those of GCSS70, 80 and 90. Emulsion activity and stability decreased as temperature increased. Extracting temperature greatly affected yield, molecular composition and functionalities of GCSS. A temperature lower than 50°C is recommended for GCSS extraction. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.

    PubMed

    Van Nieuwenhove, Ine; Salamon, Achim; Peters, Kirsten; Graulus, Geert-Jan; Martins, José C; Frankel, Daniel; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter

    2016-11-05

    The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering

  16. Two- and multi-step annealing of cereal starches in relation to gelatinization.

    PubMed

    Shi, Yong-Cheng

    2008-02-13

    Two- and multi-step annealing experiments were designed to determine how much gelatinization temperature of waxy rice, waxy barley, and wheat starches could be increased without causing a decrease in gelatinization enthalpy or a decline in X-ray crystallinity. A mixture of starch and excess water was heated in a differential scanning calorimeter (DSC) pan to a specific temperature and maintained there for 0.5-48 h. The experimental approach was first to anneal a starch at a low temperature so that the gelatinization temperature of the starch was increased without causing a decrease in gelatinization enthalpy. The annealing temperature was then raised, but still was kept below the onset gelatinization temperature of the previously annealed starch. When a second- or third-step annealing temperature was high enough, it caused a decrease in crystallinity, even though the holding temperature remained below the onset gelatinization temperature of the previously annealed starch. These results support that gelatinization is a nonequilibrium process and that dissociation of double helices is driven by the swelling of amorphous regions. Small-scale starch slurry annealing was also performed and confirmed the annealing results conducted in DSC pans. A three-phase model of a starch granule, a mobile amorphous phase, a rigid amorphous phase, and a crystalline phase, was used to interpret the annealing results. Annealing seems to be an interplay between a more efficient packing of crystallites in starch granules and swelling of plasticized amorphous regions. There is always a temperature ceiling that can be used to anneal a starch without causing a decrease in crystallinity. That temperature ceiling is starch-specific, dependent on the structure of a starch, and is lower than the original onset gelatinization of a starch.

  17. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate.

    PubMed

    Mendis, Eresha; Rajapakse, Niranjan; Kim, Se-Kwon

    2005-02-09

    Hoki (Johnius belengerii) skin gelatin was hydrolyzed with three commercial enzymes to identify radical-scavenging potencies of derived peptides. Peptides derived from tryptic hydrolysate exhibited the highest scavenging activities on superoxide, carbon-centered 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals assessed by ESR spectroscopy. Following consecutive chromatographic separations of tryptic hydroolysate, the peptide sequence His-Gly-Pro-Leu-Gly-Pro-Leu (797 Da) acted as a strong radical scavenger under studied conditions. Further, this peptide could act as an antioxidant against linoleic acid peroxidation and the activity was closer to the highly active synthetic antioxidant butylated hydroxytoluene (BHT). In addition, antioxidative enzyme levels in cultured human hepatoma cells were increased in the presence of this peptide and it was presumed to be the peptide involved in maintaining the redox balance in the cell environment. Present data indicate that free-radical-scavenging activities of hoki skin gelatin peptides substantially contribute to their antioxidant properties measured in different oxidative systems.

  18. Characteristics and gelling property of phosphorylated gelatin from the skin of unicorn leatherjacket.

    PubMed

    Kaewruang, Phanngam; Benjakul, Soottawat; Prodpran, Thummanoon

    2014-03-01

    The characteristics and gelling property of gelatin from the skin of unicorn leatherjacket, phosphorylated with sodium tripolyphosphate (STPP) at various concentrations (0.25%, 0.50%, 0.75% and 1.00% w/w), for different times (1 and 3h) at 65°C, were studied. With the increase of STPP concentration and time, no increase in bound phosphate was observed. The highest gel strength was obtained for gelatin phosphorylated using 0.25% STPP for 1h (P<0.05). When the effect of pH (5, 7, 9 and 11) on phosphorylation and gel property of gelatin was investigated, gelatin phosphorylated at pH 9 had the highest gel strength (204.3g) (P<0.05) and exhibited a finer and more compact network structure with smaller pores. Gelatin became negatively charged (-3.89mV) and might undergo an ionic interaction to a higher extent, thereby strengthening the gel network. Thus, the phosphorylation, under the appropriate condition, could improve the gelling property of gelatin from the skin of unicorn leatherjacket. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. A novel strategy for water disinfection with a AgNPs/gelatin sponge filter.

    PubMed

    Wei, Feng; Zhao, Xiaole; Li, Chao; Han, Xiaojun

    2018-05-05

    Disinfection of bacteria in water with sustainable and energy-efficient methods is still a great challenge. Herein, a novel gelatin sponge with embedded AgNPs is fabricated via freeze-drying using gelatin as the reducing agent to synthesize AgNPs in situ. UV-vis spectroscopy, HRTEM, XRD, and XPS characterization prove the formation of AgNPs with an average size of 8.55 ± 0.35 nm. TEM and SEM images confirm the even distribution of AgNPs throughout the AgNPs/gelatin sponges. The composite sponge has a low bulk density of 20 ± 3.5 mg/cm 3 and a pore size of 6.2 ± 1.5 μm. The AgNPs/gelatin sponges exhibit excellent antibacterial performance to E. coli in water, probably by destroying their cell membranes. The porous AgNPs/gelatin composite sponges are promising filter materials for water disinfection. The removal rate of AgNPs/gelatin composite sponges on E. coli reached almost 100%. Graphical abstract ᅟ.

  20. Preparation and characterization of oxybenzone-loaded gelatin microspheres for enhancement of sunscreening efficacy.

    PubMed

    Patel, M; Jain, Sunil K; Yadav, Awesh K; Gogna, D; Agrawal, G P

    2006-01-01

    The objective of our present study was to prepare and evaluate gelatin microspheres of oxybenzone to enhance its sunscreening efficacy. The gelatin microspheres of oxybenzone were prepared by emulsion method. Process parameters were analyzed to optimize the formulation. The in vitro drug release study was performed in pH 7.4 using cellulose acetate membrane. Microspheres prepared using oxybenzone:gelatin ratio of 1:6 showed slowest drug release and those prepared with oxybenzone:gelatin ratio of 1:2 showed fastest drug release. The gelatin microspheres of oxybenzone were incorporated in aloe vera gel. Sun exposure method using sodium nitroprusside solution was used for in vitro sunscreen efficacy testing. The formulation C5 containing oxybenzone-bearing gelatin microspheres in aloe vera gel showed best sunscreen efficacy. The formulations were evaluated for skin irritation test in human volunteers, sun protection factor, and minimum erythema dose in albino rats. These studies revealed that the incorporation of sunscreening agent-loaded microspheres into aloe vera gel greatly increased the efficacy of sunscreen formulation more than four times.

  1. Synthesis of biocompatible hydrophobic silica-gelatin nano-hybrid by sol-gel process.

    PubMed

    Smitha, S; Shajesh, P; Mukundan, P; Nair, T D R; Warrier, K G K

    2007-03-15

    Silica-biopolymer hybrid has been synthesised using colloidal silica as the precursor for silica and gelatin as the biopolymer counterpart. The surface modification of the hybrid material has been done with methyltrimethoxysilane leading to the formation of biocompatible hydrophobic silica-gelatin hybrid. Here we are reporting hydrophobic silica-gelatin hybrid and coating precursor for the first time. The hybrid gel has been evaluated for chemical modification, thermal degradation, hydrophobicity, particle size, transparency under the UV-visible region and morphology. FTIR spectroscopy has been used to verify the presence of CH(3) groups which introduce hydrophobicity to the SiO2-MTMS-gelatin hybrids. The hydrophobic property has also been tailored by varying the concentration of methyltrimethoxysilane. Contact angle by Wilhelmy plate method of transparent hydrophobic silica-gelatin coatings has been found to be as high as approximately 95 degrees . Oxidation of the organic group which induces the hydrophobic character occurs at 530 degrees C which indicates that the surface hydrophobicity is retained up to that temperature. Optical transmittance of SiO2-MTMS-gelatin hybrid coatings on glass substrates has been found to be close to 100% which will enable the hybrid for possible optical applications and also for preparation of transparent biocompatible hydrophobic coatings on biological substrates such as leather.

  2. Degradation prediction model and stem cell growth of gelatin-PEG composite hydrogel.

    PubMed

    Zhou, Nan; Liu, Chang; Lv, Shijie; Sun, Dongsheng; Qiao, Qinglong; Zhang, Rui; Liu, Yang; Xiao, Jing; Sun, Guangwei

    2016-12-01

    Gelatin hydrogel has great potential in regenerative medicine. The degradation of gelatin hydrogel is important to control the release profile of encapsulated biomolecules and regulate in vivo tissue repair process. As a plasticizer, PEG can significantly improve the mechanical property of gelatin hydrogel. However, how preparation parameters affect the degradation rate of gelatin-PEG composite hydrogel is still not clear. In this study, the significant effect factor, glutaraldehyde (GA) concentration, was confirmed by means of Plackett-Burman method. Then a mathematical model was built to predict the degradation rate of composite hydrogels under different preparation conditions using the response surface method (RSM), which was helpful to prepare the certain composite hydrogel with desired degradation rate. In addition, it was found that gelatin-PEG composite hydrogel surface well supported the adhesion and growth of human mesenchymal stem cells (MSCs). Moreover, PEG concentration not only could adjust hydrogel degradation more subtly, but also might increase the cross-linking degree and affect the cell migration. Therefore, these results would be useful to optimize the preparation of gelatin-PEG composite hydrogel for drug delivery or tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3149-3156, 2016. © 2016 Wiley Periodicals, Inc.

  3. Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering.

    PubMed

    Agheb, Maria; Dinari, Mohammad; Rafienia, Mohammad; Salehi, Hossein

    2017-02-01

    In natural cartilage tissues, chondrocytes are linked to extracellular matrix (ECM) through cell-surface binding proteins. Surface modification of gelatin can provide a new generation of biopolymers and fibrous scaffolds with chemical, mechanical, and biological properties. In this study tyrosine protein and 1,2,3-triazole ring were utilized to functionalize gelatin without Cu catalyst. Their molecular structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy ( 1 HNMR). Chemical cross-linkers such as glutaraldehyde (GA) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysulfosuccinimide (NHS) were used to electrospin the modified gelatin. The modification of gelatin and cross-linking effects were confirmed by scanning electron microscopy (SEM), contact angle measurement, and mechanical tests. MTT assay using chondrocyte cells showed cell viability of electrospun modified gelatin scaffolds. In vitro cell culture studies showed that electrospun engineered protein scaffolds would support the attachment and growth of cells. The results also showed that cross-linked nanofibers with EDC/NHS could be considered excellent matrices in cell adhesion and proliferation before electrospinning process and their potential substrate in tissue engineering applications, especially in the field of cartilage engineering. Copyright © 2016. Published by Elsevier B.V.

  4. Conformations of gelatin in trivalent chromium salt solutions: Viscosity and dynamic light scattering study

    NASA Astrophysics Data System (ADS)

    Qiao, Congde; Zhang, Jianlong; Kong, Aiqun

    2017-02-01

    An investigation of the influences of pH, salt type, and salt concentration on the conformations of gelatin molecules in trivalent chromium salt solutions was performed by viscosity and dynamic light scattering (DLS) techniques. It was found that the viscosity behaviors as polyelectrolytes or polyampholytes depended on the charge distribution on the gelatin chains, which can be tuned by the value of pH of the gelatin solution. The intrinsic viscosity of gelatin in basic chromium sulfate aqueous solution at pH = 2.0 first decreased and then increased with increasing Cr(OH)SO4 concentration, while a monotonic decrease of the intrinsic viscosity of gelatin was observed in CrCl3 solution. However, the intrinsic viscosity of gelatin at pH = 5.0 was found to be increased first and then decreased with an increase in salt concentration in Cr(OH)SO4 solution, as well as in CrCl3 solution. We suggested that the observed viscosity behavior of gelatin in trivalent chromium salt solutions was attributed to the comprehensive effects of shielding, overcharging, and crosslinking (complexation) caused by the introduction of the different counterions. In addition, the average hydrodynamic radius ( R h ) of gelatin molecules in various salt solutions was determined by DLS. It was found that the change trend of R h with salt concentration was the same as the change of intrinsic viscosity. Based on the results of the viscosity and DLS, a possible mechanism for the conformational transition of gelatin chains with external conditions including pH, salt concentration, and salt type is proposed.

  5. Gelatin promotes murine fibrosarcoma L929 cell detachment and protects the cells from TNFα-induced cytotoxicity.

    PubMed

    Wang, Hong-Ju; Li, Meng-Qi; Liu, Wei; Yao, Guo-Dong; Xia, Ming-Yu; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2016-07-01

    Gelatin has been considered to exist as intermediate substance of collagen catabolism in tissue remodeling or under inflammatory conditions. We have initiated the study on possible biological functions of gelatin that can exist temporally and locally under the conditions of remodeling and inflammation Materials and methods: To this purpose, we investigated cell proliferation and survival on gelatin-coated dishes and the response to tumor necrosis factor α (TNFα)-induced cytotoxicity in L929 cells. Autophagy level, ATP level, and ROS generation are examined. L929 cells detached from the gelatin-coated dishes and formed multicellular aggregates. TNFα-induced cytotoxicity in L929 cells was inhibited by gelatin-coating culture. The cells on gelatin-coated dishes showed reduced cellular ATP levels and increased adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation, leading to increased ROS generation and autophagy. This study showed that gelatin-coated culture protected L929 cells from TNFα-induced cytotoxicity and suggested for a possible pathophysiological function of gelatin in regulating cellular functions.

  6. Effect of high molecular weight plasticizers on the gelatinization of starch under static and shear conditions.

    PubMed

    Taghizadeh, Ata; Favis, Basil D

    2013-02-15

    Starch gelatinization in the presence of high molecular weight polyol plasticizers and water was studied under static and dynamic conditions and was compared to a glycerol reference. For static gelatinization, glycerol, sorbitol, diglycerol and polyglycerol were examined using polarized light microscopy and differential scanning calorimetry. A wide range of starch/water/plasticizer compositions were prepared to explore the gelatinization regime for each plasticizer. The plasticizers show that the onset and conclusion temperatures for sorbitol and glycerol are in the same range and are lower than the other two plasticizers. On the other hand, polyglycerol shows a higher gelatinization temperature than diglycerol because of its higher molecular weight and viscosity. The results indicate that in the case of all plasticizers, increasing the water content tends to decrease the gelatinization temperature and, except for polyglycerol, increasing the plasticizer content increases the gelatinization temperature. In the case of polyglycerol, however, increasing the plasticizer content had the opposite effect and this was found to be related to the borderline solubility of polyglycerol in water. When the polyglycerol/water solubility was increased by increasing the temperature of the water/plasticizer/starch slurry, the gelatinization temperature dependence was found to be similar to the other polyols. A rheological technique was developed to study the dynamic gelatinization process by tracking the influence of shear on the complex viscosity in a couette flow system. Glycerol, diglycerol and sorbitol were subjected to different dynamic gelatinization treatments and the results were compared with static gelatinization. It is quantitatively shown that shear has a major effect on the gelatinization process. The conclusion temperature of gelatinization is significantly diminished (up to 21 °C) in the presence of shear whereas the onset temperature of gelatinization remains

  7. Electric field-assisted formation of organically modified hydroxyapatite (ormoHAP) spheres in carboxymethylated gelatin gels.

    PubMed

    Heinemann, C; Heinemann, S; Kruppke, B; Worch, H; Thomas, J; Wiesmann, H P; Hanke, T

    2016-10-15

    A biomimetic strategy was developed in order to prepare organically modified hydroxyapatite (ormoHAP) with spherical shape. The technical approach is based on electric field-assisted migration of calcium ions and phosphate ions into a hydrogel composed of carboxymethylated gelatin. The electric field as well as the carboxymethylation using glucuronic acid (GlcA) significantly accelerates the mineralization process, which makes the process feasible for lab scale production of ormoHAP spheres and probably beyond. A further process was developed for gentle separation of the ormoHAP spheres from the gelatin gel without compromising the morphology of the mineral. The term ormoHAP was chosen since morphological analyses using electron microscopy (SEM, TEM) and element analysis (EDX, FT-IR, XRD) confirmed that carboxymethylated gelatin molecules use to act as organic templates for the formation of nanocrystalline HAP. The hydroxyapatite (HAP) crystals self-organize to form hollow spheres with diameters ranging from 100 to 500nm. The combination of the biocompatible chemical composition and the unique structure of the nanocomposites is considered to be a useful basis for future applications in functionalized degradable biomaterials. A novel bioinspired mineralization process was developed based on electric field-assisted migration of calcium and phosphate ions into biochemically carboxymethylated gelatin acting as organic template. Advantages over conventional hydroxyapatite include particle size distribution and homogeneity as well as achievable mechanical properties of relevant composites. Moreover, specifically developed calcium ion or phosphate ion release during degradation can be useful to adjust the fate of bone cells in order to manipulate remodeling processes. The hollow structure of the spheres can be useful for embedding drugs in the core, encapsulated by the highly mineralized outer shell. In this way, controlled drug release could be achieved, which enables

  8. Properties of poly(lactic acid)/hydroxyapatite composite through the use of epoxy functional compatibilizers for biomedical application.

    PubMed

    Monmaturapoj, Naruporn; Srion, Autcharaporn; Chalermkarnon, Prasert; Buchatip, Suthawan; Petchsuk, Atitsa; Noppakunmongkolchai, Warobon; Mai-Ngam, Katanchalee

    2017-08-01

    A composite of 70/30 poly(lactic acid)/hydroxyapatite was systematically prepared using various amounts of glycidyl methacrylate as reactive compatibilizer or Joncryl ADR®-4368 containing nine glycidyl methacrylate functions as a chain extension/branching agent to improve the mechanical and biological properties for suitable usage as internal bone fixation devices. The effect of glycidyl methacrylate/Joncryl on mechanical properties of poly(lactic acid)/hydroxyapatite was investigated through flexural strength. Cell proliferation and differentiation of osteoblast-like MC3T3-E1 cells cultured on the composite samples were determined by Alamar Blue assay and alkaline phosphatase expression, respectively. Result shows that flexural strength tends to decrease, as glycidyl methacrylate content increases except for 1 wt.% glycidyl methacrylate. With an addition of dicumyl peroxide, the flexural strength shows an improvement than that of without dicumyl peroxide probably due to the chemical bonding of the hydroxyapatite and poly(lactic acid) as revealed by FTIR and NMR, whereas the composite with 5 wt.% Joncryl shows the best result, as the flexural strength increases getting close to pure poly(lactic acid). The significant morphology change could be seen in composite with Joncryl where the uniform agglomeration of hydroxyapatite particles oriented in poly(lactic acid) matrix. Addition of the epoxy functional compatibilizers at suitable percentages could also have benefits to cellular attachment, proliferation, differentiation and mineralization. So that, this poly(lactic acid)/hydroxyapatite composite could be a promising material to be used as internal bone fixation devices such as screws, pins and plates.

  9. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles.

    PubMed

    Sahraee, Samar; Milani, Jafar M; Ghanbarzadeh, Babak; Hamishehkar, Hamed

    2017-04-01

    The gelatin-based nanocomposite films containing chitin nanoparticles (N-chitin) with concentrations of 0, 3, 5 and 10% were prepared and their physical, thermal and anti-microbial properties were investigated. Scanning electron microscopy (SEM) micrographs showed that N-chitin size distribution was around 60-70nm which dispersed appropriately at low concentration in gelatin matrix. The results showed that incorporation of N-chitin significantly influenced apparent color and transparency of the gelatin films. The reduced water vapor permeability (WVP) and solubility and higher surface hydrophobicity of the nanocomposite films were obtained by enhancing N-chitin concentration in film formulation. The use of N-chitin up to 5% concentration in the gelatin based nanocomposite film led to improved mechanical properties. Also, the results of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed improved stability of nanocomposite films against melting and degradation at high temperatures in comparison to neat gelatin film. The well compatibility of chitin nanoparticles with gelatin polymer was concluded from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) plots. Finally, the gelatin based nanocomposite films had anti-fungal properties against Aspergillus niger in the contact surface zone. Increasing the concentration of N-chitin up to 5% enlarged inhibition zone diameter, but the nanocomposite film containing 10% N-chitin showed smaller inhibition zone. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Multilayered Magnetic Gelatin Membrane Scaffolds

    PubMed Central

    Samal, Sangram K.; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L.; Dediu, V. Alek

    2016-01-01

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial–magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications. PMID:26451743

  11. Multilayered Magnetic Gelatin Membrane Scaffolds.

    PubMed

    Samal, Sangram K; Goranov, Vitaly; Dash, Mamoni; Russo, Alessandro; Shelyakova, Tatiana; Graziosi, Patrizio; Lungaro, Lisa; Riminucci, Alberto; Uhlarz, Marc; Bañobre-López, Manuel; Rivas, Jose; Herrmannsdörfer, Thomas; Rajadas, Jayakumar; De Smedt, Stefaan; Braeckmans, Kevin; Kaplan, David L; Dediu, V Alek

    2015-10-21

    A versatile approach for the design and fabrication of multilayer magnetic scaffolds with tunable magnetic gradients is described. Multilayer magnetic gelatin membrane scaffolds with intrinsic magnetic gradients were designed to encapsulate magnetized bioagents under an externally applied magnetic field for use in magnetic-field-assisted tissue engineering. The temperature of the individual membranes increased up to 43.7 °C under an applied oscillating magnetic field for 70 s by magnetic hyperthermia, enabling the possibility of inducing a thermal gradient inside the final 3D multilayer magnetic scaffolds. On the basis of finite element method simulations, magnetic gelatin membranes with different concentrations of magnetic nanoparticles were assembled into 3D multilayered scaffolds. A magnetic-gradient-controlled distribution of magnetically labeled stem cells was demonstrated in vitro. This magnetic biomaterial-magnetic cell strategy can be expanded to a number of different magnetic biomaterials for various tissue engineering applications.

  12. Thermal behavior of potato starch and water-vaporization behavior of its paste controlled with amino acid and peptide-rich food materials.

    PubMed

    Sakauchi, Satoshi; Hattori, Makoto; Yoshida, Tadashi; Yagishita, Takahiro; Ito, Koichi; Akemitsu, Shin-Ichi; Takahashi, Koji

    2010-03-01

    The particular effect of 4 kinds of amino acid and peptide-rich food material (APRM) containing different charged amino acid contents on the gelatinization and retrogradation behavior of potato starch granules and on the water-vaporization behavior was analyzed by differential scanning calorimetry, rapid viscoanalysis, x-ray diffractometry, thermal gravimetry-differential thermal analysis, and pulsed NMR. APRM with a high-charged amino acid content produced unique gelatinization and retrogradation behavior in terms of an elevated gelatinization temperature, reduced viscosity, higher setback, and lower retrograded starch melting enthalpy. The recovered x-ray diffraction intensity decreased with increasing charged amino acid content. APRM with high-charged amino acid content could provide an improved paste having easy vaporization of external water in the swollen starch granules due to the reduced swelling.

  13. In vitro transfection of plasmid DNA by amine derivatives of gelatin accompanied with ultrasound irradiation.

    PubMed

    Hosseinkhani, Hossein; Aoyama, Ternyoshi; Yamamoto, Shingo; Ogawa, Osamu; Tabata, Yasuhiko

    2002-10-01

    The purpose of this study is to examine the ultrasound (US)-enhanced gene expression by the complexes of a plasmid DNA with gelatin derivatives of aminization. Gelatin derivatives with different introduced extents of ethylenediamine (Ed), spermidine (Sd), and spermine (Sm) were prepared with a water-soluble carbodiimide. The molecular size and zeta potential of the gelatin derivatives before and after complexation with the plasmid DNA were examined. After incubation with the complexes with or without US exposure, the DNA expression of rat gastric mucosal cells was measured to evaluate the effect of the type of gelatin derivatives on their gene expression. The cell uptake of the complexes, the cell viability, and the buffering effect of gelatin derivatives were examined. The apparent molecular size and zeta potential of gelatin derivatives became larger as their aminization extent increased although the Sm gelatin derivative of higher aminization showed a larger value than other corresponding derivatives. Irrespective of the type of gelatin derivatives, the apparent molecular size of plasmid DNA was reduced by increasing the gelatin-DNA mixing ratio to attain a saturated value of about 150 nm. The condensed gelatin-DNA complexes showed the zeta potential of 10-15 mV. The cells incubated with the complex exhibited significantly stronger luciferase activities than free plasmid DNA, and the activity was further enhanced by US irradiation. The enhancement was significant for the Sm derivative compared with the corresponding Ed and Sd derivatives. The amount of plasmid DNA internalized into the cells was significantly increased by the complexation with every gelatin derivative, whereas US irradiation did not significantly increase the DNA internalization. US irradiation had no effect on the viability of cells incubated with every gelatin derivative-plasmid DNA complex, although the viability was decreased by the complex incubation. The buffering capacity of Sm derivative

  14. Mechanical reinforcement of gelatin hydrogel with nanofiber cellulose as a function of percolation concentration.

    PubMed

    Wang, Wenhang; Zhang, Xiaowei; Teng, Anguo; Liu, Anjun

    2017-10-01

    Given a variety of distinguished aspect ratio-related characteristics of nanofiber cellulose (NFC), the impact of NFC on gelatin hydrogel performance involving strength, rheology, microstructure was investigated, focusing on concentration percolation mechanism for it. The inner topography displayed a compact three-dimensional network structure in the NFC-added gelatin gel, however, an NFC amount of 7.5gkg -1 caused more inhomogeneous aggregation. Texture profile analysis showed that the addition of NFC increased the hardness but reduced the elasticity of gelatin gel at 10°C, depending on NFC concentration. For static rheology, adding NFC transformed gelatin solution from the Newtonian action into pseudoplastic behavior at 60°C, with a marked increase of viscosity. Furthermore, NFC improved the temperature of sol-gel transition of gelatin, even no obvious transformation as ≥5gkg -1 NFC used. NFC reinforcement provides the potential to use as texture modifier along with gelatin in food field. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Acrylate and methacrylate contact allergy and allergic contact disease: a 13-year review.

    PubMed

    Spencer, Ashley; Gazzani, Paul; Thompson, Donna A

    2016-09-01

    (Meth)acrylates are important causes of contact allergy and allergic contact disease, such as dermatitis and stomatitis, with new and emerging sources resulting in changing clinical presentations. To identify the (meth)acrylates that most commonly cause allergic contact disease, highlight their usefulness for screening, and examine their relationship with occupational and clinical data. A retrospective review of results from patch tests performed between July 2002 and September 2015, in one tertiary Cutaneous Allergy Unit, was performed A series of 28 (meth)acrylates was applied to 475 patients. Results were positive in 52 cases, with occupational sources being identified in 24. Industrial exposures and acrylic nails were responsible for 13 and 10 cases, respectively, with wound dressings being implicated in 7. We found that four individual (meth)acrylates (2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, bisphenol A glycerolate dimethacrylate, and ethyl acrylate), if used as a screening tool, could have identified 47 (90.4%) of our positive cases. Our 13-year experience indicates a changing landscape of (meth)acrylate contact allergy and allergic contact disease, with an observed shift in exposures away from manufacturing and towards acrylic nail sources. Wound dressings are highlighted as emerging sources of sensitization. Larger studies are required to establish the sensitivity and specificity of the four (meth)acrylates proposed for potential screening. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Eco-friendly synthesis of gelatin-capped bimetallic Au-Ag nanoparticles for chemiluminescence detection of anticancer raloxifene hydrochloride.

    PubMed

    Alarfaj, Nawal A; El-Tohamy, Maha F

    2016-09-01

    This study described the utility of green analytical chemistry in the synthesis of gelatin-capped silver, gold and bimetallic gold-silver nanoparticles (NPs). The preparation of nanoparticles was based on the reaction of silver nitrate or chlorauric acid with a 1.0 wt% aqueous gelatin solution at 50°C. The gelatin-capped silver, gold and bimetallic NPs were characterized using transmission electron microscopy, UV-vis, X-ray diffraction and Fourier transform infrared spectroscopy, and were used to enhance a sensitive sequential injection chemiluminescence luminol-potassium ferricyanide system for determination of the anticancer drug raloxifene hydrochloride. The developed method is eco-friendly and sensitive for chemiluminescence detection of the selected drug in its bulk powder, pharmaceutical injections and biosamples. After optimizing the conditions, a linear relationship in the range of 1.0 × 10(-9) to 1.0 × 10(-1)  mol/L was obtained with a limit of detection of 5.0 × 10(-10)  mol/L and a limit of quantification of 1.0 × 10(-9)  mol/L. Statistical treatment and method validation were performed based on ICH guidelines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Enzyme immunoassay for the detection of porcine gelatine in edible bird's nests.

    PubMed

    Tukiran, Nur Azira; Ismail, Amin; Mustafa, Shuhaimi; Hamid, Muhajir

    2015-01-01

    Porcine gelatine is a common adulterant found in edible bird's nests (EBNs) used to increase the net weight prior to sale. This study aimed to develop indirect enzyme-linked immunosorbent assays (ELISAs) for porcine gelatine adulteration using anti-peptide polyclonal antibodies. Three indirect ELISAs were developed (PAB1, 2 and 3), which had limits of detection (LODs) of 0.12, 0.10 and 0.11 µg g(-1), respectively. When applied to standard solutions of porcine gelatine, the inter- and intra-assays showed coefficients of variation (CVs) less than 20% and were able to detect at least 0.5 ng µg(-1) (0.05%) porcine gelatine in spiked samples. The proposed ELISA offers attractions for quality control in the EBN industry.

  18. Organic inorganic hybrid coating (poly(methyl methacrylate)/monodisperse silica)

    NASA Astrophysics Data System (ADS)

    Rubio, E.; Almaral, J.; Ramírez-Bon, R.; Castaño, V.; Rodríguez, V.

    2005-04-01

    Polymethylmethacrylate-silica hybrid coatings were prepared from methyl methacrylate and monodisperse colloidal silica prepared by the Stöber method. The surfaces of the spheres were successfully modified by chemical reaction with 3-(trimethoxysilyl) propyl methacrylate (TMSPM) to compatibilise the organic and inorganic components of the precursor solution mixture. The coatings were deposited by dip-coating on glass substrates. They result with good properties of homogeneity, optical transparence, hardness and adhesion.

  19. Lecithin, gelatin and hydrolyzed collagen orally disintegrating films: functional properties.

    PubMed

    Borges, J G; Silva, A G; Cervi-Bitencourt, C M; Vanin, F M; Carvalho, R A

    2016-05-01

    Orally disintegrating films (ODFs) can transport natural active compounds such as ethanol extract of propolis (EEP). This paper aimed to investigate the effect of lecithin on different gelatin and hydrolyzed collagen (HC) polymeric matrices with addition of EEP. ODFs were prepared by casting technique and were characterized (color parameters, water content, mechanical properties, microstructure, disintegration time (DT), infrared spectroscopy (FTIR), contact angle (CA), swelling degree and total phenolic content). The mechanical properties were influenced by HC. The microstructure demonstrated increased porosity and roughness in films with EEP, and the addition of lecithin resulted in an increase in the number of pores. Lecithin-gelatin and lecithin-EEP-gelatin interactions were observed by FTIR. The addition of HC and EEP reduced the DT and CA, and HC and lecithin reduced the swelling capacity. However, the swelling capacity was not affected by presence of EEP. The addition of lecithin to gelatin and HC ODFs may improve the incorporation and the oral transport of active compounds such as EEP. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. [Gelatin allergy].

    PubMed

    Hassoun, S; Sabbah, A

    1998-03-01

    Allergy to the gelatin used as a plasma filler product has not been recognised until now. Methods used have not been validated but are composed of specific serum IgE, skin tests and histamine release by leucotrienes. The clinical observation that we report has the merit of showing the reality of an allergy that is dependent on plasma filler products due to development of a protocol which includes firstly, during anaphylactic shock, measurement of the mediators of immediate hypersensitivity and secondly, after the clinical accident, test of the activation of basophils by flow cytometry (TAB) and measurement of leucotrienes.

  1. EFFECT OF POLONIUM /cap alpha/ RADIATION ON GELATINE (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ader, M.

    1962-08-01

    When a nuclear plate, which has been exposed to radiation, developed, and dried, is exposed to a Po source, no effect can be detected by either the eye or the microscope. However if the plate is placed in distilled water, the emulsion thickness of the irradiated region is reduced by approximately 20 mu . A ridge'' separates this region from the nonirradiated region. The ridge contains piles of silver grains, very deformed traces of the old radiation, and some gelatin fragments. It appears that the alpha particles penetrating the gelatine transforms this gelatin, reversible protein, into a substance soluble'' inmore » distilled water or entrained by the distilled water. (J.S.R.)« less

  2. A 2,5-Dihydroxybenzoic Acid–Gelatin Conjugate: The Synthesis, Antiviral Activity and Mechanism of Antiviral Action Against Two Alphaherpesviruses

    PubMed Central

    Lisov, Alexander; Vrublevskaya, Veronika; Lisova, Zoy; Leontievsky, Alexey; Morenkov, Oleg

    2015-01-01

    Various natural and synthetic polyanionic polymers with different chemical structures are known to exhibit potent antiviral activity in vitro toward a variety of enveloped viruses and may be considered as promising therapeutic agents. A water-soluble conjugate of 2,5-dihydroxybezoic acid (2,5-DHBA) with gelatin was synthesized by laccase-catalyzed oxidation of 2,5-DHBA in the presence of gelatin, and its antiviral activity against pseudorabies virus (PRV) and bovine herpesvirus type 1 (BoHV-1), two members of the Alphaherpesvirinae subfamily, was studied. The conjugate produced no direct cytotoxic effect on cells, and did not inhibit cell growth at concentrations up to 1000 µg/mL. It exhibited potent antiviral activity against PRV (IC50, 1.5–15 µg/mL for different virus strains) and BoHV-1 (IC50, 0.5–0.7 µg/mL). When present during virus adsorption, the conjugate strongly inhibited the attachment of PRV and BoHV-1 to cells. The 2,5-DHBA–gelatin conjugate had no direct virucidal effect on the viruses and did not influence their penetration into cells, cell-to-cell spread, production of infectious virus particles in cells, and expression of PRV glycoproteins E and B. The results indicated that the 2,5-DHBA–gelatin conjugate strongly inhibits the adsorption of alphaherpesviruses to cells and can be a promising synthetic polymer for the development of antiviral formulations against alphaherpesvirus infections. PMID:26501311

  3. Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wenchao; Wang, Zhipeng; School of Chemical Engineering, Tianjin University, Tianjin

    2012-09-15

    Highlights: ► We used and compared different proportion of gelatin and chitosan as reducing agents. ► The mechanical properties of the films are investigated, especially the wet films. ► The cell toxicity of the composite films as biomaterial is carried out. ► The water absorption capabilities of the composite films also studied. -- Abstract: Graphene oxide (GO) was reduced by chitosan/gelatin solution and added to gelatin (Gel) to fabricate reduced graphene oxide/gelatin (RGO/Gel) films by a solvent-casting method using genipin as cross-linking agent. The structure and properties of the films were characterized by scanning electron microscopy (SEM), X-ray powder diffractionmore » (XRD), thermogravimetric analysis (TGA) and UV–vis spectroscopy. The addition of RGO increased the tensile strength of the RGO/Gel films in both dry and wet states, but decreased their elongation at break. The incorperation of RGO also decreased the swelling ability of the films in water. Cell cultures were carried out in order to test the cytotoxicity of the films. The cells grew and reproduced well on the RGO/Gel films, indicating that the addition of RGO has no negative effect on the compatibility of the gelatin. Therefore, the reduced graphene oxide/gelatin composite is a promising biomaterial with excellent mechanical properties and good cell compatibility.« less

  4. Effect of ageing on the calibration of ballistic gelatin.

    PubMed

    Guey, Jason; Rodrigues, S; Pullen, A; Shaw, B; Kieser, D C

    2018-02-27

    Ballistic gelatin is commonly used as a validated surrogate for soft tissue during terminal ballistic testing. However, the effect of a delay between production and testing of a gelatin mould remains unknown. The aim of this study was to determine any potential effects of ageing on ballistic gelatin. Depth of penetration (DoP) of 4.5 mm spherical fragment simulating projectiles was ascertained using mixtures of 10%, 11.25% and 20% Type A 250 Bloom ballistic gelatin. Testing was performed daily for 5 days using velocities between 75 and 210 m/s. DoP at day 5 was statistically compared with day 1, and net mass change was recorded daily. No significant difference was found for DoP observed with time in any of the samples (P>0.05). Spearman correlation was excellent in all moulds. The moulds with known standard calibrations remained in calibration throughout the study period. Mass loss of less than 1% was noted in all samples. Mass loss was the only quantifiable measure of changes in the blocks with time, but did not correlate with any changes in DoP. This may provide reassurance when undertaking such testing that an inadvertent delay will not significantly alter the penetration properties of the mould. Future research is recommended to determine any potential effect on the mechanical properties of gelatin at higher velocity impacts and whether the calibration corresponds to an adequate simulation under such conditions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Bovine and Porcine Gelatin Sensitivity in Milk and Meat-Sensitized Children

    PubMed Central

    Bogdanovic, Jelena; Halsey, Neal A.; Wood, Robert A.; Hamilton, Robert G.

    2009-01-01

    Capsule Summary Cross-reactive bovine and porcine gelatin-specific IgE antibody is more common in cow’s milk and beef or pork meat-sensitized individuals than previously known and a potential risk factor for allergic reactions to gelatin-containing products (foods, vaccines). PMID:19665767

  6. The modified polymethyl methacrylate-silicone keratoprosthesis in rabbit model.

    PubMed

    Sun, Heng; Hu, Zhu-Lin

    2018-05-01

    To evaluate the safety and effectiveness of a modified polymethyl methacrylate-silicone keratoprosthesis and its operation method in alkali-burned rabbit model. The polymethyl methacrylate-silicone keratoprostheses were implanted into seven alkali-burned rabbit corneas by a special operation method using autologous graft as the keratoprosthesis (Kpro) carrier. The long-term postoperative outcomes were evaluated. During a postoperative study period of 16 months, except for one Kpro extruded at 3 months, all Kpros were in good position and were kept transparent without Kpro extrusion, keratolysis, infection, endophthalmitis, or retinal detachment. The postoperative complications included elevated intraocular pressure in two cases and temporary retroprosthetic membrane formation in two cases. The modified polymethyl methacrylate-silicone Kpro and its operation method is a relatively safe and effective choice for alkali-burned rabbit eyes. Elevated intraocular pressure is the main complication needing to be resolved.

  7. Cellular interaction influenced by surface modification strategies of gelatin-based nanoparticles.

    PubMed

    Tse, Wai Hei; Gyenis, Laszlo; Litchfield, David W; Zhang, Jin

    2017-02-01

    Theranostic applications of gelatin nanospheres require two major components, a method of detection and good biocompatibility. We characterized the response of UTA-6 human osteosarcoma cells to the introduction of functionalized 90 bloom-based gelatin nanospheres (158 ± 49 nm) modified with three elements in different order: (a) hybridization with cadmium-based quantum dots for optical detection, (b) bioconjugation with anti-human IgG FAB (anti-IgG) for cell targeting, with/without (c) capping with polyethylene glycol on the surface for enhanced biocompatibility. A one-pot process is developed for incorporating quantum dots and antibody with gelatin nanospheres. Path A of modifying gelatin nanospheres with quantum dots first followed by anti-IgG resulted in a significantly greater cellular viability than Path B with anti-IgG first followed by quantum dots. Capping with polyethylene glycol as the final step in modification yielded significantly opposing results with decreases in Path A and increases in Path B. Three-dimensional z-stacking fluorescent images of hybrid gelatin nanospheres with anti-IgG is observed to have an increase in cellular association. The observed results suggest the modification order for building hybrid nanospheres may have an impact on cellular response.

  8. Physical, mechanical, and barrier properties of sodium alginate/gelatin emulsion based-films incorporated with canola oil

    NASA Astrophysics Data System (ADS)

    Syarifuddin, A.; Hasmiyani; Dirpan, A.; Mahendradatta, M.

    2017-12-01

    The development of mixed emulsion-based films formed by sodium alginate/gelatin incorporated with canola oil can offer particular properties such as water vapor barrier properties. The different ratios of sodium alginate/gelatin and sodium alginate/gelatin emulsion-based films incorporated with canola oil were developed and their effects on films’ physical, mechanical and barrier properties were assessed. Here we set out to examine whether canola oil addition and different ratio of sodium alginate/gelatin modified physical, mechanical, and barrier properties of films. To do so, the films were prepared by vary the ratio of sodium alginate/gelatin (2.5, 1, 0.5). Canola oil addition induced changes in moisture content, thickness, solubility, water vapor transmission rate (WVTR), percent elongation at break (p<0.05). In addition, it is apparent that varying ratio of sodium alginate to gelatin induced change the mechanical properties of films. The reduction of sodium alginate to gelatin decreased the tensile strength of both films. Improved values of WVTR, tensile strength and solubility at break were observed when the ratio of sodium alginate/gelatin emulsion film incorporated with canola oil was 2.5. Therefore, different ratio of sodium alginate/gelatin incorporated with canola oil can be used to tailor emulsion films with enhanced water vapor barrier and mechanical properties.

  9. Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate) Template

    NASA Astrophysics Data System (ADS)

    Duan, Guorong; Zhang, Chunxiang; Li, Aimei; Yang, Xujie; Lu, Lude; Wang, Xin

    2008-03-01

    Superfine powders of poly (methyl methacrylate) (PMMA) have been prepared by means of an emulsion polymerization method. These have been used as templates in the synthesis of tetragonal phase mesoporous zirconia by the sol gel method, using zirconium oxychloride and oxalic acid as raw materials. The products have been characterized by infrared spectroscopy, X-ray diffraction analysis, transmission electron microscopy, N2 adsorption-desorption isotherms, and pore size distribution. The results indicate that the average pore size was found to be 3.7 nm.

  10. Repair Strength in Simulated Restorations of Methacrylate- or Silorane-Based Composite Resins.

    PubMed

    Consani, Rafael Leonardo Xediek; Marinho, Tatiane; Bacchi, Atais; Caldas, Ricardo Armini; Feitosa, Victor Pinheiro; Pfeifer, Carmem Silvia

    2016-01-01

    The study verified the bond strength in simulated dental restorations of silorane- or methacrylate-based composites repaired with methacrylate-based composite. Methacrylate- (P60) or silorane-based (P90) composites were used associated with adhesive (Adper Single Bond 2). Twenty-four hemi-hourglass-shaped samples were repaired with each composite (n=12). Samples were divided according to groups: G1= P60 + Adper Single Bond 2+ P60; G2= P60 + Adper Single Bond 2 + P60 + thermocycling; G3= P90 + Adper Single Bond 2 + P60; and G4= P90 + Adper Single Bond 2 + P60 + thermocycling. G1 and G3 were submitted to tensile test 24 h after repair procedure, and G2 and G4 after submitted to 5,000 thermocycles at 5 and 55 ?#61616;C for 30 s in each bath. Tensile bond strength test was accomplished in an universal testing machine at crosshead speed of 0.5 mm/min. Data (MPa) were analyzed by two-way ANOVA and Tukey's test (5%). Sample failure pattern (adhesive, cohesive in resin or mixed) was evaluated by stereomicroscope at 30?#61655; and images were obtained in SEM. Bond strength values of methacrylate-based composite samples repaired with methacrylate-based composite (G1 and G2) were greater than for silorane-based samples (G3 and G4). Thermocycling decreased the bond strength values for both composites. All groups showed predominance of adhesive failures and no cohesive failure in composite resin was observed. In conclusion, higher bond strength values were observed in methacrylate-based resin samples and greater percentage of adhesive failures in silorane-based resin samples, both composites repaired with methacrylate-based resin.

  11. Soft nanocomposites of gelatin and poly(3-hydroxybutyrate) nanoparticles for dual drug release.

    PubMed

    Bini, Rafael A; Silva, Mônica F; Varanda, Laudemir C; da Silva, Marcelo A; Dreiss, Cécile A

    2017-09-01

    We developed a nanocomposite gel composed of gelatin and poly(3-hydroxybutyrate) polymeric nanoparticles (PNP) to be used as an injectable gel for the contemporaneous, dual sustained release of bioactive molecules. The hydrogel matrix was formed by a very simple process, using either the physical gelation of gelatin or the natural enzyme transglutaminase to covalently cross-link the gelatin chains in the presence of embedded PNP. Oscillatory rheological measurements showed that the addition of the PNP induced an increase in the storage modulus compared to pure gelatin gels, for both physical and chemical gels. Micrographs from scanning electron microscopy revealed that the presence of PNP disrupted the native structure of the gelatin chains in the hydrogel matrix. Dual drug encapsulation was achieved with curcumin (CM) in the PNP and naproxen sodium(NS) in the gelatin matrix. In vitro release studies showed that the hydrogel matrix acts both as a physical and chemical barrier, delaying the diffusion of the drugs. An initial burst release was observed in the first hours of the measurement, and around 90% was released on the third day for naproxen sodium. In free PNP, 82% of curcumin was relased after four days, while when PNP were embedded in the gelatin matrix only 40% was released over the same time period. Overall, these simple, sustainable soft nanocomposites show potential as an injectable co-sustained drug release system. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Superparamagnetic poly(methyl methacrylate) nanoparticles surface modified with folic acid presenting cell uptake mediated by endocytosis

    NASA Astrophysics Data System (ADS)

    Feuser, Paulo Emilio; Jacques, Amanda Virtuoso; Arévalo, Juan Marcelo Carpio; Rocha, Maria Eliane Merlin; dos Santos-Silva, Maria Claudia; Sayer, Claudia; de Araújo, Pedro H. Hermes

    2016-04-01

    The encapsulation of superparamagnetic nanoparticles (MNPs) in polymeric nanoparticles (NPs) with modified surfaces can improve targeted delivery and induce cell death by hyperthermia. The goals of this study were to synthesize and characterize surface modified superparamagnetic poly(methyl methacrylate) with folic acid (FA) prepared by miniemulsion polymerization (MNPsPMMA-FA) and to evaluate their in vitro cytotoxicity and cellular uptake in non-tumor cells, murine fibroblast (L929) cells and tumor cells that overexpressed folate receptor (FR) β, and chronic myeloid leukemia cells in blast crisis (K562). Lastly, hemolysis assays were performed on human red blood cells. MNPsPMMA-FA presented an average mean diameter of 135 nm and a saturation magnetization (Ms) value of 37 emu/g of iron oxide, as well as superparamagnetic behavior. The MNPsPMMA-FA did not present cytotoxicity in L929 and K562 cells. Cellular uptake assays showed a higher uptake of MNPsPMMA-FA than MNPsPMMA in K562 cells when incubated at 37 °C. On the other hand, MNPsPMMA-FA showed a low uptake when endocytosis mechanisms were blocked at low temperature (4 °C), suggesting that the MNPsPMMA-FA uptake was mediated by endocytosis. High concentrations of MNPsPMMA-FA showed hemocompatibility when incubated for 24 h in human red blood cells. Therefore, our results suggest that these carrier systems can be an excellent alternative in targeted drug delivery via FR.

  13. Targeted Soft Biodegradable Glycine/PEG/RGD-Modified Poly(methacrylic acid) Nanobubbles as Intelligent Theranostic Vehicles for Drug Delivery.

    PubMed

    Li, Yongjing; Wan, Jiaxun; Zhang, Zihao; Guo, Jia; Wang, Changchun

    2017-10-18

    The development of multifunctional ultrasound contrast agents has inspired considerable interest in the application of biomedical imaging and anticancer therapeutics. However, combining multiple components that can preferentially accumulate in tumors in a nanometer scale poses one of the major challenges in targeting drug delivery for theranostic application. Herein, reflux-precipitation polymerization, and N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide-meditated amidation reaction were introduced to effectively generate a new type of soft glycine/poly(ethylene glycol) (PEG)/RGD-modified poly(methacrylic acid) nanobubbles with a uniform morphology and desired particle size (less than 100 nm). Because of the enhanced biocompatibility resulting from the glycine modification, over 80% of the cells survived, even though the dosage of glycine-modified polymeric nanobubbles was up to 5 mg/mL. By loading doxorubicin as an anticancer drug and perfluorohexane as an ultrasound probe, the resulting glycine/PEG/RGD-modified nanobubbles showed remarkable cancer therapeutic efficacy and a high quality of ultrasonic imaging; thus, the ultrasonic signal exhibited a 1.47-fold enhancement at the tumor site after intravenous injection. By integrating diagnostic and therapeutic functions into a single nanobubble, the new type of theranostic nanobubbles offers a promising strategy to monitor the therapeutic effects, giving important insights into the ultrasound-traced and enhanced targeting drug delivery in biomedical applications.

  14. Improvement of pesticide adsorption capacity of cellulose fibre by high-energy irradiation-initiated grafting of glycidyl methacrylate

    NASA Astrophysics Data System (ADS)

    Takács, Erzsébet; Wojnárovits, László; Koczog Horváth, Éva; Fekete, Tamás; Borsa, Judit

    2012-09-01

    Cellulose as a renewable raw material was used for preparation of adsorbent of organic impurities in wastewater treatment. Hydrophobic surface of cellulose substrate was developed by grafting glycidyl methacrylate in simultaneous grafting using gamma irradiation initiation. Water uptake of cellulose significantly decreased while adsorption of phenol and a pesticide molecule (2,4-dichlorophenoxyacetic acid: 2,4-D) increased upon grafting. Adsorption equilibrium data fitted the Freundlich isotherm for both solutes.

  15. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  16. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  17. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  18. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  19. Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis.

    PubMed

    Cheng, Nai-Chen; Lin, Wei-Jhih; Ling, Thai-Yen; Young, Tai-Horng

    2017-03-15

    Adipose-derived stem cells (ASCs) secrete several angiogenic growth factors and can be applied to treat ischemic tissue. However, transplantation of dissociated ASCs has frequently resulted in rapid cell death. Therefore, we aimed to develop a thermosensitive chitosan/gelatin hydrogel that is capable of ASC sustained release for therapeutic angiogenesis. By blending gelatin in the chitosan thermosensitive hydrogel, we significantly enhanced the viability of the encapsulated ASCs. During in vitro culturing, the gradual degradation of gelatin led to sustained release of ASCs from the chitosan/gelatin hydrogel. In vitro wound healing assays revealed significantly faster cell migration by co-culturing fibroblasts with ASCs encapsulated in chitosan/gelatin hydrogel compared to pure chitosan hydrogels. Additionally, significantly higher concentrations of vascular endothelial growth factor were found in the supernatant of ASC-encapsulated chitosan/gelatin hydrogels. Co-culturing SVEC4-10 endothelial cells with ASC-encapsulated chitosan/gelatin hydrogels resulted in significantly more tube-like structures, indicating the hydrogel's potential in promoting angiogenesis. Chick embryo chorioallantoic membrane assay and mice wound healing model showed significantly higher capillary density after applying ASC-encapsulated chitosan/gelatin hydrogel. Relative to ASC alone or ASC-encapsulated chitosan hydrogel, more ASCs were also found in the wound tissue on post-wounding day 5 after applying ASC-encapsulated chitosan/gelatin hydrogel. Therefore, chitosan/gelatin thermosensitive hydrogels not only maintain ASC survival, they also enable sustained release of ASCs for therapeutic angiogenesis applications, thereby exhibiting great clinical potential in treating ischemic diseases. Adipose-derived stem cells (ASCs) exhibit great potential to treat ischemic diseases. However, poor delivery methods lead to low cellular survival or dispersal of cells from target sites. In this study, we

  20. A novel, visible light-induced, rapidly cross-linkable gelatin scaffold for osteochondral tissue engineering

    PubMed Central

    Mazaki, Tetsuro; Shiozaki, Yasuyuki; Yamane, Kentaro; Yoshida, Aki; Nakamura, Mariko; Yoshida, Yasuhiro; Zhou, Di; Kitajima, Takashi; Tanaka, Masato; Ito, Yoshihiro; Ozaki, Toshifumi; Matsukawa, Akihiro

    2014-01-01

    Osteochondral injuries remain difficult to repair. We developed a novel photo-cross-linkable furfurylamine-conjugated gelatin (gelatin-FA). Gelatin-FA was rapidly cross-linked by visible light with Rose Bengal, a light sensitizer, and was kept gelled for 3 weeks submerged in saline at 37°C. When bone marrow-derived stromal cells (BMSCs) were suspended in gelatin-FA with 0.05% Rose Bengal, approximately 87% of the cells were viable in the hydrogel at 24 h after photo-cross-linking, and the chondrogenic differentiation of BMSCs was maintained for up to 3 weeks. BMP4 fusion protein with a collagen binding domain (CBD) was retained in the hydrogels at higher levels than unmodified BMP4. Gelatin-FA was subsequently employed as a scaffold for BMSCs and CBD-BMP4 in a rabbit osteochondral defect model. In both cases, the defect was repaired with articular cartilage-like tissue and regenerated subchondral bone. This novel, photo-cross-linkable gelatin appears to be a promising scaffold for the treatment of osteochondral injury. PMID:24662725

  1. Right-to-left shunt detection sensitivity with air-saline and air-succinil gelatin transcranial Doppler.

    PubMed

    Puledda, Francesca; Toscano, Massimiliano; Pieroni, Alessio; Veneroso, Gabriele; Di Piero, Vittorio; Vicenzini, Edoardo

    2016-02-01

    Air-saline transcranial Doppler is nowadays the first-choice examination to identify right-to-left shunt. To increase right-to-left shunt detection in echocardiography, cardiologists also use air-gelatin mixtures, which are more stable, more echogenic, and easier to be prepared. We assessed the sensitivity of air-gelatin compared with air-saline for transcranial Doppler right-to-left shunt detection. Air-saline transcranial Doppler, during unilateral middle cerebral artery monitoring at rest and after Valsalva maneuver, was performed in patients referred to our neurosonology laboratory for right-to-left shunt detection. The same transcranial Doppler protocol was repeated with air-gelatin. To consider transcranial Doppler positive for cardiac right-to-left shunt, at least one embolic signal had to be detected within 20″ from contrast injection. Later signals were interpreted of pulmonary origin. Trans-thoracic echocardiography was repeated with both air-saline and air-gelatin. A total of 97 patients were enrolled; 46 had negative transcranial Doppler for cardiac right-to-left shunt with both air-saline and air-gelatin; out of these, four patients with air-saline plus two more patients with air-gelatin presented late, isolated microemboli, slightly more numerous with air-gelatin: these were interpreted as pulmonary shunts and confirmed with trans-thoracic echocardiography. In 28 patients with already early positive air-saline transcranial Doppler at rest, air-gelatin induced a marked right-to-left shunt increase, facilitating its visualization at trans-thoracic echocardiography. In 23 patients in whom air-saline transcranial Doppler was negative at rest and positive for cardiac right-to-left shunt only after Valsalva maneuver, air-gelatin was able to reveal shunt also at rest. Air-gelatin increases right-to-left shunt detection sensitivity with transcranial Doppler in particular at rest, even in patients in whom air-saline mixture fails to identify the shunt. The

  2. Developing and physicochemical evaluation of cross-linked electrospun gelatin-glycerol nanofibrous membranes for medical applications

    NASA Astrophysics Data System (ADS)

    Morsy, Reda; Hosny, Marwa; Reicha, Fikry; Elnimr, Tarek

    2017-05-01

    This study aims to develop optimal cross-linked electrospun gelatin-glycerol (GEL-GLY) nano-fibrous mats suitable for tissue engineering and wound dressing applications. The optimized procedure involves heating the gelatin and gelatin-glycerol solutions up to 90 °C. The electrospinning process was performed, followed by further cross-linking of electrospun films in a container containing glutaraldehyde (GTA) vapor. The results of X-ray diffraction (XRD), Fourier transformed infrared (FTIR), and Differential thermal analysis (DTA) confirmed that heating gelatin solution up to 90 °C in the presence of glycerol affected the cross-linking efficiency and interactions between GTA molecules and gelatin chains. Scanning Electron Microscope (SEM) analysis showed that GEL-GLY nano-fibrous mats with weight ratios less than or equal (12:3 w/w) exhibited a regular morphology with defect free in addition to increasing the degradation time, cross-linking efficiency, and swelling degree of electrospun gelatin/glycerol.

  3. Fabrication of micro-alginate gel tubes utilizing micro-gelatin fibers

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Katsuhisa; Arai, Takafumi; Shimizu, Tatsuya; Umezu, Shinjiro

    2017-05-01

    Tissues engineered utilizing biofabrication techniques have recently been the focus of much attention, because these bioengineered tissues have great potential to improve the quality of life of patients with various hard-to-treat diseases. Most tissues contain micro-tubular structures including blood vessels, lymphatic vessels, and bile canaliculus. Therefore, we bioengineered a micro diameter tube using alginate gel to coat the core gelatin gel. Micro-gelatin fibers were fabricated by the coacervation method and then coated with a very thin alginate gel layer by dipping. A micro diameter alginate tube was produced by dissolving the core gelatin gel. Consequently, these procedures led to the formation of micro-alginate gel tubes of various shapes and sizes. This biofabrication technique should contribute to tissue engineering research fields.

  4. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.

    PubMed

    Maji, Kanchan; Dasgupta, Sudip; Kundu, Biswanath; Bissoyi, Akalabya

    2015-01-01

    Hydroxyapatite-chitosan/gelatin (HA:Chi:Gel) nanocomposite scaffold has potential to serve as a template matrix to regenerate extra cellular matrix of human bone. Scaffolds with varying composition of hydroxyapatite, chitosan, and gelatin were prepared using lyophilization technique where glutaraldehyde (GTA) acted as a cross-linking agent for biopolymers. First, phase pure hydroxyapatite-chitosan nanocrystals were in situ synthesized by coprecipitation method using a solution of 2% acetic acid dissolved chitosan and aqueous solution of calcium nitrate tetrahydrate [Ca(NO3)2,4H2O] and diammonium hydrogen phosphate [(NH4)2H PO4]. Keeping solid loading constant at 30 wt% and changing the composition of the original slurry of gelatin, HA-chitosan allowed control of the pore size, its distribution, and mechanical properties of the scaffolds. Microstructural investigation by scanning electron microscopy revealed the formation of a well interconnected porous scaffold with a pore size in the range of 35-150 μm. The HA granules were uniformly dispersed in the gelatin-chitosan network. An optimal composition in terms of pore size and mechanical properties was obtained from the scaffold with an HA:Chi:Gel ratio of 21:49:30. The composite scaffold having 70% porosity with pore size distribution of 35-150 μm exhibited a compressive strength of 3.3-3.5 MPa, which is within the range of that exhibited by cancellous bone. The bioactivity of the scaffold was evaluated after conducting mesenchymal stem cell (MSC) - materials interaction and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay using MSCs. The scaffold found to be conducive to MSC's adhesion as evident from lamellipodia, filopodia extensions from cell cytoskeleton, proliferation, and differentiation up to 14 days of cell culture.

  5. Intraoperative anaphylaxis secondary to intraosseous gelatin administration.

    PubMed

    Luhmann, Scott J; Sucato, Daniel J; Bacharier, Leonard; Ellis, Alysa; Woerz, Cyndi

    2013-01-01

    FloSeal and SurgiFlo Hemostatic Matrices are commonly used in surgical procedures to promote coagulation and minimize blood loss. They are composed of bovine and porcine gelatin matrix, respectively, that can be injected into pedicles to stop osseous bleeding during pedicle screw insertion. This report details 2 pediatric spinal deformity reconstructive surgery patients who experienced intraoperative cardiovascular events after the intraosseous administration of animal-derived gelatin. Case #1 is an 11-year-old female with adolescent idiopathic scoliosis who was undergoing routine posterior spinal instrumentation and fusion. During placement of the fourth pedicle screw, the patient developed profound hypotension, tachycardia, and elevated airway pressures requiring intravenous epinephrine and phenylephrine for hemodynamic support. Surgery was aborted. Postoperative work-up demonstrated a positive ImmunoCAP study for bovine gelatin. Surgery was repeated 1 week later, without the use of FloSeal, and no episodes of hemodynamic instability. Case #2 was a 9-year-old female with juvenile idiopathic scoliosis who was undergoing a growing spine construct. As in Case #1, SurgiFlo was placed into 2 pedicle tracts after which there was profound hypotension, tachycardia, and elevated airway pressures. Resuscitative efforts included intravenous atropine and epinephrine with resolution. Surgery was aborted. Surgery was repeated 2 weeks later, without the use of SurgiFlo, with no episodes of hemodynamic instability. Given that the patient's symptoms were classic for anaphylaxis, and that the timing of the anaphylaxis immediately followed the administration of FloSeal and SurgiFlo we believe that FloSeal and SurgiFlo were the causes of the reactions. These are the first known reported cases of intraoperative anaphylaxis associated with FloSeal and SurgiFlo. On the basis of our experience, in order to avoid intraoperative cardiovascular events, we obtain preoperative Immuno

  6. Fronto-orbital reconstruction using polymethyl methacrylate implant

    PubMed Central

    Ghosh, Samiran; Pramanick, Debolina; Ray, Amit; Burman, Richi; Saha, Ashistaru

    2017-01-01

    The objective of this article is to show a case of fronto-orbital reconstruction with prefabricated polymethyl methacrylate prosthesis. A 35-year-old male with alleged history of trauma following road traffic accident 3 months back reported with unaesthetic scar and deformity in right supraorbital region to us. As there was no functional deformity, the management was aimed at correcting the contour and esthetic only. The correction was achieved by overlaying the defect with a polymethyl methacrylate implant fabricated over a three-dimensional stereolithographically printed rapidly prototyped model. Postoperative phase was uneventful and esthetic outcome was satisfactory. The patient after 4-year follow-up reported with no discomfort and definite improvement in facial contour. PMID:29386820

  7. Fronto-orbital reconstruction using polymethyl methacrylate implant.

    PubMed

    Ghosh, Samiran; Pramanick, Debolina; Ray, Amit; Burman, Richi; Saha, Ashistaru

    2017-01-01

    The objective of this article is to show a case of fronto-orbital reconstruction with prefabricated polymethyl methacrylate prosthesis. A 35-year-old male with alleged history of trauma following road traffic accident 3 months back reported with unaesthetic scar and deformity in right supraorbital region to us. As there was no functional deformity, the management was aimed at correcting the contour and esthetic only. The correction was achieved by overlaying the defect with a polymethyl methacrylate implant fabricated over a three-dimensional stereolithographically printed rapidly prototyped model. Postoperative phase was uneventful and esthetic outcome was satisfactory. The patient after 4-year follow-up reported with no discomfort and definite improvement in facial contour.

  8. Gelatin promotes rapid restoration of the blood brain barrier after acute brain injury.

    PubMed

    Kumosa, Lucas S; Zetterberg, Valdemar; Schouenborg, Jens

    2018-01-01

    Gelatin coating of brain implants is known to provide considerable benefits in terms of reduced inflammatory sequalae and long-term neuroprotective effects. However, the mechanisms for gelatin's protective role in brain injury are still unknown. To address this question, cellular and molecular markers were studied with quantitative immunohistochemical microscopy at acute (<2hours, 1, 3days), intermediate (1-2 weeks) and long-term time points (6 weeks) after transient insertion of stainless steel needles into female rat cortex cerebri with or without gelatin coating. Compared to non-coated controls, injuries caused by gelatin coated needles showed a significantly faster resolution of post-stab bleeding/leakage and differential effects on different groups of microglia cells. While similar levels of matrix metalloproteinase (MMP-2 and MMP-9, two gelatinases) was found for coated and noncoated needle stabs during the first week, markedly increased levels of both MMPs was seen for gelatin-coated but not non-coated needle stabs after 2weeks. Neuronal populations and activated astrocytes were largely unaffected. In conclusion, the beneficial effects of gelatin may be the combined results of faster healing of the blood brain barrier curtailing leakage of blood borne molecules/cells into brain parenchyma and to a modulation of the microglial population response favoring restitution of the injured tissue. These findings present an important therapeutic potential for gelatin coatings in various disease, injury and surgical conditions. The neural interfaces field holds great promise to enable elucidation of neural information processing and to develop new implantable devices for stimulation based therapy. Currently, this field is struggling to find solutions for reducing tissue reactions to implanted micro and nanotechnology. Prior studies have recently shown that gelatin coatings lower activation of digestive microglia and mitigate the ubiquitous loss of neurons adjacent to

  9. Gelatin tannate and tyndallized probiotics: a novel approach for treatment of diarrhea.

    PubMed

    Lopetuso, L; Graziani, C; Guarino, A; Lamborghini, A; Masi, S; Stanghellini, V

    2017-02-01

    Intestinal permeability impairment is implicated in many gastrointestinal (GI) diseases. Chronic diarrhea, defined as the presence of diarrhea for more than 3 weeks in adults and 2 weeks in children, requires a different diagnostic and therapeutic work-up than acute diarrhea. Gelatin tannate, by reducing the clinical activity of acute colitis and the proinflammatory effects of lipopolysaccharide (LPS), is emerging as a mucosal barrier protector. New therapeutic strategies focusing on the physiological function of the intestinal barrier, may offer an innovative approach for the clinical improvement of highly debilitating chronic GI diseases. We review the available data on the role of gelatin tannate and tyndallized probiotics in the treatment of diarrhea. Gelatin tannate and tyndallized probiotics can be used to re-establish the physiological functions of the gut barrier, as well as for preventing dysbiosis. There is evidence that due to their particular properties, gelatin tannate and tyndallized probiotics are highly effective in the treatment of acute gastroenteritis and may be especially indicated in the management of moderate and prolonged diarrhea. Gelatin tannate and tyndallized probiotics may be effective in the management of chronic diarrhea. Further clinical trials are necessary to further explore their effects in clinical practice.

  10. [Measles-Mumps-Rubella vaccination of an egg-allergic child sensitized to gelatin].

    PubMed

    Dumortier, B; Nosbaum, A; Ponvert, C; Nicolas, J-F; Bérard, F

    2013-08-01

    The Measles-Mumps-Rubella (MMR) vaccine is often postponed in egg-allergic patients due to fear of anaphylactic reaction at the time of injection of this vaccin produced on egg derivates. However, this vaccine is recommended by health authorities, especially in case of increased measles incidence, and international recommendations indicate that there is no need for predictive allergological work-up and that the MMR vaccine is well tolerated in egg-allergic patients. We report on the case of a 12-year-old child with severe immediate-type egg allergy. Immediate-reading intradermal skin tests performed prior to the MMR vaccine were positive. Subsequent allergological work-up revealed a gelatin sensitization, and the child tolerated injections of the vaccine given according to a tolerance induction protocol. Gelatin is used as a stabilizer in numerous vaccines and may be responsible for immediate-type hypersentivity reactions to gelatin-containing vaccines. In case of reaction induced by the MMR vaccine, one needs to explore a potential gelatin sensitization/allergy. The MMR vaccine should be given and is well tolerated in patients with immediate-type egg hypersensitivity, even when gelatin sensitization is combined. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Comparison of cell behavior on pva/pva-gelatin electrospun nanofibers with random and aligned configuration

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Yu; Hu, Keng-Hsiang; Wei, Zung-Hang

    2016-12-01

    Electrospinning technique is able to create nanofibers with specific orientation. Poly(vinyl alcohol) (PVA) have good mechanical stability but poor cell adhesion property due to the low affinity of protein. In this paper, extracellular matrix, gelatin is incorporated into PVA solution to form electrospun PVA-gelatin nanofibers membrane. Both randomly oriented and aligned nanofibers are used to investigate the topography-induced behavior of fibroblasts. Surface morphology of the fibers is studied by optical microscopy and scanning electron microscopy (SEM) coupled with image analysis. Functional group composition in PVA or PVA-gelatin is investigated by Fourier Transform Infrared (FTIR). The morphological changes, surface coverage, viability and proliferation of fibroblasts influenced by PVA and PVA-gelatin nanofibers with randomly orientated or aligned configuration are systematically compared. Fibroblasts growing on PVA-gelatin fibers show significantly larger projected areas as compared with those cultivated on PVA fibers which p-value is smaller than 0.005. Cells on PVA-gelatin aligned fibers stretch out extensively and their intracellular stress fiber pull nucleus to deform. Results suggest that instead of the anisotropic topology within the scaffold trigger the preferential orientation of cells, the adhesion of cell membrane to gelatin have substantial influence on cellular behavior.

  12. A study of a tissue equivalent gelatine based tissue substitute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, J.L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to amore » liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it's usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.« less

  13. A study of a tissue equivalent gelatine based tissue substitute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spence, Jody L.

    1992-11-01

    A study of several tissue substitutes for use as volumetric dosimeters was performed. The tissue substitutes studied included tissue substitutes from previous studies and from ICRU 44. The substitutes were evaluated for an overall match to Reference Man which was used as a basis for this study. The evaluation was based on the electron stopping power, the mass attenuation coefficient, the electron density, and the specific gravity. The tissue substitute chosen also had to be capable of changing from a liquid into a solid form to maintain an even distribution of thermoluminesent dosimetry (TLD) powder and then back to amore » liquid for recovery of the TLD powder without adversely effecting the TLD powder. The gelatine mixture provided the closest match to the data from Reference Man tissue. The gelatine mixture was put through a series of test to determine it`s usefulness as a reliable tissue substitute. The TLD powder was cast in the gelatine mixture and recovered to determine if the TLD powder was adversely effected. The distribution of the TLD powder after being cast into the gelatin mixture was tested in insure an even was maintained.« less

  14. Utilization of Methacrylates and Polymer Matrices for the Synthesis of Ion Specific Resins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czerwinski, Kenneth

    2013-10-29

    Disposal, storage, and/or transmutation of actinides such as americium (Am) will require the development of specific separation schemes. Existing efforts focus on solvent extraction systems for achieving suitable separation of actinide from lanthanides. However, previous work has shown the feasibility of ion-imprinting polymer-based resins for use in ion-exchange-type separations with metal ion recognition. Phenolic-based resins have been shown to function well for Am-Eu separations, but these resins exhibited slow kinetics and difficulties in the imprinting process. This project addresses the need for new and innovative methods for the selective separation of actinides through novel ion-imprinted resins. The project team willmore » explore incorporation of metals into extended frameworks, including the possibility of 3D polymerized matrices that can serve as a solid-state template for specific resin preparation. For example, an anhydrous trivalent f-element chain can be formed directly from a metal carbonate, and methacrylic acid from water. From these simple coordination complexes, molecules of discrete size or shape can be formed via the utilization of coordinating ligands or by use of an anionic multi-ligand system incorporating methacrylate. Additionally, alkyl methyl methacrylates have been used successfully to create template nanospaces, which underscores their potential utility as 3D polymerized matrices. This evidence provides a unique route for the preparation of a specific metal ion template for the basis of ion-exchange separations. Such separations may prove to be excellent discriminators of metal ions, even between f-elements. Resins were prepared and evaluated for sorption behavior, column properties, and proton exchange capacity.« less

  15. Anti-adhesive effects of a newly developed two-layered gelatin sheet in dogs.

    PubMed

    Torii, Hiroko; Takagi, Toshitaka; Urabe, Mamoru; Tsujimoto, Hiroyuki; Ozamoto, Yuki; Miyamoto, Hiroe; Ikada, Yoshihito; Hagiwara, Akeo

    2017-08-01

    Adhesion after pelvic surgery causes infertility, ectopic pregnancy, and ileus or abdominal pain. The materials currently available for clinical use are insufficient. The purpose of this study was to develop an anti-adhesive material that overcomes the limitations of conventional anti-adhesive agents. The adhesion prevention effects of three methods - a two-layered sheet composed of gelatin film and gelatin sponge, Seprafilm and INTERCEED - were evaluated in 37 dogs. Anti-adhesive effects were investigated macroscopically and microscopically in a cauterized uterus adhesion model. Cell growth on the materials in vitro using human peritoneal mesothelial cells, fibroblasts and uterine smooth muscle cells were also evaluated. The two-layered gelatin sheet had significantly superior anti-adhesive effects compared to the conventional materials (Seprafilm and INTERCEED). A single-cell layer of mature mesothelium formed three weeks after surgery in the gelatin group. Peritoneum regeneration in the Seprafilm and INTERCEED groups was delayed and incomplete in the early phase. Little inflammation around the materials occurred and cell growth was significantly proliferated with the gelatin sheet. The anti-adhesive effects of a two-layered gelatin sheet were superior to conventional agents in a cauterized canine uterus model, demonstrating early regeneration of the peritoneum, little inflammation and material endurance. The newly developed two-layered gelatin sheet is a useful option as an anti-adhesive agent for deeply injured and hemorrhagic sites. © 2017 The Authors. Journal of Obstetrics and Gynaecology Research published by John Wiley & Sons Australia, Ltd on behalf of Japan Society of Obstetrics and Gynecology.

  16. Radiation synthesis of biocompatible hydrogels of dextran methacrylate

    NASA Astrophysics Data System (ADS)

    Szafulera, Kamila; Wach, Radosław A.; Olejnik, Alicja K.; Rosiak, Janusz M.; Ulański, Piotr

    2018-01-01

    The aim of this work was to synthesize biocompatible dextran-based hydrogels through crosslinking initiated by ionizing radiation. A series of derivatives of dextran has been synthesized by coupling of methacrylated glycidyl to the structure of this polysaccharide, yielding dextran methacrylate (Dex-MA) of the degree of methacrylate substitution (DS) up to 1.13 as characterised by FTIR and NMR spectroscopy. Chemically crosslinked hydrogels were formed by electron-beam irradiation of Dex-MA in aqueous solution in the absence of low-molecular-weight additives such as catalysts, monomers or crosslinking agents. Crosslinking of Dex-MA in aqueous solutions of 20 g/l and above was an efficient process, the gels were formed at doses as low as 0.5 kGy (experiments conducted up to 100 kGy) and were characterised by high content of insoluble fraction (70-100%). Due to high crosslinking density the equilibrium degree of swelling of fabricated gels was controlled principally by the initial concentration of Dex-MA solution subjected to irradiation, and it was in the range of 20 to over 100 g of water absorbed by gram of gel. Cytocompatibility of hydrogels was examined using XTT assay through evaluation of the cell viability being in indirect contact with hydrogels. The results indicated that hydrogels of Dex-MA of the average DS below 1 were not cytotoxic. Altogether, our data demonstrate that irradiation of methacrylated dextran in aqueous solution is an efficient method of fabrication of biocompatible hydrogels, which applications in regeneration medicine are anticipated.

  17. Fractionation of poly(methacrylic acid) and poly(vinyl pyridine) in aqueous and organic mobile phases by multidetector thermal field-flow fractionation.

    PubMed

    Greyling, Guilaume; Pasch, Harald

    2017-08-25

    Multidetector thermal field-flow fractionation (ThFFF) is shown to be a versatile characterisation platform that can be used to characterise hydrophilic polymers in a variety of organic and aqueous solutions with various ionic strengths. It is demonstrated that ThFFF fractionates isotactic and syndiotactic poly(methacrylic acid) (PMAA) as well as poly(2-vinyl pyridine) (P2VP) and poly(4-vinyl pyridine) (P4VP) according to microstructure in organic solvents and that the ionic strength of the mobile phase has no influence on the retention behaviour of the polymers. With regard to aqueous solutions, it is shown that, despite the weak retention, isotactic and syndiotactic PMAA show different retention behaviours which can qualitatively be attributed to microstructure. Additionally, it is shown that the ionic strength of the mobile phase has a significant influence on the thermal diffusion of polyelectrolytes in aqueous solutions and that the addition of an electrolyte is essential to achieve a microstructure-based separation of P2VP and P4VP in aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses.

    PubMed

    Yao, Ruijuan; He, Jing; Meng, Guolong; Jiang, Bo; Wu, Fang

    2016-06-01

    Electrospinning of hybrid polymer has gained widespread interest by taking advantages of the biological property of the natural polymer and the mechanical property of the synthetic polymer. However, the effect of the blend ratio on the above two properties has been less reported despite the importance to balance these two properties in various tissue engineering applications. To this aim, we investigated the electrospun PCL/Gelatin composite fibrous scaffolds with different blend ratios of 4:1, 2:1, 1:1, 1:2, 1:4, respectively. The morphology of the electrospun samples was observed by SEM and the result showed that the fiber diameter distribution became more uniform with the increase of the gelatin content. The mechanical testing results indicated that the 2:1 PCL/Gelatin sample had both the highest tensile strength of 3.7 MPa and the highest elongation rate of about 90%. Surprisingly, the 2:1 PCL/Gelatin sample also showed the best mesenchymal stem cell responses in terms of attachment, spreading, and cytoskeleton organization. Such correlation might be partly due to the fact that the enhanced mechanical property, an integral part of the physical microenvironment, likely played an important role in regulating the cellular functions. Overall, our results indicated that the PCL/Gelatin sample with the blend ratio of 2:1 was a superior candidate for scaffolds for tissue engineering applications.

  19. DISPERSION POLYMERIZATION OF 2-HYDROXYETHYL METHACRYLATE IN SUPERCRITICAL CARBON DIOXIDE. (R826115)

    EPA Science Inventory

    Herein we report a successful dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) in a carbon dioxide continuous phase with a block copolymer consisting of polystyrene and poly(1,1-dihydroperfluorooctyl acrylate) as a stabilizer. Poly(2-hydroxyethyl methacrylate) was ...

  20. Cellular Response to Reagent-Free Electron-Irradiated Gelatin Hydrogels.

    PubMed

    Wisotzki, Emilia I; Friedrich, Ralf P; Weidt, Astrid; Alexiou, Christoph; Mayr, Stefan G; Zink, Mareike

    2016-06-01

    As a biomaterial, it is well established that gelatin exhibits low cytotoxicity and can promote cellular growth. However, to circumvent the potential toxicity of chemical crosslinkers, reagent-free crosslinking methods such as electron irradiation are highly desirable. While high energy irradiation has been shown to exhibit precise control over the degree of crosslinking, these hydrogels have not been thoroughly investigated for biocompatibility and degradability. Here, NIH 3T3 murine fibroblasts are seeded onto irradiated gelatin hydrogels to examine the hydrogel's influence on cellular viability and morphology. The average projected area of cells seeded onto the hydrogels increases with irradiation dose, which correlates with an increase in the hydrogel's shear modulus up to 10 kPa. Cells on these hydrogels are highly viable and exhibits normal cell cycles, particularly when compared to those grown on glutaraldehyde crosslinked gelatin hydrogels. However, proliferation is reduced on both types of crosslinked samples. To mimic the response of the hydrogels in physiological conditions, degradability is monitored in simulated body fluid to reveal strongly dose-dependent degradation times. Overall, given the low cytotoxicity, influence on cellular morphology and variability in degradation times of the electron irradiated gelatin hydrogels, there is significant potential for application in areas ranging from regenerative medicine to mechanobiology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules

    PubMed Central

    Shin, Hyeongho; Olsen, Bradley D.; Khademhosseini, Ali

    2012-01-01

    A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing condition compatible with cell survival. The DN hydrogels were created by a two-step photocrosslinking using gellan gum methacrylate (GGMA) for the rigid and brittle first network, and gelatin methacrylamide (GelMA) for the soft and ductile second network. We controlled the degree of methacrylation of each polymer so that they obtain relevant mechanical properties as each network. The DN was formed by photocrosslinking the GGMA, diffusing GelMA into the first network, and photocrosslinking the GelMA to form the second network. The formation of the DN was examined by diffusion tests of the large GelMA molecules into the GGMA network, the resulting enhancement in the mechanical properties, and the difference in mechanical properties between GGMA/GelMA single networks (SN) and DNs. The resulting DN hydrogels exhibited the compressive failure stress of up to 6.9 MPa, which approaches the strength of cartilage. It was found that there is an optimal range of the crosslink density of the second network for high strength of DN hydrogels. DN hydrogels with a higher mass ratio of GelMA to GGMA exhibited higher strength, which shows promise in developing even stronger DN hydrogels in the future. Three dimensional (3D) encapsulation of NIH-3T3 fibroblasts and the following viability test showed the cell-compatibility of the DN formation process. Given the high strength and the ability to encapsulate cells, the DN hydrogels made from photocrosslinkable macromolecules could be useful for the regeneration of load-bearing tissues. PMID:22265786

  2. Photocrosslinking of gelatin macromers to synthesize porous hydrogels that promote valvular interstitial cell function.

    PubMed

    Benton, Julie A; DeForest, Cole A; Vivekanandan, Vani; Anseth, Kristi S

    2009-11-01

    The development of novel three-dimensional cell culture platforms for the culture of aortic valvular interstitial cells (VICs) has been fraught with many challenges. Although the most tunable, purely synthetic systems have not been successful at promoting cell survivability or function. On the other hand, entirely natural materials lack mechanical integrity. Here we explore a novel hybrid system consisting of gelatin macromers synthetically modified with methacrylate functionalities allowing for photoencapsulation of cells. Scanning electron microscopy observations show a microporous structure induced during polymerization within the hydrogel. This porous structure was tunable with polymerization rate and did not appear to have interconnected pores. Treatment with collagenase caused bulk erosion indicating enzymatic degradation controls the matrix remodeling. VICs, an important cell line for heart valve tissue engineering, were photoencapsulated and examined for cell-directed migration and differentiation. VICs were able to achieve their native morphology within 2 weeks of culture. The addition of the pro-fibrotic growth factor, transforming growth factor-beta1, accelerated this process and also was capable of inducing enhanced alpha-smooth muscle actin and collagen-1 expression, indicating a differentiation from quiescent fibroblasts to active myofibroblasts as demonstrated by quantitative real-time polymerase chain reaction and immunohistochemistry. Although these studies were limited to VICs, this novel hydrogel system may also be useful for studying other fibroblastic cell types.

  3. Cavitation nucleation in gelatin: Experiment and mechanism.

    PubMed

    Kang, Wonmo; Adnan, Ashfaq; O'Shaughnessy, Thomas; Bagchi, Amit

    2018-02-01

    Dynamic cavitation in soft materials is becoming increasingly relevant due to emerging medical implications such as the potential of cavitation-induced brain injury or cavitation created by therapeutic medical devices. However, the current understanding of dynamic cavitation in soft materials is still very limited, mainly due to lack of robust experimental techniques. To experimentally characterize cavitation nucleation under dynamic loading, we utilize a recently developed experimental instrument, the integrated drop tower system. This technique allows quantitative measurements of the critical acceleration (a cr ) that corresponds to cavitation nucleation while concurrently visualizing time evolution of cavitation. Our experimental results reveal that a cr increases with increasing concentration of gelatin in pure water. Interestingly, we have observed the distinctive transition from a sharp increase (pure water to 1% gelatin) to a much slower rate of increase (∼10× slower) between 1% and 7.5% gelatin. Theoretical cavitation criterion predicts the general trend of increasing a cr , but fails to explain the transition rates. As a likely mechanism, we consider concentration-dependent material properties and non-spherical cavitation nucleation sites, represented by pre-existing bubbles in gels, due to possible interplay between gelatin molecules and nucleation sites. This analysis shows that cavitation nucleation is very sensitive to the initial configuration of a bubble, i.e., a non-spherical bubble can significantly increase a cr . This conclusion matches well with the experimentally observed liquid-to-gel transition in the critical acceleration for cavitation nucleation. From a medical standpoint, understanding dynamic cavitation within soft materials, i.e., tissues, is important as there are both potential injury implications (blast-induced cavitation within the brain) as well as treatments utilizing the phenomena (lithotripsy). In this regard, the main

  4. Protective effect of gelatin and gelatin hydrolysate from salmon skin on UV irradiation-induced photoaging of mice skin

    NASA Astrophysics Data System (ADS)

    Chen, Tiejun; Hou, Hu; Lu, Jiaohan; Zhang, Kai; Li, Bafang

    2016-08-01

    The objective of this study was to investigate the effect of gelatin (SG) isolated from salmon skin and its hydrolysate (SGH) on photoaging skin, and the mechanism responsible for anti-photoaging. The average molecular weights of SG and SGH were 65 kDa and 873 Da, respectively. The amino acid compositions of SG and SGH were similar. Both of them were abundant in hydrophobic amino acids. Twenty-five peptides were identified from SGH. SG and SGH could improve UV irradiation-induced pathological changes of macroscopical tissue texture and skin morphology. Hydroxyproline content is an indicator of matrix collagen content, SG and SGH could inhibit the decrease of hydroxyproline content in photoaging skin in a dose dependent manner. In addition, SG and SGH could alleviate UV irradiation-induced oxidative damages to skin by increasing the activities of total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), increasing the content of glutathione (GSH) and decreasing the content of malonaldehyde (MDA). Moreover, SG and SGH could enhance immune regulation system by increasing the thymus index. Thus, the anti-photoaging mechanisms of SG and SGH were by inhibiting the depletion of antioxidant defense components, involving in the synthesis of collagen and enhancing the function of immune system. Besides, SGH showed a better result in protecting skin from photoaging than SG.

  5. Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials.

    PubMed

    Wang, Russell; Tao, Junliang; Yu, Bill; Dai, Liming

    2014-04-01

    Most fractures of dentures occur during function, primarily because of the flexural fatigue of denture resins. The purpose of this study was to evaluate a polymethyl methacrylate denture base material modified with multiwalled carbon nanotubes in terms of fatigue resistance, flexural strength, and resilience. Denture resin specimens were fabricated: control, 0.5 wt%, 1 wt%, and 2 wt% of multiwalled carbon nanotubes. Multiwalled carbon nanotubes were dispersed by sonication. Thermogravimetric analysis was used to determine quantitative dispersions of multiwalled carbon nanotubes in polymethyl methacrylate. Raman spectroscopic analyses were used to evaluate interfacial reactions between the multiwalled carbon nanotubes and the polymethyl methacrylate matrix. Groups with and without multiwalled carbon nanotubes were subjected to a 3-point-bending test for flexural strength. Resilience was derived from a stress and/or strain curve. Fatigue resistance was conducted by a 4-point bending test. Fractured surfaces were analyzed by scanning electron microscopy. One-way ANOVA and the Duncan tests were used to identify any statistical differences (α=.05). Thermogravimetric analysis verified the accurate amounts of multiwalled carbon nanotubes dispersed in the polymethyl methacrylate resin. Raman spectroscopy showed an interfacial reaction between the multiwalled carbon nanotubes and the polymethyl methacrylate matrix. Statistical analyses revealed significant differences in static and dynamic loadings among the groups. The worst mechanical properties were in the 2 wt% multiwalled carbon nanotubes (P<.05), and 0.5 wt% and 1 wt% multiwalled carbon nanotubes significantly improved flexural strength and resilience. All multiwalled carbon nanotubes-polymethyl methacrylate groups showed poor fatigue resistance. The scanning electron microscopy results indicated more agglomerations in the 2% multiwalled carbon nanotubes. Multiwalled carbon nanotubes-polymethyl methacrylate groups

  6. Solution-processed Al-chelated gelatin for highly transparent non-volatile memory applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yu-Chi; Wang, Yeong-Her, E-mail: yhw@ee.ncku.edu.tw

    2015-03-23

    Using the biomaterial of Al-chelated gelatin (ACG) prepared by sol-gel method in the ITO/ACG/ITO structure, a highly transparent resistive random access memory (RRAM) was obtained. The transmittance of the fabricated device is approximately 83% at 550 nm while that of Al/gelatin/ITO is opaque. As to the ITO/gelatin/ITO RRAM, no resistive switching behavior can be seen. The ITO/ACG/ITO RRAM shows high ON/OFF current ratio (>10{sup 5}), low operation voltage, good uniformity, and retention characteristics at room temperature and 85 °C. The mechanism of the ACG-based memory devices is presented. The enhancement of these electrical properties can be attributed to the chelate effect ofmore » Al ions with gelatin. Results show that transparent ACG-based memory devices possess the potential for next-generation resistive memories and bio-electronic applications.« less

  7. Characterization of konjac glucomannan-gelatin IPN physical hydrogel scaffold

    NASA Astrophysics Data System (ADS)

    Chen, Xiliang; Chen, Qinghua; Yan, Tingting; Liu, Jinkun

    2017-06-01

    A novel IPN hydrogel scaffold is prepared by freeze-drying method, in which konjac galactomannan (KGM) and gelatin are physically crosslinked respectively. This scaffold is thermostable, and the structure of this scaffold is analysed by scanning electron microscope, Fourier transform infrared spectrum, and X-ray diffraction method. The FT-IR results show that hydrogen bonds are formed between KGM and gelatin molecules, which hinder the formation of their respective crosslinking. This is consistent with the XRD results that the crystallinity gets lower in the IPN gels compared with pure gelatin and KGM gels. The morphologies of freeze-dried hydrogels are observed by SEM and the mechanical properties of the scaffolds are tested to analyse the relationship between the structures and properties. Although this novel IPN hydrogel is physical gel, it shows rubber-like performance as chemical gels. And it is nontoxic, so it can be used as the scaffold for cartilage tissue engineering that embedded in human bodies.

  8. Lethal Anaphylactic Reaction to Intravenous Gelatin in the Course of Surgery.

    PubMed

    Ventura Spagnolo, Elvira; Calapai, Gioacchino; Minciullo, Paola L; Mannucci, Carmen; Asmundo, Alessio; Gangemi, Sebastiano

    Plasma volume expanders (PVEs) are widely used to increase circulating blood volume. Gelatins used as PVEs are heterogeneous mixtures of polypeptides, usually prepared by hydrolysis of bovine collagen containing large amounts of proline and hydroxyproline residues. It has been shown that gelatins can cause anaphylactic reactions. We describe the case of a 73-year-old man who during surgery for intestinal obstruction presented a lethal anaphylactic reaction after the administration of a PVE containing gelatin lysate. The reaction occurred 10 minutes after the start of plasma expander infusion. Then, patient became comatose, and he died without awakening after 76 days. Necroptic aspects and histologic evaluation suggested the occurrence of anaphylactic reaction. According to pharmacovigilance algorithm, the causality relationship between PVE administration and adverse reaction has been considered as probable. We described a new lethal adverse reaction caused by PVEs containing gelatin. It is currently considered a very rare event, but we believe that it represents an important signal suggesting for a critical surveillance comprising a complete evaluation of individual's allergic susceptibility.

  9. Comparison of starch and gelatin hydrogels for non-toxic supercapacitor electrolytes

    NASA Astrophysics Data System (ADS)

    Railanmaa, Anna; Lehtimäki, Suvi; Lupo, Donald

    2017-06-01

    Starch and gelatin are two of the most abundantly available natural polymers. Their non-toxicity, low cost, and compatibility with aqueous solvents make them ideal for use in ubiquitous, environmentally friendly electronics systems. This work presents the results of conductivity measurements through impedance spectroscopy for gelatin- and starch-based aqueous gel electrolytes. The NaCl-based gels were physically cross-linked. The conductivity values were 84.6 mS/cm at 1.5 mol L-1 and 71.5 mS/cm at 2 mol L-1 for gelatin and starch, respectively. The mechanical properties of gelatin were found preferable to those of starch, although they deteriorated significantly when the salt concentration exceeded 2 mol L-1. The ability of the gels to successfully act as a supercapacitor electrolyte was demonstrated with printed electrodes on plastic substrate. The devices were characterized through cyclic voltammetry measurements. The results imply that these polymer gel electrolytes are very promising for replacing the traditional aqueous liquid electrolytes in supercapacitors in applications where, for example, user and environmental safety is essential.

  10. Gelatin-based laser direct-write technique for the precise spatial patterning of cells.

    PubMed

    Schiele, Nathan R; Chrisey, Douglas B; Corr, David T

    2011-03-01

    Laser direct-writing provides a method to pattern living cells in vitro, to study various cell-cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research.

  11. Gelatin-Based Laser Direct-Write Technique for the Precise Spatial Patterning of Cells

    PubMed Central

    Schiele, Nathan R.; Chrisey, Douglas B.

    2011-01-01

    Laser direct-writing provides a method to pattern living cells in vitro, to study various cell–cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research. PMID:20849381

  12. Properties of gelatin-based films incorporated with chitosan-coated microparticles charged with rutin.

    PubMed

    Dammak, Ilyes; Bittante, Ana Mônica Quinta Barbosa; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José

    2017-08-01

    The aim of this study was development an active film based on gelatin incorporated with antioxidant, rutin carried into microparticles. The complexation between oppositely charged lecithin and chitosan was applied to prepare the chitosan-coated microparticles. The generated microparticles had an average size of 520±4nm and a span of 0.3 were formulated by a rotor-stator homogenize at the homogenization speed 10,000rpm. Composite films were prepared by incorporating chitosan-coated microparticles, at various concentrations (0.05, 0.1, 0.5, or 1% (based on the weight of the gelatin powder)) in the gelatin-based films. For the prepared films, the results showed that obtained physicochemical, water vapor barrier, and mechanical were compared with native gelatin film with a slight decrease for chitosan concentration higher than 0.5%. The microstructure studies done by scanning electron microscopes, revealed different micropores embedded with oil resulting from the incorporation of the microparticles into the gelatin matrix. Moreover, the calorimetric results were comparable to those of gelatin control film with T g value 45°C and increased crystallinity percentage with increasing incorporation of microparticles. This original concept of composite biodegradable films may thus be a good alternative to incorporate liposoluble active compounds to design an active packaging with good properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Long-term efficacy of biomodeled polymethyl methacrylate implants for orbitofacial defects.

    PubMed

    Groth, Michael J; Bhatnagar, Aparna; Clearihue, William J; Goldberg, Robert A; Douglas, Raymond S

    2006-01-01

    To report the long-term efficacy of custom polymethyl methacrylate implants using high-resolution computed tomographic modeling in the reconstruction of complex orbitofacial defects secondary to trauma. Nine patients with complex orbitofacial bone defects after trauma were evaluated for this retrospective, nonrandomized, noncomparative study. All the patients underwent reconstruction using custom, heat-cured polymethyl methacrylate implants. Patients were followed up postoperatively and evaluated for complications. Nine consecutive patients (5 men and 4 women) aged 28 to 63 years who underwent surgical reconstruction using prefabricated, heat-cured polymethyl methacrylate implants were included in the study. The interval between injury and presentation ranged from 1 month to 40 years. There were no significant complications, including infection, extrusion, or displacement of the implant. In all of the patients, wound healing was uneventful, with antibiotic drugs administered perioperatively. Mean follow-up was 4.3 years from the first visit (range, 6 months to 10 years). Computed tomographic biomodeled, prefabricated, heat-cured polymethyl methacrylate implants are well tolerated in the long term. Their advantages include customized design, long-term biocompatibility, and excellent aesthetic results.

  14. Preparation of Low Molecular Weight Gelatin Using Microwave Discharge Electrodeless Lamp/TiO2 Photocatalyst Hybrid System.

    PubMed

    Lee, Do-Jin; Kim, Hangun; Park, Young-Kwon; Kim, Byung Hoon; Lee, Heon; Jungf, Sana-Chul

    2016-02-01

    In this study, an MDEL/TiO2 photocatalyst hybrid system was applied to the production of low molecular weight gelatin. The molecular weight of produed gelatin decreased with increasing microwave intensity and increasing treatment time. The abscission of the chemical bonds between the con- stituents of gelatin by photocatalytic reaction did not alter the characteristics of gelatin. Formation of any by-products due to side reaction was not observed. It is suggested that gelatin was depolymerized by hydroxyl radicals produced during the MDEL/TiO2 photochemical reaction.

  15. Stress Transfer Quantification in Gelatin-Matrix Natural Composites with Tunable Optical Properties.

    PubMed

    Quero, Franck; Coveney, Abigail; Lewandowska, Anna E; Richardson, Robert M; Díaz-Calderón, Paulo; Lee, Koon-Yang; Eichhorn, Stephen J; Alam, M Ashraf; Enrione, Javier

    2015-06-08

    This work reports on the preparation and characterization of natural composite materials prepared from bacterial cellulose (BC) incorporated into a gelatin matrix. Composite morphology was studied using scanning electron microscopy and 2D Raman imaging revealing an inhomogeneous dispersion of BC within the gelatin matrix. The composite materials showed controllable degrees of transparency to visible light and opacity to UV light depending on BC weight fraction. By adding a 10 wt % fraction of BC in gelatin, visible (λ = 550 nm) and UV (λ = 350 nm) transmittances were found to decrease by ∼35 and 40%, respectively. Additionally, stress transfer occurring between the gelatin and BC fibrils was quantified using Raman spectroscopy. This is the first report for a gelatin-matrix composite containing cellulose. As a function of strain, two distinct domains, both showing linear relationships, were observed for which an average initial shift rate with respect to strain of -0.63 ± 0.2 cm(-1)%(-1) was observed, followed by an average shift rate of -0.25 ± 0.03 cm(-1)%(-1). The average initial Raman band shift rate value corresponds to an average effective Young's modulus of 39 ± 13 GPa and 73 ± 25 GPa, respectively, for either a 2D and 3D network of BC fibrils embedded in the gelatin matrix. As a function of stress, a linear relationship was observed with a Raman band shift rate of -27 ± 3 cm(-1)GPa(-1). The potential use of these composite materials as a UV blocking food coating is discussed.

  16. Effects of chicken by-product gelatin on the physicochemical properties and texture of chocolate spread.

    PubMed

    Almeida, Poliana Fernandes; Lannes, Suzana Caetano da Silva

    2017-10-01

    Chocolate spread has a fat-based formulation and the application of gelatin as a fat replacement is related to the demand for healthier foods. The aim of this study was to evaluate the influence of gelatin as a by-product from the poultry industry in the fat replacement of chocolate spread. Vegetable fat was replaced (15, 25, 50, 75, and 100%) with gelatin (0.3, 0.5, 0.8, 1.0, and 1.2%) using a central composite rotatable design and the effects were evaluated by a response surface methodology. Formulations with a greater proportion of fat were lighter, of higher volume and lower density. As expected, water activity was intensified in low-fat formulations. The consistency was controlled mainly by the properties of the gelatin phase. The formulations with 50 and 75% fat replacement and 0.5-1.0% gelatin had satisfactory spreadability at 10C. All formulations were spreadable at 20C. Low-fat samples with low gelatin concentrations, at 30C, had very low consistency. Statistically, the properties were significantly influenced by the factors analyzed according to the mathematical models. Although several studies have been conducted on obtaining alternative gelatin sources for mammals, the extracted gelatin from poultry by-product is still little explored and the knowledge on the application in food products, particularly in complex systems such as emulsions, has not been well established. The development of a low-fat food should take into account the complexity of the system involved, such as the emulsion spreads. The incorporation of gelatin in aqueous solution is a challenging task because the physical properties and the rheological behavior can be strongly influenced. Given the nutritional and functional properties of the gelatin and chocolate and its wide acceptability among the consumers, the incorporation of these two ingredients in the development of a new product sets up a promising study. © 2016 Wiley Periodicals, Inc.

  17. Design of pH-responsive nanoparticles of terpolymer of poly(methacrylic acid), polysorbate 80 and starch for delivery of doxorubicin.

    PubMed

    Shalviri, Alireza; Chan, Ho Ka; Raval, Gaurav; Abdekhodaie, Mohammad J; Liu, Qiang; Heerklotz, Heiko; Wu, Xiao Yu

    2013-01-01

    This work focused on the design of new pH-responsive nanoparticles for controlled delivery of anticancer drug doxorubicin (Dox). Nanoparticles of poly(methacrylic acid)-polysorbate 80-grafted starch (PMAA-PS 80-g-St) were synthesized by using a one-pot method that enabled simultaneous grafting of PMAA and PS 80 onto starch and nanoparticle formation in an aqueous medium. The particles were characterized by FTIR, (1)H NMR, TEM, DLS, and potentiometric titration. Dox loading and in vitro release from the nanoparticles were investigated. The FTIR and (1)H NMR confirmed the chemical composition of the graft terpolymer. The nanoparticles were relatively spherical with narrow size distribution and porous morphology. They exhibited pH-dependent swelling in a physiological pH range. The particle size and magnitude of phase transition were dependent on polymer composition and formulation parameters such as concentrations of surfactant and cross-linking agent and total monomer concentration. The nanoparticles with optimized compositions showed high loading capacity for Dox and sustained Dox release. The results suggest that the new pH-responsive terpolymer nanoparticles are useful in controlled drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd(II) ions from aqueous solution.

    PubMed

    Huang, Liqiang; Yuan, Shaojun; Lv, Li; Tan, Guangqun; Liang, Bin; Pehkonen, S O

    2013-09-01

    Cross-linked chitosan (CCS) microspheres tethered with pH-sensitive poly(methacrylic acid) (PMAA) brushes were developed for the efficient removal of Cd(II) ions from aqueous solutions. Functional PMAA brushes containing dense and active carboxyl groups (COOH) were grafted onto the CCS microsphere surface via surface-initiated atom transfer radical polymerization (ATRP). Batch adsorption results showed that solution pH values had a major impact on cadmium adsorption by the PMAA-grafted CCS microspheres with the optimal removal observed above pH 5. The CCS-g-PMAA microsphere was found to achieve the adsorption equilibrium of Cd(II) within 1 h, much faster than about 7 h on the CCS microsphere. At pH 5 and with an initial concentration 0.089-2.49 mmol dm(-3), the maximum adsorption capacity of Cd(II), derived from the Langmuir fitting on the PMAA-grafted microspheres was around 1.3 mmol g(-1). Desorption and adsorption cycle experimental results revealed that the PMAA-grafted CCS microspheres loaded with Cd(II) can be effectively regenerated in a dilute HNO3 solution, and the adsorption capacity remained almost unchanged upon five cycle reuse. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Effects of adding methacrylate monomers on viscosity and mechanical properties of experimental light-curing soft lining materials based on urethane (meth)acrylate oligomers.

    PubMed

    Kanie, Takahito; Kadokawa, Akihiko; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2008-11-01

    We investigated the viscosity and mechanical properties of experimental light-curing soft lining materials based on six commercially available urethane (meth)acrylate oligomers. The viscosities of the six oligomers were 1.9, 20.6, 26.8, 144.0, 185.3, and 8803.4 Pa*s at 25 degrees C. Two monomers (ethyl- and butyl-methacrylate) were added at 20 wt% to these oligomers to decrease the viscosity, resulting in viscosity reductions of 0.2 to 13.6 Pa*s for the six oligomers. The mechanical properties (compressive modulus, Shore A hardness, and tensile strength) were measured after two times light-polymerization for 3 min. The addition of the monomers to the oligomers only slightly changed the mechanical properties, in contrast to the large viscosity changes. Based on these results, it appears that the addition of ethyl- or butyl-methacrylate monomers is useful for decreasing the viscosity of experimental light-curing soft lining materials without changing their mechanical properties.

  20. Rheological properties of concentrated solutions of gelatin in an ionic liquid 1-ethyl-3-methylimidazolium dimethyl phosphate.

    PubMed

    Horinaka, Jun-Ichi; Okamoto, Arisa; Takigawa, Toshikazu

    2016-10-01

    Rheological properties of gelatin solutions were examined in concentrated regions. Gelatin species from porcine skin and from bovine bone were dissolved in an ionic liquid 1-ethyl-3-methylimidazolium dimethyl phosphate. The dynamic viscoelasticity data for the solutions exhibited rubbery plateaus, indicating the existence of entanglement coupling between gelatin chains in the solutions. From the analogy with rubber elasticity, assuming that the molecular weight between entanglements (Me) is the average mesh size of the entanglement network, Me for gelatin in the solutions were determined from the heights of the rubbery plateaus. Then the value of Me in the molten state (Me,melt), a material constant reflecting the chemical structure of polymer species, for gelatin was estimated to be 8.7×10(3). Compared to synthetic polyamides whose Me,melt were known, Me,melt for gelatin was significantly larger, which could be explained by the densely repeating amide bonds composing gelatin. Copyright © 2016 Elsevier B.V. All rights reserved.