Science.gov

Sample records for methane ethane propane

  1. HOMOGENEOUS HYDROLYSIS RATE CONSTANTS FOR SELECTED CHLORINATED METHANES, ETHANES, ETHENES, AND PROPANES

    EPA Science Inventory

    Hydrolysis rate constants of 18 chlorinated methanes, ethanes, ethenes, and propanes have been measured in dilute aqueous solutions within the temperature range of 0 to 180 oC and at pH values of 3 to l4. rrhenius parapmeters were determined for both neutral and alkaline hydrolys...

  2. Identification of Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing

    NASA Astrophysics Data System (ADS)

    Redmond, M.; Ding, H.; Friedrich, M. W.; Valentine, D. L.

    2008-12-01

    Hydrocarbon seeps emit substantial amounts of oil and natural gas into the marine environment, where they can be oxidized by microorganisms in the sediment and water column. Here, we used stable isotope probing of DNA and lipid biomarkers to identify the microorganisms actively consuming 13C-labeled natural gas compounds in seep sediment samples. Surface sediment was collected from the Coal Oil Point seep field (offshore Santa Barbara, California, USA) and incubated under aerobic conditions with 13C labeled methane, ethane, or propane for up to 37 days, with sediment sub-samples taken at 3-4 intermediate time points. DNA was extracted from sediment and separated by CsCl density gradient centrifugation. The microbial community in each fraction was profiled using T-RFLP, and bacterial 16S rRNA gene clone libraries were constructed from un-incubated hydrocarbon seep sediment and selected isotopically 'heavy' (13C) and 'light' (12C) gradient fractions from ethane incubations. All clone libraries were dominated by sequences from members of the family Rhodobacteraceae (>25% of sequences) and a diverse group of Gammaproteobacteria, including sequences related to those of methylotrophs and to those of bacteria known to consume the longer-chain alkanes present in crude oil. After 14 days of incubation, the relative abundance of Rhodobacteraceae was higher in 'heavy' fractions from the 13C-ethane incubation than in 'light' fractions, suggesting incorporation of 13C label. The Rhodobacteraceae are very diverse metabolically, but have often been observed in abundance in oil contaminated seawater. Several members of this group have been shown to oxidize longer chain alkanes (C10 or higher), but none have been previously linked to the consumption of the gaseous alkanes ethane, propane, and butane. For the final time point, 13C content of phospholipid fatty acids (PLFA) were also analyzed, showing substantial incorporation of 13C over 37 days. In the methane incubation

  3. Main-group compounds selectively oxidize mixtures of methane, ethane, and propane to alcohol esters.

    PubMed

    Hashiguchi, Brian G; Konnick, Michael M; Bischof, Steven M; Gustafson, Samantha J; Devarajan, Deepa; Gunsalus, Niles; Ess, Daniel H; Periana, Roy A

    2014-03-14

    Much of the recent research on homogeneous alkane oxidation has focused on the use of transition metal catalysts. Here, we report that the electrophilic main-group cations thallium(III) and lead(IV) stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent. Esters of methanol, ethanol, ethylene glycol, isopropanol, and propylene glycol are obtained with greater than 95% selectivity in concentrations up to 1.48 molar within 3 hours at 180°C. Experiment and theory support a mechanism involving electrophilic carbon-hydrogen bond activation to generate metal alkyl intermediates. We posit that the comparatively high reactivity of these d(10) main-group cations relative to transition metals stems from facile alkane coordination at vacant sites, enabled by the overall lability of the ligand sphere and the absence of ligand field stabilization energies in systems with filled d-orbitals. PMID:24626925

  4. Raman spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane for combustion applications

    NASA Astrophysics Data System (ADS)

    Magnotti, G.; KC, U.; Varghese, P. L.; Barlow, R. S.

    2015-09-01

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  5. Kinetic mechanism of plasma recombination in methane, ethane and propane after high-voltage nanosecond discharge

    NASA Astrophysics Data System (ADS)

    Anokhin, E. M.; Popov, M. A.; Kochetov, I. V.; Starikovskiy, A. Yu; Aleksandrov, N. L.

    2016-08-01

    The results of the experimental and numerical study of high-voltage nanosecond discharge afterglow in pure methane, ethane and propane are presented for room temperature and pressures from 2 to 20 Torr. Time-resolved electron density during the plasma decay was measured with a microwave interferometer for initial electron densities in the range between 5  ×  1010 and 3  ×  1012 cm‑3 and the effective recombination coefficients were obtained. Measured effective recombination coefficients increased with gas pressure and were much higher than the recombination coefficients for simple molecular hydrocarbon ions. The properties of plasma in the discharge afterglow were numerically simulated by solving the balance equations for charged particles and electron temperature. Calculations showed that electrons had time to thermalize prior to the recombination. The measured data were interpreted under the assumption that cluster hydrocarbon ions are formed during the plasma decay that is controlled by the dissociative electron recombination with these ions at electron room temperature. Based on the analysis of the experimental data, the rates of three-body formation of cluster ions and recombination coefficients for these ions were estimated.

  6. Phase diagrams for clathrate hydrates of methane, ethane, and propane from first-principles thermodynamics.

    PubMed

    Cao, Xiaoxiao; Huang, Yingying; Li, Wenbo; Zheng, Zhaoyang; Jiang, Xue; Su, Yan; Zhao, Jijun; Liu, Changling

    2016-01-28

    Natural gas hydrates are inclusion compounds composed of major light hydrocarbon gaseous molecules (CH4, C2H6, and C3H8) and a water clathrate framework. Understanding the phase stability and formation conditions of natural gas hydrates is crucial for their future exploitation and applications and requires an accurate description of intermolecular interactions. Previous ab initio calculations on gas hydrates were mainly limited by the cluster models, whereas the phase diagram and equilibrium conditions of hydrate formation were usually investigated using the thermodynamic models or empirical molecular simulations. For the first time, we construct the chemical potential phase diagrams of type II clathrate hydrates encapsulated with methane/ethane/propane guest molecules using first-principles thermodynamics. We find that the partially occupied structures (136H2O·1CH4, 136H2O·16CH4, 136H2O·20CH4, 136H2O·1C2H6, and 136H2O·1C3H8) and fully occupied structures (136H2O·24CH4, 136H2O·8C2H6, and 136H2O·8C3H8) are thermodynamically favorable under given pressure-temperature (p-T) conditions. The theoretically predicted equilibrium pressures for pure CH4, C2H6 and C3H8 hydrates at the phase transition point are consistent with the experimental data. These results provide valuable guidance for establishing the relationship between the accurate description of intermolecular noncovalent interactions and the p-T equilibrium conditions of clathrate hydrates and other molecular crystals. PMID:26745181

  7. Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation

    SciTech Connect

    Yoon, S.S.; Anh, D.H.; Chung, S.H.

    2008-08-15

    Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

  8. Portable, fast-response gas sensor for measuring methane and ethane and propane in liquefied natural gas spills

    NASA Astrophysics Data System (ADS)

    Bingham, G. E.; Kiefer, R. D.; Gillespie, C. H.; McRae, T. G.; Goldwire, H. C.; Koopman, R. P.

    1983-10-01

    We have developed a four-band, IR radiometer for measuring methane and ethane plus propane in the 1% to 100% gas per volume of air range in liquefied natural gas spills. The instrument is a small and lightweight open-cell, pyroelectric detector-based sensor designed for field use. It compensates for attenuation because of dense fog and is sufficiently hardened to allow continuous operation in the transient flame front of an ignited natural gas cloud. The sensor transmits five determinations of the gas concentration each second to a data-collection station on an interrupt-driven, serial data link. It has an operational power requirement of 15 W at 12 V dc.

  9. Modeling nitrogen and methane with ethane and propane gas hydrates at low temperatures (173-290 K) with applications to Titan

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Kargel, J. S.; Tan, S. P.

    2015-09-01

    The FREZCHEM model was primarily designed for cold temperatures (173-298 K) and high pressures (1-1000 bars). Nitrogen gas (95.0%) and methane gas (5.0%) are major gases on the surface of Titan. Recently, we added nitrogen and methane gas hydrates to FREZCHEM model on Titan; and nitrogen-methane gas hydrates formed on Titan at 178 K. The other common but less abundant gases on Titan are ethane (C2H6) and propane (C3H8) that can also form gas hydrates with nitrogen and methane. The specific objectives of this study were to (1) add ethane and propane to gas hydrates, including mixtures with nitrogen, methane, and carbon dioxide, and (2) explore the potential roles of gas hydrates on Titan. At 273 K, the Ln(gas hydrates) were 5.095 for N2, 3.217 for CH4, 2.327 for CO2, 1.288 for C2H6, and 0.281 for C3H8. At 173 K, the Ln(gas hydrates) were -4.968 for N2, -6.102 for CH4, -7.803 for CO2, -5.125 for C2H6, and -5.512 for C3H8. Apparently C2H6 and C3H8 gas hydrates change less at lower temperatures than N2, CH4, and CO2 gas hydrates. In previous papers, we added three mixed CH4-CO2, N2-CH4, and N2-CO2 binary gas hydrates. In this paper, we added ethane and propane to include new binary gas hydrate mixtures of N2-C2H6, N2-C3H8, C2H6-C3H8, CH4-C2H6, CH4-C3H8, CO2-C2H6, and CO2-C3H8. Today, there are ten binary gas hydrates in the FREZCHEM model. In the text, how to cope with more than two species is described. Simulations from 273 K to 173 K used a surface Titan pressure of 1.467 bars with a major gas of nitrogen (94.24%), a minor gas of methane (5.65%), and extremely minor gases of ethane (0.0038%), and propane (0.000343%). Eventually at 178 K, N2·6H2O formed with 0.17694 mol, CH4·6H2O formed with 0.04101 mol, C2H6·6H2O formed with 6.48e-6 mol, and C3H8·6H2O formed with 9.36e-7 mol. Based on the atmospheric conditions of Titan, the trace gases of ethane and propane led to low gas hydrate precipitations of ethane and propane with nitrogen and methane. However, the gas

  10. Desorption Kinetics of Ar, Kr, Xe, N2, O2, CO, Methane, Ethane, and Propane from Graphene and Amorphous Solid Water Surfaces.

    PubMed

    Smith, R Scott; May, R Alan; Kay, Bruce D

    2016-03-01

    The desorption kinetics for Ar, Kr, Xe, N2, O2, CO, methane, ethane, and propane from graphene-covered Pt(111) and amorphous solid water (ASW) surfaces are investigated using temperature-programmed desorption (TPD). The TPD spectra for all of the adsorbates from graphene have well-resolved first, second, third, and multilayer desorption peaks. The alignment of the leading edges is consistent the zero-order desorption for all of the adsorbates. An Arrhenius analysis is used to obtain desorption energies and prefactors for desorption from graphene for all of the adsorbates. In contrast, the leading desorption edges for the adsorbates from ASW do not align (for coverages < 2 ML). The nonalignment of TPD leading edges suggests that there are multiple desorption binding sites on the ASW surface. Inversion analysis is used to obtain the coverage dependent desorption energies and prefactors for desorption from ASW for all of the adsorbates. PMID:26595145

  11. A geochemical model of non-ideal solutions in the methane-ethane-propane-nitrogen-acetylene system on Titan

    NASA Astrophysics Data System (ADS)

    Glein, Christopher R.; Shock, Everett L.

    2013-08-01

    Saturn's largest moon, Titan, has an atmosphere and surface that are rich in organic compounds. Liquid hydrocarbons exist on the surface, most famously as lakes. Photochemical reactions produce solid organics in Titan's atmosphere, and these materials settle or snow onto the surface. At the surface, liquids can interact with solids, and geochemical processes can occur. The consequences of these processes can be explored using a thermodynamic model to calculate the solubilities of gases and solids in liquid hydrocarbons at cryogenic temperatures. The van Laar model developed in this study was parameterized using experimental phase equilibrium data, and accurately represents the data for the CH4-C2H6-C3H8-N2-C2H2 chemical system from 90 to 110 K. The model generally gives more accurate results than existing models. The model also features a suitable balance between accuracy and simplicity, and can serve as a foundation for studies of fluvial geochemistry on Titan because it can be extended to any number of components while maintaining thermodynamic consistency. Application of the model to Titan reveals that the equilibrium composition of surface liquids depends on the abundance of methane gas in the local atmosphere, consistent with prior studies. The concentration of molecular nitrogen in Titan's lakes varies inversely with the ethane content of the lakes. The model indicates that solid acetylene should be quite soluble in surface liquids, which implies that acetylene-rich sedimentary rocks would be susceptible to chemical erosion, and acetylene evaporites may form on Titan. The geochemical character of acetylene in liquid hydrocarbons on Titan appears to be intermediate to those of calcite and gypsum in surface waters on Earth. Specific recommendations are given of observational, experimental, and theoretical work that will lead to significant advancements in our knowledge of geochemical processes on Titan. This paper represents the beginning of a new kind of

  12. Development of a pre-concentration system and auto-analyzer for dissolved methane, ethane, propane, and butane concentration measurements with a GC-FID

    NASA Astrophysics Data System (ADS)

    Chepigin, A.; Leonte, M.; Colombo, F.; Kessler, J. D.

    2014-12-01

    Dissolved methane, ethane, propane, and butane concentrations in natural waters are traditionally measured using a headspace equilibration technique and gas chromatograph with flame ionization detector (GC-FID). While a relatively simple technique, headspace equilibration suffers from slow equilibration times and loss of sensitivity due to concentration dilution with the pure gas headspace. Here we present a newly developed pre-concentration system and auto-analyzer for use with a GC-FID. This system decreases the time required for each analysis by eliminating the headspace equilibration time, increases the sensitivity and precision with a rapid pre-concentration step, and minimized operator time with an autoanalyzer. In this method, samples are collected from Niskin bottles in newly developed 1 L plastic sample bags rather than glass vials. Immediately following sample collection, the sample bags are placed in an incubator and individually connected to a multiport sampling valve. Water is pumped automatically from the desired sample bag through a small (6.5 mL) Liqui-Cel® membrane contactor where the dissolved gas is vacuum extracted and directly flushed into the GC sample loop. The gases of interest are preferentially extracted with the Liqui-Cel and thus a natural pre-concentration effect is obtained. Daily method calibration is achieved in the field with a five-point calibration curve that is created by analyzing gas standard-spiked water stored in 5 L gas-impermeable bags. Our system has been shown to substantially pre-concentrate the dissolved gases of interest and produce a highly linear response of peak areas to dissolved gas concentration. The system retains the high accuracy, precision, and wide range of measurable concentrations of the headspace equilibration method while simultaneously increasing the sensitivity due to the pre-concentration step. The time and labor involved in the headspace equilibration method is eliminated and replaced with the

  13. PREDICTIONS OF AZEOTROPES FORMED FROM FLUORINATED ETHERS, ETHANES, AND PROPANES

    EPA Science Inventory

    The paper discusses an evaluation of the potential for azeotrope formation and performance for fluorinated ethers, ethanes, and propanes. (NOTE: The synthesis of new non-chlorinated refrigerants expands the base of alternatives for replacing ozone-depleting chlorofluorocarbons (O...

  14. Marine microbes rapidly adapt to consume ethane, propane, and butane within the dissolved hydrocarbon plume of a natural seep

    NASA Astrophysics Data System (ADS)

    Mendes, Stephanie D.; Redmond, Molly C.; Voigritter, Karl; Perez, Christian; Scarlett, Rachel; Valentine, David L.

    2015-03-01

    Simple hydrocarbon gases containing two to four carbons (ethane, propane, and butane) are among the most abundant compounds present in petroleum reservoirs, and are introduced into the ocean through natural seepage and industrial discharge. Yet little is known about the bacterial consumption of these compounds in ocean waters. To assess the timing by which microbes metabolize these gases, we conducted a three-phase study that tested and applied a radiotracer-based method to quantify the oxidation rates of ethane, propane, and butane in fresh seawater samples. Phase 1 involved the synthesis of tritiated ethane, propane, and butane using Grignard reagents and tritiated water. Phase 2 was a systematic assessment of experimental conditions, wherein the indigenous microbial community was found to rapidly oxidize ethane, propane, and butane. Phase 3 was the application of this tritium method near the Coal Oil Point seeps, offshore California. Spatial and temporal patterns of ethane, propane, and butane oxidation down current from the hydrocarbon seeps demonstrated that >99% of these gases are metabolized within 1.3 days following initial exposure. The oxidation of ethane outpaced oxidation of propane and butane with patterns indicating the microbial community responded to these gases by rapid adaptation or growth. Methane oxidation responded the slowest in plume waters. Estimates based on the observed metabolic rates and carbon mass balance suggest that ethane, propane, and butane-consuming microorganisms may transiently account for a majority of the total microbial community in these impacted waters.

  15. THERMODYNAMIC EVALUATION OF PREDICTED FLUORINATED ETHER, ETHANE, AND PROPANE AZEOTROPES

    EPA Science Inventory

    The paper gives results of thermodynamic analyses, using basic thermophysical property data, to evaluate seven predicted fluorinated ether, ethane, and propane azeotropes: E125/RC270, E125/R134a, E143a/R134, R134a/E143a, E143a/ R152a, R134/R245cb, and R245cb/R227ea. he performanc...

  16. Reversal of global atmospheric ethane and propane trends largely due to US oil and natural gas production

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Rossabi, Samuel; Hueber, Jacques; Tans, Pieter; Montzka, Stephen A.; Masarie, Ken; Thoning, Kirk; Plass-Duelmer, Christian; Claude, Anja; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Reimann, Stefan; Vollmer, Martin K.; Steinbrecher, Rainer; Hannigan, James W.; Emmons, Louisa K.; Mahieu, Emmanuel; Franco, Bruno; Smale, Dan; Pozzer, Andrea

    2016-07-01

    Non-methane hydrocarbons such as ethane are important precursors to tropospheric ozone and aerosols. Using data from a global surface network and atmospheric column observations we show that the steady decline in the ethane mole fraction that began in the 1970s halted between 2005 and 2010 in most of the Northern Hemisphere and has since reversed. We calculate a yearly increase in ethane emissions in the Northern Hemisphere of 0.42 (+/-0.19) Tg yr-1 between mid-2009 and mid-2014. The largest increases in ethane and the shorter-lived propane are seen over the central and eastern USA, with a spatial distribution that suggests North American oil and natural gas development as the primary source of increasing emissions. By including other co-emitted oil and natural gas non-methane hydrocarbons, we estimate a Northern Hemisphere total non-methane hydrocarbon yearly emission increase of 1.2 (+/-0.8) Tg yr-1. Atmospheric chemical transport modelling suggests that these emissions could augment summertime mean surface ozone by several nanomoles per mole near oil and natural gas production regions. Methane/ethane oil and natural gas emission ratios could suggest a significant increase in associated methane emissions; however, this increase is inconsistent with observed leak rates in production regions and changes in methane's global isotopic ratio.

  17. Isolation and Characterization of Ethane, Propane, and Butane Consuming Bacteria from Marine Hydrocarbon Seeps

    NASA Astrophysics Data System (ADS)

    Redmond, M. C.; Valentine, D. L.

    2005-12-01

    Three strains of ethane, propane, or butane consuming bacteria were isolated from marine hydrocarbon seep sediments at Coal Oil Point, off shore Santa Barbara, CA. These three isolates (MR1, MR2 and MR3) were capable of growth at natural environmental temperatures and salinity. Isolate MR2 was capable of growth on ethane or propane as the sole carbon source, isolate MR4 on propane or butane, and isolate MR3 on ethane, propane, or butane. All three isolates were also able to grow on other carbon-containing molecules, including ethanol, 1-propanol, 2-propanol, acetate, butyrate, sucrose, and dextrose, and isolates MR3 and MR4 were able to grow on 1-butanol and 2-butanol. None showed significant growth with methane, methanol, or formate as the sole carbon source. 16S rDNA sequencing indicated that isolate MR2 was most closely related to the gamma-Proteobacterium Pseudomonas stutzeri, while isolates MR3 and MR4 were both Gram-positive and most similar to Rhodococcus wratislaviensis and Rhodococcus opacus, respectively. Compared to methanotrophs, relatively little is known about the organisms that consume the C2-C4 alkanes, but both our isolates and the previously described species appear to be capable of metabolizing a wide variety of carbon compounds, including several common pollutants. The growth of these hydrocarbon-oxidizing bacteria on other organic compounds raises the possibility that the abundance and distribution of organic matter might be expected to impact the oxidation of C2-C4 hydrocarbons. Additional studies will further characterize the range of metabolism, and will investigate the importance of these organisms in natural hydrocarbon seep environments.

  18. Demonstration of an ethane spectrometer for methane source identification.

    PubMed

    Yacovitch, Tara I; Herndon, Scott C; Roscioli, Joseph R; Floerchinger, Cody; McGovern, Ryan M; Agnese, Michael; Pétron, Gabrielle; Kofler, Jonathan; Sweeney, Colm; Karion, Anna; Conley, Stephen A; Kort, Eric A; Nähle, Lars; Fischer, Marc; Hildebrandt, Lars; Koeth, Johannes; McManus, J Barry; Nelson, David D; Zahniser, Mark S; Kolb, Charles E

    2014-07-15

    Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (<0.2%), dry gas (1-6%), wet gas (>6%), pipeline grade natural gas (<15%), and processed natural gas liquids (>30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector. PMID:24945706

  19. THERMODYNAMIC EVALUATION OF FLUORINATED ETHERS, ETHANES, AND PROPANES AS ALTERNATIVE REFRIGERANTS

    EPA Science Inventory

    The visuals, part of a thermodynamic evaluation of fluorinated ethers, ethanes, and propanes as alternative refrigerants, are a useful tool in comparing new chemicals to existing refrigerants in vapor compression cycles. hey present the required suction superheat and the performa...

  20. Hydrogen and Nitrogen Broadened Ethane and Propane Absorption Cross Sections

    NASA Astrophysics Data System (ADS)

    Hargreaves, Robert J.; Appadoo, Dominique; Billinghurst, Brant E.; Bernath, Peter F.

    2015-06-01

    High-resolution infrared absorption cross sections are presented for the ν9 band of ethane (C2H6) at 823 cm-1. These cross sections make use of spectra recorded at the Australian Synchrotron using a Fourier transform infrared spectrometer with maximum resolution of 0.00096 cm-1. The spectra have been recorded at 150, 120 and 90 K for hydrogen and nitrogen broadened C2H6. They cover appropriate temperatures, pressures and broadening gases associated with the atmospheres of the Outer Planets and Titan, and will improve atmospheric retrievals. The THz/Far-IR beamline at the Australian Synchrotron is unique in combining a high-resolution Fourier transform spectrometer with an 'enclosive flow cooling' (EFC) cell designed to study molecules at low temperatures. The EFC cell is advantageous at temperatures for which the vapor pressure is very low, such as C2H6 at 90 K. Hydrogen broadened absorption cross sections of propane between 700 and 1200 cm-1 will also be presented based on spectra obtained at the Canadian Light Source.

  1. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    SciTech Connect

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-03-20

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  2. Laboratory studies of methane nucleation on ethane: Application to Titan's clouds

    NASA Astrophysics Data System (ADS)

    Curtis, D. B.; Toon, OB; Tolbert, M. A.; McKay, C. P.; Khare, B. N.

    2003-05-01

    Titan's unusually thick atmosphere is composed mainly of nitrogen with a few percent methane and several gas phase species. The most abundant of these gas phase species is ethane, thought to be present at amounts of approximately 20 parts per million, while HCN, ethylene, propane, and many other species are also produced. Complex photochemistry in Titan's upper atmosphere produces a solid haze, which is thought to settle towards the surface. As the haze particles settle, it is likely that they become coated with ethane in Titan's lower stratosphere. Near Titan's tropopause, methane is saturated with respect to nucleation and could condense to form clouds. However, reanalysis of the Voyager I and II data suggests that the methane does not condense, but becomes supersaturated up to a saturation ratio of 1.5. In contrast, recent Earth-based observations indicate that methane clouds are indeed present in Titan's atmosphere. In order to elucidate Titan's cloud formation mechanism, we have made laboratory measurements of methane nucleation onto a film of solid ethane at approximately 45 K using a vacuum chamber apparatus. We find that a saturation ratio of S = 1.10 is required for methane to nucleate onto ethane, indicating that cloud formation onto coated haze particles is relatively easy and that large areas of supersaturation are not likely. Ongoing studies will measure the saturation ratio required for methane nucleation onto laboratory-produced model haze particles and films of various hydrocarbons and nitriles. This work was funded by the NASA Astrobiology Institute. DBC was supported by a NASA GSRP Fellowship through NASA Ames Research Center.

  3. Airborne Ethane Observations in the Barnett Shale: Quantification of Ethane Flux and Attribution of Methane Emissions.

    PubMed

    Smith, Mackenzie L; Kort, Eric A; Karion, Anna; Sweeney, Colm; Herndon, Scott C; Yacovitch, Tara I

    2015-07-01

    We present high time resolution airborne ethane (C2H6) and methane (CH4) measurements made in March and October 2013 as part of the Barnett Coordinated Campaign over the Barnett Shale formation in Texas. Ethane fluxes are quantified using a downwind flight strategy, a first demonstration of this approach for C2H6. Additionally, ethane-to-methane emissions ratios (C2H6:CH4) of point sources were observationally determined from simultaneous airborne C2H6 and CH4 measurements during a survey flight over the source region. Distinct C2H6:CH4 × 100% molar ratios of 0.0%, 1.8%, and 9.6%, indicative of microbial, low-C2H6 fossil, and high-C2H6 fossil sources, respectively, emerged in observations over the emissions source region of the Barnett Shale. Ethane-to-methane correlations were used in conjunction with C2H6 and CH4 fluxes to quantify the fraction of CH4 emissions derived from fossil and microbial sources. On the basis of two analyses, we find 71-85% of the observed methane emissions quantified in the Barnett Shale are derived from fossil sources. The average ethane flux observed from the studied region of the Barnett Shale was 6.6 ± 0.2 × 10(3) kg hr(-1) and consistent across six days in spring and fall of 2013. PMID:26148554

  4. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation

    SciTech Connect

    Sun, Pingping; Siddiqi, Georges; Vining, William C.; Chi, Miaofang; Bell, Alexis T.

    2011-10-28

    Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.

  5. Molecular jet study of the solvation of toluene by methane, ethane, and propanea)

    NASA Astrophysics Data System (ADS)

    Schauer, Mark; Law, K. S.; Bernstein, E. R.

    1985-01-01

    Two color time of flight mass spectroscopy studies of toluene solvated by methane, ethane, and propane in a supersonic molecular jet have been carried out. This work is quite similar to the studies in the preceding paper on benzene. The conclusions and finding in the benzene investigation are strengthened and elaborated. The comparison of calculations and experiments has yielded information on binding enegy, geometry, and spectral shift. A strong correlation is found between observed cluster transition intensity and cluster nucleation processes and a tentative nucleation scheme for the molecular jet formation of solute-solvent clusters is presented.

  6. Methane and ethane at high pressures: structure and stability

    NASA Astrophysics Data System (ADS)

    Goncharov, A.; Stavrou, E.; Lobanov, S.; Oganov, A. R.; Chanyshev, A.; Litasov, K.; Konopkova, Z.; Prakapenka, V.

    2013-12-01

    Methane is one of the most abundant hydrocarbon molecules in the universe and is expected to be a significant part of the icy giant planets (Uranus and Neptune) and their satellites. Ethane is one of the most predictable products of chemical reactivity of methane at extreme pressures and temperatures. In spite of numerous experimental and theoretical studies, the structure and relative stability of these materials even at room temperature remains controversial. We have performed a combined experimental, using x-ray diffraction and Raman spectroscopy, and theoretical, using the ab-initio evolutionary algorithm, study of both methane and ethane up at high pressures up to 120 GPa at 300 K. In the case of methane we have successfully solved the structure of phase B by determining the space group and the positional parameters of carbon atoms, and by completing these results for the hydrogen positions using the theoretical calculations. The general structural behavior under pressure and the relation between phase B and phases A and pre-B will be also discussed. For ethane we have determined the crystallization point, for room temperature, at 1.7 GPa and also the low pressure crystal structure (Phase I). This crystal structure is orientationally disordered (plastic phase) and deviates from the known crystal structures for ethane at low temperatures. Moreover, a pressure induced phase transition has been indentified, for the first time, at 18 GPa to a monoclinic phase II, the structure of which is solved based on a good agreement of the experimental results and theoretical predictions. We have determined the equations of state of methane and ethane, which provides a solid basis for the discussion of their relative stability at high pressures.

  7. Analysis of solvation structure and thermodynamics of ethane and propane in water by reference interaction site model theory using all-atom models

    NASA Astrophysics Data System (ADS)

    Cui, Qizhi; Smith, Vedene H.

    2001-08-01

    Following our previous paper on methane [Cui and Smith, J. Chem. Phys. 113, 10240 (2000)], we study the solvation structures and thermodynamics of ethane and propane in water at the infinite dilution limit by using the hypernetted chain closure reference interaction site model (HNC-RISM) theory with all-atom representations for solute molecules. At four thermodynamic states: temperature T=283.15, 298.15, 313.15, 328.15 K and the corresponding bulk water density ρ=0.9997, 0.9970, 0.9922, 0.9875 g cm-3, all the atomic solute-solvent radial distribution functions are obtained, and the corresponding running coordination numbers and the hydration free energies, energies, enthalpies, and entropies are calculated with the radial distribution functions as input. The hydration structures of ethane and propane are presented and analyzed at the atomic level in terms of the atomic solute-solvent radial distribution functions. With the optimized nonbonded potential parameters based on the CHARMM96 all-atom model for alkanes [Yin and Mackerell, J. Comput. Chem. 19, 334 (1998)], the ethane and propane hydration thermodynamic properties predicted by the HNC-RISM theory are improved in the specified temperature range (10-55 °C).

  8. Elastic properties of methane-propane mixed gas hydrate under high pressure

    NASA Astrophysics Data System (ADS)

    Miwa, Shinya; Kanou, Masaki; Kume, Tetsuji; Sasaki, Shigeo

    2013-06-01

    Methane hydrate (MH) is widely observed in Earth's environment such as permafrost and deep sea floors. At low temperature and low pressure conditions, pure MH crystallizes a cubic structure I (sI) which consists of hydrogen-bonded two small and six medium water cages which enclathrate methane molecules as guests. However, actual MH in deep sea deposits contains not only methane molecules but also ethane and propane molecules. Therefore, the estimation of elastic properties and mechanical stability for both sI and structure II (sII) are required for the safe extraction of methane gas from the deep sea floors. The purpose of this study is to determine the elastic properties of methane-propane mixed gas hydrate (MPH) with sII by applying the high-pressure Brillouin spectroscopy to a single crystal of MPH-sII grown in a diamond anvil cell. The obtained elastic constant C11 of MPH-sII showing independent of pressure is obviously different from that of pure MH-sI. On the other hand, the C12 and C44 are similar to MH-sI. The present results suggest that a variety of gas hydrates have the individual elastic properties and stability depending on the gas hydrate structures.

  9. Solubility of methane and ethane in aqueous solutions of methydiethanolamine

    SciTech Connect

    Jou, F.Y.; Mather, A.E.; Otto, F.D.; Carroll, J.J.

    1998-09-01

    Data are presented for the solubility of methane and of ethane in a 3 kmol/m{sup 3} (34.7 mass %) solution of methyldiethanolamine. Temperatures in this study ranged from 25 to 130 C and pressures to 13 MPa. The data were incorporated into a rigorous thermodynamic model that has been applied to other similar systems. The model is a combined Raoult`s law-Henry`s law approach. The solubilities in the alkanolamine solution are correlated in terms of the salting-in ratio, the ratio of the mole fraction solubility in the amine solution to that in pure water.

  10. Accurate values of some thermodynamic properties for carbon dioxide, ethane, propane, and some binary mixtures.

    PubMed

    Velasco, Inmaculada; Rivas, Clara; Martínez-López, José F; Blanco, Sofía T; Otín, Santos; Artal, Manuela

    2011-06-30

    Quasicontinuous PρT data of CO(2), ethane, propane, and the [CO(2) + ethane] mixture have been determined along subcritical, critical, and supercritical regions. These data have been used to develop the optimal experimental method and to determine the precision of the results obtained when using an Anton Paar DMA HPM vibrating-tube densimeter. A comparison with data from reference EoS and other authors confirm the quality of our experimental setup, its calibration, and testing. For pure compounds, the value of the mean relative deviation is MRD(ρ) = 0.05% for the liquid phase and for the extended critical and supercritical region. For binary mixtures the mean relative deviation is MRD(ρ) = 0.70% in the range up to 20 MPa and MRD(ρ) = 0.20% in the range up to 70 MPa. The number of experimental points measured and their just quality have enable us to determine some derivated properties with satisfactory precision; isothermal compressibilities, κ(T), have been calculated for CO(2) and ethane (MRD(κ(T)) = 1.5%), isobaric expasion coefficients, α(P), and internal pressures, π(i), for CO(2) (MRD(α(P)) = 5% and MRD(π(i)) = 7%) and ethane (MRD(α(P)) = 7.5% and MRD(π(i)) = 8%). An in-depth discussion is presented on the behavior of the properties obtained along subcritical, critical, and supercritical regions. In addition, PuT values have been determined for water and compressed ethane from 273.19 to 463.26 K up to pressures of 190.0 MPa, using a device based on a 5 MHz pulsed ultrasonic system (MRD(u) = 0.1%). With these data we have calibrated the apparatus and have verified the adequacy of the operation with normal liquids as well as with some compressed gases. From density and speed of sound data of ethane, isentropic compressibilities, κ(s), have been obtained, and from these and our values for κ(T) and α(P), isobaric heat capacities, C(p), have been calculated with MRD(C(p)) = 3%, wich is within that of the EoS. PMID:21639086

  11. Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia

    SciTech Connect

    Argyle, Morris D.; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

    2001-09-11

    The catalytic properties of Al2O3-supported vanadia with a wide range of VOx surface density (1.4-34.2 V/nm2) and structure were examined for the oxidative dehydrogenation of ethane and propane. UV-visible and Raman spectra showed that vanadia is dispersed predominantly as isolated monovanadate species below {approx}2.3 V/nm2. As surface densities increase, two-dimensional polyvanadates appear (2.3-7.0 V/nm2) along with increasing amounts of V2O5 crystallites at surface densities above 7.0 V/nm2. The rate constant for oxidative dehydrogenation (k1) and its ratio with alkane and alkene combustion (k2/k1 and k3/k1, respectively) were compared for both alkane reactants as a function of vanadia surface density. Propene formation rates (per V-atom) are {approx}8 times higher than ethene formation rates at a given reaction temperature, but the apparent ODH activation energies (E1) are similar for the two reactants and relatively insensitive to vanadia surface density. Ethene and propene formation rates (per V-atom) are strongly influenced by vanadia surface density and reach a maximum value at intermediate surface densities ({approx}8 V/nm2). The ratio of k2/k1 depends weakly on reaction temperature, indicating that activation energies for alkane combustion and ODH reactions are similar. The ratio of k2/k1 is independent of surface density for ethane, but increase slightly with vanadia surface density for propane, suggesting that isolated structures prevalent at low surface densities are slightly more selective for alkane dehydrogenation reactions. The ratio of k3/k1 decreases markedly with increasing reaction temperature for both ethane and propane ODH. Thus, the apparent activation energy for alkene combustion (E3) is much lower than that for alkane dehydrogenation (E1) and the difference between these two activation energies decreases with increasing surface density. The lower alkene selectivities observed at high vanadia surface densities are attributed to an

  12. Preindustrial atmospheric ethane levels inferred from polar ice cores: A constraint on the geologic sources of atmospheric ethane and methane

    NASA Astrophysics Data System (ADS)

    Nicewonger, Melinda R.; Verhulst, Kristal R.; Aydin, Murat; Saltzman, Eric S.

    2016-01-01

    Ethane levels were measured in air extracted from Greenland and Antarctic ice cores ranging in age from 994 to 1918 Common Era (C.E.) There is good temporal overlap between the two data sets from 1600 to 1750 C.E. with ethane levels stable at 397 ± 28 parts per trillion (ppt) (±2 standard error (s.e.)) over Greenland and 103 ± 9 ppt over Antarctica. The observed north/south interpolar ratio of ethane (3.9 ± 0.1, 1σ) implies considerably more ethane emissions in the Northern Hemisphere than in the Southern Hemisphere, suggesting geologic ethane sources contribute significantly to the preindustrial ethane budget. Box model simulations based on these data constrain the global geologic emissions of ethane to 2.2-3.5 Tg yr-1 and biomass burning emissions to 1.2-2.5 Tg yr-1 during the preindustrial era. The results suggest biomass burning emissions likely increased since the preindustrial period. Biomass burning and geologic outgassing are also sources of atmospheric methane. The results place constraints on preindustrial methane emissions from these sources.

  13. Oxidative dehydrogenation of ethane and propane over Ca-Co-P catalysts

    NASA Astrophysics Data System (ADS)

    Aaddane, A.; Kacimi, M.; Ziyad, M.

    2005-03-01

    Different compositions of calcium-cobalt phosphate Ca{3-x}Cox(PO{4})2 (0≤ x≤ 3) were synthesized by the precipitation method. The X-ray diffraction patterns showed that in the range 0 ≤x≤0.3 the solid displays a whitlockite-type structure which belongs to rhombohedral symmetry with the space group R3c (Z = 6). U.V-visible investigations showed that Co2+ ions occupy the M(5) sites of the phosphate. The same technique revealed that all cobalt cations exist under the +II oxidation state. Pure tricalcium phosphate β -Ca{3}(PO{4})2 was found inactive in the ODH reactions of ethane and propane. An increase of Co2+ concentration in the catalysts improved the performances.

  14. Laboratory studies, analysis, and interpretation of the spectra of hydrocarbons present in planetary atmospheres including cyanoacetylene, acetylene, propane, and ethane

    NASA Technical Reports Server (NTRS)

    Blass, William E.; Daunt, Stephen J.; Peters, Antoni V.; Weber, Mark C.

    1990-01-01

    Combining broadband Fourier transform spectrometers (FTS) from the McMath facility at NSO and from NRC in Ottawa and narrow band TDL data from the laboratories with computational physics techniques has produced a broad range of results for the study of planetary atmospheres. Motivation for the effort flows from the Voyager/IRIS observations and the needs of Voyager analysis for laboratory results. In addition, anticipation of the Cassini mission adds incentive to pursue studies of observed and potentially observable constituents of planetary atmospheres. Current studies include cyanoacetylene, acetylene, propane, and ethane. Particular attention is devoted to cyanoacetylen (H3CN) which is observed in the atmosphere of Titan. The results of a high resolution infrared laboratory study of the line positions of the 663, 449, and 22.5/cm fundamental bands are presented. Line position, reproducible to better than 5 MHz for the first two bands, are available for infrared astrophysical searches. Intensity and broadening studies are in progress. Acetylene is a nearly ubiquitous atmospheric constituent of the outer planets and Titan due to the nature of methane photochemistry. Results of ambient temperature absolute intensity measurements are presented for the fundamental and two two-quantum hotband in the 730/cm region. Low temperature hotband intensity and linewidth measurements are planned.

  15. Long-term trends in global trace gas emissions: CH4, ethane, propane, ethyne, C2Cl4, CHCl3

    NASA Astrophysics Data System (ADS)

    Simpson, I. J.; Meinardi, S.; Sulbaek Andersen, M.; Blake, N. J.; Rowland, F. S.; Blake, D. R.

    2011-12-01

    The University of California, Irvine (UC-Irvine) has monitored global atmospheric trace gas mixing ratios since 1978 using ground-based canister measurements in the remote Pacific basin (71N to 47S). The measured gases include methane (CH4), C2-C4 alkanes, ethyne, C1-C3 alkyl nitrates, CFCs, CH3CCl3, CCl4 and H-1211. Long-term records of several of these gases are unique to the UC-Irvine global monitoring network, and here we present our research highlights and inferred global trace gas emission trends. Despite a long-term decline in its global growth rate, the global CH4 mixing ratio has increased by 9% over the past 25 years, from 1647.7 ± 0.6 ppbv in 1985 to 1792.4 ± 0.7 ppbv in 2010, representing a global emission increase of ~48 Tg yr-1 assuming constant global OH levels. Over the same time, the global mixing ratio of ethane has declined by 21%, from 791 ± 19 pptv in 1986 to 625 ± 12 pptv in 2010, or a global emission decrease of ~3.4 Tg yr-1. The global trends of CH4 growth and ethane mixing ratio have shown a remarkably strong correlation in the past 25 years. The long-term global ethane decline has also been accompanied by simultaneous decreases in global levels of propane and the butanes since 1996. This is consistent with a long-term change in a source common to all four compounds, likely a decline in evaporative emissions from the oil and natural gas industry. The combustion tracer ethyne has also shown an 11% decline between 1996 and 2008, most likely related to improved controls on vehicle emissions despite an expanding global vehicle fleet. Global levels of the anthropogenic tracer and CFC-113 precursor tetrachloroethene (C2Cl4) have declined by 60% since 1989, to 2.5 ± 0.2 pptv (or 185 Gg yr-1) in 2009 (Fig. 1). In contrast, global levels of the industrial solvent chloroform (CHCl3) have increased by almost 20% since the late 1990s, from 9.0 ± 0.3 pptv in 1997 to 10.7 ± 0.4 pptv in 2008 (Fig. 1). These results highlight major temporal shifts

  16. Development of a Flight Instrument for in situ Measurements of Ethane and Methane

    NASA Astrophysics Data System (ADS)

    Wilkerson, J. P.; Sayres, D. S.; Anderson, J. G.

    2015-12-01

    Methane emissions data for natural gas and oil fields have high uncertainty. Better quantifying these emissions is crucial to establish an accurate methane budget for the United States. One obstacle is that these emissions often occur in areas near livestock facilities where biogenic methane abounds. Measuring ethane, which has no biogenic source, along with methane can tease these sources apart. However, ethane is typically measured by taking whole-air samples. This tactic has lower spatial resolution than making in situ measurements and requires the measurer to anticipate the location of emission plumes. This leaves unexpected plumes uncharacterized. Using Re-injection Mirror Integrated Cavity Output Spectroscopy (RIM-ICOS), we can measure both methane and ethane in flight, allowing us to establish more accurate fugitive emissions data that can more readily distinguish between different sources of this greenhouse gas.

  17. Long-term decline of global atmospheric ethane concentrations and implications for methane.

    PubMed

    Simpson, Isobel J; Sulbaek Andersen, Mads P; Meinardi, Simone; Bruhwiler, Lori; Blake, Nicola J; Helmig, Detlev; Rowland, F Sherwood; Blake, Donald R

    2012-08-23

    After methane, ethane is the most abundant hydrocarbon in the remote atmosphere. It is a precursor to tropospheric ozone and it influences the atmosphere's oxidative capacity through its reaction with the hydroxyl radical, ethane's primary atmospheric sink. Here we present the longest continuous record of global atmospheric ethane levels. We show that global ethane emission rates decreased from 14.3 to 11.3 teragrams per year, or by 21 per cent, from 1984 to 2010. We attribute this to decreasing fugitive emissions from ethane's fossil fuel source--most probably decreased venting and flaring of natural gas in oil fields--rather than a decline in its other major sources, biofuel use and biomass burning. Ethane's major emission sources are shared with methane, and recent studies have disagreed on whether reduced fossil fuel or microbial emissions have caused methane's atmospheric growth rate to slow. Our findings suggest that reduced fugitive fossil fuel emissions account for at least 10-21 teragrams per year (30-70 per cent) of the decrease in methane's global emissions, significantly contributing to methane's slowing atmospheric growth rate since the mid-1980s. PMID:22914166

  18. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    PubMed

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-11

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane. PMID:21833087

  19. Ethane's 12C/13C Ratio in Titan: Implications for Methane Replenishment

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Nixon, C. A.; Romani, P. N.; Bjoraker, G. L.; Sada, P. V.; Lunsford, A. W.; Boyle, R. J.; Hesman, B. E.; McCabe, G. H.

    2009-01-01

    As the .main destination of carbon in the destruction of methane in the atmosphere of Titan, ethane provides information about the carbon isotopic composition of the reservoir from which methane is replenished. If the amount of methane entering the atmosphere is presently equal to the amount converted to ethane, the 12C/13C ratio in ethane should be close to the ratio in the reservoir. We have measured the 12C/13C ratio in ethane both with Cassini CIRS(exp 1) and from the ground and find that it is very close to the telluric standard and outer planet values (89), consistent with a primordial origin for the methane reservoir. The lower 12C/13C ratio measured for methane by Huygens GCMS (82.3) can be explained if the conversion of CH4 to CH3 (and C2H6) favors 12C over 13C with a carbon kinetic isotope effect of 1.08. The time required for the atmospheric methane to reach equilibrium, i.e., for replenishment to equal destruction, is approximately 5 methane atmospheric lifetimes.

  20. C-12/C-13 Ratio in Ethane on Titan and Implications for Methane's Replenishment

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Romani, Paul N.; Bjoraker, Gordon L.; Sada, Pedro V.; Nixon, Conor A.; Lunsford, Allen W.; Boyle, Robert J.; Hesman, Brigette E.; McCabe, George H.

    2009-01-01

    The C-12/C-13 abundance ratio in ethane in the atmosphere of Titan has been measured at 822 cm(sup -1) from high spectral resolution ground-based observations. The value 89(8), coincides with the telluric standard and also agrees with the ratio seen in the outer planets. It is almost identical to the result for ethane on Titan found by the composite infrared spectrometer (CIRS) on Cassini. The C-12/C-13 ratio for ethane is higher than the ratio measured in atmospheric methane by Cassini/Huygens GCMS, 82.3(l), representing an enrichment of C-12 in the ethane that might be explained by a kinetic isotope effect of approximately 1.1 in the formation of methyl radicals. If methane is being continuously resupplied to balance photochemical destruction, then we expect the isotopic composition in the ethane product to equilibrate at close to the same C-12/C-13 ratio as that in the supply. The telluric value of the ratio in ethane then implies that the methane reservoir is primordial.

  1. 20th century ethane variability from polar firn air and implications for the methane budget

    NASA Astrophysics Data System (ADS)

    Saltzman, E. S.; Verhulst, K. R.; Aydin, K. M.; Battle, M. O.; Montzka, S. A.; Tang, Q.; Prather, M. J.

    2010-12-01

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they impact both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, while methane alone has large sources from wetlands, agriculture, landfills and wastewater. Here we use measurements in firn air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane during the 20th century. Ethane levels rose from early in the century until the 1980’s when the trend reverses, with a period of decline over the next 20 years. This variability is primarily driven by changes in ethane emissions from fossil fuels that peaked in the 1960’s and 1970’s at 14-16 Tg/y and dropped to 8-10 Tg/y before the end of the century. The reduction in fossil-fuel sources is likely related to changes in light hydrocarbon recovery during petroleum production and use. The ethane-based emission history implies that the decline in the fossil-fuel source of methane may have started prior to the 1980’s and that the magnitude of the decline is larger than previous estimates.

  2. ANALYSIS OF DISSOLVED METHANE, ETHANE, AND ETHYLENE IN GROUND WATER BY A STANDARD GAS CHROMATOGRAPHIC TECHNIQUE

    EPA Science Inventory

    The measurement of dissolved gases such as methane, ethane, and ethylene in ground water is important in determining whether intrinsic bioremediation is occurring in a fuel- or solvent-contaminated aquifer. A simple procedure is described for the collection and subsequent analys...

  3. Renewed methane increase (2007-2014): contribution of oil and natural gas emissions determined from methane and ethane column observations

    NASA Astrophysics Data System (ADS)

    Hausmann, Petra; Sussmann, Ralf; Smale, Dan

    2016-04-01

    Harmonized time series of column-averaged mole fractions of atmospheric methane and ethane over the period 1999-2014 are derived from solar Fourier transform infrared (FTIR) measurements at the Zugspitze summit (47° N, 2964 m a.s.l.) and at Lauder (45° S, 370 m a.s.l.). Long-term trend analysis reveals a consistent renewed methane increase since 2007 of 6.2 [5.6, 6.9] ppb yr‑1 at the Zugspitze and 6.0 [5.3, 6.7] ppb yr‑1 at Lauder (95 % confidence intervals). Several recent studies provide pieces of evidence that the renewed methane increase is most likely driven by two main factors: (i) increased methane emissions from tropical wetlands, followed by (ii) increased thermogenic methane emissions due to growing oil and natural gas production. Here, we quantify the magnitude of the second class of sources, using long-term measurements of atmospheric ethane as tracer for thermogenic methane emissions. In 2007, after years of weak decline, the Zugspitze ethane time series shows the sudden onset of a significant positive trend (2.3 [1.8, 2.8] × 10‑2 ppb yr‑1 for 2007-2014), while a negative trend persists at Lauder after 2007 (-0.4 [-0.6, -0.1] × 10‑2 ppb yr‑1). Zugspitze methane and ethane time series are significantly correlated for the period 2007-2014 and can be assigned to thermogenic methane emissions with an ethane-to-methane ratio of 10-21 %. We present optimized emission scenarios for 2007-2014 derived from an atmospheric two-box model. From our trend observations we infer a total ethane emission increase over the period 2007-2014 from oil and natural gas sources of 1-11 Tg yr‑1 along with an overall methane emission increase of 24-45 Tg yr‑1. Based on these results, the oil and natural gas emission contribution C to the renewed methane increase is deduced using three different emission scenarios with dedicated ranges of methane-to-ethane ratios (MER). Reference scenario 1 assumes an oil and gas emission combination with MER = 3.3-7.6, which

  4. Real-Time Measurements of Ethane for Source Attribution of Methane Plumes from Oil and Gas Facilities

    NASA Astrophysics Data System (ADS)

    Yacovitch, T. I.; Floerchinger, C.; Roscioli, J. R.; Herndon, S.; Fortner, E.; Knighton, W. B.; Petron, G.; Sweeney, C.; Karion, A.; Kofler, J.; Iglesias, G.; Zavala, M. A.; Molina, L. T.

    2013-12-01

    The Aerodyne Mobile Lab has conducted several recent studies of the methane emissions from Oil and Gas facilities at varying stages of production: well-heads; processing facilities; and compressor stations. Accurate quantification of methane emission rates are can be complicated by other local sources, notably livestock and microbial production. Methane emissions from oil and gas facilities are always accompanied by small amounts of ethane, while biogenic plumes contain no ethane. A prototype ethane spectrometer based on the Aerodyne-Mini chassis, has been deployed to oil and gas facilities in the Veracruz region of Mexico, as part of the 2013 Short-Lived Climate-Forcing project, and during ground-based measurements in the Barnett Shale in Texas as part of the Barnett Oil and Gas Observation Study. These results suggest a source-dependence in the ethane-to-methane ratio in oil and gas emissions. The results will be contrasted with 13CH4 methane isotope ratios determined using Aerodyne's Methane-Dual instrument. The limits and advantages of ethane-methane ratios and methane isotopes will be discussed. In the current instrumentation, the precision of determined ethane-to-methane ratios in a single plume encounter exceeds the analogous carbon isotope quantification.

  5. Methane and Ethane Measurements from a New TCCON Station in Los Angeles

    NASA Astrophysics Data System (ADS)

    Wunch, D.; Roehl, C. M.; Blavier, J. L.; Allen, N.; Treffers, R.; Toon, G. C.; Wennberg, P. O.

    2012-12-01

    The Los Angeles urban region emits large amounts of methane (~0.44Tg/year) into the atmosphere. It is currently unclear exactly how much of this is biogenic (landfills, cattle), and how much is from natural gas (natural seeps or fugitive emissions from the natural gas infrastructure). Since natural gas contains ethane, whereas biogenic emissions contain none, simultaneous measurements of ethane and methane offer the possibility of separating the biogenic versus natural gas emissions of methane. We investigate this using total column measurements from a new Total Carbon Column Observing Network (TCCON) remote sensing station in the Los Angeles suburb of Pasadena, which began measurements in July 2012. These measurements will be put into the context of historical remote sensing and in situ measurements described by Wennberg et al., 2012 (doi:10.1021/es301138y).

  6. AIRBORNE, OPTICAL REMOTE SENSNG OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2005-04-15

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The scope of the work involved designing and developing an airborne, optical remote sensor capable of sensing methane and, if possible, ethane for the detection of natural gas pipeline leaks. Flight testing using a custom dual wavelength, high power fiber amplifier was initiated in February 2005. Ophir successfully demonstrated the airborne system, showing that it was capable of discerning small amounts of methane from a simulated pipeline leak. Leak rates as low as 150 standard cubic feet per hour (scf/h) were detected by the airborne sensor.

  7. Estimates of methane and ethane emissions from the Texas Barnett Shale

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Yacovitch, T.; Petron, G.; Wolter, S.; Conley, S. A.; Hardesty, R. M.; Brewer, A.; Kofler, J.; Newberger, T.; Herndon, S.; Miller, B. R.; Montzka, S. A.; Rella, C.; Crosson, E.; Tsai, T.; Tans, P. P.

    2013-12-01

    The recent development of horizontal drilling technology by the oil and gas industry has dramatically increased onshore U.S. natural gas and oil production in the last several years. This production boom has led to wide-spread interest from the policy and scientific communities in quantifying the climate impact of the use of natural gas as a replacement for coal. Because the primary component of natural gas is methane, a powerful greenhouse gas, natural gas leakage into the atmosphere affects its climate impact. Several recent scientific field studies have focused on using atmospheric measurements to estimate this leakage in different producing basins. Methane can be measured precisely with commercial analyzers, and deployment of such analyzers on aircraft, coupled with meteorological measurements, can allow scientists to estimate emissions from regions of concentrated production. Ethane and other light hydrocarbons, also components of raw gas, can be used as tracers for differentiating natural gas emissions from those of other methane sources, such as agriculture or landfills, which do not contain any non-methane hydrocarbons such as ethane. Here we present results from one such field campaign in the Barnett Shale near Fort Worth, Texas, in March 2013. Several 4-hour flights were conducted over the natural gas and oil production region with a small single-engine aircraft instrumented with analyzers for measuring ambient methane, carbon monoxide, carbon dioxide, and ethane at high frequencies (0.3-1Hz). The aircraft also measured horizontal winds, temperature, humidity, and pressure, and collected whole air samples in flasks analyzed later for several light hydrocarbons. In addition to the aircraft, a ground-based High-Resolution Doppler Lidar was deployed in the basin to measure profiles of horizontal winds and estimate the boundary layer height 24 hours a day over the campaign period. The aircraft and lidar measurements are used together to estimate methane and

  8. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    USGS Publications Warehouse

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  9. The Global Search for Abiogenic GHGs, via Methane Isotopes and Ethane

    NASA Astrophysics Data System (ADS)

    Malina, Edward; Muller, Jan-Peter; Walton, David; Potts, Dale

    2015-04-01

    The importance of Methane as an anthropogenic Green House Gas (GHG) is well recognized in the scientific community, and is second only to Carbon Dioxide in terms of influence on the Earth's radiation budget (Parker, et al, 2011) suggesting that the ability to apportion the source of the methane (whether it is biogenic, abiogenic or thermogenic) has never been more important. It has been proposed (Etiope, 2009) that it may be possible to distinguish between a biogenic methane source (e.g. bacteria fermentation) and an abiogenic source (e.g. gas seepage or fugitive emissions) via the retrieval of the abundances of methane isotopes (12CH4 and 13CH4) and through the ratio of ethane (C2H6) to methane (CH4) concentrations. Using ultra fine spectroscopy (<0.2cm-1 spectral resolution) from Fourier Transform Spectrometers (FTS) based on the SCISAT-1 (ACE-FTS) and GOSAT (TANSO-FTS) we are developing a retrieval scheme to map global emissions of abiogenic and biogenic methane, and provide insight into how these variations in methane might drive atmospheric chemistry, focusing on the lower levels of the atmosphere. Using HiTran2012 simulations, we show that it is possible to distinguish between methane isotopes using the FTS based instruments on ACE and GOSAT, and retrieve the abundances in the Short Wave Infra-red (SWIR) at 1.65μm, 2.3μm, 3.3μm and Thermal IR, 7.8μm wavebands for methane, and the 3.3μm and 7μm wavebands for ethane. Initially we use the spectral line database HITRAN to determine the most appropriate spectral waveband to retrieve methane isotopes (and ethane) with minimal water vapour, CO2 and NO2 impact. Following this, we have evaluated the detectability of these trace gases using the more sophisticated Radiative Transfer Models (RTMs) SCIATRAN, the Oxford RFM and MODTRAN 5 in the SWIR, in order to determine the barriers to retrieving methane isotopes in both ACE (limb profile) and GOSAT (nadir measurements) instruments, including a preliminary

  10. Natural gas fugitive emissions rates constrained by global atmospheric methane and ethane.

    PubMed

    Schwietzke, Stefan; Griffin, W Michael; Matthews, H Scott; Bruhwiler, Lori M P

    2014-07-15

    The amount of methane emissions released by the natural gas (NG) industry is a critical and uncertain value for various industry and policy decisions, such as for determining the climate implications of using NG over coal. Previous studies have estimated fugitive emissions rates (FER)--the fraction of produced NG (mainly methane and ethane) escaped to the atmosphere--between 1 and 9%. Most of these studies rely on few and outdated measurements, and some may represent only temporal/regional NG industry snapshots. This study estimates NG industry representative FER using global atmospheric methane and ethane measurements over three decades, and literature ranges of (i) tracer gas atmospheric lifetimes, (ii) non-NG source estimates, and (iii) fossil fuel fugitive gas hydrocarbon compositions. The modeling suggests an upper bound global average FER of 5% during 2006-2011, and a most likely FER of 2-4% since 2000, trending downward. These results do not account for highly uncertain natural hydrocarbon seepage, which could lower the FER. Further emissions reductions by the NG industry may be needed to ensure climate benefits over coal during the next few decades. PMID:24945600

  11. Modeling of methane and ethane hydrate formation kinetics based on non-equilibrium thermodynamics

    NASA Astrophysics Data System (ADS)

    Mottahedin, Mona; Varaminian, Farshad; Mafakheri, Kaveh

    2011-05-01

    In this study, experimental data of the kinetics of methane and ethane hydrate formation at constant volume were collected. The experiments were carried out in a batch reactor at different temperatures and pressures. The property of chemical affinity was used in the modeling of hydrate formation rate in a constant volume process. In this model a macroscopic driving force was defined which only needed the initial (experimental condition, temperature, and pressure) and final conditions (equilibrium conditions); thus, this model did not have the limitations of microscopic models, such as heat and mass transfer coefficients or population of particles, which may differ for each experiment. The experiments were carried out at temperatures 273, 274, 275.5, and 276 K for methane and 272, 273, 274, and 275 K for ethane with different initial pressures. The parameters of the model, Ar and tK , were obtained for each experiment, and the results show that the parameter of for each gas has a constant value. Subsequently, parameters of the model were used to predict experimental data and the variation of pressures with time. The results indicated that this model can well predict constant volume experimental data for crystals I hydrate former.

  12. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPLINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2004-05-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. The third six-month technical report contains a summary of the progress made towards finalizing the design and assembling the airborne, remote methane and ethane sensor. The vendor has been chosen and is on contract to develop the light source with the appropriate linewidth and spectral shape to best utilize the Ophir gas correlation software. Ophir has expanded upon the target reflectance testing begun in the previous performance period by replacing the experimental receiving optics with the proposed airborne large aperture telescope, which is theoretically capable of capturing many times more signal return. The data gathered from these tests has shown the importance of optimizing the fiber optic receiving fiber to the receiving optic and has helped Ophir to optimize the design of the gas cells and narrowband optical filters. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  13. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2003-11-12

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This second six-month technical report summarizes the progress made towards defining, designing, and developing the hardware and software segments of the airborne, optical remote methane and ethane sensor. The most challenging task to date has been to identify a vendor capable of designing and developing a light source with the appropriate output wavelength and power. This report will document the work that has been done to identify design requirements, and potential vendors for the light source. Significant progress has also been made in characterizing the amount of light return available from a remote target at various distances from the light source. A great deal of time has been spent conducting laboratory and long-optical path target reflectance measurements. This is important since it helps to establish the overall optical output requirements for the sensor. It also reduces the relative uncertainty and risk associated with developing a custom light source. The data gathered from the optical path testing has been translated to the airborne transceiver design in such areas as: fiber coupling, optical detector selection, gas filters, and software analysis. Ophir will next, summarize the design progress of the transceiver hardware and software development. Finally, Ophir will discuss remaining project issues that may impact the success of the project.

  14. Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.

    PubMed

    Ruscic, Branko

    2015-07-16

    Active Thermochemical Tables (ATcT) thermochemistry for the sequential bond dissociations of methane, ethane, and methanol systems were obtained by analyzing and solving a very large thermochemical network (TN). Values for all possible C-H, C-C, C-O, and O-H bond dissociation enthalpies at 298.15 K (BDE298) and bond dissociation energies at 0 K (D0) are presented. The corresponding ATcT standard gas-phase enthalpies of formation of the resulting CHn, n = 4-0 species (methane, methyl, methylene, methylidyne, and carbon atom), C2Hn, n = 6-0 species (ethane, ethyl, ethylene, ethylidene, vinyl, ethylidyne, acetylene, vinylidene, ethynyl, and ethynylene), and COHn, n = 4-0 species (methanol, hydroxymethyl, methoxy, formaldehyde, hydroxymethylene, formyl, isoformyl, and carbon monoxide) are also presented. The ATcT thermochemistry of carbon dioxide, water, hydroxyl, and carbon, oxygen, and hydrogen atoms is also included, together with the sequential BDEs of CO2 and H2O. The provenances of the ATcT enthalpies of formation, which are quite distributed and involve a large number of relevant determinations, are analyzed by variance decomposition and discussed in terms of principal contributions. The underlying reasons for periodic appearances of remarkably low and/or unusually high BDEs, alternating along the dissociation sequences, are analyzed and quantitatively rationalized. The present ATcT results are the most accurate thermochemical values currently available for these species. PMID:25760799

  15. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures

    NASA Astrophysics Data System (ADS)

    Alrefae, Majed; Es-sebbar, Et-touhami; Farooq, Aamir

    2014-09-01

    Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene.

  16. AIRBORNE, OPTICAL REMOTE SENSING OF METHANE AND ETHANE FOR NATURAL GAS PIPELINE LEAK DETECTION

    SciTech Connect

    Jerry Myers

    2003-05-13

    Ophir Corporation was awarded a contract by the U. S. Department of Energy, National Energy Technology Laboratory under the Project Title ''Airborne, Optical Remote Sensing of Methane and Ethane for Natural Gas Pipeline Leak Detection'' on October 14, 2002. This six-month technical report summarizes the progress for each of the proposed tasks, discusses project concerns, and outlines near-term goals. Ophir has completed a data survey of two major natural gas pipeline companies on the design requirements for an airborne, optical remote sensor. The results of this survey are disclosed in this report. A substantial amount of time was spent on modeling the expected optical signal at the receiver at different absorption wavelengths, and determining the impact of noise sources such as solar background, signal shot noise, and electronic noise on methane and ethane gas detection. Based upon the signal to noise modeling and industry input, Ophir finalized the design requirements for the airborne sensor, and released the critical sensor light source design requirements to qualified vendors. Responses from the vendors indicated that the light source was not commercially available, and will require a research and development effort to produce. Three vendors have responded positively with proposed design solutions. Ophir has decided to conduct short path optical laboratory experiments to verify the existence of methane and absorption at the specified wavelength, prior to proceeding with the light source selection. Techniques to eliminate common mode noise were also evaluated during the laboratory tests. Finally, Ophir has included a summary of the potential concerns for project success and has established future goals.

  17. Adsorption equilibrium of binary methane/ethane mixtures in BPL activated carbon: isotherms and calorimetric heats of adsorption.

    PubMed

    He, Yufeng; Yun, Jeong-Ho; Seaton, Nigel A

    2004-08-01

    The adsorption of pure methane and ethane in BPL activated carbon has been measured at temperatures between 264 and 373 K and at pressures up to 3.3 MPa with a bench-scale high-pressure open-flow apparatus. The same apparatus was used to measure the adsorption of binary methane/ethane mixtures in BPL at 301.4 K and at pressures up to 2.6 MPa. Thermodynamic consistency tests demonstrate that the data are thermodynamically consistent. In contrast to two sets of data previously published, we found that the adsorption of binary methane/ethane in BPL behaves ideally (in the sense of obeying ideal adsorbed solution theory, IAST) throughout the pressure and gas-phase composition range studied. A Tian-Calvet type microcalorimeter was used to measure low-pressure isotherms, the isosteric heats of adsorption of pure methane and ethane in BPL activated carbon, and the individual heats of adsorption in binary mixtures, at 297 K and at pressures up to 100 kPa. The mixture heats of adsorption were consistent with IAST. PMID:15274571

  18. Hydrate decomposition conditions in the system hydrogen sulfide-methane, and propane

    SciTech Connect

    Schroeter, J.P.; Kobayashi, R.; Hildebrand, H.A.

    1982-12-01

    Experimental hydrate decomposition conditions are presented for 3 different H/sub 2/S-containing mixtures in the temperature region 0 C to 30 C. The 3 mixtures investigated were 4% H/sub 2/S, 7% propane, 89% methane; 12% H/sub 2/S, 7% propane, 81% methane; and 30% H/sub 2/S, 7% propane, 63% methane. Hydrate decomposition pressures and temperatures were obtained for each of these mixtures by observation of the pressure-temperature hysteresis curves associated with formation and decomposition of the hydrate crystals. A repeatable decomposition point was observed in every case, and this was identified as the hydrate point. The results for the 4% H/sub 2/S mixture were used to adjust parameters in a computer model based on the Parrish and Prausnitz statistical thermodynamics method, coupled with the BWRS equation of state. After the parameter adjustment, the computer model predicted the behavior of the 12% H/sub 2/S and the 30% H/sub 2/S mixtures to within 2 C. Experimental data for the 3 mixtures are given.

  19. METABOLISM OF CHLORINATED METHANES, ETHANES, AND ETHYLENES BY A MIXED BACTERIAL CUTLURE GROWING ON METHANE

    EPA Science Inventory

    Soil was taken from the top 10 cm of a soil column that removed halogenated aliphatic hydrocarbons in the presence of natural gas. This soil was used as an enrichment inoculum to determine that the removals seen in the soil column were in fact of a microbiological nature. Methane...

  20. Contribution of oil and natural gas production to renewed increase of atmospheric methane (2007-2014): top-down estimate from ethane and methane column observations

    NASA Astrophysics Data System (ADS)

    Hausmann, P.; Sussmann, R.; Smale, D.

    2015-12-01

    Harmonized time series of column-averaged mole fractions of atmospheric methane and ethane over the period 1999-2014 are derived from solar Fourier transform infrared (FTIR) measurements at the Zugspitze summit (47° N, 2964 m a.s.l.) and at Lauder (45° S, 370 m a.s.l.). Long-term trend analysis reveals a consistent renewed methane increase since 2007 of 6.2 [5.6, 6.9] ppb yr-1 at the Zugspitze and 6.0 [5.3, 6.7] ppb yr-1 at Lauder (95 % confidence intervals). Several recent studies provide pieces of evidence that the renewed methane increase is most likely driven by two main factors: (i) increased methane emissions from tropical wetlands, followed by (ii) increased thermogenic methane emissions due to growing oil and natural gas production. Here, we quantify the magnitude of the second class of sources, using long-term measurements of atmospheric ethane as tracer for thermogenic methane emissions. In 2007, after years of weak decline, the Zugspitze ethane time series shows the sudden onset of a significant positive trend (2.3 [1.8, 2.8] × 10-2 ppb yr-1 for 2007-2014), while a negative trend persists at Lauder after 2007 (-0.4 [-0.6, -0.1] × 10-2 ppb yr-1). Zugspitze methane and ethane time series are significantly correlated for the period 2007-2014 and can be assigned to thermogenic methane emissions with an ethane-to-methane ratio of 10-21 %. We present optimized emission scenarios for 2007-2014 derived from an atmospheric two-box model. From our trend observations we infer a total ethane emission increase over the period 2007-2014 from oil and natural gas sources of 1-11 Tg yr-1 along with an overall methane emission increase of 24-45 Tg yr-1. Based on these results, the oil and natural gas emission contribution C to the renewed methane increase is deduced using three different emission scenarios with dedicated ranges of methane-to-ethane ratios (MER). Reference scenario 1 assumes an oil and gas emission combination with MER = 3.3-7.6, which results in a

  1. Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007-2014): top-down estimate from ethane and methane column observations

    NASA Astrophysics Data System (ADS)

    Hausmann, Petra; Sussmann, Ralf; Smale, Dan

    2016-03-01

    Harmonized time series of column-averaged mole fractions of atmospheric methane and ethane over the period 1999-2014 are derived from solar Fourier transform infrared (FTIR) measurements at the Zugspitze summit (47° N, 11° E; 2964 m a.s.l.) and at Lauder (45° S, 170° E; 370 m a.s.l.). Long-term trend analysis reveals a consistent renewed methane increase since 2007 of 6.2 [5.6, 6.9] ppb yr-1 (parts-per-billion per year) at the Zugspitze and 6.0 [5.3, 6.7] ppb yr-1 at Lauder (95 % confidence intervals). Several recent studies provide pieces of evidence that the renewed methane increase is most likely driven by two main factors: (i) increased methane emissions from tropical wetlands, followed by (ii) increased thermogenic methane emissions due to growing oil and natural gas production. Here, we quantify the magnitude of the second class of sources, using long-term measurements of atmospheric ethane as a tracer for thermogenic methane emissions. In 2007, after years of weak decline, the Zugspitze ethane time series shows the sudden onset of a significant positive trend (2.3 [1.8, 2.8] × 10-2 ppb yr-1 for 2007-2014), while a negative trend persists at Lauder after 2007 (-0.4 [-0.6, -0.1] × 10-2 ppb yr-1). Zugspitze methane and ethane time series are significantly correlated for the period 2007-2014 and can be assigned to thermogenic methane emissions with an ethane-to-methane ratio (EMR) of 12-19 %. We present optimized emission scenarios for 2007-2014 derived from an atmospheric two-box model. From our trend observations we infer a total ethane emission increase over the period 2007-2014 from oil and natural gas sources of 1-11 Tg yr-1 along with an overall methane emission increase of 24-45 Tg yr-1. Based on these results, the oil and natural gas emission contribution (C) to the renewed methane increase is deduced using three different emission scenarios with dedicated EMR ranges. Reference scenario 1 assumes an oil and gas emission combination with EMR = 7

  2. Remote sensing of propane and methane by means of a differential absorption lidar by topographic reflection

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Geiger, Allen R.

    1996-04-01

    The development of a differential absorption lidar (DIAL) system in the mid-IR region for the detection and monitoring of light hydrocarbons is presented. Two lithium niobate optical parametric oscillators provided the signal and reference wavelengths. With the aid of a retroreflector, the system detected 0.63 ppm of propane and 0.05 ppm of methane in the atmosphere at a greater than 1 mile range in the controlled release tests. Subsequently, the system mapped a petroleum deposit in eastern New Mexico.

  3. Separating methane emissions from biogenic sources and natural gas by vertical column enhancements of ammonia, ethane, and methane in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Chiu, R.; Volkamer, R. M.; Blumenstock, T.; Hase, F.; Hannigan, J. W.; Kille, N.; Frey, M.; Kumar Sha, M.; Orphal, J.

    2015-12-01

    Methane sources in the Colorado Front Range include biogenic sources from cattle feedlots and natural gas operations. Although numerous studies have measured methane emissions, there remains significant uncertainty regarding the relative contributions of these various methane emission sources. Here we present data from a March 2015 field campaign that deployed two Bruker EM27 Sun Fourier Transform Spectrometers (FTS) and the University of Colorado Solar Occultation Flux (CU-SOF) FTS in Eaton, Colorado; the former were used to measure enhancements in the methane vertical column densities (VCD), while the latter was used to measure ethane and ammonia VCDs. A third EM27 FTS was deployed to a background site in Westminster, Colorado which was far removed from cattle and petroleum operations. Northerly winds make possible the determination of methane VCD column enhancement from Westminster to Eaton. All instruments were compared during several background days at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado. This presentation explores the potential of methane source attribution using ammonia as a tracer for feedlot emissions and ethane as a tracer for petroleum emissions.

  4. Methane Fingerprinting: Isotopic Methane and Ethane-to-Methane Ratio Analysis Using a Cavity Ring-Down Spectrometer

    NASA Astrophysics Data System (ADS)

    Saad, Nabil; Fleck, Derek; Hoffnagle, John

    2016-04-01

    Emissions of Natural gas, and methane (CH4) specifically, have come under increased scrutiny by virtue of methane's 28-36x greenhouse warming potential compared to carbon dioxide (CO2) while accounting for 10% of the total greenhouse gas emissions in the US. Large uncontrolled leaks, such as the recent Aliso Canyon leak, originating from uncapped wells, coal mines and storage facilities have increased the total global contribution of methane missions even further. Determining the specific fingerprint of methane sources, by quantifying δ13C values and C2:C1 ratios, provides the means to understand methane producing processes and allows for sources of methane to be mapped and classified through these processes; i.e. biogenic vs. thermogenic, wet vs dry. In this study we present a fully developed Cavity Ring-Down Spectrometer (CRDS) that precisely measures 12CH4 concentration and its 13CH4 isotope concentration, yielding δ13C measurements, C2H6 concentration, along with CO2 and H2O. This provides real-time continuous measurements without an upfront separation requirement or multiple analyses to derive the origin of the gas samples. The highly sensitive analyzer allows for measurements of scarce molecules down to sub-ppb 1-σ precision in 5 minutes of measurement: with CH4 <0.1ppb, δ13C <1‰ C2H6 <1ppb and CO2 <1ppm. To complement this work, we provide the analysis of different methane sources providing a 2-dimensional mapping of methane sources as functions of δ13C and C2:C1 ratios, which can be thought of as a modified Bernard Plot. This dual ratio mapping can be used to discriminate between naturally occurring biogenic methane sources, naturally occurring enriched thermogenic sources, and natural gas distribution sources. This also shows future promise in aiding gas and oil exploration, in distinguishing oil vs coal gases, as well as a valuable tool in the development of methane sequestration.

  5. A mechanistic change results in 100 times faster CH functionalization for ethane versus methane by a homogeneous Pt catalyst.

    PubMed

    Konnick, Michael M; Bischof, Steven M; Yousufuddin, Muhammed; Hashiguchi, Brian G; Ess, Daniel H; Periana, Roy A

    2014-07-16

    The selective, oxidative functionalization of ethane, a significant component of shale gas, to products such as ethylene or ethanol at low temperatures and pressures remains a significant challenge. Herein we report that ethane is efficiently and selectively functionalized to the ethanol ester of H2SO4, ethyl bisulfate (EtOSO3H) as the initial product, with the Pt(II) "Periana-Catalytica" catalyst in 98% sulfuric acid. A subsequent organic reaction selectively generates isethionic acid bisulfate ester (HO3S-CH2-CH2-OSO3H, ITA). In contrast to the modest 3-5 times faster rate typically observed in electrophilic CH activation of higher alkanes, ethane CH functionalization was found to be ~100 times faster than that of methane. Experiment and quantum-mechanical calculations reveal that this unexpectedly large increase in rate is the result of a fundamentally different catalytic cycle in which ethane CH activation (and not platinum oxidation as for methane) is now turnover limiting. Facile Pt(II)-Et functionalization was determined to occur via a low energy β-hydride elimination pathway (which is not available for methane) to generate ethylene and a Pt(II)-hydride, which is then rapidly oxidized by H2SO4 to regenerate Pt(II)-X2. A rapid, non-Pt-catalyzed reaction of formed ethylene with the hot, concentrated H2SO4 solvent cleanly generate EtOSO3H as the initial product, which further reacts with the H2SO4 solvent to generate ITA. PMID:24925375

  6. Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels

    SciTech Connect

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-10-05

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (Ω pilot ∼ 0.2-0.6 and Ω overall ∼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant Ω pilot (> 0.5), increasing Ω overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing Ω overall (at constant Ω pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  7. Estimates of Methane and Ethane Emissions from the Barnett Shale Using Atmospheric Measurements

    NASA Astrophysics Data System (ADS)

    Karion, A.; Sweeney, C.; Kort, E. A.; Shepson, P. B.; Conley, S. A.; Lauvaux, T.; Davis, K. J.; Deng, A.; Lyon, D. R.; Smith, M. L.

    2015-12-01

    Recent development of horizontal drilling technology and advances in hydraulic fracturing techniques by the oil and gas industry have dramatically increased onshore U.S. natural gas and oil production in the last several years. The primary component of natural gas is methane (CH4), a powerful greenhouse gas; therefore, natural gas leakage into the atmosphere affects its climate impact. We present estimates of regional methane (CH4) and ethane (C2H6) emissions from oil and natural gas operations in the Barnett Shale, Texas, made in March and October 2013 as part of the Environmental Defense Fund's Barnett Coordinated Campaign. The Barnett is one of the largest production basins in the United States, with 8% of total U.S. natural gas production, and thus, our results represent a crucial step toward determining the greenhouse gas footprint of U.S. onshore natural gas production. Using a mass balance approach on eight different flight days the total CH4 emissions for the region are estimated to be 76 ± 13x 103 kg/hr, or 0.66 ± 0.11 Tg CH4 /yr; (95% CI). Repeated mass balance flights in the same basin on eight different days and two seasons demonstrate the consistency of the mass balance approach. On the basis of airborne C2H6 and CH4 measurements, we find 71-85% of the observed CH4 emissions quantified in the Barnett Shale are derived from fossil sources. The average C2H6 flux was 6.6 ± 0.2 x 103 kg/hr and consistent across six days in spring and fall of 2013. This result is the first demonstration of this approach for C2H6. We estimate that 60±11x103 kg CH4/hr (95% CI) are emitted by natural gas and oil operations, including production, processing, and distribution in the urban areas of Dallas and Fort Worth. This estimate is significantly higher than emissions reported by the EDGAR inventory or by industry to EPA's Greenhouse Gas Reporting Program.

  8. Photoabsorption cross sections of methane and ethane, 1380-1600 A, at T equals 295 K and T equals 200 K. [in Jupiter atmosphere

    NASA Technical Reports Server (NTRS)

    Mount, G. H.; Moos, H. W.

    1978-01-01

    Photoabsorption cross sections of methane and ethane have been determined in the wavelength range from 1380 to 1600 A at room (295 K) and dry-ice (200 K) temperatures. It is found that the room-temperature ethane data are in excellent agreement with the older measurements of Okabe and Becker (1963) rather than with more recent determinations and that a small systematic blueshift occurs at the foot of the molecular absorption edges of both gases as the gases are cooled from room temperature to 200 K, a value close to the actual temperature of the Jovian atmosphere. It is concluded that methane photoabsorption will dominate until its cross section is about 0.01 that of ethane, which occurs at about 1440 A, and that ethane should be the dominant photoabsorber in the Jovian atmosphere in the region from above 1440 A to not farther than 1575 A.

  9. Pathways and kinetics of methane and ethane C-H bond cleavage on PdO(101).

    PubMed

    Antony, Abbin; Asthagiri, Aravind; Weaver, Jason F

    2013-09-14

    We used conventional density functional theory (DFT) and dispersion-corrected DFT (DFT-D3) calculations to investigate C-H bond activation pathways for methane and ethane σ-complexes adsorbed on the PdO(101) surface. The DFT-D3 calculations predict lower and more physically realistic values of the apparent C-H bond cleavage barriers, which are defined relative to the gas-phase energy level, while giving nearly the same energy differences between stationary states as predicted by conventional DFT for a given reaction pathway. For the stable CH4 η(2) complex on PdO(101), DFT-D3 predicts that the C-H bond cleavage barriers are 55.2 and 16.1 kJ∕mol relative to the initial molecularly adsorbed and gaseous states, respectively. We also predict that dehydrogenation of the resulting CH3 groups and conversion to CH3O species are significantly more energetically demanding than the initial C-H bond activation of CH4 on PdO(101). Using DFT-D3, we find that an η(2) and an η(1) ethane complex can undergo C-H bond cleavage on PdO(101) with intrinsic energy barriers that are similar to that of the methane complex, but with apparent barriers that are close to zero. We also investigated the dissociation kinetics of methane and ethane on PdO(101) using microkinetic models, with parameters derived from the DFT-D3 relaxed structures. We find that a so-called 3N - 2 model, in which two frustrated adsorbate motions are treated as free motions, predicts desorption pre-factors and alkane dissociation probabilities that agree well with estimates obtained from the literature. The microkinetic simulations demonstrate the importance of accurately describing entropic contributions in kinetic simulations of alkane dissociative chemisorption. PMID:24050357

  10. Pathways and kinetics of methane and ethane C-H bond cleavage on PdO(101)

    NASA Astrophysics Data System (ADS)

    Antony, Abbin; Asthagiri, Aravind; Weaver, Jason F.

    2013-09-01

    We used conventional density functional theory (DFT) and dispersion-corrected DFT (DFT-D3) calculations to investigate C-H bond activation pathways for methane and ethane σ-complexes adsorbed on the PdO(101) surface. The DFT-D3 calculations predict lower and more physically realistic values of the apparent C-H bond cleavage barriers, which are defined relative to the gas-phase energy level, while giving nearly the same energy differences between stationary states as predicted by conventional DFT for a given reaction pathway. For the stable CH4 η2 complex on PdO(101), DFT-D3 predicts that the C-H bond cleavage barriers are 55.2 and 16.1 kJ/mol relative to the initial molecularly adsorbed and gaseous states, respectively. We also predict that dehydrogenation of the resulting CH3 groups and conversion to CH3O species are significantly more energetically demanding than the initial C-H bond activation of CH4 on PdO(101). Using DFT-D3, we find that an η2 and an η1 ethane complex can undergo C-H bond cleavage on PdO(101) with intrinsic energy barriers that are similar to that of the methane complex, but with apparent barriers that are close to zero. We also investigated the dissociation kinetics of methane and ethane on PdO(101) using microkinetic models, with parameters derived from the DFT-D3 relaxed structures. We find that a so-called 3N - 2 model, in which two frustrated adsorbate motions are treated as free motions, predicts desorption pre-factors and alkane dissociation probabilities that agree well with estimates obtained from the literature. The microkinetic simulations demonstrate the importance of accurately describing entropic contributions in kinetic simulations of alkane dissociative chemisorption.

  11. Comparison of Propane and Methane Performance and Emissions in a Turbocharged Direct Injection Dual Fuel Engine

    SciTech Connect

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-01-01

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  12. Unsaturated hydrocarbons in the lakes of Titan: Benzene solubility in liquid ethane and methane at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Diez-y-Riega, Helena; Camejo, David; Rodriguez, Abraham E.; Manzanares, Carlos E.

    2014-09-01

    The solubility of benzene in liquid ethane has been measured using ultraviolet absorption. Spectra were recorded in the 200-1000 nm range. The secondary absorption band (1B2u) of benzene in the region 230-260 nm was recorded to determine the solubility of the sample. Ethane does not absorb in the benzene UV region but absorption bands are observed at 908 nm, 745 nm, and 634 nm corresponding to C-H vibrational overtone transitions of liquid ethane with Δυ=4, 5 and 6, respectively. Spectra were obtained at several concentrations and temperatures. The solubilities are: (26±6) ppm at 94 K, (39±6) ppm at 102 K, (48±8) ppm at 111 K, (72±10) ppm at 132 K, and (170±38) ppm at 162 K. With the solubility obtained at each temperature the enthalpy and entropy of solution were calculated from the experimental data. The spectra of solutions of benzene in liquid methane have been obtained to determine the solubility at 97 K. Thermodynamic parameters and solubility data from experimental measurements are important for more realistic simulations of the chemical composition of the lakes of Titan.

  13. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  14. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments

    USGS Publications Warehouse

    Oremland, R.S.; Whiticar, Michael J.; Strohmaier, F.E.; Kiene, R.P.

    1988-01-01

    Trace levels of ethane were produced biologically in anoxic sediment slurries from five chemically different aquatic environments. Gases from these locations displayed biogenic characteristics, having 12C-enriched values of ??13CH4 (-62 to -86%.), ??13C2H6 (-35 to -55%.) and high ratios (720 to 140,000) of CH4 [C2H6 + C3H8]. Endogenous production of ethane by slurries was inhibited by autoclaving or by addition of the inhibitor of methanogenic bacteria, 2-bromoethanesulfonic acid (BES). Ethane formation was stimulated markedly by ethanethiol (ESH), and, to a lesser extent, by diethylsulfide (DES). Formation of methane and ethane in ESH- or DES-amended slurries was blocked by BES. Experiments showed that ethionine (or an analogous compound) could be a precursor of ESH. Ethylamine or ethanol additions to slurries caused only a minor stimulation of ethane formation. Similarly, propanethiol additions resulted in only a minor enhancement of propane formation. Cell suspensions of a methyltrophic methanogen produced traces of ethane when incubated in the presence of DES, although the organism did not grow on this compound. These results indicate that methanogenic bacteria produce ethane from the traces of ethylated sulfur compounds present in recent sediments. Preliminary estimates of stable carbon isotope fractionation associated with sediment methane formation from dimethylsulfide was about 40%., while ethane formation from DES and ESH was only 4. 6 and 6.5%., respectively. ?? 1988.

  15. Mobile Measurement of Methane and Ethane for the Detection and Attribution of Natural Gas Pipeline Leaks Using Off-Axis Integrated Output Spectroscopy

    NASA Astrophysics Data System (ADS)

    Leen, J. B.; Spillane, S.; Gardner, A.; Hansen, P. C.; Gupta, M.; Baer, D. S.

    2015-12-01

    Natural gas leaks pose a risk to public safety both because of potential explosions as well as from the greenhouse gas potential of fugitive methane. The rapid and cost effective detection of leaks in natural gas distribution is critical to providing a system that is safe for the public and the environment. Detection of methane from a mobile platform (vehicles, aircraft, etc.) is an accepted method of identifying leaks. A robust approach to differentiating pipeline gas (thermogenic) from other biogenic sources is the detection of ethane along with methane. Ethane is present in nearly all thermogenic gas but not in biogenic sources and its presence can be used to positively identify a gas sample. We present a mobile system for the simultaneous measurement of methane and ethane that is capable of detecting pipeline leaks and differentiating pipeline gas from other biogenic sources such as landfills, swamps, sewers, and enteric fermentation. The mobile system consists of a high precision GPS, sonic anemometer, and methane/ethane analyzer based on off-axis integrated cavity output spectroscopy (OA-ICOS). In order to minimize the system cost and facilitate the wide use of mobile leak detection, the analyzer operates in the near-infrared portion of the spectrum where lasers and optics are significantly less costly than in the mid-infrared. The analyzer is capable of detecting methane with a precision of <2 ppb (1σ in 1 sec) and detecting ethane with a precision of <30 ppb (1σ in 1 sec). Additionally, measurement rates of 5 Hz allow for detection of leaks at speeds up to 50 mph. The sonic anemometer, GPS and analyzer inlet are mounted to a generic roof rack for attachment to available fleet vehicles. The system can detect leaks having a downwind concentration of as little as 10 ppb of methane above ambient, while leaks 500 ppb above ambient can be identified as thermogenic with greater than 99% certainty (for gas with 6% ethane). Finally, analysis of wind data provides

  16. MICROBIAL REMOVAL OF HALOGENATED METHANES, ETHANES, AND ETHYLENES IN AN AEROBIC SOIL EXPOSED TO METHANE. (JOURNAL VERSION)

    EPA Science Inventory

    Contamination of ground water with halogenated aliphatic hydrocarbons threatens the source of drinking water. To study microbial processes that may enhance the removal of these compounds, Lincoln fine sand was exposed to an atmosphere containing methane (4%) to enrich microorgani...

  17. Radiolytic oxidation of propane. [Gamma radiation

    SciTech Connect

    Gupta, A.K.

    1983-01-01

    The Co-60 ..gamma.. radiolysis of gaseous propane was studied at 100 torr pressure and 25/sup 0/C, both pure and with 10% added oxygen. In the unscavenged system the major products and their G-values were hydrogen, 4.99; methane, 1.30; ethane, 1.95; iso-butane, 0.61; n-butane, 0.25; i-pentane, 0.42; n-pentane, 0.14; and hexanes, 0.89. Minor products were heptanes, 0.082; octanes, 0.067; nonanes, 0.088, and decanes, 0.033. Small yields of ethylene and propylene were also observed. Yields in the presence of 10% added oxygen were hydrogen, 1.87; methane, 0.83; and ethane, 1.22. Higher saturated hydrocarbons were eliminated. The reaction scheme for formation of major products was examined using computer modeling based on 24 reactions in the unscavenged system and 28 reactions in the propane-oxygen system. Yields could be brought into agreement with the data within experimental error in nearly all cases, but in the pure propane system it was necessary to assume that the molecular hydrogen yield was accompanied by the deposition of polymer on the vessel wall.

  18. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  19. TECHNICAL GUIDANCE FOR THE NATURAL ATTENUATION INDICATORS: METHANE, ETHANE, AND ETHENE

    EPA Science Inventory

    To monitor natural attenuation, the following procedure is used to analyze ground water samples. An inert gas is injected into the VOA or serum vial containing the water sample to create headspace. After equilibrium, the headspace is analyzed for the target gases, methane, eth...

  20. Room temperature dehydrogenation of ethane, propane, linear alkanes C4-C8, and some cyclic alkanes by titanium-carbon multiple bonds.

    PubMed

    Crestani, Marco G; Hickey, Anne K; Gao, Xinfeng; Pinter, Balazs; Cavaliere, Vincent N; Ito, Jun-Ichi; Chen, Chun-Hsing; Mindiola, Daniel J

    2013-10-01

    The transient titanium neopentylidyne, [(PNP)Ti≡C(t)Bu] (A; PNP(-)≡N[2-P(i)Pr2-4-methylphenyl]2(-)), dehydrogenates ethane to ethylene at room temperature over 24 h, by sequential 1,2-CH bond addition and β-hydrogen abstraction to afford [(PNP)Ti(η(2)-H2C═CH2)(CH2(t)Bu)] (1). Intermediate A can also dehydrogenate propane to propene, albeit not cleanly, as well as linear and volatile alkanes C4-C6 to form isolable α-olefin complexes of the type, [(PNP)Ti(η(2)-H2C═CHR)(CH2(t)Bu)] (R = CH3 (2), CH2CH3 (3), (n)Pr (4), and (n)Bu (5)). Complexes 1-5 can be independently prepared from [(PNP)Ti═CH(t)Bu(OTf)] and the corresponding alkylating reagents, LiCH2CHR (R = H, CH3(unstable), CH2CH3, (n)Pr, and (n)Bu). Olefin complexes 1 and 3-5 have all been characterized by a diverse array of multinuclear NMR spectroscopic experiments including (1)H-(31)P HOESY, and in the case of the α-olefin adducts 2-5, formation of mixtures of two diastereomers (each with their corresponding pair of enantiomers) has been unequivocally established. The latter has been spectroscopically elucidated by NMR via C-H coupled and decoupled (1)H-(13)C multiplicity edited gHSQC, (1)H-(31)P HMBC, and dqfCOSY experiments. Heavier linear alkanes (C7 and C8) are also dehydrogenated by A to form [(PNP)Ti(η(2)-H2C═CH(n)Pentyl)(CH2(t)Bu)] (6) and [(PNP)Ti(η(2)-H2C═CH(n)Hexyl)(CH2(t)Bu)] (7), respectively, but these species are unstable but can exchange with ethylene (1 atm) to form 1 and the free α-olefin. Complex 1 exchanges with D2C═CD2 with concomitant release of H2C═CH2. In addition, deuterium incorporation is observed in the neopentyl ligand as a result of this process. Cyclohexane and methylcyclohexane can be also dehydrogenated by transient A, and in the case of cyclohexane, ethylene (1 atm) can trap the [(PNP)Ti(CH2(t)Bu)] fragment to form 1. Dehydrogenation of the alkane is not rate-determining since pentane and pentane-d12 can be dehydrogenated to 4 and 4-d12 with comparable

  1. Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide

    NASA Astrophysics Data System (ADS)

    Ito, Tomoyasu; Lunsford, Jack H.

    1985-04-01

    The partial oxidation of methane into more useful chemicals such as methanol, ethylene and benzene has been investigated extensively, although yields for these products have been poor1-4. Moreover, in several of these processes the required oxidant is N2O rather than O2. Recent work5 in our laboratory has demonstrated that lithium-doped magnesium oxide (Li/MgO) in the presence of O2 has high activity for abstracting H from CH4 to form .CH3 radicals. This suggests that C2H6 and C2H4 (C2 compounds) are produced by a coupling between two gaseous .CH3 radicals formed on this catalyst. We report here our success in converting CH4 to C2 compounds in high yields in conventional catalytic conditions.

  2. Phase behavior and 13C NMR spectroscopic analysis of the mixed methane + ethane + propane hydrates in mesoporous silica gels.

    PubMed

    Lee, Seungmin; Cha, Inuk; Seo, Yongwon

    2010-11-25

    In this study, the phase behavior and quantitative determination of hydrate composition and cage occupancy for the mixed CH(4) + C(2)H(6) + C(3)H(8) hydrates were closely investigated through the experimental measurement of three-phase hydrate (H)-water-rich liquid (L(W))-vapor (V) equilibria and (13)C NMR spectra. To examine the effect of pore size and salinity, we measured hydrate phase equilibria for the quaternary CH(4) (90%) + C(2)H(6) (7%) + C(3)H(8) (3%) + water mixtures in silica gel pores of nominal diameters of 6.0, 15.0, and 30.0 nm and for the quinary CH(4) (90%) + C(2)H(6) (7%) + C(3)H(8) (3%) + NaCl + water mixtures of two different NaCl concentrations (3 and 10 wt %) in silica gel pores of a nominal 30.0 nm diameter. The value of hydrate-water interfacial tension for the CH(4) (90%) + C(2)H(6) (7%) + C(3)H(8) (3%) hydrate was found to be 47 ± 4 mJ/m(2) from the relation of the dissociation temperature depression with the pore size of silica gels at a given pressure. At a specified temperature, three-phase H-L(W)-V equilibrium curves of pore hydrates were shifted to higher pressure regions depending on pore sizes and NaCl concentrations. From the cage-dependent (13)C NMR chemical shifts of enclathrated guest molecules, the mixed CH(4) (90%) + C(2)H(6) (7%) + C(3)H(8) (3%) gas hydrate was confirmed to be structure II. The cage occupancies of each guest molecule and the hydration number of the mixed gas hydrates were also estimated from the (13)C NMR spectra. PMID:20964277

  3. Spectroscopy of the tilde A state of NO-alkane complexes (alkane = methane, ethane, propane, and n-butane)

    NASA Astrophysics Data System (ADS)

    Tamé-Reyes, Victor M.; Gardner, Adrian M.; Harris, Joe P.; McDaniel, Jodie; Wright, Timothy G.

    2012-12-01

    We have recorded (1+1) resonance-enhanced multiphoton ionization spectra of complexes formed between NO and the alkanes: CH4, C2H6, C3H8, and n-C4H10. The spectra correspond to the tilde A ← tilde X transition, which is a NO-localized 3s ← 2pπ* transition. In line with previous work, the spectrum for NO-CH4 has well-defined structure, but this is only partially resolved for the other complexes. The spectra recorded in the NO+-alkane mass channels all show a slowly rising onset, followed by a sharp offset, which is associated with dissociation of NO-alkane, from which binding energies in the tilde X and tilde A states are deduced. Beyond this sharp offset, there is a further rise in signal, which is attributed to fragmentation of higher complexes, NO-(alkane)n. Analysis of these features allows binding energies for (NO-alkane) ... alkane to be estimated, and these suggest that in the NO-(alkane)2 complexes, the second alkane molecule is bound to the first, rather than to NO. Calculated structures for the 1:1 complexes are reported, as well as binding energies.

  4. Evaluating ethane and methane emissions associated with the development of oil and natural gas extraction in North America

    NASA Astrophysics Data System (ADS)

    Franco, B.; Mahieu, E.; Emmons, L. K.; Tzompa-Sosa, Z. A.; Fischer, E. V.; Sudo, K.; Bovy, B.; Conway, S.; Griffin, D.; Hannigan, J. W.; Strong, K.; Walker, K. A.

    2016-04-01

    Sharp rises in the atmospheric abundance of ethane (C2H6) have been detected from 2009 onwards in the Northern Hemisphere as a result of the unprecedented growth in the exploitation of shale gas and tight oil reservoirs in North America. Using time series of C2H6 total columns derived from ground-based Fourier transform infrared (FTIR) observations made at five selected Network for the Detection of Atmospheric Composition Change sites, we characterize the recent C2H6 evolution and determine growth rates of ∼5% yr‑1 at mid-latitudes and of ∼3% yr‑1 at remote sites. Results from CAM-chem simulations with the Hemispheric Transport of Air Pollutants, Phase II bottom-up inventory for anthropogenic emissions are found to greatly underestimate the current C2H6 abundances. Doubling global emissions is required to reconcile the simulations and the observations prior to 2009. We further estimate that North American anthropogenic C2H6 emissions have increased from 1.6 Tg yr‑1 in 2008 to 2.8 Tg yr‑1 in 2014, i.e. by 75% over these six years. We also completed a second simulation with new top-down emissions of C2H6 from North American oil and gas activities, biofuel consumption and biomass burning, inferred from space-borne observations of methane (CH4) from Greenhouse Gases Observing SATellite. In this simulation, GEOS-Chem is able to reproduce FTIR measurements at the mid-latitudinal sites, underscoring the impact of the North American oil and gas development on the current C2H6 abundance. Finally we estimate that the North American oil and gas emissions of CH4, a major greenhouse gas, grew from 20 to 35 Tg yr‑1 over the period 2008–2014, in association with the recent C2H6 rise.

  5. Microbial Oxidation of Ethane within Seep Sediment at Coal Oil Point, Santa Barbara, CA

    NASA Astrophysics Data System (ADS)

    Mendes, S. D.; Duncombe, R.; Scarlett, R. D.; Shaffer, J.; Lensch, S.; Valentine, D. L.

    2013-12-01

    The hydrocarbon seep field at Coal Oil Point (COP), off the coast of Santa Barbara, California, releases more than 10^10 g of thermogenic natural gas each year. Only a fraction of this methane, ethane, propane, and butane reaches the atmosphere, and is instead consumed by marine microbes in both the sediment and water column. Bacterial respiration of these gases has been observed in aerobic and anaerobic conditions, with the exception of ethane (aerobic only) (Kniemeyer et. al 2007). This work seeks to quantify the rate of ethane oxidation (both aerobic and anaerobic) in marine sediment. A series of experiments, to be conducted using COP seep sediment aboard the R/V Atlantis in October 2013, will test how varying oxygen conditions impact ethane oxidation rate. Oxidation rates will be quantified using sensitive 3H-ethane tracers. Preliminary data from Shane's Seep, located within the COP seep field, indicates that ethane oxidation is restricted to the top 6 cm of sediment. This suggests that oxygen is a limiting factor, but further work is needed to establish if ethane oxidation is restricted to exclusively aerobic environments.

  6. In Silico Design of Highly Selective Mo-V-Te-Nb-O Mixed Metal Oxide Catalysts for Ammoxidation and Oxidative Dehydrogenation of Propane and Ethane.

    PubMed

    Cheng, Mu-Jeng; Goddard, William A

    2015-10-21

    We used density functional theory quantum mechanics with periodic boundary conditions to determine the atomistic mechanism underlying catalytic activation of propane by the M1 phase of Mo-V-Nb-Te-O mixed metal oxides. We find that propane is activated by Te═O through our recently established reduction-coupled oxo activation mechanism. More importantly, we find that the C-H activation activity of Te═O is controlled by the distribution of nearby V atoms, leading to a range of activation barriers from 34 to 23 kcal/mol. On the basis of the new insight into this mechanism, we propose a synthesis strategy that we expect to form a much more selective single-phase Mo-V-Nb-Te-O catalyst. PMID:26423704

  7. Dynamic light scattering in sooting premixed atmospheric-pressure methane-, propane-, ethene-, and propene-oxygen flames

    SciTech Connect

    Lamprecht, A.; Eimer, W.; Kohse-Hoeinghaus, K.

    1999-07-01

    In a systematic investigation under well-defined flame conditions, dynamic light scattering (DLS) was applied to the determination of soot particle radii with the aim of examining the suitability of this technique for accurate soot particle sizing. In particular, flat premixed methane-, propane-, ethene-, and propene-oxygen flames at atmospheric pressure were investigated, and particle sizes were obtained as a function of stoichiometry and height above the burner surface. In combination with absorption measurements, soot volume fraction and particle number density were determined; also, the temperature was measured at each flame condition. In comparison to absorption techniques, attractive features of DLS are its independence of the particle refractive index and its insensitivity to fluorescence interference; also, it offers spatial resolution. In principle, additional information on the particle size distribution as well as on the global shape of the particles may be obtained from DLS experiments. This study is therefore an evaluation of the potential of DLS as a complement to other soot diagnostic techniques.

  8. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    DOE PAGESBeta

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane andmore » at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.« less

  9. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    SciTech Connect

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

  10. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures. [methane and ethane working fluids

    NASA Technical Reports Server (NTRS)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1976-01-01

    A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.

  11. Determination of the carbon kinetic isotope effects on propane hydroxylation mediated by the methane monooxygenases from Methylococcus capsulatus (Bath) by using stable carbon isotopic analysis.

    PubMed

    Huang, Ded-Shih; Wu, Suh-Huey; Wang, Yane-Shih; Yu, Steve S-F; Chan, Sunney I

    2002-08-01

    Authentic propane with known position-specific carbon isotope composition at each carbon atom was subjected to hydroxylation by the particulate and soluble methane monooxygenase (pMMO and sMMO) from Methylococcus capsulatus (Bath), and the corresponding position-specific carbon isotope content was redetermined for the product 2-propanol. Neither the reaction mediated by pMMO nor that with sMMO showed an intermolecular (12)C/(13)C kinetic isotope effect effect on the propane hydroxylation at the secondary carbon; this indicates that there is little structural change at the carbon center attacked during formation of the transition state in the rate-determining step. This finding is in line with the concerted mechanism proposed for pMMO (Bath), and suggested for sMMO (Bath), namely, direct side-on insertion of an active "O" species across the C-H bond, as has been previously reported for singlet carbene insertion. PMID:12203974

  12. How Do Perfluorinated Alkanoic Acids Elicit Cytochrome P450 to Catalyze Methane Hydroxylation? An MD and QM/MM Study

    PubMed Central

    Li, Chunsen; Shaik, Sason

    2013-01-01

    Recent experimental studies show that usage of perfluoro decanoic acid (PFDA), as a dummy substrate, can elicit P450BM3 to perform hydroxylation of small alkanes, such as methane (ref. 17) and propane (ref. 17 and ref. 18). To comprehend the mechanism whereby PFDA operates to potentiate P450BM3 to catalyze the hydroxylation of small alkanes, we used molecular dynamics (MD) and hybrid quantum mechanical / molecular mechanical (QM/MM) calculations. The MD results show that without the PFDA, methane escapes the active site, while the presence of PFDA can potentially induce a productive Cpd I-Methane juxtaposition for rapid oxidation. Nevertheless, when only a single methane molecule is present near the PFDA, it still escapes the pocket within less than a nanosecond. However, when three methane molecules are present in the pocket, they alternate quasi-periodically such that at all times (within 10 ns), a molecule of methane is always present in the proximity of Cpd I in a reactive conformation. Our results further demonstrate that the PFDA does not exert any electrostatic catalysis, whether the PFDA is in the protonated or deprotonated forms. Taken together, we conclude that methane hydroxylation requires, in addition to PFDA, a high partial pressure of methane that will cause a high methane concentration in the active site. Further study of ethane and propane hydroxylations demonstrates that higher alkane concentration is helpful for all the three small alkanes. Thus for the smallest alkane, methane, at least three molecules are necessary whereas for the larger ethane, two molecules are needed to force one ethane to be closer to Cpd I. Finally, for propane a second molecule is helpful but not absolutely necessary; for this molecule the PFDA may well be sufficient to keep propane close to Cpd I for efficient oxidation. We therefore propose that high alkane pressure should assist small alkane hydroxylation by P450 in a manner inversely proportional to the size of the

  13. Measurement of position-specific 13C isotopic composition of propane at the nanomole level

    NASA Astrophysics Data System (ADS)

    Gilbert, Alexis; Yamada, Keita; Suda, Konomi; Ueno, Yuichiro; Yoshida, Naohiro

    2016-03-01

    We have developed a novel method for analyzing intramolecular carbon isotopic distribution of propane as a potential new tracer of its origin. The method is based on on-line pyrolysis of propane followed by analysis of carbon isotope ratios of the pyrolytic products methane, ethylene and ethane. Using propane samples spiked with 13C at the terminal methyl carbon, we characterize the origin of the pyrolytic fragments. We show that the exchange between C-atoms during the pyrolytic process is negligible, and thus that relative intramolecular isotope composition can be calculated. Preliminary data from 3 samples show that site-preference (SP) values, defined as the difference of δ13C values between terminal and sub-terminal C-atom positions of propane, range from -1.8‰ to -12.9‰. In addition, SP value obtained using our method for a thermogenic natural gas sample is consistent with that expected from theoretical models of thermal cracking, suggesting that the isotope fractionation associated with propane pyrolysis is negligible. The method will provide novel insights into the characterization of the origin of propane and will help better understand the biogeochemistry of natural gas deposits.

  14. Detection of abundant ethane and methane, along with carbon monoxide and water, in comet C/1996 B2 Hyakutake: evidence for interstellar origin.

    PubMed

    Mumma, M J; DiSanti, M A; Dello Russo, N; Fomenkova, M; Magee-Sauer, K; Kaminski, C D; Xie, D X

    1996-05-31

    The saturated hydrocarbons ethane (C2H6) and methane (CH4) along with carbon monoxide (CO) and water (H2O) were detected in comet C/1996 B2 Hyakutake with the use of high-resolution infrared spectroscopy at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. The inferred production rates of molecular gases from the icy, cometary nucleus (in molecules per second) are 6.4 X 10(26) for C2H6, 1.2 X 10(27) for CH4, 9.8 X 10(27) for CO, and 1.7 X 10(29) for H2O. An abundance of C2H6 comparable to that of CH4 implies that ices in C/1996 B2 Hyakutake did not originate in a thermochemically equilibrated region of the solar nebula. The abundances are consistent with a kinetically controlled production process, but production of C2H6 by gas-phase ion molecule reactions in the natal cloud core is energetically forbidden. The high C2H6/CH4 ratio is consistent with production of C2H6 in icy grain mantles in the natal cloud, either by photolysis of CH4-rich ice or by hydrogen-addition reactions to acetylene condensed from the gas phase. PMID:8650540

  15. Detection of abundant ethane and methane, along with carbon monoxide and water, in comet C/1996 B2 Hyakutake: evidence for interstellar origin

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.; DiSanti, M. A.; Dello Russo, N.; Fomenkova, M.; Magee-Sauer, K.; Kaminski, C. D.; Xie, D. X.

    1996-01-01

    The saturated hydrocarbons ethane (C2H6) and methane (CH4) along with carbon monoxide (CO) and water (H2O) were detected in comet C/1996 B2 Hyakutake with the use of high-resolution infrared spectroscopy at the NASA Infrared Telescope Facility on Mauna Kea, Hawaii. The inferred production rates of molecular gases from the icy, cometary nucleus (in molecules per second) are 6.4 X 10(26) for C2H6, 1.2 X 10(27) for CH4, 9.8 X 10(27) for CO, and 1.7 X 10(29) for H2O. An abundance of C2H6 comparable to that of CH4 implies that ices in C/1996 B2 Hyakutake did not originate in a thermochemically equilibrated region of the solar nebula. The abundances are consistent with a kinetically controlled production process, but production of C2H6 by gas-phase ion molecule reactions in the natal cloud core is energetically forbidden. The high C2H6/CH4 ratio is consistent with production of C2H6 in icy grain mantles in the natal cloud, either by photolysis of CH4-rich ice or by hydrogen-addition reactions to acetylene condensed from the gas phase.

  16. Diffusion of methane and other alkanes in metal-organic frameworks for natural gas storage

    SciTech Connect

    Borah, B; Zhang, HD; Snurr, RQ

    2015-03-03

    Diffusion of methane, ethane, propane and n-butane was studied within the micropores of several metal organic frameworks (MOFs) of varying topologies, including the MOFs PCN-14, NU-125, NU-1100 and DUT-49. Diffusion coefficients of the pure components, as well as methane/ethane, methane/ propane and methane/butane binary mixtures, were calculated using molecular dynamics simulations to understand the effect of the longer alkanes on uptake of natural gas in MOB. The calculated self diffusion coefficients of all four components are on the order of 10(-8) m(2)/s. The diffusion coefficients of the pure components decrease as a function of chain length in all of the MOFs studied and show different behaviour as a function of loading in different MOB. The self-diffusivities follow the trend DPCN-14 < DNU-125 approximate to DNU-1100 < DDUT-49, which is exactly the reverse order of the densities of the MOFs: PCN-14 > NU-125 approximate to NU-1100 > DUT-49. By comparing the diffusion of pure methane and methane mixtures vvith the higher alkancs, it is observed that the diffusivity of methane is unaffected by the presence of the higher alkanes in the MOFs considered, indicating that the diffusion path of methane is not blocked by the higher alkanes present in natural gas. (C) 2014 Elsevier Ltd. All rights reserved.

  17. Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser.

    PubMed

    Ye, Weilin; Li, Chunguang; Zheng, Chuantao; Sanchez, Nancy P; Gluszek, Aleksander K; Hudzikowski, Arkadiusz J; Dong, Lei; Griffin, Robert J; Tittel, Frank K

    2016-07-25

    A continuous-wave (CW) interband cascade laser (ICL) based mid-infrared sensor system was demonstrated for simultaneous detection of atmospheric methane (CH4) and ethane (C2H6). A 3.337 µm CW ICL with an emitting wavenumber range of 2996.0-3001.5 cm-1 was used to simultaneously target two absorption lines, C2H6 at 2996.88 cm-1 and CH4 at 2999.06 cm-1, respectively. The sensor performance was first evaluated for single-gas detection by only targeting the absorption line of one gas species. Allan deviations of 11.2 parts per billion in volume (ppbv) for CH4 and 1.86 ppbv for C2H6 with an averaging time of 3.4 s were achieved for the detection of these two gases. Dual-gas detection was realized by using a long-term scan signal to target both CH4 and C2H6 lines. The Allan deviations increased slightly to 17.4 ppbv for CH4 and 2.4 ppbv for C2H6 with an averaging time of 4.6 s due to laser temperature and power drift caused by long-term wavelength scanning. Measurements for both indoor and outdoor concentration changes of CH4 and C2H6 were conducted. The reported single ICL based dual-gas sensor system has the advantages of reduced size and cost compared to two separate sensor systems. PMID:27464149

  18. Propane Basics

    SciTech Connect

    NREL

    2010-03-01

    Propane powers about 190,000 vehicles in the U.S. and more than 14 million worldwide. Propane vehicles are a good choice for many fleet applications including school buses, shuttle buses, taxies and light-duty trucks.

  19. Propane Update.

    ERIC Educational Resources Information Center

    Brantner, Max

    1984-01-01

    Reports on a northern Illinois school bus fleet converted to propane fuel in 1981 and 1982. Includes tables showing, first, total annual fuel costs before and after conversion and, second, fuel efficiency for 16 buses using propane and three using gasoline. Notes precautions for propane use. (MCG)

  20. Development of highly sensitive sensor system for methane utilizing cataluminescence.

    PubMed

    Gong, Gu; Zhu, Hua

    2016-02-01

    A gaseous sensor system was developed for the detection of methane based on its cataluminescence emission. Cataluminescence characteristics and optimal conditions were studied in detail under optimized experimental conditions. Results showed that the methane cataluminescence sensor system could cover a linear detection range from 10 to 5800 ppm (R = 0.9963, n = 7) and the detection limit was about 7 ppm (S/N = 3), which was below the standard permitted concentration. Moreover, a linear discriminant analysis method was used to test the recognizable performance of the methane sensor. It was found that methane, ethane, propane and pentane could be distinguished clearly. Its methane sensing properties, including improved sensitivity, selectivity, stability and recognition demonstrated the TiO2/SnO2 materials to be promising candidates for constructing a cataluminescence-based gas sensor that could be used for detecting explosive gas contaminants. PMID:26014851

  1. Rate constants and temperature dependences for the reactions of hydroxyl radical with several halogenated methanes, ethanes, and propanes by relative rate measurements

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; DeMore, W. B.

    1995-01-01

    Rate constants of 15 OH reactions with halogen-substituted alkanes, C1 to C3, were studied using a relative rate technique in the temperature range 283-403 K. Compounds studied were CHF2Cl (22), CHF2Br (22B), CH3F (41), CH2F2 (32), CHF3 (23), CHClFCCl2F (122a), CHCl2CF3 (123), CHClFCF3 (124), CH3CF3 (143a), CH3CH2F (161), CF3CHFCF3 (227ea), CF3CH2CF3 (236fa), CF3CHFCHF2 (236ea), and CHF2CF2CH2F (245ca). Using CH4, CH3CCl3, CF3CF2H, and C2H6 as primary reference standards (JPL 92-20 rate constants), absolute rate constants are derived. Results are in good agreement with previous experimental results for six of the compounds studied, including CHF2Cl, CHF2Br, CH2F2, CH3CF3, CHFClCFCl2, and CF3CHFCF3. For the remainder the relative rate constants are lower than those derived from experiments in which OH loss was used to measure the reaction rate. Comparisons of the derived Arrhenius A factors with previous literature transition-state calculations show order of magnitude agreement in most cases. However, the experimental A factors show a much closer proportionality to the number of H atoms in the molecule than is evident from the transition state calculations. For most of the compounds studied, an A factor of (8 +/- 3)E-13 cm(exp 3)/(molecule s) per C-H bond is observed. A new measurement of the ratio k(CH3CCl3)/k(CH4) is reported that is in good agreement with previous data.

  2. Ionization cross section data of nitrogen, methane, and propane for light ions and electrons and their suitability for use in track structure simulations

    NASA Astrophysics Data System (ADS)

    Bug, Marion U.; Gargioni, Elisabetta; Nettelbeck, Heidi; Baek, Woon Yong; Hilgers, Gerhard; Rosenfeld, Anatoly B.; Rabus, Hans

    2013-10-01

    Track structure Monte Carlo simulations are frequently applied in micro- and nanodosimetry to calculate the radiation transport in detail. The use of a well-validated set of cross section data in such simulation codes ensures accurate calculations of transport parameters, such as ionization yields. These cross section data are, however, scarce and often discrepant when measured by different groups. This work surveys literature data on ionization and charge-transfer cross sections of nitrogen, methane, and propane for electrons, protons, and helium particles, focusing on the energy range between 100 keV and 20 MeV. Based on the evaluated data, different models for the parametrization of the cross section data are implemented in the code ptra, developed for simulating proton and alpha particle transport in an ion-counting nanodosimeter. The suitability of the cross section data is investigated by comparing the calculated mean ionization cluster size and energy loss with experimental results in either nitrogen or propane. For protons, generally good agreement between measured and simulated data is found when the Rudd model is used in ptra. For alpha particles, however, a considerable influence of different parametrizations of cross sections for ionization and charge transfer is observed. The ptra code using the charge-transfer data is, nevertheless, successfully benchmarked by the experimental data for the calculation of nanodosimetric quantities, but remaining discrepancies still have to be further investigated (up to 13% lower energy loss and 19% lower mean ionization cluster size than in the experiment). A continuation of this work should investigate data for the energy loss per interaction as well as differential cross section data of nitrogen and propane. Interpolation models for ionization and charge-transfer data are proposed. The Barkas model, frequently used for a determination of the effective charge in the ionization cross section, significantly

  3. Ionization cross section data of nitrogen, methane, and propane for light ions and electrons and their suitability for use in track structure simulations.

    PubMed

    Bug, Marion U; Gargioni, Elisabetta; Nettelbeck, Heidi; Baek, Woon Yong; Hilgers, Gerhard; Rosenfeld, Anatoly B; Rabus, Hans

    2013-10-01

    Track structure Monte Carlo simulations are frequently applied in micro- and nanodosimetry to calculate the radiation transport in detail. The use of a well-validated set of cross section data in such simulation codes ensures accurate calculations of transport parameters, such as ionization yields. These cross section data are, however, scarce and often discrepant when measured by different groups. This work surveys literature data on ionization and charge-transfer cross sections of nitrogen, methane, and propane for electrons, protons, and helium particles, focusing on the energy range between 100 keV and 20 MeV. Based on the evaluated data, different models for the parametrization of the cross section data are implemented in the code ptra, developed for simulating proton and alpha particle transport in an ion-counting nanodosimeter. The suitability of the cross section data is investigated by comparing the calculated mean ionization cluster size and energy loss with experimental results in either nitrogen or propane. For protons, generally good agreement between measured and simulated data is found when the Rudd model is used in ptra. For alpha particles, however, a considerable influence of different parametrizations of cross sections for ionization and charge transfer is observed. The ptra code using the charge-transfer data is, nevertheless, successfully benchmarked by the experimental data for the calculation of nanodosimetric quantities, but remaining discrepancies still have to be further investigated (up to 13% lower energy loss and 19% lower mean ionization cluster size than in the experiment). A continuation of this work should investigate data for the energy loss per interaction as well as differential cross section data of nitrogen and propane. Interpolation models for ionization and charge-transfer data are proposed. The Barkas model, frequently used for a determination of the effective charge in the ionization cross section, significantly

  4. Propane fear

    SciTech Connect

    Begley, R.

    1992-02-12

    A minor feature of a Congressional energy bill is causing consternation for a number of propane-consuming chemical companies. The firms are fighting the bill`s inclusion of liquefied petroleum gas (LPG) on a list of alternative fuels that can be used to meet its urban fleet vehicles requirements. The firms fear that this added use would drive up the price of propane-an LPG-for homeowners, farmers, and themselves. Speaking for the Propane Consumers Coalition, a Dow Chemical spokesman says 7.7 million households use propane, as does agriculture, and current demand is such that December saw a 23-year low in US inventories. The US depends on imports of propane, he says, and about half the propane sold in the US is derived from the refining of oil, much of which is also imported. Adding demand for vehicle fuel would drive up imports and process, the spokesman says, thereby damaging all users, including the petrochemical industry.

  5. Geologic seepage of methane and light alkanes in Los Angeles

    NASA Astrophysics Data System (ADS)

    Doezema, L. A.; Chang, K.; Baril, R.; Nwachuku, I.; Contreras, P.; Marquez, A.; Howard, D.

    2013-12-01

    Natural geologic seepage of methane from underground oil and natural gas reservoirs has been suggested to be an underreported part of the global methane budget. Other light alkanes are also given off in combination with the methane seepage, making it possible that geologic seepage is also a potentially significant global source of these light alkanes. This study reports C1-C5 findings from geologic seepage made in the Los Angeles region. Microseepage, invisible escape of gases, was measured primarily at Kenneth Hahn Regional Park, while macroseepage, the visible release of gases, was measured at the La Brea Tar Pits. Samples were collected using stainless steel canisters and flux chambers and were analyzed using gas chromatography with flame ionization detectors (GC-FID). Average microseepage flux rates of 0.95 μg m-2 h-1 for ethane and 0.51 μg m-2 h-1 were found for propane, while average macroseepage rates for methane, ethane, and propane were 664, 19.8, and 18.1 mg m-2 h-1 respectively. Relationships between microseepage flux rate and location of underground oil and natural deposit and earthquake fault lines are presented. Additionally, the relative importance of findings in context with global budgets and local air quality is discussed.

  6. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    SciTech Connect

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  7. Position-specific and clumped stable isotope studies: comparison of the Urey and path-integral approaches for carbon dioxide, nitrous oxide, methane, and propane.

    PubMed

    Webb, Michael A; Miller, Thomas F

    2014-01-16

    We combine path-integral Monte Carlo methods with high-quality potential energy surfaces to compute equilibrium isotope effects in a variety of systems relevant to 'clumped' isotope analysis and isotope geochemistry, including CO2, N2O, methane, and propane. Through a systematic study of heavy-atom isotope-exchange reactions, we quantify and analyze errors that arise in the widely used Urey model for predicting equilibrium constants of isotope-exchange reactions using reduced partition function ratios. These results illustrate that the Urey model relies on a nontrivial cancellation of errors that can shift the apparent equilibrium temperature by as much as 35 K for a given distribution of isotopologues. The calculations reported here provide the same level of precision as the best existing analytical instrumentation, resolving the relative enrichment of certain isotopologues to as little as 0.01‰. These findings demonstrate path-integral methods to be a rigorous and viable alternative to more approximate methods for heavy-atom geochemical applications. PMID:24372450

  8. Methane-derived hydrocarbons produced under upper-mantle conditions

    SciTech Connect

    Kolesnikov, Anton; Kutcherov, Vladimir G.; Goncharov, Alexander F.

    2009-08-13

    There is widespread evidence that petroleum originates from biological processes. Whether hydrocarbons can also be produced from abiogenic precursor molecules under the high-pressure, high-temperature conditions characteristic of the upper mantle remains an open question. It has been proposed that hydrocarbons generated in the upper mantle could be transported through deep faults to shallower regions in the Earth's crust, and contribute to petroleum reserves. Here we use in situ Raman spectroscopy in laser-heated diamond anvil cells to monitor the chemical reactivity of methane and ethane under upper-mantle conditions. We show that when methane is exposed to pressures higher than 2 GPa, and to temperatures in the range of 1,000-1,500 K, it partially reacts to form saturated hydrocarbons containing 2-4 carbons (ethane, propane and butane) and molecular hydrogen and graphite. Conversely, exposure of ethane to similar conditions results in the production of methane, suggesting that the synthesis of saturated hydrocarbons is reversible. Our results support the suggestion that hydrocarbons heavier than methane can be produced by abiogenic processes in the upper mantle.

  9. Use of propane as a quench gas in argon-filled proportional counters and comparison with other quench gases

    NASA Technical Reports Server (NTRS)

    Agrawal, P. C.; Ramsey, B. D.

    1988-01-01

    An experimental investigation of propane and six other quench gases was carried out in argon-filled proportional counters. The objective of the study was to find the best gas mixture for optimizing the gas gain and the energy resolution as well as to understand the role of the ionization potential of quench gases in determining these parameters. It was found that the best gas gains and energy resolutions are obtained with propane, ethane, and isobutane in that order. The ionization potentials of these three lie below the argon metastable potentials and have the lowest value of resonance defect compared to the other quench gases. The better results obtained with these mixtures can be explained by an increased ionization yield resulting from the Penning effect. Propylene and trans-2-butene give inferior performance compared to the above three gases. Methane and carbon dioxide, the most commonly used quench gases in the argon-filled detectors, provide the worst results.

  10. Measurements of ethane in Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Verhulst, K. R.; Fosse, E. K.; Aydin, K. M.; Saltzman, E. S.

    2011-12-01

    Ethane is one of the most abundant hydrocarbons in the atmosphere. The major ethane sources are fossil fuel production and use, biofuel combustion, and biomass-burning emissions and the primary loss pathway is via reaction with OH. A paleoatmospheric ethane record would be useful as a tracer of biomass-burning emissions, providing a constraint on past changes in atmospheric methane and methane isotopes. An independent biomass-burning tracer would improve our understanding of the relationship between biomass burning and climate. The mean annual atmospheric ethane level at high southern latitudes is about 230 parts per trillion (ppt), and Antarctic firn air measurements suggest that atmospheric ethane levels in the early 20th century were considerably lower (Aydin et al., 2011). In this study, we present preliminary measurements of ethane (C2H6) in Antarctic ice core samples with gas ages ranging from 0-1900 C.E. Samples were obtained from dry-drilled ice cores from South Pole and Vostok in East Antarctica, and from the West Antarctic Ice Sheet Divide (WAIS-D). Gases were extracted from the ice by melting under vacuum in a glass vessel sealed by indium wire and were analyzed using high resolution GC/MS with isotope dilution. Ethane levels measured in ice core samples were in the range 100-220 ppt, with a mean of 157 ± 45 ppt (n=12). System blanks contribute roughly half the amount of ethane extracted from a 300 g ice core sample. These preliminary data exhibit a temporal trend, with higher ethane levels from 0-900 C.E., followed by a decline, reaching a minimum between 1600-1700 C.E. These trends are consistent with variations in ice core methane isotopes and carbon monoxide isotopes (Ferretti et al., 2005, Wang et al., 2010), which indicate changes in biomass burning emissions over this time period. These preliminary data suggest that Antarctic ice core bubbles contain paleoatmospheric ethane levels. With further improvement of laboratory techniques it appears

  11. The fate of ethane in Titan's hydrocarbon lakes and seas

    NASA Astrophysics Data System (ADS)

    Mousis, Olivier; Lunine, Jonathan I.; Hayes, Alexander G.; Hofgartner, Jason D.

    2016-05-01

    Ethane is expected to be the dominant photochemical product on Titan's surface and, in the absence of a process that sequesters it from exposed surface reservoirs, a major constituent of its lakes and seas. Absorption of Cassini's 2.2 cm radar by Ligeia Mare however suggests that this north polar sea is dominated by methane. In order to explain this apparent ethane deficiency, we explore the possibility that Ligeia Mare is the visible part of an alkanofer that interacted with an underlying clathrate layer and investigate the influence of this interaction on an assumed initial ethane-methane mixture in the liquid phase. We find that progressive liquid entrapment in clathrate allows the surface liquid reservoir to become methane-dominated for any initial ethane mole fraction below 0.75. If interactions between alkanofers and clathrates are common on Titan, this should lead to the emergence of many methane-dominated seas or lakes.

  12. Modification of Encapsulation Pressure of Reverse Micelles in Liquid Ethane

    PubMed Central

    Peterson, Ronald W.; Nucci, Nathaniel V.; Wand, A. Joshua

    2011-01-01

    Encapsulation of within reverse micelles dissolved in low viscosity fluids offers a potential solution to the slow tumbling problem presented by large soluble macromolecules to solution NMR spectroscopy. The reduction in effective macromolecular tumbling is directly dependent upon the viscosity of the solvent. Liquid ethane is of sufficiently low viscosity at pressures below 5,000 p.s.i. to offer a significant advantage. Unfortunately, the viscosity of liquid ethane shows appreciable pressure dependence. Reverse micelle encapsulation in liquid ethane often requires significantly higher pressures, which obviates the potential advantages offered by liquid ethane over liquid propane. Addition of co-surfactants or co-solvents can be used to manipulate the minimum pressure required to obtain stable, well-behaved solutions of reverse micelles prepared in liquid ethane. A library of potential additives is examined and several candidates suitable for use with encapsulated proteins are described. PMID:21764613

  13. Modification of encapsulation pressure of reverse micelles in liquid ethane.

    PubMed

    Peterson, Ronald W; Nucci, Nathaniel V; Wand, A Joshua

    2011-09-01

    Encapsulation within reverse micelles dissolved in low viscosity fluids offers a potential solution to the slow tumbling problem presented by large soluble macromolecules to solution NMR spectroscopy. The reduction in effective macromolecular tumbling is directly dependent upon the viscosity of the solvent. Liquid ethane is of sufficiently low viscosity at pressures below 5000 psi to offer a significant advantage. Unfortunately, the viscosity of liquid ethane shows appreciable pressure dependence. Reverse micelle encapsulation in liquid ethane often requires significantly higher pressures, which obviates the potential advantages offered by liquid ethane over liquid propane. Addition of co-surfactants or co-solvents can be used to manipulate the minimum pressure required to obtain stable, well-behaved solutions of reverse micelles prepared in liquid ethane. A library of potential additives is examined and several candidates suitable for use with encapsulated proteins are described. PMID:21764613

  14. Interpretation of the ethane deficiency in Ligeia Mare

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Lunine, J. I.; Hayes, A. G.; Hofgartner, J.

    2015-10-01

    Absorption of Cassini's 2.2 cm radar by Ligeia Mare suggests that this north polar sea is dominated by methane. In order to explain this apparent ethane deficiency, we explore the possibility that Ligeia Mare is the visible part of an alkanofer that interacted with an underlying clathrate layer and investigate the influence of this inter action on an assumed initial ethane- methane mixture in the liquid phase.

  15. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts.

    PubMed

    Chen, Xuxing; Li, Yunpeng; Pan, Xiaoyang; Cortie, David; Huang, Xintang; Yi, Zhiguo

    2016-01-01

    The search for active catalysts that efficiently oxidize methane under ambient conditions remains a challenging task for both C1 utilization and atmospheric cleansing. Here, we show that when the particle size of zinc oxide is reduced down to the nanoscale, it exhibits high activity for methane oxidation under simulated sunlight illumination, and nano silver decoration further enhances the photo-activity via the surface plasmon resonance. The high quantum yield of 8% at wavelengths <400 nm and over 0.1% at wavelengths ∼470 nm achieved on the silver decorated zinc oxide nanostructures shows great promise for atmospheric methane oxidation. Moreover, the nano-particulate composites can efficiently photo-oxidize other small molecular hydrocarbons such as ethane, propane and ethylene, and in particular, can dehydrogenize methane to generate ethane, ethylene and so on. On the basis of the experimental results, a two-step photocatalytic reaction process is suggested to account for the methane photo-oxidation. PMID:27435112

  16. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts

    PubMed Central

    Chen, Xuxing; Li, Yunpeng; Pan, Xiaoyang; Cortie, David; Huang, Xintang; Yi, Zhiguo

    2016-01-01

    The search for active catalysts that efficiently oxidize methane under ambient conditions remains a challenging task for both C1 utilization and atmospheric cleansing. Here, we show that when the particle size of zinc oxide is reduced down to the nanoscale, it exhibits high activity for methane oxidation under simulated sunlight illumination, and nano silver decoration further enhances the photo-activity via the surface plasmon resonance. The high quantum yield of 8% at wavelengths <400 nm and over 0.1% at wavelengths ∼470 nm achieved on the silver decorated zinc oxide nanostructures shows great promise for atmospheric methane oxidation. Moreover, the nano-particulate composites can efficiently photo-oxidize other small molecular hydrocarbons such as ethane, propane and ethylene, and in particular, can dehydrogenize methane to generate ethane, ethylene and so on. On the basis of the experimental results, a two-step photocatalytic reaction process is suggested to account for the methane photo-oxidation. PMID:27435112

  17. Bis[1-meth­oxy-2,2,2-tris­(pyrazol-1-yl-κN 2)ethane]­nickel(II) bis­(tri­fluoro­methane­sulfonate) methanol disolvate

    PubMed Central

    Lyubartseva, Ganna; Parkin, Sean; Mallik, Uma Prasad

    2013-01-01

    In the title salt, [Ni(C12H14N6O)2](CF3SO3)2·2CH3OH, the NiII ion is coordinated by six N atoms from two tridentate 1-meth­oxy-2,2,2-tris­(pyrazol-1-yl)ethane ligands in a distorted octa­hedral geometry. The NiII ion is situated on an inversion centre. The Ni—N distances range from 2.0589 (19) to 2.0757 (19) Å, intra-ligand N—Ni—N angles range from 84.50 (8) to 85.15 (8)°, and adjacent inter-ligand N—Ni—N angles range between 94.85 (8) and 95.50 (8)°. In the crystal, O—H⋯O hydrogen bonds between methanol solvent mol­ecules and tri­fluoro­methane­sulfonate anions are observed. PMID:24098170

  18. Bis[1-meth­oxy-2,2,2-tris­(pyrazol-1-yl-κN 2)ethane]­nickel(II) bis­(tri­fluoro­methane­sulfonate) dihydrate

    PubMed Central

    Lyubartseva, Ganna; Parkin, Sean; Mallik, Uma Prasad

    2013-01-01

    In the title salt, [Ni(C12H14N6O)2](CF3SO3)2·2H2O, the NiII cation is located on an inversion centre and is coordinated by six N atoms from two tridentate 1-meth­oxy-2,2,2-tris­(pyrazol-1-yl)ethane ligands in a distorted octa­hedral geometry. The Ni—N distances range from 2.0594 (12) to 2.0664 (12) Å, intra-ligand N—Ni—N angles range from 84.59 (5) to 86.06 (5)°, and adjacent inter-ligand N—Ni—N angles range between 93.94 (5) and 95.41 (5)°. In the crystal, inversion-related pyrazole rings are π–π stacked, with an inter­planar spacing of 3.4494 (18) Å, forming chains that propagate parallel to the a-axis direction. Inter­molecular O—H⋯O hydrogen bonds are present between water mol­ecules and tri­fluoro­methane­sulfonate anions. PMID:24098167

  19. Trends and Climatology of Northern Hemisphere Non-Methane Hydrocarbon Emissions

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Petrenko, Vasilli; Martinerie, Patricia; Witrant, Emmanuel; Roeckmann, Thomas; Hueber, Jacques; Sturges, William; Baker, Angela; Blunier, Thomas; Etheridge, David; Rubino, Mauro; Tans, Pieter; Zuiderweg, Adriaan; Holzinger, Rupert

    2013-04-01

    Atmospheric non-methane hydrocarbon (NMHC) data can yield valuable insight into anthropogenic and biogenic emissions into the atmosphere. For instance, recent research has pointed out a tight linkage of the atmospheric concentration of the NMHC ethane to the atmospheric growth rate of methane, and this relationship has been used to infer global changes in methane emission sources. Furthermore, NMHC play a pivotal role in photochemical production of ozone in the troposphere. We reconstructed the 1950-2010 Northern Hemisphere concentrations of the NMHC ethane, propane, i-butane, n-butane, i-pentane, and n-pentane using 1. measurements of air samples extracted from three boreholes in the firn layer at North Greenland Eemian Ice Drilling (NEEM) project site; 2. a firn air transport model that allows reconstructing atmospheric concentrations of trace gas from borehole measurements; and 3. eight years of data from ambient NMHC monitoring at five Arctic sites within the NOAA Global Monitoring Division Cooperative Air Sampling Network. Results indicate that these C2-C5 NMHC increased by ~ 40-120% after 1950, then peaked between 1965-1985, and have since dramatically decreased to near-1950 levels. Different peak times of ethane versus C3-C5 NMHC suggest that different processes and emission mitigation measures contributed to the decline in these NMHC. NMHC mole fraction trends, observed changes in the ratio of selected NMHC pairs, and NMHC/carbon monoxide ratios are used to infer post-1950 changes in fossil fuel sources and tropospheric ozone production.

  20. Catalytic functionalization of methane and light alkanes in supercritical carbon dioxide.

    PubMed

    Fuentes, M Ángeles; Olmos, Andrea; Muñoz, Bianca K; Jacob, Kane; González-Núñez, M Elena; Mello, Rossella; Asensio, Gregorio; Caballero, Ana; Etienne, Michel; Pérez, Pedro J

    2014-08-25

    The development of catalytic methods for the effective functionalization of methane yet remains a challenge. The best system known to date is the so-called Catalytica Process based on the use of platinum catalysts to convert methane into methyl bisulfate with a TOF rate of 10(-3) s. In this contribution, we report a series of silver complexes containing perfluorinated tris(indazolyl)borate ligands that catalyze the functionalization of methane into ethyl propionate upon reaction with ethyl diazoacetate (EDA) by using supercritical carbon dioxide (scCO2) as the reaction medium. The employment of this reaction medium has also allowed the functionalization of ethane, propane, butane, and isobutane. PMID:25065490

  1. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation

    USGS Publications Warehouse

    Oremland, R.S.; Culbertson, C.W.

    1992-01-01

    Methyl fluoride (MF) and dimethyl ether (DME) were effective inhibitors of aerobic methanotrophy in a variety of soils. MF and DME blocked consumption of CH4 as well as the oxidation of 14CH4 to 14CO2, but neither MF nor DME affected the oxidation of [14C]methanol or [14C]formate to 14CO2. Cooxidation of ethane and propane by methane-oxidizing soils was also inhibited by MF. Nitrification (ammonia oxidation) in soils was inhibited by both MF and DME. Production of N2O via nitrification was inhibited by MF; however, MF did not affect N2O production associated with denitrification. Methanogenesis was partially inhibited by MF but not by DME. Methane oxidation was ~100-fold more sensitive to MF than was methanogenesis, indicating that an optimum concentration could be employed to selectively block methanotrophy. MF inhibited methane oxidation by cell suspensions of Methylococcus capsulatus; however, DME was a much less effective inhibitor.

  2. Decomposition of ethane and its reaction with CO{sub 2} over Rh/ZSM-5 catalyst

    SciTech Connect

    Solymosi, F.; Szoke, A.; Ovari, L.

    1999-09-10

    The interaction of ethane with Rh/ZSM-5 and its decomposition and reactions with CO{sub 2} on Rh/ZSM-5 have been investigated. Methods used were Fourier-transform infrared spectroscopy and temperature-programmed desorption and reaction (TPD and TPR). The decomposition of ethane and its reaction with CO{sub 2} have been studied in a fixed-bed continuous-flow reactor. IR measurements showed that ethane interacted strongly with the highly dispersed Rh above 206 K and gave rise to the formation of ethylidyne surface species very likely through the transient formation of ethylene. At 523--573 K, the decomposition of ethane produces hydrogen, methane, and propane. Above 623 K ethylene became the main product, but benzene and toluene were also detected. Independent of the temperature, the rate of the decomposition decayed after 5--10 min to a very low level (1--2% conversion), but it did not cease completely even after several hours (673 K). The reactivities of surface carbon formed at different temperatures toward H{sub 2}, O{sub 2}, and CO{sub 2} have been examined. Carbon exhibited the highest reactivity with O{sub 2} and less reactivity with CO{sub 2}. The peak temperatures of its reaction in TPR shifted to a higher temperature with the temperature of its production in all the three cases. Carbon formed at 773 K in the ethane decomposition reacted with CO{sub 2} at maximum rate at 973 K. The reaction between C{sub 2}H{sub 6} and CO{sub 2} occurred rapidly above 700 K to give mainly H{sub 2} and CO with a ratio of 0.3--0.6. In contrast with the CH{sub 4} + CO{sub 2} reaction on the same catalyst, a significant deactivation of the catalyst occurred at the stoichiometric CO{sub 2}/C{sup 2}H{sub 6} ratio. This feature is attributed to the low reactivity of hydrocarbon fragments formed by the decomposition of ethane compared to those produced by CH{sub 4} dissociation. Deactivation can be decreased or almost ceased by using a large excess of CO{sub 2}.

  3. Interannual Variability and Trends of C2-C11 Non-Methane Hydrocarbons in a Subtropical Area close to the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Rappenglück, Bernhard

    2016-04-01

    Speciated C2-C11 non-methane hydrocarbons (NMHC) have been measured online on an hourly basis at Lake Jackson/TX close to the Gulf of Mexico. Altogether 48 NMHCs, including the GAW NMHC compounds, along with NO, NO2, NOx, O3 have been collected continuously from January 2004-December 2013 under the auspices of the Texas Commission on Environmental Quality. Data was screened for background conditions representing marine wind sectors. The data set represents a combination of marine air masses mixed with local biogenic emissions. The data analysis addresses photochemical processing of air masses as reflected in the relationship of ln(n-butane/ethane) vs. ln(propane/ethane) and ln(i-butane/ethane) vs. ln(n-butane/ethane). In addition, key NMHC relationships for radical chemistry, e.g. i-butane vs n-butane for OH and Cl chemistry and i-pentane vs. n-pentane for NO3 chemistry, are discussed. Seasonal analysis revealed a clear trend with maximum NMHC mixing ratios in winter time and lowest mixing ratios in summer reflecting the impact of photochemical processes in summer. Propene equivalents were highest during summertime, with significant contributions from alkenes, including isoprene. The relation of propane/ethane vs ethane indicates seasonal variation with lowest values (i.e. most aged air masses) in winter. Contrary to usual GAW NMHC sampling procedures, which at least requires routine daytime samples (e.g. for canister samplings), continuous NMHC data collection allows to analyze nighttime data, which is least impacted by photochemical processes and potentially well-suited for trend analysis. Corresponding trend analysis for the Lake Jackson data suggests an overall slight decrease of selected NMHCs over the 2004-2013 period.

  4. Laser-induced fluorescence monitoring of higher alkanes production from pure methane using non-oxidative processes.

    PubMed

    Gondal, M A; Dastgeer, A; Yamani, Zain H; Arfaj, A; Ali, M A

    2003-02-01

    A novel method for the study of non-oxidative methane conversion process into higher value hydrocarbon and hydrogen has been invented. The method involves the multiphoton dissociation of methane under the influence of the high power pulsed ultraviolet laser radiation at 355 nm wavelength at room temperature (293 K) and standard pressure (1 atm). The products generated as a result of methane conversion like ethane, ethylene, propane, propylene and isobutane are analyzed using an online gas chromatograph while the other species such as CH, CH(2) and C(2)H(2), atomic and molecular hydrogen are characterized by real-time laser-induced fluorescence technique for the first time. A typical 7% conversion of methane into ethane has been achieved using 80 mJ of laser irradiation at 355 nm. The important features of this method are that it is non-oxidative, does not require any catalyst, high temperatures or pressures, which is normally the case in conventional techniques for methane conversion. PMID:18968911

  5. Titan's missing ethane: From the atmosphere to the subsurface

    NASA Astrophysics Data System (ADS)

    Gilliam, Ashley E.; Lerman, Abraham

    2016-09-01

    The second most abundant component of the present-day Titan atmosphere, methane (CH4), is known to undergo photolytic conversion to ethane (C2H6) that accumulates as a liquid on Titan's surface. Condensation temperature of ethane is higher than that of methane, so that ethane "rain" may be expected to occur before the liquefaction of methane. At present, the partial pressure of ethane in the atmosphere is 1E-5 bar, much lower than 1E-1 bar of CH4. Estimated 8.46E17 kg or 1.37E6 km3 of C2H6 have been produced on Titan since accretion. The Titan surface reservoirs of ethane are lakes and craters, of estimated volume of 50,000 km3 and 61,000 km3, respectively. As these are smaller than the total volume of liquid ethane produced in the course of Titan's history, the excess may be stored in the subsurface of the crust, made primarily of water ice. The minimum porosity of the crust needed to accommodate all the liquid ethane would be only 0.9% of the uppermost 2 km of the crust. The occurrence of CH4 and liquid C2H6 on Titan has led to much speculation on the possibility of life on that satellite. The aggregation of organic molecules in a "primordial soup or bullion" depends in part on the viscosity of the medium, diffusivity of organic molecules in it, and rates of polymerization reactions. The temperatures on Titan, much lower than on primordial Earth, are less favorable to the "Second Coming of life" on Titan.

  6. Low-Latitude Ethane Rain on Titan

    NASA Technical Reports Server (NTRS)

    Dalba, Paul A.; Buratti, Bonnie J.; Brown, R. H.; Barnes, J. W.; Baines, K. H.; Sotin, C.; Clark, R. N.; Lawrence, K. J.; Nicholson, P. D.

    2012-01-01

    Cassini ISS observed multiple widespread changes in surface brightness in Titan's equatorial regions over the past three years. These brightness variations are attributed to rainfall from cloud systems that appear to form seasonally. Determining the composition of this rainfall is an important step in understanding the "methanological" cycle on Titan. I use data from Cassini VIMS to complete a spectroscopic investigation of multiple rain-wetted areas. I compute "before-and-after" spectral ratios of any areas that show either deposition or evaporation of rain. By comparing these spectral ratios to a model of liquid ethane, I find that the rain is most likely composed of liquid ethane. The spectrum of liquid ethane contains multiple absorption features that fall within the 2-micron and 5-micron spectral windows in Titan's atmosphere. I show that these features are visible in the spectra taken of Titan's surface and that they are characteristically different than those in the spectrum of liquid methane. Furthermore, just as ISS saw the surface brightness reverting to its original state after a period of time, I show that VIMS observations of later flybys show the surface composition in different stages of returning to its initial form.

  7. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania

    PubMed Central

    Kang, Mary; Kanno, Cynthia M.; Reid, Matthew C.; Zhang, Xin; Mauzerall, Denise L.; Celia, Michael A.; Chen, Yuheng; Onstott, Tullis C.

    2014-01-01

    Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells (“controls”) in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10−6 kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10−3 kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4–7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories. PMID:25489074

  8. Direct measurements of methane emissions from abandoned oil and gas wells in Pennsylvania.

    PubMed

    Kang, Mary; Kanno, Cynthia M; Reid, Matthew C; Zhang, Xin; Mauzerall, Denise L; Celia, Michael A; Chen, Yuheng; Onstott, Tullis C

    2014-12-23

    Abandoned oil and gas wells provide a potential pathway for subsurface migration and emissions of methane and other fluids to the atmosphere. Little is known about methane fluxes from the millions of abandoned wells that exist in the United States. Here, we report direct measurements of methane fluxes from abandoned oil and gas wells in Pennsylvania, using static flux chambers. A total of 42 and 52 direct measurements were made at wells and at locations near the wells ("controls") in forested, wetland, grassland, and river areas in July, August, October 2013 and January 2014, respectively. The mean methane flow rates at these well locations were 0.27 kg/d/well, and the mean methane flow rate at the control locations was 4.5 × 10(-6) kg/d/location. Three out of the 19 measured wells were high emitters that had methane flow rates that were three orders of magnitude larger than the median flow rate of 1.3 × 10(-3) kg/d/well. Assuming the mean flow rate found here is representative of all abandoned wells in Pennsylvania, we scaled the methane emissions to be 4-7% of estimated total anthropogenic methane emissions in Pennsylvania. The presence of ethane, propane, and n-butane, along with the methane isotopic composition, indicate that the emitted methane is predominantly of thermogenic origin. These measurements show that methane emissions from abandoned oil and gas wells can be significant. The research required to quantify these emissions nationally should be undertaken so they can be accurately described and included in greenhouse gas emissions inventories. PMID:25489074

  9. Quantifying Emissions from the Eagle Ford Shale Using Ethane Enhancement

    NASA Astrophysics Data System (ADS)

    Roest, G. S.; Schade, G. W.

    2014-12-01

    Emissions from unconventional oil and natural gas exploration in the Eagle Ford Shale have been conjectured as a contributing factor to increasing ozone concentrations in the San Antonio Metropolitan Area, which is on track to be designated as a nonattainment area by the EPA. Primary species found in natural gas emissions are alkanes, with C3 and heavier alkanes acting as short-lived VOCs contributing to regional ozone formation. Methane emissions from the industry are also a forcing mechanism for climate change as methane is a potent greenhouse gas. Recent studies have highlighted a high variability and uncertainties in oil and natural gas emissions estimates in emissions inventories. Thus, accurately quantifying oil and natural gas emissions from the Eagle Ford Shale is necessary to assess the industry's impacts on climate forcing and regional air quality. We estimate oil and natural gas emissions in the Eagle Ford Shale using in situ ethane measurements along southwesterly trajectories from the Gulf of Mexico, dominantly during the summertime. Ethane enhancement within the drilling area is estimated by comparing ethane concentrations upwind of the shale, near the Texas coastline, to downwind measurements in the San Antonio Metropolitan Area, Odessa, and Amarillo. Upwind ethane observations indicate low background levels entering Texas in the Gulf of Mexico air masses. Significant ethane enhancement is observed between the coast and San Antonio, and is attributed to oil and natural gas operations due to the concurrent enhancements of heavier alkanes. Using typical boundary layer depths and presuming homogenous emissions across the Eagle Ford shale area, the observed ethane enhancements are used to extrapolate an estimate of oil and natural gas industry emissions in the Eagle Ford. As oil and natural gas production in the area is projected to grow rapidly over the coming years, the impacts of these emissions on regional air quality will need to be thoroughly

  10. Carbon and hydrogen isotopic composition of methane and C2+ alkanes in electrical spark discharge: implications for identifying sources of hydrocarbons in terrestrial and extraterrestrial settings.

    PubMed

    Telling, Jon; Lacrampe-Couloume, Georges; Sherwood Lollar, Barbara

    2013-05-01

    The low-molecular-weight alkanes--methane, ethane, propane, and butane--are found in a wide range of terrestrial and extraterrestrial settings. The development of robust criteria for distinguishing abiogenic from biogenic alkanes is essential for current investigations of Mars' atmosphere and for future exobiology missions to other planets and moons. Here, we show that alkanes synthesized during gas-phase radical recombination reactions in electrical discharge experiments have values of δ(2)H(methane)>δ(2)H(ethane)>δ(2)H(propane), similar to those of the carbon isotopes. The distribution of hydrogen isotopes in gas-phase radical reactions is likely due to kinetic fractionations either (i) from the preferential incorporation of (1)H into longer-chain alkanes due to the more rapid rate of collisions of the smaller (1)H-containing molecules or (ii) by secondary ion effects. Similar δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns may be expected in a range of extraterrestrial environments where gas-phase radical reactions dominate, including interstellar space, the atmosphere and liquid hydrocarbon lakes of Saturn's moon Titan, and the outer atmospheres of Jupiter, Saturn, Neptune, and Uranus. Radical recombination reactions at high temperatures and pressures may provide an explanation for the combined reversed δ(13)C(C1-C2+) and δ(2)H(C1-C2+) patterns of terrestrial alkanes documented at a number of high-temperature/pressure crustal sites. PMID:23683048

  11. Geodetic data support trapping of ethane in Titan's polar crust

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Rambaux, Nicolas

    2016-04-01

    Titan's surface is characterized by polar depressions that strongly influence interpretations of the gravity data. This study investigates several geodynamical models that can explain these depressions. For each model, the values of the three moments of inertia are computed numerically by discretizing the interior in spherical coordinates. The study shows that a Pratt model where the polar subsurface is made of ethane clathrates can explain the polar depression, the abrupt jump in altitude at about 60 degrees latitude, and the values of the degree 2 gravity coefficients. This model, proposed by Choukroun and Sotin [1], is based on the stability of ethane clathrate hydrates relative to methane clathrate hydrates. In addition to fitting the geodetic data, it explains the absence of ethane in Titan's atmosphere although ethane is the main product of the photolysis of methane. Other geophysical models based on latitudinal variations in the tidal heating production or in the heat flux at the base of the icy crust do not provide such a good match to the gravity and topographic observations. The ethane-clathrate model predicts that all the ethane produced by photolysis of methane at the present rate during the last billion years could be stored in the polar subsurface. It is consistent with the age of Titan's surface and that of Titan's atmospheric methane inferred from geological and geochemical observations by the Cassini/Huygens mission. The present study also emphasizes the role of mass anomalies on the interpretation of the degree 2 gravity coefficients. It shows that for Titan, a slow rotator, the values of the two equatorial moments of inertia (MoI) are largely affected by the polar depressions whereas the value of polar MoI is not. Therefore, as pointed out by previous calculations [2], calculating the moment of inertia (MoI) factor from the value of J2 could lead to major errors. This is not the case for our preferred Titan's model for which the negative polar

  12. Occurrence and origin of methane in groundwater in Alberta (Canada): Gas geochemical and isotopic approaches.

    PubMed

    Humez, P; Mayer, B; Ing, J; Nightingale, M; Becker, V; Kingston, A; Akbilgic, O; Taylor, S

    2016-01-15

    To assess potential future impacts on shallow aquifers by leakage of natural gas from unconventional energy resource development it is essential to establish a reliable baseline. Occurrence of methane in shallow groundwater in Alberta between 2006 and 2014 was assessed and was ubiquitous in 186 sampled monitoring wells. Free and dissolved gas sampling and measurement approaches yielded comparable results with low methane concentrations in shallow groundwater, but in 28 samples from 21 wells methane exceeded 10mg/L in dissolved gas and 300,000 ppmv in free gas. Methane concentrations in free and dissolved gas samples were found to increase with well depth and were especially elevated in groundwater obtained from aquifers containing coal seams and shale units. Carbon isotope ratios of methane averaged -69.7 ± 11.1‰ (n=63) in free gas and -65.6 ± 8.9‰ (n=26) in dissolved gas. δ(13)C values were not found to vary with well depth or lithology indicating that methane in Alberta groundwater was derived from a similar source. The low δ(13)C values in concert with average δ(2)HCH4 values of -289 ± 44‰ (n=45) suggest that most methane was of biogenic origin predominantly generated via CO2 reduction. This interpretation is confirmed by dryness parameters typically >500 due to only small amounts of ethane and a lack of propane in most samples. Comparison with mud gas profile carbon isotope data revealed that methane in the investigated shallow groundwater in Alberta is isotopically similar to hydrocarbon gases found in 100-250 meter depths in the WCSB and is currently not sourced from thermogenic hydrocarbon occurrences in deeper portions of the basin. The chemical and isotopic data for methane gas samples obtained from Alberta groundwater provide an excellent baseline against which potential future impact of deeper stray gases on shallow aquifers can be assessed. PMID:26476065

  13. Low-Latitude Ethane Rain on Titan

    NASA Astrophysics Data System (ADS)

    Dalba, Paul; Buratti, B. J.; Brown, R. H.; Barnes, J. W.; Baines, K. H.; Sotin, C.; Clark, R. N.; Lawrence, K. J.; Nicholson, P. D.

    2012-10-01

    Cassini ISS observed multiple widespread changes in surface brightness in Titan's equatorial regions over the past three years (Barnes, J. W. et al. 2012, Icarus, submitted). These brightness variations are attributed to rainfall from cloud systems that appear to form seasonally (Turtle, E. P. et al. 2011, Science, 331, 1414-1417). Determining the composition of this rainfall is an important step in understanding the “methanological” cycle that dominates Titan's surface and atmosphere. In this study, we use data from Cassini VIMS to complete a thorough spectroscopic investigation of rain-wetted areas near Yalaing Terra, Hetpet Regio and central Adiri on Titan. We compute “before-and-after” spectral ratios of any areas that show either deposition or evaporation of rain at any point in the time span of August 2009 to January 2012. By comparing these spectral ratios to a model of liquid ethane that was calculated to match the resolution and sampling interval of VIMS (Brown, R. H. et al. 2008, Nature, 454, 607-610), we find that the rain is most likely composed of liquid ethane. The spectrum of liquid ethane contains multiple absorption features that fortunately fall within the 2-micron and 5-micron spectral windows in Titan's atmosphere. We show that these features are visible in the spectra taken of Titan's surface and that they are characteristically different than those in the spectrum of liquid methane. Furthermore, just as ISS saw the surface brightness reverting to its original state after a period of time, we show that VIMS observations of later flybys show the surface composition in different stages of returning to its initial form as well. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. Copyright 2012. All rights reserved.

  14. Low-latitude ethane rain on Titan

    NASA Astrophysics Data System (ADS)

    Dalba, P. A.; Buratti, B. J.; Brown, R. H.; Barnes, J. W.; Baines, K. H.; Sotin, C.; Clark, R. N.; Lawrence, K. J.; Nicholson, P. D.

    2012-12-01

    Cassini ISS observed multiple widespread changes in surface brightness in Titan's equatorial regions over the past three years (Barnes, J. W. et al. 2012, Icarus, submitted). These brightness variations are attributed to rainfall from cloud systems that appear to form seasonally (Turtle, E. P. et al. 2011, Science, 331, 1414-1417). Determining the composition of this rainfall is an important step in understanding the "methanological" cycle that dominates Titan's surface and atmosphere. In this study, we use data from Cassini VIMS to complete a thorough spectroscopic investigation of rain-wetted areas near Yalaing Terra, Hetpet Regio and central Adiri on Titan. We compute "before-and-after" spectral ratios of any areas that show either deposition or evaporation of rain at any point in the time span of August 2009 to January 2012. By comparing these spectral ratios to a model of liquid ethane that was calculated to match the resolution and sampling interval of VIMS (Brown, R. H. et al. 2008, Nature, 454, 607-610), we find that the rain is most likely composed of liquid ethane. The spectrum of liquid ethane contains multiple absorption features that fortunately fall within the 2-micron and 5-micron spectral windows in Titan's atmosphere. We show that these features are visible in the spectra taken of Titan's surface and that they are characteristically different than those in the spectrum of liquid methane. Furthermore, just as ISS saw the surface brightness reverting to its original state after a period of time, we show that VIMS observations of later flybys show the surface composition in different stages of returning to its initial form as well. Funded by NASA.

  15. First observations of light non-methane hydrocarbons (C2-C5) over a high altitude site in the central Himalayas

    NASA Astrophysics Data System (ADS)

    Sarangi, Tapaswini; Naja, Manish; Lal, S.; Venkataramani, S.; Bhardwaj, Piyush; Ojha, N.; Kumar, R.; Chandola, H. C.

    2016-01-01

    This study presents observations of methane (CH4) and light non-methane hydrocarbons (NMHCs) for the first time from a high altitude site Nainital (29.4°N, 79.5°E, 1958 m amsl) in the central Himalayas. The whole air samples collected with a frequency of 3 samples per week during April 2009-December 2011 are analyzed using a Gas Chromatograph equipped with Flame Ionization Detector (GC-FID). Additionally, samples were collected from two semi-urban sites (Haldwani and Pantnagar) in the adjoining Indo Gangetic plain region. CH4 and NMHCs show a distinct seasonal cycle over this region with more frequent observations of higher levels during winter (DJF) and late autumn (SON) and lower levels during the summer-monsoon (JJA). Different NMHCs exhibit better correlations during autumn/winter as compared to the summer-monsoon season. The annual mean mixing ratios of methane, ethane, ethene, propane, propene, i-butane, n-butane, acetylene, and i-pentane at Nainital are measured to be 1.9 ± 0.1 ppmv, 1.8 ± 1.0, 0.7 ± 0.9, 0.6 ± 0.8, 0.6 ± 0.7, 0.6 ± 0.7, 0.5 ± 0.6, 1.0 ± 0.8, and 0.5 ± 0.6, respectively (all in ppbv). The seasonal cycle of CH4 at Nainital is found to be similar to other global high altitude sites (Jungfraujoch and Mauna Loa) but somewhat different than a high altitude site Mt. Abu in India. NMHCs, other than ethane and propane, are found to be higher over this central Himalayan region than other sites. Additionally, composition of NMHCs is shown to be different over the study region when compared with other sites in the IGP region. A correlation study between ln((n-butane)/(ethane)) and ln((i-butane)/(ethane)) showed that oxidation by the OH radical is the main removal mechanism of these species over the central Himalaya and dilution maintains the ratios of these species. The lowest slope of propane and acetylene with CO during summer and spring are indicating absence of fresh air mass over this region. This study fills a major gap in

  16. Origin and stability of a permafrost methane hydrate occurrence in the Canadian Shield

    NASA Astrophysics Data System (ADS)

    Stotler, Randy L.; Frape, Shaun K.; Ahonen, Lasse; Clark, Ian; Greene, Shane; Hobbs, Monique; Johnson, Elizabeth; Lemieux, Jean-Michel; Peltier, Richard; Pratt, Lisa; Ruskeeniemi, Timo; Sudicky, Ed; Tarasov, Lev

    2010-08-01

    Relatively little attention has been given to the stability of methane hydrates, formed during periods of past climate change, currently in areas of continuous permafrost. Although a large portion of the Canadian arctic is underlain by crystalline rocks, the occurrence, phase, and origin of alkanes in crystalline rocks under thick permafrost conditions (> 500 m) have not been reported. For the first time, composition and isotopic data for gases from a crystalline shield environment currently under permafrost conditions are presented. Gas and water samples were collected from exploration boreholes and seeps between 890 and 1130 m depths in the Lupin gold mine, Nunavut, Canada. Gases were methane-dominate (64-87%), with nitrogen (10-37%) the next largest component, and smaller amounts of ethane, propane, and carbon dioxide. Pressure and temperature measurements indicated gas hydrates were stable at the site prior to mining operations, a conclusion supported by noble gas and salinity determinations. Gas hydrate stability over the last 120 kyr glacial cycle was demonstrated by calculating transient subsurface pressure and temperature conditions utilizing the Memorial University/University of Toronto Glacial Systems Model (MUN/UofT GSM) and the Hydrogeosphere groundwater flow model. Model results also indicated glacial loading increased subsurface pressures, resulting in increased hydrate stability fields during glacial periods. Subglacial groundwater recharge would be limited by any significant formation of gas hydrates. Gas composition, combined with carbon and hydrogen isotopic determinations on methane (- 56 to - 42‰ VPDB and - 349 to - 181‰ VSMOW), carbon dioxide (- 55 to - 15‰ VPDB), ethane (- 37 to - 27‰ VPDB and - 330 to - 228‰ VSMOW), and propane (- 34 to - 27‰ VPDB and - 196 to - 172‰ VSMOW), indicated formation of natural gases by thermogenic processes, mixed with bacteriogenic gas, reasonable, given site geologic history. Methane hydrate

  17. Propane Vehicle Demonstration Grant Program

    SciTech Connect

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  18. Isolation of Two Novel Marine Ethylene-Assimilating Bacteria, Haliea Species ETY-M and ETY-NAG, Containing Particulate Methane Monooxygenase-like Genes

    PubMed Central

    Suzuki, Toshihiro; Nakamura, Takamichi; Fuse, Hiroyuki

    2012-01-01

    Two novel ethylene-assimilating bacteria, strains ETY-M and ETY-NAG, were isolated from seawater around Japan. The characteristics of both strains were investigated, and phylogenetic analyses of their 16S rRNA gene sequences showed that they belonged to the genus Haliea. In C1–4 gaseous hydrocarbons, both strains grew only on ethylene, but degraded ethane, propylene, and propane in addition to ethylene. Methane, n-butane, and i-butane were not utilized or degraded by either strain. Soluble methane monooxygenase-type genes, which are ubiquitous in alkene-assimilating bacteria for initial oxidation of alkenes, were not detected in these strains, although genes similar to particulate methane monooxygenases (pMMO)/ammonia monooxygenases (AMO) were observed. The phylogenetic tree of the deduced amino acid sequences formed a new clade near the monooxygenases of ethane-assimilating bacteria similar to other clades of pMMOs in type I, type II, and Verrucomicrobia methanotrophs and AMOs in alpha and beta proteobacteria. PMID:22307463

  19. Methane Emissions from the Arctic Ocean to the Atmosphere

    NASA Astrophysics Data System (ADS)

    Platt, Stephen; Hermansen, Ova; Schmidbauer, Norbert; Pisso, Ignacio; Silyakova, Anna; Ferré, Benedicte; Lowry, Dave; Percival, Carl; Mienert, Jürgen; Myhre, Cathrine Lund

    2015-04-01

    The release of methane (CH4) presently stored in vast hydrate deposits under the seafloor is a potential climate tipping point and a major uncertainty in the global methane budget. Significant methane hydrate deposits are located in shallow waters in the Arctic where they may destabilise, releasing methane to the atmosphere due to ocean warming. To address this issue the Methane Emissions from Arctic Ocean to Atmosphere (MOCA, http://moca.nilu.no/) project was established in cooperation with the CAGE Centre of Excellence (http:cage.uit.no/). State-of-the-art oceanographic and atmospheric measurement techniques were applied over a large area of the Arctic including northern Norway, the Barents Sea, and areas of shallow water around Svalbard during summer 2014. Oceanographic measurements included the deployment of 63 measurement stations (temperature, salinity, density, oxygen, fluorescence, turbidity, etc.), water column sampling (CH4, nitrate, phosphate, silicates), and echo sounding (revealing locations where streams of gas bubbles are vented). Atmospheric on-line measurements were performed aboard the research vessel Helmer Hanssen (CH4, CO2, CO, meteorological parameters) and during a flight campaign (CH4, etc.). Air samples were collected for isotopic analysis (13C, 2H) and quantification of other hydrocarbons (ethane, propane, etc.). Finally, atmospheric measurements are compared with long term data sets from the nearby Zeppelin Mountain monitoring station (Ny Ålesund, Svalbard). Back-trajectory analysis and FLEXPART modelling are used to rule out non-local sources. Here we present an overview of all of these activities and the first results from MOCA in cooperation with CAGE - Centre for Arctic Gas Hydrate, and Climate at UiT, The Arctic University of Norway. We demonstrate that there are hotspots of activity where hydrocarbons are being emitted from the ocean, while in some areas emissions are surprisingly well contained by local biological and hydrological

  20. Methane as a biomarker in the search for extraterrestrial life: Lessons learned from Mars analog hypersaline environments

    NASA Astrophysics Data System (ADS)

    Bebout, B.; Tazaz, A.; Kelley, C. A.; Poole, J. A.; Davila, A.; Chanton, J.

    2010-12-01

    Methane released from discrete regions on Mars, together with previous reports of methane determined with ground-based telescopes, has revived the possibility of past or even extant life near the surface on Mars, since 90% of the methane on Earth has a biological origin. This intriguing possibility is supported by the abundant evidence of large bodies of liquid water, and therefore of conditions conducive to the origin of life, early in the planet's history. The detection and analysis of methane is at the core of NASA’s strategies to search for life in the solar system, and on extrasolar planets. Because methane is also produced abiotically, it is important to generate criteria to unambiguously assess biogenicity. The stable carbon and hydrogen isotopic signature of methane, as well as its ratio to other low molecular weight hydrocarbons (the methane/(ethane + propane) ratio: C1/(C2 + C3)), has been suggested to be diagnostic for biogenic methane. We report measurements of the concentrations and stable isotopic signature of methane from hypersaline environments. We focus on hypersaline environments because spectrometers orbiting Mars have detected widespread chloride bearing deposits resembling salt flats. Other evaporitic minerals, e.g., sulfates, are also abundant in several regions, including those studied by the Mars Exploration Rovers. The presence of evaporitic minerals, together with the known evolution of the Martian climate, from warmer and wetter to cold and hyper-arid, suggest that evaporitic and hypersaline environments were common in the past. Hypersaline environments examined to date include salt ponds located in Baja California, the San Francisco Bay, and the Atacama Desert. Methane was found in gas produced both in the sediments, and in gypsum- and halite-hosted (endolithic) microbial communities. Maximum methane concentrations were as high as 40% by volume. The methane carbon isotopic (δ13C) composition showed a wide range of values, from about

  1. Atmospheric chemistry: The return of ethane

    NASA Astrophysics Data System (ADS)

    Hakola, Hannele; Hellén, Heidi

    2016-07-01

    Ethane emissions can lead to ozone pollution. Measurements at 49 sites show that long-declining atmospheric ethane concentrations started rising in 2010 in the Northern Hemisphere, largely due to greater oil and gas production in the USA.

  2. Propane respiration jump-starts microbial response to a deep oil spill.

    PubMed

    Valentine, David L; Kessler, John D; Redmond, Molly C; Mendes, Stephanie D; Heintz, Monica B; Farwell, Christopher; Hu, Lei; Kinnaman, Franklin S; Yvon-Lewis, Shari; Du, Mengran; Chan, Eric W; Garcia Tigreros, Fenix; Villanueva, Christie J

    2010-10-01

    The Deepwater Horizon event resulted in suspension of oil in the Gulf of Mexico water column because the leakage occurred at great depth. The distribution and fate of other abundant hydrocarbon constituents, such as natural gases, are also important in determining the impact of the leakage but are not yet well understood. From 11 to 21 June 2010, we investigated dissolved hydrocarbon gases at depth using chemical and isotopic surveys and on-site biodegradation studies. Propane and ethane were the primary drivers of microbial respiration, accounting for up to 70% of the observed oxygen depletion in fresh plumes. Propane and ethane trapped in the deep water may therefore promote rapid hydrocarbon respiration by low-diversity bacterial blooms, priming bacterial populations for degradation of other hydrocarbons in the aging plume. PMID:20847236

  3. Quantifying Methane Emissions from the Arctic Ocean Seabed to the Atmosphere

    NASA Astrophysics Data System (ADS)

    Platt, Stephen; Pisso, Ignacio; Schmidbauer, Norbert; Hermansen, Ove; Silyakova, Anna; Ferré, Benedicte; Vadakkepuliyambatta, Sunil; Myhre, Gunnar; Mienert, Jürgen; Stohl, Andreas; Myhre, Cathrine Lund

    2016-04-01

    Large quantities of methane are stored under the seafloor in the shallow waters of the Arctic Ocean. Some of this is in the form of hydrates which may be vulnerable to deomposition due to surface warming. The Methane Emissions from Arctic Ocean to Atmosphere MOCA, (http://moca.nilu.no/) project was established in collaboration with the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE, https://cage.uit.no/). In summer 2014, and summer and autumn 2015 we deployed oceanographic CTD (Conductivity, Temperature, Depth) stations and performed state-of-the-art atmospheric measurements of CH4, CO2, CO, and other meteorological parameters aboard the research vessel Helmer Hanssen west of Prins Karl's Forland, Svalbard. Air samples were collected for isotopic analysis (13C, 2H) and quantification of other hydrocarbons (ethane, propane, etc.). Atmospheric measurements are also available from the nearby Zeppelin Observatory at a mountain close to Ny-Ålesund, Svalbard. We will present data from these measurements that show an upper constraint of the methane flux in measurement area in 2014 too low to influence the annual CH4 budget. This is further supported by top-down constraints (maximum release consistent with observations at the Helmer Hansen and Zeppelin Observatory) determined using FLEXPART foot print sensitivities and the OsloCTM3 model. The low flux estimates despite the presence of active seeps in the area (numerous gas flares were observed using echo sounding) were apparently due to the presence of a stable ocean pycnocline at ~50 m.

  4. Speciated non-methane organic compounds emissions from food cooking in Mexico

    NASA Astrophysics Data System (ADS)

    Mugica, V.; Vega, E.; Chow, J.; Reyes, E.; Sánchez, G.; Arriaga, J.; Egami, R.; Watson, J.

    Non-methane organic compound (NMOC) emissions from different sorts of food preparation sites, were quantified for the first time in Mexico, in order to develop emission profiles for further application in the chemical mass balance receptor model (CMB). Restaurants using charcoal grills and LP gas stoves, "tortillerı´as", food frying places and rotisseries were sampled using SUMMA ® stainless-steel canisters to analyse NMOC by high-resolution gas chromatography. The results obtained show that profiles determined from food cooking processes have similarities to those found in LP gas combustion, which is the most common fuel in Mexico used for this purpose, although there were differences in the relative composition of propane and butane in both cases. This suggests that, the rates of combustion of propane and butane are different. It has also been detected that propene, a reactive olefin is produced during the combustion process. The obtained profiles of restaurants, rotisseries and fried food show an important contribution of two carbon compounds (ethane, ethylene and acetylene) that can be attributed to the complex process of grease and meat cooking. The presence of these compounds cannot be attributed to vehicular sources since the concentrations are higher than in ambient air. These were also determined from aromatic compounds such as benzene, toluene and xylene in the combustion of vegetal charcoal. The measured concentrations indicate that NMOC emissions from cooking may become an important indoor source of NMOC under crowded conditions in closed places.

  5. The ozone formation potential of 1-bromo-propane.

    PubMed

    Whitten, Gary Z; Cohen, Jonathan P; Myers, Thomas C; Carter, William P L

    2003-03-01

    1-Bromo-propane (1-BP) is a replacement for high-end chlorofluorocarbon (HCFC) solvents. Its reaction rate constant with the OH radical is, on a weight basis, significantly less than that of ethane. However, the overall smog formation chemistry of 1-BP appears to be very unusual compared with typical volatile organic compounds (VOCs) and relatively complex because of the presence of bromine. In smog chamber experiments, 1-BP initially shows a faster ozone build-up than what would be expected from ethane, but the secondary products containing bromine tend to destroy ozone such that 1-BP can have a net overall negative reactivity. Alternative sets of reactions are offered to explain this unusual behavior. Follow-up studies are suggested to resolve the chemistry. Using one set of bromine-related reactions in a photochemical grid model shows that 1-BP would be less reactive toward peak ozone formation than ethane with a trend toward even lower ozone impacts in the future. PMID:12661686

  6. Identifying Methane Sources in Groundwater; Quantifying Changes in Compositional and Stable Isotope Values during Multiphase Transport

    NASA Astrophysics Data System (ADS)

    Larson, T.; Sathaye, K.

    2014-12-01

    A dramatic expansion of hydraulic fracturing and horizontal drilling for natural gas in unconventional reserves is underway. This expansion is fueling considerable public concern, however, that extracted natural gas, reservoir brines and associated fracking fluids may infiltrate to and contaminate shallower (< 500m depth) groundwater reservoirs, thereby posing a health threat. Attributing methane found in shallow groundwater to either deep thermogenic 'fracking' operations or locally-derived shallow microbial sources utilizes geochemical methods including alkane wetness and stable carbon and hydrogen isotope ratios of short chain (C1-C5) hydrocarbons. Compared to shallow microbial gas, thermogenic gas is wetter and falls within a different range of δ13C and δD values. What is not clear, however, is how the transport of natural gas through water saturated geological media may affect its compositional and stable isotope values. What is needed is a means to differentiate potential flow paths of natural gas including 'fast paths' along preexisting fractures and drill casings vs. 'slow paths' through low permeability rocks. In this study we attempt quantify transport-related effects using experimental 1-dimensional two-phase column experiments and analytical solutions to multi-phase gas injection equations. Two-phase experimental results for an injection of natural gas into a water saturated column packed with crushed illite show that the natural gas becomes enriched in methane compared to ethane and propane during transport. Carbon isotope measurements are ongoing. Results from the multi-phase gas injection equations that include methane isotopologue solubility and diffusion effects predict the development of a 'bank' of methane depleted in 13C relative to 12C at the front of a plume of fugitive natural gas. These results, therefore, suggest that transport of natural gas through water saturated geological media may complicate attribution methods needed to distinguish

  7. Propane-d6 Heterogeneously Hyperpolarized by Parahydrogen

    PubMed Central

    2015-01-01

    Long-lived spin states of hyperpolarized propane-d6 gas were demonstrated following pairwise addition of parahydrogen gas to propene-d6 using heterogeneous parahydrogen-induced polarization (HET-PHIP). Hyperpolarized molecules were synthesized using Rh/TiO2 solid catalyst with 1.6 nm Rh nanoparticles. Hyperpolarized (PH ∼ 1%) propane-d6 was detected at high magnetic field (9.4 T) spectroscopically and by high-resolution 3D gradient-echo MRI (4.7 T) as the gas flowed through the radiofrequency coil with a spatial and temporal resolution of 0.5 × 0.5 × 0.5 mm3 and 17.7 s, respectively. Stopped-flow hyperpolarized propane-d6 gas was also detected at 0.0475 T with an observed nuclear spin polarization of PH ∼ 0.1% and a relatively long lifetime with T1,eff = 6.0 ± 0.3 s. Importantly, it was shown that the hyperpolarized protons of the deuterated product obtained via pairwise parahydrogen addition could be detected directly at low magnetic field. Importantly, the relatively long low-field T1,eff of HP propane-d6 gas is not susceptible to paramagnetic impurities as tested by exposure to ∼0.2 atm oxygen. This long lifetime and nontoxic nature of propane gas could be useful for bioimaging applications including potentially pulmonary low-field MRI. The feasibility of high-resolution low-field 2D gradient-echo MRI was demonstrated with 0.88 × 0.88 mm2 spatial and ∼0.7 s temporal resolution, respectively, at 0.0475 T. PMID:25506406

  8. Remote Sensing and Sea-Truth Measurements of Methane Flux to the Atmosphere (HYFLUX project)

    SciTech Connect

    Ian MacDonald

    2011-05-31

    A multi-disciplinary investigation of distribution and magnitude of methane fluxes from seafloor gas hydrate deposits in the Gulf of Mexico was conducted based on results obtained from satellite synthetic aperture radar (SAR) remote sensing and from sampling conducted during a research expedition to three sites where gas hydrate occurs (MC118, GC600, and GC185). Samples of sediments, water, and air were collected from the ship and from an ROV submersible using sediments cores, niskin bottles attached to the ROV and to a rosette, and an automated sea-air interface collector. The SAR images were used to quantify the magnitude and distribution of natural oil and gas seeps that produced perennial oil slicks on the ocean surface. A total of 176 SAR images were processed using a texture classifying neural network algorithm, which segmented the ocean surface into oil-free and oil-covered water. Geostatistical analysis indicates that there are a total of 1081 seep formations distributed over the entire Gulf of Mexico basin. Oil-covered water comprised an average of 780.0 sq. km (sd 86.03) distributed with an area of 147,370 sq. km. Persistent oil and gas seeps were also detected with SAR sampling on other ocean margins located in the Black Sea, western coast of Africa, and offshore Pakistan. Analysis of sediment cores from all three sites show profiles of sulfate, sulfide, calcium and alkalinity that indicated anaerobic oxidation of methane with precipitation of authigenic carbonates. Difference among the three sampling sites may reflect the relative magnitude of methane flux. Methane concentrations in water column samples collected by ROV and rosette deployments from MC118 ranged from {approx}33,000 nM at the seafloor to {approx}12 nM in the mixed layer with isolated peaks up to {approx}13,670 nM coincident with the top of the gas hydrate stability field. Average plume methane, ethane, and propane concentrations in the mixed layer are 7, 630, and 9,540 times saturation

  9. Significant Methane Emissions from Abandoned Oil and Gas wells in Northwest Pennsylvania

    NASA Astrophysics Data System (ADS)

    Kang, M.; Zhang, X.; Reid, M. C.; Kanno, C.; Celia, M. A.; Mauzerall, D. L.; Sun, K.; Miller, D. J.; Zondlo, M. A.; Chen, Y.; Onstott, T. C.

    2013-12-01

    Abandoned (no longer operated), Orphaned (abandoned and responsible party unavailable), and/or Lost (location unknown, cannot be confirmed, or not on record) (AOL) wells provide a potential pathway for subsurface migration, and emissions to the atmosphere, of methane and other volatile hydrocarbons. However, little is known about methane fluxes from AOL wells. Of the 12,000 abandoned and orphaned oil and gas wells on the Pennsylvania Department of Environmental Protection's (PA DEP) list, 36% are in McKean County. McKean County is home to the Bradford Oil Field, the world's first large oil field, which in 1881 produced 83% of America's output. A large fraction of the oil and gas wells in McKean County are AOL and some estimates of the number of AOL wells exceed the number of wells listed by the PA DEP by factors of 20 or more. To characterize AOL wells' potential as a significant methane source, we made first-of-a-kind measurements of methane fluxes from 8 abandoned wells in McKean County using static flux chambers. These wells are on a 40-acre lot, which includes various land cover types. Four of the eight measured wells are in forested areas, while three are in grassland, and one is in wetland areas. Two of the eight wells, one in a forested area and one in the grassland area, are plugged. Fluxes of methane, ethane, propane, and n-butane were measured using flame ionization gas chromatography. To gain insight into the source of methane (biogenic vs. thermogenic), carbon and hydrogen isotopes of methane were analyzed and the ratio of methane to heavier hydrocarbons were computed. In addition, a LI-7700 open path methane analyzer was used to provide on-line methane concentration measurement in the vicinity of AOL wells and in flux chambers. We found methane fluxes from the measured AOL wells to be significantly higher than fluxes observed in similar natural environments. Methane emissions from the two plugged wells were smaller than those from unplugged wells but

  10. EFFECTS OF ETHANE DIMETHANESULFONATE (EDS) ON ADULT AND IMMATURE RABBIT LEYDIG CELLS: COMPARISON WITH EDS-TREATED RAT LEYDIG CELLS

    EPA Science Inventory

    Ethane-dimethanesulfonate (EDS) has been shown to selectively kill Leydig cells and depress testosterone production in adult rats. ecent study has shown that immature rat leydig cells are less sensitive to EDS exposure. here is evidence that the rabbit metabolizes EDS to methane ...

  11. Natural flux of greenhouse methane from the Timor Sea to the atmosphere

    NASA Astrophysics Data System (ADS)

    Brunskill, G. J.; Burns, K. A.; Zagorskis, I.

    2011-06-01

    Methane gas bubbles from the Cornea Seep were sampled at the sea surface in the Timor Sea continental shelf area in June 2005. Total bubble gas flux was 0.076 to 0.76 L m-2 h-1 during the 6 h d-1 periods of low neap tides in June 2005. This bubble gas contained an average of 26 mmol CH4 L-1 and about 0.16 and 0.006 mmol L-1 of ethane and propane. We estimate the daily flux from the sea surface to the atmosphere to be 0.012 to 0.12 mol CH4 m-2 d-1 or 0.13 to 1.3 t CH4 d-1 from an area of about 0.7 km2. This methane flux came from a 500 × 1400 m carbonate pavement dome on the seafloor at 84 m water depth. The seep hard ground was swath mapped, and 3.5 kHz subbottom profile data indicate that the seep dome was strongly reflective with poor penetration into the subsurface, consistent with the presence of a carbonate hard ground. Carbon and deuterium isotope ratios (δ13C = -41 to -42‰, δD = -157 to -158‰) of the seep bubble gas indicate that this methane had a thermogenic origin and was in the same isotopic range as gas within the Late Cretaceous Cornea oil and gas field. We could not detect inputs of fluids containing nutrients or short-lived radium isotopes at this site, commonly associated with other cold seeps. Tens to a hundred of kilometers seaward from the Cornea seep site, water column dissolved methane concentrations in this sector of the Timor Sea shelf and slope were 100-500 times supersaturated with respect to the atmosphere, and thus the water column is expected to be degassing additional methane to the atmosphere. Perhaps there are thousands of other methane seeps (of similar magnitude to the Cornea Seep) on this shelf and slope to account for all the excess dissolved methane (˜86,000 t) measured in the water column. These measured and calculated fluxes provide evidence for the hypothesis that shallow sea seeps may be a significant source of atmospheric methane, in contrast to deep sea vents, where most of the methane is dissolved and oxidized in

  12. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    SciTech Connect

    Valentine, David

    2012-09-30

    process as a biofilter by studying the distribution of methane oxidation and disposition of methanotrophic populations in the Pacific Ocean. We investigated several environments including the basins offshore California, the continental margin off Central America, and the shallow waters around gas seeps. We succeeded in identifying the distributions of activity in these environments, identified potential physical and chemical controls on methanotrophic activity, we further revealed details about the methanotrophic communities active in these settings, and we developed new approaches to study methanotrophic communities. These findings should improve our capacity to predict the methanotrophic response in ocean waters, and further our ability to generate specific hypotheses as to the ecology and efficacy of pelagic methanotrophic communites. The discharge of methane and other hydrocarbons to Gulf of Mexico that followed the sinking of the Deepwater Horizon provided a unique opportunity to study the methanotorphic biofilter in the deep ocean environment. We set out to understand the consumption of methane and the bloom of methanotrophs resulting from this event, as a window into the regional scale release of gas hydrate under rapid warming scenarios. We found that other hydrocarbon gases, notably propane and ethane, were preferred for consumption over methane, but that methane consumption accelerated rapidly and drove the depletion of methane within a matter of months after initial release. These results revealed the identity of the responsible community, and point to the importance of the seed population in determining the rate at which a methanotrophic community is able to respond to an input of methane. Collectively, these results provide a significant advance in our understanding of the marine methanotrohic biofilter, and further provide direction and context for future investigations of this important phenomenon. This project has resulted in fourteen publications to date

  13. Conversion of methane to higher hydrocarbons in ac nonequilibrium plasmas

    SciTech Connect

    Thanyachotpaiboon, K.; Chavadej; Caldwell, T.A.; Lobban, L.L.; Mallinson, R.G.

    1998-10-01

    The effects of plasma chemistry on the conversion of methane were studied using a dielectric barrier discharge reactor at ambient temperatures. A dielectric barrier discharge reactor generates a nonequilibrium plasma when a sufficiently high voltage is applied across the reactor`s electrodes. Methane molecules are activated at this temperature and coupled to form C{sub 2} hydrocarbons, higher hydrocarbons, and hydrogen. The study on the effect of voltage, residence time and third bodies on methane conversion and product selectivity shows that methane conversion initially increases with increasing voltage and residence time above the breakdown voltage, and product selectivities are essentially independent of the voltage. Production of hydrogen during the reaction limits olefin production. Methane conversion also increases when helium and ethane are in the feed stream. Helium and ethane both appear to be more easily activated than methane and enhance methane activation and conversion.

  14. LABORATORY STUDIES ON THE IRRADIATION OF SOLID ETHANE ANALOG ICES AND IMPLICATIONS TO TITAN'S CHEMISTRY

    SciTech Connect

    Kim, Y. S.; Bennett, C. J.; Chen, L-H; Kaiser, R. I.; O'Brien, K.

    2010-03-10

    Pure ethane ices (C{sub 2}H{sub 6}) were irradiated at 10, 30, and 50 K under contamination-free, ultrahigh vacuum conditions with energetic electrons generated in the track of galactic cosmic-ray (GCR) particles to simulate the interaction of GCRs with ethane ices in the outer solar system. The chemical processing of the samples was monitored by a Fourier transform infrared spectrometer and a quadrupole mass spectrometer during the irradiation phase and subsequent warm-up phases on line and in situ in order to extract qualitative (products) and quantitative (rate constants and yields) information on the newly synthesized molecules. Six hydrocarbons, methane (CH{sub 4}), acetylene (C{sub 2}H{sub 2}), ethylene (C{sub 2}H{sub 4}), and the ethyl radical (C{sub 2}H{sub 5}), together with n-butane (C{sub 4}H{sub 10}) and butene (C{sub 4}H{sub 8}), were found to form at the radiation dose reaching 1.4 eV per molecule. The column densities of these species were quantified in the irradiated ices at each temperature, permitting us to elucidate the temperature and phase-dependent production rates of individual molecules. A kinetic reaction scheme was developed to fit column densities of those species produced during irradiation of amorphous/crystalline ethane held at 10, 30, or 50 K. In general, the yield of the newly formed molecules dropped consistently for all species as the temperature was raised from 10 K to 50 K. Second, the yield in the amorphous samples was found to be systematically higher than in the crystalline samples at constant temperature. A closer look at the branching ratios indicates that ethane decomposes predominantly to ethylene and molecular hydrogen, which may compete with the formation of n-butane inside the ethane matrix. Among the higher molecular products, n-butane dominates. Of particular relevance to the atmosphere of Saturn's moon Titan is the radiation-induced methane production from ethane-an alternative source of replenishing methane into the

  15. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane. Quarterly technical progress report No. 13, April 1996--June 1996

    SciTech Connect

    McCormick, R.L.; Alptekin, G.O.

    1996-07-30

    This document is the thirteenth quarterly technical progress report under Contract No. DE-AC22-92PC92110 {open_quotes}Development of Vanadium-Phosphate Catalysts for Methanol Production by Selective Oxidation of Methane{close_quotes} and covers the period April-June 1996. The basic premise of this project is that vanadyl pyrophosphate (VPO), a catalyst used commercially in the selective oxidation of butane to maleic anhydride, can be developed as a catalyst for selective methane oxidation. Data supporting this idea include published reports indicating moderate to high selectivity in oxidation of ethane, propane, and pentane, as well as butane. Methane oxidation is a much more difficult reaction to catalyze than that of other alkanes and it is expected that considerable modification of vanadyl pyrophosphate will be required for this application. It is well known that VPO can be modified extensively with a large number of different promoters and in particular that promoters can enhance selectivity and lower the temperature required for butane conversion.

  16. Benzene-Ethane Co-Crystals on the Surface of Titan

    NASA Astrophysics Data System (ADS)

    Vu, T. H.; Hodyss, R. P.; Cable, M. L.; Maynard-Casely, H. E.; Malaska, M. J.; Beauchamp, P. M.

    2014-12-01

    Benzene is found at high abundance in Titan's atmosphere and is a likely constituent of evaporite deposits formed around the hydrocarbon lakes. This work aims to understand the composition and nature of the surface evaporites by focusing on the interaction between benzene and ethane, a principal component of the lake fluids. We have discovered a new benzene-ethane co-crystalline structure which forms under Titan-like conditions (90-150 K and 1 bar), resulting in recrystallization of the benzene lattice that can be detected via micro-Raman spectroscopy. Evidence for ethane incorporation includes two new distinctive ethane features at 2873 and 1455 cm-1 and marked red shifts of the benzene peaks in the Raman spectra. Vibrational analysis reveals a C-H…π interaction between the aromatic ring of benzene and the hydrogen atoms of ethane through a monodentate contact. The kinetics of co-crystal formation is also determined, giving a relatively mild activation energy of 10.2 kJ/mol. It is shown that the formation process would reach completion in ~18 hours, and that benzene precipitates selectively as the co-crystal from a mixture of liquid ethane and methane. Synchrotron powder X-ray diffraction data confirms the crystalline nature of the new material. These results imply that benzene and similar organics may act as potential hydrocarbon reservoirs due to this incorporation mechanism. These novel structures represent a new class of materials for Titan's surface that may influence evaporite characteristics, such as particle size and infrared spectral properties.

  17. High-Resolution Spectroscopy of Stratospheric Ethane Following the Jupiter Impact of 2009

    NASA Technical Reports Server (NTRS)

    Fast, Kelly; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Amen, John

    2010-01-01

    We report on high-resolution infrared spectroscopy of ethane (C2H6) performed at the latitude of an impact site on Jupiter discovered on 19 July 2009 by A. Wesley from a location in Murrumbateman, Australia. The observations used the NASA Goddard Space Flight Center's Heterodyne Instrument for Planetary Wind and Composition (HIPWAC) at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii. HIPWAC is a mid-infrared (9-12 microns) heterodyne spectrometer operating at the highest limit of spectral resolving power (lambda\\Delta\\lambda > l06), providing information on atmospheric constituent abundance and temperature through fully resolved tine shapes. Ethane is a stable trace product of methane photochemistry that is nearly uniformly mixed in Jupiter's stratosphere, providing an effective probe of that altitude region. Ethane emission line profiles near 11,74 microns in the Ug band were measured in Jupiter's stratosphere at 25 MHz (11.00083/cm) resolution. A sequence of spectra of ethane acquired over a range of longitude at the impact latitude (56S planetocentric) probes constituent abundance and temperature profile, both on and off the impact region. Near the site of the impact, ethane emission increased above levels measured well outside the impact region. Radiative transfer analysis indicates increased ethane mole fraction (30% greater). Variation in the measured continuum level and line intensities within 75deg of the impact longitude indicate the presence of an opacity source (haze) at altitudes near and above the tropopause and as high as the 10-mbar level near the impact site. The indication of possible haze opacity up to the 10-mbar level in the atmosphere is consistent with measurements made by HIPWAC's predecessor as part of the IRTF Shoemaker Levy-9 campaign in 1994.

  18. Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan's Chemistry

    NASA Astrophysics Data System (ADS)

    Kim, Y. S.; Bennett, C. J.; Chen, Li-Hsieh; O'Brien, K.; Kaiser, R. I.

    2010-03-01

    Pure ethane ices (C2H6) were irradiated at 10, 30, and 50 K under contamination-free, ultrahigh vacuum conditions with energetic electrons generated in the track of galactic cosmic-ray (GCR) particles to simulate the interaction of GCRs with ethane ices in the outer solar system. The chemical processing of the samples was monitored by a Fourier transform infrared spectrometer and a quadrupole mass spectrometer during the irradiation phase and subsequent warm-up phases on line and in situ in order to extract qualitative (products) and quantitative (rate constants and yields) information on the newly synthesized molecules. Six hydrocarbons, methane (CH4), acetylene (C2H2), ethylene (C2H4), and the ethyl radical (C2H5), together with n-butane (C4H10) and butene (C4H8), were found to form at the radiation dose reaching 1.4 eV per molecule. The column densities of these species were quantified in the irradiated ices at each temperature, permitting us to elucidate the temperature and phase-dependent production rates of individual molecules. A kinetic reaction scheme was developed to fit column densities of those species produced during irradiation of amorphous/crystalline ethane held at 10, 30, or 50 K. In general, the yield of the newly formed molecules dropped consistently for all species as the temperature was raised from 10 K to 50 K. Second, the yield in the amorphous samples was found to be systematically higher than in the crystalline samples at constant temperature. A closer look at the branching ratios indicates that ethane decomposes predominantly to ethylene and molecular hydrogen, which may compete with the formation of n-butane inside the ethane matrix. Among the higher molecular products, n-butane dominates. Of particular relevance to the atmosphere of Saturn's moon Titan is the radiation-induced methane production from ethane—an alternative source of replenishing methane into the atmosphere. Finally, we discuss to what extent the n-butane could be the

  19. C-H and C-C clumping in ethane by high-resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Clog, M. D.; Eiler, J. M.

    2014-12-01

    Ethane (C2H6) is an important natural compound, and its geochemistry can be studied through 13C-13C, 13C-D and/or D-D clumping. Such measurements are potentially important both as a stepping stone towards the study of more complex organic molecules and, in its own regard, to understand processes controlling the generation, migration and destruction of natural gas. Isotopic clumping on C-C and C-H bonds could be influenced by thermodynamics, chemical kinetics, diffusion or gas mixing. Previous work showed that 13C-D clumping in methane generally reflects equilibrium and provides a measure of formation temperature (Stolper et al 2014a), whereas 13C-13C clumping in ethane is likely most controlled by chemical-kinetic processes and/or inheritance from the isotopic structure of source organic compounds (Clog et al 2014). 13C-D clumping in ethane has the potential to provide a thermometer for its synthesis, as it does for methane. However, the difference in C-H bond dissociation energy for these two compounds may suggest a lower 'blocking temperature' for this phenomenon in ethane (the blocking temperature for methane is ≥~250 C in geological conditions). We present analytical techniques to measure both 13C-13C and 13C-D clumping in ethane, using a novel two-instrument technique, including both the Thermo 253-Ultra and the Thermo DFS. In this method, the Ultra is used to measure the relative abundances of combinations nearly isobaric isotopologues: (13C12CH6 + 12C2DH5)/12C2H6 and (13C2H6 + 12C13CDH5)/12C2H6, free of other isobaric interferences like O2. The DFS, a very high resolution single-collector instrument, is then used to measure the ratios of isotopologues of ethane at a single cardinal mass: 12C2DH5/13C12CH6, and 12C13CDH5/13C2H6, with precisions of ~1 permil. Those 4 measurements allow us to calculate the bulk isotopic composition (D and 13C) as well as the abundance of 13C2H6 and 13C12CDH5. We also present progress on the development of software tools

  20. Comparison of combustion characteristics of ASTM A-1, propane, and natural-gas fuels in an annular turbojet combustor

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.

    1973-01-01

    The performance of an annular turbojet combustor using natural-gas fuel is compared with that obtained using ASTM A-1 and propane fuels. Propane gas was used to simulate operation with vaporized kerosene fuels. The results obtained at severe operating conditions and altitude relight conditions show that natural gas is inferior to both ASTM A-1 and propane fuels. Combustion efficiencies were significantly lower and combustor pressures for relight were higher with natural-gas fuel than with the other fuels. The inferior performance of natural gas is shown to be caused by the chemical stability of the methane molecule.

  1. Purification and properties of the methane mono-oxygenase enzyme system from Methylosinus trichosporium OB3b.

    PubMed Central

    Tonge, G M; Harrison, D E; Higgins, I J

    1977-01-01

    1. A three-component enzyme system that catalyses the oxidation of methane to methanol has been highly purified from Methylosinus trichosporium. 2. The components are (i) a soluble CO-binding cytochrome c, (ii) a copper-containing protein and (iii) a small protein; the mol. wts. are 13 000, 47 000 and 9400 respectively. The cytochrome component cannot be replaced by similar cytochrome purified from Pseudomonas extorquens or by horse heart cytochrome c. 3. The stoicheiometry suggests a mono-oxygenase mechanism and the specific activity with methane as substrate is 6 micronmol/min per mg of protein. 4. Other substrates rapidly oxidized are ethane, n-propane, n-butane and CO. Dimethyl ether is not a substrate. 5. The purified enzyme system utilizes ascorbate or, in the presence of partially purified M. trichosporium methanol dehydrogenase, methanol as electron donor but not NADH or NADPH. 6. Activity is highly sensitive to low concentrations of a variety of chelating agents, cyanide, 2-mercaptoethanol and dithiothreitol. 7. Activity is highly pH-dependent (optimum 6.9-7.0) and no component of the enzyme is stable to freezing. 8. The soluble CO-binding cytochrome c shows oxidase acitivity and the relationship between this and the oxygenase activity is discussed. Images Fig. 3. PMID:15544

  2. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  3. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  4. 75 FR 14131 - Effect on Propane Consumers of the Propane Education and Research Council's Operations, Market...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-24

    ... comment on whether the operation of the Propane Education and Research Council (PERC), in conjunction with... International Trade Administration Effect on Propane Consumers of the Propane Education and Research Council's... information to fulfill requirements under the Propane Education and Research Act of 1996 that established...

  5. SUPPRESSION OF COKE FORMATION IN THE STEAM CRACKING OF ALKANES: ETHANE AND PROPANE. (R825412)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Surface Termination of M1 Phase and Rational Design of Propane Ammoxidation Catalysts

    SciTech Connect

    Guliants, Vadim

    2015-02-16

    This final report describes major accomplishments in this research project which has demonstrated that the M1 phase is the only crystalline phase required for propane ammoxidation to acrylonitrile and that a surface monolayer terminating the ab planes of the M1 phase is responsible for their activity and selectivity in this reaction. Fundamental studies of the topmost surface chemistry and mechanism of propane ammoxidation over the Mo-V-(Te,Sb)-(Nb,Ta)-O M1 and M2 phases resulted in the development of quantitative understanding of the surface molecular structure – reactivity relationships for this unique catalytic system. These oxides possess unique catalytic properties among mixed metal oxides, because they selectively catalyze three alkane transformation reactions, namely propane ammoxidation to acrylonitrile, propane oxidation to acrylic acid and ethane oxidative dehydrogenation, all of considerable economic significance. Therefore, the larger goal of this research was to expand this catalysis to other alkanes of commercial interest, and more broadly, demonstrate successful approaches to rational design of improved catalysts that can be applied to other selective (amm)oxidation processes.

  7. Redox controls on methane formation, migration and fate in shallow aquifers

    NASA Astrophysics Data System (ADS)

    Humez, Pauline; Mayer, Bernhard; Nightingale, Michael; Becker, Veith; Kingston, Andrew; Taylor, Stephen; Bayegnak, Guy; Millot, Romain; Kloppmann, Wolfram

    2016-07-01

    geochemistry data revealed that the elevated δ13CCH4 values were caused by microbial oxidation of biogenic methane or post-sampling degradation of low CH4 content samples rather than migration of deep thermogenic gas. A significant number of samples (39.2 %) contained methane with predominantly biogenic C isotope ratios (δ13CCH4 < -55 ‰) accompanied by elevated concentrations of ethane and sometimes trace concentrations of propane. These gases, observed in 28.1 % of the samples, bearing both biogenic (δ13C) and thermogenic (presence of C3) characteristics, are most likely derived from shallow coal seams that are prevalent in the Cretaceous Horseshoe Canyon and neighboring formations in which some of the groundwater wells are completed. The remaining 3.7 % of samples were not assigned because of conflicting parameters in the data sets or between replicates samples. Hence, despite quite variable gas concentrations and a wide range of δ13CCH4 values in baseline groundwater samples, we found no conclusive evidence for deep thermogenic gas migration into shallow aquifers either naturally or via anthropogenically induced pathways in this baseline groundwater survey. This study shows that the combined interpretation of aqueous geochemistry data in concert with chemical and isotopic compositions of dissolved and/or free gas can yield unprecedented insights into formation and potential migration of methane in shallow groundwater. This enables the assessment of cross-formational methane migration and provides an understanding of alkane gas sources and pathways necessary for a stringent baseline definition in the context of current and future unconventional hydrocarbon exploration and exploitation.

  8. Carbonyls and non-methane hydrocarbons at a rural mountain site in northeastern United States.

    PubMed

    Khwaja, Haider A; Narang, Amarjit

    2008-05-01

    Measurements of carbonyls and C(2)-C(6) non-methane hydrocarbons (NMHCs) were made in ambient air at a rural site at the summit of Whiteface Mountain (WFM) in New York State. Alkanes dominated in the samples, with ethane and propane making up about 55% of the total on a carbon-atom basis. Ethane, the longest-lived of the NMHCs, showed a mixing ratio in the range of 0.86-2.1 ppbv. Photochemical ageing analysis indicated an anthropogenic influence on the NMHC levels. The photochemical reactivity of the hydrocarbons, calculated in terms of propylene-equivalent concentration, was dominated by alkenes (propene and ethene), which accounted for 74% of the total NMHC sum. Air mass back-trajectories have been used to investigate the origin of the observed NMHCs and carbonyls. Higher concentrations were found when air masses arrived from the midwestern US corridor. Acetone was the most abundant species, comprising from 31% to 53% of the total detected carbonyls, followed by MEK (15-53%), HCHO (7-39%), and CH(3)CHO (7-19%). Average concentrations were determined to be 1.61 ppbv for CH(3)C(O)CH(3), 1.40 ppbv for MEK, 1.16 ppbv for HCHO, and 0.49 ppbv for CH(3)CHO. The variations in carbonyl concentrations were observed to follow patterns similar to variations in O(3) concentrations, typical of secondary products. Correlations and statistical analysis of the carbonyls and NMHCs were performed, and showed that most of the compounds derived from mixing and photochemical transformation of long-range transported pollutants from the major source areas. Ranking of the carbonyls with respect to removal of the OH radical showed HCHO to be the most important species, followed by CH(3)CHO, MEK, and CH(3)C(O)CH(3). PMID:18420251

  9. Ambient air/near-field measurements of methane and Volatile Organic Compounds (VOCs) from a natural gas facility in Northern Europe

    NASA Astrophysics Data System (ADS)

    Baudic, Alexia; Gros, Valérie; Bonsang, Bernard; Baisnee, Dominique; Vogel, Félix; Yver Kwok, Camille; Ars, Sébastien; Finlayson, Andrew; Innocenti, Fabrizio; Robinson, Rod

    2015-04-01

    Since the 1970's, the natural gas consumption saw a rapid growth in large urban centers, thus becoming an important energy resource to meet continuous needs of factories and inhabitants. Nevertheless, it can be a substantial source of methane (CH4) and pollutants in urban areas. For instance, we have determined that about 20% of Volatile Organic Compounds (VOCs) in downtown Paris are originating from this emission source (Baudic, Gros et al., in preparation). Within the framework of the "Fugitive Methane Emissions" (FuME) project (Climate-KIC, EIT); 2-weeks gas measurements were conducted at a gas compressor station in Northern Europe. Continuous ambient air measurements of methane and VOCs concentrations were performed using a cavity ring-down spectrometer (model G2201, Picarro Inc., Santa Clara, USA) and two portable GC-FID (Chromatotec, Saint-Antoine, France), respectively. On-site near-field samplings were also carried out at the source of two pipelines using stainless steel flasks (later analyzed with a laboratory GC-FID). The objective of this study aims to use VOCs as additional tracers in order to better characterize the fugitive methane emissions in a complex environment, which can be affected by several urban sources (road-traffic, others industries, etc.). Moreover, these measurements have allowed determining the chemical composition of this specific source. Our results revealed that the variability of methane and some VOCs was (rather) well correlated, especially for alkanes (ethane, propane, etc.). An analysis of selected events with strong concentrations enhancement was performed using ambient air measurements; thus allowing the preliminary identification of different emission sources. In addition, some flasks were also sampled in Paris to determine the local natural gas composition. A comparison between both was then performed. Preliminary results from these experiments will be presented here.

  10. Does the vertical profile of ethane contain more insight into mixing layer height than carbon monoxide?

    NASA Astrophysics Data System (ADS)

    Herndon, Scott; Yacovitch, Tara; Pusede, Sally; Diskin, Glenn; DiGangi, Joshua; Sachse, Glenn; Crawford, James

    2015-04-01

    To improve the interpretation of satellite data measurements near the surface, the DISCOVER-AQ project embarked on a four year campaign to produce an integrated dataset of airborne and surface based measurements at various locations in North America. One of the key metrics when pursuing the the goal of measuring the surface air quality from space is the mixing layer height. The measurement phase in 2014 included the novel 1-Hz Aerodyne Research, Inc. fast Ethane Spectrometer to distinguish the methane emissions from thermogenic (oil&gas) and biogenic sources in the Denver-Julesberg basin. A second potential use of ethane as a determinant of mixing layer height is revealed in the analysis of 213 vertical profiles collected at 7 points during 21 flights. The findings are evaluated relative to other in-situ metrics, such as carbon monoxide and remote sensing attributions of mixing layer height.

  11. Self- and air-broadened cross sections of ethane (C2H6) determined by frequency-stabilized cavity ring-down spectroscopy near 1.68 μm

    NASA Astrophysics Data System (ADS)

    Reed, Zachary D.; Hodges, Joseph T.

    2015-07-01

    The absorption spectrum of ethane was measured by frequency-stabilized cavity ring-down spectroscopy over the wave number range 5950-5967 cm-1. Spectra are reported for both pure ethane acquired at pressures near 3 Pa and mixtures of ethane in air at pressures ranging from 666 Pa to 101.3 kPa. Absorption cross sections are reported with a spectrum sampling period of 109 MHz and frequency resolution of 200 kHz. Atmospheric pressure cross sections agree fairly well with existing cross sections determined by FTS in nitrogen, but there are significant variations in cross sections at lower pressures. Source identification of fugitive methane emissions using spectroscopic measurements of the atmospheric ethane-to-methane ratio is also discussed.

  12. Ethane-xenon mixtures under shock conditions

    NASA Astrophysics Data System (ADS)

    Flicker, Dawn; Magyar, Rudolph; Root, Seth; Cochrane, Kyle; Mattsson, Thomas

    2015-06-01

    Mixtures of light and heavy elements arise in inertial confinement fusion and planetary science. We present results on the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT/QMD) at elevated-temperature and pressure is used to obtain the properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate the QMD simulations, we performed high-precision shock compression experiments using Sandia's Z-Machine. A bond tracking analysis of the simulations correlates the sharp rise in the Hugoniot curve with completion of dissociation in ethane. DFT-based simulation results compare well with experimental data and are used to provide insight into the dissociation as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for ethane, Xe-ethane, polymethyl-pentene, and polystyrene, suggesting that a limiting compression exists for C-C bonded systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, Security Administration under contract DE-AC04-94AL85000.

  13. The Energy of Substituted Ethanes. Asymmetry Orbitals

    PubMed Central

    Salem, Lionel; Hoffmann, Roald; Otto, Peter

    1973-01-01

    The leading terms in the energy of a general substituted ethane are derived in explicit form as a function of the torsional angle θ, the substituent electronegativities, and their mutual overlaps. The energy is found to be the sum of all four overlaps between pairs of asymmetry orbitals, and satisfies the requisite symmetry properties. PMID:16592060

  14. Ethane C-C clumping in natural gas : a proxy for cracking processes ?

    NASA Astrophysics Data System (ADS)

    Clog, M. D.; Ferreira, A. A.; Santos Neto, E. V.; Eiler, J. M.

    2014-12-01

    Ethane (C2H6) is the second-most abundant alkane in most natural gas reservoirs, and is used to produce ethylene for petrochemical industries. It is arguably the simplest molecule that can manifest multiple 13C substitutions. There are several plausible controls on ∆13C2H6in natural gas: thermodynamically controlled homogeneous isotope exchange reactions analogous to those behind carbonate clumped isotope thermometry; inheritance from larger biomolecules that undergo thermal degradation to produce natural gas; mixing of natural gases that differ markedly in bulk isotopic composition; diffusive fractionation; or combinations of these and/or other, less expected fractionations. There is little basis for predicting which of these will control isotopic variations among natural ethanes, but we think it likely that addition of this new isotopic proxy will reveal new insights into the natural chemistry of ethane. We have developed a method to measure the abundance of 13C2H6 in natural samples, using high-resolution mass spectrometry. We define ∆13C2H6 as 1000 . ((13C2H6/12C2H6)measured/(13C2H6/12C2H6)stochastic -1). We studied several suites of natural gas samples and experimentally produced or modified ethane. Natural ethanes, including closely related samples from a single natural gas field, exhibit surprisingly large ranges in ∆13C2H6 (4 ‰ overall; up to 3 ‰ in one gas field). Such ranges cannot be explained by thermodynamic equilibrium at a range of different temperatures, or by diffusive fractionation. Kinetic isotope effects associated with 'cracking' reactions, and/or inheritance of non-equilibrium carbon isotope structures from source organics are more likely causes. We observe a correlation between ∆13C2H6 and the concentration of alkanes other than methane in several suites of natural gases, suggesting the causes of clumped isotope variations are tied to the controls on gas wetness. An experiment examining ethane residual to high

  15. Propane Market Model documentation report

    SciTech Connect

    Not Available

    1993-12-01

    The purpose of this report is to define the objectives of the Propane Market Model (PMM), describe its basic approach, and to provide details on model functions. This report is intended as a reference document for model analysts, users, and the general public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM performs a short-term (6- to 9-months) forecast of demand and price for consumer-grad propane in the national US market; it also calculates the end-of-month stock level during the term of the forecast. Another part of the model allows for short-term demand forecasts for certain individual Petroleum Administration for Defense (PAD) districts. The model is used to analyze market behavior assumptions or shocks and to determine the effect on market price, demand, and stock level.

  16. Operation of gas electron multiplier (GEM) with propane gas at low pressure and comparison with tissue-equivalent gas mixtures

    NASA Astrophysics Data System (ADS)

    De Nardo, L.; Farahmand, M.

    2016-05-01

    A Tissue-Equivalent Proportional Counter (TEPC), based on a single GEM foil of standard geometry, has been tested with pure propane gas at low pressure, in order to simulate a tissue site of about 1 μm equivalent size. In this work, the performance of GEM with propane gas at a pressure of 21 and 28 kPa will be presented. The effective gas gain was measured in various conditions using a 244Cm alpha source. The dependence of effective gain on the electric field strength along the GEM channel and in the drift and induction region was investigated. A maximum effective gain of about 5×103 has been reached. Results obtained in pure propane gas are compared with gas gain measurements in gas mixtures commonly employed in microdosimetry, that is propane and methane based Tissue-Equivalent gas mixtures.

  17. Silane-propane ignitor/burner

    DOEpatents

    Hill, Richard W.; Skinner, Dewey F.; Thorsness, Charles B.

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  18. Silane-propane ignitor/burner

    DOEpatents

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  19. Ethane-xenon mixtures under shock conditions

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph J.; Root, Seth; Cochrane, Kyle; Mattsson, Thomas R.; Flicker, Dawn G.

    2015-04-01

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. The DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.

  20. Photoinduced ethane formation from reaction of ethene with matrix-isolated Ti, V, or Nb atoms.

    PubMed

    Thompson, Matthew G K; Parnis, J Mark

    2005-10-27

    The reactions of matrix-isolated Ti, V, or Nb atoms with ethene (C(2)H(4)) have been studied by FTIR absorption spectroscopy. Under conditions where the ethene dimer forms, metal atoms react with the ethene dimer to yield matrix-isolated ethane (C(2)H(6)) and methane. Under lower ethene concentration conditions ( approximately 1:70 ethene/Ar), hydridic intermediates of the types HMC(2)H(3) and H(2)MC(2)H(2) are also observed, and the relative yield of hydrocarbons is diminished. Reactions of these metals with perdeuterioethene, and equimolar mixtures of C(2)H(4) and C(2)D(4), yield products that are consistent with the production of ethane via a metal atom reaction involving at least two C(2)H(4) molecules. The absence of any other observed products suggests the mechanism also involves production of small, highly symmetric species such as molecular hydrogen and metal carbides. Evidence is presented suggesting that ethane production from the ethene dimer is a general photochemical process for the reaction of excited-state transition-metal atoms with ethene at high concentrations of ethene. PMID:16866395

  1. Thermomechanically integrated distillation of ethylene from ethane

    SciTech Connect

    Greene, D.G.; Haddad, H.; Manley, D.B.

    1994-12-31

    The separation of ethylene from ethane by distillation is normally the final step in the production of ethylene. The critical temperature of ethylene is about 50 F, therefore moderately low temperatures and moderately high pressures are typically used to provide optimum economic conditions. The optimum design can require thick walled and heavy pressure vessels which may be constructed of expensive alloy steels depending on the specific operating conditions. The required purity of ethylene usually exceeds 99.9%, and the economic level of recovery is approximately 99%. In addition, the relative volatility of ethylene to ethane is moderately small ranging from about 1.13 for high pressure mixtures rich in ethylene to 2.34 for low pressure mixtures rich in ethane. The relatively high purity and recovery and relatively low relative volatility dictate a large distillation column with more than 100 trays and a large diameter for world scale production levels of over a billion pounds per year of ethylene. The installed capital cost for a unit of this type and size can exceed twenty million dollars, and utility costs can exceed one million dollars per year. Consequently, there is a strong economic incentive to reduce costs through improved process designs for the distillation of ethylene from ethane, and the process is well studied in the literature. Thermomechanically integrated distillation provides an improved design which can reduce both capital and operating costs as compared to the best conventional designs. In this paper, the conventional designs for both vapor and liquid feeds are reviewed, the underlying thermodynamics characterizing the process is discussed, alternative thermomechanically integrated designs are presented, and utility and purchased equipment costs are compared.

  2. CASSINI VIMS OBSERVATIONS SHOW ETHANE IS PRESENT IN TITAN'S RAINFALL

    SciTech Connect

    Dalba, Paul A.; Buratti, Bonnie J.; Baines, Kevin H.; Sotin, Christophe; Lawrence, Kenneth J.; Brown, Robert H.; Barnes, Jason W.; Clark, Roger N.; Nicholson, Philip D.

    2012-12-20

    Observations obtained over two years by the Cassini Imaging Science Subsystem suggest that rain showers fall on the surface. Using measurements obtained by the Visual Infrared Mapping Spectrometer, we identify the main component of the rain to be ethane, with methane as an additional component. We observe five or six probable rainfall events, at least one of which follows a brief equatorial cloud appearance, suggesting that frequent rainstorms occur on Titan. The rainfall evaporates, sublimates, or infiltrates on timescales of months, and in some cases it is associated with fluvial features but not with their creation or alteration. Thus, Titan exhibits frequent 'gentle rainfall' instead of, or in addition to, more catastrophic events that cut rivers and lay down large fluvial deposits. Freezing rain may also be present, and the standing liquid may exist as puddles interspersed with patches of frost. The extensive dune deposits found in the equatorial regions of Titan imply multi-season arid conditions there, which are consistent with small, but possibly frequent, amounts of rain, in analogy to terrestrial deserts.

  3. GLOBAL FLUX OF METHANE FROM SHALLOW SUBMARINE SEDIMENTS

    EPA Science Inventory

    The seepage of methane through the seabed of the world's continental shelves is considered. ethane may be generated by both bacterial and thermogenic processes acting on the complex organic matter stored in the seabed. ecause these processes are ubiquitous, occurrences of gas and...

  4. Identifying Different Types of Catalysts for CO2 Reduction by Ethane through Dry Reforming and Oxidative Dehydrogenation.

    PubMed

    Porosoff, Marc D; Myint, Myat Noe Zin; Kattel, Shyam; Xie, Zhenhua; Gomez, Elaine; Liu, Ping; Chen, Jingguang G

    2015-12-14

    The recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2 ) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H2 ). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of this study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2 C-based materials preserve the CC bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions. PMID:26554872

  5. Identifying different types of catalysts for CO2 reduction by ethane through dry reforming and oxidative dehydrogenation

    DOE PAGESBeta

    Marc D. Porosoff; Chen, Jingguang G.; Myint, Myat Noe Zin; Kattel, Shyam; Xie, Zhenhua; Gomez, Elaine; Liu, Ping

    2015-11-10

    In this study, the recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H2). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of thismore » study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2C-based materials preserve the C—C bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions.« less

  6. Identifying different types of catalysts for CO2 reduction by ethane through dry reforming and oxidative dehydrogenation

    SciTech Connect

    Marc D. Porosoff; Chen, Jingguang G.; Myint, Myat Noe Zin; Kattel, Shyam; Xie, Zhenhua; Gomez, Elaine; Liu, Ping

    2015-11-10

    In this study, the recent shale gas boom combined with the requirement to reduce atmospheric CO2 have created an opportunity for using both raw materials (shale gas and CO2) in a single process. Shale gas is primarily made up of methane, but ethane comprises about 10 % and reserves are underutilized. Two routes have been investigated by combining ethane decomposition with CO2 reduction to produce products of higher value. The first reaction is ethane dry reforming which produces synthesis gas (CO+H2). The second route is oxidative dehydrogenation which produces ethylene using CO2 as a soft oxidant. The results of this study indicate that the Pt/CeO2 catalyst shows promise for the production of synthesis gas, while Mo2C-based materials preserve the C—C bond of ethane to produce ethylene. These findings are supported by density functional theory (DFT) calculations and X-ray absorption near-edge spectroscopy (XANES) characterization of the catalysts under in situ reaction conditions.

  7. Emission of methane, carbon monoxide, carbon dioxide and short‐chain hydrocarbons from vegetation foliage under ultraviolet irradiation

    PubMed Central

    FRASER, WESLEY T.; BLEI, EMANUEL; FRY, STEPHEN C.; NEWMAN, MARK F.; REAY, DAVID S.; SMITH, KEITH A.

    2015-01-01

    Abstract The original report that plants emit methane (CH 4) under aerobic conditions caused much debate and controversy. Critics questioned experimental techniques, possible mechanisms for CH 4 production and the nature of estimating global emissions. Several studies have now confirmed that aerobic CH 4 emissions can be detected from plant foliage but the extent of the phenomenon in plants and the precise mechanisms and precursors involved remain uncertain. In this study, we investigated the role of environmentally realistic levels of ultraviolet (UV) radiation in causing the emission of CH 4 and other gases from foliage obtained from a wide variety of plant types. We related our measured emissions to the foliar content of methyl esters and lignin and to the epidermal UV absorbance of the species investigated. Our data demonstrate that the terrestrial vegetation foliage sampled did emit CH 4, with a range in emissions of 0.6–31.8 ng CH 4 g−1 leaf DW h−1, which compares favourably with the original reports of experimental work. In addition to CH 4 emissions, our data show that carbon monoxide, ethene and propane are also emitted under UV stress but we detected no significant emissions of carbon dioxide or ethane. PMID:25443986

  8. Emission of methane, carbon monoxide, carbon dioxide and short-chain hydrocarbons from vegetation foliage under ultraviolet irradiation.

    PubMed

    Fraser, Wesley T; Blei, Emanuel; Fry, Stephen C; Newman, Mark F; Reay, David S; Smith, Keith A; McLeod, Andy R

    2015-05-01

    The original report that plants emit methane (CH4 ) under aerobic conditions caused much debate and controversy. Critics questioned experimental techniques, possible mechanisms for CH4 production and the nature of estimating global emissions. Several studies have now confirmed that aerobic CH4 emissions can be detected from plant foliage but the extent of the phenomenon in plants and the precise mechanisms and precursors involved remain uncertain. In this study, we investigated the role of environmentally realistic levels of ultraviolet (UV) radiation in causing the emission of CH4 and other gases from foliage obtained from a wide variety of plant types. We related our measured emissions to the foliar content of methyl esters and lignin and to the epidermal UV absorbance of the species investigated. Our data demonstrate that the terrestrial vegetation foliage sampled did emit CH4 , with a range in emissions of 0.6-31.8 ng CH4  g(-1) leaf DW h(-1) , which compares favourably with the original reports of experimental work. In addition to CH4 emissions, our data show that carbon monoxide, ethene and propane are also emitted under UV stress but we detected no significant emissions of carbon dioxide or ethane. PMID:25443986

  9. Exhaust gas measurements in a propane fueled swirl stabilized combustor

    NASA Technical Reports Server (NTRS)

    Aanad, M. S.

    1982-01-01

    Exhaust gas temperature, velocity, and composition are measured and combustor efficiencies are calculated in a lean premixed swirl stabilized laboratory combustor. The radial profiles of the data between the co- and the counter swirl cases show significant differences. Co-swirl cases show evidence of poor turbulent mixing across the combustor in comparison to the counter-swirl cases. NO sub x levels are low in the combustor but substantial amounts of CO are present. Combustion efficiencies are low and surprisingly constant with varying outer swirl in contradiction to previous results under a slightly different inner swirl condition. This difference in the efficiency trends is expected to be a result of the high sensitivity of the combustor to changes in the inner swirl. Combustor operation is found to be the same for propane and methane fuels. A mechanism is proposed to explain the combustor operation and a few important characteristics determining combustor efficiency are identified.

  10. Investigations on the "Extreme" Microbial Methane Cycle within the Sediments of an Acidic Impoundment of the Inactive Sulfur Bank Mercury Mine: Herman Pit, Clear Lake, California.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.; Wei, J. H. C.; Welander, P. V.

    2014-12-01

    The inactive Sulfur Bank Mercury Mine is located in a volcanic region having geothermal flow and gas inputs into the Herman Pit impoundment. The acidic (pH 2 - 4) waters of the Herman Pit are permeated by hundreds of continuous flow gas seeps that contain CO2, H2S and CH4. We sampled one seep and found it to be composed of 95 % CO2 and 5 % CH4, in agreement with earlier measurements. Only a trace of ethane (10 - 20 ppm) was found and propane was below detection, resulting in a high CH4/C2H6 + C3H8 ratio of > 5,000, while the δ13CH4 and the δ13CO2 were respectively - 24 and - 11 per mil. Collectively, these results suggested a complex origin for the methane, being made up of a thermogenic component resulting from pyrolysis of buried organics, along with an active methanogenic portion. The relatively 12C-enriched value for the CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. We found that dissolved methane in the collected water from 2-4 m depth was high (~ 400 µM), which would support methanotrophy in the lake's aerobic biomes. We therefore tested the ability of bottom sediments to consume methane by conducting aerobic incubations of slurried bottom sediments. Methane was removed from the headspace of live slurries, and subsequent additions of methane to the headspace over the course of 2-3 months resulted in faster removal rates suggesting a buildup of the population of methanotrophs. This activity could be transferred to an artificial medium originally devised for the cultivation of acidophilic iron oxidizing bacteria (Silverman and Lundgren, 1959; J. Bacteriol. 77: 642 - 647), suggesting the possibility of future cultivation of acidophilic methanotrophs. A successful extraction of some hopanoid compounds from the sediments was achieved, although the results were too preliminary at the time of this writing to identify any hopanoids specifically linked to methanotrophic bacteria. Further efforts to amplify functional genes for

  11. Propane vehicles : status, challenges, and opportunities.

    SciTech Connect

    Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

    2010-06-17

    Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle

  12. Ethane-xenon mixtures under shock conditions

    SciTech Connect

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; Cochrane, Kyle Robert; Flicker, Dawn G.

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, the DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.

  13. Ethane-xenon mixtures under shock conditions

    DOE PAGESBeta

    Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; Cochrane, Kyle Robert; Flicker, Dawn G.

    2015-04-22

    Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. In order to validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. Furthermore, themore » DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.« less

  14. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural...

  15. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural...

  16. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural...

  17. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural...

  18. 10 CFR 221.11 - Natural gas and ethane.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Natural gas and ethane. 221.11 Section 221.11 Energy DEPARTMENT OF ENERGY OIL PRIORITY SUPPLY OF CRUDE OIL AND PETROLEUM PRODUCTS TO THE DEPARTMENT OF DEFENSE UNDER THE DEFENSE PRODUCTION ACT Exclusions § 221.11 Natural gas and ethane. The supply of natural...

  19. Ethane Ices in the Outer Solar System: Spectroscopy and Chemistry

    NASA Technical Reports Server (NTRS)

    Hudson, R. L.; Moore, M. H.; Raines, L. L.

    2009-01-01

    We report recent experiments on ethane ices made at temperatures applicable to the outer Solar System. New near- and mid-infrared data for crystalline and amorphous ethane, including new spectra for a seldom-studied solid phase that exists at 35-55 K, are presented along with radiation-chemical experiments showing the formation of more-complex hydrocarbons,

  20. An analysis of high frequency methane measurements in central New England

    NASA Astrophysics Data System (ADS)

    Shipham, Mark Charles

    A unique high resolution ambient air methane data set consisting of approximately 125,000 independently measured data points for the years 1991-1995 has been collected at a site in the northeastern United States. This data base is used to examine the long term trend, seasonal and diurnal cycles, and the frequent pollution events that affect the site on a year round basis. The annual median mixing ratio of methane for all measurements was 1808 ppbv in 1992, increasing at a variable rate to 1837 ppbv in 1995. The lower 10-30% of the data from each month was defined as representative of background air and was compared to the global CMDL data set. The background data exhibit a variable upward trend of 5.5 ± 2 ppbv/year during the 4-year time period, with most of the increase observed during 1993 and 1994. The seasonal cycle for the background data set is similar to what is observed by CMDL stations and varies from 24 to 35 ppbv. The amplitude of the seasonal cycle for the full data set was larger, ranging from 35 to 44 ppbv. Differences between the full and background mixing ratios vary on a seasonal basis and are largest in the winter and smallest in the summer. These differences appear to be controlled by changes in atmospheric stability and changes in emissions from local and regional sources throughout the year. Wind roses of chemical species are examined for annual and seasonal time periods with enhancements in anthropogenic species corresponding to the location of large cities and landfills. Methane is strongly correlated to species that have an anthropogenic component, including acetylene, propane, ethane, and hexane. The southwest quadrant is subjected to the most severe pollution events and is impacted by outflow from large cities in that sector, including Northampton and Springfield, MA. Emissions from cities in other quadrants, including Boston and Worcester, MA., Providence, RI., and the near by town of Petersham, MA, also affect the site, but to a lesser

  1. Quantum molecular dynamics simulations of thermophysical properties of fluid ethane

    NASA Astrophysics Data System (ADS)

    Zhang, Yujuan; Wang, Cong; Zheng, Fawei; Zhang, Ping

    2012-12-01

    We have performed first-principles molecular-dynamics simulations based on density-functional theory to study the thermophysical properties of ethane under extreme conditions. We present results for the equation of state of fluid ethane in the warm dense region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity and optical reflectivity are derived. The close correlation between the nonmetal-metal transition of ethane and its decomposition, that ethane dissociates significantly into molecular and/or atomic hydrogen and some long alkane chains, has been systematically studied by analyzing the optical conductivity spectra, pair correlation functions, electronic density of states, and charge density distribution of fluid ethane.

  2. Mobile Laboratory Observations of Methane Emissions in the Barnett Shale Region.

    PubMed

    Yacovitch, Tara I; Herndon, Scott C; Pétron, Gabrielle; Kofler, Jonathan; Lyon, David; Zahniser, Mark S; Kolb, Charles E

    2015-07-01

    Results of mobile ground-based atmospheric measurements conducted during the Barnett Shale Coordinated Campaign in spring and fall of 2013 are presented. Methane and ethane are continuously measured downwind of facilities such as natural gas processing plants, compressor stations, and production well pads. Gaussian dispersion simulations of these methane plumes, using an iterative forward plume dispersion algorithm, are used to estimate both the source location and the emission magnitude. The distribution of emitters is peaked in the 0-5 kg/h range, with a significant tail. The ethane/methane molar enhancement ratio for this same distribution is investigated, showing a peak at ∼1.5% and a broad distribution between ∼4% and ∼17%. The regional distributions of source emissions and ethane/methane enhancement ratios are examined: the largest methane emissions appear between Fort Worth and Dallas, while the highest ethane/methane enhancement ratios occur for plumes observed in the northwestern potion of the region. Individual facilities, focusing on large emitters, are further analyzed by constraining the source location. PMID:25751617

  3. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    PubMed

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-01

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway. PMID:25882096

  4. Methane emissions from the 2015 Aliso Canyon blowout in Los Angeles, CA.

    PubMed

    Conley, S; Franco, G; Faloona, I; Blake, D R; Peischl, J; Ryerson, T B

    2016-03-18

    Single-point failures of natural gas infrastructure can hamper methane emission control strategies designed to mitigate climate change. The 23 October 2015 blowout of a well connected to the Aliso Canyon underground storage facility in California resulted in a massive release of natural gas. Analysis of methane and ethane data from dozens of plume transects, collected during 13 research-aircraft flights between 7 November 2015 and 13 February 2016, shows atmospheric leak rates of up to 60 metric tons of methane and 4.5 metric tons of ethane per hour. At its peak, this blowout effectively doubled the methane emission rate of the entire Los Angeles basin and, in total, released 97,100 metric tons of methane to the atmosphere. PMID:26917596

  5. Attributing Atmospheric Methane to Anthropogenic Emission Sources.

    PubMed

    Allen, David

    2016-07-19

    Methane is a greenhouse gas, and increases in atmospheric methane concentration over the past 250 years have driven increased radiative forcing of the atmosphere. Increases in atmospheric methane concentration since 1750 account for approximately 17% of increases in radiative forcing of the atmosphere, and that percentage increases by approximately a factor of 2 if the effects of the greenhouse gases produced by the atmospheric reactions of methane are included in the assessment. Because of the role of methane emissions in radiative forcing of the atmosphere, the identification and quantification of sources of methane emissions is receiving increased scientific attention. Methane emission sources include biogenic, geogenic, and anthropogenic sources; the largest anthropogenic sources are natural gas and petroleum systems, enteric fermentation (livestock), landfills, coal mining, and manure management. While these source categories are well-known, there is significant uncertainty in the relative magnitudes of methane emissions from the various source categories. Further, the overall magnitude of methane emissions from all anthropogenic sources is actively debated, with estimates based on source sampling extrapolated to regional or national scale ("bottom-up analyses") differing from estimates that infer emissions based on ambient data ("top-down analyses") by 50% or more. To address the important problem of attribution of methane to specific sources, a variety of new analytical methods are being employed, including high time resolution and highly sensitive measurements of methane, methane isotopes, and other chemical species frequently associated with methane emissions, such as ethane. This Account describes the use of some of these emerging measurements, in both top-down and bottom-up methane emission studies. In addition, this Account describes how data from these new analytical methods can be used in conjunction with chemical mass balance (CMB) methods for source

  6. Reference Correlation for the Viscosity of Ethane

    NASA Astrophysics Data System (ADS)

    Vogel, Eckhard; Span, Roland; Herrmann, Sebastian

    2015-12-01

    A new representation of the viscosity for the fluid phase of ethane includes a zero-density correlation and a contribution for the critical enhancement, initially both developed separately, but based on experimental data. The higher-density contributions are correlated as a function of the reduced density δ = ρ/ρc and of the reciprocal reduced temperature τ = Tc/T (ρc—critical density and Tc—critical temperature). The final formulation contains 14 coefficients obtained using a state-of-the-art linear optimization algorithm. The evaluation and choice of the selected primary data sets is reviewed, in particular with respect to the assessment used in earlier viscosity correlations. The new viscosity surface correlation makes use of the reference equation of state for the thermodynamic properties of ethane by Bücker and Wagner [J. Phys. Chem. Ref. Data 35, 205 (2006)] and is valid in the fluid region from the melting line to temperatures of 675 K and pressures of 100 MPa. The viscosity in the limit of zero density is described with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures 290 < T/K < 625, increasing to 1.0% at temperatures down to 212 K. The uncertainty of the correlated values is 1.5% in the range 290 < T/K < 430 at pressures up to 30 MPa on the basis of recent measurements judged to be very reliable as well as 4.0% and 6.0% in further regions. The uncertainty in the near-critical region (1.001 < 1/τ < 1.010 and 0.8 < δ < 1.2) increases with decreasing temperature up to 3.0% considering the available reliable data. Tables of the viscosity calculated from the correlation are listed in an appendix for the single-phase region, for the vapor-liquid phase boundary, and for the near-critical region.

  7. An unnatural death by propan-1-ol and propan-2-ol.

    PubMed

    Skopp, Gisela; Gutmann, Isabelle; Schwarz, Clara-Sophie; Schmitt, Georg

    2016-07-01

    A fatality of an inpatient ingesting a disinfectant containing ethanol, propan-1-ol, and propan-2-ol is reported. The alleged survival time was about 1 h. Major findings at autopsy were an extended hemorrhagic lung edema, an edematous brain, and shock kidneys. Concentrations of alcohols and acetone, a major metabolite of propan-2-ol, were determined from body fluids (blood from the heart and the femoral vein, urine, gastric contents) and tissues (brain, muscle, liver, kidneys, lungs) by headspace/gas chromatography using 2-methylpropan-2-ol as the internal standard. All samples investigated were positive for propan-1-ol, propan-2-ol, ethanol, and acetone except stomach contents, where acetone was not detectable. The low concentration of acetone compared to propan-2-ol likely supports the short survival time. The concentration ratios estimated from the results are in accordance with the physico-chemical properties of the particular alcohols, their different affinities towards alcohol dehydrogenase as well as their interdependence during biotransformation. Autopsy did not reveal the cause of death. According to the few published data, blood concentrations of 1.44 and 1.70 mg/g of propan-2-ol and propan-1-ol, respectively, are considered sufficient to have caused the death. This case also points to the need to restrict access to antiseptic solutions containing alcohols in wards with patients at risk. PMID:26712504

  8. Source attribution of methane emissions from global oil and gas production: results of bottom-up simulations over three decades

    NASA Astrophysics Data System (ADS)

    Höglund-Isaksson, Lena

    2016-04-01

    Existing bottom-up emission inventories of historical methane and ethane emissions from global oil and gas systems do not well explain year-on-year variations estimated by top-down models from atmospheric measurements. This paper develops a bottom-up methodology which allows for country- and year specific source attribution of methane and ethane emissions from global oil and natural gas production for the period 1980 to 2012. The analysis rests on country-specific simulations of associated gas flows which are converted into methane and ethane emissions. The associated gas flows are constructed from country-specific information on oil and gas production and associated gas generation and recovery, and coupled with generic assumptions to bridge regional information gaps on the fractions of unrecovered associated gas that is vented instead of flared. Summing up emissions from associated gas flows with global estimates of emissions from unintended leakage and natural gas transmission and distribution, the resulting global emissions of methane and ethane from oil and gas systems are reasonably consistent with corresponding estimates from top-down models. Also revealed is that the fall of the Soviet Union in 1990 had a significant impact on methane and ethane emissions from global oil and gas systems.

  9. Evidence for a polar ethane cloud on Titan

    USGS Publications Warehouse

    Griffith, C.A.; Penteado, P.; Rannou, P.; Brown, R.; Boudon, V.; Baines, K.H.; Clark, R.; Drossart, P.; Buratti, B.; Nicholson, P.; McKay, C.P.; Coustenis, A.; Negrao, A.; Jaumann, R.

    2006-01-01

    Spectra from Cassini's Visual and Infrared Mapping Spectrometer reveal the presence of a vast tropospheric cloud on Titan at latitudes 51?? to 68?? north and all longitudes observed (10?? to 190?? west). The derived characteristics indicate that this cloud is composed of ethane and forms as a result of stratospheric subsidence and the particularly cool conditions near the moon's north pole. Preferential condensation of ethane, perhaps as ice, at Titan's poles during the winters may partially explain the lack of liquid ethane oceans on Titan's surface at middle and lower latitudes.

  10. Co-cracking of ethane and naphtha in millisecond furnaces

    SciTech Connect

    Nowowiejski, G.B.; Petterson, W.C.; Kii, T.; Suwa, A.

    1982-05-01

    This paper presents results of an experimental program in which the process of short contact pyrolysis of mixtures of ethane and naphthas has been investigated as an economic alternative way to the production of olefins. The benefits of co-cracking of ethane recycle with naphtha feed in millisecond furnace are demonstrated. There is a directional improvement is selectivity to ethylene product which would result in about 2% less naphtha consumption at constant ethylene production. There is greater operating flexibility in terms of processing additional fresh ethane or LPG, when the furnace area is designed with the co-cracking concept.

  11. Following The Carbon: Structure, Chemistry, And Spectroscopy Of Frozen Ethane

    NASA Astrophysics Data System (ADS)

    Raines, Lily; Hudson, R. L.; Moore, M. H.

    2008-09-01

    Oort Cloud comets, as well as TNOs 2005 FY9, Quaoar, and Pluto, are known to contain ethane. Even though this molecule is found in several outer solar system objects, relatively little information is available about its amorphous, metastable, and crystalline phases. In new experiments, we have prepared ethane ices at various temperatures, and heated and ion-irradiated these ices to study phase changes and ethane's radiation chemistry with near- and mid-IR spectroscopy. Recent results will be presented at this meeting. An improved understanding of solid-phase ethane may contribute to future searches for this and other hydrocarbons in the outer solar system. This work was conducted by LLR while a summer research intern at the Goddard Center for Astrobiology, Goddard Space Flight Center. Additional support from NASA's Outer Planets, Planetary Atmospheres, and Planetary Geology and Geophysics programs is acknowledged by all of the authors.

  12. Reference Correlation for the Viscosity of Ethane

    SciTech Connect

    Vogel, Eckhard; Span, Roland; Herrmann, Sebastian

    2015-12-15

    A new representation of the viscosity for the fluid phase of ethane includes a zero-density correlation and a contribution for the critical enhancement, initially both developed separately, but based on experimental data. The higher-density contributions are correlated as a function of the reduced density δ = ρ/ρ{sub c} and of the reciprocal reduced temperature τ = T{sub c}/T (ρ{sub c}—critical density and T{sub c}—critical temperature). The final formulation contains 14 coefficients obtained using a state-of-the-art linear optimization algorithm. The evaluation and choice of the selected primary data sets is reviewed, in particular with respect to the assessment used in earlier viscosity correlations. The new viscosity surface correlation makes use of the reference equation of state for the thermodynamic properties of ethane by Bücker and Wagner [J. Phys. Chem. Ref. Data 35, 205 (2006)] and is valid in the fluid region from the melting line to temperatures of 675 K and pressures of 100 MPa. The viscosity in the limit of zero density is described with an expanded uncertainty of 0.5% (coverage factor k = 2) for temperatures 290 < T/K < 625, increasing to 1.0% at temperatures down to 212 K. The uncertainty of the correlated values is 1.5% in the range 290 < T/K < 430 at pressures up to 30 MPa on the basis of recent measurements judged to be very reliable as well as 4.0% and 6.0% in further regions. The uncertainty in the near-critical region (1.001 < 1/τ < 1.010 and 0.8 < δ < 1.2) increases with decreasing temperature up to 3.0% considering the available reliable data. Tables of the viscosity calculated from the correlation are listed in an appendix for the single-phase region, for the vapor–liquid phase boundary, and for the near-critical region.

  13. Correlation of refrigerant mass flow rate through adiabatic capillary tubes using mixture refrigerant carbondioxide and ethane for low temperature applications

    NASA Astrophysics Data System (ADS)

    Nasruddin, Syaka, Darwin R. B.; Alhamid, M. Idrus

    2012-06-01

    Various binary mixtures of carbon dioxide and hydrocarbons, especially propane or ethane, as alternative natural refrigerants to Chlorofluorocarbons (CFCs) or Hydro fluorocarbons (HFCs) are presented in this paper. Their environmental performance is friendly, with an ozone depletion potential (ODP) of zero and Global-warming potential (GWP) smaller than 20. The capillary tube performance for the alternative refrigerant HFC HCand mixed refrigerants have been widely studied. However, studies that discuss the performance of the capillary tube to a mixture of natural refrigerants, in particular a mixture of azeotrope carbon dioxide and ethane is still undeveloped. A method of empirical correlation to determine the mass flow rate and pipe length has an important role in the design of the capillary tube for industrial refrigeration. Based on the variables that effect the rate of mass flow of refrigerant in the capillary tube, the Buckingham Pi theorem formulated eight non-dimensional parameters to be developed into an empirical equations correlation. Furthermore, non-linear regression analysis used to determine the co-efficiency and exponent of this empirical correlation based on experimental verification of the results database.

  14. Propane Clathrate Hydrate Formation Accelerated by Methanol.

    PubMed

    Amtawong, Jaruwan; Guo, Jin; Hale, Jared S; Sengupta, Suvrajit; Fleischer, Everly B; Martin, Rachel W; Janda, Kenneth C

    2016-07-01

    The role of methanol as both an inhibitor and a catalyst for the formation of clathrate hydrates (CHs) has been a topic of intense study. We report a new quantitative study of the kinetics of propane CH formation at 253 K from the reaction of propane gas with <75 μm ice particles that have been doped with varying amounts of methanol. We find that methanol significantly accelerates the formation reaction with quite small doping quantities. Even for only 1 methanol molecule per 10 000 water molecules, the maximum uptake rate of propane into CHs is enhanced and the initiation pressure is reduced. These results enable more efficient production of CHs for gas storage. This remarkable acceleration of the CH formation reaction by small quantities of methanol may place constraints on the mechanism of the inhibition effect observed under other conditions, usually employing much larger quantities of methanol. PMID:27275862

  15. No. 2 heating oil/propane program

    SciTech Connect

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  16. Rapid catalytic processes in reforming of methane and successive synthesis of methanol and its derivatives

    NASA Astrophysics Data System (ADS)

    Inui, Tomoyuki

    1997-11-01

    In order to obtain high quality fuels and basic raw materials for petrochemical industries, novel catalysts which enable the realization of new synthetic routes have been investigated. First, a highly active Rh-modified Ni-based composite catalyst, NiCe 2O 3PtRh, supported on a ceramic fiber in a plate shape was developed, which reformed methane into the syngas having an appropriate ratio of H2/CO. Furthermore, more combustible ethane or propane was added into the reaction gas and its catalytic combustion was allowed to occur on the same catalyst. The combustion heat compensated the reforming heat resulting in an extraordinarily high space-time yield of hydrogen, as high as 10,000 mol/1·h, even under the condition of a very short contact time, 5 ms, and a very low furnace temperature at around 400°C. Next, a highly active catalyst for methanol synthesis from CO 2-rich or CO-rich syngases was developed. A Cu-based CuZnCrAlGa mixed oxide catalyst was prepared by the uniform gelation method and it was mixed with Pd supported on χ-alumina. The composite catalyst exhibited a much higher activity than the conventional catalyst prepared by the precipitation method and a space-time yield of methanol of 1,300 and 6,730 g/l·h was amounted, respectively, from CO 2-rich and CO-rich syngases under 80 atm and at 270°C. Finally, the products obtained as mentioned above were introduced into the reactor, which was connected in series and the methanol was totally converted into hydrocarbons. In the case of a HGa-silicate catalyst, gasoline was obtained at as high a value as 1,860 g/l·h in space-time yield, and in the case of SAPO-34, ethylene and propylene were obtained with an equivalent selectivity.

  17. Electron attenuation in free, neutral ethane clusters.

    PubMed

    Winkler, M; Myrseth, V; Harnes, J; Børve, K J

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ(2)(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth. PMID:25362297

  18. Electron attenuation in free, neutral ethane clusters

    SciTech Connect

    Winkler, M.; Harnes, J.; Børve, K. J.; Myrseth, V.

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ{sup 2}(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100–600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  19. The stereospecific hydroxylation of [2,2-2H2]butane and chiral dideuteriobutanes by the particulate methane monooxygenase from Methylococcus capsulatus (Bath).

    PubMed

    Yu, Steve S-F; Wu, Lo-Ying; Chen, Kelvin H-C; Luo, Wen-I; Huang, Ded-Shih; Chan, Sunney I

    2003-10-17

    Experiments on cryptically chiral ethanes have indicated that the particulate methane monooxygenase (pMMO) from Methylococcus capsulatus (Bath) catalyzes the hydroxylation of ethane with total retention of configuration at the carbon center attacked. This result would seem to rule out a radical mechanism for the hydroxylation chemistry, at least as mediated by this enzyme. The interpretation of subsequent experiments on n-propane, n-butane, and n-pentane has been complicated by hydroxylation at both the pro-R and pro-S secondary C-H bonds, where the hydroxylation takes place. It has been suggested that these results merely reflect presentation of both the pro-R and pro-S C-H bonds to the hot "oxygen atom" species generated at the active site, and that the oxo-transfer chemistry, in fact, proceeds concertedly with retention of configuration. In the present work, we have augmented these earlier studies with experiments on [2,2-2H2]butane and designed d,l form chiral dideuteriobutanes. Essentially equal amounts of (2R)-[3,3-2H2]butan-2-ol and (2R)-[2-2H1]butan-2-ol are produced upon hydroxylation of [2,2-2H2]butane. The chemistry is stereospecific with full retention of configuration at the secondary carbon oxidized. In the case of the various chiral deuterated butanes, the extent of configurational inversion has been shown to be negligible for all the chiral butanes examined. Thus, the hydroxylation of butane takes place with full retention of configuration in butane as well as in the case of ethane. These results are interpreted in terms of an oxo-transfer mechanism based on side-on singlet oxene insertion across the C-H bond similar to that previously noted for singlet carbene insertion (Kirmse, W., and Ozkir, I. S. (1992) J. Am. Chem. Soc. 114, 7590-7591). Finally, we discuss how even the oxene insertion mechanism, with "spin crossover" in the transition state, could lead to small amounts of radical rearrangement products, if and when such products are observed. A

  20. Solubility of crude oil in methane as a function of pressure and temperature

    USGS Publications Warehouse

    Price, L.C.; Wenger, L.M.; Ging, T.; Blount, C.W.

    1983-01-01

    The solubility of a 44?? API (0.806 sp. gr.) whole crude oil has been measured in methane with water present at temperatures of 50 to 250??C and pressures of 740 to 14,852 psi, as have the solubilities of two high molecular weight petroleum distillation fractions at temperatures of 50 to 250??C and pressures of 4482 to 25,266 psi. Both increases in pressure and temperature increase the solubility of crude oil and petroleum distillation fractions in methane, the effect of pressure being greater than that of temperature. Unexpectedly high solubility levels (0.5-1.5 grams of oil per liter of methane-at laboratory temperature and pressure) were measured at moderate conditions (50-200??C and 5076-14504 psi). Similar results were found for the petroleum distillation fractions, one of which was the highest molecular weight material of petroleum (material boiling above 266??C at 6 microns pressure). Unexpectedly mild conditions (100??C and 15,200 psi; 200??C and 7513 psi) resulted in cosolubility of crude oil and methane. Under these conditions, samples of the gas-rich phase gave solubility values of 4 to 5 g/l, or greater. Qualitative analyses of the crude-oil solute samples showed that at low pressure and temperature equilibration conditions, the solute condensate would be enriched in C5-C15 range hydrocarbons and in saturated hydrocarbons in the C15+ fraction. With increases in temperature and especially pressure, these tendencies were reversed, and the solute condensate became identical to the starting crude oil. The data of this study, compared to that of previous studies, shows that methane, with water present, has a much greater carrying capacity for crude oil than in dry systems. The presence of water also drastically lowers the temperature and pressure conditions required for cosolubility. The data of this and/or previous studies demonstrate that the addition of carbon dioxide, ethane, propane, or butane to methane also has a strong positive effect on crude oil

  1. A search for ethane on Pluto and Triton

    NASA Astrophysics Data System (ADS)

    DeMeo, Francesca E.; Dumas, Christophe; de Bergh, Catherine; Protopapa, Silvia; Cruikshank, Dale P.; Geballe, Thomas R.; Alvarez-Candal, Alvaro; Merlin, Frédéric; Barucci, Maria A.

    2010-07-01

    We present here a search for solid ethane, C 2H 6, on the surfaces of Pluto and Triton, based on near-infrared spectral observations in the H and K bands (1.4-2.45 μm) using the Very Large Telescope (VLT) and the United Kingdom Infrared Telescope (UKIRT). We model each surface using a radiative transfer model based on Hapke theory (Hapke, B. [1993]. Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press, Cambridge, UK) with three basic models: without ethane, with pure ethane, and with ethane diluted in nitrogen. On Pluto we detect weak features near 2.27, 2.405, 2.457, and 2.461 μm that match the strongest features of pure ethane. An additional feature seen at 2.317 μm is shifted to longer wavelengths than ethane by at least 0.002 μm. The strength of the features seen in the models suggests that pure ethane is limited to no more than a few percent of the surface of Pluto. On Triton, features in the H band could potentially be explained by ethane diluted in N, however, the lack of corresponding features in the K band makes this unlikely (also noted by Quirico et al. (Quirico, E., Doute, S., Schmitt, B., de Bergh, C., Cruikshank, D.P., Owen, T.C., Geballe, T.R., Roush, T.L. [1999]. Icarus 139, 159-178)). While Cruikshank et al. (Cruikshank, D.P., Mason, R.E., Dalle Ore, C.M., Bernstein, M.P., Quirico, E., Mastrapa, R.M., Emery, J.P., Owen, T.C. [2006]. Bull. Am. Astron. Soc. 38, 518) find that the 2.406-μm feature on Triton could not be completely due to 13CO, our models show that it could not be accounted for entirely by ethane either. The multiple origin of this feature complicates constraints on the contribution of ethane for both bodies.

  2. . . . While Others Conserve Cash by Converting from Gasoline to Propane.

    ERIC Educational Resources Information Center

    Rasmussen, Scott A.

    1988-01-01

    Since 1983, when the David Douglas Public Schools (Portland, Oregon) converted 30 buses to propane fuel, the district has saved $75,000 in fuel and maintenance costs. Propane is priced consistently lower than gasoline and burns cleaner. Since propane engines do not require a carburetor, there are fewer maintenance problems. (MLH)

  3. Direct conversion of methane to C sub 2 's and liquid fuels

    SciTech Connect

    Warren, B.K.; Campbell, K.D.; Matherne, J.L.

    1990-02-14

    Research on promoted metal oxide catalysts has continued with the study of alkaline earth/metal oxide halide catalysts. A barium bromide/alumina catalyst was comparable in methane conversion and selectivity to C{sub 2}'s to barium chloride/alumina catalysts. The effects of varying methane to oxygen feed ratios were explored for one of the best alkaline earth catalysts and one of the best literature catalysts (Li/MgO). A significant decrease in the selectivity to C{sub 2}'s is observed upon addition of ethane to the feed gas (feed gas methane/ethane ratio of 3). This observation demonstrates that a significant amount of ethane should not be recycled during methane oxidation over these types of catalysts under process conditions used. Methane oxidation over barium carbonate alone results in high enough selectivities and methane conversions to suggest an oxidized barium species may be responsible for methane oxidation on barium/metal oxide catalysts. Methane coupling studies have continued using layered perovskite catalysts in the cofeed mode and double perovskite catalysts in the sequential mode. Addition of sodium to the double perovskite LaCaMnCoO{sub 6} resulted in a catalyst with improved selectivity over the one without sodium. A reactor system containing two reactors in under construction. These reactors will be used to study different feed diluents, including steam. One reactor will be used to study the effects of pressure on the reaction. Process economics were explored for a hypothetical methane coupling scheme employing a feed mixture of 7/2/1 nitrogen/methane/oxygen. Economic evaluations of the first two of a series of cases based on extrapolations of Union Carbide methane coupling results have been completed. 33 refs., 17 figs., 2 tabs.

  4. 21 CFR 184.1655 - Propane.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... in the liquid state. Propane is obtained from natural gas by fractionation following absorption in... also known as dimethylmethane or propyl hydrid. It is a colorless, odorless, flammable gas at normal... manufacturing practice conditions of use: (1) The ingredient is used as a propellant, aerating agent, and gas...

  5. 21 CFR 184.1655 - Propane.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... in the liquid state. Propane is obtained from natural gas by fractionation following absorption in... also known as dimethylmethane or propyl hydrid. It is a colorless, odorless, flammable gas at normal... manufacturing practice conditions of use: (1) The ingredient is used as a propellant, aerating agent, and gas...

  6. 21 CFR 184.1655 - Propane.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... state. Propane is obtained from natural gas by fractionation following absorption in oil, adsorption to... dimethylmethane or propyl hydrid. It is a colorless, odorless, flammable gas at normal temperatures and pressures... practice conditions of use: (1) The ingredient is used as a propellant, aerating agent, and gas as...

  7. 21 CFR 184.1655 - Propane.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... in the liquid state. Propane is obtained from natural gas by fractionation following absorption in... also known as dimethylmethane or propyl hydrid. It is a colorless, odorless, flammable gas at normal... manufacturing practice conditions of use: (1) The ingredient is used as a propellant, aerating agent, and gas...

  8. 21 CFR 582.1655 - Propane.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Propane. 582.1655 Section 582.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives §...

  9. 21 CFR 582.1655 - Propane.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propane. 582.1655 Section 582.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives §...

  10. Case Study - Propane School Bus Fleets

    SciTech Connect

    Laughlin, M; Burnham, A.

    2014-08-31

    As part of the U.S. Department of Energy’s (DOE’s) effort to deploy transportation technologies that reduce U.S. dependence on imported petroleum, this study examines five school districts, one in Virginia and four in Texas, successful use of propane school buses. These school districts used school buses equipped with the newly developed liquid propane injection system that improves vehicle performance. Some of the school districts in this study saved nearly 50% on a cost per mile basis for fuel and maintenance relative to diesel. Using Argonne National Laboratory’s Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool developed for the DOE’s Clean Cities program to help Clean Cities stakeholders estimate petroleum use, greenhouse gas (GHG) emissions, air pollutant emissions and cost of ownership of light-duty and heavy-duty vehicles, the results showed payback period ranges from 3—8 years, recouping the incremental cost of the vehicles and infrastructure. Overall, fuel economy for these propane vehicles is close to that of displaced diesel vehicles, on an energy-equivalent basis. In addition, the 110 propane buses examined demonstrated petroleum displacement, 212,000 diesel gallon equivalents per year, and GHG benefits of 770 tons per year.

  11. Evidence from firn air for recent decreases in non-methane hydrocarbons and a 20th century increase in nitrogen oxides in the northern hemisphere

    NASA Astrophysics Data System (ADS)

    Worton, David R.; Sturges, William T.; Reeves, Claire E.; Newland, Mike J.; Penkett, Stuart A.; Atlas, Elliot; Stroud, Verity; Johnson, Kristen; Schmidbauer, Norbert; Solberg, Sverre; Schwander, Jakob; Barnola, Jean-Marc

    2012-07-01

    The atmospheric evolution of eight non-methane hydrocarbons (ethane, acetylene, propane, n-butane, isobutane, n-pentane, isopentane and benzene) and five alkyl nitrates (2-propyl, 2-butyl, 3-methyl-2-butyl and the sum of 2+3-pentyl nitrates) are reconstructed for the latter half of the 20th century based on Arctic firn air measurements. The reconstructed trends of the non-methane hydrocarbons (NMHCs) show increasing concentrations from 1950 to a maximum in 1980 before declining towards the end of last century. These observations provide direct evidence that NMHCs in the northern hemisphere have declined substantially during the period 1980-2001. Benzene concentrations show a smaller increase between 1950 and 1980 than the other NMHCs indicating that additional sources of benzene, other than fossil fuel combustion, were likely important contributors to the benzene budget prior to and during this period. The declining benzene concentrations from 1980 to 2001 would suggest that biomass burning is unlikely to be important in the benzene budget as biomass burning emissions were reportedly increasing over the same period. Methyl and ethyl nitrate show growth patterns in the firn that suggested perturbation by in-situ production from an unidentified mechanism. However, the higher alkyl nitrates show evidence for increasing concentrations from 1950 to maxima in the mid 1990s before decreasing slightly toward the end of the last century. The differing atmospheric evolution of the alkyl nitrates relative to their parent hydrocarbons indicate an increase in their production efficiency per hydrocarbon molecule. Using a steady state analysis of hydrocarbon oxidation and alkyl nitrate production and loss we show that reactive nitrogen oxide (NOx) concentrations in the northern hemisphere have likely increased considerably between 1950 and 2001.

  12. Titan's Methane Cycle is Closed

    NASA Astrophysics Data System (ADS)

    Hofgartner, J. D.; Lunine, J. I.

    2013-12-01

    Doppler tracking of the Cassini spacecraft determined a polar moment of inertia for Titan of 0.34 (Iess et al., 2010, Science, 327, 1367). Assuming hydrostatic equilibrium, one interpretation is that Titan's silicate core is partially hydrated (Castillo-Rogez and Lunine, 2010, Geophys. Res. Lett., 37, L20205). These authors point out that for the core to have avoided complete thermal dehydration to the present day, at least 30% of the potassium content of Titan must have leached into an overlying water ocean by the end of the core overturn. We calculate that for probable ammonia compositions of Titan's ocean (compositions with greater than 1% ammonia by weight), that this amount of potassium leaching is achievable via the substitution of ammonium for potassium during the hydration epoch. Formation of a hydrous core early in Titan's history by serpentinization results in the loss of one hydrogen molecule for every hydrating water molecule. We calculate that complete serpentinization of Titan's core corresponds to the release of more than enough hydrogen to reconstitute all of the methane atoms photolyzed throughout Titan's history. Insertion of molecular hydrogen by double occupancy into crustal clathrates provides a storage medium and an opportunity for ethane to be converted back to methane slowly over time--potentially completing a cycle that extends the lifetime of methane in Titan's surface atmosphere system by factors of several to an order of magnitude over the photochemically-calculated lifetime.

  13. METHANE PRODUCTION FROM ANAEROBIC SOIL AMENDED WITH RICE STRAW AND NITROGEN FERTILIZERS

    EPA Science Inventory

    Laboratory experiments were conducted on the effects of rice straw application and inorganic N fertilization on methane (CH4) production from a flooded Louisiana, USA, rice soil. ignificant increase of CH4 production was observed following rice straw application. ethane productio...

  14. CURRENT AND FUTURE ENVIRONMENTAL ROLE OF ATMOSPHERIC METHANE: MODEL STUDIES AND UNCERTAINTIES

    EPA Science Inventory

    Concern over increasing levels of methane in the atmosphere centers on its radiative and chemical properties. ethane absorbs terrestrial infrared radiation and contributes to the greenhouse effect. ffects on other greenhouse absorbers (e.g., O3, H2O, and CO2) as the result of its...

  15. Aging tests of ethylene contaminated argon/ethane

    SciTech Connect

    Atac, M.; Bauer, G.

    1994-09-22

    We report on aging tests of argon/ethane gas with a minor (1800 ppM) component of ethylene. The measurements were first conducted with the addition of alcohol to test the suppression of aging by this additive, with exposure up to {approx}1.5 C/cm. Tests have included: a proportional tube with ethanol, another with isopropyl alcohol, and for comparison a tube has also been run with ethanol and argon/ethane from CDF`s old (ethylene-free) ethane supply. The aging test with ethanol showed no difference between the ethylene-free and the ethylene tube. Furthermore, raw aging rates of argon/ethane and argon/ethane/ethylene were measured by exposing tubes without the addition of alcohol to about 0.1 C/cm. Again, no significant difference was observed. In conclusion, we see no evidence that ethylene contamination up to 1800 ppM has any adverse effect on wire aging. However, this level of ethylene does seem to significantly suppress the gas gain.

  16. A Quantification of Methane Emissions from Oil and Natural Gas Extraction Regions in the Central/Western U.S. and a Comparison to Previous Studies

    NASA Astrophysics Data System (ADS)

    Peischl, J.; Aikin, K. C.; Eilerman, S. J.; Gilman, J.; De Gouw, J. A.; Herndon, S. C.; Lerner, B. M.; Neuman, J. A.; Tokarek, T. W.; Trainer, M.; Warneke, C.; Ryerson, T. B.

    2015-12-01

    We present airborne measurements of methane and ethane taken aboard a NOAA WP-3D research aircraft over five regions of oil and natural gas extraction in March and April, 2015, as part of the Shale Oil and Natural Gas Nexus (SONGNEX) field study. The five regions are the (1) Haynesville, (2) Barnett, and (3) Eagle Ford regions in Texas, (4) the Denver-Julesburg region of Colorado, and (5) the Bakken region of North Dakota. From these measurements, we derive methane emission rates from these regions using the mass balance method. Next, we attribute the methane emissions to oil and natural gas extraction, livestock operations, and other source sectors based on correlations of methane with ethane and ammonia. We then compare these emissions to those reported from previous studies, where applicable. Finally, we compare reported methane emissions from multiple regional-scale studies with inventory estimates of methane emissions from U.S. oil and natural gas production.

  17. Priori calculations of pK/sub a/'s for organic compounds in water. The pK/sub a/ of ethane

    SciTech Connect

    Jorgensen, W.L.; Briggs, J.M.; Gao, J.

    1987-10-28

    The enduring fascination of organic chemists with acidities and basicities reflects the fundamental importance of these concepts in understanding organic reactivity. Developing scales of aqueous acidities for weak organic acids is challenging in view of the need for extrapolations from organic solvents to water, ion-pairing and aggregation effects for organometallic compounds, and the derivation of thermodynamic quantities from kinetic measurements. The problems are reflected in the experimental ranges for the pK/sub a/'s of the simplest alkanes, methane and ethane, which cover from 40 to 60. In the present communication, they demonstrate how simulation methodology can be used to obtain a priori predictions for the relative pK/sub a/'s of organic compounds in water. The first applications are for the pK/sub a/'s of acetonitrile and ethane relative to methanethiol.

  18. Adsorptive separation of propylene-propane mixtures

    SciTech Connect

    Jaervelin, H.; Fair, J.R. )

    1993-10-01

    The separation of propylene-propane mixtures is of great commercial importance and is carried out by fractional distillation. It is claimed to be the most energy-intensive distillation practiced in the United States. The purpose of this paper is to describe experimental work that suggests a practical alternative to distillation for separating the C[sub 3] hydrocarbons: adsorption. As studied, the process involves three adsorptive steps: initial separation with molecular sieves with heavy dilution with an inert gas; separation of propylene and propane separately from the inert gas, using activated carbon; and drying of the product streams with any of several available desiccants. The research information presented here deals with the initial step and includes both equilibrium and kinetic data. Isotherms are provided for propylene and propane adsorbed on three zeolites, activated alumina, silica gel, and coconut-based activated carbon. Breakthrough data are provided for both adsorption and regeneration steps for the zeolites, which were found to be superior to the other adsorbents for breakthrough separations. A flow diagram for the complete proposed process is included.

  19. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps

    PubMed Central

    Jaekel, Ulrike; Musat, Niculina; Adam, Birgit; Kuypers, Marcel; Grundmann, Olav; Musat, Florin

    2013-01-01

    The short-chain, non-methane hydrocarbons propane and butane can contribute significantly to the carbon and sulfur cycles in marine environments affected by oil or natural gas seepage. In the present study, we enriched and identified novel propane and butane-degrading sulfate reducers from marine oil and gas cold seeps in the Gulf of Mexico and Hydrate Ridge. The enrichment cultures obtained were able to degrade simultaneously propane and butane, but not other gaseous alkanes. They were cold-adapted, showing highest sulfate-reduction rates between 16 and 20 °C. Analysis of 16S rRNA gene libraries, followed by whole-cell hybridizations with sequence-specific oligonucleotide probes showed that each enrichment culture was dominated by a unique phylotype affiliated with the Desulfosarcina-Desulfococcus cluster within the Deltaproteobacteria. These phylotypes formed a distinct phylogenetic cluster of propane and butane degraders, including sequences from environments associated with hydrocarbon seeps. Incubations with 13C-labeled substrates, hybridizations with sequence-specific probes and nanoSIMS analyses showed that cells of the dominant phylotypes were the first to become enriched in 13C, demonstrating that they were directly involved in hydrocarbon degradation. Furthermore, using the nanoSIMS data, carbon assimilation rates were calculated for the dominant cells in each enrichment culture. PMID:23254512

  20. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    NASA Astrophysics Data System (ADS)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  1. OH and halogen atom influence on the variability of non-methane hydrocarbons in the Antarctic Boundary Layer

    NASA Astrophysics Data System (ADS)

    Read, Katie A.; Lewis, Alastair C.; Salmon, Rhian A.; Jones, Anna E.; Bauguitte, Stéphane

    2007-02-01

    Measurements of C2-C8 non-methane hydrocarbons (NMHCs) have been made in situ at Halley Base, Antarctica (75°35'S, 26°19'W) from February 2004 to February 2005 as part of the Chemistry of the Antarctic Boundary Layer and the Interface with Snow (CHABLIS) experiment. The data show long- and short-term variabilities in NMHCs controlled by the seasonal and geographic dependence of emissions and variation in atmospheric removal rates and pathways. Ethane, propane, iso-butane, n-butane and acetylene abundances followed a general OH-dependent sinusoidal seasonal cycle. The yearly averages were 186, 31, 3.2, 4.9 and 19 pptV, respectively, lower than those which were reported in some previous studies. Superimposed on a seasonal cycle was shorter-term variability that could be attributed to both synoptic airmass variability and localized loss processes due to other radical species. Hydrocarbon variability during periods of hour-to-day-long surface O3 depletion in late winter/early spring indicated active halogen atom chemistry estimated to be in the range 1.7 × 103-3.4 × 104 atom cm-3 for Cl and 4.8 × 106-9.6 × 107 atom cm-3 for Br. Longer-term negative deviations from sinusoidal behaviour in the late August were indicative of NMHC reaction with a persistent [Cl] of 2.3 × 103 atom cm-3. Maximum ethene and propene of 157 and 179 pptV, respectively, were observed in the late February/early March, consistent with increased oceanic biogenic emissions; however, their presence was significant year-round (June-August concentrations of 17.1 +/- 18.3 and 7.9 +/- 20.0 pptV, respectively).

  2. Multi-year levels and trends of non-methane hydrocarbon concentrations observed in ambient air in France

    NASA Astrophysics Data System (ADS)

    Waked, Antoine; Sauvage, Stéphane; Borbon, Agnès; Gauduin, Julie; Pallares, Cyril; Vagnot, Marie-Pierre; Léonardis, Thierry; Locoge, Nadine

    2016-09-01

    Measurements of 31 non-methane hydrocarbons (NMHCs) were carried out at three urban (Paris, 2003-2014, Strasbourg, 2002-2014 and Lyon, 2007-2014) sites in France over the period of a decade. A trend analysis was applied by means of the Mann-Kendall non-parametric test to annual and seasonal mean concentrations in order to point out changes in specific emission sources and to assess the impact of emission controls and reduction strategies. The trends were compared to those from three rural sites (Peyrusse-Vieille, 2002-2013, Tardière, 2003-2013 and Donon, 1997-2007). The results obtained showed a significant yearly decrease in pollutant concentrations over the study period and for the majority of species in the range of -1 to -7% in accordance with the decrease of NMHC emissions in France (-5 to -9%). Concentrations of long-lived species such as ethane and propane which are recognized as tracers of distant sources and natural gas remained constant. Compounds associated with combustion processes such as acetylene, propene, ethylene and benzene showed a significant decline in the range of -2% to -5% yr-1. These trends are consistent with those recently described at urban and background sites in the northern mid-latitudes and with emission inventories. C7-C9 aromatics such as toluene and xylenes as well as C4-C5 alkanes such as isopentane and isobutane also showed a significant decrease in the range of -3% to -7% yr-1. The decreasing trends in terms of % yr-1 observed at these French urban sites were typically higher for acetylene, ethylene and benzene than those reported for French rural sites of the national observatory of Measurement and Evaluation in Rural areas of trans-boundary Air pollution (MERA). The study also highlighted the difficult choice of a long term sampling site representative of the general trends of pollutant concentrations.

  3. Breaking methane

    PubMed Central

    Rosenzweig, Amy C.

    2015-01-01

    The most powerful oxidant found in nature is compound Q, an enzymatic intermediate that oxidizes methane. New spectroscopic data have resolved the long-running controversy about Q’s chemical structure. PMID:25607367

  4. An intensity study of the torsional bands of ethane at 35 μm

    NASA Astrophysics Data System (ADS)

    Moazzen-Ahmadi, N.; Norooz Oliaee, J.; Ozier, I.; Wishnow, E. H.; Sung, K.; Crawford, T. J.; Brown, L. R.; Devi, V. M.

    2015-01-01

    Ethane is the second most abundant hydrocarbon detected in the outer planets. Although the torsional mode is not infrared active in the lowest order, the strongest feature in this band can be seen near 289 cm-1 in the CASSINI CIRS spectrum of Titan. Prior laboratory studies have characterized the torsional frequencies to high accuracy and measured the intensities to temperatures as low as 208 K. However, for the interpretation of the far-infrared observations of Titan, further investigation was needed to determine the intensities at lower temperatures and to higher accuracy. The spectrum of C2H6 was investigated from 220 to 330 cm-1 to obtain the band strengths of the torsional fundamental ν4 (near 289 cm-1) and the first torsional hot band (2ν4 -ν4). Seven laboratory spectra were obtained at resolutions of 0.01 and 0.02 cm-1 using a Bruker IFS-125 Fourier transform spectrometer at the Jet Propulsion Laboratory. The interferometer was coupled to a coolable multi-pass absorption cell set to an optical path length of 52 m. The range of temperatures was 166-292 K with the lower temperatures being most relevant to the stratosphere of Titan. The ethane sample pressures ranged from 35 to 254 Torr. The modeling of the transition intensities required the expansion of the dipole moment operator to higher order; this introduced Herman-Wallis like terms. The fitting process involved five independent dipole constants and a single self-broadening parameter. The results presented should lead to an improved understanding of the methane cycle in planetary atmospheres and permit other molecular features in the CIRS spectra to be identified.

  5. 40 CFR 721.10474 - Substituted amino ethane sulfonic acid salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted amino ethane sulfonic acid... Specific Chemical Substances § 721.10474 Substituted amino ethane sulfonic acid salt (generic). (a... generically as substituted amino ethane sulfonic acid salt (PMN P-04-107) is subject to reporting under...

  6. 40 CFR 721.10474 - Substituted amino ethane sulfonic acid salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted amino ethane sulfonic acid... Specific Chemical Substances § 721.10474 Substituted amino ethane sulfonic acid salt (generic). (a... generically as substituted amino ethane sulfonic acid salt (PMN P-04-107) is subject to reporting under...

  7. Diffusion of iodo-ethane (1); helium (2)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) iodo-ethane; (2) helium

  8. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, Richard B.; Warren, Barbara K.

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  9. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  10. Determination of Ethane-1,2-diamine in Inert Complexes.

    ERIC Educational Resources Information Center

    Searle, Graeme H.

    1985-01-01

    Describes a procedure for determining ethane-1,2-diamine (EN) which is generally applicable for inert or labile complexes or for EN in its salts, although it cannot be used directly with ammonium or coordinated ammonia. It gives results with five percent accuracy or better and requires less than one hour laboratory time. (JN)