Science.gov

Sample records for methanogenic bioreactor packed

  1. Efficient treatment of garbage slurry in methanogenic bioreactor packed by fibrous sponge with high porosity.

    PubMed

    Sasaki, Kengo; Sasaki, Daisuke; Morita, Masahiko; Hirano, Shin-Ichi; Matsumoto, Norio; Ohmura, Naoya; Igarashi, Yasuo

    2010-05-01

    Adding a supporting material to a methanogenic bioreactor treating garbage slurry can improve efficiency of methane production. However, little is known on how characteristics (e.g., porosity and hydrophobicity) of the supporting material affect the bioreactor degrading garbage slurry. We describe the reactor performances and microbial communities in bioreactors containing hydrophilic or hydrophobic sheets, or fibrous hydrophilic or hydrophobic sponges. The porosity affected the efficiency of methane production and solid waste removal more than the hydrophilic or hydrophobic nature of the supporting material. When the terminal restriction fragment length polymorphism technique was used at a lower organic loading rate (OLR), microbial diversities in the suspended fraction were retained on the hydrophobic, but not the hydrophilic, sheets. Moreover, real-time quantitative polymerase chain reaction (PCR) performed at a higher OLR revealed that the excellent performance of reactors containing fibrous sponges with high porosity (98%) was supported by a clear increase in the numbers of methanogens on these sponges, resulting in larger total numbers of methanogens in the reactors. In addition, the bacterial communities in fractions retained on both the hydrophobic and hydrophilic fibrous sponges differed from those in the suspended fraction, thus increasing bacterial diversity in the reactor. Thus, higher porosity of the supporting material improves the bioreactor performance by increasing the amount of methanogens and bacterial diversity; surface hydrophobicity contributes to maintaining the suspended microbial community. PMID:20162271

  2. Molecular analysis of methanogens involved in methanogenic degradation of tetramethylammonium hydroxide in full-scale bioreactors.

    PubMed

    Whang, Liang-Ming; Hu, Tai-Ho; Liu, Pao-Wen Grace; Hung, Yu-Ching; Fukushima, Toshikazu; Wu, Yi-Ju; Chang, Shao-Hsiung

    2015-02-01

    This study investigated methanogenic communities involved in degradation of tetramethylammonium hydroxide (TMAH) in three full-scale bioreactors treating TMAH-containing wastewater. Based on the results of terminal-restriction fragment-length polymorphism (T-RFLP) and quantitative PCR analyses targeting the methyl-coenzyme M reductase alpha subunit (mcrA) genes retrieved from three bioreactors, Methanomethylovorans and Methanosarcina were the dominant methanogens involved in the methanogenic degradation of TMAH in the bioreactors. Furthermore, batch experiments were conducted to evaluate mcrA messenger RNA (mRNA) expression during methanogenic TMAH degradation, and the results indicated that a higher level of TMAH favored mcrA mRNA expression by Methansarcina, while Methanomethylovorans could only express considerable amount of mcrA mRNA at a lower level of TMAH. These results suggest that Methansarcina is responsible for methanogenic TMAH degradation at higher TMAH concentrations, while Methanomethylovorans may be important at a lower TMAH condition. PMID:25261128

  3. Dechlorination of polychlorinated methanes by a sequential methanogenic-denitrifying bioreactor system.

    PubMed

    Yu, Z; Smith, G B

    2000-04-01

    A two-stage bioreactor has been developed to link dechlorination of halogenated methane compounds to the anaerobic processes of methanogenesis and denitrification. A digester methanogenic consortium was shown to dechlorinate chloroform (CF) and carbon tetrachloride (CT) to dichloromethane (DCM), and DCM was then mineralized by an acclimated denitrifying biological activated carbon consortium. Combining these two processes, a sequential methanogenic-denitrifying bioreactor (SMDB) system that completely degraded polychlorinated methanes including CT, CF, and DCM was developed. More than 95% of the added CT and CF was dechlorinated in the methanogenic bioreactor with methanol as the primary substrate, and the resultant DCM was biodegraded in the denitrifying bioreactor with nitrate as the electron acceptor. In the denitrifying bioreactor, the residual CF was completely removed, and the DCM removal efficiency was more than 95%. This novel bioreactor system eliminates the need for aeration and so avoids the air contamination associated with aerobic biotreatment of volatile chlorinated pollutants. This SMDB system provides an alternative to conventional biotreatment of wastewaters and other matrices contaminated with polychlorinated methanes and is, to our knowledge, the first report on such a sequential anoxic system. PMID:10803908

  4. Enrichment of hydrogenotrophic methanogens in coupling with methane production using an electrochemical bioreactor.

    PubMed

    Jeon, Bo Young; Kim, Sung Yong; Park, Yong Keun; Park, Doo Hyun

    2009-12-01

    Anaerobic digestion sludge was cultivated in an electrochemical bioreactor (ECB) to enrich the hydrogenotrophic methanogens. A modified graphite felt cathode with neutral red (NR-cathode) was charged with electrochemical reducing power generated from a solar cell. The methane and carbon dioxide collected in a Teflon bag from the ECB were more than 80 ml/l of reactant/day and less than 20 ml/l of reactant/day, respectively, whereas the methane and carbon dioxide collected from a conventional bioreactor (CB) was around 40 ml/l of reactant/day, respectively. Moreover, the maximal volume ratios of methane to carbon dioxide (M/C ratio) collected in the Teflon bag from the ECB and CB were 7 and 1, respectively. The most predominant methanogens isolated from the CB on the 20th, 80th, and 150th days of incubation were hydrogenotrophs. The methanogenic diversity analyzed by temperature gradient gel electrophoresis (TGGE) of the 16S rDNA variable region was higher in the ECB than in the CB. The DNA extracted from the TGGE bands was more than 95% homologous with hydrogenotrophic methanogens in the CB. In conclusion, the ECB was demonstrated as a useful system for enriching hydrogenotrophic methanogens and increasing the M/C ratio of the gas product. PMID:20075635

  5. LEACHATE RECIRCULATION, METHANOGENS AND METAL CONCENTRATIONS IN BIOREACTOR LANDFILLS

    EPA Science Inventory

    The idea of operating landfills as bioreactors has received a lot of attention owing to many of the economic and waste treatment benefits. Portions of the Outer Loop landfill in Louisville, KY, owned and operated by WMI, Inc., are currently being used to test two different decom...

  6. Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles.

    PubMed

    Sasaki, Kengo; Morita, Masahiko; Hirano, Shin-ichi; Ohmura, Naoya; Igarashi, Yasuo

    2011-05-01

    Ammonia accumulation is one of the main causes of the loss of methane production observed during fermentation. We investigated the effect of addition of carbon fiber textiles (CFT) to thermophilic methanogenic bioreactors with respect to ammonia tolerance during the process of degradation of artificial garbage slurry, by comparing the performance of the reactors containing CFT with the performance of reactors without CFT. Under total ammonia-N concentrations of 3,000 mg L(-1), the reactors containing CFT were found to mediate stable removal of organic compounds and methane production. Under these conditions, high levels of methanogenic archaea were retained at the CFT, as determined by 16S rRNA gene analysis for methanogenic archaea. In addition, Methanobacterium sp. was found to be dominant in the suspended fraction, and Methanosarcina sp. was dominant in the retained fraction of the reactors with CFT. However, the reactors without CFT had lower rates of removal of organic compounds and production of methane under total ammonia-N concentrations of 1,500 mg L(-1). Under this ammonia concentration, a significant accumulation of acetate was observed in the reactors without CFT (130.0 mM), relative to the reactors with CFT (4.2 mM). Only Methanobacterium sp. was identified in the reactors without CFT. These results suggest that CFT enables stable proliferation of aceticlastic methanogens by preventing ammonia inhibition. This improves the process of stable garbage degradation and production of methane in thermophilic bioreactors that include high levels of ammonia. PMID:21468711

  7. Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor.

    PubMed

    Nobu, Masaru K; Narihiro, Takashi; Rinke, Christian; Kamagata, Yoichi; Tringe, Susannah G; Woyke, Tanja; Liu, Wen-Tso

    2015-08-01

    Ecogenomic investigation of a methanogenic bioreactor degrading terephthalate (TA) allowed elucidation of complex synergistic networks of uncultivated microorganisms, including those from candidate phyla with no cultivated representatives. Our previous metagenomic investigation proposed that Pelotomaculum and methanogens may interact with uncultivated organisms to degrade TA; however, many members of the community remained unaddressed because of past technological limitations. In further pursuit, this study employed state-of-the-art omics tools to generate draft genomes and transcriptomes for uncultivated organisms spanning 15 phyla and reports the first genomic insight into candidate phyla Atribacteria, Hydrogenedentes and Marinimicrobia in methanogenic environments. Metabolic reconstruction revealed that these organisms perform fermentative, syntrophic and acetogenic catabolism facilitated by energy conservation revolving around H2 metabolism. Several of these organisms could degrade TA catabolism by-products (acetate, butyrate and H2) and syntrophically support Pelotomaculum. Other taxa could scavenge anabolic products (protein and lipids) presumably derived from detrital biomass produced by the TA-degrading community. The protein scavengers expressed complementary metabolic pathways indicating syntrophic and fermentative step-wise protein degradation through amino acids, branched-chain fatty acids and propionate. Thus, the uncultivated organisms may interact to form an intricate syntrophy-supported food web with Pelotomaculum and methanogens to metabolize catabolic by-products and detritus, whereby facilitating holistic TA mineralization to CO2 and CH4. PMID:25615435

  8. Cultivation of methanogenic community from subseafloor sediments using a continuous-flow bioreactor

    PubMed Central

    Imachi, Hiroyuki; Aoi, Ken; Tasumi, Eiji; Saito, Yumi; Yamanaka, Yuko; Saito, Yayoi; Yamaguchi, Takashi; Tomaru, Hitoshi; Takeuchi, Rika; Morono, Yuki; Inagaki, Fumio; Takai, Ken

    2011-01-01

    Microbial methanogenesis in subseafloor sediments is a key process in the carbon cycle on the Earth. However, the cultivation-dependent evidences have been poorly demonstrated. Here we report the cultivation of a methanogenic microbial consortium from subseafloor sediments using a continuous-flow-type bioreactor with polyurethane sponges as microbial habitats, called down-flow hanging sponge (DHS) reactor. We anaerobically incubated methane-rich core sediments collected from off Shimokita Peninsula, Japan, for 826 days in the reactor at 10 °C. Synthetic seawater supplemented with glucose, yeast extract, acetate and propionate as potential energy sources was provided into the reactor. After 289 days of operation, microbiological methane production became evident. Fluorescence in situ hybridization analysis revealed the presence of metabolically active microbial cells with various morphologies in the reactor. DNA- and RNA-based phylogenetic analyses targeting 16S rRNA indicated the successful growth of phylogenetically diverse microbial components during cultivation in the reactor. Most of the phylotypes in the reactor, once it made methane, were more closely related to culture sequences than to the subsurface environmental sequence. Potentially methanogenic phylotypes related to the genera Methanobacterium, Methanococcoides and Methanosarcina were predominantly detected concomitantly with methane production, while uncultured archaeal phylotypes were also detected. Using the methanogenic community enrichment as subsequent inocula, traditional batch-type cultivations led to the successful isolation of several anaerobic microbes including those methanogens. Our results substantiate that the DHS bioreactor is a useful system for the enrichment of numerous fastidious microbes from subseafloor sediments and will enable the physiological and ecological characterization of pure cultures of previously uncultivated subseafloor microbial life. PMID:21654849

  9. Cultivation of methanogenic community from 2-km deep subseafloor coalbeds using a continuous-flow bioreactor

    NASA Astrophysics Data System (ADS)

    Imachi, H.; Tasumi, E.; Morono, Y.; Ito, M.; Takai, K.; Inagaki, F.

    2013-12-01

    Deep subseafloor environments associated with hydrocarbon reservoirs have been least explored by previous scientific drilling and hence the nature of deep subseafloor life and its ecological roles in the carbon cycle remain largely unknown. In this study, we performed cultivation of subseafloor methanogenic communities using a continuous-flow bioreactor with polyurethane sponges, called down-flow hanging sponge (DHS) reactor. The sample used for the reactor cultivation was obtained from 2 km-deep coalbeds off the Shimokita Peninsula of Japan, the northwestern Pacific, during the Integrated Ocean Drilling Program (IODP) Expedition 337 using a riser drilling technology of the drilling vessel Chikyu. The coalbed samples were incubated anaerobically in the DHS reactor at the in-situ temperature of 40°C. Synthetic seawater supplemented with a tiny amount of yeast extract, acetate, propionate and butyrate was provided into the DHS reactor. After 34 days of the bioreactor operation, a small production of methane was observed. The methane concentration was gradually increased and the stable carbon isotopic composition of methane was consistency 13C-depleted during the bioreactor operation, indicating the occurrence of microbial methanogenesis. Microscopic observation showed that the enrichment culture contained a variety of microorganisms, including methanogen-like rod-shaped cells with F420 auto-fluorescence. Interestingly, many spore-like particles were observed in the bioreactor enrichment. Phylogenetic analysis of 16S rRNA genes showed the growth of phylogenetically diverse bacteria and archaea in the DHS reactor. Predominant archaeal components were closely related to hydrogenotrophic methanogens within the genus Methanobacterium. Some predominant bacteria were related to the spore-formers within the class Clostridia, which are overall in good agreement with microscopic observations. By analyzing ion images using a nano-scale secondary ion mass spectrometry (Nano

  10. Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater.

    PubMed

    Ho, Jaeho; Sung, Shihwu

    2010-04-01

    Two laboratory-scale anaerobic membrane bioreactors, AnMBR 1 and AnMBR 2, were run in parallel at 25 and 15 degrees C, respectively. Total chemical oxygen demand (COD) removal efficiency was more than 95% and 85% for AnMBR 1 and 2, respectively. The COD removal of AnMBR 1 was mostly carried out biologically. However, the physical removal on the membrane surface compensated for the decreased biological removal rate in AnMBR 2. The membrane in AnMBR systems is likely not only to retain all biomass in the reactor, but also complement decreased biological removal efficiency at low temperature by rejecting soluble organics. Specific methanogenic activity (SMA) test was used to investigate the methanogenic activity profiles of suspended and attached sludge in AnMBRs treating synthetic municipal wastewater at 25 and 15 degrees C. The methanogenic activity was 51.8 ml CH(4)/g VSSd on day 1 and eventually increased 27% and reached 65.7 ml CH(4)/g VSSd on day 75 for AnMBR 1. However, the methanogenic activity of AnMBR 2 sludge was lower than that of AnMBR 1. The microbial activity of suspended sludge continuously increased, while that of attached sludge gradually decreased in this study. The methanogenic activity of attached sludge was far lower than that of suspended sludge. The role of attached sludge on the membrane in AnMBRs as a biofilm for biological organic removal was minimal compared to suspended sludge. PMID:20022745

  11. [Influence of Temperature on the Anaerobic Packed Bed Reactor Performance and Methanogenic Community].

    PubMed

    Xie, Hai-ying; Wang, Xin; Li, Mu-yuan; Yan, Xu-you; Igarashi, Yasuo; Luo, Feng

    2015-11-01

    This study aimed to analyze the effect of temperature on performance and microbial community structure of an anaerobic packed bed reactor (APBR). The temperature was increased step-wise from room temperature (22 degrees C ± 1 degrees C) to psychrophilic (15 degrees C ± 1 degrees C), mesophilic (37 degrees C ± 1 degrees C) and thermophilic (55 degrees C ± 1 degrees C). The results showed that, in the temperature changing process, the higher the temperature of APBR was, the higher COD removal rate and daily gas production were. After temperature changed to psychrophilic, mesophilic and thermophilic, COD removal rate and daily gas production were 25%, 45%, 60% and 2.3 L x d(-1), 4.0 L x d(-1), 8.5 L x d(-1) respectively. However, there was no significant change in biogas composition (-60%). A sudden temperature change caused a simultaneous increase in the concentration of volatile fatty acids (VFA), which had been fluctuating. Using 16S rRNA gene clone library screening, Euryarchaeota was commonly found, including important methanogens: MBT (Methanobacteriales), Mst (Methanosaetaceae) , Msc (Methanosarcinaceae) and MMB (Methanomicrobiales), as well as thermophilic bacteria and few spring Archaea. However, the diversity of methanogenic groups was reduced, especially at mesophilic. The results of quantitative PCR showed that the 16S rRNA gene concentrations of Mst, MMB and Msc were reduced by temperature changes. Although the relative proportion of every kind of methanogen was significantly affected, Mst was the dominant methanogen. PMID:26911011

  12. Shifts in methanogenic subpopulations measured with antibody probes in a fixed-bed loop anaerobic bioreactor treating sulfite evaporator condensate

    SciTech Connect

    Macario, A.J.L.; de Macario, E.C. ); Ney, U.; Schoberth, S.M.; Sahm, H. )

    1989-08-01

    A fixed-bed loop, high-rate anaerobic bioreactor treating sulfite evaporator condensate was sampled when it reached steady state and afterwards following perturbations during a 14-month period. By using immunotechnology, it was observed that shifts in methanogenic subpopulations occurred in association with perturbations, such as restarting and relocating the biomass into a different tank. Methanogens related to Methanobacterium bryantii MoHG and Methanobrevibacter smithii ALI were numerous throughout the observation period, while Methanosarcina mazei S6 and Methanosarcina thermophila TM1 were found in the early and late samples, respectively. Also, Methanobacterium formicicum was more numerous at the top portion of the bioreactor, while Methanobrevibacter arboriphilus AZ and DC were at the bottom. Sample formalinization required for prolonged storage proved suitable for antigen preservation.

  13. Methanogenic population dynamics and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure under high shear conditions.

    PubMed

    Padmasiri, Sudini I; Zhang, Jiangzhao; Fitch, Mark; Norddahl, Birgir; Morgenroth, Eberhard; Raskin, Lutgarde

    2007-01-01

    A 6-L, completely mixed anaerobic bioreactor with an external ultrafiltration membrane module was operated for 300 days to evaluate the startup and performance of an anaerobic membrane bioreactor (AnMBR) treating swine manure. The reactor had a successful startup at the initial loading rate of 1g volatile solids (VS)/L/day. After a two-fold increase in loading rate followed by a sudden, two-fold increase in flow velocity through the membrane module on day 75, the performance of the AnMBR deteriorated as measured by volatile fatty acid (VFA) accumulation, decrease in pH, and decrease in biogas production. The methanogenic population dynamics in the reactor were monitored with terminal restriction fragment length polymorphism (T-RFLP). Changes in the relative levels of Methanosarcinaceae and Methanosaetaceae were consistent with changes in VFA concentrations, i.e., high and low levels of acetate corresponded to a high abundance of Methanosarcinaceae and Methanosaetaceae, respectively. The levels of hydrogenotrophic methanogens of the order of Methanomicrobiales increased during decreased reactor performance suggesting that syntrophic interactions involving hydrogenotrophic methanogens remained intact regardless of the degree of shear in the AnMBR. PMID:17109913

  14. Modified CelliGen-packed bed bioreactors for hybridoma cell cultures.

    PubMed

    Wang, G; Zhang, W; Jacklin, C; Freedman, D; Eppstein, L; Kadouri, A

    1992-01-01

    This study describes two packed bed bioreactor configurations which were used to culture a mouse-mouse hybridoma cell line (ATCC HB-57) which produces an IgG1 monoclonal antibody. The first configuration consists of a packed column which is continuously perfused by recirculating oxygenated media through the column. In the second configuration, the packed bed is contained within a stationary basket which is suspended in the vessel of a CelliGen bioreactor. In this configuration, recirculation of the oxygenated media is provided by the CelliGen Cell Lift impeller. Both configurations are packed with disk carriers made from a non-woven polyester fabric. During the steady-state phase of continuous operation, a cell density of 10(8) cells per cm3 of bed volume was obtained in both bioreactor configurations. The high levels of productivity (0.5 gram MAb per 1 of packed bed per day) obtained in these systems demonstrates that the culture conditions achieved in these packed bed bioreactors are excellent for the continuous propagation of hybridomas using media which contains low levels (1%) of serum as well as serum-free media. These packed bed bioreactors allow good control of pH, dissolved oxygen and temperature. The media flows evenly over the cells and produces very low shear forces. These systems are easy to set up and operate for prolonged periods of time. The potential for scale-up using Fibra-cel carriers is enhanced due to the low pressure drop and low mass transfer resistance, which creates high void fraction approaching 90% in the packed bed. PMID:1369180

  15. Assessment of packed bed bioreactor systems in the production of viral vaccines

    PubMed Central

    2014-01-01

    Vaccination is believed to be the most effective method for the prevention of infectious diseases. Thus it is imperative to develop cost effective and scalable process for the production of vaccines so as to make them affordable for mass use. In this study, performance of a novel disposable iCELLis fixed bed bioreactor system was investigated for the production of some viral vaccines like Rabies, Hepatitis-A and Chikungunya vaccines in comparison to conventional systems like the commercially available packed bed system and roller bottle system. Vero and MRC-5 cell substrates were evaluated for growth parameters in all the three systems maintaining similar seeding density, multiplicity of infection (MOI) and media components. It was observed that Vero cells showed similar growth in all the three bioreactors whereas MRC-5 cells showed better growth in iCELLis Nano system and roller bottle system. Subsequently, the virus infection and antigen production studies also revealed that for Hepatitis-A and Chikungunya iCELLis Nano bioreactor system was better to the commercial packed bed bioreactor and roller bottle systems. Although for rabies antigen production commercially available packed bed bioreactor system was found to be better. This study shows that different bioreactor platforms may be employed for viral vaccine production and iCELLis Nano is one of such new convenient and a stable platform for production of human viral vaccines. PMID:24949260

  16. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells

    PubMed Central

    Osiecki, Michael J.; Michl, Thomas D.; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B.; Griesser, Hans J.; Doran, Michael R.

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs. PMID:26660475

  17. Effect of adding carbon fiber textiles to methanogenic bioreactors used to treat an artificial garbage slurry.

    PubMed

    Sasaki, Kengo; Morita, Masahiko; Hirano, Shin-Ichi; Ohmura, Naoya; Igarashi, Yasuo

    2009-08-01

    To compare the performances and microbial populations of methanogenic reactors with and without carbon fiber textiles (CFT), we operated small-scale (200 ml) reactors using a slurry of artificial garbage. For both types of reactors, the organic loading rate (OLR) was stepwisely and rapidly increased in the same manner. Start-up period was shortened by adding CFT. Reactors with CFT showed greater efficiency for removal of suspended solid and volatile suspended solid than reactors without CFT at a long hydraulic retention time (HRT) between 8 and 13 days. The reactors with CFT maintained stable methane production at an OLR of 15.3 g dichromate chemical oxygen demand (CODcr)/l/day and DNAs from microorganisms were highly concentrated in adhering fractions on CFT. As shown by quantitative PCR analysis, the proportions of methanogenic archaea were conserved more than 25% in adhering fractions on CFT in reactors with CFT. By contrast, reactors without CFT showed accumulation of volatile fatty acid and deteriorated at an OLR of 2.4 gCODcr/l/day. Methanogenic proportions dropped to 17.1% in suspended fractions of reactors without CFT. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that all archaeal DGGE bands in both types of reactors were related to methanogens, but more bands were observed in reactors with CFT. Thus the higher performance of reactors with CFT likely reflects the greater abundance of microorganisms and methanogenic diversity. PMID:19619860

  18. Factors influencing the degradation of garbage in methanogenic bioreactors and impacts on biogas formation.

    PubMed

    Morita, Masahiko; Sasaki, Kengo

    2012-05-01

    Anaerobic digestion of garbage is attracting much attention because of its application in waste volume reduction and the recovery of biogas for use as an energy source. In this review, various factors influencing the degradation of garbage and the production of biogas are discussed. The surface hydrophobicity and porosity of supporting materials are important factors in retaining microorganisms such as aceticlastic methanogens and in attaining a higher degradation of garbage and a higher production of biogas. Ammonia concentration, changes in environmental parameters such as temperature and pH, and adaptation of microbial community to ammonia have been related to ammonia inhibition. The effects of drawing electrons from the methanogenic community and donating electrons into the methanogenic community on methane production have been shown in microbial fuel cells and bioelectrochemical reactors. The influences of trace elements, phase separation, and co-digestion are also summarized in this review. PMID:22395906

  19. Biodegradation of chlorpyrifos by Pseudomonas sp. in a continuous packed bed bioreactor.

    PubMed

    Yadav, Maya; Srivastva, Navnita; Singh, Ram Sharan; Upadhyay, Siddh Nath; Dubey, Suresh Kumar

    2014-08-01

    Biodegradation of chlorpyrifos (CP) by Pseudomonas (Iso 1) sp. was investigated in batch as well as continuous bioreactors packed with polyurethane foam pieces. The optimum process parameters for the maximum removal of CP, determined through batch experiments, were found to be: inoculum level, 300×10(6)CfumL(-1); CP concentration, 500mgL(-1); pH 7.5; temperature, 37°C and DO, 5.5mgL(-1). The continuous packed bed bioreactor was operated at various flow rates (10-40mLh(-1)) under the optimum conditions. The steady state CP removal efficiency of more than 91% was observed up to the inlet load of 300mgL(-1)d(-1). The bioreactor was sensitive to flow fluctuations but was able to recover its performance quickly and exhibited the normal plug-flow behavior. Accumulation of TCP (3,5,6-trichloro-2-pyridinol) affected the reactor performance. PMID:24556341

  20. Hydrogenotrophic denitrification for tertiary nitrogen removal from municipal wastewater using membrane diffusion packed-bed bioreactor.

    PubMed

    Li, Peng; Xing, Wei; Zuo, Jiane; Tang, Lei; Wang, Yajiao; Lin, Jia

    2013-09-01

    A lab-scale membrane diffusion packed-bed bioreactor was used to investigate hydrogenotrophic denitrification for tertiary nitrogen removal from municipal wastewater. After start-up, the bioreactor had been operated for 165 days by stepwise increasing influent loading rates at 30 and 15°C. The results indicated that this bioreactor could achieve relatively high nitrogen removal efficiencies. The denitrification rates reached 0.250 and 0.230 kg N/(m(3)d) at 30 and 15°C respectively. The total nitrogen concentration in effluent was entirely below 2.0 mg/L at the steady operation state. The average increase of total organic carbon in effluent was approximately 0.41 mg/L, suggesting the risk of organic residue can be completely controlled. Dissolved oxygen (DO) did not show obviously negative effects on hydrogenotrophic denitrification. There was only slight decrease of DO concentration in effluent, which demonstrated almost all of the hydrogen was used for nitrate reduction. PMID:23890978

  1. Reduction of Cr(6+) to Cr(3+) in a packed-bed bioreactor

    SciTech Connect

    Turick, C.E.; Apel, W.A.; Camp, C.E.

    1997-12-31

    Hexavalent chromium, Cr(6{sup +}), is a common and toxic pollutant in soils and waters. Reduction of the mobile Cr(6{sup +}) to the less mobile and less toxic trivalent chromium, Cr(3{sup +}), can be achieved with conventional chemical reduction technologies. Alternatively, Cr(6{sup +}) can be biochemically reduced to Cr(3{sup +}) by anaerobic microbial consortia which appear to use Cr(6{sup +}) as a terminal electron acceptor. A bioprocess for Cr(6{sup +}) reduction has been demonstrated using a packed-bed bioreactor containing ceramic packing, and then compared to a similar bioreactor containing DuPont Bio-Sep beads. An increase in volumetric productivity from 4 mg Cr(6{sup +})/L/h to 260 mg Cr(6{sup +})/L/h, probably due to an increase in biomass density, was obtained using Bio-Sep beads. The beads contain internal macropores which were shown by scanning electron microscopy to house dense concentrations of bacteria. Comparisons to conventional Cr(6{sup +}) treatment technologies indicate that a bioprocess has several economic and operational advantages. 7 refs., 4 figs.

  2. An additional simple denitrification bioreactor using packed gel envelopes applicable to industrial wastewater treatment.

    PubMed

    Morita, Masahiko; Uemoto, Hiroaki; Watanabe, Atsushi

    2007-08-15

    A simple denitrification bioreactor for nitrate-containing wastewater without organic compounds was developed. This bioreactor consisted of packed gel envelopes in a single tank. Each envelope comprised two plates of gels containing Paracoccus denitrificans cells with an internal space between the plates. As an electron donor for denitrification, ethanol was injected into the internal space and not directly into the wastewater. P. denitrificans cells in the gel reduced nitrate to nitrogen gas by using the injected ethanol. Nitrate-containing desulfurization wastewater derived from a coal-fired thermal power plant was continuously treated with 20 packed gel envelopes (size, 1,000 x 900 x 12 mm; surface area, 1.44 m(2)) in a reactor tank (volume 1.5 m(3)). When the total nitrogen concentration in the inflow was around 150 mg-N x L(-1), the envelopes removed approximately 60-80% of the total nitrogen, and the maximum nitrogen removal rate was 5.0 g-N x day(-1) per square meter of the gel surface. This value corresponded to the volumetric nitrogen removal performance of 0.109 kg-N x m(-3) x day(-1). In each envelope, a high utilization efficiency of the electron donor was attained, although more than the double amount of the electron donor was empirically injected in the present activated sludge system to achieve denitrification when compared with the theoretical value. The bioreactor using the envelopes would be extremely effective as an additional denitrification system because these envelopes can be easily installed in the vacant spaces of preinstalled water treatment systems, without requiring additional facilities for removing surplus ethanol and sludge. PMID:17252606

  3. Enrichment and characterization of microbial consortia degrading soluble microbial products discharged from anaerobic methanogenic bioreactors.

    PubMed

    Kim, Na-Kyung; Oh, Seungdae; Liu, Wen-Tso

    2016-03-01

    Soluble microbial products (SMP) produced in bioprocesses have been known as a main cause to decrease treatment efficiency, lower effluent quality, and promote membrane fouling in water reclamation plants. In this study, biological degradation of SMP using selectively enriched microbial consortia in a down-flow hanging sponge (DHS) reactor was introduced to remove SMP discharged from anaerobic methanogenic reactors. On average, 68.9-87.5% SMP removal was achieved by the enriched microbial consortia in the DHS reactor for >800 days. The influent SMP fed to the DHS reactor exhibited a bimodal molecular weight (MW) distribution with 14-20 kDa and <4 kDa. Between these two types of SMP, the small MW SMP were biodegraded in the upper part of the reactor, together with most of the large MW SMP. Using 16S rRNA gene pyrosequencing technology, the microbial community composition and structure were characterized and correlated with operational factors, such as hydraulic retention time, organic loading rate, and removal of soluble chemical oxygen demand at different depths of the reactor, by performing network and redundancy analyses. The results revealed that Saprospiraceae was strongly correlated to the increasing SMP loading condition, indicating positive co-occurrences with neighboring bacterial populations. Different microbial diversity along with the depth of the reactor implies that stratified microbial communities could participate in the process of SMP degradation. Taken together, these observations indicate that the spatial and temporal variability of the enriched microbial community in the DHS reactor could effectively treat SMP with respect to changes in the operational factors. PMID:26771162

  4. Nitrification in brackish water recirculating aquaculture system integrated with activated packed bed bioreactor.

    PubMed

    Rejish Kumar, V J; Joseph, Valsamma; Philip, Rosamma; Bright Singh, I S

    2010-01-01

    Recirculation aquaculture systems (RAS) depend on nitrifying biofilters for the maintenance of water quality, increased biosecurity and environmental sustainability. To satisfy these requirements a packed bed bioreactor (PBBR) activated with indigenous nitrifying bacterial consortia has been developed and commercialized for operation under different salinities for instant nitrification in shrimp and prawn hatchery systems. In the present study the nitrification efficiency of the bioreactor was tested in a laboratory level recirculating aquaculture system for the rearing of Penaeus monodon for a period of two months under higher feeding rates and no water exchange. Rapid setting up of nitrification was observed during the operation, as the volumetric total ammonia nitrogen removal rates (VTR) increased with total ammonia nitrogen (TAN) production in the system. The average Volumetric TAN Removal Rates (VTR) at the feeding rate of 160 g/day from 54-60th days of culture was 0.1533+/-0.0045 kg TAN/m(3)/day. The regression between VTR and TAN explained 86% variability in VTR (P<0.001). The laboratory level RAS demonstrated here showed high performance both in terms of shrimp biomass yield and nitrification and environmental quality maintenance. Fluorescent in-situ Hybridization analysis of the reactor biofilm ensured the presence of autotrophic nitrifier groups such as Nitrosococcus mobilis lineage, Nitrobacter spp and phylum Nitrospira, the constituent members present in the original consortia used for activating the reactors. This showed the stability of the consortia on long term operation. PMID:20150717

  5. Low-Temperature (10°C) Anaerobic Digestion of Dilute Dairy Wastewater in an EGSB Bioreactor: Microbial Community Structure, Population Dynamics, and Kinetics of Methanogenic Populations

    PubMed Central

    Cysneiros, Denise; O'Flaherty, Vincent

    2013-01-01

    The feasibility of anaerobic digestion of dairy wastewater at 10°C was investigated in a high height : diameter ratio EGSB reactor. Stable performance was observed at an applied organic loading rate (OLR) of 0.5–2 kg COD m−3 d−1 with chemical oxygen demand (COD) removal efficiencies above 85%. When applied OLR increased to values above 2 kg COD m−3 d−1, biotreatment efficiency deteriorated, with methanogenesis being the rate-limiting step. The bioreactor recovered quickly (3 days) after reduction of the OLR. qPCR results showed a reduction in the abundance of hydrogenotrophic methanogenic Methanomicrobiales and Methanobacteriales throughout the steady state period followed by a sharp increase in their numbers (111-fold) after the load shock. Specific methanogenic activity and maximum substrate utilising rate (Amax) of the biomass at the end of trial indicated increased activity and preference towards hydrogenotrophic methanogenesis, which correlated well with the increased abundance of hydrogenotrophic methanogens. Acetoclastic Methanosaeta spp. remained at stable levels throughout the trial. However, increased apparent half-saturation constant (Km) at the end of the trial indicated a decrease in the specific substrate affinity for acetate of the sludge, suggesting that Methanosaeta spp., which have high substrate affinity, started to be outcompeted in the reactor. PMID:24089597

  6. Perchlorate remediation using packed-bed bioreactors and electricity generation in microbial fuel cells (MFCs)

    NASA Astrophysics Data System (ADS)

    Min, Booki

    Two pilot-scale fixed bed bioreactors were operated in continuous mode in order to treat groundwater contaminated by perchlorate. The bioreactors were constructed and operated side-by-side at the Texas Street Well Facility in Redlands, California. Each reactor was packed with either sand or plastic media. A perchlorate-reducing bacterium, Dechlorosoma sp. KJ, was used to inoculate the bioreactors. Perchlorate was successfully removed down to a non-detectable level (<4mug/L) in both bioreactors with acetate as a carbon source and nutrients at loading rates less than 0.063 L/s (1 gpm; 0.34 L/m2s). The sand medium bioreactor could achieve complete-perchlorate removal up to flow rate of 0.126 L/s. A regular backwashing cycle (once a week) was an important factor for completely removing perchlorate in groundwater. Power generation directly from pure or mixed organic matter was examined using microbial fuel cells (MFCs), which were run either in batch or continuous mode. In batch experiments, both a pure culture (Geobactor metallireducens) and a mixed culture (wastewater inoculum) were used as the biocatalyst, and acetate was added as substrate in the anode chamber of the MFC. Power output in a membrane MFC with either inoculum was essentially the same, with 40 +/- 1 mW/m2 for G. metallireducens and 38 +/- 1 mW/m2 for mixed culture. A different type of the MFC containing a salt bridge instead of a membrane system was examined to generate power using the same substrate and pure culture as used in the membrane MFC. Power output in the salt bridge MFC was 2.2 mW/m 2. It was found that the lower power output was directly attributed to the higher internal resistance of the salt bridge system (19920 +/- 50 O) in comparison with that of the membrane system (1286 +/- 1 O). Continuous electricity generation was examined in a flat plate microbial fuel cell (FPMFC) using domestic wastewater and specific organic substrates. The FPMFC, containing a combined electrode/proton exchange

  7. Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators

  8. Optimization of the medium perfusion rate in a packed-bed bioreactor charged with CHO cells.

    PubMed

    Meuwly, F; von Stockar, U; Kadouri, A

    2004-09-01

    In the present study, the optimal medium perfusion rate to be used for the continuous culture of a recombinant CHO cell line in a packed-bed bioreactor made of Fibra-Cel((R)) disk carriers was determined. A first-generation process had originally been designed with a high perfusion rate, in order to rapidly produce material for pre-clinical and early clinical trials. It was originally operated with a perfusion of 2.6 vvd during production phase in order to supply the high cell density (2.5x10(7) cell ml(-1) of packed-bed) with sufficient fresh medium. In order to improve the economics of this process, a reduction of the medium perfusion rate by -25% and -50% was investigated at small-scale. The best option was then implemented at pilot scale in order to further produce material for clinical trials with an improved second-generation process. With a -25% reduction of the perfusion rate, the volumetric productivity was maintained compared to the first-generation process, but a -30% loss of productivity was obtained when the medium perfusion rate was further reduced to -50% of its original level. The protein quality under reduced perfusion rate conditions was analyzed for purity, N-glycan sialylation level, abundance of dimers or aggregates, and showed that the quality of the final drug substance was comparable to that obtained in reference conditions. Finally, a reduction of -25% medium perfusion was implemented at pilot scale in the second-generation process, which enabled to maintain the same productivity and the same quality of the molecule, while reducing costs of media, material and manpower of the production process. For industrial applications, it is recommended to test whether and how far the perfusion rate can be decreased during the production phase - provided that the product is not sensitive to residence time - with the benefits of reduced cost of goods and to simplify manufacturing operations. PMID:19003257

  9. Lipase production by solid-state fermentation: cultivation conditions and operation of tray and packed-bed bioreactors.

    PubMed

    Gutarra, Melissa L E; Cavalcanti, Elisa D C; Castilho, Leda R; Freire, Denise M G; Sant'Anna, Geraldo L

    2005-01-01

    The production of lipase by Penicillium simplicissimum in solid-state fermentation was studied using babassu cake as the basal medium. Tray-type and packed-bed bioreactors were employed. In the former, the influence of temperature; content of the medium, and medium supplementation with olive oil, sugarcane molasses, corn steep liquor, and yeast hydrolysate was studied. For all combinations of supplements, a temperature of 30 degrees C, a moisture content of 70%, and a concentration of carbon source of 6.25% (m/m, dry basis) provided optimum conditions for lipase production. When used as single supplements olive oil and molasses also were able to provide high lipase activities (20 U/g). Using packed-bed bioreactors and molasses-supplemented medium, optimum conditions for enzyme production were air superficial velocities above 55 cm/min and temperatures below 28 degrees C. The lower temperature optimum found for these reactors is probably related to radial heat gradient formation inside the packed bed. Maximum lipase activities obtained in these bioreactors (26.4 U/g) were 30% higher than in tray-type reactors. PMID:15917592

  10. Combination of photoreactor and packed bed bioreactor for the removal of ethyl violet from wastewater.

    PubMed

    Chen, Chih-Yu; Yen, Shao-Hsiung; Chung, Ying-Chien

    2014-12-01

    An efficient treatment system that combines a photoreactor and packed bed bioreactor (PBR) was developed and evaluated for treating ethyl violet (EV)-containing wastewater. Initial experiments demonstrated that the optimal operating parameters for the photoreactor in treating EV-containing wastewater were 2h reaction time, pH of 7, and 2 min liquid retention time. Under these conditions, the photocatalytic reaction achieved a 61% EV removal efficiency and resulted in a significant BOD/COD increase in the solution. The results displayed by the coupled photobiological system achieved a removal efficiency of 85% and EC50 of the solution increased by 19 times in a semi-continuous mode when the EV concentration was <150 mg +L(-)(1). The effect of shock loading on the EV removal was temporary but coexisting substrate (glucose and crystal violet) at specific levels would affect the EV removal efficiency of the PBR. Phylogenetic analysis in the PBR indicated that the major bacteria species were Bdellovibrio bacteriovorus, Ralstonia pickettii, Stenotrophomonas maltophilia, and Comamonas sp. Furthermore, the possible degrading mechanisms of this coupled system were demethylation, deethylation, aromatic ring opening, nitrification, and carbon oxidation. The intermediates were characterized using gas chromatography-mass spectrometry analysis. These results indicated that the coupled photobiological system provides an effective method of EV removal. PMID:25259784

  11. Activated packed bed bioreactor for rapid nitrification in brackish water hatchery systems.

    PubMed

    Kumar, V J Rejish; Achuthan, Cini; Manju, N J; Philip, Rosamma; Singh, I S Bright

    2009-03-01

    A packed bed bioreactor (PBBR) was developed for rapid establishment of nitrification in brackish water hatchery systems in the tropics. The reactors were activated by immobilizing ammonia-oxidizing (AMONPCU-1) and nitrite-oxidizing (NIONPCU-1) bacterial consortia on polystyrene and low-density polyethylene beads, respectively. Fluorescence in situ hybridization demonstrated the presence of autotrophic nitrifiers belong to Nitrosococcus mobilis, lineage of beta ammonia oxidizers and nitrite oxidizer Nitrobacter sp. in the consortia. The activated reactors upon integration to the hatchery system resulted in significant ammonia removal (P < 0.01) culminating to its undetectable levels. Consequently, a significantly higher percent survival of larvae was observed in the larval production systems. With spent water the reactors could establish nitrification with high percentage removal of ammonia (78%), nitrite (79%) and BOD (56%) within 7 days of initiation of the process. PBBR is configured in such a way to minimize the energy requirements for continuous operation by limiting the energy inputs to a single stage pumping of water and aeration to the aeration cells. The PBBR shall enable hatchery systems to operate under closed recirculating mode and pave the way for better water management in the aquaculture industry. PMID:19039611

  12. Denitrification using PBS as carbon source and biofilm support in a packed-bed bioreactor.

    PubMed

    Wu, Weizhong; Yang, Luhua; Wang, Jianlong

    2013-01-01

    Biodegradable polymer was used as carbon source and biofilm support for nitrate removal from aqueous solution as an attractive alternative for biological denitrification. The objective of this paper was to investigate the denitrification performance and microbial community of a packed-bed bioreactor using poly (butanediol succinate) (PBS), a biodegradable polymer, as carbon source and biofilm support. NO(3)-N concentration was determined by UV spectrophotometer. NO(2)-N concentration was assayed by hydrochloric acid naphthyl ethylenediamine spectrophotometry method. Total organic carbon (TOC) was measured using a TOC analyzer. The morphology of the samples was observed using an environmental scanning electron microscope (ESEM). The microbial community was analyzed by pyrosequencing method. The experimental results showed that an average removal efficiency of nitrate was 95 %. ESEM observation and FTIR analysis indicated the changes of PBS granules before and after microbial utilization. Pyrosequencing results showed that Betaproteobacteria predominated, and most of PBS-degrading denitrifying bacteria were assigned to the family Comamonadaceae. Denitrifying bacteria accounted for 13.02 % in total population. The PBS granules were suitable support and carbon source for denitrifying bacteria. PMID:22562343

  13. Green and efficient production of octyl hydroxyphenylpropionate using an ultrasound-assisted packed-bed bioreactor.

    PubMed

    Lee, Chih Chen; Chen, Hsiao Ching; Ju, Hen Yi; Chen, Jiann Hwa; Kuo, Chia Hung; Chung, Yi Lin; Liu, Yung Chuan; Shieh, Chwen Jen

    2012-04-01

    A solvent-free system to produce octyl hydroxyphenylpropionate (OHPP) from p-hydroxyphenylpropionic acid (HPPA) and octanol using immobilized lipase (Novozym® 435) as a catalyst in an ultrasound-assisted packed-bed bioreactor was investigated. Response-surface methodology (RSM) and a three-level-three-factor Box-Behnken design were employed to evaluate the effects of reaction temperature (x₁), flow rate (x₂) and ultrasonic power (x₃) on the percentage of molar production of OHPP. The results indicate that the reaction temperature and flow rate were the most important variables in optimizing the production of OHPP. Based on a ridge max analysis, the optimum conditions for OHPP synthesis were predicted to consist of a reaction temperature of 65°C, a flow rate of 0.05 ml/min and an ultrasonic power of 1.74 W/cm² with a yield of 99.25%. A reaction was performed under these optimal conditions, and a yield of 99.33 ± 0.1% was obtained. PMID:22120649

  14. Nitrogen and Phosphorus Removal from Wastewater Treatment Plant Effluent via Bacterial Sulfate Reduction in an Anoxic Bioreactor Packed with Wood and Iron

    PubMed Central

    Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko

    2014-01-01

    We investigated the removal of nitrogen and phosphate from the effluent of a sewage treatment plant over a long-term operation in bioreactors packed with different combinations of wood and iron, with a trickling filter packed with foam ceramics for nitrification. The average nitrification rate in the trickling filter was 0.17 kg N/m3∙day and remained at 0.11 kg N/m3∙day even when the water temperature was below 15 °C. The denitrification and phosphate removal rates in the bioreactor packed with aspen wood and iron were higher than those in the bioreactor packed with cedar chips and iron. The bioreactor packed with aspen wood and iron continued to remove nitrate and phosphate for >1200 days of operation. The nitrate removal activity of a biofilm attached to the aspen wood from the bioreactor after 784 days of operation was 0.42 g NO3-N/kg dry weight wood∙ day. There was no increase in the amount of dissolved organic matter in the outflow from the bioreactors. PMID:25247426

  15. Nitrogen and phosphorus removal from wastewater treatment plant effluent via bacterial sulfate reduction in an anoxic bioreactor packed with wood and iron.

    PubMed

    Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko

    2014-09-01

    We investigated the removal of nitrogen and phosphate from the effluent of a sewage treatment plant over a long-term operation in bioreactors packed with different combinations of wood and iron, with a trickling filter packed with foam ceramics for nitrification. The average nitrification rate in the trickling filter was 0.17 kg N/m3∙day and remained at 0.11 kg N/m3∙day even when the water temperature was below 15 °C. The denitrification and phosphate removal rates in the bioreactor packed with aspen wood and iron were higher than those in the bioreactor packed with cedar chips and iron. The bioreactor packed with aspen wood and iron continued to remove nitrate and phosphate for >1200 days of operation. The nitrate removal activity of a biofilm attached to the aspen wood from the bioreactor after 784 days of operation was 0.42 g NO3-N/kg dry weight wood∙ day. There was no increase in the amount of dissolved organic matter in the outflow from the bioreactors. PMID:25247426

  16. Biological nitrogen removal from plating wastewater by submerged membrane bioreactor packed with granular sulfur.

    PubMed

    Moon, Jinyoung; Hwang, Yongwoo; Kim, Junbeum; Kwak, Inho

    2016-01-01

    Recent toughened water quality standards have necessitated improvements for existing sewer treatment facilities through advanced treatment processes. Therefore, an advanced treatment process that can be installed through simple modification of existing sewer treatment facilities needs to be developed. In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was developed and operated to determine the biological nitrogen removal behaviors of plating wastewater containing a high concentration of NO3(-). Continuous denitrification was carried out at various nitrogen loading rates at 20 °C using synthetic wastewater, which was comprised of NO3(-) and HCO3(-), and actual plating wastewater, which was collected from the effluent water of a plating company called 'H Metals'. High-rate denitrification in synthetic plating wastewater was accomplished at 0.8 kg NO3(-)-N/m(3)·day at a nitrogen loading rate of 0.9 kg NO3(-)-N/m(3)·day. The denitrification rate further increased in actual plating wastewater to 0.91 kg NO3(-)-N/m(3)·day at a nitrogen loading rate of 1.11 kg NO3(-)-N/m(3)·day. Continuous filtration was maintained for up to 30 days without chemical cleaning with a transmembrane pressure in the range of 20 cmHg. Based on stoichiometry, SO4(2-) production and alkalinity consumption could be calculated theoretically. Experimental alkalinity consumption was lower than the theoretical value. This newly proposed MBR-GS process, capable of high-rate nitrogen removal by compulsive flux, is expected to be applicable as an alternative renovation technique for nitrogen treatment of plating wastewater as well as municipal wastewater with a low C/N ratio. PMID:27533855

  17. Comparison of methanogenic community structure and anaerobic process performance treating swine wastewater between pilot and optimized lab scale bioreactors.

    PubMed

    Kim, Woong; Cho, Kyungjin; Lee, Seungyong; Hwang, Seokhwan

    2013-10-01

    To investigate methanogenic community structure and process performance of anaerobic digestion treating swine wastewater at different scale, a pilot plant with 20 m(3) of effective working volume and lab scale methanogenic digester with 6L working volume were operated for 71 days and 6 turnover periods, respectively. During the steady state of anaerobic digestion, COD and VS removal efficiency in pilot plant were 65.3±3.2, 51.6±4.3%, respectively, which was similar to those in lab scale. However, calculated VFAs removal efficiency and methane yield were lower in pilot plant than in lab scale digester. Also, organics removal efficiencies, which consist of total carbohydrates, proteins, and lipids, were different between pilot and lab scale. These results were thought to be due to the ratio of carbohydrates to proteins in the raw swine wastewater. As a result of qualitative microbial analysis, Methanoculleus receptaculii, and Methanoculleus bourgensis, were commonly concerned with methane production. PMID:23489568

  18. Methanospirillum stamsii sp. nov., a psychrotolerant, hydrogenotrophic, methanogenic archaeon isolated from an anaerobic expanded granular sludge bed bioreactor operated at low temperature.

    PubMed

    Parshina, Sofiya N; Ermakova, Anna V; Bomberg, Malin; Detkova, Ekaterina N

    2014-01-01

    A psychrotolerant hydrogenotrophic methanogen, strain Pt1, was isolated from a syntrophic propionate-oxidizing methanogenic consortium obtained from granulated biomass of a two-stage low-temperature (3-8 °C) anaerobic expanded granular sludge bed (EGSB) bioreactor, fed with a mixture of volatile fatty acids (VFAs) (acetate, propionate and butyrate). The strain was strictly anaerobic, and cells were curved rods, 0.4-0.5×7.5-25 µm, that sometimes formed wavy filaments from 25 to several hundred micrometres in length. Cells stained Gram-negative and were non-sporulating. They were gently motile by means of tufted flagella. The strain grew at 5-37 °C (optimum at 20-30 °C), at pH 6.0-10 (optimum 7.0-7.5) and with 0-0.3 M NaCl (optimum 0 M NaCl). Growth and methane production was found with H2/CO2 and very weak growth with formate. Acetate and yeast extract stimulated growth, but were not essential. The G+C content of the DNA of strain Pt1 was 40 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Pt1 was a member of the genus Methanospirillum and showed 97.5 % sequence similarity to Methanospirillum hungatei JF1(T) and 94 % sequence similarity to Methanospirillum lacunae Ki8-1(T). DNA-DNA hybridization of strain Pt1 with Methanospirillum hungatei JF1(T) revealed 39 % relatedness. On the basis of its phenotypic characteristics and phylogenetic position, strain Pt1 is a representative of a novel species of the genus Methanospirillum, for which the name Methanospirillum stamsii sp. nov. is proposed. The type strain is Pt1(T) ( = DSM 26304(T) = VKM B-2808(T)). PMID:24048867

  19. Continuous production of monoclonal antibody in a packed-bed bioreactor.

    PubMed

    Golmakany, Naghmeh; Rasaee, Mohammad Javad; Furouzandeh, Mehdi; Shojaosadati, Seyed Abbas; Kashanian, Soheila; Omidfar, Kobra

    2005-06-01

    In the present study the growth and MAb (monoclonal antibody) production of a mouse x mouse hybridoma cell producing anti-digoxin MAb was evaluated. The hybridoma cells entrapped within the support matrix Fibra-Cel were cultured in batch and continuous mode following special protocols. Cell-culture studies were performed in a 1-litre spinner basket containing 3 g.litre-1 support matrix. Batch culture was operated with the cell density of 42x10(6) cells. During the 7 days of culture, the medium was sampled daily in order to assess glucose and MAb concentrations and the lactate dehydrogenase released into the culture medium. After a culture period of 72 h, the cell density and MAb concentration were found to be 10.4x10(7) cells/3 g of NWPF (non-woven polyester fibre) discs and 250 microg/ml respectively. This yield gradually decreased to 0.55x10(6) cells/3 g of packaging material and 60 microg/ml respectively at the end of the batch culture. In the continuous-culture studies, the batch culture was initially operated for 64.5 h and then continuous flow was started at the dilution rates of 0.15, 0.2, 0.25 and 0.3 day-1 and finally stabilized at 0.25 day-1 within 288 h (12 days). The MAb concentration at steady state was found to be 116-120 microg/day per ml, and the yield of operation was 62.5 mg/day per ml, which was 3.5 times higher than that of batch culture. In conclusion, a packed-bed bioreactor with the support matrix Fibra-Cel, operated in continuous-feeding mode, is more efficient for large-scale MAb production than a batch culture. On the other hand, by using a continuous-culture system, a better supply of nutrients and removal of inhibitory metabolites and proteolytic enzymes was obtained. PMID:15506916

  20. Continuous production of manganese peroxidase by Phanerochaete chrysosporium immobilized on polyurethane foam in a pulsed packed-bed bioreactor.

    PubMed

    Moreira, M T; Feijoo, G; Palma, C; Lema, J M

    1997-10-20

    The bottleneck of the application of manganese peroxidase (MnP) on an industrial scale in pulp biobleaching or in degradation of hazardous compounds is the lack of an efficient production system. Three main problems arise for the continuous production of MnP during secondary metabolism of Phanerochaete chrysosporium: enzyme production occurs only under specific physiological conditions corresponding to C or N limitation, high O(2) tension, and adequate Mn(+2) concentration; the enzyme that is produced is destabilized by extracellular proteases; and excessive growth of the mycelium blocks effective oxygen transfer. To overcome these drawbacks, continuous production of MnP was optimized by selecting a suitable bioreactor configuration and the environmental and operating conditions affecting both enzyme production and stability. The combination between a proper feed rate and the application of a pulsation in a packed-bed bioreactor permitted the maintenance of continuous secretion of MnP while limiting mycelial growth and avoiding bed clogging. Environmental factors as an Mn(+2) concentration of 5000 microM and high oxygen tension enhanced MnP production. The hydraulics of the bioreactor corresponding to a plug flow model with partial mixing and an operating hydraulic rentention time of 24 h were optimal to achieve stable operating conditions. This policy allowed long operation periods, obtaining higher productivities than the best reported in the literature. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 130-137, 1997. PMID:18636618

  1. Energy conservation and production in a packed-bed anaerobic bioreactor

    SciTech Connect

    Pit, W.W. Jr.; Genung, R.K.

    1980-01-01

    Oak Ridge National Laboratory (ORNL) is developing an energy-conserving/ producing wastewater treatment system based on a fixed-film anaerobic bioreactor. The treatment process is based on passing wastewaters upward through the bioreactor for continuous treatment by gravitational settling, biophysical filtration and biological decomposition. A two-year pilot-plant project using a bioreactor designed to treat 5000 gpd has been conducted using raw wastewater on a municipal site in Oak Ridge, Tennessee. Data obtained for the performance of the bioreactor during this project have been analyzed by ORNL and Associated Water and Air Resources Engineers (AWARE), Inc. of Nashville, Tennessee. From these analyses it was estimated that hydraulic loading rates of 0.25 gpm/ft/sup 2/ and hydraulic residence times of 10 hours could be used in designing such bioreactors for the secondary treatment of municipal wastewaters. Conceptual designs for total treatment systems processing up to one million gallons of wastewater per day were developed based on the performance of the pilot plant bioreactor. These systems were compared to activated sludge treatment systems also operating under secondary treatment requirements and were found to consume as little as 30% of the energy required by the activated sludge systems. Economic advantages of the process result from the elimination of operating energy requirements associated with the aeration of aerobic-based processes and with the significant decrease of sludge-handling costs required with conventional activated sludge treatment systems.Furthermore, methane produced by anaerobic fermentation processes occurring during the biological decomposition of carbonaceous wastes also represented a significant and recoverable energy production. For dilute municipal wastewaters this would completely offset the remaining energy required for treatment, while for concentrated industrial wastewater would result in a net production of energy.

  2. Production of HIV-1 gp120 in packed-bed bioreactor using the vaccinia virus/T7 expression system.

    PubMed

    Hu, Y C; Kaufman, J; Cho, M W; Golding, H; Shiloach, J

    2000-01-01

    The HeLa cell-vaccinia virus system is an attractive method for producing recombinant mammalian proteins with proper post-translation modifications. This approach is especially important for the production of HIV-1 envelope glycoprotein, gp120, since more than half of its total mass is due to carbohydrates. A recombinant vaccinia virus/T7 RNA polymerase expression system was developed to express and produce large amounts of gp120 tagged with six histidine residues. In this system, the expressed T7 RNA polymerase from one virus drives the transcription of the gp120 encoded in the second virus. During the process development phase, the following parameters were studied: infection time, infection duration, multiplicity of infection, ratio of the two viruses, medium composition, and medium replacement strategy during the infection phase. The chosen production method was based on using the packed-bed bioreactor. The HeLa cells were immobilized on fibrous disks (Fibra-Cel) packed in an internal basket positioned in a vertically mixed bioreactor (Celligen Plus), and 25 g of carriers were packed in a 1.6-L (working volume) reactor. The process included a growth stage followed by a production stage. In the growth stage, the bed was perfused with a serum-containing medium, allowing the cells to grow to saturation, and in the production stage, done using serum-free medium, the cells were infected with the two recombinant viruses. The expressed protein was secreted, collected from the culture fluid, and purified. The specific production was found to be between 2 and 3 microg of protein/10(6) cells, and the volumetric production was around 10 mg/50 g carriers. PMID:11027165

  3. Identification, Detection, and Spatial Resolution of Clostridium Populations Responsible for Cellulose Degradation in a Methanogenic Landfill Leachate Bioreactor

    PubMed Central

    Burrell, P. C.; O'Sullivan, C.; Song, H.; Clarke, W. P.; Blackall, L. L.

    2004-01-01

    An anaerobic landfill leachate bioreactor was operated with crystalline cellulose and sterile landfill leachate until a steady state was reached. Cellulose hydrolysis, acidogenesis, and methanogenesis were measured. Microorganisms attached to the cellulose surfaces were hypothesized to be the cellulose hydrolyzers. 16S rRNA gene clone libraries were prepared from this attached fraction and also from the mixed fraction (biomass associated with cellulose particles and in the planktonic phase). Both clone libraries were dominated by Firmicutes phylum sequences (100% of the attached library and 90% of the mixed library), and the majority fell into one of five lineages of the clostridia. Clone group 1 (most closely related to Clostridium stercorarium), clone group 2 (most closely related to Clostridium thermocellum), and clone group 5 (most closely related to Bacteroides cellulosolvens) comprised sequences in Clostridium group III. Clone group 3 sequences were in Clostridium group XIVa (most closely related to Clostridium sp. strain XB90). Clone group 4 sequences were affiliated with a deeply branching clostridial lineage peripherally associated with Clostridium group VI. This monophyletic group comprises a new Clostridium cluster, designated cluster VIa. Specific fluorescence in situ hybridization (FISH) probes for the five groups were designed and synthesized, and it was demonstrated in FISH experiments that bacteria targeted by the probes for clone groups 1, 2, 4, and 5 were very abundant on the surfaces of the cellulose particles and likely the key cellulolytic microorganisms in the landfill bioreactor. The FISH probe for clone group 3 targeted cells in the planktonic phase, and these organisms were hypothesized to be glucose fermenters. PMID:15066839

  4. Mathematical modeling of Kluyveromyces marxianus growth in solid-state fermentation using a packed-bed bioreactor.

    PubMed

    Mazutti, Marcio A; Zabot, Giovani; Boni, Gabriela; Skovronski, Aline; de Oliveira, Débora; Di Luccio, Marco; Rodrigues, Maria Isabel; Maugeri, Francisco; Treichel, Helen

    2010-04-01

    This work investigated the growth of Kluyveromyces marxianus NRRL Y-7571 in solid-state fermentation in a medium composed of sugarcane bagasse, molasses, corn steep liquor and soybean meal within a packed-bed bioreactor. Seven experimental runs were carried out to evaluate the effects of flow rate and inlet air temperature on the following microbial rates: cell mass production, total reducing sugar and oxygen consumption, carbon dioxide and ethanol production, metabolic heat and water generation. A mathematical model based on an artificial neural network was developed to predict the above-mentioned microbial rates as a function of the fermentation time, initial total reducing sugar concentration, inlet and outlet air temperatures. The results showed that the microbial rates were temperature dependent for the range 27-50 degrees C. The proposed model efficiently predicted the microbial rates, indicating that the neural network approach could be used to simulate the microbial growth in SSF. PMID:20035365

  5. Conidia production by Beauveria bassiana (for the biocontrol of a diamondback moth) during solid-state fermentation in a packed-bed bioreactor.

    PubMed

    Kang, S W; Lee, S H; Yoon, C S; Kim, S W

    2005-01-01

    Conidia of Beauveria bassiana CS-1, which have the potential for the control of the diamondback moth (Plutella xylostella), were produced by solid-state fermentation (SSF) using a packed-bed bioreactor with rice straw and wheat bran. As the packing density and the bed height were increased, the production of conidia decreased. In a packed-bed bioreactor under no aeration and no addition of polypropylene (PP) foam (control), the total average of conidia was 4.9 x 10(8) g-1. The production of conidia was affected more by the addition of PP foam as an inert support than forced aeration and was approx. 23 times higher than that of the control. The total average of conidia produced by B. bassiana was 1.1-1.2 x 10(10) g-1 . PMID:15703878

  6. Anaerobium acetethylicum gen. nov., sp. nov., a strictly anaerobic, gluconate-fermenting bacterium isolated from a methanogenic bioreactor.

    PubMed

    Patil, Yogita; Junghare, Madan; Pester, Michael; Müller, Nicolai; Schink, Bernhard

    2015-10-01

    A novel strictly anaerobic, mesophilic bacterium was enriched and isolated with gluconate as sole substrate from a methanogenic sludge collected from a biogas reactor. Cells of strain GluBS11T stained Gram-positive and were non-motile, straight rods, measuring 3.0-4.5 × 0.8-1.2 μm. The temperature range for growth was 15-37 °C, with optimal growth at 30 °C, the pH range was 6.5-8.5, with optimal growth at pH 7, and the generation time under optimal conditions was 60 min. API Rapid 32A reactions were positive for α-galactosidase, α-glucosidase and β-glucosidase and negative for catalase and oxidase. A broad variety of substrates was utilized, including gluconate, glucose, fructose, maltose, sucrose, lactose, galactose, melezitose, melibiose, mannitol, erythritol, glycerol and aesculin. Products of gluconate fermentation were ethanol, acetate, formate, H2 and CO2. Neither sulfate nor nitrate served as an electron acceptor. Predominant cellular fatty acids (>10 %) were C14 : 0, C16 : 0, C16 : 1ω7c/iso-C15 : 0 2-OH and C18 : 1ω7c. The DNA G+C content of strain GluBS11T was 44.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequence data revealed that strain GluBS11T is a member of subcluster XIVa within the order Clostridiales. The closest cultured relatives are Clostridium herbivorans (93.1 % similarity to the type strain), Clostridium populeti (93.3 %), Eubacterium uniforme (92.4 %) and Clostridium polysaccharolyticum (91.5 %). Based on this 16S rRNA gene sequence divergence (>6.5 %) as well as on chemotaxonomic and phenotypic differences from these taxa, strain GluBS11T is considered to represent a novel genus and species, for which the name Anaerobium acetethylicum gen. nov., sp. nov. is proposed. The type strain of Anaerobium acetethylicum is GluBS11T ( = LMG 28619T = KCTC 15450T = DSM 29698T). PMID:26297346

  7. Use of glucose consumption rate (GCR) as a tool to monitor and control animal cell production processes in packed-bed bioreactors.

    PubMed

    Meuwly, F; Papp, F; Ruffieux, P-A; Bernard, A R; Kadouri, A; von Stockar, U

    2006-03-01

    For animal cell cultures growing in packed-bed bioreactors where cell number cannot be determined directly, there is a clear need to use indirect methods that are not based on cell counts in order to monitor and control the process. One option is to use the glucose consumption rate (GCR) of the culture as an indirect measure to monitor the process in bioreactors. This study was done on a packed-bed bioreactor process using recombinant CHO cells cultured on Fibra-Cel disk carriers in perfusion mode at high cell densities. A key step in the process is the switch of the process from the cell growth phase to the production phase triggered by a reduction of the temperature. In this system, we have used a GCR value of 300 g of glucose per kilogram of disks per day as a criterion for the switch. This paper will present results obtained in routine operations for the monitoring and control of an industrial process at pilot-scale. The process operated with this GCR-based strategy yielded consistent, reproducible process performance across numerous bioreactor runs performed on multiple production sites. PMID:16153735

  8. Operational parameters and their influence on particle-side mass transfer resistance in a packed bed bioreactor.

    PubMed

    Hussain, Amir; Kangwa, Martin; Yumnam, Nivedita; Fernandez-Lahore, Marcelo

    2015-12-01

    The influence of internal mass transfer on productivity as well as the performance of packed bed bioreactor was determined by varying a number of parameters; chitosan coating, flow rate, glucose concentration and particle size. Saccharomyces cerevisiae cells were immobilized in chitosan and non-chitosan coated alginate beads to demonstrate the effect on particle side mass transfer on substrate consumption time, lag phase and ethanol production. The results indicate that chitosan coating, beads size, glucose concentration and flow rate have a significant effect on lag phase duration. The duration of lag phase for different size of beads (0.8, 2 and 4 mm) decreases by increasing flow rate and by decreasing the size of beads. Moreover, longer lag phase were found at higher glucose medium concentration and also with chitosan coated beads. It was observed that by increasing flow rates; lag phase and glucose consumption time decreased. The reason is due to the reduction of external (fluid side) mass transfer as a result of increase in flow rate as glucose is easily transported to the surface of the beads. Varying the size of beads is an additional factor: as it reduces the internal (particle side) mass transfer by reducing the size of beads. The reason behind this is the distance for reactants to reach active site of catalyst (cells) and the thickness of fluid created layer around alginate beads is reduced. The optimum combination of parameters consisting of smaller beads size (0.8 mm), higher flow rate of 90 ml/min and glucose concentration of 10 g/l were found to be the maximum condition for ethanol production. PMID:26272478

  9. The influence of process parameters in production of lipopeptide iturin A using aerated packed bed bioreactors in solid-state fermentation.

    PubMed

    Piedrahíta-Aguirre, C A; Bastos, R G; Carvalho, A L; Monte Alegre, R

    2014-08-01

    The strain Bacillus iso 1 co-produces the lipopeptide iturin A and biopolymer poly-γ-glutamic acid (γ-PGA) in solid-state fermentation of substrate consisting of soybean meal, wheat bran with rice husks as an inert support. The effects of pressure drop, oxygen consumption, medium permeability and temperature profile were studied in an aerated packed bed bioreactor to produce iturin A, diameter of which was 50 mm and bed height 300 mm. The highest concentrations of iturin A and γ-PGA were 5.58 and 3.58 g/kg-dry substrate, respectively, at 0.4 L/min after 96 h of fermentation. The low oxygen uptake rates, being 23.34 and 22.56 mg O2/kg-dry solid substrate for each air flow rate tested generated 5.75 W/kg-dry substrate that increased the fermentation temperature at 3.7 °C. The highest pressure drop was 561 Pa/m at 0.8 L/min in 24 h. This is the highest concentration of iturin A produced to date in an aerated packed bed bioreactor in solid-state fermentation. The results can be useful to design strategies to scale-up process of iturin A in aerated packed bed bioreactors. Low concentration of γ-PGA affected seriously pressure drop, decreasing the viability of the process due to generation of huge pressure gradients with volumetric air flow rates. Also, the low oxygenation favored the iturin A production due to the reduction of free void by γ-PGA production, and finally, the low oxygen consumption generated low metabolic heat. The results show that it must control the pressure gradients to scale-up the process of iturin A production. PMID:24504698

  10. Enhancing the Bioconversion of Winery and Olive Mill Waste Mixtures into Lignocellulolytic Enzymes and Animal Feed by Aspergillus uvarum Using a Packed-Bed Bioreactor.

    PubMed

    Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2015-10-28

    Wineries and olive oil industries are dominant agro-industrial activities in southern European regions. Olive pomace, exhausted grape marc, and vine shoot trimmings are lignocellulosic residues generated by these industries, which could be valued biotechnologically. In the present work these residues were used as substrate to produce cellulases and xylanases through solid-state fermentation using Aspergillus uvarum MUM 08.01. For that, two factorial designs (3(2)) were first planned to optimize substrate composition, temperature, and initial moisture level. Subsequently, the kinectics of cellulolytic enzyme production, fungal growth, and fermented solid were characterized. Finally, the process was performed in a packed-bed bioreactor. The results showed that cellulase activity improved with the optimization processes, reaching 33.56 U/g, and with the packed-bed bioreactor aeration of 0.2 L/min, reaching 38.51 U/g. The composition of fermented solids indicated their potential use for animal feed because cellulose, hemicellulose, lignin, and phenolic compounds were partially degraded 28.08, 10.78, 13.3, and 28.32%, respectively, crude protein was increased from 8.47 to 17.08%, and the mineral contents meet the requirements of main livestock. PMID:26165254

  11. Simultaneous removal of chromate and nitrate in a packed-bed bioreactor using biodegradable meal box as carbon source and biofilm carriers.

    PubMed

    Li, Jie; Jin, Ruofei; Liu, Guangfei; Tian, Tian; Wang, Jing; Zhou, Jiti

    2016-05-01

    An up-flow packed-bed bioreactor was constructed to investigate the simultaneous removal of chromate and nitrate using biodegradable meal box as carbon source and biofilm carriers. The bioreactor was operated for 164days with varying influent Cr(VI) concentrations (2.0-50.0mg/L) and hydraulic retention times (HRT, 10-24h). It was shown that complete denitrification and Cr(VI) reduction could be achieved when influent Cr(VI) concentrations were lower than 20mg/L with a HRT of 17h. Shortening the HRT could significantly reduce the effluent CODcr. It was also observed that Cr(III) was mainly immobilized on the biofilm. Further investigation on Cr distribution in the biofilm compartments indicated that Cr(VI) reduction occurred in all compartments and the intercellular Cr was dominant. High-throughput sequencing analysis showed that Proteobacteria, Bacteroidetes and Firmicutes were the dominant phyla in the biofilm and Cr(VI) stress had a negative effect on the abundance of most bacteria. PMID:26896715

  12. Tapered bed bioreactor

    DOEpatents

    Scott, Charles D.; Hancher, Charles W.

    1977-01-01

    A vertically oriented conically shaped column is used as a fluidized bed bioreactor wherein biologically catalyzed reactions are conducted in a continuous manner. The column utilizes a packing material a support having attached thereto a biologically active catalytic material.

  13. The influence of hydrolysis induced biopolymers from recycled aerobic sludge on specific methanogenic activity and sludge filterability in an anaerobic membrane bioreactor.

    PubMed

    Buntner, D; Spanjers, H; van Lier, J B

    2014-03-15

    The objective of the present study was to evaluate the impact of excess aerobic sludge on the specific methanogenic activity (SMA), in order to establish the maximum allowable aerobic sludge loading. In batch tests, different ratios of aerobic sludge to anaerobic inoculum were used, i.e. 0.03, 0.05, 0.10 and 0.15, showing that low ratios led to an increased SMA. However, the ratio 0.15 caused more than 20% SMA decrease. In addition to the SMA tests, the potential influence of biopolymers and extracellular substances, that are generated as a result of excess aerobic sludge hydrolysis, on membrane performance was determined by assessing the fouling potential of the liquid broth, taking into account parameters such as specific resistance to filtration (SRF) and supernatant filterability (SF). Addition of aerobic sludge to the anaerobic biomass resulted in a high membrane fouling potential. The increase in biopolymers could be ascribed to aerobic sludge hydrolysis. A clear positive correlation between the concentration of the colloidal fraction of biopolymer clusters (cBPC) and the SRF was observed and a negative correlation between the cBPC and the SF measured at the end of the above described SMA tests. The latter implies that sludge filtration resistance increases when more aerobic sludge is hydrolyzed, and thus more cBPC is released. During AnMBR operation, proteins significantly contributed to sludge filterability decrease expressed as SRF and SF, whereas the carbohydrate fraction of SMP was of less importance due to low concentrations. On the contrary, carbohydrates seemed to improve filterability and diminish SRF of the sludge. Albeit, cBPC increase caused an increase in mean TMP during the AnMBR operation, confirming that cBPC is positively correlated to membrane fouling. PMID:24284260

  14. Validation of a model for process development and scale-up of packed-bed solid-state bioreactors.

    PubMed

    Weber, Frans J; Oostra, Jaap; Tramper, Johannes; Rinzema, Arjen

    2002-02-15

    We have validated our previously described model for scale-up of packed-bed solid-state fermenters (Weber et al., 1999) with experiments in an adiabatic 15-dm(3) packed-bed reactor, using the fungi Coniothyrium minitans and Aspergillus oryzae. Effects of temperature on respiration, growth, and sporulation of the biocontrol fungus C. minitans on hemp impregnated with a liquid medium were determined in independent experiments, and the first two effects were translated into a kinetic model, which was incorporated in the material and energy balances of the packed-bed model. Predicted temperatures corresponded well with experimental results. As predicted, large amounts of water were lost due to evaporative cooling. With hemp as support no shrinkage was observed, and temperatures could be adequately controlled, both with C. minitans and A. oryzae. In experiments with grains, strong shrinkage of the grains was expected and observed. Nevertheless, cultivation of C. minitans on oats succeeded because this fungus did not form a tight hyphal network between the grains. However, cultivation of A. oryzae failed because shrinkage combined with the strong hyphal network formed by this fungus resulted in channeling, local overheating of the bed, and very inhomogeneous growth of the fungus. For cultivation of C. minitans on oats and for cultivation of A. oryzae on wheat and hemp, no kinetic models were available. Nevertheless, the enthalpy and water balances gave accurate temperature predictions when online measurements of oxygen consumption were used as input. The current model can be improved by incorporation of (1) gas-solids water and heat transfer kinetics to account for deviations from equilibrium observed with fast-growing fungi such as A. oryzae, and (2) the dynamic response of the fungus to changes in temperature, which were neglected in the isothermal kinetic experiments. PMID:11787011

  15. Analysis of bacterial diversity and efficiency of continuous removal of Victoria Blue R from wastewater by using packed-bed bioreactor.

    PubMed

    Chen, Chih-Yu; Wang, Guey-Horng; Tseng, I-Hung; Chung, Ying-Chien

    2016-02-01

    The characteristics of a packed-bed bioreactor (PBB) for continuously removing Victoria Blue R (VBR) from an aqueous solution were determined. The effects of various factors including liquid retention time (RT), VBR concentration, shock loading, and coexisting compounds on the VBR removal and bacterial community in a continuous system were investigated. The intermediates of degraded VBR and the acute toxicity of the effluent from PBB were analyzed. When the VBR concentration was lower than 400 mg/l for a two-day retention time (RT), 100% removal was achieved. During continuous operation, the efficiency initially varied with the VBR concentration and RT, but gradually increased in one to two days. Furthermore, the acute toxicity of the effluent reduced by a factor of 21.25-49.61, indicating that the PBB can be successfully operated under turbulent environmental conditions. VBR degradation involved stepwise demethylation and yielded partially dealkylated VBR species. Phylogenetic analysis showed that the dominant phylum in the PBB was Proteobacteria and that Aeromonas hydrophila dominated during the entire operating period. The characteristics of the identified species showed that the PBB is suitable for processes such as demethylation, aromatic ring opening, carbon oxidation, nitrification, and denitrification. PMID:26657084

  16. Biocatalytic methanation of hydrogen and carbon dioxide in a fixed bed bioreactor.

    PubMed

    Alitalo, Anni; Niskanen, Marko; Aura, Erkki

    2015-11-01

    Biocatalytic methanation of H2 and CO2 was studied in a fixed bed reactor system consisting of two solid state bioreactors in series connected to a recirculation system. Bioreactors were packed with a mixture of vermiculite shales and granular perlite material as a support material. A maximal methane productivity of 6.35l/lreactord was achieved at a hydrogen feed rate of 25.2l/lreactord, while hydrogen conversion rate was 100%. However, stable operation of the reactor at this efficiency remains to be achieved. Very simple reactor design, constructed from low cost materials, and the idea of exploiting waste material as a robust source of nutrients for methanogens makes this study very interesting regarding the overall usability and suitability of the system as part of a decentralized energy system. PMID:26298404

  17. Transformation of trinitrotoluene to triaminotoluene by mixed cultures incubated under methanogenic conditions

    SciTech Connect

    Hwang, P.; Chow, T.; Adrian, N.R.

    2000-04-01

    2,4,6-Trinitrotoluene (TNT) is an explosive widely used by the military. Although it is no longer manufactured in the US, large amounts of wastewater are generated annually from load, assembly, packing, and demilitarization operations. Granular-activated carbon adsorption is the standard technology for treating wastewater containing TNT and maintaining discharges within the limits established under the National Pollutant Discharge Elimination System. Studies evaluating biological treatment of pink water with an anaerobic fluidized-bed, granular-activated carbon bioreactor have been promising, but the fate of TNT is unknown. The authors investigated the anaerobic transformation of TNT by biofilm microorganisms obtained from a wastewater treatment plant receiving explosive manufacturing wastewater. The TNT was transformed to a mixture of 2-amino-4,6-dinitrotoluene; 4-amino-2,6-dinitrotoluene; 2,4-diamino-6-nitrotoluene; and 2,6-diamino-4-nitrotoluene before culminating in the formation of triaminotoluene (TAT). Triaminotoluene was susceptible to further degradation under anaerobic conditions, but its fate was not determined. Methane formation was inhibited but resumed after the depletion of the diaminonitrotoluene isomers. These studies demonstrate near stoichiometric formation of TAT from TNT and the transformation of 2-amino-4,6-dinitrotoluene to 2,4-diamino-6-nitrotoluene and 2,6-diamino-4-nitrotoluene by a mixed culture incubated under methanogenic conditions. This evidence indicates TAT is also a likely end-product of TNT biodegradation in the anaerobic fluidized fed bioreactor.

  18. Osmoregulation in methanogens

    SciTech Connect

    Roberts, M.F.

    1993-01-01

    Our major goal of our work has been to develop and use NMR techniques to study how methanogenic archaebacteria deal with osmotic stress with the hope of providing insights into increasing the salt tolerance of other cells. The project has three main sections: (i) in vivo studies of methanogens; (ii) use of [sup l3]C- and [sup l5]N- labeled potential precursors and in vitro analyses of specific label uptake for elucidation of osmolyte dynamics and biosynthetic pathways of osmolytes in these organisms, and isolation of key biosynthetic enzymes; and (iii) collaborative studies on identification of organic solutes in other methanogens.

  19. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Laptop computer sits atop the Experiment Control Computer for a NASA Bioreactor. The flight crew can change operating conditions in the Bioreactor by using the graphical interface on the laptop. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at right center) to control fluid flow. The rotating wall vessel is at top center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  1. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior view of the gas supply for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  3. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell and with thermal blankets partially removed. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Interior of a Biotechnology Refrigerator that preserves samples for use in (or after culturing in) the NASA Bioreactor. The unit is shown extracted from a middeck locker shell. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  5. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Electronics control module for the NASA Bioreactor. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Exterior view of the NASA Bioreactor Engineering Development Unit flown on Mir. The rotating wall vessel is behind the window on the face of the large module. Control electronics are in the module at left; gas supply and cooling fans are in the module at back. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  7. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Close-up view of the interior of a NASA Bioreactor shows the plastic plumbing and valves (cylinders at center) to control fluid flow. A fresh nutrient bag is installed at top; a flattened waste bag behind it will fill as the nutrients are consumed during the course of operation. The drive chain and gears for the rotating wall vessel are visible at bottom center center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  8. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Refrigerator (BTR) holds fixed tissue culture bags at 4 degrees C to preserve them for return to Earth and postflight analysis. The cultures are used in research with the NASA Bioreactor cell science program. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  9. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  10. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The heart of the bioreactor is the rotating wall vessel, shown without its support equipment. Volume is about 125 mL. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  11. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Astronaut John Blaha replaces an exhausted media bag and filled waste bag with fresh bags to continue a bioreactor experiment aboard space station Mir in 1996. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. This image is from a video downlink. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  12. Methanogenic community shift in anaerobic batch digesters treating swine wastewater.

    PubMed

    Kim, Woong; Lee, Seungyong; Shin, Seung Gu; Lee, Changsoo; Hwang, Kwanghyun; Hwang, Seokhwan

    2010-09-01

    Qualitative and quantitative molecular analysis techniques were used to determine associations between differences in methanogenic microbial communities and the efficiency of batch anaerobic digesters. Two bioreactors were initially seeded with anaerobic sludge originating from a local municipal wastewater treatment plant and then supplemented with swine wastewater. Differences were observed in the total amount of methane produced in the two bioreactors (7.9L/L, and 4.5L/L, respectively). To explain these differences, efforts were taken to characterize the microbial populations present using a PCR-based DGGE analysis with methanogenic primer and probe sets. The groups Methanomicrobiales (MMB), Methanobacteriales (MBT), and Methanosarcinales (MSL) were detected, but Methanococcales (MCC) was not detected. Following this qualitative assay, real-time PCR was used to investigate quantitative differences in the populations of these methanogenic orders. MMB was found to be the dominant order present and its abundance patterns were different in the two digesters. The population profiles of the other methanogenic groups also differed. Through redundancy analysis, correlations between the concentrations of the different microbes and chemical properties such as volatile fatty acids were calculated. Correlations between MBT and MSL populations and chemical properties were found to be consistent in both digesters, however, differences were observed in the correlations between MMB and propionate. These results suggest that interactions between populations of MMB and other methanogens affected the final methane yield, despite MMB remaining the dominant group overall. The exact details of why changes in the MMB community caused different profiles of methane production could not be ascertained. However, this research provides evidence that microbial behavior is important for regulating the performance of anaerobic processes. PMID:20692007

  13. Bioreactor principles

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Cells cultured on Earth (left) typically settle quickly on the bottom of culture vessels due to gravity. In microgravity (right), cells remain suspended and aggregate to form three-dimensional tissue. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  14. Nickel isotopes and methanogens

    NASA Astrophysics Data System (ADS)

    Neubeck, A.; Ivarsson, M.

    2013-12-01

    Methanogens require Ni for their growth and as a consequence the microbial fractionation of Ni isotopes can be used as a biomarker for activity of methanogenic communities1. Anaerobic laboratory experiments was performed using methanogens to investigate methanogenic growth in a modified nutrient media2 with olivine Fo91 (5g/l) added as an additional mineral nutrient source and as the only H2 provider. One of the investigated methanogens showed an increased growth in the experiments with added olivine. There were also a close relationship between the mobilized Ni and the growth of the methanogen. Ni is an element that previously has been neglected in the study of fossilized microorganisms and their interaction with mineral substrates and, thus, there are no records or published data of Ni in association with microfossils. However, we have detected enrichments of Ni in fossilized microorganisms and ichno-fossils, respectively, from three separate locations. Ni is not present in the host rock in any of the samples. Thus, Ni is present in association with fossilized microorganisms from environments and more extensive analysis is required to understand the magnitude, uptake, preservation and fractionation of Ni in microfossils. In order to analyze Ni isotope fractionation from microbe-mineral interaction, we plan to use a high-resolution Laser-Ablation Time-of-Flight Mass Spectrometer (LMS)3. In situ profile ablation will provide detailed and localized data on fractionation patterns between microfossils and their host rock. Also, this technique will allow us to identify the change in Ni isotopic fractionation in rock samples caused by abiotic and biogenic processes in a faster and easier way and with less risk for contamination compared to the wet chemistry analyses of Ni isotopes. 1. Cameron, V., Vance, D., Archer, C. & House, C. H. A biomarker based on the stable isotopes of nickel. Proceedings of the National Academy of Sciences 106, 10944-10948 (2009). 2. Schn

  15. Adaptation of a methanogenic consortium to arsenite inhibition

    PubMed Central

    Rodriguez-Freire, Lucia; Moore, Sarah E.; Sierra-Alvarez, Reyes; Field, James A.

    2016-01-01

    Arsenic (As) is a ubiquitous metalloid known for its adverse effects to human health. Microorganisms are also impacted by As toxicity, including methanogenic archaea, which can affect the performance of process in which biological activity is required (i.e. stabilization of activated sludge in wastewater treatment plants). The novel ability of a mixed methanogenic granular sludge consortium to adapt to the inhibitory effect of arsenic (As) was investigated by exposing the culture to approximately 0.92 mM of AsIII for 160 d in an arsenate (AsV) reducing bioreactor using ethanol as the electron donor. The results of shaken batch bioassays indicated that the original, unexposed sludge was severely inhibited by arsenite (AsIII) as evidenced by the low 50% inhibition concentrations (IC50) determined, i.e., 19 and 90 μM for acetoclastic- and hydrogenotrophic methanogenesis, respectively. The tolerance of the acetoclastic and hydrogenotrophic methanogens in the sludge to AsIII increased 47-fold (IC50 = 910 μM) and 12-fold (IC50= 1100 μM), respectively, upon long-term exposure to As. In conclusion, the methanogenic community in the granular sludge demonstrated a considerable ability to adapt to the severe inhibitory effects of As after a prolonged exposure period. PMID:26823637

  16. Multiple Syntrophic Interactions in a Terephthalate-Degrading Methanogenic Consortium

    SciTech Connect

    Lykidis, Athanasios; Chen, Chia-Lung; Tringe, Susannah G.; McHardy, Alice C.; Copeland, Alex 5; Kyrpides, Nikos C.; Hugenholtz, Philip; Liu, Wen-Tso

    2010-08-05

    Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium tinside a hyper-mesophilic (i.e., between mesophilic and thermophilic), TA-degrading bioreactor. We identified genes belonging to dominant Pelotomaculum species presumably involved in TA degradation through decarboxylation, dearomatization, and modified ?-oxidation to H{sub 2}/CO{sub 2} and acetate. These intermediates are converted to CH{sub 4}/CO{sub 2} by three novel hyper-mesophilic methanogens. Additional secondary syntrophic interactions were predicted in Thermotogae, Syntrophus and candidate phyla OP5 and WWE1 populations. The OP5 encodes genes capable of anaerobic autotrophic butyrate production and Thermotogae, Syntrophus and WWE1 have the genetic potential to oxidize butyrate to COsub 2}/H{sub 2} and acetate. These observations suggest that the TA-degrading consortium consists of additional syntrophic interactions beyond the standard H{sub 2}-producing syntroph ? methanogen partnership that may serve to improve community stability.

  17. Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases.

    PubMed

    Lens, P N L; Gastesi, R; Lettinga, G

    2003-06-01

    This paper describes a novel bioscrubber concept for biological flue gas desulfurization, based on the recycling of a cell suspension of sulfite/sulfate reducing bacteria between a scrubber and a sulfite/sulfate reducing hydrogen fed bioreactor. Hydrogen metabolism in sulfite/sulfate reducing cell suspensions was investigated using batch activity tests and by operating a completely stirred tank reactor (CSTR). The maximum specific hydrogenotrophic sulfite/sulfate reduction rate increased with 10% and 300%, respectively, by crushing granular inoculum sludge and by cultivation of this sludge as cell suspension in a CSTR. Operation of a sulfite fed CSTR (hydraulic retention time 4 days; pH 7.0; sulfite loading rate 0.5-1.5 g SO3(2-) l(-1) d(-1)) with hydrogen as electron donor showed that high (up to 1.6 g l(-1)) H2S concentrations can be obtained within 10 days of operation. H2S inhibition, however, limited the sulfite reducing capacity of the CSTR. Methane production by the cell suspension disappeared within 20 days reactor operation. The outcompetition of methanogens in excess of H2 can be attributed to CO2 limitation and/or to sulfite or sulfide toxicity. The use of cell suspensions opens perspectives for monolith or packed bed reactor configurations, which have a much lower pressure drop compared to air lift reactors, to supply H2 to sulfite/sulfate reducing bioreactors. PMID:12889613

  18. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 degreesC (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  19. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Biotechnology Specimen Temperature Controller (BSTC) will cultivate cells until their turn in the bioreactor; it can also be used in culturing experiments that do not require the bioreactor. The BSTC comprises four incubation/refrigeration chambers individually set at 4 to 50 deg. C (near-freezing to above body temperature). Each chamber holds three rugged tissue chamber modules (12 total), clear Teflon bags holding 30 ml of growth media, all positioned by a metal frame. Every 7 to 21 days (depending on growth rates), an astronaut uses a shrouded syringe and the bags' needleless injection ports to transfer a few cells to a fresh media bag, and to introduce a fixative so that the cells may be studied after flight. The design also lets the crew sample the media to measure glucose, gas, and pH levels, and to inspect cells with a microscope. The controller is monitored by the flight crew through a 23-cm (9-inch) color computer display on the face of the BSTC. This view shows the BTSC with the front panel open. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  20. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101816 for a version without labels, and No. 0103180 for an operational schematic.

  1. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101825 for a version with major elements labeled, and No. 0103180 for an operational schematic. 0101816

  2. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101823 for a version without labels, and No. 0103180 for an operational schematic.

  3. NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Bioreactor Demonstration System (BDS) comprises an electronics module, a gas supply module, and the incubator module housing the rotating wall vessel and its support systems. Nutrient media are pumped through an oxygenator and the culture vessel. The shell rotates at 0.5 rpm while the irner filter typically rotates at 11.5 rpm to produce a gentle flow that ensures removal of waste products as fresh media are infused. Periodically, some spent media are pumped into a waste bag and replaced by fresh media. When the waste bag is filled, an astronaut drains the waste bag and refills the supply bag through ports on the face of the incubator. Pinch valves and a perfusion pump ensure that no media are exposed to moving parts. An Experiment Control Computer controls the Bioreactor, records conditions, and alerts the crew when problems occur. The crew operates the system through a laptop computer displaying graphics designed for easy crew training and operation. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. See No. 0101824 for a version with labels, and No. 0103180 for an operational schematic.

  4. Multimembrane Bioreactor

    NASA Technical Reports Server (NTRS)

    Cho, Toohyon; Shuler, Michael L.

    1989-01-01

    Set of hydrophilic and hydrophobic membranes in bioreactor allows product of reaction to be separated, while nutrients fed to reacting cells and byproducts removed from them. Separation process requires no externally supplied energy; free energy of reaction sufficient. Membranes greatly increase productivity of metabolizing cells by continuously removing product and byproducts, which might otherwise inhibit reaction, and by continuously adding oxygen and organic nutrients.

  5. Light sensitivity of methanogenic archaebacteria

    SciTech Connect

    Olson, K.D.; McMahon, C.W.; Wolfe, R.S. )

    1991-09-01

    Representatives of four families of methanogenic archaebacteria (archaea), Methanobacterium thermoautotrophicum {Delta}H, Methanobacterium thermoautotrophicum Marburg, Methanosarcina acetivorans, Methanococcus voltae, and Methanomicrobium mobile, were found to be light sensitive. The facultative anaerobic eubacteria Escherichia coli and Salmonella typhimurium, however, were tolerant of light when grown anaerobically under identical light conditions. Interference filters were used to show that the growth of the methanogens is inhibited by light in the blue end of the visible spectrum (370 to 430 nm).

  6. The Geobiochemistry of Methanogen Proteins

    NASA Astrophysics Data System (ADS)

    Prasad, A.; Shock, E.

    2013-12-01

    A principle of geobiochemistry is that adaptation over evolutionary time includes a thermodynamic drive to minimize costs of making biomolecules like proteins and lipids. If so, then biomolecule abundances will reflect, at least in part, their relative stabilities at the conditions imposed by external environments. We tested this hypothesis by comparing relative stabilities of 138 orthologous proteins between a representative lake-sediment methanogen (Methanoculleus marisnigri) and a representative rumen methanogen (Methanospirillum hungatei) at the compositional constraints of their respective environments. Chemical affinities of the proteins were calculated based on pH, temperature, and concentrations of dissolved hydrogen, bicarbonate, ammonia, and hydrogen sulfide, together with standard Gibbs energies of formation of proteins from the elements predicted with a group additivity algorithm for unfolded proteins [1]. Methanogens were chosen as they are chemoautotrophs and their metabolism proceeds at relatively small affinities. Also, they are found in a variety of compositionally varying habitats like rumen, sediments, hydrothermal systems and sewage. The methanogens selected belong to the same order of taxonomy and are closely related. Preliminary results show that a majority of the proteins belonging to the rumen methanogen (66%) are more stable in the rumen environment, while a majority of the proteins belonging to the lake-sediment methanogen (58%) are more stable at sediment conditions. In a separate observation, it was noted that while the complete protein ';proteasome subunit alpha' of another rumen methanogen (Methanobrevibacter smithii) was less stable in its more reducing habitat as compared to a sewage methanogen (Methanothermobacter thermoautotophicus), its first 26 amino acid residues (N terminal) were in fact more stable in its own environment. These 26 residues are reported to be unique as compared to other proteasome proteins and are suggested to

  7. Role for acetotrophic methanogens in methanogenic biodegradation of vinyl chloride

    SciTech Connect

    Bradley, P.M.; Chapelle, F.H.

    1999-10-01

    Under methanogenic conditions, stream-bed sediment microorganisms rapidly degraded [1,2-{sup 14}C]vinyl chloride to {sup 14}CH{sub 4} and {sup 14}CO{sub 2}. Amendment with 2-bromoethanesulfonic acid eliminated {sup 14}CH{sub 4} production and decreased {sup 14}CO{sub 2} recovery by an equal molar amount. Results obtained with [{sup 14}C]ethene, [{sup 14}C]acetate, or {sup 14}CO{sub 2} as substrates indicated that acetotrophic methanogens were responsible for the production of {sup 14}CH{sub 4} during biodegradation of [1,2-{sup 14}C]VC.

  8. Role for acetotrophic methanogens in methanogenic biodegradation of vinyl chloride

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1999-01-01

    Under methanogenic conditions, stream-bed sediment microorganisms rapidly degraded [1,2-14C]vinyl chloride to 14CH4 and 14CO2. Amendment with 2-bromoethanesulfonic acid eliminated 14CH4 production and decreased 14CO2 recovery by an equal molar amount. Results obtained with [14C]ethene, [14C]acetate, or 14CO2 as substrates indicated that acetotrophic methanogens were responsible for the production of 14CH4 during biodegradation of [1,2-14C]VC.Under methanogenic conditions, stream-bed sediment microorganisms rapidly degraded [1,2-14C]vinyl chloride to 14CH4 and 14CO2. Amendment with 2-bromoethanesulfonic acid eliminated 14CH4 production and decreased 14CO2 recovery by an equal molar amount. Results obtained with [14C]-ethene, [14C]acetate, or 14CO2 as substrates indicated that acetotrophic methanogens were responsible for the production of 14CH4, during biodegradation of [1,2-14C]VC.

  9. Bioreactors Addressing Diabetes Mellitus

    PubMed Central

    Minteer, Danielle M.; Gerlach, Jorg C.

    2014-01-01

    The concept of bioreactors in biochemical engineering is a well-established process; however, the idea of applying bioreactor technology to biomedical and tissue engineering issues is relatively novel and has been rapidly accepted as a culture model. Tissue engineers have developed and adapted various types of bioreactors in which to culture many different cell types and therapies addressing several diseases, including diabetes mellitus types 1 and 2. With a rising world of bioreactor development and an ever increasing diagnosis rate of diabetes, this review aims to highlight bioreactor history and emerging bioreactor technologies used for diabetes-related cell culture and therapies. PMID:25160666

  10. A comparative study of leachate quality and biogas generation in simulated anaerobic and hybrid bioreactors

    SciTech Connect

    Xu, Qiyong; Tian, Ying; Wang, Shen; Ko, Jae Hac

    2015-07-15

    Highlights: • Temporary aeration shortened the initial acid inhibition phase for methanogens. • COD decreased faster in the hybrid bioreactor than that in the anaerobic control. • Methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. • MSW settlement increased with increasing the frequency of intermittent aeration. - Abstract: Research has been conducted to compare leachate characterization and biogas generation in simulated anaerobic and hybrid bioreactor landfills with typical Chinese municipal solid waste (MSW). Three laboratory-scale reactors, an anaerobic (A1) and two hybrid bioreactors (C1 and C2), were constructed and operated for about 10 months. The hybrid bioreactors were operated in an aerobic–anaerobic mode with different aeration frequencies by providing air into the upper layer of waste. Results showed that the temporary aeration into the upper layer aided methane generation by shortening the initial acidogenic phase because of volatile fatty acids (VFAs) reduction and pH increase. Chemical oxygen demand (COD) decreased faster in the hybrid bioreactors, but the concentrations of ammonia–nitrogen in the hybrid bioreactors were greater than those in the anaerobic control. Methanogenic conditions were established within 75 d and 60 d in C1 and C2, respectively. However, high aeration frequency led to the consumption of organic matters by aerobic degradation and resulted in reducing accumulative methane volume. The temporary aeration enhanced waste settlement and the settlement increased with increasing the frequency of aeration. Methane production was inhibited in the anaerobic control; however, the total methane generations from hybrid bioreactors were 133.4 L/kg{sub vs} and 113.2 L/kg{sub vs}. As for MSW with high content of food waste, leachate recirculation right after aeration stopped was not recommended due to VFA inhibition for methanogens.

  11. Diffusional Properties of Methanogenic Granular Sludge: 1H NMR Characterization

    PubMed Central

    Lens, Piet N. L.; Gastesi, Rakel; Vergeldt, Frank; van Aelst, Adriaan C.; Pisabarro, Antonio G.; Van As, Henk

    2003-01-01

    The diffusive properties of anaerobic methanogenic and sulfidogenic aggregates present in wastewater treatment bioreactors were studied using diffusion analysis by relaxation time-separated pulsed-field gradient nuclear magnetic resonance (NMR) spectroscopy and NMR imaging. NMR spectroscopy measurements were performed at 22°C with 10 ml of granular sludge at a magnetic field strength of 0.5 T (20 MHz resonance frequency for protons). Self-diffusion coefficients of H2O in the investigated series of mesophilic aggregates were found to be 51 to 78% lower than the self-diffusion coefficient of free water. Interestingly, self-diffusion coefficients of H2O were independent of the aggregate size for the size fractions investigated. Diffusional transport occurred faster in aggregates growing under nutrient-rich conditions (e.g., the bottom of a reactor) or at high (55°C) temperatures than in aggregates cultivated in nutrient-poor conditions or at low (10°C) temperatures. Exposure of aggregates to 2.5% glutaraldehyde or heat (70 or 90°C for 30 min) modified the diffusional transport up to 20%. In contrast, deactivation of aggregates by HgCl2 did not affect the H2O self-diffusion coefficient in aggregates. Analysis of NMR images of a single aggregate shows that methanogenic aggregates possess a spin-spin relaxation time and self-diffusion coefficient distribution, which are due to both physical (porosity) and chemical (metal sulfide precipitates) factors. PMID:14602624

  12. Recovery of palladium(II) by methanogenic granular sludge.

    PubMed

    Pat-Espadas, Aurora M; Field, James A; Otero-Gonzalez, Lila; Razo-Flores, Elías; Cervantes, Francisco J; Sierra-Alvarez, Reyes

    2016-02-01

    This is the first report that demonstrates the ability of anaerobic methanogenic granular sludge to reduce Pd(II) to Pd(0). Different electron donors were evaluated for their effectiveness in promoting Pd reduction. Formate and H2 fostered both chemically and biologically mediated Pd reduction. Ethanol only promoted the reduction of Pd(II) under biotic conditions and the reduction was likely mediated by H2 released from ethanol fermentation. No reduction was observed in biotic or abiotic assays with all other substrates tested (acetate, lactate and pyruvate) although a large fraction of the total Pd was removed from the liquid medium likely due to biosorption. Pd(II) displayed severe inhibition towards acetoclastic and hydrogenotrophic methanogens, as indicated by 50% inhibiting concentrations as low as 0.96 and 2.7 mg/L, respectively. The results obtained indicate the potential of utilizing anaerobic granular sludge bioreactor technology as a practical and promising option for Pd(II) reduction and recovery offering advantages over pure cultures. PMID:26408982

  13. Bio-reactor chamber

    NASA Technical Reports Server (NTRS)

    Chandler, Joseph A. (Inventor)

    1989-01-01

    A bioreactor for cell culture is disclosed which provides for the introduction of fresh medium without excessive turbulent action. The fresh medium enters the bioreactor through a filter with a backwash action which prevents the cells from settling on the filter. The bioreactor is sealed and depleted medium is forced out of the container as fresh medium is added.

  14. Methanogens in the Solar System

    NASA Astrophysics Data System (ADS)

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon

    2015-04-01

    The last decade of space science revealed that potential habitats in the Solar System may not be limited to the classical habitable zone supporting life as we know it. These microorganisms were shown to thrive under extremophilic growth conditions. Here, we outline the main eco-physiological characteristics of methanogens like their response on temperature, pressure, or pH changes or their resistance against radiation or desiccation. They can withstand extreme environmental conditions which makes them intriguing organisms for astrobiological studies. On Earth, they are found for example in wetlands, in arctic and antarctic subglacial environments, in ruminants, and even in the environment surrounding the Mars Desert Research Station in Utah. These obligate anaerobic chemolithoautotrophs or chemolithoheterotrophs are able to use e.g. hydrogen and C1 compounds like CO2, formate, or methanol as energy source and carbon source, respectively. We point out their capability to be able to habitat potential extraterrestrial biospheres all over the planetary system. We will give an overview about these possible environments on Mars, icy moons like Europa or Enceladus, and minor planets. We present an overview about studies of methanogens with an astrobiological relevance and we show our conclusions about the role of methanogens for the search for extraterrestrial life in the Solar System. We will present first results of our study about the possibility to cultivate methanogens under Enceladus-like conditions. For that, based on the observations obtained by the Cassini spacecraft concerning the plume compounds, we produce a medium with a composition similar to the ocean composition of this icy moon which is far more Enceladus-like than in any (published) experiment before. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies with these microbes. We point out the importance of future in-situ or even sample and return missions to

  15. Battery pack

    SciTech Connect

    Weaver, R.J.; Brittingham, D.C.; Basta, J.C.

    1993-07-06

    A battery pack is described, having a center of mass, for use with a medical instrument including a latch, an ejector, and an electrical connector, the battery pack comprising: energy storage means for storing electrical energy; latch engagement means, physically coupled to the energy storage means, for engaging the latch; ejector engagement means, physically coupled to the energy storage means, for engaging the ejector; and connector engagement means, physically coupled to the energy storage means, for engaging the connector, the latch engagement means, ejector engagement means, and connector engagement means being substantially aligned in a plane offset from the center of mass of the battery pack.

  16. Optimization of denitrifying bioreactor performance with agricultural residue-based filter media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification bioreactors are a promising technology for mitigation of nitrate-nitrogen (NO3-N) losses in subsurface drainage water. Bioreactors are constructed with carbon substrates, typically wood chips, to provide a substrate for denitrifying microorganisms. Columns were packed with wood chips...

  17. A novel multi-phase bioreactor for fermentations to produce organic acids from dairy wastes

    SciTech Connect

    Yang, S.T.; Zhu, H.; Li, Y.; Silva, E.M.

    1993-12-31

    A novel, fibrous bed bioreactor is developed for multi-phase fermentation processes. The microbial cells are immobilized in a spiral-wound, fibrous matrix packed in the bioreactor. This innovative, structured packing design allows good contact between two different moving phases (e.g., gas-liquid or liquid-solid) and has many advantages over conventional immobilized cell bioreactors. Because the reactor bed is not completely filled with the solid matrix, the bioreactor can be operated for a long period without developing problems such as clogging and high pressure drop usually associated with conventional packed bed and membrane bioreactors. This novel bioreactor was studied for its use in several organic acid fermentations. Production of propionate, acetate, and lactate from whey permeate was studied. In all cases studied, use of the fibrous bioreactor resulted in superior reactor performance-indicated by a more than tenfold increase in productivity, reduction or elimination of the requirement for nutrient supplementation to whey permeate, and resistance to contamination-as compared to conventional batch fermentation processes. Also, the reactor maintained high productivity throughout long-term continuous operation. No contamination, degeneration, or clogging problems were experienced during a 10-month period of continuous operation. This new bioreactor is thus suitable for industrial uses to improve fermentation processes which currently use conventional bioreactors.

  18. STUDIES OF METHANOGENIC BACTERIA IN SLUDGE

    EPA Science Inventory

    Methanogenic bacteria were isolated from mesophilic anaerobic digesters. The isolates were able to utilize H2 and CO2 acetate, formate and methanol, but were not able to metabolize propionate and butyrate. It was shown the propionate and butyrate are not substrates for methanogen...

  19. Continuous Production of Alkyl Esters Using an Immobilized Lipase Bioreactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An immobilized lipase packed-bed bioreactor was developed for esterifying the free fatty acids in greases as a pretreatment step in the production of their simple alkyl esters for use as biodiesel. The immobilized lipases used in the study were immobilized preparations of Candida antarctica (C. a.)...

  20. NASA Bioreactor Demonstration System

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Leland W. K. Chung (left), Director, Molecular Urology Therapeutics Program at the Winship Cancer Institute at Emory University, is principal investigator for the NASA bioreactor demonstration system (BDS-05). With him is Dr. Jun Shu, an assistant professor of Orthopedics Surgery from Kuming Medical University China. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: Emory University.

  1. Bioreactor rotating wall vessel

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells.

  2. Bioreactors: design and operation

    SciTech Connect

    Cooney, C.L.

    1983-02-11

    The bioreactor provides a central link between the starting feedstock and the product. The reaction yield and selectivity are determined by the biocatalyst, but productivity is often determined by the process technology; as a consequence, biochemical reaction engineering becomes the interface for the biologist and engineer. Developments in bioreactor design, including whole cell immobilization, immobilized enzymes, continuous reaction, and process control, will increasingly reflect the need for cross-disciplinary interaction in the biochemical process industry. This paper examines the strategy for selection and design of bioreactors and identifies the limits and constraints in their use. 25 references, 3 figures, 3 tables.

  3. Gas phase acetaldehyde production in a continuous bioreactor

    SciTech Connect

    Hwang, Soon Ook . Dept. of Chemical Engineering); Trantolo, D.J. . Center for Biotechnology Engineering); Wise, D.L. . Dept. of Chemical Engineering Northeastern Univ., Boston, MA . Center for Biotechnology Engineering)

    1993-08-20

    The gas phase continuous production of acetaldehyde was studied with particular emphasis on the development of biocatalyst (alcohol oxidase on solid phase support materials) for a fixed bed reactor. Based on the experimental results in a batch bioreactor, the biocatalysts were prepared by immobilization of alcohol oxidase on Amberlite IRA-400, packed into a column, and the continuous acetaldehyde production in the gas phase by alcohol oxidase was performed. The effects of the reaction temperature, flow rates of gaseous stream, and ethanol vapor concentration on the performance of the continuous bioreactor were investigated.

  4. Bioreactor for continuous processing of a reactant fluid

    SciTech Connect

    Ramp, F.

    1990-02-27

    This patent describes a bioreactor for carrying out microbiological reactions. It comprises: a vertical hollow column containing column packing comprising particles classifiable by means of differential liquid settling rates. The column having a lower reaction section and an upper disengagement section. The disengagement section having a volume at least about as large as the volume of the reaction section. The packing being disposed in the column so that when a microbiological reaction is taking place in the column, the column packing is located in the reaction section, and when the column packing is being regenerated, the column packing is substantially located in the disengagement section. The column includes a reactant inlet near one end, and a product outlet near the other end.

  5. Bioreactor design concepts

    NASA Technical Reports Server (NTRS)

    Bowie, William

    1987-01-01

    Two parallel lines of work are underway in the bioreactor laboratory. One of the efforts is devoted to the continued development and utilization of a laboratory research system. That system's design is intended to be fluid and dynamic. The sole purpose of such a device is to allow testing and development of equipment concepts and procedures. Some of the results of those processes are discussed. A second effort is designed to produce a flight-like bioreactor contained in a double middeck locker. The result of that effort has been to freeze a particular bioreactor design in order to allow fabrication of the custom parts. The system is expected to be ready for flight in early 1988. However, continued use of the laboratory system will lead to improvements in the space bioreactor. Those improvements can only be integrated after the initial flight series.

  6. Space Bioreactor Science Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Editor)

    1987-01-01

    The first space bioreactor has been designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and a slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small (500 ml) bioreactor is being constructed for flight experiments in the Shuttle middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption, and control of low shear stress on cells. Applications of microcarrier cultures, development of the first space bioreactor flight system, shear and mixing effects on cells, process control, and methods to monitor cell metabolism and nutrient requirements are among the topics covered.

  7. BIOREACTOR LANDFILL DESIGN

    EPA Science Inventory

    Modern landfill design entails many elements including foundations, liner systems, leachate collection systems, stormwater control systems, slope stability considerations, leachate management systems, gas extraction systems, and capping and closure. The use of bioreactor technolo...

  8. Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill.

    PubMed

    Cossu, Raffaello; Morello, Luca; Raga, Roberto; Cerminara, Giulia

    2016-09-01

    Landfilling continues to be one of the main methods used in managing Municipal Solid Waste (MSW) worldwide, particularly in developing countries. Although in many countries national legislation aims to reduce this practice as much as possible, landfill is a necessary and unavoidable step in closing the material cycle. The need for innovative waste management techniques to improve landfill management and minimize the adverse environmental impact produced has resulted in an increasing interest in innovative systems capable of accelerating waste stabilization. Landfill bioreactors allow decomposition kinetics to be increased and post-operational phase to be shortened; in particular, hybrid bioreactors combine the benefits afforded by both aerobic and anaerobic processes. Six bioreactor simulators were used in the present study: four managed as hybrid, with an initial semi-aerobic phase and a second anaerobic phase, and two as anaerobic control bioreactors. The main goal of the first aerated phase is to reduce Volatile Fatty Acids (VFA) in order to increase pH and enhance methane production during the anaerobic phase; for this reason, air injection was stopped only when these parameters reached the optimum range for methanogenic bacteria. Biogas and leachate were constantly monitored throughout the entire methanogenic phase with the aim of calibrating a Gompertz Model and evaluating the effects of pre-aeration on subsequent methane production. The results showed that moderate and intermittent pre-aeration produces a positive effect both on methane potential and in the kinetics of reaction. PMID:26531047

  9. Packed Bed Reactor Experiment

    NASA Video Gallery

    The purpose of the Packed Bed Reactor Experiment in low gravity is to determine how a mixture of gas and liquid flows through a packed bed in reduced gravity. A packed bed consists of a metal pipe ...

  10. Trace Gas Emission from in-Situ Denitrifying Bioreactors

    NASA Astrophysics Data System (ADS)

    Pluer, W.; Walter, M. T.; Geohring, L.

    2014-12-01

    Despite decades of concerted effort to mitigate nonpoint source nitrate (NO3-) pollution from agricultural lands, these efforts have not been sufficient to arrest eutrophication. A primary process for removing excess NO3- from water is denitrification, where denitrifying bacteria use NO3- for respiration in the absence of oxygen. Denitrification results in reduced forms of nitrogen, often dinitrogen gas (N2) but also nitrous oxide (N2O), an aggressive greenhouse gas. A promising solution to NO3- pollution is to intercept agricultural discharges with denitrifying bioreactors (DNBRs). DNBRs provide conditions ideal for denitrifiers: an anaerobic environment, sufficient organic matter, and excess NO3-. These conditions are also ideal for methanogens, which produce methane (CH4), another harmful trace gas. While initial results from bioreactor studies show that they can cost-effectively remove NO3-, trace gas emissions are an unintended consequence. This study's goal was to determine how bioreactor design promotes denitrification while limiting trace gas production. Reactor inflow and outflow water samples were tested for nutrients, including NO3-, and dissolved inflow and outflow gas samples were tested for N2O and CH4. NO3- reduction and trace gas production were evaluated at various residence times, pHs, and inflow NO3- concentrations in field and lab-scale reactors. Low NO3- reduction indicated conditions that stressed denitrifying bacteria while high reductions indicated designs that optimized pollutant treatment for water quality. Several factors influenced high N2O, suggesting non-ideal conditions for the final step of complete denitrification. High CH4 emissions pointed to reactor media choice for discouraging methanogens, which may remove competition with denitrifiers. It is critical to understand all of potential impacts that DNBRs may have, which means identifying processes and design specifications that may affect them.

  11. NASA Bioreactor Schematic

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The schematic depicts the major elements and flow patterns inside the NASA Bioreactor system. Waste and fresh medium are contained in plastic bags placed side-by-side so the waste bag fills as the fresh medium bag is depleted. The compliance vessel contains a bladder to accommodate pressure transients that might damage the system. A peristolic pump moves fluid by squeezing the plastic tubing, thus avoiding potential contamination. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  12. NASA Classroom Bioreactor

    NASA Technical Reports Server (NTRS)

    Scully, Robert

    2004-01-01

    Exploration of space provides a compelling need for cell-based research into the basic mechanisms that underlie the profound changes that occur in terrestrial life that is transitioned to low gravity environments. Toward that end, NASA developed a rotating bioreactor in which cells are cultured while continuously suspended in a cylinder in which the culture medium rotates with the cylinder. The randomization of the gravity vector accomplished by the continuous rotation, in a low shear environment, provides an analog of microgravity. Because cultures grown in bioreactors develop structures and functions that are much closer to those exhibited by native tissue than can be achieved with traditional culture methods, bioreactors have contributed substantially to advancing research in the fields of cancer, diabetes, infectious disease modeling for vaccine production, drug efficacy, and tissue engineering. NASA has developed a Classroom Bioreactor (CB) that is built from parts that are easily obtained and assembled, user-friendly and versatile. It can be easily used in simple school settings to examine the effect cultures of seeds or cells. An educational brief provides assembly instructions and lesson plans that describes activities in science, math and technology that explore free fall, microgravity, orbits, bioreactors, structure-function relationships and the scientific method.

  13. Identification and quantification of methanogenic archaea in adult chicken ceca

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methanogens, members of the domain Archaea, have been isolated from various animals but few reports exists regarding the isolation of methanogens from chicken, goose, and turkey feces. By using molecular methods for the identification and quantification of methanogenic archea in adult chicken ceca,...

  14. NASA Bioreactor tissue culture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  15. Simulation of the inhibition of microbial sulfate reduction in a two-compartment upflow bioreactor subjected to molybdate injection.

    PubMed

    de Jesus, E B; de Andrade Lima, L R P

    2016-08-01

    Souring of oil fields during secondary oil recovery by water injection occurs mainly due to the action of sulfate-reducing bacteria (SRB) adhered to the rock surface in the vicinity of injection wells. Upflow packed-bed bioreactors have been used in petroleum microbiology because of its similarity to the oil field near the injection wells or production. However, these reactors do not realistically describe the regions near the injection wells, which are characterized by the presence of a saturated zone and a void region close to the well. In this study, the hydrodynamics of the two-compartment packing-free/packed-bed pilot bioreactor that mimics an oil reservoir was studied. The packed-free compartment was modeled using a continuous stirred tank model with mass exchange between active and stagnant zones, whereas the packed-bed compartment was modeled using a piston-dispersion-exchange model. The proposed model adequately represents the hydrodynamic of the packed-free/packed-bed bioreactor while the simulations provide important information about the characteristics of the residence time distribution (RTD) curves for different sets of model parameters. Simulations were performed to represent the control of the sulfate-reducing bacteria activity in the bioreactor with the use of molybdate in different scenarios. The simulations show that increased amounts of molybdate cause an effective inhibition of the souring sulfate-reducing bacteria activity. PMID:27126499

  16. Response of Methanogens in Arctic Sediments to Temperature and Methanogenic Substrate Availability

    PubMed Central

    Blake, Lynsay I.; Tveit, Alexander; Øvreås, Lise; Head, Ian M.; Gray, Neil D.

    2015-01-01

    Although cold environments are major contributors to global biogeochemical cycles, comparatively little is known about their microbial community function, structure, and limits of activity. In this study a microcosm based approach was used to investigate the effects of temperature, and methanogenic substrate amendment, (acetate, methanol and H2/CO2) on methanogen activity and methanogen community structure in high Arctic wetlands (Solvatnet and Stuphallet, Svalbard). Methane production was not detected in Stuphallet sediment microcosms (over a 150 day period) and occurred within Solvatnet sediments microcosms (within 24 hours) at temperatures from 5 to 40°C, the maximum temperature being at far higher than in situ maximum temperatures (which range from air temperatures of -1.4 to 14.1°C during summer months). Distinct responses were observed in the Solvatnet methanogen community under different short term incubation conditions. Specifically, different communities were selected at higher and lower temperatures. At lower temperatures (5°C) addition of exogenous substrates (acetate, methanol or H2/CO2) had no stimulatory effect on the rate of methanogenesis or on methanogen community structure. The community in these incubations was dominated by members of the Methanoregulaceae/WCHA2-08 family-level group, which were most similar to the psychrotolerant hydrogenotrophic methanogen Methanosphaerula palustris strain E1-9c. In contrast, at higher temperatures, substrate amendment enhanced methane production in H2/CO2 amended microcosms, and played a clear role in structuring methanogen communities. Specifically, at 30°C members of the Methanoregulaceae/WCHA2-08 predominated following incubation with H2/CO2, and Methanosarcinaceaeand Methanosaetaceae were enriched in response to acetate addition. These results may indicate that in transiently cold environments, methanogen communities can rapidly respond to moderate short term increases in temperature, but not

  17. Volatile hydrocarbons inhibit methanogenic crude oil degradation

    PubMed Central

    Sherry, Angela; Grant, Russell J.; Aitken, Carolyn M.; Jones, D. Martin; Head, Ian M.; Gray, Neil D.

    2014-01-01

    Methanogenic degradation of crude oil in subsurface sediments occurs slowly, but without the need for exogenous electron acceptors, is sustained for long periods and has enormous economic and environmental consequences. Here we show that volatile hydrocarbons are inhibitory to methanogenic oil biodegradation by comparing degradation of an artificially weathered crude oil with volatile hydrocarbons removed, with the same oil that was not weathered. Volatile hydrocarbons (nC5–nC10, methylcyclohexane, benzene, toluene, and xylenes) were quantified in the headspace of microcosms. Aliphatic (n-alkanes nC12–nC34) and aromatic hydrocarbons (4-methylbiphenyl, 3-methylbiphenyl, 2-methylnaphthalene, 1-methylnaphthalene) were quantified in the total hydrocarbon fraction extracted from the microcosms. 16S rRNA genes from key microorganisms known to play an important role in methanogenic alkane degradation (Smithella and Methanomicrobiales) were quantified by quantitative PCR. Methane production from degradation of weathered oil in microcosms was rapid (1.1 ± 0.1 μmol CH4/g sediment/day) with stoichiometric yields consistent with degradation of heavier n-alkanes (nC12–nC34). For non-weathered oil, degradation rates in microcosms were significantly lower (0.4 ± 0.3 μmol CH4/g sediment/day). This indicated that volatile hydrocarbons present in the non-weathered oil inhibit, but do not completely halt, methanogenic alkane biodegradation. These findings are significant with respect to rates of biodegradation of crude oils with abundant volatile hydrocarbons in anoxic, sulphate-depleted subsurface environments, such as contaminated marine sediments which have been entrained below the sulfate-reduction zone, as well as crude oil biodegradation in petroleum reservoirs and contaminated aquifers. PMID:24765087

  18. Microbiology and biochemistry of the methanogenic archaeobacteria

    NASA Astrophysics Data System (ADS)

    Abbanat, Darren R.; Aceti, David J.; Baron, Stephen F.; Terlesky, Katherine C.; Ferry, James C.

    The methane producing bacteria area diverse group of organisms that function in nature with other groups of strictly anaerobic bacteria to convert complex organic matter to methane and carbon dioxide. The methanogens belong to the archaeobacteria, a third primary kingdom distinct from all other procaryotes (eubacteria) and eucaryotes. The distinction is based on the unique structures of cell wall and membrane components present in archaeobacteria, as well as differences in the highly conserved 16s rRNA sequences among the three kingdoms. In addition, the methanogens contain several novel cofactors that function as one-carbon carriers during the reduction of carbon dioxide to methane with electrons derived from the oxidation of H2 or formate. Methanogens also convert acetate to methane by a pathway distinct from that for carbon dioxide reduction. The pathway involves activation of acetate to acetyl-SCoA followed by decarbonylation and reduction of the methyl group to methane coupled to the oxidation of the carbonyl group to carbon dioxide.

  19. Bioactive fractions from the pasture legume Biserrula pelecinus L. have an anti-methanogenic effect against key rumen methanogens.

    PubMed

    Banik, Bidhyut K; Durmic, Zoey; Erskine, William; Revell, Clinton K; Vadhanabhuti, Joy; McSweeney, Christopher S; Padmanabha, Jagadish; Flematti, Gavin R; Algreiby, Azizah A; Vercoe, Philip E

    2016-06-01

    Methanogenic archaea (methanogens) are common inhabitants of the mammalian intestinal tract. In ruminants, they are responsible for producing abundant amounts of methane during digestion of food, but selected bioactive plants and compounds may inhibit this activity. Recently, we have identified that, Biserrula pelecinus L. (biserrula) is one such plant and the current study investigated the specific anti-methanogenic activity of the plant. Bioassay-guided extraction and fractionation, coupled with in vitro fermentation batch culture were used to select the most bioactive fractions of biserrula. The four fractions were then tested against five species of methanogens grown in pure culture. Fraction bioactivity was assessed by measuring methane production and amplification of the methanogen mcrA gene. Treatments that showed bioactivity were subcultured in fresh broth without the bioactive fraction to distinguish between static and cidal effects. All four fractions were active against pure cultures, but the F2 fraction was the most consistent inhibitor of both methane production and cell growth, affecting four species of methanogens and also producing equivocal-cidal effects on the methanogens. Other fractions had selective activity affecting only some methanogens, or reducing either methane production or methanogenic cell growth. In conclusion, the anti-methanogenic activity of biserrula can be linked to compounds contained in selected bioactive fractions, with the F2 fraction strongly affecting key rumen methanogens. Further study is required to identify the specific plant compounds in biserrula that are responsible for the anti-methanogenic activity. These findings will help devise novel strategies to control methanogen populations and activity in the rumen, and consequently contribute in reducing greenhouse gas emissions from ruminants. PMID:27060275

  20. BioReactor

    Energy Science and Technology Software Center (ESTSC)

    2003-04-18

    BioReactor is a simulation tool kit for modeling networks of coupled chemical processes (or similar productions rules). The tool kit is implemented in C++ and has the following functionality: 1. Monte Carlo discrete event simulator 2. Solvers for ordinary differential equations 3. Genetic algorithm optimization routines for reverse engineering of models using either Monte Carlo or ODE representation )i.e., 1 or 2)

  1. Methanogens: Methane Producers of the Rumen and Mitigation Strategies

    PubMed Central

    Hook, Sarah E.; Wright, André-Denis G.; McBride, Brian W.

    2010-01-01

    Methanogens are the only known microorganisms capable of methane production, making them of interest when investigating methane abatement strategies. A number of experiments have been conducted to study the methanogen population in the rumen of cattle and sheep, as well as the relationship that methanogens have with other microorganisms. The rumen methanogen species differ depending on diet and geographical location of the host, as does methanogenesis, which can be reduced by modifying dietary composition, or by supplementation of monensin, lipids, organic acids, or plant compounds within the diet. Other methane abatement strategies that have been investigated are defaunation and vaccines. These mitigation methods target the methanogen population of the rumen directly or indirectly, resulting in varying degrees of efficacy. This paper describes the methanogens identified in the rumens of cattle and sheep, as well as a number of methane mitigation strategies that have been effective in vivo. PMID:21253540

  2. High tolerance of methanogens in granular sludge to oxygen

    SciTech Connect

    Kato, M.T.; Field, J.A.; Lettinga, G. . Dept. of Environmental Technology)

    1993-12-01

    This research assessed the effect of oxygen exposure on the methanogenic activity of anaerobic granular sludges. The toxicity of oxygen to acetoclastic methanogens in five different anaerobic granular sludges was determined in serum flasks with effective gas-to-liquid volumes of 4.65 to 1. The amount of oxygen that caused 50% inhibition of the methanogenic activity after 3 days of exposure ranged from 7% to 41% oxygen in the head space. These results indicate that methanogens located in granular sludge have a high tolerance for oxygen. The most important factor contributing to the tolerance was the oxygen consumption by facultative bacteria metabolizing biodegradable substrates. Uptake of oxygen by these bacteria creates anaerobic microenvironments where the methanogenic bacteria are protected. The results also indicate that methanogens in sludge consortia still have some tolerance to oxygen, even in the absence of facultative substrate for oxygen respiration.

  3. Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens

    NASA Technical Reports Server (NTRS)

    Burggraf, S.; Stetter, K. O.; Rouviere, P.; Woese, C. R.

    1991-01-01

    Analysis of its 16S rRNA sequence shows that the newly discovered hyperthermophilic methanogen, Methanopryus kandleri, is phylogenetically unrelated to any other known methanogen. The organism represents a separate lineage originating near the root of the archaeal tree. Although the 16S rRNA sequence of Mp. kandleri resembles euryarchaeal 16S rRNAs more than it does crenarchaeal, it shows more crenarchaeal signature features than any known euryarchaeal rRNA. Attempts to place it in relation to the root of the archaeal tree show that the Mp. kandleri lineage likely arises from the euryarchaeal branch of the tree. While the existence of so deeply branching a methanogenic lineage brings into question the thesis that methanogenesis evolved from an earlier metabolism similar to that seen in Thermococcus, it at the same time reinforces the notion that the aboriginal [correction of aborginal] archaeon was a thermophile.

  4. Levels of water-soluble vitamins in methanogenic and non-methanogenic bacteria

    SciTech Connect

    Leigh, J.A.

    1983-03-01

    The levels of seven water-soluble vitamins in Methanobacterium thermoautotropicum, Methanococcus voltae, Escherichia coli, Bacillus subtillis, Pseudomonas fluorescens, and Bacteroides thetaiotaomicron were compared by using a vitamin-requiring Leuconostoc strain. Both methanogens contained levels of folic acid and pantothenic acid which were approximately two orders of magnitude lower than levels in the nonmethanogens. Methanobacterium thermoautotrophicum contained levels of thiamine, biotin, nicotinic acid, and pyridoxine which were approximately one order of magnitude lower than levels in the nonmethanogens. The thiamine level in Methanococcus voltae was approximately one order of magnitude lower than levels in the nonmethanogens. Only the levels of riboflavin (and nicotinic acid and pyridoxine in Methanococcus voltae) were approximately equal in the methanogens and nonmethanogens. Folic acid may have been present in extracts of methanogens merely as a precursor, by-product, or hydrolysis product of methanopterin.

  5. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated fro...

  6. Enzymatic cascade bioreactor

    DOEpatents

    Simmons, Blake A.; Volponi, Joanne V.; Ingersoll, David; Walker, Andrew

    2007-09-04

    Disclosed is an apparatus and method for continuously converting sucrose to .beta.-D-glucose. The method comprises a three stage enzymatic reactor in which an aqueous solution of sucrose is first converted into a solution of fructose and .alpha.-D-glucose by passing it through a porous, packed column containing an inert media on which invertase is immobilized. This solution is then sent through a second packed column containing glucose isomerase and finally a third packed column containing mutarotase. Solution temperature and pH are adjusted to maximize glucose output.

  7. Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment.

    PubMed

    Shrestha, Pravin Malla; Malvankar, Nikhil S; Werner, Jeffrey J; Franks, Ashley E; Elena-Rotaru, Amelia; Shrestha, Minita; Liu, Fanghua; Nevin, Kelly P; Angenent, Largus T; Lovley, Derek R

    2014-12-01

    Prior investigation of an upflow anaerobic sludge blanket (UASB) reactor treating brewery wastes suggested that direct interspecies electron transfer (DIET) significantly contributed to interspecies electron transfer to methanogens. To investigate DIET in granules further, the electrical conductivity and bacterial community composition of granules in fourteen samples from four different UASB reactors treating brewery wastes were investigated. All of the UASB granules were electrically conductive whereas control granules from ANAMMOX (ANaerobic AMMonium OXidation) reactors and microbial granules from an aerobic bioreactor designed for phosphate removal were not. There was a moderate correlation (r=0.67) between the abundance of Geobacter species in the UASB granules and granule conductivity, suggesting that Geobacter contributed to granule conductivity. These results, coupled with previous studies, which have demonstrated that Geobacter species can donate electrons to methanogens that are typically predominant in anaerobic digesters, suggest that DIET may be a widespread phenomenon in UASB reactors treating brewery wastes. PMID:25443621

  8. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities.

    PubMed

    Dziewit, Lukasz; Pyzik, Adam; Romaniuk, Krzysztof; Sobczak, Adam; Szczesny, Pawel; Lipinski, Leszek; Bartosik, Dariusz; Drewniak, Lukasz

    2015-01-01

    Methanogenic Archaea produce approximately one billion tons of methane annually, but their biology remains largely unknown. This is partially due to the large phylogenetic and phenotypic diversity of this group of organisms, which inhabit various anoxic environments including peatlands, freshwater sediments, landfills, anaerobic digesters and the intestinal tracts of ruminants. Research is also hampered by the inability to cultivate methanogenic Archaea. Therefore, biodiversity studies have relied on the use of 16S rRNA and mcrA [encoding the α subunit of the methyl coenzyme M (methyl-CoM) reductase] genes as molecular markers for the detection and phylogenetic analysis of methanogens. Here, we describe four novel molecular markers that should prove useful in the detailed analysis of methanogenic consortia, with a special focus on methylotrophic methanogens. We have developed and validated sets of degenerate PCR primers for the amplification of genes encoding key enzymes involved in methanogenesis: mcrB and mcrG (encoding β and γ subunits of the methyl-CoM reductase, involved in the conversion of methyl-CoM to methane), mtaB (encoding methanol-5-hydroxybenzimidazolylcobamide Co-methyltransferase, catalyzing the conversion of methanol to methyl-CoM) and mtbA (encoding methylated [methylamine-specific corrinoid protein]:coenzyme M methyltransferase, involved in the conversion of mono-, di- and trimethylamine into methyl-CoM). The sensitivity of these primers was verified by high-throughput sequencing of PCR products amplified from DNA isolated from microorganisms present in anaerobic digesters. The selectivity of the markers was analyzed using phylogenetic methods. Our results indicate that the selected markers and the PCR primer sets can be used as specific tools for in-depth diversity analyses of methanogenic consortia. PMID:26217325

  9. Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities

    PubMed Central

    Dziewit, Lukasz; Pyzik, Adam; Romaniuk, Krzysztof; Sobczak, Adam; Szczesny, Pawel; Lipinski, Leszek; Bartosik, Dariusz; Drewniak, Lukasz

    2015-01-01

    Methanogenic Archaea produce approximately one billion tons of methane annually, but their biology remains largely unknown. This is partially due to the large phylogenetic and phenotypic diversity of this group of organisms, which inhabit various anoxic environments including peatlands, freshwater sediments, landfills, anaerobic digesters and the intestinal tracts of ruminants. Research is also hampered by the inability to cultivate methanogenic Archaea. Therefore, biodiversity studies have relied on the use of 16S rRNA and mcrA [encoding the α subunit of the methyl coenzyme M (methyl-CoM) reductase] genes as molecular markers for the detection and phylogenetic analysis of methanogens. Here, we describe four novel molecular markers that should prove useful in the detailed analysis of methanogenic consortia, with a special focus on methylotrophic methanogens. We have developed and validated sets of degenerate PCR primers for the amplification of genes encoding key enzymes involved in methanogenesis: mcrB and mcrG (encoding β and γ subunits of the methyl-CoM reductase, involved in the conversion of methyl-CoM to methane), mtaB (encoding methanol-5-hydroxybenzimidazolylcobamide Co-methyltransferase, catalyzing the conversion of methanol to methyl-CoM) and mtbA (encoding methylated [methylamine-specific corrinoid protein]:coenzyme M methyltransferase, involved in the conversion of mono-, di- and trimethylamine into methyl-CoM). The sensitivity of these primers was verified by high-throughput sequencing of PCR products amplified from DNA isolated from microorganisms present in anaerobic digesters. The selectivity of the markers was analyzed using phylogenetic methods. Our results indicate that the selected markers and the PCR primer sets can be used as specific tools for in-depth diversity analyses of methanogenic consortia. PMID:26217325

  10. Detection and Quantification of Functional Genes of Cellulose- Degrading, Fermentative, and Sulfate-Reducing Bacteria and Methanogenic Archaea▿

    PubMed Central

    Pereyra, L. P.; Hiibel, S. R.; Prieto Riquelme, M. V.; Reardon, K. F.; Pruden, A.

    2010-01-01

    Cellulose degradation, fermentation, sulfate reduction, and methanogenesis are microbial processes that coexist in a variety of natural and engineered anaerobic environments. Compared to the study of 16S rRNA genes, the study of the genes encoding the enzymes responsible for these phylogenetically diverse functions is advantageous because it provides direct functional information. However, no methods are available for the broad quantification of these genes from uncultured microbes characteristic of complex environments. In this study, consensus degenerate hybrid oligonucleotide primers were designed and validated to amplify both sequenced and unsequenced glycoside hydrolase genes of cellulose-degrading bacteria, hydA genes of fermentative bacteria, dsrA genes of sulfate-reducing bacteria, and mcrA genes of methanogenic archaea. Specificity was verified in silico and by cloning and sequencing of PCR products obtained from an environmental sample characterized by the target functions. The primer pairs were further adapted to quantitative PCR (Q-PCR), and the method was demonstrated on samples obtained from two sulfate-reducing bioreactors treating mine drainage, one lignocellulose based and the other ethanol fed. As expected, the Q-PCR analysis revealed that the lignocellulose-based bioreactor contained higher numbers of cellulose degraders, fermenters, and methanogens, while the ethanol-fed bioreactor was enriched in sulfate reducers. The suite of primers developed represents a significant advance over prior work, which, for the most part, has targeted only pure cultures or has suffered from low specificity. Furthermore, ensuring the suitability of the primers for Q-PCR provided broad quantitative access to genes that drive critical anaerobic catalytic processes. PMID:20139321

  11. Oscillating Cell Culture Bioreactor

    NASA Technical Reports Server (NTRS)

    Freed, Lisa E.; Cheng, Mingyu; Moretti, Matteo G.

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid

  12. Study of methanogen communities associated with different rumen protozoal populations

    PubMed Central

    Belanche, Alejandro; de la Fuente, Gabriel; Newbold, Charles J

    2014-01-01

    Protozoa-associated methanogens (PAM) are considered one of the most active communities in the rumen methanogenesis. This experiment investigated whether methanogens are sequestrated within rumen protozoa, and structural differences between rumen free-living methanogens and PAM. Rumen protozoa were harvested from totally faunated sheep, and six protozoal fractions (plus free-living microorganisms) were generated by sequential filtration. Holotrich-monofaunated sheep were also used to investigate the holotrich-associated methanogens. Protozoal size determined the number of PAM as big protozoa had 1.7–3.3 times more methanogen DNA than smaller protozoa, but also more endosymbiotic bacteria (2.2- to 3.5-fold times). Thus, similar abundance of methanogens with respect to total bacteria were observed across all protozoal fractions and free-living microorganisms, suggesting that methanogens are not accumulated within rumen protozoa in a greater proportion to that observed in the rumen as a whole. All rumen methanogen communities had similar diversity (22.2 ± 3.4 TRFs). Free-living methanogens composed a conserved community (67% similarity within treatment) in the rumen with similar diversity but different structures than PAM (P < 0.05). On the contrary, PAM constituted a more variable community (48% similarity), which differed between holotrich and total protozoa (P < 0.001). Thus, PAM constitutes a community, which requires further investigation as part of methane mitigation strategies. PMID:25195951

  13. Three stages MBR (methanogenic, aerobic biofilm and membrane filtration) for the treatment of low-strength wastewaters.

    PubMed

    Buntner, D; Sánchez Sánchez, A; Garrido, J M

    2011-01-01

    The use of a new three stages MBR process with a first methanogenic UASB stage, a second stage with aerobic biofilm growing on small carrier elements maintained in suspension and third stage with membrane filtration module is presented. The objective of the first methanogenic chamber is to diminish COD of the raw wastewater, producing a biogas rich in methane, and decrease the sludge production. In the second stage, the remaining soluble biodegradable COD is oxidized by heterotrophs. In the third stage, the membrane modules could be operated at higher fluxes than those reported for AnMBR systems, and similar to those obtained in aerobic MBRs. In this sense, the concept of these three stages MBR is to join the advantages of the methanogenic and aerobic membrane bioreactor processes, by reducing energy requirements for aeration, producing biogas with high methane percentage and a permeate with very low COD content. A synthetic wastewater was fed to the three stages MBR. COD in the influent was between 200 and 1,200 mg/L, ammonium ranged from 10 to 35 mg/L and phosphorous concentration was 8 mg/L. OLR in-between 1 and 3 kg COD/(m3 d) and a HRT of 13-21 h were applied. Temperature was between 17.5 and 23.2 degrees C. During the whole operating period the COD removal efficiencies were in the range of 90 and 96% of which in between 40 and 80% was removed in the first methanogenic chamber. Biogas production with methane content between 75 and 80% was observed. With regard to membrane operation, average permeabilities around 150 L/(m2 h bar) were achieved, operating with fluxes of 11-15 L/(m2 h). PMID:22097013

  14. Design challenges for space bioreactors

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Petersen, G. R.

    1989-01-01

    The design of bioreactors for operation under conditions of microgravity presents problems and challenges. Absence of a significant body force such as gravity can have profound consequences for interfacial phenomena. Marangoni convection can no longer be overlooked. Many speculations on the advantages and benefits of microgravity can be found in the literature. Initial bioreactor research considerations for space applications had little regard for the suitability of the designs for conditions of microgravity. Bioreactors can be classified in terms of their function and type of operation. The complex interaction of parameters leading to optimal design and operation of a bioreactor is illustrated by the JSC mammalian cell culture system. The design of a bioreactor is strongly dependent upon its intended use as a production unit for cell mass and/or biologicals or as a research reactor for the study of cell growth and function. Therefore a variety of bioreactor configurations are presented in rapid summary. Following this, a rationale is presented for not attempting to derive key design parameters such as the oxygen transfer coefficient from ground-based data. A set of themes/objectives for flight experiments to develop the expertise for design of space bioreactors is then proposed for discussion. These experiments, carried out systematically, will provide a database from which engineering tools for space bioreactor design will be derived.

  15. Characteristics, Process Parameters, and Inner Components of Anaerobic Bioreactors

    PubMed Central

    Abdelgadir, Awad; Chen, Xiaoguang; Liu, Jianshe; Xie, Xuehui; Zhang, Jian; Zhang, Kai; Wang, Heng; Liu, Na

    2014-01-01

    The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB), namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT), Organic Loading Rate (OLR), and sludge retention time (SRT) were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive. PMID:24672798

  16. Characteristics, process parameters, and inner components of anaerobic bioreactors.

    PubMed

    Abdelgadir, Awad; Chen, Xiaoguang; Liu, Jianshe; Xie, Xuehui; Zhang, Jian; Zhang, Kai; Wang, Heng; Liu, Na

    2014-01-01

    The anaerobic bioreactor applies the principles of biotechnology and microbiology, and nowadays it has been used widely in the wastewater treatment plants due to their high efficiency, low energy use, and green energy generation. Advantages and disadvantages of anaerobic process were shown, and three main characteristics of anaerobic bioreactor (AB), namely, inhomogeneous system, time instability, and space instability were also discussed in this work. For high efficiency of wastewater treatment, the process parameters of anaerobic digestion, such as temperature, pH, Hydraulic retention time (HRT), Organic Loading Rate (OLR), and sludge retention time (SRT) were introduced to take into account the optimum conditions for living, growth, and multiplication of bacteria. The inner components, which can improve SRT, and even enhance mass transfer, were also explained and have been divided into transverse inner components, longitudinal inner components, and biofilm-packing material. At last, the newly developed special inner components were discussed and found more efficient and productive. PMID:24672798

  17. Pulse shear stress for anaerobic membrane bioreactor fouling control.

    PubMed

    Yang, Jixiang; Spanjers, Henri; van Lier, Jules B

    2011-01-01

    Increase of shear stress at membrane surfaces is a generally applied strategy to minimize membrane fouling. It has been reported that a two-phase flow, better known as slug flow, is an effective way to increase shear stress. Hence, slug flow was introduced into an anaerobic membrane bioreactor for membrane fouling control. Anaerobic suspended sludge was cultured in an anaerobic membrane bioreactor (AMBR) operated with a side stream inside-out tubular membrane unit applying sustainable flux flow regimes. The averaged particle diameter decreased from 20 to 5 microm during operation of the AMBR. However, the COD removal efficiency did not show any significant deterioration, whereas the specific methanogenic activity (SMA) increased from 0.16 to 0.41 gCOD/g VSS/day. Nevertheless, the imposed gas slug appeared to be insufficient for adequate fouling control, resulting in rapidly increasing trans membrane pressures (TMP) operating at a flux exceeding 16 L/m2/h. Addition of powdered activated carbon (PAC) enhanced the effect of slug flow on membrane fouling. However, the combined effect was still considered as not being significant. The tubular membrane was subsequently equipped with inert inserts for creating a locally increased shear stress for enhanced fouling control. Results show an increase in the membrane flux from 16 L/m2/h to 34 L/m2/h after the inserts were mounted in the membrane tube. PMID:22097007

  18. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    SciTech Connect

    Anderson, Iain; Ulrich, Luke; Lupa, Boguslaw; Susanti, Dwi; Porat, I.; Hooper, Sean; Lykidis, A; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla L.; Saunders, Elizabeth H; Han, Cliff; Land, Miriam L; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William; Woese, Carl; Bristow, James; Kyrpides, Nikos C

    2009-01-01

    Background Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. Methodology/Principal Findings In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Conclusions/Significance Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  19. Genomic Characterization of Methanomicrobiales Reveals Three Classes of Methanogens

    SciTech Connect

    Anderson, Iain; Ulrich, Luke E.; Lupa, Boguslaw; Susanti, Dwi; Porat, Iris; Hooper, Sean D.; Lykidis, Athanasios; Sieprawska-Lupa, Magdalena; Dharmarajan, Lakshmi; Goltsman, Eugene; Lapidus, Alla; Saunders, Elizabeth; Han, Cliff; Land, Miriam; Lucas, Susan; Mukhopadhyay, Biswarup; Whitman, William B.; Woese, Carl; Bristow, James; Kyrpides, Nikos

    2009-05-01

    Methanomicrobiales is the least studied order of methanogens. While these organisms appear to be more closely related to the Methanosarcinales in ribosomal-based phylogenetic analyses, they are metabolically more similar to Class I methanogens. In order to improve our understanding of this lineage, we have completely sequenced the genomes of two members of this order, Methanocorpusculum labreanum Z and Methanoculleus marisnigri JR1, and compared them with the genome of a third, Methanospirillum hungatei JF-1. Similar to Class I methanogens, Methanomicrobiales use a partial reductive citric acid cycle for 2-oxoglutarate biosynthesis, and they have the Eha energy-converting hydrogenase. In common with Methanosarcinales, Methanomicrobiales possess the Ech hydrogenase and at least some of them may couple formylmethanofuran formation and heterodisulfide reduction to transmembrane ion gradients. Uniquely, M. labreanum and M. hungatei contain hydrogenases similar to the Pyrococcus furiosus Mbh hydrogenase, and all three Methanomicrobiales have anti-sigma factor and anti-anti-sigma factor regulatory proteins not found in other methanogens. Phylogenetic analysis based on seven core proteins of methanogenesis and cofactor biosynthesis places the Methanomicrobiales equidistant from Class I methanogens and Methanosarcinales. Our results indicate that Methanomicrobiales, rather than being similar to Class I methanogens or Methanomicrobiales, share some features of both and have some unique properties. We find that there are three distinct classes of methanogens: the Class I methanogens, the Methanomicrobiales (Class II), and the Methanosarcinales (Class III).

  20. Microfluidic conductimetric bioreactor.

    PubMed

    Limbut, Warakorn; Loyprasert, Suchera; Thammakhet, Chongdee; Thavarungkul, Panote; Tuantranont, Adisorn; Asawatreratanakul, Punnee; Limsakul, Chusak; Wongkittisuksa, Booncharoen; Kanatharana, Proespichaya

    2007-06-15

    A microfluidic conductimetric bioreactor has been developed. Enzyme was immobilized in the microfluidic channel on poly-dimethylsiloxane (PDMS) surface via covalent binding method. The detection unit consisted of two gold electrodes and a laboratory-built conductimetric transducer to monitor the increase in the conductivity of the solution due to the change of the charges generated by the enzyme-substrate catalytic reaction. Urea-urease was used as a representative analyte-enzyme system. Under optimum conditions urea could be determined with a detection limit of 0.09 mM and linearity in the range of 0.1-10 mM (r=0.9944). The immobilized urease on the microchannel chip provided good stability (>30 days of operation time) and good repeatability with an R.S.D. lower than 2.3%. Good agreement was obtained when urea concentrations of human serum samples determined by the microfluidic flow injection conductimetric bioreactor system were compared to those obtained using the Berthelot reaction (P<0.05). After prolong use the immobilized enzyme could be removed from the PDMS microchannel chip enabling new active enzyme to be immobilized and the chip to be reused. PMID:17289366

  1. Sensing in tissue bioreactors

    NASA Astrophysics Data System (ADS)

    Rolfe, P.

    2006-03-01

    Specialized sensing and measurement instruments are under development to aid the controlled culture of cells in bioreactors for the fabrication of biological tissues. Precisely defined physical and chemical conditions are needed for the correct culture of the many cell-tissue types now being studied, including chondrocytes (cartilage), vascular endothelial cells and smooth muscle cells (blood vessels), fibroblasts, hepatocytes (liver) and receptor neurones. Cell and tissue culture processes are dynamic and therefore, optimal control requires monitoring of the key process variables. Chemical and physical sensing is approached in this paper with the aim of enabling automatic optimal control, based on classical cell growth models, to be achieved. Non-invasive sensing is performed via the bioreactor wall, invasive sensing with probes placed inside the cell culture chamber and indirect monitoring using analysis within a shunt or a sampling chamber. Electroanalytical and photonics-based systems are described. Chemical sensing for gases, ions, metabolites, certain hormones and proteins, is under development. Spectroscopic analysis of the culture medium is used for measurement of glucose and for proteins that are markers of cell biosynthetic behaviour. Optical interrogation of cells and tissues is also investigated for structural analysis based on scatter.

  2. Energetics of syntrophic cooperation in methanogenic degradation.

    PubMed Central

    Schink, B

    1997-01-01

    Fatty acids and alcohols are key intermediates in the methanogenic degradation of organic matter, e.g., in anaerobic sewage sludge digestors or freshwater lake sediments. They are produced by classical fermenting bacteria for disposal of electrons derived in simultaneous substrate oxidations. Methanogenic bacteria can degrade primarily only one-carbon compounds. Therefore, acetate, propionate, ethanol, and their higher homologs have to be fermented further to one-carbon compounds. These fermentations are called secondary or syntrophic fermentations. They are endergonic processes under standard conditions and depend on intimate coupling with methanogenesis. The energetic situation of the prokaryotes cooperating in these processes is problematic: the free energy available in the reactions for total conversion of substrate to methane attributes to each partner amounts of energy in the range of the minimum biochemically convertible energy, i.e., 20 to 25 kJ per mol per reaction. This amount corresponds to one-third of an ATP unit and is equivalent to the energy required for a monovalent ion to cross the charged cytoplasmic membrane. Recent studies have revealed that syntrophically fermenting bacteria synthesize ATP by substrate-level phosphorylation and reinvest part of the ATP-bound energy into reversed electron transport processes, to release the electrons at a redox level accessible by the partner bacteria and to balance their energy budget. These findings allow us to understand the energy economy of these bacteria on the basis of concepts derived from the bioenergetics of other microorganisms. PMID:9184013

  3. Cells growing in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. Shown here, clusters of cells slowly spin inside a bioreactor. On Earth, the cells continually fall through the buffer medium and never hit bottom. In space, they are naturally suspended. Rotation ensures gentle stirring so waste is removed and fresh nutrient and oxygen are supplied. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  4. Development and characterization of a continuous centrifugal bioreactor

    SciTech Connect

    Van Wie, B.J.; Elliott, M.L.; Lee, J.M.; Scott, C.D.

    1986-01-01

    A new continuous centrifugal bioreactor (CCBR), has been developed and characterized. A densely packed fluidized bed was maintained by balancing the drag and buoyancy forces of the incoming substrate with that of the centrifugal forces. With this approach, effluent streams were relatively free of cells and a small residence time assured the provision of adequate nutrient requirements and rapid removal of the product. This concept was tested using a nonflocculating strain of the yeast Saccharomyces cerevisiae. The focus of this research was to clarify operating regimes and assess the feasibility of cell culture in a high gravity environment. (Refs. 14).

  5. [Community Structure and Succession of Methanogens in Beishenshu Landfill, Beijing].

    PubMed

    Song, Li-na; Wang, Lei; Xia, Meng-jing; Su, Yue; Li, Zhen-shan

    2015-09-01

    Methanogens are the key microorganisms for landfill stabilization. RT-PCR and qPCR detecting system were employed to determine the types and abundance of methanogens in 2-15 year-old solid wastes that sampled from Beishenshu Landfill, Beijing. The organic components were almost stable and the pH values were in alkaline range, which indicated that the landfill was in the methanogenic process. Methanobacterials, Methanosaeta, and Methanosarcina were detected, among which Methanosaeta and Methanosarcina are acetoclastic, and Methanobacterials are hydrogenotrophic. As landfill processing, within this time range, although the bacterial abundance was significantly decreased, the amount of methanogens was first increased and then decreased, and finally became stable after being landfilled for 9 years. Methanosarcina was the dominate taxa. Significant correlations were found between the methanogens and the volatile fatty acids, but the correlations between methanogens and larger molecular organic matters were relatively weak or even absent. Taken together, our study revealed that the amount of methanogens were affected by substrates, but hardly influenced by the conversion of large molecules in these wastes landfilled for more than 2 years. PMID:26717715

  6. Spiral vane bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1991-01-01

    A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.

  7. Flat Pack Toy Design

    ERIC Educational Resources Information Center

    Hutcheson, Brian

    2007-01-01

    In this article, the author introduces the concept of flat pack toys. Flat pack toys are designed using a template on a single sheet of letter-sized card stock paper. Before being cut out and built into a three-dimensional toy, they are scanned into the computer and uploaded to a website. With the template accessible from the website, anyone with…

  8. TLC Pack Unpacked

    ERIC Educational Resources Information Center

    Oberhofer, Margret; Colpaert, Jozef

    2015-01-01

    TLC Pack stands for Teaching Languages to Caregivers and is a course designed to support migrants working or hoping to work in the caregiving sector. The TLC Pack resources range from A2 to B2 level of the Common European Framework of Reference for Languages (CEFR), and will be made available online in the six project languages: Dutch, English,…

  9. Membrane Bioreactor With Pressure Cycle

    NASA Technical Reports Server (NTRS)

    Efthymiou, George S.; Shuler, Michael L.

    1991-01-01

    Improved class of multilayer membrane bioreactors uses convention forced by differences in pressure to overcome some of diffusional limitations of prior bioreactors. In reactor of new class, flow of nutrient solution reduces adverse gradients of concentration, keeps cells supplied with fresh nutrient, and sweeps away products faster than diffusion alone. As result, overall yield and rate of reaction increased. Pressures in sweeping gas and nutrient alternated to force nutrient liquid into and out of biocatalyst layer through hyrophilic membrane.

  10. Bioreactor Mass Transport Studies

    NASA Technical Reports Server (NTRS)

    Kleis, Stanley J.; Begley, Cynthia M.

    1997-01-01

    The objectives of the proposed research efforts were to develop both a simulation tool and a series of experiments to provide a quantitative assessment of mass transport in the NASA rotating wall perfused vessel (RWPV) bioreactor to be flown on EDU#2. This effort consisted of a literature review of bioreactor mass transport studies, the extension of an existing scalar transport computer simulation to include production and utilization of the scalar, and the evaluation of experimental techniques for determining mass transport in these vessels. Since mass transport at the cell surface is determined primarily by the relative motion of the cell assemblage and the surrounding fluid, a detailed assessment of the relative motion was conducted. Results of the simulations of the motion of spheres in the RWPV under microgravity conditions are compared with flight data from EDU#1 flown on STS-70. The mass transport across the cell membrane depends upon the environment, the cell type, and the biological state of the cell. Results from a literature review of cell requirements of several scalars are presented. As a first approximation, a model with a uniform spatial distribution of utilization or production was developed and results from these simulations are presented. There were two candidate processes considered for the experimental mass transport evaluations. The first was to measure the dissolution rate of solid or gel beads. The second was to measure the induced fluorescence of beads as a stimulant (for example hydrogen peroxide) is infused into the vessel. Either technique would use video taped images of the process for recording the quantitative results. Results of preliminary tests of these techniques are discussed.

  11. Influent wastewater microbiota and temperature influence anaerobic membrane bioreactor microbial community.

    PubMed

    Seib, M D; Berg, K J; Zitomer, D H

    2016-09-01

    Sustainable municipal wastewater recovery scenarios highlight benefits of anaerobic membrane bioreactors (AnMBRs). However, influences of continuous seeding by influent wastewater and temperature on attached-growth AnMBRs are not well understood. In this study, four bench-scale AnMBR operated at 10 and 25°C were fed synthetic (SPE) and then real (PE) primary effluent municipal wastewater. Illumina sequencing revealed different bacterial communities in each AnMBR in response to temperature and bioreactor configuration, whereas differences were not observed in archaeal communities. Activity assays revealed hydrogenotrophic methanogenesis was the dominant methanogenic pathway at 10°C. The significant relative abundance of Methanosaeta at 10°C concomitant with low acetoclastic methanogenic activity may indicate possible Methanosaeta-Geobacter direct interspecies electron transfer. When AnMBR feed was changed to PE, continual seeding with wastewater microbiota caused AnMBR microbial communities to shift, becoming more similar to PE microbiota. Therefore, influent wastewater microbiota, temperature and reactor configuration influenced the AnMBR microbial community. PMID:27262719

  12. Microbial Bioreactor Development in the ALS NSCORT

    NASA Astrophysics Data System (ADS)

    Mitchell, Cary; Whitaker, Dawn; Banks, M. Katherine; Heber, Albert J.; Turco, Ronald F.; Nies, Loring F.; Alleman, James E.; Sharvelle, Sybil E.; Li, Congna; Heller, Megan

    and recycling of effluent supernatant were evaluated to maximize degradation and minimize water input. The off-gases proceeded to a bioregenerative air-treatment reactor, and the sludge effluent was investigated for multiple downstream uses including dewatering by reed beds, use as a nutrient supplement for fish or mushroom growth, and as a growth medium and nutrient source for various crops. The Bio-Regenerative Environmental Air Treatment for Health (BREATHe I) reactor treated greywater and off-gases from the thermophilic aerobic digestion reactor which contained elevated levels of ammonia (NH3 ) and hydrogen sulfide (H2 S). BREATHe I development focused initially on removing greywater contaminants with clean air supplied to a biotrickling filter. Limited removal of organic carbon (70%) led to studies indicating that biodegradation metabolites of the surfactant disodium cocoamphodiacetate are recalcitrant. Subsequent studies showed that NH3 loaded at 150 mg/min and H2 S at 0.83 mg/min were removed completely, while removal of carbonaceous compounds from greywater remained constant. A BREATHe II reactor emphasized biofilters and biotrickling filters for removal of ersatz multicomponent gaseous waste streams representative of habitat air and atmospheric condensate. The model waste stream contained a mixture of acetone, n-butanol, methane, ethylene, and ammonia. Both biofilters and biotrickling filters packed with different media were able to achieve complete removal of easily soluble compounds such as acetone, n-butanol, and ammonia within a short startup period, whereas methane was not removed because of its extreme aqueous insolubility. Different packing media and bioreactor configurations were subsequently assessed, as well as the effect of influent ammonia concentration. Research sponsored in part by NASA grant NAG5-12686.

  13. Microbial precipitation of dolomite in methanogenic groundwater

    NASA Astrophysics Data System (ADS)

    Roberts, Jennifer A.; Bennett, Philip C.; González, Luis A.; MacPherson, G. L.; Milliken, Kitty L.

    2004-04-01

    We report low-temperature microbial precipitation of dolomite in dilute natural waters from both field and laboratory experiments. In a freshwater aquifer, microorganisms colonize basalt and nucleate nonstoichiometric dolomite on cell walls. In the laboratory, ordered dolomite formed at near-equilibrium conditions from groundwater with molar Mg:Ca ratios of <1; dolomite was absent in sterile experiments. Geochemical and microbiological data suggest that methanogens are the dominant metabolic guild in this system and are integral to dolomite precipitation. We hypothesize that the attached microbial consortium reacts with the basalt surface, releasing Mg and Ca into solution, which drives dolomite precipitation via nucleation on the cell wall. These findings provide insight into the long-standing dolomite problem and suggest a fundamental role for microbial processes in the formation of dolomite across a wide range of environmental conditions.

  14. Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents

    PubMed Central

    Ver Eecke, Helene C.; Butterfield, David A.; Huber, Julie A.; Lilley, Marvin D.; Olson, Eric J.; Roe, Kevin K.; Evans, Leigh J.; Merkel, Alexandr Y.; Cantin, Holly V.; Holden, James F.

    2012-01-01

    Microbial productivity at hydrothermal vents is among the highest found anywhere in the deep ocean, but constraints on microbial growth and metabolism at vents are lacking. We used a combination of cultivation, molecular, and geochemical tools to verify pure culture H2 threshold measurements for hyperthermophilic methanogenesis in low-temperature hydrothermal fluids from Axial Volcano and Endeavour Segment in the northeastern Pacific Ocean. Two Methanocaldococcus strains from Axial and Methanocaldococcus jannaschii showed similar Monod growth kinetics when grown in a bioreactor at varying H2 concentrations. Their H2 half-saturation value was 66 μM, and growth ceased below 17–23 μM H2, 10-fold lower than previously predicted. By comparison, measured H2 and CH4 concentrations in fluids suggest that there was generally sufficient H2 for Methanocaldococcus growth at Axial but not at Endeavour. Fluids from one vent at Axial (Marker 113) had anomalously high CH4 concentrations and contained various thermal classes of methanogens based on cultivation and mcrA/mrtA analyses. At Endeavour, methanogens were largely undetectable in fluid samples based on cultivation and molecular screens, although abundances of hyperthermophilic heterotrophs were relatively high. Where present, Methanocaldococcus genes were the predominant mcrA/mrtA sequences recovered and comprised ∼0.2–6% of the total archaeal community. Field and coculture data suggest that H2 limitation may be partly ameliorated by H2 syntrophy with hyperthermophilic heterotrophs. These data support our estimated H2 threshold for hyperthermophilic methanogenesis at vents and highlight the need for coupled laboratory and field measurements to constrain microbial distribution and biogeochemical impacts in the deep sea. PMID:22869718

  15. Hydrogen-limited growth of hyperthermophilic methanogens at deep-sea hydrothermal vents.

    PubMed

    Ver Eecke, Helene C; Butterfield, David A; Huber, Julie A; Lilley, Marvin D; Olson, Eric J; Roe, Kevin K; Evans, Leigh J; Merkel, Alexandr Y; Cantin, Holly V; Holden, James F

    2012-08-21

    Microbial productivity at hydrothermal vents is among the highest found anywhere in the deep ocean, but constraints on microbial growth and metabolism at vents are lacking. We used a combination of cultivation, molecular, and geochemical tools to verify pure culture H(2) threshold measurements for hyperthermophilic methanogenesis in low-temperature hydrothermal fluids from Axial Volcano and Endeavour Segment in the northeastern Pacific Ocean. Two Methanocaldococcus strains from Axial and Methanocaldococcus jannaschii showed similar Monod growth kinetics when grown in a bioreactor at varying H(2) concentrations. Their H(2) half-saturation value was 66 μM, and growth ceased below 17-23 μM H(2), 10-fold lower than previously predicted. By comparison, measured H(2) and CH(4) concentrations in fluids suggest that there was generally sufficient H(2) for Methanocaldococcus growth at Axial but not at Endeavour. Fluids from one vent at Axial (Marker 113) had anomalously high CH(4) concentrations and contained various thermal classes of methanogens based on cultivation and mcrA/mrtA analyses. At Endeavour, methanogens were largely undetectable in fluid samples based on cultivation and molecular screens, although abundances of hyperthermophilic heterotrophs were relatively high. Where present, Methanocaldococcus genes were the predominant mcrA/mrtA sequences recovered and comprised ∼0.2-6% of the total archaeal community. Field and coculture data suggest that H(2) limitation may be partly ameliorated by H(2) syntrophy with hyperthermophilic heterotrophs. These data support our estimated H(2) threshold for hyperthermophilic methanogenesis at vents and highlight the need for coupled laboratory and field measurements to constrain microbial distribution and biogeochemical impacts in the deep sea. PMID:22869718

  16. Methanogenic Conversion of CO2 Into CH4

    SciTech Connect

    Stevens, S.H., Ferry, J.G., Schoell, M.

    2012-05-06

    This SBIR project evaluated the potential to remediate geologic CO2 sequestration sites into useful methane gas fields by application of methanogenic bacteria. Such methanogens are present in a wide variety of natural environments, converting CO2 into CH4 under natural conditions. We conclude that the process is generally feasible to apply within many of the proposed CO2 storage reservoir settings. However, extensive further basic R&D still is needed to define the precise species, environments, nutrient growth accelerants, and economics of the methanogenic process. Consequently, the study team does not recommend Phase III commercial application of the technology at this early phase.

  17. Methanogenic Community Dynamics during Anaerobic Utilization of Agricultural Wastes.

    PubMed

    Ziganshin, A M; Ziganshina, E E; Kleinsteuber, S; Pröter, J; Ilinskaya, O N

    2012-10-01

    This work is devoted to the investigation of the methanogenic archaea involved in anaerobic digestion of cattle manure and maize straw on the basis of terminal restriction fragment length polymorphism (T-RFLP) analysis of archaeal 16S rRNA genes. The biological diversity and dynamics of methanogenic communities leading to anaerobic degradation of agricultural organic wastes with biogas production were evaluated in laboratory-scale digesters. T-RFLP analysis, along with the establishment of archaeal 16S rRNA gene clone libraries, showed that the methanogenic consortium consisted mainly of members of the generaMethanosarcinaandMethanoculleus,with a predominance ofMethanosarcinaspp. throughout the experiment. PMID:23346384

  18. The role of hydrogenotrophic methanogens in an acidogenic reactor.

    PubMed

    Huang, Wenhai; Wang, Zhenyu; Zhou, Yan; Ng, Wun Jern

    2015-12-01

    A laboratory-scale acidogenic anaerobic sequencing batch reactor was set up to test the effect of pH change on microbial community structure of the reactor biomass and process performance. No immediate performance change on acidogenesis was observed after the pH change. However, as the hydrogenotrophic methanogen population decreased, hydrogen content in biogas increased followed by a sharp decrease in volatile fatty acids (VFAs) with acetic acid (HAc) in particular. Recovery of reactor performance following pH correction was only apparent after recovery of hydrogenotrophic methanogen population. These suggested hydrogenotrophic methanogens played a very important role in performance of the acidogenic process. PMID:25466820

  19. The potential of Methanogenic Life in the Solar System

    NASA Astrophysics Data System (ADS)

    Taubner, R.-S.; Firneis, M. G.; Leitner, J. J.; Schleper, C.; Rittmann, S. K.-M. R.

    2015-10-01

    Methanogens from the domain Archaea are obligate anaerobic chemolithoautotrophs or chemolithoheterotrophs producing methane (CH4). For the CH4-production they primarily use various C1 typecompounds (like carbon monoxide (CO), carbon dioxide (CO2), formate (HCO- 2)), but some strains are also able to utilize methanol (CH3OH), acetate, or even methylsulfides for energy production. The capability of methanogens thriving under various extreme environments on Earth is astonishing. Their enormous diversity and the similarity between their growth conditions and the environmental conditions on extraterrestrial bodies throughout the Solar System make methanogens to an ideal test object for astrobiological experiments.

  20. Evaluation of different configurations of hybrid membrane bioreactors for treatment of domestic wastewater.

    PubMed

    Cuevas-Rodríguez, G; Cervantes-Avilés, P; Torres-Chávez, I; Bernal-Martínez, A

    2015-01-01

    Four membrane bioreactors (MBRs) with the same dimensions were studied for 180 days: three hybrid growth membrane bioreactors with biofilm attached in different packing media and a conventional MBR (C-MBR). The four MBRs had an identical membrane module of hollow fiber with a nominal porous diameter of 0.4 μm. The MBRs were: (1) a C-MBR; (2) a moving bed membrane bioreactor (MB-MBR), which was packed with 2 L of carrier Kaldnes-K1, presenting an exposed surface area of 678.90 m²/m³; (3) a non-submerged organic fixed bed (OFB-MBR) packed with 6.5 L of organic packing media composed of a mixture of cylindrical pieces of wood, providing an exposed surface area of 178.05 m²/m³; and (4) an inorganic fixed bed non-submerged membrane bioreactor (IFB-MBR) packed with 6 L of spherical volcanic pumice stone with an exposed surface area of 526.80 m²/m³. The four MBRs were fed at low organic loading (0.51 ± 0.19 kgCOD/m³ d). The results were recorded according to the behavior of the total resistance, transmembrane pressure (TMP), permeability, and removal percentages of the nutrients during the experimental time. The results showed that the MB-MBR presented the better performance on membrane filtration, while the higher nutrient removals were detected in the OFB-MBR and IFB-MBR. PMID:25714631

  1. Graphitic packing removal tool

    DOEpatents

    Meyers, K.E.; Kolsun, G.J.

    1997-11-11

    Graphitic packing removal tools for removal of the seal rings in one piece are disclosed. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal. 5 figs.

  2. Graphitic packing removal tool

    DOEpatents

    Meyers, Kurt Edward; Kolsun, George J.

    1997-01-01

    Graphitic packing removal tools for removal of the seal rings in one piece. he packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  3. Graphitic packing removal tool

    SciTech Connect

    Meyers, K.E.; Kolsun, G.J.

    1996-12-31

    Graphitic packing removal tools are described for removal of the seal rings in one piece from valves and pumps. The packing removal tool has a cylindrical base ring the same size as the packing ring with a surface finish, perforations, knurling or threads for adhesion to the seal ring. Elongated leg shanks are mounted axially along the circumferential center. A slit or slits permit insertion around shafts. A removal tool follower stabilizes the upper portion of the legs to allow a spanner wrench to be used for insertion and removal.

  4. A hydrogen-based subsurface microbial community dominated by methanogens

    USGS Publications Warehouse

    Chapelle, F.H.; O'Neill, K.; Bradley, P.M.; Methe, B.A.; Ciufo, S.A.; Knobel, L.L.; Lovley, D.R.

    2002-01-01

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem1-5. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16s ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  5. Production of amylases from rice by solid-state fermentation in a gas-solid spouted-Bed bioreactor

    PubMed

    Silva; Yang

    1998-07-01

    A gas-solid spouted-bed bioreactor was developed to produce amylases from rice in solid-state fermentation by Aspergillus oryzae. The spouted-bed bioreactor was developed to overcome many of the problems inherent to large-scale solid-state fermentation, including mass- and heat-transfer limitations in the conventional tray reactors and solids-handling difficulties seen in packed-bed bioreactors. The solid-state fermentation results from the tray-type reactor with surface aeration were poor because of mass- and heat-transfer problems. A packed-bed bioreactor with continuous aeration through the rice bed produced high protein and enzymes, but the fermented rice was difficult to remove and process due to the formation of large chunks of rice aggregates knitted together with fungal mycelia. Also, the fermentation was not uniform in the packed bed. The spouted-bed bioreactor with intermittent spouting with air achieved high production levels in both total protein and enzymes (alpha-amylase, beta-amylase, and glucoamylase) that were comparable to those found in the packed-bed bioreactor, but without the nonuniformity and solids-handling problems. However, continual spouting was found to be detrimental to this solid-state fermentation, possibly because of shear or impact damage to fungal mycelia during spouting. Increasing spouting frequency from 4-h intervals to 1-h intervals decreased protein and enzyme production. Other operating conditions critical to the fermentation include proper humidification to prevent drying of the substrate and control of reactor wall temperature to prevent excessive condensation, which would interfere with proper spouting. PMID:9694679

  6. A comment on methanogenic bacteria and the primitive ecology

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    1977-01-01

    As the phenotype of methanogenic bacteria is suggested to have been one of the major factors creating a dynamic balance between CO2 and CH4 in the primitive atmosphere, these organisms are thought to be very ancient. Their antiquity may be further postulated by comparative characterization of their ribosomal RNA. Accepting this antiquity, it is concluded that a carbon-dioxide-methane cycle, driven by photosynthesis, was the major carbon cycle in primitive ecology, and that photosynthesis and methanogens were thus contemporaneous.

  7. Nasal packing and stenting

    PubMed Central

    Weber, Rainer K.

    2011-01-01

    Nasal packs are indispensable in ENT practice. This study reviews current indications, effectiveness and risks of nasal packs and stents. In endoscopic surgery, nasal packs should always have smooth surfaces to minimize mucosal damage, improve wound healing and increase patient comfort. Functional endoscopic endonasal sinus surgery allows the use of modern nasal packs, since pressure is no longer required. So called hemostatic/resorbable materials are a first step in this direction. However, they may lead to adhesions and foreign body reactions in mucosal membranes. Simple occlusion is an effective method for creating a moist milieu for improved wound healing and avoiding dryness. Stenting of the frontal sinus is recommended if surgery fails to produce a wide, physiologically shaped drainage path that is sufficiently covered by intact tissue. PMID:22073095

  8. Hydrogenotrophic methanogens dominate in biogas reactors fed with defined substrates.

    PubMed

    Kampmann, K; Ratering, S; Baumann, R; Schmidt, M; Zerr, W; Schnell, S

    2012-09-01

    Methanogenic communities in 200L biogas reactors containing liquid manure were investigated for 33 d. The reactors were consecutively fed with casein, starch and cream. Real-time PCR with primers targeting the gene for methyl coenzyme-M reductase (mcrA) resulted in copy numbers of up to 2.1×10(9) g dry mass(-1). Single strand conformation polymorphism (SSCP) analysis revealed a stable community consisting of few hydrogenotrophic methanogens. One of the two most abundant species was closely related to Methanospirillum hungatei, whereas the other one was only distantly related to other methanogens, with Methanopyrus kandleri being the closest cultivated relative. Most probable number (MPN) cultivations were accomplished with a sample from a 600 m(3) reactor from which all manures used in the experiments originated, and equal cell counts of ca. 10(9) g dry mass(-1) were found for cultivations with acetate, H(2) and methanol. SSCP analysis of these samples and sequencing of the DNA bands identified different hydrogenotrophic methanogens in all samples, and acetoclastic methanogens closely related to Methanosarcina mazei in the samples cultivated with acetate and methanol. As the acetoclastic species were not found in any other SSCP sample, it was supposed that the ammonia values in the manure of the laboratory biogas reactor, which ranged from 2.48 to 3.61 g NH(4)-NL(-1), inhibited the growth of the acetoclastic methanogens. PMID:22918024

  9. Methanogen communities in a municipal landfill complex in China.

    PubMed

    Tang, Wei; Wang, Yangqing; Lei, Yu; Song, Liyan

    2016-05-01

    Landfills are significant global sources of atmospheric methane, but little is known about the ecology and community structure of methanogens in these sites. Here, we investigated the methanogen community based on methyl coenzyme M reductase A gene amplicons in the vertical profiles of three different sites at a municipal landfill complex in China. Links between methanogen communities and refuse properties were explored using multivariate analysis. Clone library results showed that most clones (92%) were related to the hydrogenotrophic methanogens, Methanomicrobiales. Almost all of the Methanomicrobiales clones retrieved in this study are members of the genus Methanoculleus Eight clones were affiliated with the genus Methanofollis The remaining clones were clustered within the genus Methanosarcina Terminal restriction fragment length polymorphism profiles showed that the landfill was predominated by 22 taxa, making up 69%-96% of the community. Of these, a single taxon comprised 36%-65% of the communities across all sites and depths. Principal components analysis separated the methanogen community into three groups, irrespective of site or depth. Redundancy analysis suggested that total phosphorus and pH play roles in structuring methanogen communities in landfills. PMID:27036145

  10. Evidence for para dechlorination of polychlorobiphenyls by methanogenic bacteria

    SciTech Connect

    Ye, D.; Quensen, J.F.; Tiedje, J.M.

    1995-06-01

    When microorganisms eluted from upper Hudson River sediment were cultured without any substrate except polychlorobiphenyl (PCB)-free Hudson River sediment, methane formation was the terminal step of the anaerobic food chain. In sediments containing Aroclor 1242, addition of eubacterium-inhibiting antibiotics, which should have directly inhibited fermentative bacteria and thereby should have indirectly inhibited methanogens, resulted in no dechlorination activity or methane production. However, when substrates for methanogenic bacteria were provided along with the antibiotics (to free the methanogens from dependence on eubacteria), concomitant methane production and dechlorination of PCBs were observed. The dechlorination of Aroclor 1242 was from the para positions, a pattern distinctly different from, and more limited than, the pattern observed with untreated or pasteurized inocula. Both methane production and dechlorination in cultures amended with antibiotics plus methanogenic substrates were inhibited by 2-bromoethanesulfonic acid. These results suggest that the methanogenic bacteria are among the physiological groups capable of anaerobic dechlorination of PCBs, but that the dechlorination observed with methanogenic bacteria is less extensive than the dechlorination observed with more complex anaerobic consortia. 27 refs., 5 figs., 1 tab.

  11. Tiber winding pack design

    SciTech Connect

    Miller, J.R.

    1985-08-19

    A preliminary winding pack design was performed with the goal of showing feasibility of producing 10-T maximum field with a pack current density of 40 A.mm/sup -2/ while accepting 2.7 kW per coil nuclear heating. A cable-in-conduit conductor design (CIC), reported at the 6th Topical Meeting on the Technology of Fusion Energy, was based on several key issues.

  12. Space bioreactor: Design/process flow

    NASA Technical Reports Server (NTRS)

    Cross, John H.

    1987-01-01

    The design of the space bioreactor stems from three considerations. First, and foremost, it must sustain cells in microgravity. Closely related is the ability to take advantage of the weightlessness and microgravity. Lastly, it should fit into a bioprocess. The design of the space bioreactor is described in view of these considerations. A flow chart of the bioreactor is presented and discussed.

  13. Tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Cells from kidneys lose some of their special features in conventional culture but form spheres replete with specialized cell microvilli (hair) and synthesize hormones that may be clinically useful. Ground-based research studies have demonstrated that both normal and neoplastic cells and tissues recreate many of the characteristics in the NASA bioreactor that they display in vivo. Proximal kidney tubule cells that normally have rich apically oriented microvilli with intercellular clefts in the kidney do not form any of these structures in conventional two-dimensional monolayer culture. However, when normal proximal renal tubule cells are cultured in three-dimensions in the bioreactor, both the microvilli and the intercellular clefts form. This is important because, when the morphology is recreated, the function is more likely also to be rejuvenated. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC).

  14. Novel energetic coupling in the methanogenic bacteria

    SciTech Connect

    Carper, S.W.; Rogers, K.R.; Lancaster, J.R. Jr.

    1986-05-01

    The Archaebacteria are a diverse group of organisms which have been proposed to be a third major line of descent, separate and distinct from the prokaryotes and eukaryotes. Among the unique bioenergetic systems in this group are the light-driven ion pumps bacteriorhodopsin and halorhodopsin, present in the halobacteria. The methanogens are a major member of the Archaebacteria, and couple ATP synthesis to electron transfer to generate methane from several simple substrates. The authors report here studies on the basic overall scheme of energetics in these unique organisms, including the following observations: ATP synthesis coupled to electron transfer does not require the obligatory intermediacy of a transmembrane ion gradient, but appears to occur by a direct mechanism. Intracellular ion homeostasis is maintained by a sodium cycle, involving an electrogenic sodium-translocating ATPase. Based on EPR examinations of crude preparations in the presence of physiological electron donors or acceptors, a minimal electron transfer chain is proposed, involving nickel, flavin, and at least three iron-sulfur centers.

  15. Biological hydrogen production using chloroform-treated methanogenic granules.

    PubMed

    Hu, Bo; Chen, Shulin

    2008-03-01

    In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended growth reactor productivity because of the long hydraulic retention time (HRT) required to maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium alginate entrapment have many application limitations in hydrogen fermentation, including limited duration time, bacteria leakage, cost, and so on. The use of chloroform-treated anaerobic granular sludge as immobilized hydrogen-producing bacteria in an immobilized hydrogen culture may be able to overcome the limitations of traditional immobilization methods. This paper reports the findings on the performance of fed-batch cultures and continuous cultures inoculated with chloroform-treated granules. The chloroform-treated granules were able to be reused over four fed-batch cultures, with pH adjustment. The upflow reactor packed with chloroform-treated granules was studied, and the HRT of the upflow reactor was found to be as low as 4 h without any decrease in hydrogen production yield. Initial pH and glucose concentration of the culture medium significantly influenced the performance of the reactor. The optimum initial pH of the culture medium was neutral, and the optimum glucose concentration of the culture medium was below 20 g chemical oxygen demand/L at HRT 4 h. This study also investigated the possibility of integrating immobilized hydrogen fermentation using chloroform-treated granules with immobilized methane production using untreated granular sludge. The results showed that the integrated batch cultures produced 1.01 mol hydrogen and 2 mol methane per mol glucose. Treating the methanogenic granules with chloroform and then using the treated granules as immobilized hydrogen-producing sludge demonstrated advantages over other immobilization methods because the treated granules provide hydrogen-producing bacteria with a protective niche, a long duration of an active

  16. Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Chen, Shulin

    In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended growth reactor productivity because of the long hydraulic retention time (HRT) required to maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium alginate entrapment have many application limitations in hydrogen fermentation, including limited duration time, bacteria leakage, cost, and so on. The use of chloroform-treated anaerobic granular sludge as immobilized hydrogen-producing bacteria in an immobilized hydrogen culture may be able to overcome the limitations of traditional immobilization methods. This paper reports the findings on the performance of fed-batch cultures and continuous cultures inoculated with chloroform-treated granules. The chloroform-treated granules were able to be reused over four fed-batch cultures, with pH adjustment. The upflow reactor packed with chloroform-treated granules was studied, and the HRT of the upflow reactor was found to be as low as 4 h without any decrease in hydrogen production yield. Initial pH and glucose concentration of the culture medium significantly influenced the performance of the reactor. The optimum initial pH of the culture medium was neutral, and the optimum glucose concentration of the culture medium was below 20 g chemical oxygen demand/L at HRT 4 h. This study also investigated the possibility of integrating immobilized hydrogen fermentation using chloroform-treated granules with immobilized methane production using untreated granular sludge. The results showed that the integrated batch cultures produced 1.01 mol hydrogen and 2 mol methane per mol glucose. Treating the methanogenic granules with chloroform and then using the treated granules as immobilized hydrogen-producing sludge demonstrated advantages over other immobilization methods because the treated granules provide hydrogen-producing bacteria with a protective niche, a long duration of an active

  17. Micro-scale H2–CO2 Dynamics in a Hydrogenotrophic Methanogenic Membrane Reactor

    PubMed Central

    Garcia-Robledo, Emilio; Ottosen, Lars D. M.; Voigt, Niels V.; Kofoed, M. W.; Revsbech, Niels P.

    2016-01-01

    Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study the activity and stratification of hydrogen consumption above such a membrane was investigated by use of microsensors for hydrogen and pH. A hydrogenotrophic methanogenic community that was able to consume the hydrogen flux within 0.5 mm of the membrane with specific rates of up to 30 m3 H2 m-3 day-1 developed within 3 days in fresh manure and was already established at time zero when analyzing slurry from a biogas plant. The hydrogen consumption was dependent on a simultaneous carbon dioxide supply and was inhibited when carbon dioxide depletion elevated the pH to 9.2. The activity was only partially restored when the carbon dioxide supply was resumed. Bioreactors supplied with hydrogen gas should thus be carefully monitored and either have the hydrogen supply disrupted or be supplemented with carbon dioxide when the pH rises to values about 9. PMID:27582736

  18. Micro-scale H2-CO2 Dynamics in a Hydrogenotrophic Methanogenic Membrane Reactor.

    PubMed

    Garcia-Robledo, Emilio; Ottosen, Lars D M; Voigt, Niels V; Kofoed, M W; Revsbech, Niels P

    2016-01-01

    Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study the activity and stratification of hydrogen consumption above such a membrane was investigated by use of microsensors for hydrogen and pH. A hydrogenotrophic methanogenic community that was able to consume the hydrogen flux within 0.5 mm of the membrane with specific rates of up to 30 m(3) H2 m(-3) day(-1) developed within 3 days in fresh manure and was already established at time zero when analyzing slurry from a biogas plant. The hydrogen consumption was dependent on a simultaneous carbon dioxide supply and was inhibited when carbon dioxide depletion elevated the pH to 9.2. The activity was only partially restored when the carbon dioxide supply was resumed. Bioreactors supplied with hydrogen gas should thus be carefully monitored and either have the hydrogen supply disrupted or be supplemented with carbon dioxide when the pH rises to values about 9. PMID:27582736

  19. Field Evidence for Magnetite Formation by a Methanogenic Microbial Community

    NASA Astrophysics Data System (ADS)

    Rossbach, S.; Beaver, C. L.; Williams, A.; Atekwana, E. A.; Slater, L. D.; Ntarlagiannis, D.; Lund, A.

    2015-12-01

    The aged, subsurface petroleum spill in Bemidji, Minnesota, has been surveyed with magnetic susceptibility (MS) measurements. High MS values were found in the free-product phase around the fluctuating water table. Although we had hypothesized that high MS values are related to the occurrence of the mineral magnetite resulting from the activity of iron-reducing bacteria, our microbial analysis pointed to the presence of a methanogenic microbial community at the locations and depths of the highest MS values. Here, we report on a more detailed microbial analysis based on high-throughput sequencing of the 16S rRNA gene of sediment samples from four consecutive years. In addition, we provide geochemical data (FeII/FeIII concentrations) to refine our conceptual model of methanogenic hydrocarbon degradation at aged petroleum spills and demonstrate that the microbial induced changes of sediment properties can be monitored with MS. The methanogenic microbial community at the Bemidji site consisted mainly of the syntrophic, hydrocarbon-degrading Smithella and the hydrogenotrophic, methane-generating Methanoregula. There is growing evidence in the literature that not only Bacteria, but also some methanogenic Archaea are able to reduce iron. In fact, a recent study reported that the methanogen Methanosarcina thermophila produced magnetite during the reduction of ferrihydrite in a laboratory experiment when hydrogen was present. Therefore, our finding of high MS values and the presence of magnetite in the methanogenic zone of an aged, subsurface petroleum spill could very well be the first field evidence for magnetite formation during methanogenic hydrocarbon degradation.

  20. Use Alkalinity Monitoring to Optimize Bioreactor Performance.

    PubMed

    Jones, Christopher S; Kult, Keegan J

    2016-05-01

    In recent years, the agricultural community has reduced flow of nitrogen from farmed landscapes to stream networks through the use of woodchip denitrification bioreactors. Although deployment of this practice is becoming more common to treat high-nitrate water from agricultural drainage pipes, information about bioreactor management strategies is sparse. This study focuses on the use of water monitoring, and especially the use of alkalinity monitoring, in five Iowa woodchip bioreactors to provide insights into and to help manage bioreactor chemistry in ways that will produce desirable outcomes. Results reported here for the five bioreactors show average annual nitrate load reductions between 50 and 80%, which is acceptable according to established practice standards. Alkalinity data, however, imply that nitrous oxide formation may have regularly occurred in at least three of the bioreactors that are considered to be closed systems. Nitrous oxide measurements of influent and effluent water provide evidence that alkalinity may be an important indicator of bioreactor performance. Bioreactor chemistry can be managed by manipulation of water throughput in ways that produce adequate nitrate removal while preventing undesirable side effects. We conclude that (i) water should be retained for longer periods of time in bioreactors where nitrous oxide formation is indicated, (ii) measuring only nitrate and sulfate concentrations is insufficient for proper bioreactor operation, and (iii) alkalinity monitoring should be implemented into protocols for bioreactor management. PMID:27136151

  1. Pessimal shapes for packing

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav

    2014-03-01

    The question of which convex shapes leave the most empty space in their densest packing is the subject of Reinhardt's conjecture in two dimensions and Ulam's conjecture in three dimensions. Such conjectures about pessimal packing shapes have proven notoriously difficult to make progress on. I show that the regular heptagon is a local pessimum among all convex shapes, and that the 3D ball is a local pessimum among origin-symmetric shapes. Any shape sufficiently close in the space of shapes to these local pessima can be packed at a greater efficiency than they. In two dimensions and in dimensions above three, the ball is not a local pessimum, so the situation in 3D is unusual and intriguing. I will discuss what conditions conspire to make the 3D ball a local pessimum and whether we can prove that it is also a global pessimum.

  2. The packing of particles

    SciTech Connect

    Cumberland, D.J.; Crawford, R.J.

    1987-01-01

    The wide range of information currently available on the packing of particles is brought together in this monograph. The authors' interest in the subject was initially aroused by the question of whether there is an optimum particle size distribution which would maximise the packing density of particles - a question which has attracted the interest of scientists and engineers for centuries. The densification of a powder mass is of relevance in a great many industries, among them the pharmaceutical, ceramic, powder metallurgy and civil engineering industries. In addition, the packing of regular - or irregular - shaped particles is also of relevance to a surprisingly large number of other industries and subject areas, i.e. the foundry industry, nuclear engineering, chemical engineering, crystallography, geology, biology, telecommunications, and so on. Accordingly, this book is written for a wide audience.

  3. Distribution of compatible solutes in the halophilic methanogenic archaebacteria.

    PubMed Central

    Lai, M C; Sowers, K R; Robertson, D E; Roberts, M F; Gunsalus, R P

    1991-01-01

    Accumulation of compatible solutes, by uptake or de novo synthesis, enables bacteria to reduce the difference between osmotic potentials of the cell cytoplasm and the extracellular environment. To examine this process in the halophilic and halotolerant methanogenic archaebacteria, 14 strains were tested for the accumulation of compatible solutes in response to growth in various extracellular concentrations of NaCl. In external NaCl concentrations of 0.7 to 3.4 M, the halophilic methanogens accumulated K+ ion and low-molecular-weight organic compounds. beta-Glutamate was detected in two halotolerant strains that grew below 1.5 M NaCl. Two unusual beta-amino acids, N epsilon-acetyl-beta-lysine and beta-glutamine (3-aminoglutaramic acid), as well as L-alpha-glutamate were compatible solutes among all of these strains. De novo synthesis of glycine betaine was also detected in several strains of moderately and extremely halophilic methanogens. The zwitterionic compounds (beta-glutamine, N epsilon-acetyl-beta-lysine, and glycine betaine) and potassium were the predominant compatible solutes among the moderately and extremely halophilic methanogens. This is the first report of beta-glutamine as a compatible solute and de novo biosynthesis of glycine betaine in the methanogenic archaebacteria. PMID:1909318

  4. Distribution of compatible solutes in the halophilic methanogenic archaebacteria

    SciTech Connect

    Meichin Lai; Sowers, K.R.; Gunsalus, R.P. ); Robertson, D.E.; Roberts, M.F. )

    1991-09-01

    Accumulation of compatible solutes, by uptake or de novo synthesis, enables bacteria to reduce the difference between osmotic potentials of the cell cytoplasm and the extracellular environment. To examine this process in the halophilic and halotolerant methanogenic archaebacteria, 14 strains were tested for the accumulation of compatible solutes in response to growth in various extracellular concentrations of NaCl. In external NaCl concentrations of 0.7 to 3.4 M, the halophilic methanogens accumulated K{sup +} ion and low-molecular-weight organic compounds. {beta}-Glutamate was detected in two halotolerant strains that grew below 1.5 M NaCl. Two unusual {beta}-amino acids, N{sub {var epsilon}}-acetyl-{beta}-lysine and {beta}-glutamine (3-aminoglutaramic acid), as well as L-{alpha}-glutamate were compatible solutes among all of these strains. De novo synthesis of glycine betaine was also detected in several strains of moderately and extremely halophilic methanogens. The zwitterionic compounds ({beta}-glutamine, N{sub {var epsilon}}-acetyl-{beta}-lysine,a nd glycine betaine) and potassium were the predominant compatible solutes among the moderately and extremely halophilic methanogens. This is the first report of {beta}-glutamine as a compatible solute and de novo biosynthesis of glycine betaine in the methanogenic archaebacteria.

  5. Methanogenic archaea isolated from Taiwan's Chelungpu fault.

    PubMed

    Wu, Sue-Yao; Lai, Mei-Chin

    2011-02-01

    Terrestrial rocks, petroleum reservoirs, faults, coal seams, and subseafloor gas hydrates contain an abundance of diverse methanoarchaea. However, reports on the isolation, purification, and characterization of methanoarchaea in the subsurface environment are rare. Currently, no studies investigating methanoarchaea within fault environments exist. In this report, we succeeded in obtaining two new methanogen isolates, St545Mb(T) of newly proposed species Methanolobus chelungpuianus and Methanobacterium palustre FG694aF, from the Chelungpu fault, which is the fault that caused a devastating earthquake in central Taiwan in 1999. Strain FG694aF was isolated from a fault gouge sample obtained at 694 m below land surface (mbls) and is an autotrophic, mesophilic, nonmotile, thin, filamentous-rod-shaped organism capable of using H(2)-CO(2) and formate as substrates for methanogenesis. The morphological, biochemical, and physiological characteristics and 16S rRNA gene sequence analysis revealed that this isolate belongs to Methanobacterium palustre. The mesophilic strain St545Mb(T), isolated from a sandstone sample at 545 mbls, is a nonmotile, irregular, coccoid organism that uses methanol and trimethylamine as substrates for methanogenesis. The 16S rRNA gene sequence of strain St545Mb(T) was 99.0% similar to that of Methanolobus psychrophilus strain R15 and was 96 to 97.5% similar to the those of other Methanolobus species. However, the optimal growth temperature and total cell protein profile of strain St545Mb(T) were different from those of M. psychrophilus strain R15, and whole-genome DNA-DNA hybridization revealed less than 20% relatedness between these two strains. On the basis of these observations, we propose that strain St545Mb(T) (DSM 19953(T); BCRC AR10030; JCM 15159) be named Methanolobus chelungpuianus sp. nov. Moreover, the environmental DNA database survey indicates that both Methanolobus chelungpuianus and Methanobacterium palustre are widespread in the

  6. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 40 CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppo...

  7. MONITORING GUIDANCE FOR BIOREACTOR LANDFILLS

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  8. DIY Fraction Pack.

    ERIC Educational Resources Information Center

    Graham, Alan; Graham, Louise

    2003-01-01

    Describes a very successful attempt to teach fractions to year 5 pupils based on pupils making their own fraction pack. Children decided for themselves how to make the fractional slices used in the activity using colored cardboard sheets and templates of a paper circle consisting of 24 equal slices. (Author/NB)

  9. Nutrition Action Pack.

    ERIC Educational Resources Information Center

    Sockut, Joanne; Stumpe, Stephanie

    One of five McDonald's Action Packs, these instructional materials integrate elementary school-level nutrition education into other disciplines--biology, sociology, physiology, mathematics, and art. Contents include four units consisting of twelve activities. Unit 1, Why You Need Food, is a self-examination of what is needed for growth, health,…

  10. AUTOmatic Message PACKing Facility

    Energy Science and Technology Software Center (ESTSC)

    2004-07-01

    AUTOPACK is a library that provides several useful features for programs using the Message Passing Interface (MPI). Features included are: 1. automatic message packing facility 2. management of send and receive requests. 3. management of message buffer memory. 4. determination of the number of anticipated messages from a set of arbitrary sends, and 5. deterministic message delivery for testing purposes.

  11. Packing Them In.

    ERIC Educational Resources Information Center

    Carter, Claudia

    1997-01-01

    This activity involves students investigating the mathematics of packaging and exploring various concepts in geometry, including area and the Pythagorean theorem. Mathematics comes out of the discussion of packaging cans into six-packs and focuses on the cost-effectiveness of the horizontal storage area used. Students learn how knowledge of…

  12. Sun Packs Double Punch

    NASA Video Gallery

    On August 3, the sun packed a double punch, emitting a M6.0-class flare at 9:43 am EDT. This video is of the second, slightly stronger M9.3-class flare at 11:41 pm EDT. Both flares had significant ...

  13. Economics Action Pack.

    ERIC Educational Resources Information Center

    McDonald's Corp., Oak Brook, IL.

    One of five McDonald's Action Packs, this learning package introduces intermediate grade students to basic economic concepts. The fourteen activities include the topics of consumption (4 activities), production (5), the market system (3), a pretest, and a posttest. Specific titles under consumption include The Wonderful Treasure Tree (introduction…

  14. Growth of Methanogens on a Mars Soil Simulant

    NASA Astrophysics Data System (ADS)

    Kral, Timothy A.; Bekkum, Curtis R.; McKay, Christopher P.

    2004-12-01

    Currently, the surface of Mars is probably too cold, too dry, and too oxidizing for life, as we know it, to exist. But the subsurface is another matter. Life forms that might exist below the surface could not obtain their energy from photosynthesis, but rather they would have to utilize chemical energy. Methanogens are one type of microorganism that might be able to survive below the surface of Mars. A potential habitat for existence of methanogens on Mars might be a geothermal source of hydrogen, possibly due to volcanic or hydrothermal activity, or the reaction of basalt and anaerobic water, carbon dioxide, which is abundant in the martian atmosphere, and of course, subsurface liquid water. We report here that certain methanogens can grow on a Mars soil simulant when supplied with carbon dioxide, molecular hydrogen, and varying amounts of water.

  15. Syntrophic Degradation of Lactate in Methanogenic Co-cultures

    SciTech Connect

    Meyer, Birte; Stahl, David

    2010-05-17

    In environments where the amount of the inorganic electron acceptors (oxygen, nitrate, sulfate, sulfur oroxidized metal ions (Fe3+;Mn4+) is insufficient for complete breakdown of organic matter, methane is formed as the major reduced end product. In such methanogenic environments organic acids are degraded by syntrophic associations of fermenting, acetogenic bacteria (e.g., sulfate-reducing bacteria (SRB) as"secondary fermenters") and methanogenic archaea. In these consortia, the conversion of lactate to acetate, CO2 and methane depends on the cooperating activities of both metabolically distinct microbial groups that are tightly linked by the need to maintain the exchanged metabolites (hydrogenandformate) at very low concentrations.

  16. An ancient divergence among the bacteria. [methanogenic phylogeny

    NASA Technical Reports Server (NTRS)

    Balch, W. E.; Magrum, L. J.; Fox, G. E.; Wolfe, R. S.; Woese, C. R.

    1977-01-01

    The 16S ribosomal RNZs from two species of met methanogenic bacteria, the mesophile Methanobacterium ruminantium and the thermophile Methanobacterium thermoautotrophicum, have been characterized in terms of the oligonucleotides produced by digestion with T1 ribonuclease. These two organisms are found to be sufficiently related that they can be considered members of the same genus or family. However, they bear only slight resemblance to 'typical' Procaryotic genera; such as Escherichia, Bacillus and Anacystis. The divergence of the methanogenic bacteria from other bacteria may be the most ancient phylogenetic event yet detected - antedating considerably the divergence of the blue green algal line for example, from the main bacterial line.

  17. Molecular Signatures of Methanogens in Cultures and Environmental Samples

    NASA Astrophysics Data System (ADS)

    Summons, R. E.; Embaye, T.; Jahnke, L. L.; Baumgartner, M.

    2002-12-01

    The core lipids of methanogens comprise C20 and C40 isoprenoid chains, linked through ether bonds to glycerol. Additional structural diversity is encoded into the polar head groups that are attached to the glycerol ether cores. These compounds are potentially very useful as taxonomic markers in microbial mats and other environmental samples while the nature of the hydrocarbon chains provide a means to identify methanogenic inputs to ancient sediments. The structural diversity of methanogen polar lipids is most valuable when it can be directly correlated to 16S rRNA phylogeny. On the other hand, this diversity can also leads to analytical challenges because there is no single approach that works for all structural types. While some intact methanogen lipids have been identified using mass spectrometry and NMR spectroscopy, the most common means of analysing the lipid cores involves cleavage of the ether bonds using HI and subsequent reduction of the alkyl iodides to hydrocarbons with LiAlH4. One class of methanogenic lipids, the 3?-hydroxyarchaeols, escaped detection for some years because strong acid treatments in the analysis protocols destroyed hydroxyl-containing isoprenoid chains. We have been systematically re-examining the lipids of methanogens, using milder procedures involving weak acid hydrolysis of polar head groups, derivatisation to form trimethylsilyl ethers and analysis by GC-MS. As well as archaeol, sn-2- and sn-3-hydroxyarchaeol, we have tentatively identified a dihydroxyarchaeol in several Methanococcus sp. For Methanococcus thermolithotrophicus an analysis of the total lipid extracts using BBr3 as an ether cleavage reagent followed by LiBEt3H, reduction revealed a very complex mixture consisting of phytane, phytenes, biphytane, biphytenes and a suite of related alcohols. The latter compounds were analysed by GC-MS as their trimethylsilyl ethers and found to comprise a mixture tentatively identified as phytan-N-ol and biphytan-N-ol where N= 3 or 7

  18. Enzymatic lysis of the pseudomurein-containing methanogen Methanobacterium formicicum.

    PubMed Central

    Bush, J W

    1985-01-01

    A streptomycete isolated from cow manure produces an extracellular enzyme capable of lysing the pseudomurein-containing methanogen Methanobacterium formicicum. The lytic activity has been partially purified from culture fluid and appears to be a serine protease. Similar lytic activity has been fractionated from pronase. Optimal conditions have been developed for lysis of M. formicicum by commercial preparations of proteinase K. The three lytic enzymes have been partially characterized. The results with the three enzyme preparations tend to confirm that proteolytic enzymes are capable of lysing methanogen cells. Images PMID:3891731

  19. PRACTICE REVIEW OF FIVE BIOREACTOR/RECIRCULATION LANDFILLS

    EPA Science Inventory

    Six bioreactor landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor landfills from conventional landfills. Five of the bioreactor landfills were anaerobic and one was aerated. In one case, nearly identical cells e...

  20. Snapshot of methanogen sensitivity to temperature in Zoige wetland from Tibetan plateau

    PubMed Central

    Fu, Li; Song, Tianze; Lu, Yahai

    2015-01-01

    Zoige wetland in Tibetan plateau represents a cold environment at high altitude where significant methane emission has been observed. However, it remains unknown how the production and emission of CH4 from Zoige wetland will respond to a warming climate. Here we investigated the temperature sensitivity of methanogen community in a Zoige wetland soil under the laboratory incubation conditions. One soil sample was collected and the temperature sensitivity of the methanogenic activity, the structure of methanogen community and the methanogenic pathways were determined. We found that the response of methanogenesis to temperature could be separated into two phases, a high sensitivity in the low temperature range and a modest sensitivity under mesophilic conditions, respectively. The aceticlastic methanogens Methanosarcinaceae were the main methanogens at low temperatures, while hydrogenotrophic Methanobacteriales, Methanomicrobiales, and Methanocellales were more abundant at higher temperatures. The total abundance of mcrA genes increased with temperature indicating that the growth of methanogens was stimulated. The growth of hydrogenotrophic methanogens, however, was faster than aceticlastic ones resulting in the shift of methanogen community. Determination of carbon isotopic signatures indicated that methanogenic pathway was also shifted from mainly aceticlastic methanogenesis to a mixture of hydrogenotrophic and aceticlastic methanogenesis with the increase of temperature. Collectively, the shift of temperature responses of methanogenesis was in accordance with the changes in methanogen composition and methanogenic pathway in this wetland sample. It appears that the aceticlastic methanogenesis dominating at low temperatures is more sensitive than the hydrogenotrophic one at higher temperatures. PMID:25745422

  1. Conversion of Cn-Unsaturated into Cn-2-Saturated LCFA Can Occur Uncoupled from Methanogenesis in Anaerobic Bioreactors.

    PubMed

    Cavaleiro, Ana J; Pereira, Maria Alcina; Guedes, Ana P; Stams, Alfons J M; Alves, M Madalena; Sousa, Diana Z

    2016-03-15

    Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA. PMID:26810160

  2. Effect of packing method on the randomness of disc packings

    NASA Astrophysics Data System (ADS)

    Zhang, Z. P.; Yu, A. B.; Oakeshott, R. B. S.

    1996-06-01

    The randomness of disc packings, generated by random sequential adsorption (RSA), random packing under gravity (RPG) and Mason packing (MP) which gives a packing density close to that of the RSA packing, has been analysed, based on the Delaunay tessellation, and is evaluated at two levels, i.e. the randomness at individual subunit level which relates to the construction of a triangle from a given edge length distribution and the randomness at network level which relates to the connection between triangles from a given triangle frequency distribution. The Delaunay tessellation itself is also analysed and its almost perfect randomness at the two levels is demonstrated, which verifies the proposed approach and provides a random reference system for the present analysis. It is found that (i) the construction of a triangle subunit is not random for the RSA, MP and RPG packings, with the degree of randomness decreasing from the RSA to MP and then to RPG packing; (ii) the connection of triangular subunits in the network is almost perfectly random for the RSA packing, acceptable for the MP packing and not good for the RPG packing. Packing method is an important factor governing the randomness of disc packings.

  3. Review of nonconventional bioreactor technology

    SciTech Connect

    Turick, C.E.; Mcllwain, M.E.

    1993-09-01

    Biotechnology will significantly affect many industrial sectors in the future. Industrial sectors that will be affected include pharmaceutical, chemical, fuel, agricultural, and environmental remediation. Future research is needed to improve bioprocessing efficiency and cost-effectiveness in order to compete with traditional technologies. This report describes recent advances in bioprocess technologies and bioreactor designs and relates them to problems encountered in many industrial bioprocessing operations. The primary focus is directed towards increasing gas and vapor transfer for enhanced bioprocess kinetics as well as unproved by-product separation and removal. The advantages and disadvantages of various conceptual designs such as hollow-fiber, gas-phase, hyperbaric/hypobaric, and electrochemical bioreactors are also discussed. Specific applications that are intended for improved bioprocesses include coal desulfurization, coal liquefaction, soil bioremediation, biomass conversion to marketable chemicals, biomining, and biohydrometallurgy as well as bioprocessing of gases and vapors.

  4. Monolithic Continuous-Flow Bioreactors

    NASA Technical Reports Server (NTRS)

    Stephanopoulos, Gregory; Kornfield, Julia A.; Voecks, Gerald A.

    1993-01-01

    Monolithic ceramic matrices containing many small flow passages useful as continuous-flow bioreactors. Ceramic matrix containing passages made by extruding and firing suitable ceramic. Pores in matrix provide attachment medium for film of cells and allow free movement of solution. Material one not toxic to micro-organisms grown in reactor. In reactor, liquid nutrients flow over, and liquid reaction products flow from, cell culture immobilized in one set of channels while oxygen flows to, and gaseous reaction products flow from, culture in adjacent set of passages. Cells live on inner surfaces containing flowing nutrient and in pores of walls of passages. Ready access to nutrients and oxygen in channels. They generate continuous high yield characteristic of immobilized cells, without large expenditure of energy otherwise incurred if necessary to pump nutrient solution through dense biomass as in bioreactors of other types.

  5. Prostate tumor grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This prostate cancer construct was grown during NASA-sponsored bioreactor studies on Earth. Cells are attached to a biodegradable plastic lattice that gives them a head start in growth. Prostate tumor cells are to be grown in a NASA-sponsored Bioreactor experiment aboard the STS-107 Research-1 mission in 2002. Dr. Leland Chung of the University of Virginia is the principal investigator. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Credit: NASA and the University of Virginia.

  6. Kinetics of anaerobic digestion of soft drink wastewater in immobilized cell bioreactors.

    PubMed

    Borja, R; Banks, C J

    1994-07-01

    A kinetic study of the anaerobic digestion of soft drink wastewater was undertaken, using bioreactors containing various suspended supports (bentonite, zeolite, sepiolite, saponite and polyurethane foam), on to which the microorganisms effecting the purification were immobilized. Assuming the overall anaerobic digestion process conforms to first-order kinetics, the specific rate constants, K0, derived from the reactors with saponite and sepiolite (magnesium silicates) were approximately twice those from bentonite and zeolite (aluminium silicates) and almost five times higher than in the control reactor (without support); the polyurethane support showed an intermediate behaviour. The methanogenic activity increased linearly with COD load, with saponite and sepiolite supports showing the highest values. The average yield coefficient of methane was 325 cm3 CH4 STP g-1 COD and the percentage elimination of COD was 77.8%; these values were not significantly altered by the type of support used. PMID:7764995

  7. Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor.

    PubMed

    Chaikasem, Supawat; Abeynayaka, Amila; Visvanathan, Chettiyappan

    2014-09-01

    This work studied the effect of polyvinyl alcohol hydrogel (PVA-gel) beads, as an effective biocarrier for volatile fatty acid (VFA) production in hydrolytic reactor of a two-stage thermophilic anaerobic membrane bioreactor (TAnMBR). The two-stage TAnMBR, treating synthetic high strength particulate wastewater with influent chemical oxygen demand (COD) [16.4±0.8 g/L], was operated at 55 °C. Under steady state conditions, the reactor was operated at an organic loading rate of 8.2±0.4 kg COD/m(3) d. Operational performance of the system was monitored by assessing VFA composition and quantity, methane production and COD removal efficiency. Increment of VFA production was observed with PVA-gel addition. Hydrolytic effluent contained large amount of acetic acid and n-butyric acid. However, increase in VFA production adversely affected the methanogenic reactor performance due to lack of methanogenic archaea. PMID:24803272

  8. NATURAL ATTENUATION OF MTBE IN THE SUBSURFACE UNDER METHANOGENIC CONDITIONS

    EPA Science Inventory

    This case study was conducted at the former Fuel Farm Site at the U.S.Coast Guard Support Center at Elizabeth City, North Carolina. The study is intended to answer the following questions. Can MTBE be biodegraded under methanogenic conditions in ground water that was contaminated...

  9. Dynamics of the Methanogenic Archaea in Tropical Estuarine Sediments

    PubMed Central

    Torres-Alvarado, María del Rocío; Fernández, Francisco José; Ramírez Vives, Florina; Varona-Cordero, Francisco

    2013-01-01

    Methanogenesis may represent a key process in the terminal phases of anaerobic organic matter mineralization in sediments of coastal lagoons. The aim of the present work was to study the temporal and spatial dynamics of methanogenic archaea in sediments of tropical coastal lagoons and their relationship with environmental changes in order to determine how these influence methanogenic community. Sediment samples were collected during the dry (February, May, and early June) and rainy seasons (July, October, and November). Microbiological analysis included the quantification of viable methanogenic archaea (MA) with three substrates and the evaluation of kinetic activity from acetate in the presence and absence of sulfate. The environmental variables assessed were temperature, pH, Eh, salinity, sulfate, solids content, organic carbon, and carbohydrates. MA abundance was significantly higher in the rainy season (106–107 cells/g) compared with the dry season (104–106 cells/g), with methanol as an important substrate. At spatial level, MA were detected in the two layers analyzed, and no important variations were observed either in MA abundance or activity. Salinity, sulfate, solids, organic carbon, and Eh were the environmental variables related to methanogenic community. A conceptual model is proposed to explain the dynamics of the MA. PMID:23401664

  10. Methane as a product of chloroethene biodegradation under methanogenic conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1999-01-01

    Radiometric detection headspace analyses of microcosms containing bed sediments from two geographically distinct sites indicated that 10-39% of the radiolabeled carbon transformed during anaerobic biodegradation of [1,2- 14C]trichloroethene (TCE) or [1,2-14C]vinyl chloride (VC) under methanogenic conditions was ultimately incorporated into 14CH4. The results demonstrate that, in addition to ethene, ethane, and CO2, CH4 can be a significant product of chloroethene biodegradation in some methanogenic sediments.Radiometric detection headspace analyses of microcosms containing bed sediments from two geographically distinct sites indicated that 10-39% of the radiolabeled carbon transformed during anaerobic biodegradation of [1,2-14C]trichloroethene (TCE) or [1,2-14C]vinyl chloride (VC) under methanogenic conditions was ultimately incorporated into 14CH4. The results demonstrate that, in addition to ethene, ethane, and CO2, CH4 can be a significant product of chloroethene biodegradation in some methanogenic sediments.

  11. Survival of methanogens during desiccation: implications for life on Mars.

    PubMed

    Kendrick, Michael G; Kral, Timothy A

    2006-08-01

    The relatively recent discoveries that liquid water likely existed on the surface of past Mars and that methane currently exists in the martian atmosphere have fueled the possibility of extant or extinct life on Mars. One possible explanation for the existence of the methane would be the presence of methanogens in the subsurface. Methanogens are microorganisms in the domain Archaea that can metabolize molecular hydrogen as an energy source and carbon dioxide as a carbon source and produce methane. One factor of importance is the arid nature of Mars, at least at the surface. If one is to assume that life exists below the surface, then based on the only example of life that we know, liquid water must be present. Realistically, however, that liquid water may be seasonal just as it is at some locations on our home planet. Here we report on research designed to determine how long certain species of methanogens can survive desiccation on a Mars soil simulant, JSC Mars-1. Methanogenic cells were grown on JSC Mars-1, transferred to a desiccator within a Coy anaerobic environmental chamber, and maintained there for varying time periods. Following removal from the desiccator and rehydration, gas chromatographic measurements of methane indicated survival for varying time periods. Methanosarcina barkeri survived desiccation for 10 days, while Methanobacterium formicicum and Methanothermobacter wolfeii were able to survive for 25 days. PMID:16916281

  12. Survival of Methanogens During Desiccation: Implications for Life on Mars

    NASA Astrophysics Data System (ADS)

    Kendrick, Michael G.; Kral, Timothy A.

    2006-08-01

    The relatively recent discoveries that liquid water likely existed on the surface of past Mars and that methane currently exists in the martian atmosphere have fueled the possibility of extant or extinct life on Mars. One possible explanation for the existence of the methane would be the presence of methanogens in the subsurface. Methanogens are microorganisms in the domain Archaea that can metabolize molecular hydrogen as an energy source and carbon dioxide as a carbon source and produce methane. One factor of importance is the arid nature of Mars, at least at the surface. If one is to assume that life exists below the surface, then based on the only example of life that we know, liquid water must be present. Realistically, however, that liquid water may be seasonal just as it is at some locations on our home planet. Here we report on research designed to determine how long certain species of methanogens can survive desiccation on a Mars soil simulant, JSC Mars-1. Methanogenic cells were grown on JSC Mars-1, transferred to a desiccator within a Coy anaerobic environmental chamber, and maintained there for varying time periods. Following removal from the desiccator and rehydration, gas chromatographic measurements of methane indicated survival for varying time periods. Methanosarcina barkeri survived desiccation for 10 days, while Methanobacterium formicicum and Methanothermobacter wolfeii were able to survive for 25 days.

  13. Metabolism of 3-methylindole by a methanogenic consortium

    SciTech Connect

    Jidong Gu; Berry, D.F. )

    1992-08-01

    A methanogenic 3-methylindole (3-MI)-degrading consortium, enriched from wetland soil, completely mineralized 3-MI. Degradation proceeded through an initial hydroxylation reaction forming 3-methyloxindole. The consortium was unable to degrade oxindole or isatin, suggesting a new pathway for 3-MI fermentation. 3-Methylindole was identified by mass spectroscopy, ultraviolet spectroscopy, and proton nuclear magnetic resonance spectrometry.

  14. Relating methanogen community structure and anaerobic digester function.

    PubMed

    Bocher, B T W; Cherukuri, K; Maki, J S; Johnson, M; Zitomer, D H

    2015-03-01

    Much remains unknown about the relationships between microbial community structure and anaerobic digester function. However, knowledge of links between community structure and function, such as specific methanogenic activity (SMA) and COD removal rate, are valuable to improve anaerobic bioprocesses. In this work, quantitative structure-activity relationships (QSARs) were developed using multiple linear regression (MLR) to predict SMA using methanogen community structure descriptors for 49 cultures. Community descriptors were DGGE demeaned standardized band intensities for amplicons of a methanogen functional gene (mcrA). First, predictive accuracy of MLR QSARs was assessed using cross validation with training (n = 30) and test sets (n = 19) for glucose and propionate SMA data. MLR equations correlating band intensities and SMA demonstrated good predictability for glucose (q(2) = 0.54) and propionate (q(2) = 0.53). Subsequently, data from all 49 cultures were used to develop QSARs to predict SMA values. Higher intensities of two bands were correlated with higher SMA values; high abundance of methanogens associated with these two bands should be encouraged to attain high SMA values. QSARs are helpful tools to identify key microorganisms or to study and improve many bioprocesses. Development of new, more robust QSARs is encouraged for anaerobic digestion or other bioprocesses, including nitrification, nitritation, denitrification, anaerobic ammonium oxidation, and enhanced biological phosphorus removal. PMID:25562581

  15. Impact of dewatering technologies on specific methanogenic activity.

    PubMed

    Batstone, Damien J; Lu, Yang; Jensen, Paul D

    2015-10-01

    Dewatering methods for recuperative thickening and final dewatering can potentially impact methanogenic activity and microbial community. This influences both the feasibility of recuperative thickening to increase solids residence time within a digester, and the utilisation of dewatered digestate as inoculum for new digesters. Thickening technology can reduce methanogenic activity through either air contact (rotary drum, DAF, or belt filter press), or by lysing cells through shear (centrifuge). To assess this, two plants with recuperative thickening (rotary drum) in their anaerobic digester, and five without recuperative thickening, had specific methanogenic activity tested in all related streams, including dewatering feed, thickened return, final cake, and centrate. All plants had high speed centrifuges for final dewatering. The digester microbial community was also assessed through 16s pyrotag sequencing and subsequent principal component analysis (PCA). The specific methanogenic activity of all samples was in the expected range of 0.2-0.4 gCOD gVS(-1)d(-1). Plants with recuperative thickening did not have lower digester activity. Centrifuge based dewatering had a significant and variable impact on methanogenic activity in all samples, ranging between 20% and 90% decrease but averaging 54%. Rotary drum based recuperative thickening had a far smaller impact on activity, with a 0% per-pass drop in activity in one plant, and a 20% drop in another. However, the presence of recuperative thickening was a major predictor of overall microbial community (PC1, p = 0.0024). Microbial community PC3 (mainly driven by a shift in methanogens) was a strong predictor for sensitivity in activity to shear (p = 0.0005, p = 0.00001 without outlier). The one outlier was related to a plant producing the wettest cake (17% solids). This indicates that high solids is a potential driver of sensitivity to shear, but that a resilient microbial community can also bestow resilience

  16. Anaerobic degradation of phthalate isomers by methanogenic consortia

    SciTech Connect

    Kleerebezem, R.; Pol, L.W.H.; Lettinga, G.

    1999-03-01

    Three methanogenic enrichment cultures, grown on ortho-phthalate, iso-phthalate, or terephthalate were obtained from digested sewage sludge or methanogenic granular sludge. Cultures grown on one of the phthalate isomers were not capable of degrading the other phthalate isomers. All three cultures had the ability to degrade benzoate. Maximum specific growth rates ({mu}{sub S}{sup max}) and biomass yields (Y{sub X{sub tot}S}) of the mixed cultures were determined by using both the phthalate isomers and benzoate as substrates. Comparable values for these parameters were found for all three cultures. Values for {mu}{sub X}{sup max} and Y{sub X{sub tot}S} were higher for growth on benzoate compared to the phthalate isomers. Based on measured and estimated values for the microbial yield of the methanogens in the mixed culture, specific yields for the phthalate and benzoate fermenting organisms were calculated. A kinetic model, involving three microbial species, was developed to predict intermediate acetate and hydrogen accumulation and the final production of methane. Values for the ratio of the concentrations of methanogenic organisms, versus the phthalate isomer and benzoate fermenting organisms, and apparent half-saturation constants (K{sub S}) for the methanogens were calculated. By using this combination of measured and estimated parameter values, a reasonable description of intermediate accumulation and methane formation was obtained, with the initial concentration of phthalate fermenting organisms being the only variable. The energetic efficiency for growth of the fermenting organisms on the phthalate isomers was calculated to be significantly smaller than for growth on benzoate.

  17. Ruminal Methanogen Community in Dairy Cows Fed Agricultural Residues of Corn Stover, Rapeseed, and Cottonseed Meals.

    PubMed

    Wang, Pengpeng; Zhao, Shengguo; Wang, Xingwen; Zhang, Yangdong; Zheng, Nan; Wang, Jiaqi

    2016-07-13

    The purpose was to reveal changes in the methanogen community in the rumen of dairy cows fed agricultural residues of corn stover, rapeseed, and cottonseed meals, compared with alfalfa hay or soybean meal. Analysis was based on cloning and sequencing the methyl coenzyme M reductase α-subunit gene of ruminal methanogens. Results revealed that predicted methane production was increased while population of ruminal methanogens was not significantly affected when cows were fed diets containing various amounts of agricultural residues. Richness and diversity of methanogen community were markedly increased by addition of agricultural residues. The dominant ruminal methanogens shared by all experimental groups belonged to rumen cluster C, accounting for 71% of total, followed by the order Methanobacteriales (29%). Alterations of ruminal methanogen community and prevalence of particular species occurred in response to fed agricultural residue rations, suggesting the possibility of regulating target methanogens to control methane production by dairy cows fed agricultural residues. PMID:27322573

  18. Complete genome sequence of Methanolinea tarda NOBI-1T, a hydrogenotrophic methanogen isolated from methanogenic digester sludge

    DOE PAGESBeta

    Yamamoto, Kyosuke; Tamaki, Hideyuki; Cadillo-Quiroz, Hinsby; Imachi, Hiroyuki; Kyrpides, Nikos; Woyke, Tanja; Goodwin, Lynne; Zinder, Stephen H.; Kamagata, Yoichi; Liu, Wen -Tso

    2014-09-04

    In this study, we report a 2.0-Mb complete genome sequence of Methanolinea tarda NOBI-1T, a methanogenic archaeon isolated from an anaerobic digested sludge. This is the first genome report of the genus Methanolinea isolate belonging to the family Methanoregulaceae, a recently proposed novel family within the order Methanomicrobiales.

  19. Removal of ammonia from contaminated air in a biotrickling filter - denitrifying bioreactor combination system.

    PubMed

    Sakuma, Takeyuki; Jinsiriwanit, Siriwat; Hattori, Toshihiro; Deshusses, Marc A

    2008-11-01

    The removal of gaseous ammonia in a system consisting of a biotrickling filter, a denitrification reactor and a polishing bioreactor for the trickling liquid was investigated. The system allowed sustained treatment of ammonia while preventing biological inhibition by accumulating nitrate and nitrite and avoiding generation of contaminated water. All bioreactors were packed with cattle bone composite ceramics, a porous support with a large interfacial area. Excellent removal of ammonia gas was obtained. The critical loading ranged from 60 to 120 gm(-3)h(-1) depending on the conditions, and loadings below 56 gm(-3)h(-1) resulted in essentially complete removal of ammonia. In addition, concentrations of ammonia, nitrite, nitrate and COD in the recycle liquid of the inlet and outlet of each reactor were measured to determine the fate of nitrogen in the reactor, close nitrogen balances and calculate nitrogen to COD ratios. Ammonia absorption and nitrification occurred in the biotrickling filter; nitrate and nitrite were biologically removed in the denitrification reactor and excess dissolved COD and ammonia were treated in the polishing bioreactor. Overall, ammonia gas was very successfully removed in the bioreactor system and steady state operation with respect to nitrogen species was achieved. PMID:18823641

  20. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment.

    PubMed

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-09-01

    Membrane biofilm development was evaluated to improve psychrophilic (15°C) anaerobic membrane bioreactor (AnMBR) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit. High membrane fouling significantly improved permeate quality, but resulted in dissolved methane in the permeate at a concentration two to three times the equilibrium concentration predicted by Henry's law. Illumina sequencing of 16S rRNA targeting Bacteria and Archaea and reverse transcription-quantitative polymerase chain reaction targeting the methyl coenzyme-M reductase (mcrA) gene in methanogens indicated that the membrane biofilm was enriched in highly active methanogens and syntrophic bacteria. Restoring fouled membranes to a transmembrane pressure (TMP) near zero by increasing biogas sparging did not disrupt the biofilm's treatment performance, suggesting that microbes in the foulant layer were tightly adhered and did not significantly contribute to TMP. Dissolved methane oversaturation persisted without high TMP, implying that methanogenesis in the biofilm, rather than high TMP, was the primary driving force in methane oversaturation. The results describe an attractive operational strategy to improve treatment performance in low-temperature AnMBR by supporting syntrophy and methanogenesis in the membrane biofilm through controlled membrane fouling. PMID:26238293

  1. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment

    PubMed Central

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-01-01

    Membrane biofilm development was evaluated to improve psychrophilic (15°C) anaerobic membrane bioreactor (AnMBR) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit. High membrane fouling significantly improved permeate quality, but resulted in dissolved methane in the permeate at a concentration two to three times the equilibrium concentration predicted by Henry’s law. Illumina sequencing of 16S rRNA targeting Bacteria and Archaea and reverse transcription-quantitative polymerase chain reaction targeting the methyl coenzyme-M reductase (mcrA) gene in methanogens indicated that the membrane biofilm was enriched in highly active methanogens and syntrophic bacteria. Restoring fouled membranes to a transmembrane pressure (TMP) near zero by increasing biogas sparging did not disrupt the biofilm’s treatment performance, suggesting that microbes in the foulant layer were tightly adhered and did not significantly contribute to TMP. Dissolved methane oversaturation persisted without high TMP, implying that methanogenesis in the biofilm, rather than high TMP, was the primary driving force in methane oversaturation. The results describe an attractive operational strategy to improve treatment performance in low-temperature AnMBR by supporting syntrophy and methanogenesis in the membrane biofilm through controlled membrane fouling. PMID:26238293

  2. Oxygen supply for CHO cells immobilized on a packed-bed of Fibra-Cel disks.

    PubMed

    Meuwly, F; Loviat, F; Ruffieux, P-A; Bernard, A R; Kadouri, A; von Stockar, U

    2006-03-01

    Packed-bed bioreactors (PBR) have proven to be efficient systems to culture mammalian cells at very high cell density in perfusion mode, thus leading to very high volumetric productivity. However, the immobilized cells must be continuously supplied with all nutrients in sufficient quantities to remain viable and productive over the full duration of the perfusion culture. Among all nutrients, oxygen is the most critical since it is present at very low concentration due to its low solubility in cell culture medium. This work presents the development of a model for oxygenation in a packed-bed bioreactor system. The experimental system used to develop the model was a packed-bed of Fibra-Cel disk carriers used to cultivate Chinese Hamster Ovary cells at high density ( approximately 6.1 x 10(7) cell/mL) in perfusion mode. With the help of this model, it was possible to identify if a PBR system is operated in optimal or sub-optimal conditions. Using the model, two options were proposed, which could improve the performance of the basal system by about twofold, that is, by increasing the density of immobilized cells per carrier volume from 6.1 x 10(7) to 1.2 x 10(8) cell/mL, or by increasing the packed-bed height from 0.2 to 0.4 m. Both strategies would be rather simple to test and implement in the packed-bed bioreactor system used for this study. As a result, it would be possible to achieve a substantial improvement of about twofold higher productivity as compared with the basal conditions. PMID:16358288

  3. BIOREACTOR DESIGN - OUTER LOOP LANDFILL, LOUISVILLE, KY

    EPA Science Inventory

    Bioreactor field demonstration projects are underway at the Outer Loop Landfill in Louisville, KY, USA. The research effort is a cooperative research effort between US EPA and Waste Management Inc. Two primary kinds of municipal waste bioreactors are under study at this site. ...

  4. BIOREACTOR LANDFILLS, THEORETICAL ADVANTAGES AND RESEARCH CHALLENGES

    EPA Science Inventory

    Bioreactor landfills are municipal solid waste landfills that utilize bulk liquids in an effort to accelerate solid waste degradation. There are few potential benefits for operating a MSW landfill as a bioreactor. These include leachate treatment and management, increase in the s...

  5. Performance linked to residence time distribution by a novel wool-based bioreactor for tertiary sewage treatment.

    PubMed

    Hu, Bibo; Wheatley, Andrew; Ishtchenko, Vera; Huddersman, Katherine

    2012-05-01

    Laboratory-scale experiments were carried out using up-flow 7 L Submerged Aerated Filter reactors packed with wool fibre or commercial plastic pall rings, Kaldnes, (70% by volume) support media for the tertiary treatment of sewage. The performance of the wool bioreactor was more consistent than that with Kaldnes medium, for both TOC removal (93%) and SS removal (90%). Both plastic and wool-packed bioreactors achieved complete nitrification at the load of about 0.4 kgCOD/m(3)/day. The sludge yield of the wool bioreactor was almost half that of the bioreactor with Kaldnes suggesting that wool could retain residual organics and particulates. The wool however was degraded and it was concluded that wool would have to be considered as additional sacrificial adsorption capacity rather than an alternative medium. The performance was linked to the residence time distribution studies and these changes in the wool structure. Biomass growth increased the retention of the tracer in the wool reactor by, it was suggested, exposing a greater surface area. Results from the plastic media on the other hand showed increased mixing possibly by increasing the mobility of the plastic. Aeration increased the mixing in both reactors, and patterns were in all cases predominantly well-mixed. PMID:22080341

  6. Perchlorate removal in sand and plastic media bioreactors.

    PubMed

    Min, Booki; Evans, Patrick J; Chu, Allyson K; Logan, Bruce E

    2004-01-01

    The treatment of perchlorate-contaminated groundwater was examined using two side-by-side pilot-scale fixed-bed bioreactors packed with sand or plastic media, and bioaugmented with the perchlorate-degrading bacterium Dechlorosoma sp. KJ. Groundwater containing perchlorate (77microg/L), nitrate (4mg-NO(3)/L), and dissolved oxygen (7.5mg/L) was amended with a carbon source (acetic acid) and nutrients (ammonium phosphate). Perchlorate was completely removed (<4microg/L) in the sand medium bioreactor at flow rates of 0.063-0.126L/s (1-2gpm or hydraulic loading rate of 0.34-0.68L/m(2)s) and in the plastic medium reactor at flow rates of <0.063L/s. Acetate in the sand reactor was removed from 43+/-8 to 13+/-8mg/L (after day 100), and nitrate was completely removed in the reactor (except day 159). A regular (weekly) backwashing cycle was necessary to achieve consistent reactor performance and avoid short-circuiting in the reactors. For example, the sand reactor detention time was 18min (hydraulic loading rate of 0.68L/m(2)s) immediately after backwashing, but it decreased to only 10min 1 week later. In the plastic medium bioreactor, the relative changes in detention time due to backwashing were smaller, typically changing from 60min before backwashing to 70min after backwashing. We found that detention times necessary for complete perchlorate removal were more typical of those expected for mixed cultures (10-18min) than those for the pure culture (<1min) reported in our previous laboratory studies. Analysis of intra-column perchlorate profiles revealed that there was simultaneous removal of dissolved oxygen, nitrate, and perchlorate, and that oxygen and nitrate removal was always complete prior to complete perchlorate removal. This study demonstrated for the first time in a pilot-scale system, that with regular backwashing cycles, fixed-bed bioreactors could be used to remove perchlorate in groundwater to a suitable level for drinking water. PMID:14630102

  7. Measuring Water in Bioreactor Landfills

    NASA Astrophysics Data System (ADS)

    Han, B.; Gallagher, V. N.; Imhoff, P. T.; Yazdani, R.; Chiu, P.

    2004-12-01

    Methane is an important greenhouse gas, and landfills are the largest anthropogenic source in many developed countries. Bioreactor landfills have been proposed as one means of abating greenhouse gas emissions from landfills. Here, the decomposition of organic wastes is enhanced by the controlled addition of water or leachate to maintain optimal conditions for waste decomposition. Greenhouse gas abatement is accomplished by sequestration of photosynthetically derived carbon in wastes, CO2 offsets from energy use of waste derived gas, and mitigation of methane emission from the wastes. Maintaining optimal moisture conditions for waste degradation is perhaps the most important operational parameter in bioreactor landfills. To determine how much water is needed and where to add it, methods are required to measure water within solid waste. However, there is no reliable method that can measure moisture content simply and accurately in the heterogeneous environment typical of landfills. While well drilling and analysis of solid waste samples is sometimes used to determine moisture content, this is an expensive, time-consuming, and destructive procedure. To overcome these problems, a new technology recently developed by hydrologists for measuring water in the vadose zone --- the partitioning tracer test (PTT) --- was evaluated for measuring water in solid waste in a full-scale bioreactor landfill in Yolo County, CA. Two field tests were conducted in different regions of an aerobic bioreactor landfill, with each test measuring water in ≈ 250 ft3 of solid waste. Tracers were injected through existing tubes inserted in the landfill, and tracer breakthrough curves were measured through time from the landfill's gas collection system. Gas samples were analyzed on site using a field-portable gas chromatograph and shipped offsite for more accurate laboratory analysis. In the center of the landfill, PTT measurements indicated that the fraction of the pore space filled with water

  8. Determination of methanogenic pathways through carbon isotope (δ13C) analysis for the two-stage anaerobic digestion of high-solids substrates.

    PubMed

    Gehring, Tito; Klang, Johanna; Niedermayr, Andrea; Berzio, Stephan; Immenhauser, Adrian; Klocke, Michael; Wichern, Marc; Lübken, Manfred

    2015-04-01

    This study used carbon isotope (δ(13)C)-based calculations to quantify the specific methanogenic pathways in a two-stage experimental biogas plant composed of three thermophilic leach bed reactors (51-56 °C) followed by a mesophilic (36.5 °C) anaerobic filter. Despite the continuous dominance of the acetoclastic Methanosaeta in the anaerobic filter, the methane (CH4) fraction derived from carbon dioxide reduction (CO2), fmc, varied significantly over the investigation period of 200 days. At organic loading rates (OLRs) below 6.0 gCOD L(-1) d(-1), the average fmc value was 33%, whereas at higher OLRs, with a maximum level of 17.0 gCOD L(-1) d(-1), the fmc values reached 47%. The experiments allowed for a clear differentiation of the isotope fractionation related to the formation and consumption of acetate in both stages of the plant. Our data indicate constant carbon isotope fractionation for acetate formation at different OLRs within the thermophilic leach bed reactors as well as a negligible contribution of homoacetogenesis. These results present the first quantification of methanogenic pathway (fmc values) dynamics for a continually operated mesophilic bioreactor and highlight the enormous potential of δ(13)C analysis for a more comprehensive understanding of the anaerobic degradation processes in CH4-producing biogas plants. PMID:25741999

  9. Ammonia effect on hydrogenotrophic methanogens and syntrophic acetate-oxidizing bacteria.

    PubMed

    Wang, Han; Fotidis, Ioannis A; Angelidaki, Irini

    2015-11-01

    Ammonia-rich substrates can cause inhibition on anaerobic digestion process. Syntrophic acetate-oxidizing bacteria (SAOB) and hydrogenotrophic methanogens are important for the ammonia inhibitory mechanism on anaerobic digestion. The roles and interactions of SAOB and hydrogenotrophic methanogens to ammonia inhibition effect are still unclear. The aim of the current study was to determine the ammonia toxicity levels of various pure strains of SAOB and hydrogenotrophic methanogens. Moreover, ammonia toxicity on the syntrophic-cultivated strains of SAOB and hydrogenotrophic methanogens was tested. Thus, four hydrogenotrophic methanogens (i.e. Methanoculleus bourgensis, Methanobacterium congolense, Methanoculleu thermophilus and Methanothermobacter thermautotrophicus), two SAOB (i.e. Tepidanaerobacter acetatoxydans and Thermacetogenium phaeum) and their syntrophic cultivation were assessed under 0.26, 3, 5 and 7 g NH4 (+)-N L(-1). The results showed that some hydrogenotrophic methanogens were equally, or in some cases, more tolerant to high ammonia levels compared to SAOB. Furthermore, a mesophilic hydrogenotrophic methanogen was more sensitive to ammonia toxicity compared to thermophilic methanogens tested in the study, which is contradicting to the general belief that thermophilic methanogens are more vulnerable to high ammonia loads compared to mesophilic. This unexpected finding underlines the fact that the complete knowledge of ammonia inhibition effect on hydrogenotrophic methanogens is still absent. PMID:26490748

  10. Methanogen prevalence throughout the gastrointestinal tract of pre-weaned dairy calves

    PubMed Central

    Zhou, Mi; Chen, Yanhong; Griebel, Philip J; Guan, Le Luo

    2014-01-01

    The methanogenic community throughout the gastrointestinal tract (GIT) of pre-weaned calves has not been well studied. The current study firstly investigated the distribution and composition of the methanogenic community in the rumen, ileum, and colon of 3–4 week-old milk-fed dairy calves (n = 4) using 16S rRNA gene clone library analysis. The occurrence of methanogens in the GIT of pre-weaned calves was further validated by using PCR-denaturing gradient gel electrophoresis (PCR-DGGE), and quantitative real-time PCR (qPCR) was applied to quantify the methanogenic community in the rumen, jejunum, ileum, cecum, colon and rectum of 8 3–4 week old animals. Both cloning libraries and PCR-DGGE revealed that phylotypes close to Methanobrevibacter were the main taxon along the GIT in pre-weaned sucking calves. The composition and abundance of methanogens varied significantly among individual animals, suggesting that host conditions may influence the composition of the symbiotic microbiota. Segregation of methanogenic communities throughout the GIT was also observed within individual animals, suggesting possible functional differences among methanogens residing in different GIT regions. This is the first study to analyze methanogenic communities throughout the GIT of milk-fed newborn dairy calves and reveal both their diversity and abundance. The identification of methanogens in the lower GIT of pre-weaned dairy calves warrants further investigation to better define methanogen roles in GIT function and their impact on host metabolism and health. PMID:25483332

  11. A hybrid anaerobic membrane bioreactor coupled with online ultrasonic equipment for digestion of waste activated sludge.

    PubMed

    Xu, Meilan; Wen, Xianghua; Yu, Zhiyong; Li, Yushan; Huang, Xia

    2011-05-01

    Anaerobic membrane bioreactor and online ultrasonic equipment used to enhance membrane filtration were coupled to form a hybrid system (US-AnMBR) designed for long-term digestion of waste activated sludge. The US-AnMBR was operated under volatile solids loading rates of 1.1-3.7 gVS/L·d. After comprehensive studies on digestion performance and membrane fouling control in the US-AnMBR, the final loading rate was determined to be 2.7 gVS/L·d with 51.3% volatile solids destruction. In the US-AnMBR, the improved digestion was due to enhanced sludge disintegration, as indicated by soluble matter comparison in the supernatant and particle size distribution in the digested sludge. Maximum specific methanogenic activity revealed that ultrasound application had no negative effect on anaerobic microorganisms. Furthermore, implementing ultrasound effectively controlled membrane fouling and successfully facilitated membrane bioreactor operation. This lab-scale study demonstrates the potential feasibility and effectiveness of setting up a US-AnMBR system for sludge digestion. PMID:21421308

  12. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens

    PubMed Central

    Subharat, Supatsak; Shu, Dairu; Zheng, Tao; Buddle, Bryce M.; Kaneko, Kan; Hook, Sarah; Janssen, Peter H.; Wedlock, D. Neil

    2016-01-01

    Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2) formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation). A control group of sheep (n = 6) was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1–2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible. PMID:27472482

  13. Vaccination of Sheep with a Methanogen Protein Provides Insight into Levels of Antibody in Saliva Needed to Target Ruminal Methanogens.

    PubMed

    Subharat, Supatsak; Shu, Dairu; Zheng, Tao; Buddle, Bryce M; Kaneko, Kan; Hook, Sarah; Janssen, Peter H; Wedlock, D Neil

    2016-01-01

    Methane is produced in the rumen of ruminant livestock by methanogens and is a major contributor to agricultural greenhouse gases. Vaccination against ruminal methanogens could reduce methane emissions by inducing antibodies in saliva which enter the rumen and impair ability of methanogens to produce methane. Presently, it is not known if vaccination can induce sufficient amounts of antibody in the saliva to target methanogen populations in the rumen and little is known about how long antibody in the rumen remains active. In the current study, sheep were vaccinated twice at a 3-week interval with a model methanogen antigen, recombinant glycosyl transferase protein (rGT2) formulated with one of four adjuvants: saponin, Montanide ISA61, a chitosan thermogel, or a lipid nanoparticle/cationic liposome adjuvant (n = 6/formulation). A control group of sheep (n = 6) was not vaccinated. The highest antigen-specific IgA and IgG responses in both saliva and serum were observed with Montanide ISA61, which promoted levels of salivary antibodies that were five-fold higher than the second most potent adjuvant, saponin. A rGT2-specific IgG standard was used to determine the level of rGT2-specific IgG in serum and saliva. Vaccination with GT2/Montanide ISA61 produced a peak antibody concentration of 7 × 1016 molecules of antigen-specific IgG per litre of saliva, and it was estimated that in the rumen there would be more than 104 molecules of antigen-specific IgG for each methanogen cell. Both IgG and IgA in saliva were shown to be relatively stable in the rumen. Salivary antibody exposed for 1-2 hours to an in vitro simulated rumen environment retained approximately 50% of antigen-binding activity. Collectively, the results from measuring antibody levels and stablility suggest a vaccination-based mitigation strategy for livestock generated methane is in theory feasible. PMID:27472482

  14. Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen

    NASA Technical Reports Server (NTRS)

    Mathrani, I. M.; Boone, D. R.; Mah, R. A.; Fox, G. E.; Lau, P. P.

    1988-01-01

    Methanohalophilus zhilinae, a new alkaliphilic, halophilic, methylotrophic species of methanogenic bacteria, is described. Strain WeN5T (T = type strain) from Bosa Lake of the Wadi el Natrun in Egypt was designated the type strain and was further characterized. This strain was nonmotile, able to catabolize dimethylsulfide, and able to grow in medium with a methyl group-containing substrate (such as methanol or trimethylamine) as the sole organic compound added. Sulfide (21 mM) inhibited cultures growing on trimethylamine. The antibiotic susceptibility pattern of strain WeN5T was typical of the pattern for archaeobacteria, and the guanine-plus-cytosine content of the deoxyribonucleic acid was 38 mol%. Characterization of the 16S ribosomal ribonucleic acid sequence indicated that strain WeN5T is phylogenetically distinct from members of previously described genera other than Methanohalophilus and supported the partition of halophilic methanogens into their own genus.

  15. Composition and Role of Extracellular Polymers in Methanogenic Granules

    PubMed Central

    Veiga, M. C.; Jain, M. K.; Wu, W.; Hollingsworth, R. I.; Zeikus, J. G.

    1997-01-01

    Methanobacterium formicicum and Methanosarcina mazeii are two prevalent species isolated from an anaerobic granular consortium grown on a fatty acid mixture. The extracellular polysaccharides (EPS) were extracted from Methanobacterium formicicum and Methanosarcina mazeii and from the methanogenic granules to examine their role in granular development. The EPS made up approximately 20 to 14% of the extracellular polymer extracted from the granules, Methanobacterium formicicum, and Methanosarcina mazeii. The EPS produced by Methanobacterium formicicum was composed mainly of rhamnose, mannose, galactose, glucose, and amino sugars, while that produced by Methanosarcina mazeii contained ribose, galactose, glucose, and glucosamine. The same sugars were also present in the EPS produced by the granules. These results indicate that the two methanogens, especially Methanobacterium formicicum, contributed significantly to the production of the extracellular polymer of the anaerobic granules. Growth temperature, substrates (formate and H(inf2)-CO(inf2)), and the key nutrients (nitrogen and phosphate concentrations) affected polymer production by Methanobacterium formicicum. PMID:16535504

  16. Packing fraction of continuous distributions

    NASA Astrophysics Data System (ADS)

    Brouwers, Jos

    2014-03-01

    This study addresses the packing and void fraction of polydisperse particles with geometric and lognormal size distribution. It is demonstrated that a bimodal discrete particle distribution can be transformed into said continuous particle-size distributions. Furthermore, original and exact expressions are presented that predict the packing fraction of these particle assemblies. For a number of particle shapes and their packing modes (close, loose) the applicable parameters are given. The closed-form analytical expression governing the packing fractions are thoroughly compared with empirical and computational data reported in the literature, and good agreement is found.

  17. Method for dense packing discovery

    NASA Astrophysics Data System (ADS)

    Kallus, Yoav; Elser, Veit; Gravel, Simon

    2010-11-01

    The problem of packing a system of particles as densely as possible is foundational in the field of discrete geometry and is a powerful model in the material and biological sciences. As packing problems retreat from the reach of solution by analytic constructions, the importance of an efficient numerical method for conducting de novo (from-scratch) searches for dense packings becomes crucial. In this paper, we use the divide and concur framework to develop a general search method for the solution of periodic constraint problems, and we apply it to the discovery of dense periodic packings. An important feature of the method is the integration of the unit-cell parameters with the other packing variables in the definition of the configuration space. The method we present led to previously reported improvements in the densest-known tetrahedron packing. Here, we use the method to reproduce the densest-known lattice sphere packings and the best-known lattice kissing arrangements in up to 14 and 11 dimensions, respectively, providing numerical evidence for their optimality. For nonspherical particles, we report a dense packing of regular four-dimensional simplices with density ϕ=128/219≈0.5845 and with a similar structure to the densest-known tetrahedron packing.

  18. Granular packings and fault zones

    PubMed

    Astrom; Herrmann; Timonen

    2000-01-24

    The failure of a two-dimensional packing of elastic grains is analyzed using a numerical model. The packing fails through formation of shear bands or faults. During failure there is a separation of the system into two grain-packing states. In a shear band, local "rotating bearings" are spontaneously formed. The bearing state is favored in a shear band because it has a low stiffness against shearing. The "seismic activity" distribution in the packing has the same characteristics as that of the earthquake distribution in tectonic faults. The directions of the principal stresses in a bearing are reminiscent of those found at the San Andreas Fault. PMID:11017335

  19. Reducing methane emissions in sheep by immunization against rumen methanogens.

    PubMed

    Wright, A D G; Kennedy, P; O'Neill, C J; Toovey, A F; Popovski, S; Rea, S M; Pimm, C L; Klein, L

    2004-09-28

    This work was conducted to determine if methane emissions from sheep immunized with an anti-methanogen vaccine were significantly lower than methane emissions from non-immunized sheep, to test the effectiveness of two different vaccine formulations (VF) on methane abatement, and to compare methane emissions measured using a closed-circuit respiration chamber and the sulphur-hexafluoride (SF6) tracer technique. Thirty mature wether sheep were randomly allocated to three treatment groups (n = 10). One group received an immunization of adjuvant only on days 0 and 153 (control), a second group received an immunization with a 3-methanogen mix on days 0 and 153 (VF3 + 3), and a third group received an immunization of a 7-methanogen mix on day 0 followed by a 3-methanogen mix on day 153 (VF7 + 3). Four weeks post-secondary immunization, there was a significant 7.7% reduction in methane production per kg dry matter intake in the VF7 + 3 group compared to the controls (P = 0.051). However, methane emissions from sheep immunized with VF7 + 3 were not significantly different when compared to the sheep in the control group (P = 0.883). The average IgG and IgA antibody titres in both plasma and saliva of the VF3 + 3 immunized sheep were four to nine times higher than those immunized with VF7 + 3 (P< 0.001) at both 3 and 6 weeks post-secondary immunization. Data also revealed that SF6 methane estimates were consistently higher than the respiration chamber estimates and that there was no significant correlation between the SF6 methane estimates and the respiration chamber methane estimates (R2 = 0.11). PMID:15364447

  20. Transformation of phenol into phenylalanine by a methanogenic consortium

    SciTech Connect

    Lepine, F.; Milot, S.; Beaudet, R.; Villemur, R.

    1996-03-01

    Phenol is a widely used chemical found in many wastewaters of industrial origin. The degradation of phenol by methanogenic bacterial consortia has been reported by many investigators. To better characterise the metabolism of this consortium, a new metabolic pathway of benzoic acid, an intermediary in the degradation of phenol, is reported. This study describes the transformations of benzoic acid into 3-phenylpropionic acid and phenylalanine. 25 refs., 5 figs.

  1. An Intertwined Evolutionary History of Methanogenic Archaea and Sulfate Reduction

    PubMed Central

    Susanti, Dwi; Mukhopadhyay, Biswarup

    2012-01-01

    Hydrogenotrophic methanogenesis and dissimilatory sulfate reduction, two of the oldest energy conserving respiratory systems on Earth, apparently could not have evolved in the same host, as sulfite, an intermediate of sulfate reduction, inhibits methanogenesis. However, certain methanogenic archaea metabolize sulfite employing a deazaflavin cofactor (F420)-dependent sulfite reductase (Fsr) where N- and C-terminal halves (Fsr-N and Fsr-C) are homologs of F420H2 dehydrogenase and dissimilatory sulfite reductase (Dsr), respectively. From genome analysis we found that Fsr was likely assembled from freestanding Fsr-N homologs and Dsr-like proteins (Dsr-LP), both being abundant in methanogens. Dsr-LPs fell into two groups defined by following sequence features: Group I (simplest), carrying a coupled siroheme-[Fe4-S4] cluster and sulfite-binding Arg/Lys residues; Group III (most complex), with group I features, a Dsr-type peripheral [Fe4-S4] cluster and an additional [Fe4-S4] cluster. Group II Dsr-LPs with group I features and a Dsr-type peripheral [Fe4-S4] cluster were proposed as evolutionary intermediates. Group III is the precursor of Fsr-C. The freestanding Fsr-N homologs serve as F420H2 dehydrogenase unit of a putative novel glutamate synthase, previously described membrane-bound electron transport system in methanogens and of assimilatory type sulfite reductases in certain haloarchaea. Among archaea, only methanogens carried Dsr-LPs. They also possessed homologs of sulfate activation and reduction enzymes. This suggested a shared evolutionary history for methanogenesis and sulfate reduction, and Dsr-LPs could have been the source of the oldest (3.47-Gyr ago) biologically produced sulfide deposit. PMID:23028926

  2. Polarizable protein packing.

    PubMed

    Ng, Albert H; Snow, Christopher D

    2011-05-01

    To incorporate protein polarization effects within a protein combinatorial optimization framework, we decompose the polarizable force field AMOEBA into low order terms. Including terms up to the third-order provides a fair approximation to the full energy while maintaining tractability. We represent the polarizable packing problem for protein G as a hypergraph and solve for optimal rotamers with the FASTER combinatorial optimization algorithm. These approximate energy models can be improved to high accuracy [root mean square deviation (rmsd) < 1 kJ mol(-1)] via ridge regression. The resulting trained approximations are used to efficiently identify new, low-energy solutions. The approach is general and should allow combinatorial optimization of other many-body problems. PMID:21264879

  3. Packings of soft disks

    NASA Astrophysics Data System (ADS)

    Ziherl, Primoz; Vidmar, Marija

    2011-03-01

    We explore the stability of 2D ordered structures formed by soft disks treated as isotropic solid bodies. Using a variational model, we compute the equilibrium shapes and the elastic energy of disks in regular columnar, honeycomb, square, and hexagonal lattice. The results reproduce the Hertzian interaction in the regime of small deformations. The phase diagram of elastic disks is characterized by broad regions of phase coexistence; its main feature is that the coordination number of the stable phases decreases with density. These results may provide an insight into structure of the non-close-packed lattices observed in certain nanocolloidal systems. This work was supported by Slovenian Research Agency (grant No. P1-0055) and by EU through ITN COMPLOIDS (grant FP7-People-ITN-2008 No. 234810).

  4. Random very loose packings.

    PubMed

    Ciamarra, Massimo Pica; Coniglio, Antonio

    2008-09-19

    We measure the number Omega(phi) of mechanically stable states of volume fraction phi of a granular assembly under gravity. The granular entropy S(phi)=logOmega(phi) vanishes both at high density, at phi approximately equal to phi_rcp, and a low density, at phi approximately equal to phi_rvlp, where phi_rvlp is a new lower bound we call random very loose pack. phi_rlp is the volume fraction where the entropy is maximal. These findings allow for a clear explanation of compaction experiments and provide the first first-principle definition of the random loose volume fraction. In the context of the statistical mechanics approach to static granular materials, states with phi

  5. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    1998-01-01

    For 5 days on the STS-70 mission, a bioreactor cultivated human colon cancer cells, such as the culture section shown here, which grew to 30 times the volume of control specimens grown on Earth. This significant result was reproduced on STS-85 which grew mature structures that more closely match what are found in tumors in humans. The two white circles within the tumor are part of a plastic lattice that helped the cells associate. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators.

  6. Hydrogen consumption by methanogens on the early Earth

    NASA Technical Reports Server (NTRS)

    Kral, T. A.; Brink, K. M.; Miller, S. L.; McKay, C. P.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is possible that the first autotroph used chemical energy rather than light. This could have been the main source of primary production after the initial inventory of abiotic organic material had been depleted. The electron acceptor most readily available for use by this first chemoautotroph would have been CO2. The most abundant electron donor may have been H2 that would have been outgassing from volcanoes at a rate estimated to be as large as 10(12) moles yr-1, as well as from photo-oxidation of Fe+2. We report here that certain methanogens will consume H2 down to partial pressures as low as 4 Pa (4 x 10(-5) atm) with CO2 as the sole carbon source at a rate of 0.7 ng H2 min-1 microgram-1 cell protein. The lower limit of pH2 for growth of methanogens can be understood on the basis that the pH2 needs to be high enough for one ATP to be synthesized per CO2 reduced. The pH2 values needed for growth measured here are consistent with those measured by Stevens and McKinley for growth of methanogens in deep basalt aquifers. H2-consuming autotrophs are likely to have had a profound effect on the chemistry of the early atmosphere and to have been a dominant sink for H2 on the early Earth after life began rather than escape from the Earth's atmosphere to space.

  7. Environmental selection of planktonic methanogens in permafrost thaw ponds.

    PubMed

    Crevecoeur, Sophie; Vincent, Warwick F; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type. PMID:27501855

  8. Methanogenic Hydrocarbon Degradation: Evidence from Field and Laboratory Studies.

    PubMed

    Jiménez, Núria; Richnow, Hans H; Vogt, Carsten; Treude, Tina; Krüger, Martin

    2016-01-01

    Microbial transformation of hydrocarbons to methane is an environmentally relevant process taking place in a wide variety of electron acceptor-depleted habitats, from oil reservoirs and coal deposits to contaminated groundwater and deep sediments. Methanogenic hydrocarbon degradation is considered to be a major process in reservoir degradation and one of the main processes responsible for the formation of heavy oil deposits and oil sands. In the absence of external electron acceptors such as oxygen, nitrate, sulfate or Fe(III), fermentation and methanogenesis become the dominant microbial metabolisms. The major end product under these conditions is methane, and the only electron acceptor necessary to sustain the intermediate steps in this process is CO2, which is itself a net product of the overall reaction. We are summarizing the state of the art and recent advances in methanogenic hydrocarbon degradation research. Both the key microbial groups involved as well as metabolic pathways are described, and we discuss the novel insights into methanogenic hydrocarbon-degrading populations studied in laboratory as well as environmental systems enabled by novel cultivation-based and molecular approaches. Their possible implications on energy resources, bioremediation of contaminated sites, deep-biosphere research, and consequences for atmospheric composition and ultimately climate change are also addressed. PMID:26959375

  9. Kinetics of chlorinated ethylene dehalogenation under methanogenic conditions

    SciTech Connect

    Skeen, R.S.; Gao, J.; Hooker, B.S.

    1995-12-20

    Kinetics were determined for methanogenic activity and chlorinated ethylene dehalogenation by a methanol-enriched, anaerobic sediment consortium. The culture reductively dechlorinated perchloroethylene (PCE) to trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), vinylchloride (VC), and ethylene and ethane. The absence of methanol or the addition of 2-bromoethanesulfonic acid in the presence of methanol suppressed both methanogenic activity and dechlorination. In contrast, acetate production continued in the presence of 2-bromoethanesulfonic acid. These results suggest that dechlorination was strongly linked to methane formation and not to acetate production. A kinetic model, developed to describe both methanogenesis and dechlorination, successfully predicted experimentally measured concentrations of biomass, methane, substrate, and chlorinated ethylenes. The average maximum specific dehalogenation rates for PCE, TCE, 1,1-DCE, and VC were 0.9 {+-} 0.6, 0.4 {+-} 0.1, 12 {+-} 0.1, and 2.5 {+-} 1.7 {micro}mol contaminant/g {center_dot} DW/day, respectively. This pattern for dechlorination rates is distinctly different than that reported for transition metal cofactors, where rates drop by approximately one order of magnitude as each successive chlorine is removed. The experimental results and kinetic analysis suggest that it will be impractical to targeting methanol consuming methanogenic organisms for in-situ groundwater restoration.

  10. Fast pyrolysis product distribution of biopretreated corn stalk by methanogen.

    PubMed

    Wang, Tipeng; Ye, Xiaoning; Yin, Jun; Jin, Zaixing; Lu, Qiang; Zheng, Zongming; Dong, Changqing

    2014-10-01

    After pretreated by methanogen for 5, 15 and 25 days, corn stalk (CS) were pyrolyzed at 250, 300, 350, 400, 450 and 500 °C by Py-GC/MS and product distribution in bio-oil was analyzed. Results indicated that methanogen pretreatment changed considerably the product distribution: the contents of sugar and phenols increased; the contents of linear carbonyls and furans decreased; the contents of linear ketones and linear acids changed slightly. Methanogen pretreatment improved significantly the pyrolysis selectivity of CS to phenols especially 4-VP. At 250 °C, the phenols content increased from 42.25% for untreated CS to 79.32% for biopretreated CS for 5 days; the 4-VP content increased from 28.6% to 60.9%. Increasing temperature was contributed to convert more lignin into 4-VP, but decreased its content in bio-oil due to more other chemicals formed. The effects of biopretreatment time on the chemicals contents were insignificant. PMID:25113883

  11. Environmental selection of planktonic methanogens in permafrost thaw ponds

    PubMed Central

    Crevecoeur, Sophie; Vincent, Warwick F.; Lovejoy, Connie

    2016-01-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type. PMID:27501855

  12. Environmental selection of planktonic methanogens in permafrost thaw ponds

    NASA Astrophysics Data System (ADS)

    Crevecoeur, Sophie; Vincent, Warwick F.; Lovejoy, Connie

    2016-08-01

    The warming and thermal erosion of ice-containing permafrost results in thaw ponds that are strong emitters of methane to the atmosphere. Here we examined methanogens and other Archaea, in two types of thaw ponds that are formed by the collapse of either permafrost peat mounds (palsas) or mineral soil mounds (lithalsas) in subarctic Quebec, Canada. Using high-throughput sequencing of a hypervariable region of 16S rRNA, we determined the taxonomic structure and diversity of archaeal communities in near-bottom water samples, and analyzed the mcrA gene transcripts from two sites. The ponds at all sites were well stratified, with hypoxic or anoxic bottom waters. Their archaeal communities were dominated by Euryarchaeota, specifically taxa in the methanogenic orders Methanomicrobiales and Methanosarcinales, indicating a potentially active community of planktonic methanogens. The order Methanomicrobiales accounted for most of the mcrA transcripts in the two ponds. The Archaeal communities differed significantly between the lithalsa and palsa ponds, with higher alpha diversity in the organic-rich palsa ponds, and pronounced differences in community structure. These results indicate the widespread occurrence of planktonic, methane-producing Archaea in thaw ponds, with environmental selection of taxa according to permafrost landscape type.

  13. Pulp mill wastewater sediment reveals novel methanogenic and cellulolytic populations.

    PubMed

    Yang, Chunyu; Wang, Wei; Du, Miaofen; Li, Chunfang; Ma, Cuiqing; Xu, Ping

    2013-02-01

    Pulp mill wastewater generated from wheat straw is characterized as high alkalinity and very high COD pollution load. A naturally developed microbial community in a pulp mill wastewater storage pool that had been disused were investigated in this study. Owing to natural evaporation and a huge amount of lignocellulose's deposition, the wastewater sediment contains high concentrations of organic matters and sodium ions, but low concentrations of chloride and carbonate. The microbiota inhabiting especially anaerobic community, including methanogenic arhcaea and cellulolytic species, was studied. All archaeal sequences fall into 2 clusters of family Halobacteriaceae and methanogenic archaeon in the phylum Euryarchaeota. In the methanogenic community, phylogenetic analysis of methyl coenzyme M reductase A (mcrA) genes targeted to novel species in genus Methanoculleus or novel genus of order Methanomicrobiales. The predominance of Methanomicrobiales suggests that methanogenesis in this system might be driven by the hydrogenotrophic pathway. As the important primary fermenter for methane production, the cellulolytic community of enzyme GHF48 was found to be dominated by narrower breadth of novel clostridial cellulase genes. Novel anoxic functional members in such extreme sediment provide the possibility of enhancing the efficiency of anoxic treatment of saline and alkaline wastewaters, as well as benefiting to the biomass transformation and biofuel production processes. PMID:23228889

  14. Methane production potentials, pathways, and communities of methanogens in vertical sediment profiles of river Sitka

    PubMed Central

    Mach, Václav; Blaser, Martin B.; Claus, Peter; Chaudhary, Prem P.; Rulík, Martin

    2015-01-01

    Biological methanogenesis is linked to permanent water logged systems, e.g., rice field soils or lake sediments. In these systems the methanogenic community as well as the pathway of methane formation are well-described. By contrast, the methanogenic potential of river sediments is so far not well-investigated. Therefore, we analyzed (a) the methanogenic potential (incubation experiments), (b) the pathway of methane production (stable carbon isotopes and inhibitor studies), and (c) the methanogenic community composition (terminal restriction length polymorphism of mcrA) in depth profiles of sediment cores of River Sitka, Czech Republic. We found two depth-related distinct maxima for the methanogenic potentials (a) The pathway of methane production was dominated by hydrogenotrophic methanogenesis (b) The methanogenic community composition was similar in all depth layers (c) The main TRFs were representative for Methanosarcina, Methanosaeta, Methanobacterium, and Methanomicrobium species. The isotopic signals of acetate indicated a relative high contribution of chemolithotrophic acetogenesis to the acetate pool. PMID:26052322

  15. Development of Fundamental Technologies for Micro Bioreactors

    NASA Astrophysics Data System (ADS)

    Sato, Kiichi; Kitamori, Takehiko

    This chapter reviews the development of fundamental technologies required for microchip-based bioreactors utilizing living mammalian cells and pressure driven flow. The most important factor in the bioreactor is the cell culture. For proper cell culturing, continuous medium supply from a microfluidic channel and appropriate modification of the channel surface to accommodate cell attachment is required. Moreover, the medium flow rate should be chosen carefully, because shear stress affects cell activity. The techniques presented here could be applied to the development of micro bioreactors such as microlivers, pigment production by plant cells, and artificial insemination.

  16. Spatial Experiment Technologies Suitable for Unreturnable Bioreactor

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Zheng, Weibo; Tong, Guanghui

    2016-07-01

    The system composition and main function of the bioreactor piggybacked on TZ cargo transport spacecraft are introduced briefly in the paper.The spatial experiment technologies which are suitable for unreturnable bioreactor are described in detail,including multi-channel liquid transportion and management,multi-type animal cells circuit testing,dynamic targets microscopic observation in situ etc..The feasibility and effectiveness of these technologies which will be used in space experiment in bioreactor are verified in tests and experiments on the ground.

  17. Energetic and hydrogen limitations of thermophilic and hyperthermophilic methanogens

    NASA Astrophysics Data System (ADS)

    Stewart, L. C.; Holden, J. F.

    2013-12-01

    Deep-sea hydrothermal vents are a unique ecosystem, based ultimately not on photosynthesis but chemosynthetic primary production. This makes them an excellent analog environment for the early Earth, and for potential extraterrestrial habitable environments, such as those on Mars and Europa. The habitability of given vent systems for chemoautotrophic prokaryotes can be modeled energetically by estimating the available Gibbs energy for specific modes of chemoautotrophy, using geochemical data and mixing models for hydrothermal fluids and seawater (McCollom and Shock, 1997). However, modeling to date has largely not taken into account variation in organisms' energy demands in these environments. Controls on maintenance energies are widely assumed to be temperature-dependent, rising with increasing temperature optima (Tijhuis et al., 1993), and species-independent. The impacts of other environmental stressors and particular energy-gathering strategies on maintenance energies have not been investigated. We have undertaken culture-based studies of growth and maintenance energies in thermophilic and hyperthermophilic methanogenic (hydrogenotrophic) archaea from deep-sea hydrothermal vents to investigate potential controls on energy demands in hydrothermal vent microbes, and to quantify their growth and maintenance energies for future bioenergetic modeling. We have investigated trends in their growth energies over their full temperature range and a range of nitrogen concentrations, and in their maintenance energies at different hydrogen concentrations. Growth energies in these organisms appear to rise with temperature, but do not vary between hyperthermophilic and thermophilic methanogens. Nitrogen availability at tested levels (40μM - 9.4 mM) does not appear to affect growth energies in all but one tested organism. In continuous chemostat culture, specific methane production varied with hydrogen availability but was similar between a thermophilic and a hyperthermophilic

  18. Estimation of Methanogen Biomass by Quantitation of Coenzyme M

    PubMed Central

    Elias, Dwayne A.; Krumholz, Lee R.; Tanner, Ralph S.; Suflita, Joseph M.

    1999-01-01

    Determination of the role of methanogenic bacteria in an anaerobic ecosystem often requires quantitation of the organisms. Because of the extreme oxygen sensitivity of these organisms and the inherent limitations of cultural techniques, an accurate biomass value is very difficult to obtain. We standardized a simple method for estimating methanogen biomass in a variety of environmental matrices. In this procedure we used the thiol biomarker coenzyme M (CoM) (2-mercaptoethanesulfonic acid), which is known to be present in all methanogenic bacteria. A high-performance liquid chromatography-based method for detecting thiols in pore water (A. Vairavamurthy and M. Mopper, Anal. Chim. Acta 78:363–370, 1990) was modified in order to quantify CoM in pure cultures, sediments, and sewage water samples. The identity of the CoM derivative was verified by using liquid chromatography-mass spectroscopy. The assay was linear for CoM amounts ranging from 2 to 2,000 pmol, and the detection limit was 2 pmol of CoM/ml of sample. CoM was not adsorbed to sediments. The methanogens tested contained an average of 19.5 nmol of CoM/mg of protein and 0.39 ± 0.07 fmol of CoM/cell. Environmental samples contained an average of 0.41 ± 0.17 fmol/cell based on most-probable-number estimates. CoM was extracted by using 1% tri-(N)-butylphosphine in isopropanol. More than 90% of the CoM was recovered from pure cultures and environmental samples. We observed no interference from sediments in the CoM recovery process, and the method could be completed aerobically within 3 h. Freezing sediment samples resulted in 46 to 83% decreases in the amounts of detectable CoM, whereas freezing had no effect on the amounts of CoM determined in pure cultures. The method described here provides a quick and relatively simple way to estimate methanogenic biomass. PMID:10584015

  19. Effects of triclosan, diclofenac, and nonylphenol on mesophilic and thermophilic methanogenic activity and on the methanogenic communities.

    PubMed

    Symsaris, Evangelos C; Fotidis, Ioannis A; Stasinakis, Athanasios S; Angelidaki, Irini

    2015-06-30

    In this study, a toxicity assay using a mesophilic wastewater treatment plant sludge-based (SI) and a thermophilic manure-based inoculum (MI), under different biomass concentrations was performed to define the effects of diclofenac (DCF), triclosan (TCS), and nonylphenol (NP) on anaerobic digestion (AD) process. Additionally, the influence of DCF, TCS, and NP on the relative abundance of the methanogenic populations was investigated. Results obtained demonstrated that, in terms of methane production, SI inoculum was more resistant to the toxicity effect of DCF, TCS, and NP, compared to the MI inoculum. The IC50 values were 546, 35, and 363 mg L(-1) for SI inoculum and 481, 32, and 74 mg L(-1) for MI inoculum for DCF, TCS, and NP, respectively. For both inocula, higher biomass concentrations reduced the toxic effect of TCS (higher methane production up to 64%), contrary to DCF, where higher biomass loads decreased methane yield up to 31%. Fluorescence in situ hybridization analysis showed that hydrogenotrophic methanogens were more resistant to the inhibitory effect of DCF, TCS, and NP compared to aceticlastic methanogens. PMID:25768988

  20. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by 'Smithella' spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens.

    PubMed

    Wawrik, Boris; Marks, Christopher R; Davidova, Irene A; McInerney, Michael J; Pruitt, Shane; Duncan, Kathleen E; Suflita, Joseph M; Callaghan, Amy V

    2016-09-01

    Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization. PMID:27198766

  1. Packing Products: Polystyrene vs. Cornstarch

    ERIC Educational Resources Information Center

    Starr, Suzanne

    2009-01-01

    Packing materials such as polystyrene take thousands of years to decompose, whereas packing peanuts made from cornstarch, which some companies are now using, can serve the same purpose, but dissolve in water. The author illustrates this point to her class one rainy day using the sculptures students made from polystyrene and with the cornstarch…

  2. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost

    PubMed Central

    Liebner, Susanne; Ganzert, Lars; Kiss, Andrea; Yang, Sizhong; Wagner, Dirk; Svenning, Mette M.

    2015-01-01

    The response of methanogens to thawing permafrost is an important factor for the global greenhouse gas budget. We tracked methanogenic community structure, activity, and abundance along the degradation of sub-Arctic palsa peatland permafrost. We observed the development of pronounced methane production, release, and abundance of functional (mcrA) methanogenic gene numbers following the transitions from permafrost (palsa) to thaw pond structures. This was associated with the establishment of a methanogenic community consisting both of hydrogenotrophic (Methanobacterium, Methanocellales), and potential acetoclastic (Methanosarcina) members and their activity. While peat bog development was not reflected in significant changes of mcrA copy numbers, potential methane production, and rates of methane release decreased. This was primarily linked to a decline of potential acetoclastic in favor of hydrogenotrophic methanogens. Although palsa peatland succession offers similarities with typical transitions from fen to bog ecosystems, the observed dynamics in methane fluxes and methanogenic communities are primarily attributed to changes within the dominant Bryophyta and Cyperaceae taxa rather than to changes in peat moss and sedge coverage, pH and nutrient regime. Overall, the palsa peatland methanogenic community was characterized by a few dominant operational taxonomic units (OTUs). These OTUs seem to be indicative for methanogenic species that thrive in terrestrial organic rich environments. In summary, our study shows that after an initial stage of high methane emissions following permafrost thaw, methane fluxes, and methanogenic communities establish that are typical for northern peat bogs. PMID:26029170

  3. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost.

    PubMed

    Liebner, Susanne; Ganzert, Lars; Kiss, Andrea; Yang, Sizhong; Wagner, Dirk; Svenning, Mette M

    2015-01-01

    The response of methanogens to thawing permafrost is an important factor for the global greenhouse gas budget. We tracked methanogenic community structure, activity, and abundance along the degradation of sub-Arctic palsa peatland permafrost. We observed the development of pronounced methane production, release, and abundance of functional (mcrA) methanogenic gene numbers following the transitions from permafrost (palsa) to thaw pond structures. This was associated with the establishment of a methanogenic community consisting both of hydrogenotrophic (Methanobacterium, Methanocellales), and potential acetoclastic (Methanosarcina) members and their activity. While peat bog development was not reflected in significant changes of mcrA copy numbers, potential methane production, and rates of methane release decreased. This was primarily linked to a decline of potential acetoclastic in favor of hydrogenotrophic methanogens. Although palsa peatland succession offers similarities with typical transitions from fen to bog ecosystems, the observed dynamics in methane fluxes and methanogenic communities are primarily attributed to changes within the dominant Bryophyta and Cyperaceae taxa rather than to changes in peat moss and sedge coverage, pH and nutrient regime. Overall, the palsa peatland methanogenic community was characterized by a few dominant operational taxonomic units (OTUs). These OTUs seem to be indicative for methanogenic species that thrive in terrestrial organic rich environments. In summary, our study shows that after an initial stage of high methane emissions following permafrost thaw, methane fluxes, and methanogenic communities establish that are typical for northern peat bogs. PMID:26029170

  4. Heterogeneity of packing: structural approach.

    PubMed Central

    Kurochkina, N.; Privalov, G.

    1998-01-01

    Analysis of the heterogeneity of packing in proteins showed that different groups of the protein preferentially contribute to low- or high-density regions. Statistical distribution reveals the two preferable values for packing density in the form of two peaks. One peak occurs in the range of densities 0.55-0.65, the other occurs in the range 0.75-0.8. The high-density peak is originated primarily by high packing inside the hydrogen bonded backbone and to some extent by side chains. Polar/charged and apolar side chains both contribute to the low-density peak. The average packing density values of individual atomic groups significantly vary for backbone atoms as well as for side chain atoms. The carbonyl oxygen atoms of protein backbone and the end groups of side chains show lower packing density than the rest of the protein. The side-chain atomic groups of a secondary structure element when packed against the neighboring secondary structure element form stronger contacts with the side chains of this element than with its backbone. Analysis of the low-density regions around each buried peptide group was done for the set of proteins with different types of packing, including alpha-alpha, alpha-beta, and beta-beta packing. It was shown that cavities are regularly situated in the groove of secondary structure element packed against neighboring elements for all types of packing. Low density in the regions surrounding the peptide groups and the end groups of side chains can be explained by their positioning next to a cavity formed upon the association of secondary structure elements. The model proposed can be applied to the analysis of protein internal motions, mechanisms of cellular signal transduction, diffusion through protein matrix, and other events. PMID:9568896

  5. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged according to approved and... that apples are of the proper size for molds or cell compartments in which they are packed, and...

  6. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged according to approved and... that apples are of the proper size for molds or cell compartments in which they are packed, and...

  7. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged according to approved and... that apples are of the proper size for molds or cell compartments in which they are packed, and...

  8. Bioreactor Design for Tendon/Ligament Engineering

    PubMed Central

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake

    2013-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments. PMID:23072472

  9. Energy efficiency in membrane bioreactors.

    PubMed

    Barillon, B; Martin Ruel, S; Langlais, C; Lazarova, V

    2013-01-01

    Energy consumption remains the key factor for the optimisation of the performance of membrane bioreactors (MBRs). This paper presents the results of the detailed energy audits of six full-scale MBRs operated by Suez Environnement in France, Spain and the USA based on on-site energy measurement and analysis of plant operation parameters and treatment performance. Specific energy consumption is compared for two different MBR configurations (flat sheet and hollow fibre membranes) and for plants with different design, loads and operation parameters. The aim of this project was to understand how the energy is consumed in MBR facilities and under which operating conditions, in order to finally provide guidelines and recommended practices for optimisation of MBR operation and design to reduce energy consumption and environmental impacts. PMID:23787304

  10. Thin film bioreactors in space

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  11. NASA Bioreactors Advance Disease Treatments

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The International Space Station (ISS) is falling. This is no threat to the astronauts onboard, however, because falling is part of the ISS staying in orbit. The absence of gravity beyond the Earth s atmosphere is actually an illusion; at the ISS s orbital altitude of approximately 250 miles above the surface, the planet s gravitational pull is only 12-percent weaker than on the ground. Gravity is constantly pulling the ISS back to Earth, but the space station is also constantly traveling at nearly 18,000 miles per hour. This means that, even though the ISS is falling toward Earth, it is moving sideways fast enough to continually miss impacting the planet. The balance between the force of gravity and the ISS s motion creates a stable orbit, and the fact that the ISS and everything in it including the astronauts are falling at an equal rate creates the condition of weightlessness called microgravity. The constant falling of objects in orbit is not only an important principle in space, but it is also a key element of a revolutionary NASA technology here on Earth that may soon help cure medical ailments from heart disease to diabetes. In the mid-1980s, NASA researchers at Johnson Space Center were investigating the effects of long-term microgravity on human tissues. At the time, the Agency s shuttle fleet was grounded following the 1986 Space Shuttle Challenger disaster, and researchers had no access to the microgravity conditions of space. To provide a method for recreating such conditions on Earth, Johnson s David Wolf, Tinh Trinh, and Ray Schwarz developed that same year a horizontal, rotating device called a rotating wall bioreactor that allowed the growth of human cells in simulated weightlessness. Previously, cell cultures on Earth could only be grown two-dimensionally in Petri dishes, because gravity would cause the multiplying cells to sink within their growth medium. These cells do not look or function like real human cells, which grow three-dimensionally in

  12. Colon tumor cells grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These photos compare the results of colon carcinoma cells grown in a NASA Bioreactor flown on the STS-70 Space Shuttle in 1995 flight and ground control experiments. The cells grown in microgravity (left) have aggregated to form masses that are larger and more similar to tissue found in the body than the cells cultured on the ground (right). The principal investigator is Milburn Jessup of the University of Texas M. D. Anderson Cancer Center. The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. Cell constructs grown in a rotating bioreactor on Earth (left) eventually become too large to stay suspended in the nutrient media. In the microgravity of orbit, the cells stay suspended. Rotation then is needed for gentle stirring to replenish the media around the cells. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and University of Texas M. D. Anderson Cancer Center.

  13. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Functionally connected heart cells that are capable of transmitting electrical signals are the goal for Freed and Vunjak-Novakovic. Electrophysiological recordings of engineered tissue show spontaneous contractions at a rate of 70 beats per minute (a), and paced contractions at rates of 80, 150, and 200 beats per minute respectively (b, c, and d). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: NASA and MIT.

  14. Heart tissue grown in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Lisa Freed and Gordana Vunjak-Novakovic, both of the Massachusetts Institute of Technology (MIT), have taken the first steps toward engineering heart muscle tissue that could one day be used to patch damaged human hearts. Cells isolated from very young animals are attached to a three-dimensional polymer scaffold, then placed in a NASA bioreactor. The cells do not divide, but after about a week start to cornect to form a functional piece of tissue. Here, a transmission electron micrograph of engineered tissue shows a number of important landmarks present in functional heart tissue: (A) well-organized myofilaments (Mfl), z-lines (Z), and abundant glycogen granules (Gly); and (D) intercalcated disc (ID) and desmosomes (DES). The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. The Bioreactor is rotated to provide gentle mixing of fresh and spent nutrient without inducing shear forces that would damage the cells. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues being cultured in rotating bioreactors by investigators. The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). Credit: MIT

  15. Simplified Bioreactor For Growing Mammalian Cells

    NASA Technical Reports Server (NTRS)

    Spaulding, Glenn F.

    1995-01-01

    Improved bioreactor for growing mammalian cell cultures developed. Designed to support growth of dense volumes of mammalian cells by providing ample, well-distributed flows of nutrient solution with minimal turbulence. Cells relatively delicate and, unlike bacteria, cannot withstand shear forces present in turbulent flows. Bioreactor vessel readily made in larger sizes to accommodate greater cell production quantities. Molding equipment presently used makes cylinders up to 30 centimeters long. Alternative sintered plastic techniques used to vary pore size and quantity, as necessary.

  16. Dense periodic packings of tori

    NASA Astrophysics Data System (ADS)

    Gabbrielli, Ruggero; Jiao, Yang; Torquato, Salvatore

    2014-02-01

    Dense packings of nonoverlapping bodies in three-dimensional Euclidean space R3 are useful models of the structure of a variety of many-particle systems that arise in the physical and biological sciences. Here we investigate the packing behavior of congruent ring tori in R3, which are multiply connected nonconvex bodies of genus 1, as well as horn and spindle tori. Specifically, we analytically construct a family of dense periodic packings of unlinked tori guided by the organizing principles originally devised for simply connected solid bodies [22 Torquato and Jiao, Phys. Rev. E 86, 011102 (2012), 10.1103/PhysRevE.86.011102]. We find that the horn tori as well as certain spindle and ring tori can achieve a packing density not only higher than that of spheres (i.e., π /√18 =0.7404...) but also higher than the densest known ellipsoid packings (i.e., 0.7707...). In addition, we study dense packings of clusters of pair-linked ring tori (i.e., Hopf links), which can possess much higher densities than corresponding packings consisting of unlinked tori.

  17. Valve stem and packing assembly

    DOEpatents

    Wordin, John J.

    1991-01-01

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents overtightening of the retaining nut and the resulting excessive friction between stem and stem packing.

  18. Valve stem and packing assembly

    DOEpatents

    Wordin, J.J.

    1991-09-03

    A valve stem and packing assembly is provided in which a rotatable valve stem includes a first tractrix surface for sliding contact with a stem packing and also includes a second tractrix surface for sliding contact with a bonnet. Force is applied by means of a spring, gland flange, and gland on the stem packing so the stem packing seals to the valve stem and bonnet. This configuration serves to create and maintain a reliable seal between the stem packing and the valve stem. The bonnet includes a second complementary tractrix surface for contacting the second sliding tractrix surface, the combination serving as a journal bearing for the entire valve stem and packing assembly. The journal bearing so configured is known as a Schiele's pivot. The Schiele's pivot also serves to maintain proper alignment of the valve stem with respect to the bonnet. Vertical wear between the surfaces of the Schiele's pivot is uniform at all points of contact between the second sliding tractrix surface and the second complementary tractrix surface of a bonnet. The valve stem is connected to a valve plug by means of a slip joint. The valve is opened and closed by rotating the valve stem. The slip joint compensates for wear on the Schiele's pivot and on the valve plug. A ledge is provided on the valve bonnet for the retaining nut to bear against. The ledge prevents over tightening of the retaining nut and the resulting excessive friction between stem and stem packing. 2 figures.

  19. Method for packing chromatographic beds

    DOEpatents

    Freeman, David H.; Angeles, Rosalie M.; Keller, Suzanne

    1991-01-01

    Column chromatography beds are packed through the application of static force. A slurry of the chromatography bed material and a non-viscous liquid is filled into the column plugged at one end, and allowed to settle. The column is transferred to a centrifuge, and centrifuged for a brief period of time to achieve a predetermined packing level, at a range generally of 100-5,000 gravities. Thereafter, the plug is removed, other fixtures may be secured, and the liquid is allowed to flow out through the bed. This results in an evenly packed bed, with no channeling or preferential flow characteristics.

  20. Estimation of flow and transport parameters for woodchip based bioreactors: I. laboratory-scale bioreactor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In subsurface bioreactors used for tile drainage systems, carbon sources are used to facilitate denitrification. The objective of this study was to estimate hydraulic conductivity, effective porosity, dispersivity, and first-order decay coefficients for a laboratory-scale bioreactor with woodchips a...

  1. 2,4-Dichlorophenol (DCP) containing wastewater treatment using a hybrid-loop bioreactor.

    PubMed

    Dilaver, Mehmet; Kargi, Fikret

    2009-02-01

    Synthetic wastewater containing 2,4-dichlorophenol (DCP) was biologically treated using a hybrid-loop bioreactor system consisting of a packed column biofilm reactor (PCBR) and an aerated tank with effluent recycle. Effects of the feed DCP concentration on COD, DCP and toxicity removals were investigated. Biomass concentration in the packed column and in the aeration tank decreased with increasing feed DCP content due to toxic effects of DCP on the microorganisms. Low biomass concentrations at high DCP contents resulted in low COD, DCP and toxicity removals. Therefore, percent DCP, COD and toxicity removals decreased with increasing feed DCP content. Nearly 70% COD removal was achieved with a feed DCP content of 380 mg L(-1). The system should be operated with the feed DCP lower than 100 mg L(-1) in order to obtain DCP, COD and toxicity removals above 90%. PMID:18778931

  2. Hydrogen consumption by methanogens on the early Earth.

    PubMed

    Kral, T A; Brink, K M; Miller, S L; McKay, C P

    1998-06-01

    It is possible that the first autotroph used chemical energy rather than light. This could have been the main source of primary production after the initial inventory of abiotic organic material had been depleted. The electron acceptor most readily available for use by this first chemoautotroph would have been CO2. The most abundant electron donor may have been H2 that would have been outgassing from volcanoes at a rate estimated to be as large as 10(12) moles yr-1, as well as from photo-oxidation of Fe+2. We report here that certain methanogens will consume H2 down to partial pressures as low as 4 Pa (4 x 10(-5) atm) with CO2 as the sole carbon source at a rate of 0.7 ng H2 min-1 microgram-1 cell protein. The lower limit of pH2 for growth of methanogens can be understood on the basis that the pH2 needs to be high enough for one ATP to be synthesized per CO2 reduced. The pH2 values needed for growth measured here are consistent with those measured by Stevens and McKinley for growth of methanogens in deep basalt aquifers. H2-consuming autotrophs are likely to have had a profound effect on the chemistry of the early atmosphere and to have been a dominant sink for H2 on the early Earth after life began rather than escape from the Earth's atmosphere to space. PMID:9611769

  3. Kinetics of phenol biodegradation by an immobilized methanogenic consortium

    SciTech Connect

    Dwyer, D.F.; Krumme, M.L.; Boyd, S.A.; Tiedje, J.M.

    1986-08-01

    A phenol-degrading methanogenic enrichment was successfully immobilized in agar as shown by the stoichiometric conversion of phenol to CH/sub 4/ and CO/sub 2/. The enrichment contained members of three physiological groups necessary for the syntrophic mineralization of phenol: a phenol-oxidizing bacterium, a Methanothrix-like bacterium, and an H/sub 2/-utilizing methanogen. The immobilization technique resulted in the cells being embedded in a long, thin agar strans (1 mm in diameter by 2 to 50 cm in length) that resembled spaghetti. Immobilization had three effects as shown by a comparative kinetic analysis of phenol degradation by free versus immobilized cells. (1) The maximum rate of degradation was reduced from 14.8 to 10.0 ..mu..g of phenol per h; (2) the apparent K/sub m/ for the overall reaction was reduced from 90 to 46 ..mu..g of phenol per ml. probably because of the retention of acetate, H/sub 2/ and CO/sub 2/ in the proximity of immobilized methanogens; and (3) the cells were protected from substrate inhibition caused by high concentrations of phenol, which increased the apparent K/sub i/ value from 900 to 1725 ..mu..g of phenol per ml. Estimates for the kinetic parameters K/sub m/, K/sub i/, and V/sub max/ were used in a modified substrate inhibition model that simulated rates of phenol degradation for given phenol concentrations. The simulated rates were in close agreement with experimentally derived rates for both stimulatory and inhibitory concentrations of phenol.

  4. Degradation of hydrocarbons under methanogenic conditions in different geosystems

    NASA Astrophysics Data System (ADS)

    Straaten, Nontje; Jiménez García, Núria; Richnow, Hans-Hermann; Krueger, Martin

    2014-05-01

    With increasing energy demand the search for new resources is becoming increasingly important for the future energy supply. Therefore the knowledge about fossil fuels like oil or natural gas and their extraction should be expanded. Biodegraded oil is found in many reservoirs worldwide. Consequently, it is very important to get insight in the microbial communities and metabolic processes involved in hydrocarbon degradation. Due to the lack of alternative electron acceptors in hydrocarbon-rich geosystems, degradation often takes place under methanogenic conditions. The aim of the present study is to identify the microorganisms and mechanisms involved in the degradation of complex hydrocarbons, like BTEX and polycyclic aromatic hydrocarbons, using culture dependent and independent techniques. For this purpose enrichment cultures from marine sediments, shales, coal and oil reservoirs are monitored for their capability to degrade alkanes and aromatic compounds. Moreover the environmental samples of these different geosystems analysed for evidence for the in situ occurrence of methanogenic oil degradation. The gas geochemical data provided in several cases hints for a recent biological origin of the methane present. First results of the microbial community analysis showed in environmental samples and enrichment cultures the existence of Bacteria known to degrade hydrocarbons. Also a diverse community of methanogenic Archaea could be found in the clone libraries. Additionally, in oil and coal reservoir samples the degradation of model hydrocarbons, e.g. methylnaphthalene, hexadecane and BTEX, to CH4 was confirmed by 13C-labeling. To explore the mechanisms involved in biodegradation, the enrichments as well as the original environmental samples are further analysed for the presence of respective functional genes.

  5. Effect of temperature on perchloroethylene dechlorination by a methanogenic consortium

    SciTech Connect

    Gao, J.; Skeen, R.S.; Hooker, B.S.

    1995-04-01

    The effect of temperature on the kinetics of growth, substrate metabolism, and perchloroethylene (PCE) dechlorination by a methanogenic consortium is reported. In all cases, a simple kinetic model accurately reflected experimental data. Values for the substrate and methane yield coefficients, and the maximum specific growth rate are fairly consistent at each temperature. Also, the substrate and methane yield coefficients show little temperature sensitivity. In contrast, both the maximum specific growth rate and the PCE dechlorination yield coefficient (Y{sub PCE}) are temperature dependent.

  6. Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics.

    PubMed

    Graham, David E; White, Robert H

    2002-04-01

    Methanogenesis, the anaerobic production of methane from CO2 or simple carbon compounds, requires seven organic coenzymes. This review describes pathways for the biosynthesis of methanofuran, 5,6,7,8-tetrahydromethanopterin, coenzyme F420, coenzyme M (2-mercaptoethanesulfonic acid) and coenzyme B (7-mercaptoheptanoyl-L-threonine phosphate). Spectroscopic evidence for the pathways is reviewed and recent efforts are described to identify and characterize the biosynthetic enzymes from methanogenic archaea. The literature from 1971 to September 2001 is reviewed, and 169 references are cited. PMID:12013276

  7. Heating Luggage Sends Bedbugs Packing

    MedlinePlus

    ... gov/news/fullstory_160234.html Heating Luggage Sends Bedbugs Packing Just 6 minutes at about 160 degrees ... 3, 2016 WEDNESDAY, Aug. 3, 2016 (HealthDay News) -- Bedbugs, those creepy crawly insects that feed on your ...

  8. Method for Indirect Quantification of CH4 Production via H2O Production Using Hydrogenotrophic Methanogens.

    PubMed

    Taubner, Ruth-Sophie; Rittmann, Simon K-M R

    2016-01-01

    Hydrogenotrophic methanogens are an intriguing group of microorganisms from the domain Archaea. Methanogens exhibit extraordinary ecological, biochemical, and physiological characteristics and possess a huge biotechnological potential. Yet, the only possibility to assess the methane (CH4) production potential of hydrogenotrophic methanogens is to apply gas chromatographic quantification of CH4. In order to be able to effectively screen pure cultures of hydrogenotrophic methanogens regarding their CH4 production potential we developed a novel method for indirect quantification of the volumetric CH4 production rate by measuring the volumetric water production rate. This method was established in serum bottles for cultivation of methanogens in closed batch cultivation mode. Water production was estimated by determining the difference in mass increase in a quasi-isobaric setting. This novel CH4 quantification method is an accurate and precise analytical technique, which can be used to rapidly screen pure cultures of methanogens regarding their volumetric CH4 evolution rate. It is a cost effective alternative determining CH4 production of methanogens over CH4 quantification by using gas chromatography, especially if applied as a high throughput quantification method. Eventually, the method can be universally applied for quantification of CH4 production from psychrophilic, thermophilic and hyperthermophilic hydrogenotrophic methanogens. PMID:27199898

  9. Method for Indirect Quantification of CH4 Production via H2O Production Using Hydrogenotrophic Methanogens

    PubMed Central

    Taubner, Ruth-Sophie; Rittmann, Simon K.-M. R.

    2016-01-01

    Hydrogenotrophic methanogens are an intriguing group of microorganisms from the domain Archaea. Methanogens exhibit extraordinary ecological, biochemical, and physiological characteristics and possess a huge biotechnological potential. Yet, the only possibility to assess the methane (CH4) production potential of hydrogenotrophic methanogens is to apply gas chromatographic quantification of CH4. In order to be able to effectively screen pure cultures of hydrogenotrophic methanogens regarding their CH4 production potential we developed a novel method for indirect quantification of the volumetric CH4 production rate by measuring the volumetric water production rate. This method was established in serum bottles for cultivation of methanogens in closed batch cultivation mode. Water production was estimated by determining the difference in mass increase in a quasi-isobaric setting. This novel CH4 quantification method is an accurate and precise analytical technique, which can be used to rapidly screen pure cultures of methanogens regarding their volumetric CH4 evolution rate. It is a cost effective alternative determining CH4 production of methanogens over CH4 quantification by using gas chromatography, especially if applied as a high throughput quantification method. Eventually, the method can be universally applied for quantification of CH4 production from psychrophilic, thermophilic and hyperthermophilic hydrogenotrophic methanogens. PMID:27199898

  10. Methane Production and Methanogenic Archaea in the Digestive Tracts of Millipedes (Diplopoda)

    PubMed Central

    Šustr, Vladimír; Chroňáková, Alica; Semanová, Stanislava; Tajovský, Karel; Šimek, Miloslav

    2014-01-01

    Methane production by intestinal methanogenic Archaea and their community structure were compared among phylogenetic lineages of millipedes. Tropical and temperate millipedes of 35 species and 17 families were investigated. Species that emitted methane were mostly in the juliform orders Julida, Spirobolida, and Spirostreptida. The irregular phylogenetic distribution of methane production correlated with the presence of the methanogen-specific mcrA gene. The study brings the first detailed survey of methanogens’ diversity in the digestive tract of millipedes. Sequences related to Methanosarcinales, Methanobacteriales, Methanomicrobiales and some unclassified Archaea were detected using molecular profiling (DGGE). The differences in substrate preferences of the main lineages of methanogenic Archaea found in different millipede orders indicate that the composition of methanogen communities may reflect the differences in available substrates for methanogenesis or the presence of symbiotic protozoa in the digestive tract. We conclude that differences in methane production in the millipede gut reflect differences in the activity and proliferation of intestinal methanogens rather than an absolute inability of some millipede taxa to host methanogens. This inference was supported by the general presence of methanogenic activity in millipede faecal pellets and the presence of the 16S rRNA gene of methanogens in all tested taxa in the two main groups of millipedes, the Helminthophora and the Pentazonia. PMID:25028969

  11. Draft Genome Sequence of the Rumen Methanogen Methanobrevibacter olleyae YLM1

    PubMed Central

    Kelly, William J.; Li, Dong; Lambie, Suzanne C.; Cox, Faith; Attwood, Graeme T.; Altermann, Eric

    2016-01-01

    Methanobrevibacter olleyae YLM1 is a hydrogenotrophic methanogen, isolated from the rumen of a lamb. Its genome has been sequenced to provide information on the genomic diversity of rumen methanogens and support the development of approaches to reduce methane formation by ruminants. PMID:27056228

  12. Experimental investigation on feasible bioreactor using mechanism of hydrogen oxidation of natural soil for detritiation system.

    PubMed

    Edao, Yuki; Iwai, Yasunori; Sato, Katsumi; Hayashi, Takumi

    2016-08-01

    A passive reactor for tritium oxidation at room temperature has been widely studied in nuclear engineering especially for a detritiation system (DS) of a tritium process facility taking possible extraordinary situation severely into consideration. We have focused on bacterial oxidation of tritium by hydrogen-oxidizing bacteria in natural soil to realize the passive oxidation reactor. The purpose of this study was to examine the feasibility of a bioreactor with hydrogen-oxidizing bacteria in soil from a point of view of engineering. The efficiency of the bioreactor was evaluated by kinetics. The bioreactor packed with natural soil shows a relative high conversion rate of tritium under the saturated moisture condition at room temperature, which is obviously superior to that of a Pt/Al2O3 catalyst generally used for tritium oxidation in the existing tritium handling facilities. The order of reaction for tritium oxidation with soil was the pseudo-first order as assessed with Michaelis-Menten kinetics model. Our engineering suggestion to increase the reaction rate is the intentional addition of hydrogen at a small concentration in the feed gas on condition that the oxidation of tritium with soil is expressed by the Michaelis-Menten kinetics model. PMID:27180219

  13. Are proteins well-packed?

    PubMed

    Liang, J; Dill, K A

    2001-08-01

    The average packing density inside proteins is as high as in crystalline solids. Does this mean proteins are well-packed? We go beyond average densities, and look at the full distribution functions of free volumes inside proteins. Using a new and rigorous Delaunay triangulation method for parsing space into empty and filled regions, we introduce formal definitions of interior and surface packing densities. Although proteins look like organic crystals by the criterion of average density, they look more like liquids and glasses by the criterion of their free volume distributions. The distributions are broad, and the scalings of volume-to-surface, volume-to-cluster-radius, and numbers of void versus volume show that the interiors of proteins are more like randomly packed spheres near their percolation threshold than like jigsaw puzzles. We find that larger proteins are packed more loosely than smaller proteins. And we find that the enthalpies of folding (per amino acid) are independent of the packing density of a protein, indicating that van der Waals interactions are not a dominant component of the folding forces. PMID:11463623

  14. Pattern formations and optimal packing.

    PubMed

    Mityushev, Vladimir

    2016-04-01

    Patterns of different symmetries may arise after solution to reaction-diffusion equations. Hexagonal arrays, layers and their perturbations are observed in different models after numerical solution to the corresponding initial-boundary value problems. We demonstrate an intimate connection between pattern formations and optimal random packing on the plane. The main study is based on the following two points. First, the diffusive flux in reaction-diffusion systems is approximated by piecewise linear functions in the framework of structural approximations. This leads to a discrete network approximation of the considered continuous problem. Second, the discrete energy minimization yields optimal random packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern formations based on the reaction-diffusion equations is reduced to the geometric problem of random packing. It is demonstrated that all random packings can be divided onto classes associated with classes of isomorphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in each class of the random packings. If the number of disks per representative cell is finite, the number of classes of isomorphic graphs, hence, the number of optimal packings is also finite. PMID:26852668

  15. Oligonucleotide primers, probes and molecular methods for the environmental monitoring of methanogenic archaea

    PubMed Central

    Narihiro, Takashi; Sekiguchi, Yuji

    2011-01-01

    Summary For the identification and quantification of methanogenic archaea (methanogens) in environmental samples, various oligonucleotide probes/primers targeting phylogenetic markers of methanogens, such as 16S rRNA, 16S rRNA gene and the gene for the α‐subunit of methyl coenzyme M reductase (mcrA), have been extensively developed and characterized experimentally. These oligonucleotides were designed to resolve different groups of methanogens at different taxonomic levels, and have been widely used as hybridization probes or polymerase chain reaction primers for membrane hybridization, fluorescence in situ hybridization, rRNA cleavage method, gene cloning, DNA microarray and quantitative polymerase chain reaction for studies in environmental and determinative microbiology. In this review, we present a comprehensive list of such oligonucleotide probes/primers, which enable us to determine methanogen populations in an environment quantitatively and hierarchically, with examples of the practical applications of the probes and primers. PMID:21375721

  16. Chloramphenicol acetyltransferase should not provide methanogens with resistance to chloramphenicol. [Methanococcus voltae; Methanococcus vannielii; Methanococcus deltae; Methanobrevibacter smithii

    SciTech Connect

    Beckler, G.S.; Hook, L.A.; Reeve, J.N.

    1984-04-01

    Growth of the four methanogens investigated was inhibitied by chloramphenicol-3-acetate; therefore, introduction of chloramphenicol acetyltransferase-encoding genes should not confer chloramphenicol resistance on these methanogens. Reduction of the aryl nitro group of chloramphenicol produced a compound which did not inhibit the growth of these methanogens. 9 references.

  17. Complete Genome Sequence of Methanogenic Archaeon ISO4-G1, a Member of the Methanomassiliicoccales, Isolated from a Sheep Rumen

    PubMed Central

    Kelly, William J.; Li, Dong; Lambie, Suzanne C.; Jeyanathan, Jeyamalar; Cox, Faith; Li, Yang; Attwood, Graeme T.; Altermann, Eric

    2016-01-01

    Methanogenic archaeon ISO4-G1 is a methylotrophic methanogen belonging to the order Methanomassiliicoccales that was isolated from a sheep rumen. Its genome has been sequenced to provide information on the genetic diversity of rumen methanogens in order to develop technologies for ruminant methane mitigation. PMID:27056226

  18. Methane formation and methane oxidation by methanogenic bacteria.

    PubMed Central

    Zehnder, A J; Brock, T D

    1979-01-01

    Methanogenic bacteria were found to form and oxidize methane at the same time. As compared to the quantity of methane formed, the amount of methane simultaneously oxidized varied between 0.3 and 0.001%, depending on the strain used. All the nine tested strains of methane producers (Methanobacterium ruminantium, Methanobacterium strain M.o.H., M. formicicum, M. thermoautotrophicum, M. arbophilicum, Methanobacterium strain AZ, Methanosarcina barkeri, Methanospirillum hungatii, and the "acetate organism") reoxidized methane to carbon dioxide. In addition, they assimilated a small part of the methane supplied into cell material. Methanol and acetate also occurred as oxidation products in M. barkeri cultures. Acetate was also formed by the "acetate organism," a methane bacterium unable to use methanogenic substrates other than acetate. Methane was the precursor of the methyl group of the acetate synthesized in the course of methane oxidation. Methane formation and its oxidation were inhibited equally by 2-bromoethanesulfonic acid. Short-term labeling experiments with M. thermoautotrophicum and M. hungatii clearly suggest that the pathway of methane oxidation is not identical with a simple back reaction of the methane formation process. Images PMID:762019

  19. Methanogens rapidly transition from methane production to iron reduction.

    PubMed

    Sivan, O; Shusta, S S; Valentine, D L

    2016-03-01

    Methanogenesis, the microbial methane (CH4 ) production, is traditionally thought to anchor the mineralization of organic matter as the ultimate respiratory process in deep sediments, despite the presence of oxidized mineral phases, such as iron oxides. This process is carried out by archaea that have also been shown to be capable of reducing iron in high levels of electron donors such as hydrogen. The current pure culture study demonstrates that methanogenic archaea (Methanosarcina barkeri) rapidly switch from methanogenesis to iron-oxide reduction close to natural conditions, with nitrogen atmosphere, even when faced with substrate limitations. Intensive, biotic iron reduction was observed following the addition of poorly crystalline ferrihydrite and complex organic matter and was accompanied by inhibition of methane production. The reaction rate of this process was of the first order and was dependent only on the initial iron concentrations. Ferrous iron production did not accelerate significantly with the addition of 9,10-anthraquinone-2,6-disulfonate (AQDS) but increased by 11-28% with the addition of phenazine-1-carboxylate (PCA), suggesting the possible role of methanophenazines in the electron transport. The coupling between ferrous iron and methane production has important global implications. The rapid transition from methanogenesis to reduction of iron-oxides close to the natural conditions in sediments may help to explain the globally-distributed phenomena of increasing ferrous concentrations below the traditional iron reduction zone in the deep 'methanogenic' sediment horizon, with implications for metabolic networking in these subsurface ecosystems and in past geological settings. PMID:26762691

  20. Restricted diversity of dental calculus methanogens over five centuries, France.

    PubMed

    Huynh, Hong T T; Nkamga, Vanessa D; Signoli, Michel; Tzortzis, Stéfan; Pinguet, Romuald; Audoly, Gilles; Aboudharam, Gérard; Drancourt, Michel

    2016-01-01

    Methanogens are acknowledged archaeal members of modern dental calculus microbiota and dental pathogen complexes. Their repertoire in ancient dental calculus is poorly known. We therefore investigated archaea in one hundred dental calculus specimens collected from individuals recovered from six archaeological sites in France dated from the 14(th) to 19(th) centuries AD. Dental calculus was demonstrated by macroscopic and cone-beam observations. In 56 calculus specimens free of PCR inhibition, PCR sequencing identified Candidatus Methanobrevibacter sp. N13 in 44.6%, Methanobrevibacter oralis in 19.6%, a new Methanomassiliicoccus luminyensis-like methanogen in 12.5%, a Candidatus Nitrososphaera evergladensis-like in one and Methanoculleus bourgensis in one specimen, respectively. One Candidatus Methanobrevibacter sp. N13 dental calculus was further documented by fluorescent in situ hybridization. The prevalence of dental calculus M. oralis was significantly lower in past populations than in modern populations (P = 0.03, Chi-square test). This investigation revealed a previously unknown repertoire of archaea found in the oral cavity of past French populations as reflected in preserved dental calculus. PMID:27166431

  1. Study of methanogens by genetic techniques. A subcontract progress report

    SciTech Connect

    Baresi, L.; Bertani, G.

    1984-06-01

    Genetic studies of methanogenic bacteria could lead to better exploitation of these organisms in the production of methane from biomass. The objective of this study is to develop a workable genetic system for these bacteria. We have tried to apply standard genetic techniques to these slow growing, strictly anaerobic bacteria. We have been able to isolate several types of mutants both spontaneous and induced. For Methanococcus voltae we have (a) established survival curves to ultraviolet light and gamma ray irradiation, (b) isolated by direct selection mutants resistant to bromo-ethane-sulfonate and to 5-methyl-tryptophan, and a double mutant exhibiting both resistances, (c) isolated after mutagenesis two nutritional mutants (one requiring histidine and the other requiring adenine and possibly another factor). For Methanobacterium thermoautotrophicum we have (a) established an ultraviolet light survival curve, (b) isolated by direct selection mutants resistant to bromo-ethane-sulfonate and to gentamicin. We have developed a routine technique for the purpose of isolating phages capable of infecting methanogenic bacteria. 10 figures, 1 table.

  2. Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.).

    PubMed

    Watkins, Andrew J; Roussel, Erwan G; Parkes, R John; Sass, Henrik

    2014-01-01

    Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners. PMID:24162571

  3. Genome Copy Numbers and Gene Conversion in Methanogenic Archaea▿

    PubMed Central

    Hildenbrand, Catherina; Stock, Tilmann; Lange, Christian; Rother, Michael; Soppa, Jörg

    2011-01-01

    Previous studies revealed that one species of methanogenic archaea, Methanocaldococcus jannaschii, is polyploid, while a second species, Methanothermobacter thermoautotrophicus, is diploid. To further investigate the distribution of ploidy in methanogenic archaea, species of two additional genera—Methanosarcina acetivorans and Methanococcus maripaludis—were investigated. M. acetivorans was found to be polyploid during fast growth (tD = 6 h; 17 genome copies) and oligoploid during slow growth (doubling time = 49 h; 3 genome copies). M. maripaludis has the highest ploidy level found for any archaeal species, with up to 55 genome copies in exponential phase and ca. 30 in stationary phase. A compilation of archaeal species with quantified ploidy levels reveals a clear dichotomy between Euryarchaeota and Crenarchaeota: none of seven euryarchaeal species of six genera is monoploid (haploid), while, in contrast, all six crenarchaeal species of four genera are monoploid, indicating significant genetic differences between these two kingdoms. Polyploidy in asexual species should lead to accumulation of inactivating mutations until the number of intact chromosomes per cell drops to zero (called “Muller's ratchet”). A mechanism to equalize the genome copies, such as gene conversion, would counteract this phenomenon. Making use of a previously constructed heterozygous mutant strain of the polyploid M. maripaludis we could show that in the absence of selection very fast equalization of genomes in M. maripaludis took place probably via a gene conversion mechanism. In addition, it was shown that the velocity of this phenomenon is inversely correlated to the strength of selection. PMID:21097629

  4. Restricted diversity of dental calculus methanogens over five centuries, France

    PubMed Central

    Huynh, Hong T. T.; Nkamga, Vanessa D.; Signoli, Michel; Tzortzis, Stéfan; Pinguet, Romuald; Audoly, Gilles; Aboudharam, Gérard; Drancourt, Michel

    2016-01-01

    Methanogens are acknowledged archaeal members of modern dental calculus microbiota and dental pathogen complexes. Their repertoire in ancient dental calculus is poorly known. We therefore investigated archaea in one hundred dental calculus specimens collected from individuals recovered from six archaeological sites in France dated from the 14th to 19th centuries AD. Dental calculus was demonstrated by macroscopic and cone-beam observations. In 56 calculus specimens free of PCR inhibition, PCR sequencing identified Candidatus Methanobrevibacter sp. N13 in 44.6%, Methanobrevibacter oralis in 19.6%, a new Methanomassiliicoccus luminyensis-like methanogen in 12.5%, a Candidatus Nitrososphaera evergladensis-like in one and Methanoculleus bourgensis in one specimen, respectively. One Candidatus Methanobrevibacter sp. N13 dental calculus was further documented by fluorescent in situ hybridization. The prevalence of dental calculus M. oralis was significantly lower in past populations than in modern populations (P = 0.03, Chi-square test). This investigation revealed a previously unknown repertoire of archaea found in the oral cavity of past French populations as reflected in preserved dental calculus. PMID:27166431

  5. Absolute Quantification of Individual Biomass Concentrations in a Methanogenic Coculture

    PubMed Central

    2014-01-01

    Identification of individual biomass concentrations is a crucial step towards an improved understanding of anaerobic digestion processes and mixed microbial conversions in general. The knowledge of individual biomass concentrations allows for the calculation of biomass specific conversion rates which form the basis of anaerobic digestion models. Only few attempts addressed the absolute quantification of individual biomass concentrations in methanogenic microbial ecosystems which has so far impaired the calculation of biomass specific conversion rates and thus model validation. This study proposes a quantitative PCR (qPCR) approach for the direct determination of individual biomass concentrations in methanogenic microbial associations by correlating the native qPCR signal (cycle threshold, Ct) to individual biomass concentrations (mg dry matter/L). Unlike existing methods, the proposed approach circumvents error-prone conversion factors that are typically used to convert gene copy numbers or cell concentrations into actual biomass concentrations. The newly developed method was assessed and deemed suitable for the determination of individual biomass concentrations in a defined coculture of Desulfovibrio sp. G11 and Methanospirillum hungatei JF1. The obtained calibration curves showed high accuracy, indicating that the new approach is well suited for any engineering applications where the knowledge of individual biomass concentrations is required. PMID:24949269

  6. Community and Proteomic Analysis of Methanogenic Consortia Degrading Terephthalate

    PubMed Central

    Wu, Feng-Yau; Chuang, Hui-Ping; Chen, Wei-Yu; Huang, Hung-Jen; Chen, Shu-Hui; Liu, Wen-Tso

    2013-01-01

    Degradation of terephthalate (TA) through microbial syntrophy under moderately thermophilic (46 to 50°C) methanogenic conditions was characterized by using a metagenomic approach (A. Lykidis et al., ISME J. 5:122–130, 2011). To further study the activities of key microorganisms responsible for the TA degradation, community analysis and shotgun proteomics were used. The results of hierarchical oligonucleotide primer extension analysis of PCR-amplified 16S rRNA genes indicated that Pelotomaculum, Methanosaeta, and Methanolinea were predominant in the TA-degrading biofilms. Metaproteomic analysis identified a total of 482 proteins and revealed a distinctive distribution pattern of microbial functions expressed in situ. The results confirmed that TA was degraded by Pelotomaculum spp. via the proposed decarboxylation and benzoyl-coenzyme A-dependent pathway. The intermediate by-products, including acetate, H2/CO2, and butyrate, were produced to support the growth of methanogens, as well as other microbial populations that could further degrade butyrate. Proteins related to energy production and conservation, and signal transduction mechanisms (that is, chemotaxis, PAS/GGDEF regulators, and stress proteins) were highly expressed, and these mechanisms were important for growth in energy-limited syntrophic ecosystems. PMID:23064332

  7. Glycine Betaine as a Direct Substrate for Methanogens (Methanococcoides spp.)

    PubMed Central

    Watkins, Andrew J.; Roussel, Erwan G.; Parkes, R. John

    2014-01-01

    Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners. PMID:24162571

  8. Two-stage anaerobic membrane bioreactor for the treatment of sugarcane vinasse: assessment on biological activity and filtration performance.

    PubMed

    Mota, Vera Tainá; Santos, Fábio S; Amaral, Míriam C S

    2013-10-01

    A two-stage submerged anaerobic membrane bioreactor (2-SAnMBR) was designed for the treatment of sugarcane vinasse. For start-up, the flow rate was reduced whenever VFA levels reached critical levels in the methanogenic reactor. After acclimation, the system was operated under a continuous flow. Separation of the stages was observed during the entire period of operation. VFA, COD and DOC levels of raw effluent, acidified effluent and permeate averaged 2141, 3525 and 61 mg VFA L(-1) (as acetic acid), 15727, 11512 and 488 mg COD L(-1), and, 3544, 3533 and 178 mg DOC L(-1), respectively. Overall COD and DOC removal efficiencies of 96.9±0.7% and 95.0±1.1%, respectively, were reached. Methane content of the biogas from the acidogenic and methanogenic reactors ranged 0.1-4.6% and 60.1-70.1%, respectively. Removable fouling strongly affected filtration performance and cake layer formation accounted for most of filtration resistance. Membrane resistance was related to presence of protein-like substances and carbohydrates. PMID:23958682

  9. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    PubMed Central

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  10. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    NASA Astrophysics Data System (ADS)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  11. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community.

    PubMed

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-01-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology. PMID:26830464

  12. Microbial dynamics in upflow anaerobic sludge blanket (UASB) bioreactor granules in response to short-term changes in substrate feed

    SciTech Connect

    Kovacik, William P.; Scholten, Johannes C.; Culley, David E.; Hickey, Robert; Zhang, Weiwen; Brockman, Fred J.

    2010-08-01

    The complexity and diversity of the microbial communities in biogranules from an upflow anaerobic sludge blanket (UASB) bioreactor were determined in response to short-term changes in substrate feeds. The reactor was fed simulated brewery wastewater (SBWW) (70% ethanol, 15% acetate, 15% propionate) for 1.5 months (phase 1), acetate / sulfate for 2 months (phase 2), acetate-alone for 3 months (phase 3), and then a return to SBWW for 2 months (phase 4). Performance of the reactor remained relatively stable throughout the experiment as shown by COD removal and gas production. 16S rDNA, methanogen-associated mcrA and sulfate reducer-associated dsrAB genes were PCR amplified, then cloned and sequenced. Sequence analysis of 16S clone libraries showed a relatively simple community composed mainly of the methanogenic Archaea (Methanobacterium and Methanosaeta), members of the Green Non-Sulfur (Chloroflexi) group of Bacteria, followed by fewer numbers of Syntrophobacter, Spirochaeta, Acidobacteria and Cytophaga-related Bacterial sequences. Methanogen-related mcrA clone libraries were dominated throughout by Methanobacter and Methanospirillum related sequences. Although not numerous enough to be detected in our 16S rDNA libraries, sulfate reducers were detected in dsrAB clone libraries, with sequences related to Desulfovibrio and Desulfomonile. Community diversity levels (Shannon-Weiner index) generally decreased for all libraries in response to a change from SBWW to acetate-alone feed. But there was a large transitory increase noted in 16S diversity at the two-month sampling on acetate-alone, entirely related to an increase in Bacterial diversity. Upon return to SBWW conditions in phase 4, all diversity measures returned to near phase 1 levels.

  13. Open Source Software to Control Bioflo Bioreactors

    PubMed Central

    Burdge, David A.; Libourel, Igor G. L.

    2014-01-01

    Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW. PMID:24667828

  14. Open source software to control Bioflo bioreactors.

    PubMed

    Burdge, David A; Libourel, Igor G L

    2014-01-01

    Bioreactors are designed to support highly controlled environments for growth of tissues, cell cultures or microbial cultures. A variety of bioreactors are commercially available, often including sophisticated software to enhance the functionality of the bioreactor. However, experiments that the bioreactor hardware can support, but that were not envisioned during the software design cannot be performed without developing custom software. In addition, support for third party or custom designed auxiliary hardware is often sparse or absent. This work presents flexible open source freeware for the control of bioreactors of the Bioflo product family. The functionality of the software includes setpoint control, data logging, and protocol execution. Auxiliary hardware can be easily integrated and controlled through an integrated plugin interface without altering existing software. Simple experimental protocols can be entered as a CSV scripting file, and a Python-based protocol execution model is included for more demanding conditional experimental control. The software was designed to be a more flexible and free open source alternative to the commercially available solution. The source code and various auxiliary hardware plugins are publicly available for download from https://github.com/LibourelLab/BiofloSoftware. In addition to the source code, the software was compiled and packaged as a self-installing file for 32 and 64 bit windows operating systems. The compiled software will be able to control a Bioflo system, and will not require the installation of LabVIEW. PMID:24667828

  15. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water

    USGS Publications Warehouse

    Smith, R.L.; Buckwalter, S.P.; Repert, D.A.; Miller, D.N.

    2005-01-01

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.

  16. 7 CFR 51.1217 - Standard pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Peaches Standard Pack § 51.1217 Standard pack. (a) Each package shall be packed so that the peaches in the shown face shall be reasonably representative in size, color and quality of the contents of the package. (b) Peaches packed in U.S. Standard bushel baskets, or half-bushel baskets,...

  17. 7 CFR 51.1217 - Standard pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Peaches Standard Pack § 51.1217 Standard pack. (a) Each package shall be packed so that the peaches in the shown face shall be reasonably representative in size, color and quality of the contents of the package. (b) Peaches packed in U.S....

  18. 7 CFR 51.1217 - Standard pack.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Peaches Standard Pack § 51.1217 Standard pack. (a) Each package shall be packed so that the peaches in the shown face shall be reasonably representative in size, color and quality of the contents of the package. (b) Peaches packed in U.S. Standard bushel baskets, or half-bushel baskets,...

  19. 7 CFR 51.1217 - Standard pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Peaches Standard Pack § 51.1217 Standard pack. (a) Each package shall be packed so that the peaches in the shown face shall be reasonably representative in size, color and quality of the contents of the package. (b) Peaches packed in U.S....

  20. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Fresh Plums and Prunes Standard Pack § 51.1527 Standard pack. (a) Packing. (1) All... plums or prunes in the top layer of any package shall be reasonably representative in quality and size of those in the remainder of the package. (3) “Well filled” means that the plums or prunes packed...

  1. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Grades of Fresh Plums and Prunes Standard Pack § 51.1527 Standard pack. (a) Packing. (1) All... plums or prunes in the top layer of any package shall be reasonably representative in quality and size of those in the remainder of the package. (3) “Well filled” means that the plums or prunes packed...

  2. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Fresh Plums and Prunes Standard Pack § 51.1527 Standard pack. (a) Packing. (1) All... plums or prunes in the top layer of any package shall be reasonably representative in quality and size of those in the remainder of the package. (3) “Well filled” means that the plums or prunes packed...

  3. 7 CFR 51.1217 - Standard pack.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades of Peaches Standard Pack § 51.1217 Standard pack. (a) Each package shall be packed so that the peaches in the shown face shall be reasonably representative in size, color and quality of the contents of the package. (b) Peaches packed in U.S. Standard bushel baskets, or half-bushel baskets,...

  4. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged.... 3 2 “Fairly tight” means that apples are of the proper size for molds or cell compartments in...

  5. 7 CFR 51.310 - Packing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Apples Packing Requirements § 51.310 Packing requirements. (a) Apples tray packed or cell packed in cartons shall be arranged.... 3 2 “Fairly tight” means that apples are of the proper size for molds or cell compartments in...

  6. Valve packings conquer fugitive emissions

    SciTech Connect

    1995-11-01

    In the early 1990s, when the US Environmental Protection Agency (EPA; Washington, D.C.) declared its intent to regulate fugitive emissions from valve-stem leakage, much of the chemical process industries (CPI) responded with fear and uncertainty. The biggest fear was that valve packing would not meet the required limits on leak rates and that expensive bellows seals may be required on many applications. The uncertainly was about how much it would cost. Today, for the most part, these concerns have been mitigated. It is estimated that about 80--90% of valves satisfy the emission requirements. The rest need some improvement in their packing systems to meet the regulations. Generally, these valves can be brought within compliance if the packing designers follow a few basic principles: Employ less-pliable outer rings and more-pliable inner rings; and don`t use excessive packing. While interest in valve packing remains high, mechanical seals continue to become more user-friendly. Many of those covered below are designed to run dry, and some can even tolerate high shaft-wobble without damage. Also look for improved flange gaskets and a host of seals to protect bearings. Twenty-one summaries are presented on new products and services.

  7. Hard sphere packings within cylinders.

    PubMed

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-02-23

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle. PMID:26843132

  8. Design concepts for bioreactors in space

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Peterson, G. R.; Beard, B.; Dunlop, E. H.

    1986-01-01

    Microbial food sources are becoming viable and more efficient alternatives to conventional food sources especially in the context of Closed Ecological Life Support Systems (CELSS) in space habitats. Since bioreactor designs for terrestrial operation will not readily apply to conditions of microgravity, there is an urgent need to learn about the differences. These differences cannot be easily estimated due to the complex nature of the mass transport and mixing mechanisms in fermenters. Therefore, a systematic and expeditious experimental program must be undertaken to obtain the engineering data necessary to lay down the foundations of designing bioreactors for microgravity. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecrafts, space stations and other extra-terrestrial habitats.

  9. Microbial community in packed bed bioreactor involved in nitrate remediation from low level radioactive waste.

    PubMed

    Mishra, Madhusmita; Jain, Savita; Thakur, Ashoke Ranjan; RayChaudhuri, Shaon

    2014-03-01

    Nitrate is the second largest contaminant of agriculture soil after pesticides. It also is a major pollutant from nuclear and metallurgical operations. Conventional methods for nitrate removal suffers from high cost and complexity leaving bioremediation as a viable alternative strategy. A pilot plant of 2.5 m(3)/day capacity has been functioning since 2005 based on microbial consortia treating actual effluent from nuclear power plant having pH of 7-8.5 (optimum) with N:C ratio of 1:1.7. The maximum biodegradable nitrate concentration of 3000 ppm could be reduced to below permissible limit (44.2 ppm) within 24 h in presence of sodium acetate as carbon source. Culture independent analysis (16S rDNA based) revealed clones having closest identity with uncultured bacterium, Pseudomonas stutzeri and Azoarcus sp. The existence of dissimilatory pathway of nitrate reduction in the community DNA is indicated by presence of nirS and nirK gene. Though the microbial mass was developed using municipal sewage, absence of Mycobacterium sp was confirmed using PCR. The understanding of the molecular identification of the consortium would help in developing the preservation strategy of the microbial mass for replication and perpetuation of the system. PMID:23686842

  10. Sleeping distance in wild wolf packs

    USGS Publications Warehouse

    Knick, S.T.; Mech, L.D.

    1980-01-01

    Sleeping distances were observed among members of 13 wild wolf (Canis lupus) packs and 11 pairs in northeastern Minnesota to determine if the distances correlated with pack size and composition. The study utilized aerial radio-tracking and observation during winter. Pack size and number of adults per pack were inversely related to pack average sleeping distance and variability. No correlation between sleeping distance and microclimate was observed. Possible relationships between social bonding and our results are discussed.

  11. Development of a Space Bioreactor using Microtechnology

    NASA Technical Reports Server (NTRS)

    Arquint, Philippe; Boillat, Marc A.; deRooij, Nico F.; Jeanneret, Sylvain; vanderSchoot, Bart H.; Bechler, Birgitt; Cogoli, Augusto; Walther, Isabelle; Gass, Volker; Ivorra, Marie-Therese

    1995-01-01

    A miniature bio-reactor for the cultivation of cells aboard Spacelab is presented. Yeast cells are grown in a 3 milliliter reactor chamber. A supply of fresh nutrient medium is provided by a piezo-electric silicon micro-pump. In the reactor, pH, temperature, and redox potential are monitored and the pH is regulated at a constant value. The complete instrument is fitted in a standard experiment container of 63 x 63 x 85 mm. The bioreactor was used on the IML-2 mission in July 1994 and is being refurbished for a reflight in the spring of 1996.

  12. Bioreactor and methods for producing synchronous cells

    NASA Technical Reports Server (NTRS)

    Helmstetter, Charles E. (Inventor); Thornton, Maureen (Inventor); Gonda, Steve (Inventor)

    2005-01-01

    Apparatus and methods are directed to a perfusion culture system in which a rotating bioreactor is used to grow cells in a liquid culture medium, while these cells are attached to an adhesive-treated porous surface. As a result of this arrangement and its rotation, the attached cells divide, with one cell remaining attached to the substrate, while the other cell, a newborn cell is released. These newborn cells are of approximately the same age, that are collected upon leaving the bioreactor. The populations of newborn cells collected are of synchronous and are minimally, if at all, disturbed metabolically.

  13. Taxonomic status and ecologic function of methanogenic bacteria isolated from the oral cavity of humans

    SciTech Connect

    Kemp, C.W.

    1985-01-01

    The detection of methane gas in samples of dental plaque and media inoculated with dental plaque was attributed to the presence of methane-producing bacteria in the plaque microbiota. The results of a taxonomic analysis of the 12 methanogenic isolates obtained from human dental plaque, (ABK1-ABK12), placed the organisms in the genus Methanobrevibacter. A DNA-DNA hybridization survey established three distinct genetic groups of oral methanogens based on percent homology values. The groups exhibited less than 32% homology between themselves and less than 17% homology with the three known members of the genus methanobrevibacter. The ecological role of the oral methanogens was established using mixed cultures of selected methanogenic isolates (ABK1, ABK4, ABK6, or ABK7) with oral heterotrophic bacteria. Binary cultures of either Streptococcus mutans, Streptococcus sanguis, Veillonella rodentium, Lactobacillus casei, or Peptostreptococcus anaerobius together with either methanogenic isolates ABK6 or ABK7 were grown to determine the effect of the methanogens on the distribution of carbon end products produced by the heterotrophs. Binary cultures of S. mutans and ABK7 exhibited a 27% decrease in lactic acid formation when compared to pure culture of S. mutans. The decrease in lactic acid production was attributed to the removal of formate by the methanogen, (ABK7), which caused an alteration in the distribution of carbon end products by S. mutans.

  14. Acceleration of cellulose degradation and shift of product via methanogenic co-culture of a cellulolytic bacterium with a hydrogenotrophic methanogen.

    PubMed

    Sasaki, Daisuke; Morita, Masahiko; Sasaki, Kengo; Watanabe, Atsushi; Ohmura, Naoya

    2012-10-01

    Although the effects of syntrophic relationships between bacteria and methanogens have been reported in some environments, those on cellulose decomposition using cellulolytic bacteria from methanogenic reactors have not yet been examined. The effects of syntrophic co-culture on the decomposition of a cellulosic material were investigated in a co-culture of Clostridium clariflavum strain CL-1 and the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus strain ΔH and a single-culture of strain CL-1 under thermophilic conditions. In this study, strain CL-1 was newly isolated as a cellulolytic bacterium from a thermophilic methanogenic reactor used for degrading garbage slurry. The degradation efficiency and cell density of strain CL-1 were 2.9- and 2.7-fold higher in the co-culture than in the single-culture after 60 h of incubation, respectively. Acetate, lactate and ethanol were the primary products in both cultures, and the concentration of propionate was low. The content of acetate to total organic acids plus ethanol was 59.3% in the co-culture. However, the ratio decreased to 24.9% in the single-culture, although acetate was the primary product. Therefore, hydrogen scavenging by the hydrogenotrophic methanogen strain ΔH could shift the metabolic pathway to the acetate production pathway in the co-culture. Increases in the cell density and the consequent acceleration of cellulose degradation in the co-culture would be caused by increases in adenosine 5'-triphosphate (ATP) levels, as the acetate production pathway includes ATP generation. Syntrophic cellulose decomposition by the cellulolytic bacteria and hydrogenotrophic methanogens would be the dominant reaction in the thermophilic methanogenic reactor degrading cellulosic materials. PMID:22652087

  15. Membrane bioreactors for water reclamation.

    PubMed

    Tao, G; Kekre, K; Wei, Z; Lee, T C; Viswanath, B; Seah, H

    2005-01-01

    Singapore has been using dual membrane technology (MF/UF RO) to produce high-grade water (NEWater) from secondary treated sewage. Membrane bioreactor (MBR) has very high potential and will lead to the further improvement of the productivity and quality of high-grade water. This study was focused on the technical feasibility of MBR system for water reclamation in Singapore, making a comparison between various membrane systems available and to get operational experience in terms of membrane cleaning and other issues. Three MBR plants were built at Bedok Water Reclamation Plant with a design flow of 300 m3/day each. They were commissioned in March 2003. Three different types of submerged membranes were tested. They are Membrane A, plate sheet membrane with pore size of 0.4 microm; Membrane B, hollow fibre membrane with pore size of 0.4 microm; and Membrane C, hollow fibre membrane with pore size of 0.035 microm. The permeate quality of all the three MBR Systems were found equivalent to or better than that of the conventional tertiary treatment by ultrafiltration. MBR permeate TOC was about 2 mg/l lower than UF permeate TOC. GC-MS, GC-ECD and HPLC scan results show that trace organic contaminants in MBR permeate and UF permeate were in the same range. MBR power consumption can be less than 1 kwh/m3. Gel layer or dynamic membrane generated on the submerged membrane surface played an important role for the lower MBR permeate TOC than the supernatant TOC in the membrane tank. Intensive chemical cleaning can temporarily remove this layer. During normal operation conditions, the formation of dynamic membrane may need one day to obtain the steady low TOC levels in MBR permeate. PMID:16004005

  16. Cylinder valve packing nut studies

    SciTech Connect

    Blue, S.C.

    1991-12-31

    The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.

  17. Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea

    DOE PAGESBeta

    Rother, Michael; Krzycki, Joseph A.

    2010-01-01

    Methanogenic archaea are a group of strictly anaerobic microorganisms characterized by their strict dependence on the process of methanogenesis for energy conservation. Among the archaea, they are also the only known group synthesizing proteins containing selenocysteine or pyrrolysine. All but one of the known archaeal pyrrolysine-containing and all but two of the confirmed archaeal selenocysteine-containing protein are involved in methanogenesis. Synthesis of these proteins proceeds through suppression of translational stop codons but otherwise the two systems are fundamentally different. This paper highlights these differences and summarizes the recent developments in selenocysteine- and pyrrolysine-related research on archaea and aims to putmore » this knowledge into the context of their unique energy metabolism.« less

  18. Conversion of indole to oxindole under methanogenic conditions

    SciTech Connect

    Berry, D.F.; Madsen, E.L.; Bollag, J.M.

    1987-01-01

    Aromatic N-heterocyclic compounds are often present in aqueous effluents associated with coal mining and processing operations. The environmental fate of these chemicals is of great concern because they are toxic and may contaminate both surface water and groundwater. Previous investigations of microbial metabolism of aromatic chemicals under aerobic and anaerobic conditions suggest that microorganisms may play a key role in determining the fate of this class of compounds. When indole was incubated under methanogenic conditions with an inoculum of sewage sludge, the chemical was metabolized within 10 days and temporary formation of an intermediate was observed. The metabolite was isolated by thin-layer chromatography and determined to be 1,3-dihydro-2H-indol-2-one (oxindole) by UV spectroscopy (lambda/sub max/, 247 nm) and mass spectrometry (m/z, 133). The methane produced (net amount) indicated nearly complete mineralization of indole.

  19. Methanogenic burst in the end-Permian carbon cycle

    PubMed Central

    Rothman, Daniel H.; Fournier, Gregory P.; French, Katherine L.; Alm, Eric J.; Boyle, Edward A.; Cao, Changqun; Summons, Roger E.

    2014-01-01

    The end-Permian extinction is associated with a mysterious disruption to Earth’s carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth’s greatest mass extinction by a specific microbial innovation. PMID:24706773

  20. A multicommutated tester of bioreactors for flow analysis.

    PubMed

    Pokrzywnicka, Marta; Kamiński, Jacek; Michalec, Michał; Koncki, Robert; Tymecki, Łukasz

    2016-11-01

    Enzymes are often used in the modern analytical procedures allowing selective recognition and conversion of target analytes into easily detected products. In flow analysis systems, enzymes are predominantly applied in the immobilized forms as flow-through bioreactors. In this research the multicommutated flow analysis (MCFA) system for evaluation and comparison of analytical parameters of bioreactors has been developed. The MCFA manifold allows simultaneous testing up to four bioreactors, but if necessary their number can be easily increased. The system allows comparison of several parameters of tested bioreactors including activity, repeatability, reproducibility, operational and storage stability. The performance of developed bioreactor tester is presented using urea-urease model system based on plastic open-tubular bioreactor with covalently immobilized enzyme. Product of enzymatic reaction is detected using two different chemical methods and by dedicated optoelectronic ammonium detectors. Moreover, the utility of developed MCFA manifold for evaluation of other enzyme bioreactors is demonstrated. PMID:27591609

  1. Enhanced Biogas Production from Nanoscale Zero Valent Iron-Amended Anaerobic Bioreactors

    PubMed Central

    Carpenter, Alexis Wells; Laughton, Stephanie N.; Wiesner, Mark R.

    2015-01-01

    Abstract Addition of nanoscale zero valent iron (NZVI) to anaerobic batch reactors to enhance methanogenic activity is described. Two NZVI systems were tested: a commercially available NZVI (cNZVI) slurry and a freshly synthesized NZVI (sNZVI) suspension that was prepared immediately before addition to the reactors. In both systems, the addition of NZVI increased pH and decreased oxidation/reduction potential compared with unamended control reactors. Biodegradation of a model brewery wastewater was enhanced as indicated by an increase in chemical oxygen demand removal with both sNZVI and cNZVI amendments at all concentrations tested (1.25–5.0 g Fe/L). Methane production increased for all NZVI-amended bioreactors, with a maximum increase of 28% achieved on the addition of 2.5 and 5.0 g/L cNZVI. Addition of bulk zero-valent iron resulted in only a 5% increase in methane, indicating the advantage of using the nanoscale particles. NZVI amendments further improved produced biogas by decreasing the amount of CO2 released from the bioreactor by approximately 58%. Overall, addition of cNZVI proved more beneficial than the sNZVI at equal iron concentrations, due to decreased colloidal stability and larger effective particle size of sNZVI. Although some have reported cytotoxicity of NZVI to anaerobic microorganisms, work presented here suggests that NZVI of a certain particle size and reactivity can serve as an amendment to anaerobic digesters to enhance degradation and increase the value of the produced biogas, yielding a more energy-efficient anaerobic method for wastewater treatment. PMID:26339183

  2. A mechanistic model of hydrogen-methanogen dynamics in the rumen.

    PubMed

    Wang, Yuancheng; Janssen, Peter H; Lynch, Tammy A; Brunt, Bruce van; Pacheco, David

    2016-03-21

    Existing mathematical models to estimate methane production in the rumen are based on calculation of hydrogen balances without considering the presence of methanogens. In this study, a mechanistic model of methane production is proposed that depicts the interaction between hydrogen concentration and methanogens in the rumen. Analytical results show that it meets biological expectations, namely increased fractional passage rate leads to a greater growth rate of methanogens, and a greater steady state hydrogen concentration. This model provides a basis on which to develop a more comprehensive model of methane production in the rumen that includes thermodynamics and feed fermentation pathways. PMID:26780651

  3. Osmoregulation in methanogens. Progress report, May 15, 1991--January 15, 1993

    SciTech Connect

    Roberts, M.F.

    1993-01-01

    Our major goal of our work has been to develop and use NMR techniques to study how methanogenic archaebacteria deal with osmotic stress with the hope of providing insights into increasing the salt tolerance of other cells. The project has three main sections: (i) in vivo studies of methanogens; (ii) use of {sup l3}C- and {sup l5}N- labeled potential precursors and in vitro analyses of specific label uptake for elucidation of osmolyte dynamics and biosynthetic pathways of osmolytes in these organisms, and isolation of key biosynthetic enzymes; and (iii) collaborative studies on identification of organic solutes in other methanogens.

  4. Quantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization.

    PubMed Central

    Raskin, L; Poulsen, L K; Noguera, D R; Rittmann, B E; Stahl, D A

    1994-01-01

    The microbial community structure of anaerobic biological reactors was evaluated by using oligonucleotide probes complementary to conserved tracts of the 16S rRNAs of phylogenetically defined groups of methanogens. Phylogenetically defined groups of methanogens were quantified and visualized, respectively, by hybridization of 32P- and fluorescent-dye-labeled probes to the 16S rRNAs from samples taken from laboratory acetate-fed chemostats, laboratory municipal solid waste digestors, and full-scale sewage sludge digestors. Methanosarcina species, members of the order Methanobacteriales, and Methanosaeta species were the most abundant methanogens present in the chemostats, the solid-waste digestors, and the sewage sludge digestors, respectively. PMID:7517129

  5. Progression of methanogenic degradation of crude oil in the subsurface

    USGS Publications Warehouse

    Bekins, B.A.; Hostettler, F.D.; Herkelrath, W.N.; Delin, G.N.; Warren, E.; Essaid, H.I.

    2005-01-01

    Our results show that subsurface crude-oil degradation rates at a long-term research site were strongly influenced by small-scale variations in hydrologic conditions. The site is a shallow glacial outwash aquifer located near Bemidji in northern Minnesota that became contaminated when oil spilled from a broken pipeline in August 1979. In the study area, separate-phase oil forms a subsurface oil body extending from land surface to about 1 m (3.3 ft) below the 6-8-m (20-26 ft)-deep water table. Oil saturation in the sediments ranges from 10-20% in the vadose zone to 30-70% near the water table. At depths below 2 m (6.6 ft), degradation of the separate-phase crude oil occurs under methanogenic conditions. The sequence of methanogenic alkane degradation depletes the longer chain n-alkanes before the shorter chain n-alkanes, which is opposite to the better known aerobic sequence. The rates of degradation vary significantly with location in the subsurface. Oil-coated soils within 1.5 m (5 ft) of land surface have experienced little degradation where soil water saturation is less than 20%. Oil located 2-8 m (6.6-26 ft) below land surface in areas of higher recharge has been substantially degraded. The best explanation for the association between recharge and enhanced degradation seems to be increased downward transport of microbial growth nutrients to the oil body. This is supported by observations of greater microbial numbers at higher elevations in the oil body and significant decreases with depth in nutrient concentrations, especially phosphorus. Our results suggest that environmental effects may cause widely diverging degradation rates in the same spill, calling into question dating methods based on degradation state. Copyright ?? 2005. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  6. Enhancement of anaerobic acidogenesis by integrating an electrochemical system into an acidogenic reactor: effect of hydraulic retention times (HRT) and role of bacteria and acidophilic methanogenic Archaea.

    PubMed

    Zhang, Jingxin; Zhang, Yaobin; Quan, Xie; Chen, Shuo

    2015-03-01

    In this study, an acidogenic reactor packed with a pair of Fe-carbon electrodes (R1) was developed to enhance anaerobic acidogenesis of organic wastewater at short hydraulic retention times. The results indicated that the acidogenic efficiency was improved by settling a bio-electrochemical system. When hydraulic retention times decreased from 12 to 3h, R1 showed 18.9% more chemical oxygen demand removal and 13.8% more acidification efficiency. After cutting off the voltage of R1, the COD removal decreased by about 5%. Coupling of Fe(2+) leaching and electric field accelerated the hydrolysis of polysaccharide, relieving its accumulation in the sludge phase. Several acidophilic methanogenic Archaea such as Methanosarcina sp. were enriched in R1, which was favorable for consuming organic acids and preventing excessive pH decline. Thus, the developed acidogenic reactor with Fe-carbon electrodes is expected to be potentially effective and useful for wastewater treatment. PMID:25514401

  7. Evaluation of system performance and microbial communities of a bioaugmented anaerobic membrane bioreactor treating pharmaceutical wastewater.

    PubMed

    Ng, Kok Kwang; Shi, Xueqing; Ng, How Yong

    2015-09-15

    In this study, a control anaerobic membrane bioreactor (C-AnMBR) and a bioaugmented anaerobic membrane bioreactor (B-AnMBR) were operated for 210 d to treat pharmaceutical wastewater. Both the bioreactors were fed with the pharmaceutical wastewater containing TCOD of 16,249 ± 714 mg/L and total dissolved solids (TDS) of 29,450 ± 2209 mg/L with an organic loading rate (OLR) of 13.0 ± 0.6 kgCOD/m(3)d. Under steady-state condition, an average total chemical oxygen demand (TCOD) removal efficiency of 46.1 ± 2.9% and 60.3 ± 2.8% was achieved by the C-AnMBR and the B-AnMBR, respectively. The conventional anaerobes in the C-AnMBR cannot tolerate the hypersaline conditions well, resulting in lower TCOD removal efficiency, biogas production and methane yield than the B-AnMBR seeded from the coastal shore. Pyrosequencing analysis indicated that marine bacterial species (Oliephilus sp.) and halophilic bacterial species (Thermohalobacter sp.) were only present in the B-AnMBR; these species could possibly degrade complex and recalcitrant organic matter and withstand hypersaline environments. Two different dominant archaeal communities, genus Methanosaeta (43.4%) and Methanolobus (61.7%), were identified as the dominant methanogens in the C-AnMBR and the B-AnMBR, respectively. The species of genus Methanolobus was reported resistant to penicillin and required sodium and magnesium for growth, which could enable it to thrive in the hypersaline environment. PMID:26086149

  8. Pack cementation coatings for alloys

    SciTech Connect

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A.

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  9. Computer simulations of particle packing

    SciTech Connect

    Cesarano, J. III; McEuen, M.J.; Swiler, T.

    1996-09-01

    Computer code has been developed to rapidly simulate the random packing of disks and spheres in two and three dimensions. Any size distribution may be packed. The code simulates varying degrees of inter particle conditions ranging from sticky to free flowing. The code will also calculate the overall packing density, density distributions, and void size distributions (in two dimensions). An important aspect of the code is that it is written in C++ and incorporates a user-friendly graphical interface for standard Macintosh and Power PC platforms. Investigations as to how well the code simulates the realistic random packing have begun. The code has been developed in consideration of the problem of filling a container (or die) with spray-dried granules of ceramic powder (represented by spheres). Although not presented here, the futuristic goal of this work is to give users the ability to predict homogeneity of filled dies prior to dry pressing. Additionally, this software has educational utility for studying relationships between particle size distributions and macrostructures.

  10. Ecology and Energy Action Pack.

    ERIC Educational Resources Information Center

    McDonald's Corp., Oak Brook, IL.

    One of five McDonald's Action Packs, these elementary school-level instructional materials are for use as an introduction to existing units of study, supplements to a textbook, or a source of special projects for environmental education. Contents include these six units: Make Your Own Ecology Mini-spinner, Let's Look at a Food Chain, Drip the…

  11. Set covering, partition and packing

    SciTech Connect

    Hulme, B.L.; Baca, L.S.

    1984-03-01

    Set covering problems are known to be solvable by Boolean algebraic methods. This report shows that set partition and set packing problems can be solved by the same algebraic methods because these problems can be converted into covering problems. Many applications are possible including security patrol assignment which is used as an example.

  12. Microfabricated packed gas chromatographic column

    DOEpatents

    Kottenstette, Richard; Matzke, Carolyn M.; Frye-Mason, Gregory C.

    2003-12-16

    A new class of miniaturized gas chromatographic columns has been invented. These chromatographic columns are formed using conventional micromachining techniques, and allow packed columns having lengths on the order of a meter to be fabricated with a footprint on the order of a square centimeter.

  13. MONITORING APPROACHES FOR BIOREACTOR LANDFILLS - Report

    EPA Science Inventory

    Experimental bioreactor landfill operations at operating Municipal Solid Waste (MSW) landfills can be approved under the research development and demonstration (RD&D) provisions of 30CFR 258.4. To provide a basis for consistent data collection for future decision-making in suppor...

  14. Continuous-Flow Gas-Phase Bioreactors

    NASA Technical Reports Server (NTRS)

    Wise, Donald L.; Trantolo, Debra J.

    1994-01-01

    Continuous-flow gas-phase bioreactors proposed for biochemical, food-processing, and related industries. Reactor contains one or more selected enzymes dehydrated or otherwise immobilized on solid carrier. Selected reactant gases fed into reactor, wherein chemical reactions catalyzed by enzyme(s) yield product biochemicals. Concept based on discovery that enzymes not necessarily placed in traditional aqueous environments to function as biocatalysts.

  15. SEMINAR PUBLICATION: LANDFILL BIOREACTOR DESIGN AND OPERATION

    EPA Science Inventory

    These proceedings are from a conference on the subject of municipal waste landfill (MSWLF) bioreactors that was held in Wilmington, Delaware on March 23-24, 199-5. iologically active landfill operation represents a fundamentally different operational technique foro MSWLFs because...

  16. Establishing Liver Bioreactors for In Vitro Research.

    PubMed

    Rebelo, Sofia P; Costa, Rita; Sousa, Marcos F Q; Brito, Catarina; Alves, Paula M

    2015-01-01

    In vitro systems that can effectively model liver function for long periods of time are fundamental tools for preclinical research. Nevertheless, the adoption of in vitro research tools at the earliest stages of drug development has been hampered by the lack of culture systems that offer the robustness, scalability, and flexibility necessary to meet industry's demands. Bioreactor-based technologies, such as stirred tank bioreactors, constitute a feasible approach to aggregate hepatic cells and maintain long-term three-dimensional cultures. These three-dimensional cultures sustain the polarity, differentiated phenotype, and metabolic performance of human hepatocytes. Culture in computer-controlled stirred tank bioreactors allows the maintenance of physiological conditions, such as pH, dissolved oxygen, and temperature, with minimal fluctuations. Moreover, by operating in perfusion mode, gradients of soluble factors and metabolic by-products can be established, aiming at resembling the in vivo microenvironment. This chapter provides a protocol for the aggregation and culture of hepatocyte spheroids in stirred tank bioreactors by applying perfusion mode for the long-term culture of human hepatocytes. This in vitro culture system is compatible with feeding high-throughput screening platforms for the assessment of drug elimination pathways, being a useful tool for toxicology research and drug development in the preclinical phase. PMID:26272143

  17. Engineering stem cell niches in bioreactors

    PubMed Central

    Liu, Meimei; Liu, Ning; Zang, Ru; Li, Yan; Yang, Shang-Tian

    2013-01-01

    Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as “niches”, to impact stem cell fate decision. The niche factors include the regulatory factors such as oxygen, extracellular matrix (synthetic and decellularized), paracrine/autocrine signaling and physical forces (i.e., mechanical force, electrical force and flow shear). The use of novel bioreactors with precise control and recapitulation of niche factors through modulating reactor operation parameters can enable efficient stem cell expansion and differentiation. Recently, the development of microfluidic devices and microbioreactors also provides powerful tools to manipulate the stem cell microenvironment by adjusting flow rate and cytokine gradients. In general, bioreactor engineering can be used to better modulate stem cell niches critical for stem cell expansion, differentiation and applications as novel cell-based biomedicines. This paper reviews important factors that can be more precisely controlled in bioreactors and their effects on stem cell engineering. PMID:24179601

  18. Human cell culture in a space bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.

    1988-01-01

    Microgravity offers new ways of handling fluids, gases, and growing mammalian cells in efficient suspension cultures. In 1976 bioreactor engineers designed a system using a cylindrical reactor vessel in which the cells and medium are slowly mixed. The reaction chamber is interchangeable and can be used for several types of cell cultures. NASA has methodically developed unique suspension type cell and recovery apparatus culture systems for bioprocess technology experiments and production of biological products in microgravity. The first Space Bioreactor was designed for microprocessor control, no gaseous headspace, circulation and resupply of culture medium, and slow mixing in very low shear regimes. Various ground based bioreactors are being used to test reactor vessel design, on-line sensors, effects of shear, nutrient supply, and waste removal from continuous culture of human cells attached to microcarriers. The small Bioreactor is being constructed for flight experiments in the Shuttle Middeck to verify systems operation under microgravity conditions and to measure the efficiencies of mass transport, gas transfer, oxygen consumption and control of low shear stress on cells.

  19. HIGH-PERFORMANCE STEREOSPECIFIC ELASTOMERS FROM BIOREACTORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2008, 10 million tons of natural rubber, cis-1,4-polyisoprene, will be produced for commercial use. Every molecule of that product will be produced in a microscopic bioreactor known as the rubber particle. These particles, suspended in an aqueous phase called latex, evolved to produce and store n...

  20. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    EPA Science Inventory

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  1. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies

    NASA Astrophysics Data System (ADS)

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittman, Simon K.-M. R.

    2015-12-01

    Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens.

  2. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions.

    PubMed Central

    Bouwer, E J; McCarty, P L

    1983-01-01

    Several 1- and 2-carbon halogenated aliphatic organic compounds present at low concentrations (less than 100 micrograms/liter) were degraded under methanogenic conditions in batch bacterial cultures and in a continuous-flow methanogenic fixed-film laboratory-scale column. Greater than 90% degradation was observed within a 2-day detention time under continuous-flow methanogenic conditions with acetate as a primary substrate. Carbon-14 measurements indicated that chloroform, carbon tetrachloride, and 1,2-dichloroethane were almost completely oxidized to carbon dioxide, confirming removal by biooxidation. The initial step in the transformations of tetrachloroethylene and 1,1,2,2-tetrachloroethane to nonchlorinated end products appeared to be reductive dechlorination to trichloroethylene and 1,1,2-trichloroethane, respectively. Transformations of the brominated aliphatic compounds appear to be the result of both biological and chemical processes. The data suggest that transformations of halogenated aliphatic compounds can occur under methanogenic conditions in the environment. PMID:6859849

  3. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies.

    PubMed

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G; Rittmann, Simon K-M R

    2015-01-01

    Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens. PMID:26703739

  4. SEQUENTIAL REDUCTIVE DEHALOGATION OF CHLOROANILINES BY MICROORGANISMS FROM A METHANOGENIC AQUIFER

    EPA Science Inventory

    Chloroaniline-based compounds are widely used chem- icals and important contaminants of aquatic and terrestrial environments. We have found that chloroanilines can be biologically dehalogenated in polluted aquifers when methanogenic, but not sulfate-reducing conditions prevail. T...

  5. SEQUENTIAL REDUCTIVE DEHALOGENATION OF CHLORANILINES BY MICROORGANISMS FROM A METHANOGENIC AQUIFER

    EPA Science Inventory

    Chloroaniline-based compounds are widely used chemicals and important contaminants of aquatic and terrestrial environments. We have found that chloroanilines can be bio-logically dehalogenated in polluted aquifers when methanogenic, but not sulfate-reducing conditions prevail. Th...

  6. Enumeration of methanogens with a focus on fluorescence in situ hybridization

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Dagar, Sumit Singh; Mohanty, Ashok Kumar; Sirohi, Sunil Kumar; Puniya, Monica; Kuhad, Ramesh C.; Sangu, K. P. S.; Griffith, Gareth Wyn; Puniya, Anil Kumar

    2011-06-01

    Methanogens, the members of domain Archaea are potent contributors in global warming. Being confined to the strict anaerobic environment, their direct cultivation as pure culture is quite difficult. Therefore, a range of culture-independent methods have been developed to investigate their numbers, substrate uptake patterns, and identification in complex microbial communities. Unlike other approaches, fluorescence in situ hybridization (FISH) is not only used for faster quantification and accurate identification but also to reveal the physiological properties and spatiotemporal dynamics of methanogens in their natural environment. Aside from the methodological aspects and application of FISH, this review also focuses on culture-dependent and -independent techniques employed in enumerating methanogens along with associated problems. In addition, the combination of FISH with micro-autoradiography that could also be an important tool in investigating the activities of methanogens is also discussed.

  7. BIOTRANSFORMATIONS OF SELECTED ALKYLBENZENES AND HALOGENATED ALIPHATIC HYDROCARBONS IN METHANOGENIC AQUIFER MATERIAL: A MICROCOSM STUDY

    EPA Science Inventory

    Leachates from municipal landfills commonly contain a variety of organic contaminants of industrial origin. The behavior of these compounds in anaerobic, and particularly in methanogenic, subsurface materials is poorly understood. The behavior of benzene, toluene, ethylbenzene, o...

  8. Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies

    PubMed Central

    Taubner, Ruth-Sophie; Schleper, Christa; Firneis, Maria G.; Rittmann, Simon K.-M. R.

    2015-01-01

    Among all known microbes capable of thriving under extreme and, therefore, potentially extraterrestrial environmental conditions, methanogens from the domain Archaea are intriguing organisms. This is due to their broad metabolic versatility, enormous diversity, and ability to grow under extreme environmental conditions. Several studies revealed that growth conditions of methanogens are compatible with environmental conditions on extraterrestrial bodies throughout the Solar System. Hence, life in the Solar System might not be limited to the classical habitable zone. In this contribution we assess the main ecophysiological characteristics of methanogens and compare these to the environmental conditions of putative habitats in the Solar System, in particular Mars and icy moons. Eventually, we give an outlook on the feasibility and the necessity of future astrobiological studies concerning methanogens. PMID:26703739

  9. Environmental controls on methanogen viability in the hydrothermal waters of the El Tatio geyser field, Chile.

    NASA Astrophysics Data System (ADS)

    Franks, M. A.; Bennett, P. C.; Omelon, C.; Engel, A. S.

    2007-12-01

    At the El Tatio geyser field, a unique hydrothermal site located in the Andes Mountains in Chile, methanogenic archaea were found in only two of the hundreds of hydrothermal features. Reported here is an investigation into the environmental and geochemical controls on the distribution of methanogenic archaea. Located in the hyper- arid Atacama Desert, El Tatio waters are characterized by high salinity (95-175mM), Na-Cl type waters and circum-neutral pH (6.5-7), with very low inorganic carbon (0.1-0.5 mM TIC), but very high concentrations of As and Sb (300-700 uM As, 10-30uM Sb). Extensive bacterial mats thrive in most of the shallow run-off streams originating from hydrothermal features. In order to determine geochemical controls on methanogen populations, major and trace elements, including As and Sb speciation and concentrations, were determined using IC and HPLC-ICP-MS methods. The structure of microbial communities was analyzed using MPN enumeration of methanogens, culturing, and phylogenetic analysis using molecular techniques. Here, as in many hydrothermal regions, temperature and geochemical gradients influence the microbial ecology. Results from MPN enumeration indicate methanogen populations are dominated by H2-utilizing (carbonate reducing) archaea at both of the sites, with some acetate-oxidizing archaea present. These sites contain comparatively high DIC concentrations; however, it is unclear whether this is a control or a product of methanogenic archaea. Water quality analyses also show a strong correlation between antimony concentrations and the presence of methanogens; methanogenic archaea being present only at sites with 17 uM Sb concentrations or less.

  10. Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil.

    PubMed

    Schulz, Kristin; Hunger, Sindy; Brown, George G; Tsai, Siu M; Cerri, Carlos C; Conrad, Ralf; Drake, Harold L

    2015-08-01

    The anoxic saccharide-rich conditions of the earthworm gut provide an ideal transient habitat for ingested microbes capable of anaerobiosis. It was recently discovered that the earthworm Eudrilus eugeniae from Brazil can emit methane (CH4) and that ingested methanogens might be associated with this emission. The objective of this study was to resolve trophic interactions of bacteria and methanogens in the methanogenic food web in the gut contents of E. eugeniae. RNA-based stable isotope probing of bacterial 16S rRNA as well as mcrA and mrtA (the alpha subunit of methyl-CoM reductase and its isoenzyme, respectively) of methanogens was performed with [(13)C]-glucose as a model saccharide in the gut contents. Concomitant fermentations were augmented by the rapid consumption of glucose, yielding numerous products, including molecular hydrogen (H2), carbon dioxide (CO2), formate, acetate, ethanol, lactate, succinate and propionate. Aeromonadaceae-affiliated facultative aerobes, and obligate anaerobes affiliated to Lachnospiraceae, Veillonellaceae and Ruminococcaceae were associated with the diverse fermentations. Methanogenesis was ongoing during incubations, and (13)C-labeling of CH4 verified that supplemental [(13)C]-glucose derived carbon was dissimilated to CH4. Hydrogenotrophic methanogens affiliated with Methanobacteriaceae and Methanoregulaceae were linked to methanogenesis, and acetogens related to Peptostreptoccocaceae were likewise found to be participants in the methanogenic food web. H2 rather than acetate stimulated methanogenesis in the methanogenic gut content enrichments, and acetogens appeared to dissimilate supplemental H2 to acetate in methanogenic enrichments. These findings provide insight on the processes and associated taxa potentially linked to methanogenesis and the turnover of organic carbon in the alimentary canal of methane-emitting E. eugeniae. PMID:25615437

  11. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments

    PubMed Central

    Fowler, S. Jane; Toth, Courtney R. A.; Gieg, Lisa M.

    2016-01-01

    The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge, but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates on microbial community composition and retention of hydrocarbon biodegradation genes. 16S rRNA gene sequencing showed that a reduction in substrate diversity resulted in a corresponding loss of microbial diversity, but that hydrocarbon biodegradation genes (such as assA/masD encoding alkylsuccinate synthase) could be retained within a community even in the absence of hydrocarbon substrates. Despite substrate-related diversity changes, all communities were dominated by hydrogenotrophic and acetotrophic methanogens along with bacteria including Clostridium sp., members of the Deltaproteobacteria, and a number of other phyla. Microbial co-occurrence network analysis revealed a dense network of interactions amongst syntrophic bacteria and methanogens that were maintained despite changes in the substrates for methanogenesis. Our results reveal the effect of substrate diversity loss on microbial community diversity, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic interactions amongst

  12. Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil

    PubMed Central

    Schulz, Kristin; Hunger, Sindy; Brown, George G; Tsai, Siu M; Cerri, Carlos C; Conrad, Ralf; Drake, Harold L

    2015-01-01

    The anoxic saccharide-rich conditions of the earthworm gut provide an ideal transient habitat for ingested microbes capable of anaerobiosis. It was recently discovered that the earthworm Eudrilus eugeniae from Brazil can emit methane (CH4) and that ingested methanogens might be associated with this emission. The objective of this study was to resolve trophic interactions of bacteria and methanogens in the methanogenic food web in the gut contents of E. eugeniae. RNA-based stable isotope probing of bacterial 16S rRNA as well as mcrA and mrtA (the alpha subunit of methyl-CoM reductase and its isoenzyme, respectively) of methanogens was performed with [13C]-glucose as a model saccharide in the gut contents. Concomitant fermentations were augmented by the rapid consumption of glucose, yielding numerous products, including molecular hydrogen (H2), carbon dioxide (CO2), formate, acetate, ethanol, lactate, succinate and propionate. Aeromonadaceae-affiliated facultative aerobes, and obligate anaerobes affiliated to Lachnospiraceae, Veillonellaceae and Ruminococcaceae were associated with the diverse fermentations. Methanogenesis was ongoing during incubations, and 13C-labeling of CH4 verified that supplemental [13C]-glucose derived carbon was dissimilated to CH4. Hydrogenotrophic methanogens affiliated with Methanobacteriaceae and Methanoregulaceae were linked to methanogenesis, and acetogens related to Peptostreptoccocaceae were likewise found to be participants in the methanogenic food web. H2 rather than acetate stimulated methanogenesis in the methanogenic gut content enrichments, and acetogens appeared to dissimilate supplemental H2 to acetate in methanogenic enrichments. These findings provide insight on the processes and associated taxa potentially linked to methanogenesis and the turnover of organic carbon in the alimentary canal of methane-emitting E. eugeniae. PMID:25615437

  13. Colonization of rice roots with methanogenic archaea controls photosynthesis-derived methane emission.

    PubMed

    Pump, Judith; Pratscher, Jennifer; Conrad, Ralf

    2015-07-01

    The methane emitted from rice fields originates to a large part (up to 60%) from plant photosynthesis and is formed on the rice roots by methanogenic archaea. To investigate to which extent root colonization controls methane (CH4 ) emission, we pulse-labeled rice microcosms with (13) CO2 to determine the rates of (13) CH4 emission exclusively derived from photosynthates. We also measured emission of total CH4 ((12+13) CH4 ), which was largely produced in the soil. The total abundances of archaea and methanogens on the roots and in the soil were analysed by quantitative polymerase chain reaction of the archaeal 16S rRNA gene and the mcrA gene coding for a subunit of the methyl coenzyme M reductase respectively. The composition of archaeal and methanogenic communities was determined with terminal restriction fragment length polymorphism (T-RFLP). During the vegetative growth stages, emission rates of (13) CH4 linearly increased with the abundance of methanogenic archaea on the roots and then decreased during the last plant growth stage. Rates of (13) CH4 emission and the abundance of methanogenic archaea were lower when the rice was grown in quartz-vermiculite with only 10% rice soil. Rates of total CH4 emission were not systematically related to the abundance of methanogenic archaea in soil plus roots. The composition of the archaeal communities was similar under all conditions; however, the analysis of mcrA genes indicated that the methanogens differed between the soil and root. Our results support the hypothesis that rates of photosynthesis-driven CH4 emission are limited by the abundance of methanogens on the roots. PMID:25367104

  14. Higher Temperature and Hydrogen Availability Stimulated the Methanogenic Activity in East Antarctic Subglacial Sediment

    NASA Astrophysics Data System (ADS)

    Ma, H.

    2014-12-01

    Subglacial ecosystem has been recognized as an environment with considerable methanogenic activity, and therefore is of significant impact on global methane budget and climate change. Although the methanogens have been discovered at a few subglacial environments, the methanogenic activity there is yet insufficiently studied, especially on the effects of environmental parameters, due to technical difficulties on sampling and cultivation. Here, in this study, we attempt to access the methanogenic activity and community structure in response to temperature and substrate availability. An integrated approach including in vitro cultivation and molecular techniques were employed. A subglacial sediment from Larsemann Hills, East Antarctica was incubated at different temperatures (1, 4, 12 oC) supplied with H2+CO2 or sodium acetate to estimate the methanogenic activity. The McrA gene which is a specific marker for methanogens was amplified with primer ME and ML to construct phylogenetic trees. This functional gene was also quantified by Q-PCR before and after the incubation to estimate the increase of methanogens. After 8 months a highest methanogenesis rate of 226 pmol/ day/ gram sediment was observed at 12 oC with H2 supplying, which was 2 times higher than that with acetate supplying, clearly suggesting that H2 is a preferable substrate than acetate. The methanogenesis rate without supplying extra substrate showed positive temperature dependence with rate of 23.3, 24.8, 131 pmol/day/gram sediment at 1 oC, 4 oC, and 12 oC, respectively. The McrA copy number was increased more than 300 times and 50 times with H2 and acetate supplying respectively after the incubation. 94% and 67% of the mcrA gene sequences were classed into methanomicrobiales which were hydrogen-trophic methanogens in the two clone libraries with primer ML and ME respectively. This finding suggests the potential effect of methanogenesis under glacier on the climate change.

  15. Mesophilic fermentation of renewable biomass: does hydraulic retention time regulate methanogen diversity?

    PubMed

    Krakat, Niclas; Schmidt, Stefan; Scherer, Paul

    2010-09-01

    The present long-term study (about 1,100 days) monitored the diversity of methanogens during the mesophilic, anaerobic digestion of beet silage. Six fermentor samples were analyzed by ribosomal RNA gene restriction analysis, fluorescence in situ hybridization, and fluorescence microscopy. Hydrogenotrophic methanogens dominated within the population in all samples analyzed. Multidimensional scaling revealed that a rapid decrease in hydraulic retention time resulted in increased species richness, which in turn led to slightly higher CH(4) yields. PMID:20675458

  16. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments.

    PubMed

    Fowler, S Jane; Toth, Courtney R A; Gieg, Lisa M

    2016-01-01

    The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge, but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates on microbial community composition and retention of hydrocarbon biodegradation genes. 16S rRNA gene sequencing showed that a reduction in substrate diversity resulted in a corresponding loss of microbial diversity, but that hydrocarbon biodegradation genes (such as assA/masD encoding alkylsuccinate synthase) could be retained within a community even in the absence of hydrocarbon substrates. Despite substrate-related diversity changes, all communities were dominated by hydrogenotrophic and acetotrophic methanogens along with bacteria including Clostridium sp., members of the Deltaproteobacteria, and a number of other phyla. Microbial co-occurrence network analysis revealed a dense network of interactions amongst syntrophic bacteria and methanogens that were maintained despite changes in the substrates for methanogenesis. Our results reveal the effect of substrate diversity loss on microbial community diversity, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic interactions amongst

  17. Sensitivity and adaptability of methanogens to perchlorates: Implications for life on Mars

    NASA Astrophysics Data System (ADS)

    Kral, Timothy A.; Goodhart, Timothy H.; Harpool, Joshua D.; Hearnsberger, Christopher E.; McCracken, Graham L.; McSpadden, Stanley W.

    2016-01-01

    In 2008, the Mars Phoenix Lander discovered perchlorate at its landing site, and in 2012, the Curiosity rover confirmed the presence of perchlorate on Mars. The research reported here was designed to determine if certain methanogens could grow in the presence of three different perchlorate salt solutions. The methanogens tested were Methanothermobacter wolfeii, Methanosarcina barkeri, Methanobacterium formicicum and Methanococcus maripaludis. Media were prepared containing 0%, 0.5%, 1.0%, 2%, 5% and 10% wt/vol magnesium perchlorate, sodium perchlorate, or calcium perchlorate. Organisms were inoculated into their respective media followed by incubation at each organism's growth temperature. Methane production, commonly used to measure methanogen growth, was measured by gas chromatography of headspace gas samples. Methane concentrations varied with species and perchlorate salt tested. However, all four methanogens produced substantial levels of methane in the presence of up to 1.0% perchlorate, but not higher. The standard procedure for growing methanogens typically includes sodium sulfide, a reducing agent, to reduce residual molecular oxygen. However, the sodium sulfide may have been reducing the perchlorate, thus allowing for growth of the methanogens. To investigate this possibility, experiments were conducted where stainless steel nails were used instead of sodium sulfide as the reducing agent. Prior to the addition of perchlorate and inoculation, the nails were removed from the liquid medium. Just as in the prior experiments, the methanogens produced methane at comparable levels to those seen with sodium sulfide as the reductant, indicating that sodium sulfide did not reduce the perchlorate to any significant extent. Additionally, cells metabolizing in 1% perchlorate were transferred to 2%, cells metabolizing in 2% were transferred to 5%, and finally cells metabolizing in 5% were transferred to 10%. All four species produced methane at 2% and 5%, but not 10

  18. A T-RFLP database for the rapid profiling of methanogenic communities in anaerobic digesters.

    PubMed

    Bühligen, Franziska; Lucas, Rico; Nikolausz, Marcell; Kleinsteuber, Sabine

    2016-06-01

    We present a simple protocol for the cost- and time-efficient profiling of methanogens based on T-RFLP fingerprinting of mcrA amplicons. Sequence data were compiled from mesophilic lab-scale and full-scale biogas reactors operated under various conditions and fed with various substrates. The database facilitates the rapid identification of methanogens, thus reducing the need of cloning and sequencing. PMID:27046270

  19. Phylogenetic Characterization of Methanogenic Assemblages in Eutrophic and Oligotrophic Areas of the Florida Everglades†

    PubMed Central

    Castro, Hector; Ogram, Andrew; Reddy, K. R.

    2004-01-01

    Agricultural activities have produced well-documented changes in the Florida Everglades, including establishment of a gradient in phosphorus concentrations in Water Conservation Area 2A (WCA-2A) of the northern Everglades. An effect of increased phosphorus concentrations is increased methanogenesis in the eutrophic regions compared to the oligotrophic regions of WCA-2A. The goal of this study was to identify relationships between eutrophication and composition and activity of methanogenic assemblages in WCA-2A soils. Distributions of two genes associated with methanogens were characterized in soils taken from WCA-2A: the archaeal 16S rRNA gene and the methyl coenzyme M reductase gene. The richness of methanogen phylotypes was greater in eutrophic than in oligotrophic sites, and sequences related to previously cultivated and uncultivated methanogens were found. A preferential selection for the order Methanomicrobiales was observed in mcrA clone libraries, suggesting primer bias for this group. A greater diversity within the Methanomicrobiales was observed in mcrA clone libraries than in 16S rRNA gene libraries. 16S rRNA phylogenetic analyses revealed a dominance of clones related to Methanosaeta spp., an acetoclastic methanogen dominant in environments with low acetate concentrations. A significant number of clones were related to Methanomicrobiales, an order characterized by species utilizing hydrogen and formate as methanogenic substrates. No representatives of the orders Methanobacteriales and Methanococcales were found in any 16S rRNA clone library, although some Methanobacteriales were found in mcrA libraries. Hydrogenotrophs are the dominant methanogens in WCA-2A, and acetoclastic methanogen genotypes that proliferate in low acetate concentrations outnumber those that typically dominate in higher acetate concentrations. PMID:15528519

  20. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas

    PubMed Central

    Aschenbach, Katrin; Conrad, Ralf; Řeháková, Klára; Doležal, Jiří; Janatková, Kateřina; Angel, Roey

    2013-01-01

    Methanogens typically occur in reduced anoxic environments. However, in recent studies it has been shown that many aerated upland soils, including desert soils also host active methanogens. Here we show that soil samples from high-altitude cold deserts in the western Himalayas (Ladakh, India) produce CH4 after incubation as slurry under anoxic conditions at rates comparable to those of hot desert soils. Samples of matured soil from three different vegetation belts (arid, steppe, and subnival) were compared with younger soils originating from frontal and lateral moraines of receding glaciers. While methanogenic rates were higher in the samples from matured soils, CH4 was also produced in the samples from the recently deglaciated moraines. In both young and matured soils, those covered by a biological soil crust (biocrust) were more active than their bare counterparts. Isotopic analysis showed that in both cases CH4 was initially produced from H2/CO2 but later mostly from acetate. Analysis of the archaeal community in the in situ soil samples revealed a clear dominance of sequences related to Thaumarchaeota, while the methanogenic community comprised only a minor fraction of the archaeal community. Similar to other aerated soils, the methanogenic community was comprised almost solely of the genera Methanosarcina and Methanocella, and possibly also Methanobacterium in some cases. Nevertheless, ~103 gdw−1 soil methanogens were already present in the young moraine soil together with cyanobacteria. Our results demonstrate that Methanosarcina and Methanocella not only tolerate atmospheric oxygen but are also able to survive in these harsh cold environments. Their occurrence in newly deglaciated soils shows that they are early colonizers of desert soils, similar to cyanobacteria, and may play a role in the development of desert biocrusts. PMID:24348469

  1. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas.

    PubMed

    Aschenbach, Katrin; Conrad, Ralf; Reháková, Klára; Doležal, Jiří; Janatková, Kateřina; Angel, Roey

    2013-01-01

    Methanogens typically occur in reduced anoxic environments. However, in recent studies it has been shown that many aerated upland soils, including desert soils also host active methanogens. Here we show that soil samples from high-altitude cold deserts in the western Himalayas (Ladakh, India) produce CH4 after incubation as slurry under anoxic conditions at rates comparable to those of hot desert soils. Samples of matured soil from three different vegetation belts (arid, steppe, and subnival) were compared with younger soils originating from frontal and lateral moraines of receding glaciers. While methanogenic rates were higher in the samples from matured soils, CH4 was also produced in the samples from the recently deglaciated moraines. In both young and matured soils, those covered by a biological soil crust (biocrust) were more active than their bare counterparts. Isotopic analysis showed that in both cases CH4 was initially produced from H2/CO2 but later mostly from acetate. Analysis of the archaeal community in the in situ soil samples revealed a clear dominance of sequences related to Thaumarchaeota, while the methanogenic community comprised only a minor fraction of the archaeal community. Similar to other aerated soils, the methanogenic community was comprised almost solely of the genera Methanosarcina and Methanocella, and possibly also Methanobacterium in some cases. Nevertheless, ~10(3) gdw(-1) soil methanogens were already present in the young moraine soil together with cyanobacteria. Our results demonstrate that Methanosarcina and Methanocella not only tolerate atmospheric oxygen but are also able to survive in these harsh cold environments. Their occurrence in newly deglaciated soils shows that they are early colonizers of desert soils, similar to cyanobacteria, and may play a role in the development of desert biocrusts. PMID:24348469

  2. High-rate, High Temperature Acetotrophic Methanogenesis Governed by a Three Population Consortium in Anaerobic Bioreactors.

    PubMed

    Ho, Dang; Jensen, Paul; Gutierrez-Zamora, Maria-Luisa; Beckmann, Sabrina; Manefield, Mike; Batstone, Damien

    2016-01-01

    A combination of acetate oxidation and acetoclastic methanogenesis has been previously identified to enable high-rate methanogenesis at high temperatures (55 to 65°C), but this capability had not been linked to any key organisms. This study combined RNA-stable isotope probing on 13C-labelled acetate and 16S amplicon sequencing to identify the active micro-organisms involved in high-rate methanogenesis. Active biomass was harvested from three bench-scale thermophilic bioreactors treating waste activated sludge at 55, 60 and 65°C, and fed with 13-C labelled and 12C-unlabelled acetate. Acetate uptake and cumulative methane production were determined and kinetic parameters were estimated using model-based analysis. Pyrosequencing performed on 13C- enriched samples indicated that organisms accumulating labelled carbon were Coprothermobacter (all temperatures between 55 and 65°C), acetoclastic Methanosarcina (55 to 60°C) and hydrogenotrophic Methanothermobacter (60 to 65°C). The increased relative abundance of Coprothermobacter with increased temperature corresponding with a shift to syntrophic acetate oxidation identified this as a potentially key oxidiser. Methanosarcina likely acts as both a hydrogen utilising and acetoclastic methanogen at 55°C, and is replaced by Methanothermobacter as a hydrogen utiliser at higher temperatures. PMID:27490246

  3. High-rate, High Temperature Acetotrophic Methanogenesis Governed by a Three Population Consortium in Anaerobic Bioreactors

    PubMed Central

    Ho, Dang; Jensen, Paul; Gutierrez-Zamora, Maria-Luisa; Beckmann, Sabrina; Manefield, Mike; Batstone, Damien

    2016-01-01

    A combination of acetate oxidation and acetoclastic methanogenesis has been previously identified to enable high-rate methanogenesis at high temperatures (55 to 65°C), but this capability had not been linked to any key organisms. This study combined RNA–stable isotope probing on 13C-labelled acetate and 16S amplicon sequencing to identify the active micro-organisms involved in high-rate methanogenesis. Active biomass was harvested from three bench-scale thermophilic bioreactors treating waste activated sludge at 55, 60 and 65°C, and fed with 13-C labelled and 12C-unlabelled acetate. Acetate uptake and cumulative methane production were determined and kinetic parameters were estimated using model-based analysis. Pyrosequencing performed on 13C- enriched samples indicated that organisms accumulating labelled carbon were Coprothermobacter (all temperatures between 55 and 65°C), acetoclastic Methanosarcina (55 to 60°C) and hydrogenotrophic Methanothermobacter (60 to 65°C). The increased relative abundance of Coprothermobacter with increased temperature corresponding with a shift to syntrophic acetate oxidation identified this as a potentially key oxidiser. Methanosarcina likely acts as both a hydrogen utilising and acetoclastic methanogen at 55°C, and is replaced by Methanothermobacter as a hydrogen utiliser at higher temperatures. PMID:27490246

  4. Iron deficiency and bioavailability in anaerobic batch and submerged membrane bioreactors (SAMBR) during organic shock loads.

    PubMed

    Ketheesan, Balachandran; Thanh, Pham Minh; Stuckey, David C

    2016-07-01

    This study examined the effects of Fe(2+) and its bioavailability for controlling VFAs during organic shock loads in batch reactors and a submerged anaerobic membrane bioreactor (SAMBR). When seed grown under Fe-sufficient conditions (7.95±0.05mgFe/g-TSS), an organic shock resulted in leaching of Fe from the residual to organically bound and soluble forms. Under Fe-deficient seed conditions (0.1±0.002mgFe/gTSS), Fe(2+) supplementation (3.34mgFe(2+)/g-TSS) with acetate resulted in a 2.1-3.9 fold increase in the rate of methane production, while with propionate it increased by 1.2-1.5 fold compared to non-Fe(2+) supplemented reactors. Precipitation of Fe(2+) as sulphides and organically bound Fe were bioavailable to methanogens for acetate assimilation. The results confirmed that the transitory/long term limitations of Fe play a significant role in controlling the degradation of VFAs during organic shock loads due to their varying physical/chemical states, and bioavailability. PMID:27015020

  5. Separation of competitive microorganisms using anaerobic membrane bioreactors as pretreatment to microbial electrochemical cells.

    PubMed

    Dhar, Bipro Ranjan; Gao, Yaohuan; Yeo, Hyeongu; Lee, Hyung-Sool

    2013-11-01

    Anaerobic membrane bioreactors (AnMBRs) as pretreatment to microbial electrochemical cells (MECs) were first assessed for improving energy recovery. A dual-chamber MEC was operated at hydraulic retention time (HRT) ranging from 1 to 8d, while operating conditions for an AnMBR were fixed. Current density was increased from 7.5 ± 0 to 14 ± 1A/m(2) membrane with increasing HRT. MEC tests with AnMBR permeate (mainly propionate and acetate) and propionate medium confirmed that propionate was fermented to acetate and hydrogen gas, and anode-respiring bacteria (ARB) utilized these fermentation products as substrate. Membrane separation in the AnMBR excluded fermenters and methanogens from the MEC, and thus no methane production was found in the MEC. The lack of fermenters, however, slowed down propionate fermentation rate, which limited current density in the MEC. To symphonize fermenters, H2-consumers, and ARB in biofilm anode is essential for improving current density, and COD removal. PMID:24047682

  6. Effects of the acidogenic biomass on the performance of an anaerobic membrane bioreactor for wastewater treatment.

    PubMed

    Jeison, David; Plugge, Caroline M; Pereira, Alcina; van Lier, Jules B

    2009-03-01

    Continuous flow experiments were performed to study the effects of acidogenic biomass development, induced by feeding with non-acidified substrate, on the operation and performance of an anaerobic membrane bioreactor (AnMBR). The AnMBR was operated at cross-flow velocities up to 1.5m/s and fed with a gelatine-starch-ethanol mixture. A significant fraction of acidogenic biomass developed during reactor operation, which fully determined the sludge rheology, and influenced the particle size distribution. As a result, flux levels of only 6.5l/m(2)h were achieved, at a liquid superficial velocity of 1.5m/s. Even though the soluble microbial products levels in the AMBR were as high as 14g COD/l, the observed hydraulic flux was not limited by irreversible pore fouling, but by reversible cake layer formation. Propionate oxidation was the limiting step for the applied organic loading rate. The assessed specific methanogenic activity (SMA) with propionate as substrate was, however, similar to the values found by others during thermophilic treatment of non or partially acidified substrates in granular sludge bed reactors, indicating an appropriate level of the propionate oxidation capacity. PMID:19036578

  7. Kinetic study of anaerobic digestion of fruit-processing wastewater in immobilized-cell bioreactors.

    PubMed

    Borja, R; Banks, C J

    1994-08-01

    The kinetics of the anaerobic digestion of a fruit-processing wastewater [chemical oxygen demand (COD) = 5.1 g/l] were investigated. Laboratory experiments were carried out in bioreactors containing supports of different chemical composition and features, namely bentonite and zeolite (aluminum silicates), sepiolite and saponite (magnesium silicates) and polyurethane foam, to which the microorganisms responsible for the process adhered. The influence of the support medium on the kinetics was compared with a control digester with suspended biomass. Assuming the overall anaerobic digestion process conforms to first-order kinetics, the specific rate constant, K0, was determined for each of the experimental reactors. The average values obtained were: 0.080 h-1 (bentonite); 0.103 h-1 (zeolite); 0.180 h-1 (sepiolite); 0.198 h-1 (saponite); 0.131 h-1 (polyurethane); and 0.037 h-1 (control). The results indicate that the support used to immobilize the micro-organisms had a marked influence on the digestion process; the results were significant at the 95% confidence level. Methanogenic activity increased linearly with COD, with the saponite and sepiolite supports showing the highest values. The yield coefficient of methane was 270 ml of methane (under standard temperature and pressure conditions)/g of COD. The average elimination of COD was 89.5%. PMID:7917066

  8. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions

    PubMed Central

    Angel, Roey; Claus, Peter; Conrad, Ralf

    2012-01-01

    The prototypical representatives of the Euryarchaeota—the methanogens—are oxygen sensitive and are thought to occur only in highly reduced, anoxic environments. However, we found methanogens of the genera Methanosarcina and Methanocella to be present in many types of upland soils (including dryland soils) sampled globally. These methanogens could be readily activated by incubating the soils as slurry under anoxic conditions, as seen by rapid methane production within a few weeks, without any additional carbon source. Analysis of the archaeal 16S ribosomal RNA gene community profile in the incubated samples through terminal restriction fragment length polymorphism and quantification through quantitative PCR indicated dominance of Methanosarcina, whose gene copy numbers also correlated with methane production rates. Analysis of the δ13C of the methane further supported this, as the dominant methanogenic pathway was in most cases aceticlastic, which Methanocella cannot perform. Sequences of the key methanogenic enzyme methyl coenzyme M reductase retrieved from the soil samples before incubation confirmed that Methanosarcina and Methanocella are the dominant methanogens, though some sequences of Methanobrevibacter and Methanobacterium were also detected. The global occurrence of only two active methanogenic archaea supports the hypothesis that these are autochthonous members of the upland soil biome and are well adapted to their environment. PMID:22071343

  9. Stereochemical studies of acyclic isoprenoids-XII. Lipids of methanogenic bacteria and possible contributions to sediments

    USGS Publications Warehouse

    Risatti, J.B.; Rowland, S.J.; Yon, D.A.; Maxwell, J.R.

    1984-01-01

    Abundant volatile lipids of Methanobacterium thermoautotrophicum and Methanosarcina barkeri include isoprenoid hydrocarbons (??? C30), and C15, C20 and C25 isoprenoid alcohols. M. barkeri contains 2,6,10,15,19-pentamethyleicosane, whose relative stereochemistry is the same as found in marine sediments, indicating that it is a marker of methanogenic activity. The C20, C30 and C25 alkenes in M. thermoautotrophicum also have a preferred sterochemistry; the latter have the 2,6,10,14,18-pentamethyleicosanyl skeleton, suggesting that the alkane in marine sediments may derive from methanogens. The stereochemistry of squalane in a marine sediment is also compatible with an origin in methanogens; in contrast, the stereochemistry of pristane in M. thermoautotrophicum indicates a fossil fuel contaminant origin, suggesting that this and certain other alkanes reported in archaebacteria might also be of contaminant origin. There is, therefore, little evidence at present that the pristane in immature marine sediments originates in methanogens. The C15 and C20 saturated alcohols in M. thermoautotrophicum have mainly the all-R configuration. If this is generally true for methanogens, the C20 alcohol in the Messel shale may originate mainly from methanogens, whereas that in the Green River shale may originate mainly from photosynthetic organisms. ?? 1984.

  10. Methanogenic archaea diversity in hyporheic sediments of a small lowland stream.

    PubMed

    Brablcová, Lenka; Buriánková, Iva; Badurová, Pavlína; Chaudhary, Prem Prashant; Rulík, Martin

    2015-04-01

    Abundance and diversity of methanogenic archaea were studied at five localities along a longitudinal profile of a Sitka stream (Czech Republic). Samples of hyporheic sediments were collected from two sediment depths (0-25 cm and 25-50 cm) by freeze-core method. Methanogen community was analyzed by fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequencing method. The proportion of methanogens to the DAPI-stained cells varied among all localities and depths with an average value 2.08 × 10(5) per g of dry sediment with the range from 0.37 to 4.96 × 10(5) cells per g of dry sediment. A total of 73 bands were detected at 19 different positions on the DGGE gel and the highest methanogen diversity was found at the downstream located sites. There was no relationship between methanogen diversity and sediment depth. Cluster analysis of DGGE image showed three main clusters consisting of localities that differed in the number and similarity of the DGGE bands. Sequencing analysis of representative DGGE bands revealed phylotypes affiliated with members belonging to the orders Methanosarcinales, Methanomicrobiales and Methanocellales. The knowledge about occurrence and diversity of methanogenic archaea in freshwater ecosystems are essential for methane dynamics in river sediments and can contribute to the understanding of global warming process. PMID:25460192

  11. Performance of methanogenic reactors in temperature phased two-stage anaerobic digestion of swine wastewater.

    PubMed

    Kim, Woong; Shin, Seung Gu; Cho, Kyungjin; Lee, Changsoo; Hwang, Seokhwan

    2012-12-01

    The present study investigated the shifts in the chemical profiles of a two-phase anaerobic digestion system in methanogenic and acidogenic reactors for the treatment of swine wastewater. Acidogenic and methanogenic digesters were used with overall HRTs ranging from 27 to 6 d. In the optimized thermophilic/acidogenic phase throughout the entire experimental period, VS was reduced by 13.8% (1.6%); however, COD hardly decreased because of the thermophilic hydrolysis of organic materials, such as carbohydrates, proteins, and lipids, without any significant consumption of volatile fatty acids. In the methanogenic/mesophilic phase, COD was reduced by 65.8 (1.1)% compared to a 47.4 (2.9)% reduction in VS reduction efficiency with the gradual increase in methane production during a methanogenic HRT between 25 and 10 d. A high protein degradation rate was observed in the optimized acidogenic phase, which is assumed to be due to the low content of carbohydrates in raw swine wastewater as well as the readily thermophilic hydrolysis of proteins. Two-phase systems of anaerobic digestion consisting of optimized thermophilic and mesophilic methanogenic digesters showed a stable performance with respect to VS reduction efficiency with OLRs less than 3 g VS/L·d, in other words, more than 10 days of methanogenic HRT in this study. PMID:23041140

  12. Methanogenic archaea in marcellus shale: a possible mechanism for enhanced gas recovery in unconventional shale resources.

    PubMed

    Tucker, Yael Tarlovsky; Kotcon, James; Mroz, Thomas

    2015-06-01

    Marcellus Shale occurs at depths of 1.5-2.5 km (5000 to 8000 feet) where most geologists generally assume that thermogenic processes are the only source of natural gas. However, methanogens in produced fluids and isotopic signatures of biogenic methane in this deep shale have recently been discovered. This study explores whether those methanogens are indigenous to the shale or are introduced during drilling and hydraulic fracturing. DNA was extracted from Marcellus Shale core samples, preinjected fluids, and produced fluids and was analyzed using Miseq sequencing of 16s rRNA genes. Methanogens present in shale cores were similar to methanogens in produced fluids. No methanogens were detected in injected fluids, suggesting that this is an unlikely source and that they may be native to the shale itself. Bench-top methane production tests of shale core and produced fluids suggest that these organisms are alive and active under simulated reservoir conditions. Growth conditions designed to simulate the hydrofracture processes indicated somewhat increased methane production; however, fluids alone produced relatively little methane. Together, these results suggest that some biogenic methane may be produced in these wells and that hydrofracture fluids currently used to stimulate gas recovery could stimulate methanogens and their rate of producing methane. PMID:25924080

  13. 7 CFR 984.15 - Pack.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.15 Pack. Pack means to bleach, clean, grade, shell or otherwise prepare walnuts for market as inshell or shelled walnuts....

  14. 7 CFR 984.15 - Pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.15 Pack. Pack means to bleach, clean, grade, shell or otherwise prepare walnuts for market as inshell or shelled walnuts....

  15. 7 CFR 984.15 - Pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.15 Pack. Pack means to bleach, clean, grade, shell or otherwise prepare walnuts for market as inshell or shelled walnuts....

  16. 7 CFR 984.15 - Pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.15 Pack. Pack means to bleach, clean, grade, shell or otherwise prepare walnuts for market as inshell or shelled walnuts....

  17. 7 CFR 984.15 - Pack.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE WALNUTS GROWN IN CALIFORNIA Order Regulating Handling Definitions § 984.15 Pack. Pack means to bleach, clean, grade, shell or otherwise prepare walnuts for market as inshell or shelled walnuts....

  18. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70 °C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations using 1,5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to 1.9 μM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal

  19. Methanogenic Oil Degradation in the Dagang Oil Field

    NASA Astrophysics Data System (ADS)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans Hermann; Krüger, Martin

    2014-05-01

    Anaerobic biodegradation is one of the main in situ oil transformation processes in subsurface oil reservoirs. Recent studies have provided evidence of biodegradation of residual oil constituents under methanogenic conditions. Methane, like other biogenic gases, may contribute to reduce the viscosity of oil and enhance its flow characteristics (making it more available) but it can also be used as a energy source. So the aim of the present study was to provide reliable information on in situ biotransformation of oil under methanogenic conditions, and to assess the feasibility of implementing a MEOR strategy at this site. For this reason, chemical and isotopic analyses of injection and production fluids of the Dagang oil field (Hebei province, China) were performed. Microbial abundances were assessed by qPCR, and clone libraries were performed to study the diversity. In addition, microcosms with either oil or 13C-labelled hydrocarbons were inoculated with injection or production waters to characterize microbial processes in vitro. Geochemical and isotopic data were consistent with in situ biogenic methane production linked to aliphatic and aromatic hydrocarbon degradation: GC-MS profiles of petroleum samples were nearly devoid of n-alkanes, linear alkylbenzenes, and alkyltoluenes, and light PAH, confirming that Dagang oil is mostly highly weathered. In addition, carbon and hydrogen isotopic signatures of methane (δ13CCH4 and δDCH4, respectively), and the bulk isotopic discrimination (Δδ13C) between methane and CO2 (between 32 and 65 ) were in accordance with previously reported values for methane formation during hydrocarbon degradation. Furthermore, methane-producing Archaea and hydrocarbon-degrading Bacteria were abundant in produced oil-water samples. On the other hand, our laboratory degradation experiments revealed that autochthonous microbiota are capable of significantly degrade oil within several months, with biodegradation patterns resembling those

  20. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    DOE PAGESBeta

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2014-10-22

    Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions bymore » this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 μM h₋1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature

  1. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    PubMed Central

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 µM h−1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature

  2. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    SciTech Connect

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2014-10-22

    Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 μM h₋1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of

  3. Relationship between Trophic Status and Methanogenic Pathways in Alaskan Peatlands

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Liu, X.; Sidelinger, W.; Wang, Y.; Hines, M. E.; Langford, L.; Chanton, J.

    2015-12-01

    To improve predictions of naturally emitted CH4 from northern wetlands, it is necessary to further examine the methanogenic pathways in these wetlands. Stable isotope C ratios (δ13C) have been used as a robust tool to distinguish different pathways, but different sources of parent compounds (acetate and CO2) with unique δ13C may add complexity to previously established criteria. Large portions of peatlands accommodate a mixture of different sphagna and sedges. Plant species may look very similar and belong to the same genus but are different morphologically and physiologically. To better understand the relationships between surface vegetation patterns and methanogenic pathways, 26 peatland sites were studied in Fairbanks and Anchorage, Alaska in summers of 2014 and 2015. These sites were ordinated using multiple factor analysis into 3 clusters based on pH, temp, CH4 and volatile fatty acids production rates, δ13C values, and surface vegetation species/pattern. In the low-pH trophic cluster (pH~3.5), non-vascular/vascular plant ratios (NV/V) were ~ 0.87 and dominated by diverse Sphagnum species and specific sedges (Eriophorum vaginatum), and fermentation was the dominant end-point in decomposition with no CH4 detected. Although NV/V is about the same in the intermediate cluster (0.74) (pH~4.5), and Sphagnum squarrosum was largely present, both hydrogenotrophic (HM) and acetoclastic methanogenesis (AM) were very active. Syntrophy was present at certain sites, which may provide CO2 with unique δ13C for CH4 production. At the highest pH trophic cluster examined in this study (pH~5), non-vascular plants were almost not existent and Carex aquatilis dominated. CH4 production rates (mainly HM) were slower than those in the intermediate cluster and the apparent fractionation factor a was lower than in the sites with syntrophy, which warrants further investigation of the position and compound specific δ13C analysis of volatile fatty acids.

  4. Bioreactor Development for Lung Tissue Engineering

    PubMed Central

    Panoskaltsis-Mortari, Angela

    2015-01-01

    Rationale Much recent interest in lung bioengineering by pulmonary investigators, industry and the organ transplant field has seen a rapid growth of bioreactor development ranging from the microfluidic scale to the human-sized whole lung systems. A comprehension of the findings from these models is needed to provide the basis for further bioreactor development. Objective The goal was to comprehensively review the current state of bioreactor development for the lung. Methods A search using PubMed was done for published, peer-reviewed papers using the keywords “lung” AND “bioreactor” or “bioengineering” or “tissue engineering” or “ex vivo perfusion”. Main Results Many new bioreactors ranging from the microfluidic scale to the human-sized whole lung systems have been developed by both academic and commercial entities. Microfluidic, lung-mimic and lung slice cultures have the advantages of cost-efficiency and high throughput analyses ideal for pharmaceutical and toxicity studies. Perfused/ventilated rodent whole lung systems can be adapted for mid-throughput studies of lung stem/progenitor cell development, cell behavior, understanding and treating lung injury and for preliminary work that can be translated to human lung bioengineering. Human-sized ex vivo whole lung bioreactors incorporating perfusion and ventilation are amenable to automation and have been used for whole lung decellularization and recellularization. Clinical scale ex vivo lung perfusion systems have been developed for lung preservation and reconditioning and are currently being evaluated in clinical trials. Conclusions Significant advances in bioreactors for lung engineering have been made at both the microfluidic and the macro scale. The most advanced are closed systems that incorporate pressure-controlled perfusion and ventilation and are amenable to automation. Ex vivo lung perfusion systems have advanced to clinical trials for lung preservation and reconditioning. The biggest

  5. 7 CFR 966.11 - Pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE TOMATOES GROWN IN FLORIDA Order Regulating Handling Definitions § 966.11 Pack. Pack means any of the packs of tomatoes as defined and set forth in the United States Standards for Fresh Tomatoes issued by the United States Department of Agriculture (§§...

  6. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Fresh Plums and Prunes Standard Pack § 51... the approved and recognized methods. (2) The plums or prunes in the top layer of any package shall be...” means that the plums or prunes packed in loose or volume filled containers are packed within 1 inch...

  7. 7 CFR 51.1527 - Standard pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., CERTIFICATION, AND STANDARDS) United States Standards for Grades of Fresh Plums and Prunes Standard Pack § 51... the approved and recognized methods. (2) The plums or prunes in the top layer of any package shall be...” means that the plums or prunes packed in loose or volume filled containers are packed within 1 inch...

  8. Methane production improvement by modulation of solid phase immersion in dry batch anaerobic digestion process: Dynamic of methanogen populations.

    PubMed

    André, L; Ndiaye, M; Pernier, M; Lespinard, O; Pauss, A; Lamy, E; Ribeiro, T

    2016-05-01

    Several 60L dry batch anaerobic digestion (AD) reactors were implemented with or without liquid reserve on cattle manure. The immersed part modulation of cattle manure increased the methane flow of about 13%. The quantitative real time PCR and the optimized DNA extraction were implemented and validated to characterize and quantify the methanogen dynamic in dry batch AD process. Final quantities of methanogens converged toward the same level in several inocula at the end of AD. Methanogen dynamic was shown by dominance of Methanosarcinaceae for acetotrophic methanogens and Methanobacteriales for the hydrogenotrophic methanogens. Overall, methanogens populations were stabilized in liquid phase, except Methanosaetaceae. Solid phase was colonized by Methanomicrobiales and Methanosarcinaceae populations giving a support to biofilm development. The methane increase could be explained by a raise of Methanosarcinaceae population in presence of a total contact between solid and liquid phases. Methanosarcinaceae was a bio-indicator of the methane production. PMID:26897414

  9. Thermodynamics and H2 Transfer in a Methanogenic, Syntrophic Community

    PubMed Central

    Hamilton, Joshua J.; Calixto Contreras, Montserrat; Reed, Jennifer L.

    2015-01-01

    Microorganisms in nature do not exist in isolation but rather interact with other species in their environment. Some microbes interact via syntrophic associations, in which the metabolic by-products of one species serve as nutrients for another. These associations sustain a variety of natural communities, including those involved in methanogenesis. In anaerobic syntrophic communities, energy is transferred from one species to another, either through direct contact and exchange of electrons, or through small molecule diffusion. Thermodynamics plays an important role in governing these interactions, as the oxidation reactions carried out by the first community member are only possible because degradation products are consumed by the second community member. This work presents the development and analysis of genome-scale network reconstructions of the bacterium Syntrophobacter fumaroxidans and the methanogenic archaeon Methanospirillum hungatei. The models were used to verify proposed mechanisms of ATP production within each species. We then identified additional constraints and the cellular objective function required to match experimental observations. The thermodynamic S. fumaroxidans model could not explain why S. fumaroxidans does not produce H2 in monoculture, indicating that current methods might not adequately estimate the thermodynamics, or that other cellular processes (e.g., regulation) play a role. We also developed a thermodynamic coculture model of the association between the organisms. The coculture model correctly predicted the exchange of both H2 and formate between the two species and suggested conditions under which H2 and formate produced by S. fumaroxidans would be fully consumed by M. hungatei. PMID:26147299

  10. Bacterial surface antigens defined by monoclonal antibodies: the methanogens

    SciTech Connect

    Conway de Macario, E.; Macario, A.J.L.; Magarinos, M.C.; Jovell, R.J.; Kandler, O.

    1982-01-01

    The methanogens (MB) are unique microbes of great evolutionary interest with applications in biotechnology-bioengineerings and are important in digestive processes. Their cell-wall composition is distinctively different from that of Eubacteria, e.g. the Methanobacteriaceae possess the peptidoglycan pseudomurein rather than murein. The range of cell-wall compositions among MB and their evolutionary and functional significance is not well known. The authors undertook a systematic study of the MB's surface structure using monoclonal antibodies through the following steps: (1) generation of hybridomas that produce antibody to several MB from 3 of their 4 families; (2) development of immunoenzymatic assays for MB's antigens and antibodies; (3) determination of the fine specificity of monoclonal antibodies by inhibition-blocking tests using cell-wall extracts and compounds of known structure; thus a set of monoclonal probes of predetermined specificity was assembled; and (4) resolution of surface determinants of MB representative of the Methanobacteriaceae using the monoclonal probes. Specific markers of MB strains were characterized. Two epitopes were identified within the pseudomurein molecule.

  11. Reductive dechlorination of chlorophenols by a pentachlorophenol- acclimated methanogenic consortium.

    PubMed Central

    Nicholson, D K; Woods, S L; Istok, J D; Peek, D C

    1992-01-01

    Anaerobic digester sludge fed 5,300 mg of acetate per liter, 3.4 microM pentachlorophenol, and nutrients for 10 days biotransformed pentachlorophenol by sequential ortho dechlorinations to produce 2,3,4,5-tetrachlorophenol and 3,4,5-trichlorophenol. Upon acclimation to 3.4 microM pentachlorophenol for 6 months, the methanogenic consortium removed chlorines from the ortho, meta, and para positions of pentachlorophenol and its reductive dechlorination products. Pentachlorophenol was degraded to produce 2,3,4,5-tetrachlorophenol, 2,3,4,6-tetrachlorophenol, and 2,3,5,6-tetrachlorophenol. Dechlorination of 2,3,4,5-tetrachlorophenol produced 3,4,5-trichlorophenol, which was subsequently degraded to produce 3,4-dichlorophenol and 3,5-dichlorophenol. 2,3,4,6-Tetrachlorophenol was dechlorinated at the ortho and meta positions to produce 2,4,6-trichlorophenol and 2,4,5-trichlorophenol. 2,3,5,6-Tetrachlorophenol yielded 2,3,5-trichlorophenol, followed by production of 3,5-dichlorophenol. 2,4,6-Trichlorophenol was degraded to form 2,4-dichlorophenol, and 2,4,5-trichlorophenol was dechlorinated at two positions to form 2,4-dichlorophenol and 3,4-dichlorophenol. Of the three dichlorophenols produced (2,4-dichlorophenol, 3,4-dichlorophenol, and 3,5-dichlorophenol), only 2,4-dichlorophenol was degraded significantly within 3 weeks, to produce 4-chlorophenol. PMID:1637165

  12. Fate of neptunium in an anaerobic, methanogenic microcosm.

    SciTech Connect

    Banaszak, J. E.

    1998-12-21

    Neptunium is found predominantly as Np(IV) in reducing environments, but Np(V) in aerobic environments. However, currently it is not known how the interplay between biotic and abiotic processes affects Np redox speciation in the environment. In order to evaluate the effect of anaerobic microbial activity on the fate of Np in natural systems, Np(V) was added to a microcosminoculated with anaerobic sediments from a metal-contaminated fresh water lake. The consortium included metal-reducing, sulfate-reducing, and methanogenic microorganisms, and acetate was supplied as the only exogenous substrate. Addition of more than 10{sup {minus}5} M Np did not inhibit methane production. Total Np volubility in the active microcosm, as well as in sterilized control samples, decreased by nearly two orders of magnitude. A combination of analytical techniques, including VIS-NIR absorption spectroscopy and XANES, identified Np(IV) as the oxidation state associated with the sediments. The similar results from the active microcosm and the abiotic controls suggest that microbian y produced Mn(II/HI) and Fe(II) may serve as electron donors for Np reduction.

  13. Interaction of acetogens and methanogens in anaerobic freshwater sediments.

    PubMed

    Jones, J G; Simon, B M

    1985-04-01

    Anaerobic decomposition processes in the profundal sediments of Blelham Tarn (English Lake District) are often limited during late summer by the input of organic carbon. The concentration of acetate in the interstitial water fell from about 100 microM (immediately after sedimentation of the spring diatom bloom) to a relatively constant value of about 20 microM in late summer, during which acetate utilization appeared to be balanced by production. Addition of chloroform and molybdate caused an accumulation of cold acetate in large sediment cores and of [14C]acetate in small cores to which [14C]bicarbonate had been added. In both cases chloroform caused the greater accumulation, implying that acetoclastic methanogens were the more active consumers. The conversion of 14CO2 to [14C]acetate was inversely related, with depth, to its conversion to 14CH4. Methanogenesis from CO2 decreased during late summer, whereas acetogenesis and acetoclastic methanogenesis increased over the same time period. The production of acetate from CO2 was generally equivalent to less than 10% of the acetate carbon utilized but could be as high as 25% of that value. Hydrogen consumption by acetogens could be as high as 50% of that utilized in methanogenesis. The role of acetogenic bacteria in anaerobic processes may therefore be of greater significance in lakes such as Blelham Tarn than in more eutrophic systems. PMID:4004224

  14. Continuous culture of Methanococcus jannaschii, an extremely thermophilic methanogen

    SciTech Connect

    Jiahuey Tsao; Kaneshiro, S.M.; Shusan Yu; Clark, D.S. . Dept. of Chemical Engineering)

    1994-02-05

    Methanococcus jannaschii, an extremely thermophilic methanogen isolated from a deep-sea hydrothermal vent was grown at 80 C in continuous culture on a mineral salts medium gassed with H[sub 2] and CO[sub 2] at three different flow rates. The maximum specific growth rate was 0.56 h[sup [minus]1], and the maximum specific methane productivity was 0.32 (mol g[sup [minus]1] h[sup [minus]1]). Uncoupling of growth and methane production was evidenced by an increase in the non-growth-associated rate of methane formation, [Beta], with increasing gaseous input. The specific hydrogenase activity exhibited growth-associated behavior at low growth rates, but showed no dependence on growth at higher growth rates. The growth dependence of hydrogenase activity is consistent with the pressure dependence of hydrogenase activity measured in previous experiments. In contrast, the specific protease activity was independent of the growth rate over the entire range of dilution rates studied.

  15. Advanced bioreactors for enhanced production of chemicals

    SciTech Connect

    Davison, B.H.; Scott, C.D.

    1993-06-01

    A variety of advanced bioreactors are being developed to improve production of fuels, solvents, organic acids and other fermentation products. One key approach is immobilization of the biocatalyst leading to increased rates and yields. In addition, there are processes for simultaneous fermentation and separation to further increase production by the removal of an inhibitory product. For example, ethanol productivity in immobilized-cell fluidized-bed bioreactors (FBRs) can increase more than tenfold with 99% conversion and near stoichiometric yields. Two modified FBR configurations offer further improvements by removing the inhibitory product directly from the continuous fermentation. One involves the addition and removal of solid adsorbent particles to the FBR. This process was demonstrated with the production of lactic acid by immobilized Lactobacillus. The second uses an immiscible organic extractant in the FBR. This increased total butanol yields in the anaerobic acetone-butanol fermentation by Clostridium acetobutylicum.

  16. Dense Regular Packings of Irregular Nonconvex Particles

    NASA Astrophysics Data System (ADS)

    de Graaf, Joost; van Roij, René; Dijkstra, Marjolein

    2011-10-01

    We present a new numerical scheme to study systems of nonconvex, irregular, and punctured particles in an efficient manner. We employ this method to analyze regular packings of odd-shaped bodies, both from a nanoparticle and from a computational geometry perspective. Besides determining close-packed structures for 17 irregular shapes, we confirm several conjectures for the packings of a large set of 142 convex polyhedra and extend upon these. We also prove that we have obtained the densest packing for both rhombicuboctahedra and rhombic enneacontrahedra and we have improved upon the packing of enneagons and truncated tetrahedra.

  17. Oxygen transfer in a pressurized airlift bioreactor.

    PubMed

    Campani, Gilson; Ribeiro, Marcelo Perencin Arruda; Horta, Antônio Carlos Luperni; Giordano, Roberto Campos; Badino, Alberto Colli; Zangirolami, Teresa Cristina

    2015-08-01

    Airlift bioreactors (ALBs) offer advantages over conventional systems, such as simplicity of construction, reduced risk of contamination, and efficient gas-liquid dispersion with low power consumption. ALBs are usually operated under atmospheric pressure. However, in bioprocesses with high oxygen demand, such as high cell density cultures, oxygen limitation may occur even when operating with high superficial gas velocity and air enriched with oxygen. One way of overcoming this drawback is to pressurize the reactor. In this configuration, it is important to assess the influence of bioreactor internal pressure on the gas hold-up, volumetric oxygen transfer coefficient (k(L)a), and volumetric oxygen transfer rate (OTR). Experiments were carried out in a concentric-tube airlift bioreactor with a 5 dm(3) working volume, equipped with a system for automatic monitoring and control of the pressure, temperature, and inlet gas flow rate. The results showed that, in disagreement with previous published results for bubble column and external loop airlift reactors, overpressure did not significantly affect k(L)a within the studied ranges of pressure (0.1-0.4 MPa) and superficial gas velocity in the riser (0.032-0.065 m s(-1)). Nevertheless, a positive effect on OTR was observed: it increased up to 5.4 times, surpassing by 2.3 times the oxygen transfer in a 4 dm(3) stirred tank reactor operated under standard cultivation conditions. These results contribute to the development of non-conventional reactors, especially pneumatic bioreactors operated using novel strategies for oxygen control. PMID:25903476

  18. Bioreactor Yields Extracts for Skin Cream

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Johnson Space Flight Center researchers created a unique rotating-wall bioreactor that simulates microgravity conditions, spurring innovations in drug development and medical research. Renuèll Int'l Inc., based in Aventure, Florida, licensed the technology and used it to produce a healing skin care product, RE`JUVEL. In a Food and Drug Administration test, RE`JUVEL substantially increased skin moisture and elasticity while reducing dark blotches and wrinkles.

  19. Design concepts for bioreactors in space

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Peterson, G. R.; Beard, B.; Boshe, C.; Dunlop, E. H.

    1987-01-01

    Microbial food sources are becoming viable and more efficient alternatives to conventional food sources, especially in the context of closed ecological life support systems (CELSS) in space habitats. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecraft, space stations and other extra-terrestrial habitats.

  20. Replaceable Sensor System for Bioreactor Monitoring

    NASA Technical Reports Server (NTRS)

    Mayo, Mike; Savoy, Steve; Bruno, John

    2006-01-01

    A sensor system was proposed that would monitor spaceflight bioreactor parameters. Not only will this technology be invaluable in the space program for which it was developed, it will find applications in medical science and industrial laboratories as well. Using frequency-domain-based fluorescence lifetime technology, the sensor system will be able to detect changes in fluorescence lifetime quenching that results from displacement of fluorophorelabeled receptors bound to target ligands. This device will be used to monitor and regulate bioreactor parameters including glucose, pH, oxygen pressure (pO2), and carbon dioxide pressure (pCO2). Moreover, these biosensor fluorophore receptor-quenching complexes can be designed to further detect and monitor for potential biohazards, bioproducts, or bioimpurities. Biosensors used to detect biological fluid constituents have already been developed that employ a number of strategies, including invasive microelectrodes (e.g., dark electrodes), optical techniques including fluorescence, and membrane permeable systems based on osmotic pressure. Yet the longevity of any of these sensors does not meet the demands of extended use in spacecraft habitat or bioreactor monitoring. It was therefore necessary to develop a sensor platform that could determine not only fluid variables such as glucose concentration, pO2, pCO2, and pH but can also regulate these fluid variables with controlled feedback loop.

  1. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence?

    PubMed Central

    Ozuolmez, Derya; Na, Hyunsoo; Lever, Mark A.; Kjeldsen, Kasper U.; Jørgensen, Bo B.; Plugge, Caroline M.

    2015-01-01

    Acetate is a major product of fermentation processes and an important substrate for sulfate reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate reducers and methanogens have used pure cultures. Less is known about acetate conversion by mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen transfer and coexistence between marine methanogens and sulfate reducers using mixed pure cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in response to changing environmental conditions and community compositions. Using dedicated physiological studies we were able to unravel the occurrence of less obvious interactions between marine methanogens and sulfate-reducing bacteria. PMID:26074892

  2. Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands.

    PubMed

    Lin, Yongxin; Liu, Deyan; Ding, Weixin; Kang, Hojeong; Freeman, Chris; Yuan, Junji; Xiang, Jian

    2015-12-01

    There is ample evidence that methane (CH4) emissions from natural wetlands exhibit large spatial variations at a field scale. However, little is known about the metabolically active methanogens mediating these differences. We explored the spatial patterns in active methanogens of summer inundated Calamagrostis angustifolia marsh with low CH4 emissions and permanently inundated Carex lasiocarpa marsh with high CH4 emissions in Sanjiang Plain, China. In C. angustifolia marsh, the addition of (13)C-acetate significantly increased the CH4 production rate, and Methanosarcinaceae methanogens were found to participate in the consumption of acetate. In C. lasiocarpa marsh, there was no apparent increase in the CH4 production rate and no methanogen species were labeled with (13)C. When (13)CO2-H2 was added, however, CH4 production was found to be due to Fen Cluster (Methanomicrobiales) in C. angustifolia marsh and Methanobacterium Cluster B (Methanobacteriaceae) together with Fen Cluster in C. lasiocarpa marsh. These results suggested that CH4 was produced primarily by hydrogenotrophic methanogens using substrates mainly derived from plant litter in C. lasiocarpa marsh and by both hydrogenotrophic and acetoclastic methanogens using substrates mainly derived from root exudate in C. angustifolia marsh. The significantly lower CH4 emissions measured in situ in C. angustifolia marsh was primarily due to a deficiency of substrates compared to C. lasiocarpa marsh. Therefore, we speculate that the substrate source regulates both the type of active methanogens and the CH4 production pathway and consequently contributes to the spatial variations in CH4 productions observed in these freshwater marshes. PMID:26286511

  3. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses.

    PubMed Central

    Koga, Y; Nishihara, M; Morii, H; Akagawa-Matsushita, M

    1993-01-01

    Complete structures of nearly 40 ether polar lipids from seven species of methanogens have been elucidated during the past 10 years. Three kinds of variations of core lipids, macrocyclic archaeol and two hydroxyarchaeols, were identified, in addition to the usual archaeol and caldarchaeol (for the nomenclature of archaeal [archaebacterial] ether lipids, see the text). Polar head groups of methanogen phospholipids include ethanolamine, serine, inositol, N-acetylglucosamine, dimethyl- and trimethylaminopentanetetrol, and glucosaminylinositol. Glucose is the sole hexose moiety of glycolipids in most methanogens, and galactose and mannose have been found in a few species. Methanogen lipids are characterized by their diversity in phosphate-containing polar head groups and core lipids, which in turn can be used for chemotaxonomy of methanogens. This was shown by preliminary simplified analyses of lipid component residues. Core lipid analysis by high-pressure liquid chromatography provides a method of determining the methanogenic biomass in natural samples. There has been significant progress in the biosynthetic studies of methanogen lipids in recent years. In vivo incorporation experiments have led to delineation of the outline of the synthetic route of the diphytanylglycerol ether core. The mechanisms of biosynthesis of tetraether lipids and various polar lipids, and cell-free systems of either lipid synthesis, however, remain to be elucidated. The significance and the origin of archaeal ether lipids is discussed in terms of the lipid composition of bacteria living in a wide variety of environments, the oxygen requirement for biosynthesis of hydrocarbon chains, and the physicochemical properties and functions of lipids as membrane constituents. PMID:8464404

  4. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes

    PubMed Central

    Gray, N D; Sherry, A; Grant, R J; Rowan, A K; Hubert, C R J; Callbeck, C M; Aitken, C M; Jones, D M; Adams, J J; Larter, S R; Head, I M

    2011-01-01

    Libraries of 16S rRNA genes cloned from methanogenic oil degrading microcosms amended with North Sea crude oil and inoculated with estuarine sediment indicated that bacteria from the genera Smithella (Deltaproteobacteria, Syntrophaceace) and Marinobacter sp. (Gammaproteobacteria) were enriched during degradation. Growth yields and doubling times (36 days for both Smithella and Marinobacter) were determined using qPCR and quantitative data on alkanes, which were the predominant hydrocarbons degraded. The growth yield of the Smithella sp. [0.020 g(cell-C)/g(alkane-C)], assuming it utilized all alkanes removed was consistent with yields of bacteria that degrade hydrocarbons and other organic compounds in methanogenic consortia. Over 450 days of incubation predominance and exponential growth of Smithella was coincident with alkane removal and exponential accumulation of methane. This growth is consistent with Smithella's occurrence in near surface anoxic hydrocarbon degrading systems and their complete oxidation of crude oil alkanes to acetate and/or hydrogen in syntrophic partnership with methanogens in such systems. The calculated growth yield of the Marinobacter sp., assuming it grew on alkanes, was [0.0005 g(cell-C)/g(alkane-C)] suggesting that it played a minor role in alkane degradation. The dominant methanogens were hydrogenotrophs (Methanocalculus spp. from the Methanomicrobiales). Enrichment of hydrogen-oxidizing methanogens relative to acetoclastic methanogens was consistent with syntrophic acetate oxidation measured in methanogenic crude oil degrading enrichment cultures. qPCR of the Methanomicrobiales indicated growth characteristics consistent with measured rates of methane production and growth in partnership with Smithella. PMID:21914097

  5. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses.

    PubMed

    Koga, Y; Nishihara, M; Morii, H; Akagawa-Matsushita, M

    1993-03-01

    Complete structures of nearly 40 ether polar lipids from seven species of methanogens have been elucidated during the past 10 years. Three kinds of variations of core lipids, macrocyclic archaeol and two hydroxyarchaeols, were identified, in addition to the usual archaeol and caldarchaeol (for the nomenclature of archaeal [archaebacterial] ether lipids, see the text). Polar head groups of methanogen phospholipids include ethanolamine, serine, inositol, N-acetylglucosamine, dimethyl- and trimethylaminopentanetetrol, and glucosaminylinositol. Glucose is the sole hexose moiety of glycolipids in most methanogens, and galactose and mannose have been found in a few species. Methanogen lipids are characterized by their diversity in phosphate-containing polar head groups and core lipids, which in turn can be used for chemotaxonomy of methanogens. This was shown by preliminary simplified analyses of lipid component residues. Core lipid analysis by high-pressure liquid chromatography provides a method of determining the methanogenic biomass in natural samples. There has been significant progress in the biosynthetic studies of methanogen lipids in recent years. In vivo incorporation experiments have led to delineation of the outline of the synthetic route of the diphytanylglycerol ether core. The mechanisms of biosynthesis of tetraether lipids and various polar lipids, and cell-free systems of either lipid synthesis, however, remain to be elucidated. The significance and the origin of archaeal ether lipids is discussed in terms of the lipid composition of bacteria living in a wide variety of environments, the oxygen requirement for biosynthesis of hydrocarbon chains, and the physicochemical properties and functions of lipids as membrane constituents. PMID:8464404

  6. Kinetics of pack aluminization of nickel

    NASA Technical Reports Server (NTRS)

    Seigle, L. L.; Gupta, B. K.; Shankar, R.; Sarkhel, A. K.

    1978-01-01

    The kinetics of pack aluminization of unalloyed nickel in packs of varying aluminum activity with various halide activators were studied. Surface compositions of the coatings as functions of time, temperature, and pack composition were obtained in order to establish the boundary conditions for diffusion in the system. The structure of the packs was also examined in order to clarify the mechanism of aluminum transport. The results indicate that the kinetics of pack aluminization are controlled jointly by gas diffusion in the pack and solid diffusion in the coating. Levine and Caves' model for gas diffusion was combined with calculations of rates of diffusion in the solid to formulate a more complete theory for the kinetics of pack aluminization.

  7. Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors.

    PubMed

    Zhang, Lili; Zhang, Chao; Hu, Chengzhi; Liu, Huijuan; Bai, Yaohui; Qu, Jiuhui

    2015-11-15

    Sulfur-based mixotrophic denitrifying anoxic fluidized bed membrane bioreactors (AnFB-MBR) were developed for the treatment of nitrate-contaminated groundwater with minimized sulfate production. The nitrate removal rates obtained in the methanol- and ethanol-fed mixotrophic denitrifying AnFB-MBRs reached 1.44-3.84 g NO3 -N/L reactor d at a hydraulic retention time of 0.5 h, which were significantly superior to those reported in packed bed reactors. Compared to methanol, ethanol was found to be a more effective external carbon source for sulfur-based mixotrophic denitrification due to lower sulfate and total organic carbon concentrations in the effluent. Using pyrosequencing, the phylotypes of primary microbial groups in the reactor, including sulfur-oxidizing autotrophic denitrifiers, methanol- or ethanol-supported heterotrophic denitrifiers, were investigated in response to changes in electron donors. Principal component and heatmap analyses indicated that selection of electron donating substrates largely determined the microbial community structure. The abundance of Thiobacillus decreased from 45.1% in the sulfur-oxidizing autotrophic denitrifying reactor to 12.0% and 14.2% in sulfur-based methanol- and ethanol-fed mixotrophic denitrifying bioreactors, respectively. Heterotrophic Methyloversatilis and Thauera bacteria became more dominant in the mixotrophic denitrifying bioreactors, which were possibly responsible for the observed methanol- and ethanol-associated denitrification. PMID:26364226

  8. A bioreactor system for the nitrogen loop in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Saulmon, M. M.; Reardon, K. F.; Sadeh, W. Z.

    1996-01-01

    As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an essential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications.

  9. Quantitative detection of syntrophic fatty acid-degrading bacterial communities in methanogenic environments.

    PubMed

    Mathai, Prince P; Zitomer, Daniel H; Maki, James S

    2015-06-01

    In methanogenic habitats, volatile fatty acids (VFA), such as propionate and butyrate, are major intermediates in organic matter degradation. VFA are further metabolized to H(2), acetate and CO(2) by syntrophic fatty acid-degrading bacteria (SFAB) in association with methanogenic archaea. Despite their indispensable role in VFA degradation, little is known about SFAB abundance and their environmental distribution. To facilitate ecological studies, we developed four novel genus-specific quantitative PCR (qPCR) assays, with primer sets targeting known SFAB: Syntrophobacter, Smithella, Pelotomaculum and Syntrophomonas. Primer set specificity was confirmed using in silico and experimental (target controls, clone libraries and melt-curve analysis) approaches. These qPCR assays were applied to quantify SFAB in a variety of mesophilic methanogenic habitats, including a laboratory propionate enrichment culture, pilot- and full-scale anaerobic reactors, cow rumen, horse faeces, an experimental rice paddy soil, a bog stream and swamp sediments. The highest SFAB 16S rRNA gene copy numbers were found in the propionate enrichment culture and anaerobic reactors, followed by the bog stream and swamp sediment samples. In addition, it was observed that SFAB and methanogen abundance varied with reactor configuration and substrate identity. To our knowledge, this research represents the first comprehensive study to quantify SFAB in methanogenic habitats using qPCR-based methods. These molecular tools will help investigators better understand syntrophic microbial communities in engineered and natural environments. PMID:25814038

  10. Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil.

    PubMed

    Kato, Souichiro; Chino, Kanako; Kamimura, Naofumi; Masai, Eiji; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions. PMID:26399549

  11. Windrow composting mitigated CH4 emissions: characterization of methanogenic and methanotrophic communities in manure management.

    PubMed

    Chen, Ruirui; Wang, Yiming; Wei, Shiping; Wang, Wei; Lin, Xiangui

    2014-12-01

    With increasing livestock breeding, methane (CH4 ) emissions from manure management will increasingly contribute more to atmospheric CH4 concentration. The dynamics of methanogens and methanotrophs have not yet been studied in the manure environment. The current study combines surface CH4 emissions with methanogenic and methanotrophic community analyses from two management practices, windrow composting (WCOM) and solid storage (SSTO). Our results showed that there was an c. 50% reduction of CH4 emissions with WCOM compared with SSTO over a 50-day period. A sharp decrease in the quantities of both methanogens and methanotrophs in WCOM suggested that CH4 mitigation was mainly due to decreased CH4 production rather than increased CH4 oxidation. Pyrosequencing analysis demonstrated that aeration caused a clear shift of dominant methanogens in the manure, with specifically a significant decrease in Methanosarcina and increase in Methanobrevibacter. The composition of methanogenic community was influenced by manure management and regulated CH4 production. A sharp increase in the quantity of methanotrophs in SSTO suggested that microbial CH4 oxidation is an important sink for the CH4 produced. The increased abundance of Methylococcaceae in SSTO suggested that Type I methanotrophs have an advantage in CH4 oxidation in occupying niches under low CH4 and high O2 conditions. PMID:25135448

  12. Methanogenic activity and diversity in the centre of the Amsterdam Mud Volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; John Parkes, R; Cragg, Barry A; L'Haridon, Stephane; Toffin, Laurent

    2012-07-01

    Marine mud volcanoes are geological structures emitting large amounts of methane from their active centres. The Amsterdam mud volcano (AMV), located in the Anaximander Mountains south of Turkey, is characterized by intense active methane seepage produced in part by methanogens. To date, information about the diversity or the metabolic pathways used by the methanogens in active centres of marine mud volcanoes is limited. (14)C-radiotracer measurements showed that methylamines/methanol, H(2)/CO(2) and acetate were used for methanogenesis in the AMV. Methylotrophic methanogenesis was measured all along the sediment core, Methanosarcinales affiliated sequences were detected using archaeal 16S PCR-DGGE and mcrA gene libraries, and enrichments of methanogens showed the presence of Methanococcoides in the shallow sediment layers. Overall acetoclastic methanogenesis was higher than hydrogenotrophic methanogenesis, which is unusual for cold seep sediments. Interestingly, acetate porewater concentrations were extremely high in the AMV sediments. This might be the result of organic matter cracking in deeper hotter sediment layers. Methane was also produced from hexadecanes. For the most part, the methanogenic community diversity was in accordance with the depth distribution of the H(2)/CO(2) and acetate methanogenesis. These results demonstrate the importance of methanogenic communities in the centres of marine mud volcanoes. PMID:22458514

  13. Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil

    PubMed Central

    Kato, Souichiro; Chino, Kanako; Kamimura, Naofumi; Masai, Eiji; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions. PMID:26399549

  14. Molecular diversity and tools for deciphering the methanogen community structure and diversity in freshwater sediments.

    PubMed

    Chaudhary, Prem Prashant; Brablcová, Lenka; Buriánková, Iva; Rulík, Martin

    2013-09-01

    Methanogenic archaeal communities existing in freshwater sediments are responsible for approximately 50 % of the total global emission of methane. This process contributes significantly to global warming and, hence, necessitates interventional control measures to limit its emission. Unfortunately, the diversity and functional interactions of methanogenic populations occurring in these habitats are yet to be fully characterized. Considering several disadvantages of conventional culture-based methodologies, in recent years, impetus is given to molecular biology approaches to determine the community structure of freshwater sedimentary methanogenic archaea. 16S rRNA and methyl coenzyme M reductase (mcrA) gene-based cloning techniques are the first choice for this purpose. In addition, electrophoresis-based (denaturing gradient gel electrophoresis, temperature gradient gel electrophoresis, and terminal restriction fragment length polymorphism) and quantitative real-time polymerase chain reaction techniques have also found extensive applications. These techniques are highly sensitive, rapid, and reliable as compared to traditional culture-dependent approaches. Molecular diversity studies revealed the dominance of the orders Methanomicrobiales and Methanosarcinales of methanogens in freshwater sediments. The present review discusses in detail the status of the diversity of methanogens and the molecular approaches applied in this area of research. PMID:23877581

  15. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    PubMed

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. PMID:20602990

  16. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    PubMed Central

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K.; Maitra, S. S.

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  17. Structure and Function of Methanogens along a Short-Term Restoration Chronosequence in the Florida Everglades▿

    PubMed Central

    Smith, Jason M.; Castro, Hector; Ogram, Andrew

    2007-01-01

    The removal of plants and soil to bedrock to eradicate exotic invasive plants within the Hole-in-the-Donut (HID) region, part of the Everglades National Park (Florida), presented a unique opportunity to study the redevelopment of soil and the associated microbial communities in the context of short-term primary succession and ecosystem restoration. The goal of this study was to identify relationships between soil redevelopment and activity and composition of methanogenic assemblages in HID soils. Methane production potentials indicated a general decline in methanogenic activity with restoration age. Microcosm incubations strongly suggested hydrogenotrophic methanogenesis as the most favorable pathway for methane formation in HID soils from all sites. Culture-independent techniques targeting methyl coenzyme M reductase genes (mcrA) were used to assess the dynamics of methanogenic assemblages. Clone libraries were dominated by sequences related to hydrogenotrophic methanogens of the orders Methanobacteriales and Methanococcales and suggested a general decline in the relative abundance of Methanobacteriales mcrA with time since restoration. Terminal restriction fragment length polymorphism analysis indicated methanogenic assemblages remain relatively stable between wet and dry seasons. Interestingly, analysis of soils across the restoration chronosequence indicated a shift in Methanobacteriales populations with restoration age, suggesting genotypic shifts due to site-specific factors. PMID:17449688

  18. Reductive dehalogenation of chlorinated benzenes and toluenes under methanogenic conditions.

    PubMed Central

    Ramanand, K; Balba, M T; Duffy, J

    1993-01-01

    The anaerobic metabolism of chlorinated benzenes and toluenes was evaluated in soil slurry microcosms under methanogenic conditions. A mixture of hexachlorobenzene, pentachlorobenzene, and 1,2,4-trichlorobenzene (TCB) in soil slurries was biotransformed through sequential reductive dechlorination to chlorobenzene (CB). The metabolic pathway for hexachlorobenzene and pentachlorobenzene decay proceeded via 1,2,3,4-tetrachlorobenzene (TTCB)-->1,2,3-TCB + 1,2,4-TCB-->1,2-dichlorobenzene (DCB) + 1,4-DCB-->CB. In a mineral salts medium, the CB-adapted soil microorganisms dehalogenated individual 1,2,4,5-TTCB, 1,2,3,4-TTCB, 1,2,3-TCB, and 1,2,4-TCB but not 1,2,3,5-TTCB or 1,3,5-TCB. Similarly, a mixture of 2,3,6-trichlorotoluene (TCT), 2,5-dichlorotoluene (DCT), and 3,4-DCT was reductively dechlorinated in soil slurries to predominantly toluene and small amounts of 2-, 3-, and 4-chlorotoluene (CT). Toluene was further degraded. When tested individually in a mineral salts medium, the CT-adapted soil microorganisms dechlorinated several TCT and DCT isomers. Key metabolic routes for TCTs followed: 2,3,6-TCT-->2,5-DCT-->2-CT-->toluene; 2,4,5-TCT-->2,5-DCT + 3,4-DCT-->3-CT + 4-CT-->toluene. Among DCTs tested, 2,4-DCT and 3,4-DCT were dechlorinated via the removal of o- and m-chlorine, respectively, to 4-CT and subsequently to toluene via p-chlorine removal. Likewise, 2,5-DCT was dechlorinated via 2-CT to toluene. Evidently, microorganisms capable of removing o-, m-, and p-chlorines are present in the soil system, as reflected by the dechlorination of different isomers of CBs and CTs to CB and toluene, respectively. These findings help clarify the metabolic fate of chlorinated benzenes and toluenes in anaerobic environments. PMID:8250553

  19. Transduction-like gene transfer in the methanogen Methanococcus voltae

    NASA Technical Reports Server (NTRS)

    Bertani, G.

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 x 10(-5) (BES resistance) to a maximum of 10(-3) (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae.

  20. Transformation of toluene and benzene by mixed methanogenic cultures.

    PubMed Central

    Grbić-Galić, D; Vogel, T M

    1987-01-01

    The aromatic hydrocarbons toluene and benzene were anaerobically transformed by mixed methanogenic cultures derived from ferulic acid-degrading sewage sludge enrichments. In most experiments, toluene or benzene was the only semicontinuously supplied carbon and energy source in the defined mineral medium. No exogenous electron acceptors other than CO2 were present. The cultures were fed 1.5 to 30 mM unlabeled or 14C-labeled aromatic substrates (ring-labeled toluene and benzene or methyl-labeled toluene). Gas production from unlabeled substrates and 14C activity distribution in products from the labeled substrates were monitored over a period of 60 days. At least 50% of the substrates were converted to CO2 and methane (greater than 60%). A high percentage of 14CO2 was recovered from the methyl group-labeled toluene, suggesting nearly complete conversion of the methyl group to CO2 and not to methane. However, a low percentage of 14CO2 was produced from ring-labeled toluene or from benzene, indicating incomplete conversion of the ring carbon to CO2. Anaerobic transformation pathways for unlabeled toluene and benzene were studied with the help of gas chromatography-mass spectrometry. The intermediates detected are consistent with both toluene and benzene degradation via initial oxidation by ring hydroxylation or methyl oxidation (toluene), which would result in the production of phenol, cresols, or aromatic alcohol. Additional reactions, such as demethylation and ring reduction, are also possible. Tentative transformation sequences based upon the intermediates detected are discussed. PMID:3105454

  1. Linkage among Vegetation, Microbes and Methanogenic Pathways in Alaskan Peatlands

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Sidelinger, W.; Shu, H.; Varner, R. K.; Hines, M. E.

    2014-12-01

    Northern wetlands are thought to account for one third of the naturally emitted CH4. However, methane production pathways in northern peatlands are poorly understood, yet are predicted to change in response to vegetation shifts due to warming. Previous studies noted that acetate conversion to methane (acetoclastic methanogenesis, AM) in northern wetlands is largely impeded and acetate accumulates, however AM tends to increase with minerotrophy. To understand methanogenic pathways and to provide linkage among pathways, we studied Alaskan wetlands in 2013 and 2014. In 2013, laboratory incubations were conducted in three peatlands representing trophic gradients from bogs to fens. During 2014, 37 different sites in Fairbanks and Anchorage were studied that represented wetlands with pH values from 3.5 to 5.5 and vegetation from primarily Sphagnum to sedges. Measurements in 2014 included vegetation composition, gases (CH4, CO2, H2, and CO), 13CH4 and 13CO2, volatile fatty acids, DOC, other electron acceptors. Further incubation studies are being conducted to decipher controls on decomposition pathways. Gene sequencing was used to characterize microbial community composition, and metagenomic and transcriptomics were conducted to describe community activity. Results showed that methanogenesis was higher in fens than bogs, but hydrogenotrophic methanogenesis (HM) was dominant at all sites. End product ratios showed that AM was occurring in fens, albeit slowly. Fermentation was an important end-point in decomposition and microbial syntrophy was weak. These data, regardless of trophic status, differed greatly from data obtained from temperate wetlands in which terminal respiratory processes were strong and C flow through syntrophy was important. Trophic status influenced C flow in the Alaskan sites, but terminal processes were weak and end product formation tended to end at primary fermentation, which dominated as the terminal step in decomposition.

  2. Transduction-Like Gene Transfer in the Methanogen Methanococcus voltae

    PubMed Central

    Bertani, Giuseppe

    1999-01-01

    Strain PS of Methanococcus voltae (a methanogenic, anaerobic archaebacterium) was shown to generate spontaneously 4.4-kbp chromosomal DNA fragments that are fully protected from DNase and that, upon contact with a cell, transform it genetically. This activity, here called VTA (voltae transfer agent), affects all markers tested: three different auxotrophies (histidine, purine, and cobalamin) and resistance to BES (2-bromoethanesulfonate, an inhibitor of methanogenesis). VTA was most effectively prepared by culture filtration. This process disrupted a fraction of the M. voltae cells (which have only an S-layer covering their cytoplasmic membrane). VTA was rapidly inactivated upon storage. VTA particles were present in cultures at concentrations of approximately two per cell. Gene transfer activity varied from a minimum of 2 × 10−5 (BES resistance) to a maximum of 10−3 (histidine independence) per donor cell. Very little VTA was found free in culture supernatants. The phenomenon is functionally similar to generalized transduction, but there is no evidence, for the time being, of intrinsically viral (i.e., containing a complete viral genome) particles. Consideration of VTA DNA size makes the existence of such viral particles unlikely. If they exist, they must be relatively few in number;perhaps they differ from VTA particles in size and other properties and thus escaped detection. Digestion of VTA DNA with the AluI restriction enzyme suggests that it is a random sample of the bacterial DNA, except for a 0.9-kbp sequence which is amplified relative to the rest of the bacterial chromosome. A VTA-sized DNA fraction was demonstrated in a few other isolates of M. voltae. PMID:10321998

  3. LEACHATE NITROGEN CONCENTRATIONS AND BACTERIAL NUMBERS FROM TWO BIOREACTOR LANDFILLS

    EPA Science Inventory

    The U.S. EPA and Waste Management Inc. have entered into a cooperative research and development agreement (CRADA) to study landfills operated as bioreactors. Two different landfill bioreactor configurations are currently being tested at the Outer Loop landfill in Louisville, KY...

  4. Denitrifying bioreactors for nitrate removal from tile drained cropland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification bioreactors are a promising technology for mitigation of nitrate-nitrogen (NO3-N) losses in subsurface drainage water. Bioreactors are constructed with carbon substrates, typically wood chips, to provide a substrate for denitrifying microorganisms. Researchers in Iowa found that for ...

  5. Evaluation of woodchip bioreactors for improved water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Woodchip bioreactors are gaining popularity with farmers because of their edge-of-field nitrate removal capabilities, which do not require changes in land management practices. However, limited research has been conducted to study the potential of these bioreactors to also reduce downstream transpor...

  6. STATE OF THE PRACTICE FOR BIOREACTOR LANDFILLS - SUMMARY OF USEPA WORKSHOP ON BIOREACTOR LANDFILLS: SUMMARY

    EPA Science Inventory

    This is a summary of the Workshop on Landfill Bioreactors, held 9/6-7/2000 in Arlington, VA. The purpose of the workshop was to provide a forum to EPA, state and local governments, solid waste industry, and academic research representatives to exchange information and ideas on b...

  7. Genome Sequence of “Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1, a Third Thermoplasmatales-Related Methanogenic Archaeon from Human Feces

    PubMed Central

    Borrel, Guillaume; Harris, Hugh M. B.; Parisot, Nicolas; Gaci, Nadia; Tottey, William; Mihajlovski, Agnès; Deane, Jennifer; Gribaldo, Simonetta; Bardot, Olivier; Peyretaillade, Eric; Peyret, Pierre; O’Toole, Paul W.

    2013-01-01

    “Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1 is a methanogenic archaeon found in the human gut and is a representative of the novel order of methanogens related to Thermoplasmatales. Its complete genome sequence is presented here. PMID:23846268

  8. The Packing of Granular Polymer Chains

    SciTech Connect

    Zou, Ling-Nan; Cheng, Xiang; Rivers, Mark L.; Jaeger, Heinrich M.; Nagel, Sidney R.; UC

    2009-12-01

    Rigid particles pack into structures, such as sand dunes on the beach, whose overall stability is determined by the average number of contacts between particles. However, when packing spatially extended objects with flexible shapes, additional concepts must be invoked to understand the stability of the resulting structure. Here, we examine the disordered packing of chains constructed out of flexibly connected hard spheres. Using x-ray tomography, we find that long chains pack into a low-density structure whose mechanical rigidity is mainly provided by the backbone. On compaction, randomly oriented, semi-rigid loops form along the chain, and the packing of chains can be understood as the jamming of these elements. Finally, we uncover close similarities between the packing of chains and the glass transition in polymers.

  9. Reduced-Gravity Experiments Conducted to Help Bioreactor Development

    NASA Technical Reports Server (NTRS)

    Niederhaus, Charles E.; Nahra, Henry K.; Kizito, John P.

    2004-01-01

    The NASA Glenn Research Center and the NASA Johnson Space Center are collaborating on fluid dynamic investigations for a future cell science bioreactor to fly on the International Space Station (ISS). Project Manager Steven Gonda from the Cellular Biotechnology Program at Johnson is leading the development of the Hydrodynamic Focusing Bioreactor--Space (HFB-S) for use on the ISS to study tissue growth in microgravity. Glenn is providing microgravity fluid physics expertise to help with the design and evaluation of the HFB-S. These bioreactors are used for three-dimensional tissue culture, which cannot be done in ground-based labs in normal gravity. The bioreactors provide a continual supply of oxygen for cell growth, as well as periodic replacement of cell culture media with nutrients. The bioreactor must provide a uniform distribution of oxygen and nutrients while minimizing the shear stresses on the tissue culture.

  10. Fermentation enhancement of methanogenic archaea consortia from an Illinois basin coalbed via DOL emulsion nutrition.

    PubMed

    Xiao, Dong; Peng, Su-Ping; Wang, En-Yuan

    2015-01-01

    Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nutrition solutions were examined in this study. Emulsion nutrition solutions containing a novel nutritional supplement, called dystrophy optional modification latex, increased the methane yield for methanogenic consortia. This new nutritional supplement can help methanogenic consortia form an enhanced anaerobic environment, optimize the microbial balance in the consortia, and improve the methane biosynthesis rate. PMID:25884952

  11. Fermentation Enhancement of Methanogenic Archaea Consortia from an Illinois Basin Coalbed via DOL Emulsion Nutrition

    PubMed Central

    Xiao, Dong; Peng, Su-Ping; Wang, En-Yuan

    2015-01-01

    Microbially enhanced coalbed methane technology must be used to increase the methane content in mining and generate secondary biogenic gas. In this technology, the metabolic processes of methanogenic consortia are the basis for the production of biomethane from some of the organic compounds in coal. Thus, culture nutrition plays an important role in remediating the nutritional deficiency of a coal seam. To enhance the methane production rates for microorganism consortia, different types of nutrition solutions were examined in this study. Emulsion nutrition solutions containing a novel nutritional supplement, called dystrophy optional modification latex, increased the methane yield for methanogenic consortia. This new nutritional supplement can help methanogenic consortia form an enhanced anaerobic environment, optimize the microbial balance in the consortia, and improve the methane biosynthesis rate. PMID:25884952

  12. Toward the identification of methanogenic archaeal groups as targets of methane mitigation in livestock animalsr

    PubMed Central

    St-Pierre, Benoit; Cersosimo, Laura M.; Ishaq, Suzanne L.; Wright, André-Denis G.

    2015-01-01

    In herbivores, enteric methane is a by-product from the digestion of plant biomass by mutualistic gastrointestinal tract (GIT) microbial communities. Methane is a potent greenhouse gas that is not assimilated by the host and is released into the environment where it contributes to climate change. Since enteric methane is exclusively produced by methanogenic archaea, the investigation of mutualistic methanogen communities in the GIT of herbivores has been the subject of ongoing research by a number of research groups. In an effort to uncover trends that would facilitate the development of efficient methane mitigation strategies for livestock species, we have in this review summarized and compared currently available results from published studies on this subject. We also offer our perspectives on the importance of pursuing current research efforts on the sequencing of gut methanogen genomes, as well as investigating their cellular physiology and interactions with other GIT microorganisms. PMID:26284054

  13. Investigation into the effect of high concentrations of volatile fatty acids in anaerobic digestion on methanogenic communities

    SciTech Connect

    Franke-Whittle, Ingrid H.; Walter, Andreas; Ebner, Christian; Insam, Heribert

    2014-11-15

    Highlights: • Different methanogenic communities in mesophilic and thermophilic reactors. • High VFA levels do not cause major changes in archaeal communities. • Real-time PCR indicated greater diversity than ANAEROCHIP microarray. - Abstract: A study was conducted to determine whether differences in the levels of volatile fatty acids (VFAs) in anaerobic digester plants could result in variations in the indigenous methanogenic communities. Two digesters (one operated under mesophilic conditions, the other under thermophilic conditions) were monitored, and sampled at points where VFA levels were high, as well as when VFA levels were low. Physical and chemical parameters were measured, and the methanogenic diversity was screened using the phylogenetic microarray ANAEROCHIP. In addition, real-time PCR was used to quantify the presence of the different methanogenic genera in the sludge samples. Array results indicated that the archaeal communities in the different reactors were stable, and that changes in the VFA levels of the anaerobic digesters did not greatly alter the dominating methanogenic organisms. In contrast, the two digesters were found to harbour different dominating methanogenic communities, which appeared to remain stable over time. Real-time PCR results were inline with those of microarray analysis indicating only minimal changes in methanogen numbers during periods of high VFAs, however, revealed a greater diversity in methanogens than found with the array.

  14. Quantitative analysis of ruminal methanogenic microbial populations in beef cattle divergent in phenotypic residual feed intake (RFI) offered contrasting diets

    PubMed Central

    2014-01-01

    Background Methane (CH4) emissions in cattle are an undesirable end product of rumen methanogenic fermentative activity as they are associated not only with negative environmental impacts but also with reduced host feed efficiency. The aim of this study was to quantify total and specific rumen microbial methanogenic populations in beef cattle divergently selected for residual feed intake (RFI) while offered (i) a low energy high forage (HF) diet followed by (ii) a high energy low forage (LF) diet. Ruminal fluid was collected from 14 high (H) and 14 low (L) RFI animals across both dietary periods. Quantitative real time PCR (qRT-PCR) analysis was conducted to quantify the abundance of total and specific rumen methanogenic microbes. Spearman correlation analysis was used to investigate the association between the relative abundance of methanogens and animal performance, rumen fermentation variables and diet digestibility. Results Abundance of methanogens, did not differ between RFI phenotypes. However, relative abundance of total and specific methanogen species was affected (P < 0.05) by diet type, with greater abundance observed while animals were offered the LF compared to the HF diet. Conclusions These findings suggest that differences in abundance of specific rumen methanogen species may not contribute to variation in CH4 emissions between efficient and inefficient animals, however dietary manipulation can influence the abundance of total and specific methanogen species. PMID:25276350

  15. Detection and Isolation Techniques for Methanogens from Microbial Mats (in the El Tatio Geyser Field, Chile)

    NASA Astrophysics Data System (ADS)

    Pearson, E. Z.; Franks, M. A.; Bennett, P.

    2010-12-01

    Isolating methanogenic archea from an extreme environment such as El Tatio (high altitude, arid climate) gives insight to the methanogenic taxas able to adapt and grow under extreme conditions. The hydrothermal waters at El Tatio geyser field demonstrate extreme geochemical conditions, with discharge water from springs and geysers at local boiling temperature (85° C) with high levels of arsenic and low DIC levels. Despite these challenges, many of El Tatio’s hundred plus hydrothermal features host extensive microbial mat communities, many showing evidence of methanogenesis. When trying to isolate methanogens unique to this area, various approaches and techniques were used. To detect the presence of methanogens in samples taken from the field, dissolved methane concentrations were determined via gas chromatography (GC) analysis. Samples were then selected for culturing and most probable number (MPN) enumeration, where growth was assessed using both methane production and observations of fluorescence under UV light. PCR was used to see if the archeal DNA was apparent directly from the field, and shotgun cloning was done to determine phylogenetic affiliation. Several culturing techniques were carried out in an attempt to isolate methanogens from samples that showed evidence of methanogenesis. The slant culturing method was used because of the increased surface area for colonization combined with the relative ease of keeping anaerobic. After a few weeks, when colonies were apparent, some were aseptically selected and inoculated to observe growth in a liquid media containing ampicillin to inhibit bacterial growth. Culturing techniques proved successful after inoculation, showing a slow growth of methanogens via GC and autofluorescence. Further PCR tests and subsequent sequencing were done to confirm and identify isolates.

  16. Distribution, Activities, and Interactions of Methanogens and Sulfate-Reducing Prokaryotes in the Florida Everglades

    PubMed Central

    Bae, Hee-Sung; Holmes, M. Elizabeth; Chanton, Jeffrey P.; Reddy, K. Ramesh

    2015-01-01

    To gain insight into the mechanisms controlling methanogenic pathways in the Florida Everglades, the distribution and functional activities of methanogens and sulfate-reducing prokaryotes (SRPs) were investigated in soils (0 to 2 or 0 to 4 cm depth) across the well-documented nutrient gradient in the water conservation areas (WCAs) caused by runoff from the adjacent Everglades Agricultural Area. The methyl coenzyme M reductase gene (mcrA) sequences that were retrieved from WCA-2A, an area with relatively high concentrations of SO42− (≥39 μM), indicated that methanogens inhabiting this area were broadly distributed within the orders Methanomicrobiales, Methanosarcinales, Methanocellales, Methanobacteriales, and Methanomassiliicoccales. In more than 3 years of monitoring, quantitative PCR (qPCR) using newly designed group-specific primers revealed that the hydrogenotrophic Methanomicrobiales were more numerous than the Methanosaetaceae obligatory acetotrophs in SO42−-rich areas of WCA-2A, while the Methanosaetaceae were dominant over the Methanomicrobiales in WCA-3A (with relatively low SO42− concentrations; ≤4 μM). qPCR of dsrB sequences also indicated that SRPs are present at greater numbers than methanogens in the WCAs. In an incubation study with WCA-2A soils, addition of MoO42− (a specific inhibitor of SRP activity) resulted in increased methane production rates, lower apparent fractionation factors [αapp; defined as (amount of δ13CO2 + 1,000)/(amount of δ13CH4 + 1,000)], and higher Methanosaetaceae mcrA transcript levels compared to those for the controls without MoO42−. These results indicate that SRPs play crucial roles in controlling methanogenic pathways and in shaping the structures of methanogen assemblages as a function of position along the nutrient gradient. PMID:26276115

  17. Distribution, activities, and interactions of methanogens and sulfate-reducing prokaryotes in the Florida Everglades.

    PubMed

    Bae, Hee-Sung; Holmes, M Elizabeth; Chanton, Jeffrey P; Reddy, K Ramesh; Ogram, Andrew

    2015-11-01

    To gain insight into the mechanisms controlling methanogenic pathways in the Florida Everglades, the distribution and functional activities of methanogens and sulfate-reducing prokaryotes (SRPs) were investigated in soils (0 to 2 or 0 to 4 cm depth) across the well-documented nutrient gradient in the water conservation areas (WCAs) caused by runoff from the adjacent Everglades Agricultural Area. The methyl coenzyme M reductase gene (mcrA) sequences that were retrieved from WCA-2A, an area with relatively high concentrations of SO4 (2-) (≥39 μM), indicated that methanogens inhabiting this area were broadly distributed within the orders Methanomicrobiales, Methanosarcinales, Methanocellales, Methanobacteriales, and Methanomassiliicoccales. In more than 3 years of monitoring, quantitative PCR (qPCR) using newly designed group-specific primers revealed that the hydrogenotrophic Methanomicrobiales were more numerous than the Methanosaetaceae obligatory acetotrophs in SO4 (2-)-rich areas of WCA-2A, while the Methanosaetaceae were dominant over the Methanomicrobiales in WCA-3A (with relatively low SO4 (2-) concentrations; ≤4 μM). qPCR of dsrB sequences also indicated that SRPs are present at greater numbers than methanogens in the WCAs. In an incubation study with WCA-2A soils, addition of MoO4 (2-) (a specific inhibitor of SRP activity) resulted in increased methane production rates, lower apparent fractionation factors [αapp; defined as (amount of δ(13)CO2 + 1,000)/(amount of δ(13)CH4 + 1,000)], and higher Methanosaetaceae mcrA transcript levels compared to those for the controls without MoO4 (2-). These results indicate that SRPs play crucial roles in controlling methanogenic pathways and in shaping the structures of methanogen assemblages as a function of position along the nutrient gradient. PMID:26276115

  18. Random packing of spheres in Menger sponge

    NASA Astrophysics Data System (ADS)

    Cieśla, Michał; Barbasz, Jakub

    2013-06-01

    Random packing of spheres inside fractal collectors of dimension 2 < d < 3 is studied numerically using Random Sequential Adsorption (RSA) algorithm. The paper focuses mainly on the measurement of random packing saturation limit. Additionally, scaling properties of density autocorrelations in the obtained packing are analyzed. The RSA kinetics coefficients are also measured. Obtained results allow to test phenomenological relation between random packing saturation density and collector dimension. Additionally, performed simulations together with previously obtained results confirm that, in general, the known dimensional relations are obeyed by systems having non-integer dimension, at least for d < 3.

  19. Random packing of spheres in Menger sponge.

    PubMed

    Cieśla, Michał; Barbasz, Jakub

    2013-06-01

    Random packing of spheres inside fractal collectors of dimension 2 < d < 3 is studied numerically using Random Sequential Adsorption (RSA) algorithm. The paper focuses mainly on the measurement of random packing saturation limit. Additionally, scaling properties of density autocorrelations in the obtained packing are analyzed. The RSA kinetics coefficients are also measured. Obtained results allow to test phenomenological relation between random packing saturation density and collector dimension. Additionally, performed simulations together with previously obtained results confirm that, in general, the known dimensional relations are obeyed by systems having non-integer dimension, at least for d < 3. PMID:23758392

  20. 7 CFR 982.11 - Pack.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON... according to size, internal quality, and external appearance and condition of hazelnuts packed in...

  1. 7 CFR 982.11 - Pack.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON... according to size, internal quality, and external appearance and condition of hazelnuts packed in...

  2. 7 CFR 982.11 - Pack.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON... according to size, internal quality, and external appearance and condition of hazelnuts packed in...

  3. 7 CFR 982.11 - Pack.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON... according to size, internal quality, and external appearance and condition of hazelnuts packed in...

  4. 7 CFR 982.11 - Pack.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE HAZELNUTS GROWN IN OREGON AND WASHINGTON... according to size, internal quality, and external appearance and condition of hazelnuts packed in...

  5. Tissue grown in space in NASA Bioreactor

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Dr. Lisa E. Freed of the Massachusetts Institute of Technology and her colleagues have reported that initially disc-like specimens tend to become spherical in space, demonstrating that tissues can grow and differentiate into distinct structures in microgravity. The Mir Increment 3 (Sept. 16, 1996 - Jan. 22, 1997) samples were smaller, more spherical, and mechanically weaker than Earth-grown control samples. These results demonstrate the feasibility of microgravity tissue engineering and may have implications for long human space voyages and for treating musculoskeletal disorders on earth. Final samples from Mir and Earth appeared histologically cartilaginous throughout their entire cross sections (5-8 mm thick), with the exception of fibrous outer capsules. Constructs grown on Earth (A) appeared to have a more organized extracellular matrix with more uniform collagen orientation as compared with constructs grown on Mir (B), but the average collagen fiber diameter was similar in the two groups (22 +- 2 nm) and comparable to that previously reported for developing articular cartilage. Randomly oriented collagen in Mir samples would be consistent with previous reports that microgravity disrupts fibrillogenesis. These are transmission electron micrographs of constructs from Mir (A) and Earth (B) groups at magnifications of x3,500 and x120,000 (Inset). The work is sponsored by NASA's Office of Biological and Physical Research. The bioreactor is managed by the Biotechnology Cell Science Program at NASA's Johnson Space Center (JSC). NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Credit: Proceedings of the National Academy of Sciences.

  6. Minimally packed phases in holography

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2016-03-01

    We numerically construct asymptotically AdS black brane solutions of D = 4 Einstein-Maxwell theory coupled to a pseudoscalar. The solutions are holographically dual to d = 3 CFTs at finite chemical potential and in a constant magnetic field, which spontaneously break translation invariance leading to the spontaneous formation of abelian and momentum magnetisation currents flowing around the plaquettes of a periodic Bravais lattice. We analyse the three-dimensional moduli space of lattice solutions, which are generically oblique, and show, for a specific value of the magnetic field, that the free energy is minimised by the triangular lattice, associated with minimal packing of circles in the plane. We show that the average stress tensor for the thermodynamically preferred phase is that of a perfect fluid and that this result applies more generally to spontaneously generated periodic phases. The triangular structure persists at low temperatures indicating the existence of novel crystalline ground states.

  7. Hydrobiogeochemical controls on a low-carbon emitting energy extraction mechanism: exploring methanogenic crude oil biodegradation

    NASA Astrophysics Data System (ADS)

    Shelton, Jenna; McIntosh, Jennifer; Akob, Denise; Spear, John; Warwick, Peter; McCray, John

    2016-04-01

    Exploiting naturally-occurring microbial communities in the deep subsurface could help mitigate the effects of CO2 emissions to the atmosphere. These microbial communities, a combination of methanogens and syntrophic bacteria, can perform methanogenic crude oil biodegradation, namely the conversion of crude oil to natural gas, and have also been detected in biodegraded, methanogenic reservoirs. These microbes could target residual crude oil, a high-carbon, hard-to-obtain fossil fuel source, and convert it to natural gas, effectively "producing" a lower CO2 per BTU fuel source. Yet, little is known about what geochemical parameters are driving microbial population dynamics in biodegraded, methanogenic oil reservoirs, and how the presence of specific microbial communities may impact methanogenic crude oil biodegradation. To investigate methanogenic crude oil biodegradation, 22 wells along a subsurface hydrogeochemical gradient in the southeastern USA were sampled for DNA analysis of the microbial community, and geochemical analysis of produced water and crude oil. A statistical comparison of microbial community structure to formation fluid geochemical parameters, amount of crude oil biodegradation, and relative extent of methanogenesis revealed that relative degree of biodegradation (high, medium, or low), chloride concentration (550 mM to 2100 mM), well depth (393 m to 1588 m), and spatial location within the reservoir (i.e., oil field location) are the major drivers of microbial diversity. There was no statistical evidence for correlation between extent of methanogenesis and the subsurface community composition. Despite the dominance of methanogens in these sampled wells, methanogenic activity was not predicted solely based on the microbial community composition. Crude oil biodegradation, however, correlates with both community composition and produced water geochemistry, suggesting a co-linear system and implying that microbial communities associated with degree

  8. Growth of Methanogens on a Mars Soil Simulant Under Simulated Martian Conditions

    NASA Astrophysics Data System (ADS)

    Kral, Timothy A.; Bekkum, Curtis R.; McKay, Christopher P.

    2004-06-01

    Due to the hostile conditions at the surface, any life forms existing on Mars today would most likely inhabit a subsurface environment where conditions are potentially wetter and warmer, but organic compounds may be lacking and light energy for photosynthesis would be absent. Methanogens, members of the domain Archaea, are microorganisms from planet Earth that can grow under these relatively extreme conditions. We have demonstrated that certain methanogenic species can indeed grow on a Mars soil simulant, JSC Mars-1, with limited amounts of water, under conditions approaching a possible subsurface environment on Mars.

  9. Potential shuttle vectors based on the methanogen plasmid pME2001

    SciTech Connect

    Meile, L.; Reeve, J.N.

    1985-01-01

    Methane is produced by anaerobic archaebacteria known as methanogens. Currently the only available plasmid from a methanogen is pME2001. The authors incorporated pME2001 into plasmids which should be capable of replication in a range of microbial host species. Plasmid pET2411, a recombinant plasmid formed by joining pBR322 to pME2001, directs the synthesis of pME2001 encoded polypeptides in Escherichia coli but cannot replicate in E. coli in the absence of E. coli DNA polymerase I. 23 references, 3 figures, 1 table.

  10. Shear and Compression Bioreactor for Cartilage Synthesis.

    PubMed

    Shahin, Kifah; Doran, Pauline M

    2015-01-01

    Mechanical forces, including hydrodynamic shear, hydrostatic pressure, compression, tension, and friction, can have stimulatory effects on cartilage synthesis in tissue engineering systems. Bioreactors capable of exerting forces on cells and tissue constructs within a controlled culture environment are needed to provide appropriate mechanical stimuli. In this chapter, we describe the construction, assembly, and operation of a mechanobioreactor providing simultaneous dynamic shear and compressive loading on developing cartilage tissues to mimic the rolling and squeezing action of articular joints. The device is suitable for studying the effects of mechanical treatment on stem cells and chondrocytes seeded into three-dimensional scaffolds. PMID:26445842

  11. Bioreactor Engineering of Stem Cell Environments

    PubMed Central

    Tandon, Nina; Marolt, Darja; Cimetta, Elisa; Vunjak-Novakovic, Gordana

    2013-01-01

    Stem cells hold promise to revolutionize modern medicine by development of new therapies, disease models and drug screening systems. Standard cell culture systems have limited biological relevance because they do not recapitulate the complex 3-dimensional interactions and biophysical cues that characterize the in vivo environment. In this review, we discuss the current advances in engineering stem cell environments using novel biomaterials and bioreactor technologies. We also reflect on the challenges the field is currently facing with regard to translation of stem cell based therapies into the clinic. PMID:23531529

  12. Changes in methanogenic substrate utilization and communities with depth in a salt-marsh, creek sediment in southern England

    NASA Astrophysics Data System (ADS)

    John Parkes, R.; Brock, Fiona; Banning, Natasha; Hornibrook, Edward R. C.; Roussel, Erwan G.; Weightman, Andrew J.; Fry, John C.

    2012-01-01

    A combined biogeochemical and molecular genetic study of creek sediments (down to 65 cm depth) from Arne Peninsula salt-marsh (Dorset, UK) determined the substrates used for methanogenesis and the distribution of the common methanogens, Methanosarcinales and Methanomicrobiales capable of metabolising these substrates. Methane concentrations increased by 11 cm, despite pore water sulphate not being removed until 45 cm. Neither upward methane diffusion or anaerobic oxidation of methane seemed to be important in this zone. In the near-surface sulphate-reduction zone (5-25 cm) turnover time to methane for the non-competitive methanogenic substrate trimethylamine was most rapid (80 days), and were much longer for acetate (7900 days), methanol (40,500 days) and bicarbonate (361,600 days). Methylamine-utilizing Methanosarcinales were the dominant (60-95%) methanogens in this zone. In deeper sediments rates of methanogenesis from competitive substrates increased substantially, with acetate methanogenic rates becoming ˜100 times greater than H 2/CO 2 methanogenesis below 50 cm. In addition, there was a dramatic change in methanogen diversity with obligate acetate-utilizing, Methanosaeta related sequences being dominant. At a similar depth methanol turnover to methane increased to its most rapid (1700 days). This activity pattern is consistent with deeper methanogen populations (55 cm) being dominated by acetate-utilizing Methanosaeta with H 2/CO 2 and alcohol-utilizing Methanomicrobiales also present. Hence, there is close relationship between the depth distribution of methanogenic substrate utilization and specific methanogens that can utilize these compounds. It is unusual for acetate to be the dominant methanogenic substrate in coastal sediments and δ13C-CH 4 values (-74 to -71‰) were atypical for acetate methanogenesis, suggesting that common stable isotope proxy models may not apply well in this type of dynamic anoxic sediment, with multiple methanogenic substrates.

  13. Confined disordered strictly jammed binary sphere packings

    NASA Astrophysics Data System (ADS)

    Chen, D.; Torquato, S.

    2015-12-01

    Disordered jammed packings under confinement have received considerably less attention than their bulk counterparts and yet arise in a variety of practical situations. In this work, we study binary sphere packings that are confined between two parallel hard planes and generalize the Torquato-Jiao (TJ) sequential linear programming algorithm [Phys. Rev. E 82, 061302 (2010), 10.1103/PhysRevE.82.061302] to obtain putative maximally random jammed (MRJ) packings that are exactly isostatic with high fidelity over a large range of plane separation distances H , small to large sphere radius ratio α , and small sphere relative concentration x . We find that packing characteristics can be substantially different from their bulk analogs, which is due to what we term "confinement frustration." Rattlers in confined packings are generally more prevalent than those in their bulk counterparts. We observe that packing fraction, rattler fraction, and degree of disorder of MRJ packings generally increase with H , though exceptions exist. Discontinuities in the packing characteristics as H varies in the vicinity of certain values of H are due to associated discontinuous transitions between different jammed states. When the plane separation distance is on the order of two large-sphere diameters or less, the packings exhibit salient two-dimensional features; when the plane separation distance exceeds about 30 large-sphere diameters, the packings approach three-dimensional bulk packings. As the size contrast increases (as α decreases), the rattler fraction dramatically increases due to what we call "size-disparity" frustration. We find that at intermediate α and when x is about 0.5 (50-50 mixture), the disorder of packings is maximized, as measured by an order metric ψ that is based on the number density fluctuations in the direction perpendicular to the hard walls. We also apply the local volume-fraction variance στ2(R ) to characterize confined packings and find that these

  14. Complete genome sequence of Methanolinea tarda NOBI-1T, a hydrogenotrophic methanogen isolated from methanogenic digester sludge

    SciTech Connect

    Yamamoto, Kyosuke; Tamaki, Hideyuki; Cadillo-Quiroz, Hinsby; Imachi, Hiroyuki; Kyrpides, Nikos; Woyke, Tanja; Goodwin, Lynne; Zinder, Stephen H.; Kamagata, Yoichi; Liu, Wen -Tso

    2014-09-04

    In this study, we report a 2.0-Mb complete genome sequence of Methanolinea tarda NOBI-1T, a methanogenic archaeon isolated from an anaerobic digested sludge. This is the first genome report of the genus Methanolinea isolate belonging to the family Methanoregulaceae, a recently proposed novel family within the order Methanomicrobiales.

  15. Growth of Anaerobic Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in a High-Pressure Membrane Capsule Bioreactor

    PubMed Central

    Gieteling, Jarno; Widjaja-Greefkes, H. C. Aura; Plugge, Caroline M.; Stams, Alfons J. M.; Lens, Piet N. L.; Meulepas, Roel J. W.

    2014-01-01

    Communities of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB) grow slowly, which limits the ability to perform physiological studies. High methane partial pressure was previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated SRB are affected by it. Here, we report on the growth of ANME-SRB in a membrane capsule bioreactor inoculated with Eckernförde Bay sediment that combines high-pressure incubation (10.1 MPa methane) and thorough mixing (100 rpm) with complete cell retention by a 0.2-μm-pore-size membrane. The results were compared to previously obtained data from an ambient-pressure (0.101 MPa methane) bioreactor inoculated with the same sediment. The rates of oxidation of labeled methane were not higher at 10.1 MPa, likely because measurements were done at ambient pressure. The subtype ANME-2a/b was abundant in both reactors, but subtype ANME-2c was enriched only at 10.1 MPa. SRB at 10.1 MPa mainly belonged to the SEEP-SRB2 and Eel-1 groups and the Desulfuromonadales and not to the typically found SEEP-SRB1 group. The increase of ANME-2a/b occurred in parallel with the increase of SEEP-SRB2, which was previously found to be associated only with ANME-2c. Our results imply that the syntrophic association is flexible and that methane pressure and sulfide concentration influence the growth of different ANME-SRB consortia. We also studied the effect of elevated methane pressure on methane production and oxidation by a mixture of methanogenic and sulfate-reducing sludge. Here, methane oxidation rates decreased and were not coupled to sulfide production, indicating trace methane oxidation during net methanogenesis and not anaerobic methane oxidation, even at a high methane partial pressure. PMID:25501484

  16. Growth of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a high-pressure membrane capsule bioreactor.

    PubMed

    Timmers, Peer H A; Gieteling, Jarno; Widjaja-Greefkes, H C Aura; Plugge, Caroline M; Stams, Alfons J M; Lens, Piet N L; Meulepas, Roel J W

    2015-02-01

    Communities of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB) grow slowly, which limits the ability to perform physiological studies. High methane partial pressure was previously successfully applied to stimulate growth, but it is not clear how different ANME subtypes and associated SRB are affected by it. Here, we report on the growth of ANME-SRB in a membrane capsule bioreactor inoculated with Eckernförde Bay sediment that combines high-pressure incubation (10.1 MPa methane) and thorough mixing (100 rpm) with complete cell retention by a 0.2-m-pore-size membrane. The results were compared to previously obtained data from an ambient-pressure (0.101 MPa methane) bioreactor inoculated with the same sediment. The rates of oxidation of labeled methane were not higher at 10.1 MPa, likely because measurements were done at ambient pressure. The subtype ANME-2a/b was abundant in both reactors, but subtype ANME-2c was enriched only at 10.1 MPa. SRB at 10.1 MPa mainly belonged to the SEEP-SRB2 and Eel-1 groups and the Desulfuromonadales and not to the typically found SEEP-SRB1 group. The increase of ANME-2a/b occurred in parallel with the increase of SEEP-SRB2, which was previously found to be associated only with ANME-2c. Our results imply that the syntrophic association is flexible and that methane pressure and sulfide concentration influence the growth of different ANME-SRB consortia. We also studied the effect of elevated methane pressure on methane production and oxidation by a mixture of methanogenic and sulfate-reducing sludge. Here, methane oxidation rates decreased and were not coupled to sulfide production, indicating trace methane oxidation during net methanogenesis and not anaerobic methane oxidation, even at a high methane partial pressure. PMID:25501484

  17. LTCC based bioreactors for cell cultivation

    NASA Astrophysics Data System (ADS)

    Bartsch, H.; Welker, T.; Welker, K.; Witte, H.; Müller, J.

    2016-01-01

    LTCC multilayers offer a wide range of structural options and flexibility of connections not available in standard thin film technology. Therefore they are considered as material base for cell culture reactors. The integration of microfluidic handling systems and features for optical and electrical capturing of indicators for cell culture growth offers the platform for an open system concept. The present paper assesses different approaches for the creation of microfluidic channels in LTCC multilayers. Basic functions required for the fluid management in bioreactors include temperature and flow control. Both features can be realized with integrated heaters and temperature sensors in LTCC multilayers. Technological conditions for the integration of such elements into bioreactors are analysed. The temperature regulation for the system makes use of NTC thermistor sensors which serve as real value input for the control of the heater. It allows the adjustment of the fluid temperature with an accuracy of 0.2 K. The tempered fluid flows through the cell culture chamber. Inside of this chamber a thick film electrode array monitors the impedance as an indicator for the growth process of 3-dimensional cell cultures. At the system output a flow sensor is arranged to monitor the continual flow. For this purpose a calorimetric sensor is implemented, and its crucial design parameters are discussed. Thus, the work presented gives an overview on the current status of LTCC based fluid management for cell culture reactors, which provides a promising base for the automation of cell culture processes.

  18. Immobilized microbe bioreactors for waste water treatment.

    PubMed

    Portier, R J; Miller, G P

    1991-10-01

    The application of adapted microbial populations immobilized on a porous diatomaceous earth carrier to pre-treat and reduce toxic concentration of volatile organics, pesticides, petroleum aliphatics and aromatics has been demonstrated for several industrial sites. In the pre-treatment of industrial effluents and contaminated groundwaters, these bioreactors have been used to optimize and reduce the cost of conventional treatment systems, i.e. steam stripping, carbon adsorption and traditional biotreatment. Additionally, these systems have been employed as seeding devices for larger biotreatment systems. The cost effective utilization of an immobilized microbe reactor system for water supply regeneration in a microgravity environment is presented. The feasibility of using immobilized biomass reactors as an effluent treatment technology for the biotransformation and biodegradation of phenols, chlorinated halocarbons, residual oils and lubricants was evaluated. Primary biotransformation tests of two benchmark toxicants, phenol and ethylene dichloride at concentrations expected in life support effluents were conducted. Biocatalyst supports were evaluated for colonization potential, surface and structural integrity, and performance in continuous flow bioreactors. The implementation of such approaches in space will be outlined and specific areas for interfacing with other non-biological treatment approaches will be considered for advanced life support, tertiary waste water biotreatment. PMID:11537697

  19. High retention membrane bioreactors: challenges and opportunities.

    PubMed

    Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D

    2014-09-01

    Extensive research has focussed on the development of novel high retention membrane bioreactor (HR-MBR) systems for wastewater reclamation in recent years. HR-MBR integrates high rejection membrane separation with conventional biological treatment in a single step. High rejection membrane separation processes currently used in HR-MBR applications include nanofiltration, forward osmosis, and membrane distillation. In these HR-MBR systems, organic contaminants can be effectively retained, prolonging their retention time in the bioreactor and thus enhancing their biodegradation. Therefore, HR-MBR can offer a reliable and elegant solution to produce high quality effluent. However, there are several technological challenges associated with the development of HR-MBR, including salinity build-up, low permeate flux, and membrane degradation. This paper provides a critical review on these challenges and potential opportunities of HR-MBR for wastewater treatment and water reclamation, and aims to guide and inform future research on HR-MBR for fast commercialisation of this innovative technology. PMID:24996563

  20. Novel Hydrogen Bioreactor and Detection Apparatus.

    PubMed

    Rollin, Joseph A; Ye, Xinhao; Del Campo, Julia Martin; Adams, Michael W W; Zhang, Y-H Percival

    2016-01-01

    In vitro hydrogen generation represents a clear opportunity for novel bioreactor and system design. Hydrogen, already a globally important commodity chemical, has the potential to become the dominant transportation fuel of the future. Technologies such as in vitro synthetic pathway biotransformation (SyPaB)-the use of more than 10 purified enzymes to catalyze unnatural catabolic pathways-enable the storage of hydrogen in the form of carbohydrates. Biohydrogen production from local carbohydrate resources offers a solution to the most pressing challenges to vehicular and bioenergy uses: small-size distributed production, minimization of CO2 emissions, and potential low cost, driven by high yield and volumetric productivity. In this study, we introduce a novel bioreactor that provides the oxygen-free gas phase necessary for enzymatic hydrogen generation while regulating temperature and reactor volume. A variety of techniques are currently used for laboratory detection of biohydrogen, but the most information is provided by a continuous low-cost hydrogen sensor. Most such systems currently use electrolysis for calibration; here an alternative method, flow calibration, is introduced. This system is further demonstrated here with the conversion of glucose to hydrogen at a high rate, and the production of hydrogen from glucose 6-phosphate at a greatly increased reaction rate, 157 mmol/L/h at 60 °C. PMID:25022362

  1. Miniature bioreactors: current practices and future opportunities

    PubMed Central

    Betts, Jonathan I; Baganz, Frank

    2006-01-01

    This review focuses on the emerging field of miniature bioreactors (MBRs), and examines the way in which they are used to speed up many areas of bioprocessing. MBRs aim to achieve this acceleration as a result of their inherent high-throughput capability, which results from their ability to perform many cell cultivations in parallel. There are several applications for MBRs, ranging from media development and strain improvement to process optimisation. The potential of MBRs for use in these applications will be explained in detail in this review. MBRs are currently based on several existing bioreactor platforms such as shaken devices, stirred-tank reactors and bubble columns. This review will present the advantages and disadvantages of each design together with an appraisal of prototype and commercialised devices developed for parallel operation. Finally we will discuss how MBRs can be used in conjunction with automated robotic systems and other miniature process units to deliver a fully-integrated, high-throughput (HT) solution for cell cultivation process development. PMID:16725043

  2. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  3. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  4. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  5. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  6. Record high Wolf, Canis lupus, pack density

    USGS Publications Warehouse

    Mech, L.D.; Tracy, S.

    2004-01-01

    This report documents a year-around Wolf (Canis lupus) density of 18.2/100 km2 and a summer density of 30.8/100 km2, in a northeastern Minnesota Wolf pack. The previous record was a summer density of 14.1/100 km2, for a Wolf pack on Vancouver Island, British Columbia, Canada.

  7. Record high wolf, Canis lupus, pack density

    USGS Publications Warehouse

    Mech, L.D.; Tracy, S.

    2004-01-01

    This report documents a year-around wolf (Canis lupus) density of 18.2/100 m2 and summer density of 30.8/100 km2, in a northeastern Minnesota wolf pack. The previous record was a summer density of 14.1/100 km2, for a wolf pack on Vancouver Island, BC, Canada.

  8. Development of an effective valve packing program

    SciTech Connect

    Hart, K.A.

    1996-12-01

    Current data now shows that graphite valve packing installed within the guidance of a controlled program produces not only reliable stem sealing but predictable running loads. By utilizing recent technological developments in valve performance monitoring for both MOV`s and AOV`s, valve packing performance can be enhanced while reducing maintenance costs. Once known, values are established for acceptable valve packing loads, the measurement of actual valve running loads via the current MOV/AOV diagnostic techniques can provide indication of future valve stem sealing problems, improper valve packing installation or identify the opportunity for valve packing program improvements. At times the full benefit of these advances in material and predictive technology remain under utilized due to simple past misconceptions associated with valve packing. This paper will explore the basis for these misconceptions, provide general insight into the current understanding of valve packing and demonstrate how with this new understanding and current valve diagnostic equipment the key aspects required to develop an effective, quality valve packing program fit together. The cost and operational benefits provided by this approach can be significant impact by the: elimination of periodic valve repacking, reduction of maintenance costs, benefits of leak-free valve operation, justification for reduced Post Maintenance Test Requirements, reduced radiation exposure, improved plant appearance.

  9. 21 CFR 890.5700 - Cold pack.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cold pack. 890.5700 Section 890.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5700 Cold pack. (a) Identification....

  10. Pack rats (Neotoma spp.): Keystone ecological engineers?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential role of two species of pack rats (Neotoma albigula and Neotoma micropus) as keystone ecological engineers was examined by estimating the species diversity of invertebrates living in the nest middens, and nitrogen mineralization rates in soils associated with the middens. Although pack-...

  11. Kid's PACK: Population Awareness Campaign Kit.

    ERIC Educational Resources Information Center

    Zero Population Growth, Inc., Washington, DC.

    This fun and educational kit is designed specifically for elementary students. The "Kid's PACK" (Population Awareness Campaign Kit) entertains and informs children on the environment and human population growth through stories, games, and concrete ideas for making a difference. In three booklets, the "Kid's PACK" offers elementary students…

  12. Method of gravel packing a well

    SciTech Connect

    Almond, S. W.; Himes, R. E.

    1985-11-12

    The present invention relates to a thermally stable crosslinked gel gravel packing fluid for use in the treatment of highly deviated well bores penetrating a subterranean formation. The gravel packing fluid comprises an aqueous liquid, a gelling agent comprising a selected modified cellulose ether, a crosslinking agent, a breaker, a particulate agent and any additional additives that may be present.

  13. Pack Density Limitations of Hybrid Parachutes

    NASA Technical Reports Server (NTRS)

    Zwicker, Matthew L.; Sinclair, Robert J.

    2013-01-01

    The development and testing of the Orion crew capsule parachute system has provided a unique opportunity to study dense parachute packing techniques and limits, in order to establish a new baseline for future programs. The density of parachute packs has a significant influence on vibration loads, retention system stresses, and parachute mortar performance. Material compositions and pack densities of existing designs for space capsule recovery were compared, using the pack density of the Apollo main parachutes as the current baseline. The composition of parachutes has changed since Apollo, incorporating new materials such as Kevlar , Vectran , Teflon and Spectra . These materials have different specific densities than Nylon, so the densities of hybrid parachute packs cannot be directly compared to Nylon parachutes for determination of feasibility or volume allocation. Six parachute packs were evaluated in terms of weighted average solid density in order to achieve a non-dimensional comparison of packing density. Means of mitigating damage due to packing pressure and mortar firing were examined in light of the Capsule Parachute Assembly System (CPAS) and Apollo experience. Parachute design improvements including incorporation of modern materials and manufacturing processes serves to make CPAS the new knowledge base on which future spacecraft parachute systems will be built.

  14. New value packing technology extends service life

    SciTech Connect

    Miller, M.; Jackson, R. )

    1993-10-01

    New packing techniques can extend packing life and retain low stem leakage. The HPI can use these designs to avoid mandatory monitoring and repair schedules for valves that exceed the 500-ppm emission threshold. New EPA leakage limits will enforce monitoring and maintenance programs if more than 2% of the facility's valves exceed this limit. Because valves are dynamic, their control actions are prone to leakage. Also, the best fire-resistant packing material, graphite, has inherent deficiencies such as high compression stress and a high-friction coefficient that shortens its service life. Four basic principles overcome graphite packing's shortcomings for control valve applications. Examples show how these criteria improve sliding stem and rotary valve performance. Incorporating these principles into valve-packing designs can ensure long, low-maintenance service life, and the added benefit of low leakage. Graphite is a very important packing material for the HPI. Unlike fluoropolymer (e.g., PTFE) packing, graphite can tolerate high process temperature without decomposing or losing its sealing properties. More importantly, graphite packing is fire safe. It can survive a fire without a catastrophic failure that could add more flammable materials.

  15. Probe with integrated heater and thermocouple pack

    SciTech Connect

    McCulloch, R.W.; Dial, R.E.; Finnell, W.F.R.

    1988-02-16

    This patent describes a gamma thermometer probe for detecting heat produced within the thermometer probe. It comprises: an outer elongate thermometer sheath; an elongate rod; annular recesses; a longitudinal bore; and an integrated thermocouple pack. The thermocouple pack comprises: a first type wire, and second type wires. The second type wires comprises: an outer section; and an inner segment.

  16. Coalescence preference in densely packed microbubbles

    SciTech Connect

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; Weon, Byung Mook

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubbles shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.

  17. Coalescence preference in densely packed microbubbles

    DOE PAGESBeta

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; Weon, Byung Mook

    2015-01-13

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. Thus, the surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubblesmore » shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter.« less

  18. Coalescence preference in densely packed microbubbles

    PubMed Central

    Kim, Yeseul; Lim, Su Jin; Gim, Bopil; Weon, Byung Mook

    2015-01-01

    A bubble merged from two parent bubbles with different size tends to be placed closer to the larger parent. This phenomenon is known as the coalescence preference. Here we demonstrate that the coalescence preference can be blocked inside a densely packed cluster of bubbles. We utilized high-speed high-resolution X-ray microscopy to clearly visualize individual coalescence events inside densely packed microbubbles with a local packing fraction of ~40%. The surface energy release theory predicts an exponent of 5 in a relation between the relative coalescence position and the parent size ratio, whereas our observation for coalescence in densely packed microbubbles shows a different exponent of 2. We believe that this result would be important to understand the reality of coalescence dynamics in a variety of packing situations of soft matter. PMID:25583640

  19. Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste.

    PubMed

    Sasaki, Daisuke; Hori, Tomoyuki; Haruta, Shin; Ueno, Yoshiyuki; Ishii, Masaharu; Igarashi, Yasuo

    2011-01-01

    The methanogenic pathway and microbial community in a thermophilic anaerobic digestion process of organic solid waste were investigated in a continuous-flow stirred-tank reactor using artificial garbage slurry as a feedstock. The decomposition pathway of acetate, a significant precursor of CH(4) and a key intermediate metabolite in the anaerobic digestion process, was analyzed by using stable isotopes. A tracer experiment using (13)C-labeled acetate revealed that approximately 80% of the acetate was decomposed via a non-aceticlastic oxidative pathway, whereas the remainder was converted to methane via an aceticlastic pathway. Archaeal 16S rRNA analyses demonstrated that the hydrogenotrophic methanogens Methanoculleus spp. accounted for >90% of detected methanogens, and the aceticlastic methanogens Methanosarcina spp. were the minor constituents. The clone library targeting bacterial 16S rRNA indicated the predominance of the novel Thermotogales bacterium (relative abundance: ~53%), which is related to anaerobic acetate oxidizer Thermotoga lettingae TMO, although the sequence similarity was low. Uncultured bacteria that phylogenetically belong to municipal solid waste cluster I were also predominant in the microflora (~30%). These results imply that the microbial community in the thermophilic degrading process of organic solid waste consists exclusively of unidentified bacteria, which efficiently remove acetate through a non-aceticlastic oxidative pathway. PMID:20851673

  20. N epsilon-acetyl-beta-lysine: an osmolyte synthesized by methanogenic archaebacteria.

    PubMed Central

    Sowers, K R; Robertson, D E; Noll, D; Gunsalus, R P; Roberts, M F

    1990-01-01

    Methanosarcina thermophila, a nonmarine methanogenic archaebacterium, can grow in a range of saline concentrations. At less than 0.4 M NaCl, Ms. thermophila accumulated glutamate in response to increasing osmotic stress. At greater than 0.4 M NaCl, this organism synthesized a modified beta-amino acid that was identified as N epsilon-acetyl-beta-lysine by NMR spectroscopy and ion-exchange HPLC. This beta-amino acid derivative accumulated to high intracellular concentrations (up to 0.6 M) in Ms. thermophila and in another methanogen examined--Methanogenium cariaci, a marine species. The compound has features that are characteristic of a compatible solute: it is neutrally charged at physiological pH and it is highly soluble. When the cells were grown in the presence of exogenous glycine betaine, a physiological compatible solute, N epsilon-acetyl-beta-lysine synthesis was repressed and glycine betaine was accumulated. N epsilon-acetyl-beta-lysine was synthesized by species from three phylogenetic families when grown in high solute concentrations, suggesting that it may be ubiquitous among the methanogens. The ability to control the biosynthesis of N epsilon-acetyl-beta-lysine in response to extracellular solute concentration indicates that the methanogenic archaebacteria have a unique beta-amino acid biosynthetic pathway that is osmotically regulated. PMID:2123548