Science.gov

Sample records for methionine adenosyltransferase 1a

  1. Inhibition of Human Methionine Adenosyltransferase 1A Transcription by Coding Region Methylation

    PubMed Central

    Tomasi, Maria Lauda; Li, Tony W. H.; Li, Mei; Mato, José M.; Lu, Shelly C.

    2011-01-01

    Two genes (MAT1A and MAT2A) encode for the essential enzyme methionine adenosyltransferase (MAT). MAT1A is silenced in hepatocellular carcinoma (HCC), and absence of MAT1A leads to spontaneous development of HCC in mice. Previous report correlated promoter methylation to silencing of MAT1A but definitive proof was lacking. Here we investigated the role of methylation in regulating MAT1A expression. There are three MspI/HpaII sites from −1913 to +160 of the human MAT1A gene (numbered relative to the translational start site) at position −977, +10, and +88. Bisulfite treatment and DNA sequencing, and Southern blot analysis showed that methylation at +10 and +88, but not −977, correlated with lack of MAT1A expression. MAT1A promoter construct methylated at −977, +10 or +88 position has 0.7-fold, 3-fold, and 1.6-fold lower promoter activity, respectively. Methylation at −977 and +10 did not inhibit the promoter more than methylation at +10 alone; while methylation at +10 and +88 reduced promoter activity by 60%. Mutation of +10 and +88 sites also resulted in 40% reduction of promoter activity. Reactivation of MAT1A correlated with demethylation of +10 and +88. In vitro transcription assay showed that methylation or mutation of +10 and +88 sites reduced transcription. In conclusion, our data support the novel finding that methylation of the MAT1A coding region can inhibit gene transcription. This represents a key mechanism for decreased MAT1A expression in HCC and a target for therapy. To our knowledge, this is the first example of coding region methylation inhibiting transcription of a mammalian gene. PMID:21678410

  2. Transsulfuration in an adult with hepatic methionine adenosyltransferase deficiency.

    PubMed

    Gahl, W A; Bernardini, I; Finkelstein, J D; Tangerman, A; Martin, J J; Blom, H J; Mullen, K D; Mudd, S H

    1988-02-01

    We investigated sulfur and methyl group metabolism in a 31-yr-old man with partial hepatic methionine adenosyltransferase (MAT) deficiency. The patient's cultured fibroblasts and erythrocytes had normal MAT activity. Hepatic S-adenosylmethionine (SAM) was slightly decreased. This clinically normal individual lives with a 20-30-fold elevation of plasma methionine (0.72 mM). He excretes in his urine methionine and L-methionine-d-sulfoxide (2.7 mmol/d), a mixed disulfide of methanethiol and a thiol bound to an unidentified group X, which we abbreviate CH3S-SX (2.1 mmol/d), and smaller quantities of 4-methylthio-2-oxobutyrate and 3-methylthiopropionate. His breath contains 17-fold normal concentrations of dimethylsulfide. He converts only 6-7 mmol/d of methionine sulfur to inorganic sulfate. This abnormally low rate is due not to a decreased flux through the primarily defective enzyme, MAT, since SAM is produced at an essentially normal rate of 18 mmol/d, but rather to a rate of homocysteine methylation which is abnormally high in the face of the very elevated methionine concentrations demonstrated in this patient. These findings support the view that SAM (which is marginally low in this patient) is an important regulator that helps to determine the partitioning of homocysteine between degradation via cystathionine and conservation by reformation of methionine. In addition, these studies demonstrate that the methionine transamination pathway operates in the presence of an elevated body load of that amino acid in human beings, but is not sufficient to maintain methionine levels in a normal range. PMID:3339126

  3. Subunit association as the stabilizing determinant for archaeal methionine adenosyltransferases.

    PubMed

    Garrido, Francisco; Alfonso, Carlos; Taylor, John C; Markham, George D; Pajares, María A

    2009-07-01

    Archaea contain a class of methionine adenosyltransferases (MATs) that exhibit substantially higher stability than their mesophilic counterparts. Their sequences are highly divergent, but preserve the essential active site motifs of the family. We have investigated the origin of this increased stability using chemical denaturation experiments on Methanococcus jannaschii MAT (Mj-MAT) and mutants containing single tryptophans in place of tyrosine residues. The results from fluorescence, circular dichroism, hydrodynamic, and enzyme activity measurements showed that the higher stability of Mj-MAT derives largely from a tighter association of its subunits in the dimer. Local fluorescence changes, interpreted using secondary structure predictions, further identify the least stable structural elements as the C-terminal ends of beta-strands E2 and E6, and the N-terminus of E3. Dimer dissociation however requires a wider perturbation of the molecule. Additional analysis was initially hindered by the lack of crystal structures for archaeal MATs, a limitation that we overcame by construction of a 3D-homology model of Mj-MAT. This model predicts preservation of the chain topology and three-domain organization typical of this family, locates the least stable structural elements at the flat contact surface between monomers, and shows that alterations in all three domains are required for dimer dissociation. PMID:19348969

  4. The Oncogene PDRG1 Is an Interaction Target of Methionine Adenosyltransferases.

    PubMed

    Pérez, Claudia; Pérez-Zúñiga, Francisco J; Garrido, Francisco; Reytor, Edel; Portillo, Francisco; Pajares, María A

    2016-01-01

    Methionine adenosyltransferases MAT I and MAT III (encoded by Mat1a) catalyze S-adenosylmethionine synthesis in normal liver. Major hepatic diseases concur with reduced levels of this essential methyl donor, which are primarily due to an expression switch from Mat1a towards Mat2a. Additional changes in the association state and even in subcellular localization of these isoenzymes are also detected. All these alterations result in a reduced content of the moderate (MAT I) and high Vmax (MAT III) isoenzymes, whereas the low Vmax (MAT II) isoenzyme increases and nuclear accumulation of MAT I is observed. These changes derive in a reduced availability of cytoplasmic S-adenosylmethionine, together with an effort to meet its needs in the nucleus of damaged cells, rendering enhanced levels of certain epigenetic modifications. In this context, the putative role of protein-protein interactions in the control of S-adenosylmethionine synthesis has been scarcely studied. Using yeast two hybrid and a rat liver library we identified PDRG1 as an interaction target for MATα1 (catalytic subunit of MAT I and MAT III), further confirmation being obtained by immunoprecipitation and pull-down assays. Nuclear MATα interacts physically and functionally with the PDRG1 oncogene, resulting in reduced DNA methylation levels. Increased Pdrg1 expression is detected in acute liver injury and hepatoma cells, together with decreased Mat1a expression and nuclear accumulation of MATα1. Silencing of Pdrg1 expression in hepatoma cells alters their steady-state expression profile on microarrays, downregulating genes associated with tumor progression according to GO pathway analysis. Altogether, the results unveil the role of PDRG1 in the control of the nuclear methylation status through methionine adenosyltransferase binding and its putative collaboration in the progression of hepatic diseases. PMID:27548429

  5. The Oncogene PDRG1 Is an Interaction Target of Methionine Adenosyltransferases

    PubMed Central

    Garrido, Francisco; Reytor, Edel; Portillo, Francisco; Pajares, María A.

    2016-01-01

    Methionine adenosyltransferases MAT I and MAT III (encoded by Mat1a) catalyze S-adenosylmethionine synthesis in normal liver. Major hepatic diseases concur with reduced levels of this essential methyl donor, which are primarily due to an expression switch from Mat1a towards Mat2a. Additional changes in the association state and even in subcellular localization of these isoenzymes are also detected. All these alterations result in a reduced content of the moderate (MAT I) and high Vmax (MAT III) isoenzymes, whereas the low Vmax (MAT II) isoenzyme increases and nuclear accumulation of MAT I is observed. These changes derive in a reduced availability of cytoplasmic S-adenosylmethionine, together with an effort to meet its needs in the nucleus of damaged cells, rendering enhanced levels of certain epigenetic modifications. In this context, the putative role of protein-protein interactions in the control of S-adenosylmethionine synthesis has been scarcely studied. Using yeast two hybrid and a rat liver library we identified PDRG1 as an interaction target for MATα1 (catalytic subunit of MAT I and MAT III), further confirmation being obtained by immunoprecipitation and pull-down assays. Nuclear MATα interacts physically and functionally with the PDRG1 oncogene, resulting in reduced DNA methylation levels. Increased Pdrg1 expression is detected in acute liver injury and hepatoma cells, together with decreased Mat1a expression and nuclear accumulation of MATα1. Silencing of Pdrg1 expression in hepatoma cells alters their steady-state expression profile on microarrays, downregulating genes associated with tumor progression according to GO pathway analysis. Altogether, the results unveil the role of PDRG1 in the control of the nuclear methylation status through methionine adenosyltransferase binding and its putative collaboration in the progression of hepatic diseases. PMID:27548429

  6. Low-dose methotrexate inhibits methionine S-adenosyltransferase in vitro and in vivo.

    PubMed

    Wang, Yi-Cheng; Chiang, En-Pei Isabel

    2012-01-01

    Methionine S-adenosyltransferase (MAT) catalyzes the only reaction that produces the major methyl donor in mammals. Low-dose methotrexate is the most commonly used disease-modifying antirheumatic drug in human rheumatic conditions. The present study was conducted to test the hypothesis that methotrexate inhibits MAT expression and activity in vitro and in vivo. HepG2 cells were cultured under folate restriction or in low-dose methotrexate with and without folate or methionine supplementation. Male C57BL/6J mice received methotrexate regimens that reflected low-dose clinical use in humans. S-adenosylmethionine and MAT genes, proteins and enzyme activity levels were determined. We found that methionine or folate supplementation greatly improved S-adenosylmethionine in folate-depleted cells but not in cells preexposed to methotrexate. Methotrexate but not folate depletion suppressed MAT genes, proteins and activity in vitro. Low-dose methotrexate inhibited MAT1A and MAT2A genes, MATI/II/III proteins and MAT enzyme activities in mouse tissues. Concurrent folinate supplementation with methotrexate ameliorated MAT2A reduction and restored S-adenosylmethionine in HepG2 cells. However, posttreatment folinate rescue failed to restore MAT2A reduction or S-adenosylmethionine level in cells preexposed to methotrexate. Our results provide both in vitro and in vivo evidence that low-dose methotrexate inhibits MAT genes, proteins, and enzyme activity independent of folate depletion. Because polyglutamated methotrexate stays in the hepatocytes, if methotrexate inhibits MAT in the liver, then the efficacy of clinical folinate rescue with respect to maintaining hepatic S-adenosylmethionine synthesis and normalizing the methylation reactions would be limited. These findings raise concerns on perturbed methylation reactions in humans on low-dose methotrexate. Future studies on the clinical physiological consequences of MAT inhibition by methotrexate and the potential benefits of S

  7. Crystallography captures catalytic steps in human methionine adenosyltransferase enzymes.

    PubMed

    Murray, Ben; Antonyuk, Svetlana V; Marina, Alberto; Lu, Shelly C; Mato, Jose M; Hasnain, S Samar; Rojas, Adriana L

    2016-02-23

    The principal methyl donor of the cell, S-adenosylmethionine (SAMe), is produced by the highly conserved family of methionine adenosyltranferases (MATs) via an ATP-driven process. These enzymes play an important role in the preservation of life, and their dysregulation has been tightly linked to liver and colon cancers. We present crystal structures of human MATα2 containing various bound ligands, providing a "structural movie" of the catalytic steps. High- to atomic-resolution structures reveal the structural elements of the enzyme involved in utilization of the substrates methionine and adenosine and in formation of the product SAMe. MAT enzymes are also able to produce S-adenosylethionine (SAE) from substrate ethionine. Ethionine, an S-ethyl analog of the amino acid methionine, is known to induce steatosis and pancreatitis. We show that SAE occupies the active site in a manner similar to SAMe, confirming that ethionine also uses the same catalytic site to form the product SAE. PMID:26858410

  8. Crystallography captures catalytic steps in human methionine adenosyltransferase enzymes

    PubMed Central

    Murray, Ben; Antonyuk, Svetlana V.; Marina, Alberto; Lu, Shelly C.; Mato, Jose M.; Hasnain, S. Samar; Rojas, Adriana L.

    2016-01-01

    The principal methyl donor of the cell, S-adenosylmethionine (SAMe), is produced by the highly conserved family of methionine adenosyltranferases (MATs) via an ATP-driven process. These enzymes play an important role in the preservation of life, and their dysregulation has been tightly linked to liver and colon cancers. We present crystal structures of human MATα2 containing various bound ligands, providing a “structural movie” of the catalytic steps. High- to atomic-resolution structures reveal the structural elements of the enzyme involved in utilization of the substrates methionine and adenosine and in formation of the product SAMe. MAT enzymes are also able to produce S-adenosylethionine (SAE) from substrate ethionine. Ethionine, an S-ethyl analog of the amino acid methionine, is known to induce steatosis and pancreatitis. We show that SAE occupies the active site in a manner similar to SAMe, confirming that ethionine also uses the same catalytic site to form the product SAE. PMID:26858410

  9. Expression Pattern, Regulation, and Functions of Methionine Adenosyltransferase 2β Splicing Variants in Hepatoma Cells

    PubMed Central

    YANG, HEPING; ARA, AINHOA IGLESIAS; MAGILNICK, NATHANIEL; XIA, MENG; RAMANI, KOMAL; CHEN, HUI; LEE, TAUNIA D.; MATO, JOSÉ M.; LU, SHELLY C.

    2008-01-01

    Background & Aims Methionine adenosyltransferase (MAT) catalyzes S-adenosylmethionine biosynthesis. Two genes (MAT1A and MAT2A) encode for the catalytic subunit of MAT, while a third gene (MAT2β) encodes for a regulatory subunit that modulates the activity of MAT2A-encoded isoenzyme. We uncovered multiple splicing variants while characterizing its 5′-flanking region. The aims of our current study are to examine the expression pattern, regulation, and functions of the 2 major variants: V1 and V2. Methods Studies were conducted using RNA from normal human tissues, resected hepatocellular carcinoma specimens, and cell lines. Gene expression, promoter and nuclear binding activities, growth, and apoptosis were measured by routine assays. Results MAT2β is expressed in most but not all tissues, and the 2 variants are differentially expressed. The messenger RNA levels of both variants are markedly increased in hepatocellular carcinoma. Tumor necrosis factor (TNF)-α, which induces MAT2A in HepG2 cells, also induced V1 (but not V2) expression. TNF-α induced the promoter activity of MAT2β V1, likely via nuclear factor κB and activator protein 1. Both variants regulate growth, but only V1 regulates apoptosis. Reduced expression of V1 led to c-Jun-N-terminal kinase (JNK) activation, apoptosis, and sensitized HepG2 cells to TNF-α–induced apoptosis, while overexpression of V1 was protective. However, blocking JNK1 or JNK2 activation did not prevent apoptosis induced by V1 knockdown. V1 (but not V2) knockdown also leads to apoptosis in a colon cancer cell line, suggesting these variants play similar roles in many cell types. Conclusions Different variants of MAT2β regulate growth and death, which broadens their importance in biology. PMID:18045590

  10. A Sensitive Mass-spectrum Assay to Characterize Engineered Methionine Adenosyltransferases with S-Alkyl Methionine Analogues as Substrates

    PubMed Central

    Wang, Rui; Zheng, Weihong; Luo, Minkui

    2014-01-01

    Methionine adenosyltransferases (MATs) catalyze the formation of S-adenosyl-L-methionine (SAM) inside living cells. Recently, S-alkyl analogues of SAM have been documented as cofactor surrogates to label novel targets of methyltransferases. However, these chemically synthesized SAM analogues are not suitable for cell-based studies because of their poor membrane permeability. This issue was recently addressed under a cellular setting through a chemoenzymatic strategy to process membrane-permeable S-alkyl analogues of methionine (SAAM) into the SAM analogues with engineered MATs. Here we describe a general, sensitive activity assay for engineered MATs by converting the reaction products into S-alkyl-thioadenosines, followed by HPLC/MS/MS quantification. With this assay, 40 human MAT mutants were evaluated against seven SAAM as potential substrates. The structure-activity-relationship revealed that, besides better engaged SAAM binding by the MAT mutants (lower Km value in contrast to native MATs), the gained activity towards the bulky SAAM stems from their ability to maintain the desired linear SN2 transition state (reflected by higher kcat value). Here the I117A mutant of human MATI was identified as the most active variant for biochemical production of SAM analogues from diverse SAAM. PMID:24374249

  11. Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer

    SciTech Connect

    Tomasi, Maria Lauda; Ryoo, Minjung; Skay, Anna; Tomasi, Ivan; Giordano, Pasquale; Mato, José M.; Lu, Shelly C.

    2013-07-15

    Methionine adenosyltransferase (MAT) is an essential enzyme that is responsible for the biosynthesis of S-adenosylmethionine (SAMe), the principal methyl donor and precursor of polyamines. MAT1A is expressed in normal liver and MAT2A is expressed in all extrahepatic tissues. MAT2A expression is increased in human colon cancer and in colon cancer cells treated with mitogens, whereas silencing MAT2A resulted in apoptosis. The aim of the current work was to examine the mechanism responsible for MAT2A-dependent growth and apoptosis. We found that in RKO (human adenocarcinoma cell line) cells, MAT2A siRNA treatment lowered cellular SAMe and putrescine levels by 70–75%, increased apoptosis and inhibited growth. Putrescine supplementation blunted significantly MAT2A siRNA-induced apoptosis and growth suppression. Putrescine treatment (100 pmol/L) raised MAT2A mRNA level to 4.3-fold of control, increased the expression of c-Jun and c-Fos and binding to an AP-1 site in the human MAT2A promoter and the promoter activity. In human colon cancer specimens, the expression levels of MAT2A, ornithine decarboxylase (ODC), c-Jun and c-Fos are all elevated as compared to adjacent non-tumorous tissues. Overexpression of ODC in RKO cells also raised MAT2A mRNA level and MAT2A promoter activity. ODC and MAT2A are also overexpressed in liver cancer and consistently, similar MAT2A-ODC-putrescine interactions and effects on growth and apoptosis were observed in HepG2 cells. In conclusion, there is a crosstalk between polyamines and MAT2A. Increased MAT2A expression provides more SAMe for polyamines biosynthesis; increased polyamine (putrescine in this case) can activate MAT2A at the transcriptional level. This along with increased ODC expression in cancer all feed forward to further enhance the proliferative capacity of the cancer cell. -- Highlights: • MAT2A knockdown depletes putrescine and leads to apoptosis. • Putrescine attenuates MAT2A knockdown-induced apoptosis and growth

  12. Impact of glutathione supplementation of parenteral nutrition on hepatic methionine adenosyltransferase activity

    PubMed Central

    Elremaly, Wesam; Mohamed, Ibrahim; Rouleau, Thérèse; Lavoie, Jean-Claude

    2015-01-01

    Background The oxidation of the methionine adenosyltransferase (MAT) by the combined impact of peroxides contaminating parenteral nutrition (PN) and oxidized redox potential of glutathione is suspected to explain its inhibition observed in animals. A modification of MAT activity is suspected to be at origin of the PN-associated liver disease as observed in newborns. We hypothesized that the correction of redox potential of glutathione by adding glutathione in PN protects the MAT activity. Aim To investigate whether the addition of glutathione to PN can reverse the inhibition of MAT observed in animal on PN. Methods Three days old guinea pigs received through a jugular vein catheter 2 series of solutions. First with methionine supplement, (1) Sham (no infusion); (2) PN: amino acids, dextrose, lipids and vitamins; (3) PN-GSSG: PN+10 μM GSSG. Second without methionine, (4) D: dextrose; (5) D+180 μM ascorbylperoxide; (6) D+350 μM H2O2. Four days later, liver was sampled for determination of redox potential of glutathione and MAT activity in the presence or absence of 1 mM DTT. Data were compared by ANOVA, p<0.05. Results MAT activity was 45±4% lower in animal infused with PN and 23±7% with peroxides generated in PN. The inhibition by peroxides was associated with oxidized redox potential and was reversible by DTT. Correction of redox potential (PN+GSSG) or DTT was without effect on the inhibition of MAT by PN. The slope of the linear relation between MAT activity and redox potential was two fold lower in animal infused with PN than in others groups. Conclusion The present study suggests that prevention of peroxide generation in PN and/or correction of the redox potential by adding glutathione in PN are not sufficient, at least in newborn guinea pigs, to restore normal MAT activity. PMID:26722840

  13. Determination of Autosomal Dominant or Recessive Methionine Adenosyltransferase I/III Deficiencies Based on Clinical and Molecular Studies

    PubMed Central

    Kim, Yoo-Mi; Kim, Ja Hye; Choi, Jin-Ho; Kim, Gu-Hwan; Kim, Jae-Min; Kang, Minji; Choi, In-Hee; Cheon, Chong Kun; Sohn, Young Bae; Maccarana, Marco; Yoo, Han-Wook; Lee, Beom Hee

    2016-01-01

    Methionine adenosyltransferase (MAT) I/III deficiency can be inherited as autosomal dominant (AD) or as recessive (AR) traits in which mono- or biallelic MAT1A mutations have been identified, respectively. Although most patients have benign clinical outcomes, some with the AR form have neurological deficits. Here we describe 16 Korean patients with MAT I/III deficiency from 15 unrelated families identified by newborn screening. Ten probands had the AD MAT I/III deficiency, while six had AR MAT I/III deficiency. Plasma methionine (145.7 μmol/L versus 733.2 μmol/L, P < 0.05) and homocysteine levels (12.3 μmol/L versus 18.6 μmol/L, P < 0.05) were lower in the AD type than in AR type. In addition to the only reported AD MAT1A mutation, p.Arg264His, we identified two novel AD mutations, p.Arg249Gln and p.Gly280Arg. In the AR type, four previously reported and two novel mutations, p.Arg163Trp and p.Tyr335*, were identified. No exonic deletions were found by quantitative genomic polymerase chain reaction (PCR). Three-dimensional structural prediction programs indicated that the AD-type mutations were located on the dimer interface or in the substrate binding site, hindering MAT I/III dimerization or substrate binding, respectively, whereas the AR mutations were distant from the interface or substrate binding site. These results indicate that the AD or AR MAT I/III deficiency is correlated with clinical findings, substrate levels and structural features of the mutant proteins, which is important for the neurological management and genetic counseling of the patients. PMID:26933843

  14. Induction of methionine adenosyltransferase 2A in tamoxifen-resistant breast cancer cells

    PubMed Central

    Phuong, Nguyen Thi Thuy; Kim, Sang Kyum; Im, Ji Hye; Yang, Jin Won; Choi, Min Chang; Lim, Sung Chul; Lee, Kwang Yeol; Kim, Young-Mi; Yoon, Jeong Hoon; Kang, Keon Wook

    2016-01-01

    We previously showed that S-adenosylmethionine-mediated hypermethylation of the PTEN promoter was important for the growth of tamoxifen-resistant MCF-7 (TAMR-MCF-7) cancer cells. Here, we found that the basal expression level of methionine adenosyltransferase 2A (MAT2A), a critical enzyme for the biosynthesis of S-adenosylmethionine, was up-regulated in TAMR-MCF-7 cells compared with control MCF-7 cells. Moreover, the basal expression level of MAT2A in T47D cells, a TAM-resistant estrogen receptor-positive cell line was higher compared to MCF-7 cells. Immunohistochemistry confirmed that MAT2A expression in TAM-resistant human breast cancer tissues was higher than that in TAM-responsive cases. The promoter region of human MAT2A contains binding sites for nuclear factor-κB, activator protein-1 (AP-1), and NF-E2-related factor 2 (Nrf2), and the activities of these three transcription factors were enhanced in TAMR-MCF-7 cells. Both the protein expression and transcriptional activity of MAT2A in TAMR-MCF-7 cells were potently suppressed by NF-κB inhibition but not by c-Jun/AP-1 or Nrf2 knock-down. Interestingly, the expression levels of microRNA (miR)-146a and -146b were diminished in TAMR-MCF-7 cells, and miR-146b transduction decreased NF-κB-mediated MAT2A expression. miR-146b restored PTEN expression via the suppression of PTEN promoter methylation in TAMR-MCF-7 cells. Additionally, miR-146b overexpression inhibited cell proliferation and reversed chemoresistance to 4-hydroxytamoxifen in TAMR-MCF-7 cells. PMID:26418898

  15. S-adenosyl-L-methionine modifies antioxidant-enzymes, glutathione-biosynthesis and methionine adenosyltransferases-1/2 in hepatitis C virus-expressing cells

    PubMed Central

    Lozano-Sepulveda, Sonia Amelia; Bautista-Osorio, Eduardo; Merino-Mascorro, Jose Angel; Varela-Rey, Marta; Muñoz-Espinosa, Linda Elsa; Cordero-Perez, Paula; Martinez-Chantar, María Luz; Rivas-Estilla, Ana Maria

    2016-01-01

    AIM: To elucidate the mechanism(s) by which S-adenosyl-L-methionine (SAM) decreases hepatitis C virus (HCV) expression. METHODS: We examined the effects of SAM on viral expression using an HCV subgenomic replicon cell culture system. Huh7 HCV-replicon cells were treated with 1 mmol/L SAM for different times (24-72 h), then total RNA and proteins were isolated. cDNA was synthesized and real time-PCR was achieved to quantify HCV-RNA, superoxide dismutase 1 and 2 (SOD-1, SOD-2) catalase, thioredoxin 1, methionine adenosyltransferase 1A and 2A (MAT1A, MAT2A) expression, and GAPDH and RPS18 as endogenous genes. Expression of cellular and viral protein was evaluated by western-blot analysis using antibodies vs HCV-NS5A, SOD-1, SOD-2, catalase, thioredoxin-1, MAT1A, MAT2A, GAPDH and actin. Total glutathione levels were measured at different times by Ellman’s recycling method (0-24 h). Reactive oxidative species (ROS) levels were quantified by the dichlorofluorescein assay (0-48 h); Pyrrolidin dithiocarbamate (PDTC) was tested as an antioxidant control and H2O2 as a positive oxidant agent. RESULTS: SAM exposition decreased HCV-RNA levels 50%-70% compared to non-treated controls (24-72 h). SAM induced a synergic antiviral effect with standard IFN treatment but it was independent of IFN signaling. In addition, 1 mmol/L SAM exposition did not modify viral RNA stability, but it needs cellular translation machinery in order to decrease HCV expression. Total glutathione levels increased upon SAM treatment in HCV-replicon cells. Transcriptional antioxidant enzyme expression (SOD-1, SOD-2 and thioredoxin-1) was increased at different times but interestingly, there was no significant change in ROS levels upon SAM treatment, contrary to what was detected with PDTC treatment, where an average 40% reduction was observed in exposed cells. There was a turnover from MAT1A/MAT2A, since MAT1A expression was increased (2.5 fold-times at 48 h) and MAT2A was diminished (from 24 h) upon SAM

  16. Comparative protein modeling of methionine S-adenosyltransferase (MAT) enzyme from Mycobacterium tuberculosis: a potential target for antituberculosis drug discovery.

    PubMed

    Khedkar, Santosh A; Malde, Alpeshkumar K; Coutinho, Evans C

    2005-01-01

    Mycobacterium tuberculosis (Mtb) is a successful pathogen that overcomes the numerous challenges presented by the immune system of the host. In the last 40 years few anti-TB drugs have been developed, while the drug-resistance problem is increasing; there is thus a pressing need to develop new anti-TB drugs active against both the acute and chronic growth phases of the mycobacterium. Methionine S-adenosyltransferase (MAT) is an enzyme involved in the synthesis of S-adenosylmethionine (SAM), a methyl donor essential for mycolipid biosynthesis. As an anti-TB drug target, Mtb-MAT has been well validated. A homology model of MAT has been constructed using the X-ray structures of E. coli MAT (PDB code: 1MXA) and rat MAT (PDB code: 1QM4) as templates, by comparative protein modeling principles. The resulting model has the correct stereochemistry as gauged from the Ramachandran plot and good three-dimensional (3D) structure compatibility as assessed by the Profiles-3D score. The structurally and functionally important residues (active site) of Mtb-MAT have been identified using the E. coli and rat MAT crystal structures and the reported point mutation data. The homology model conserves the topological and active site features of the MAT family of proteins. The differences in the molecular electrostatic potentials (MEP) of Mtb and human MAT provide evidences that selective and specific Mtb-MAT inhibitors can be designed using the homology model, by the structure-based drug design approaches. PMID:15670956

  17. Methionine adenosyltransferase α2 sumoylation positively regulate Bcl-2 expression in human colon and liver cancer cells

    PubMed Central

    Tomasi, Maria Lauda; Ryoo, Minjung; Ramani, Komal; Tomasi, Ivan; Giordano, Pasquale; Mato, José M.; Lu, Shelly C.

    2015-01-01

    Ubiquitin-conjugating enzyme 9 (Ubc9) is required for sumoylation and inhibits apoptosis via Bcl-2 by unknown mechanism. Methionine adenosyltransferase 2A (MAT2A) encodes for MATα2, the catalytic subunit of the MATII isoenzyme that synthesizes S-adenosylmethionine (SAMe). Ubc9, Bcl-2 and MAT2A expression are up-regulated in several malignancies. Exogenous SAMe decreases Ubc9 and MAT2A expression and is pro-apoptotic in liver and colon cancer cells. Here we investigated whether there is interplay between Ubc9, MAT2A and Bcl-2. We used human colon and liver cancer cell lines RKO and HepG2, respectively, and confirmed key finding in colon cancer specimens. We found MATα2 can regulate Bcl-2 expression at multiple levels. MATα2 binds to Bcl-2 promoter to activate its transcription. This effect is independent of SAMe as MATα2 catalytic mutant was also effective. MATα2 also directly interacts with Bcl-2 to enhance its protein stability. MATα2's effect on Bcl-2 requires Ubc9 as MATα2's stability is influenced by sumoylation at K340, K372 and K394. Overexpressing wild type (but not less stable MATα2 sumoylation mutants) protected from 5-fluorouracil-induced apoptosis in both colon and liver cancer cells. Colon cancer have higher levels of sumoylated MATα2, total MATα2, Ubc9 and Bcl-2 and higher MATα2 binding to the Bcl-2 P2 promoter. Taken together, Ubc9's protective effect on apoptosis may be mediated at least in part by sumoylating and stabilizing MATα2 protein, which in turn positively maintains Bcl-2 expression. These interactions feed forward to further enhance growth and survival of the cancer cell. PMID:26416353

  18. The Improvement of SAM Accumulation by Integrating the Endogenous Methionine Adenosyltransferase Gene SAM2 in Genome of the Industrial Saccharomyces cerevisiae Strain.

    PubMed

    Zhao, Weijun; Shi, Feng; Hang, Baojian; Huang, Lei; Cai, Jin; Xu, Zhinan

    2016-03-01

    S-Adenosyl-L-methionine (SAM) plays important roles in trans-methylation, trans-sulfuration, and polyamine synthesis in all living cells, and it is also an effective cure for liver disease, depressive syndromes, and osteoarthritis. The increased demands of SAM in pharmaceuticals industry have aroused lots of attempts to improve its production. In this study, a multiple-copy integrative plasmid pYMIKP-SAM2 was introduced into the chromosome of wild-type Saccharomyces cerevisiae strain ZJU001 to construct the recombined strain R1-ZJU001. Further studies showed that the recombinant yeast exhibited higher enzymatic activity of methionine adenosyltransferase and improved its SAM biosynthesis. With a three-phase fed-batch strategy in 15-liter bench-top fermentor, 8.81 g/L SAM was achieved after 52 h cultivation of R1-ZJU001, about 27.1 % increase over its parent strain ZJU001, whereas the SAM content was also improved from 64.6 mg/g DCW to 91.0 mg/g DCW. Our results shall provide insights into the metabolic engineering of SAM pathway in yeast for improved productivity of SAM and subsequent industrial applications. PMID:26728652

  19. MAT1A variants modulate the effect of dietary fatty acids on plasma homocysteine concentrations and DNA damage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary n-3 polyunsaturated fatty acids (PUFA) are associated with decreased plasma homocysteine (Hcy), an important biomarker for cardiovascular disease. Methionine adenosyltransferase (MAT1A) is an enzyme involved in formation of form S-adenosylmethionine during methionine metabolism. The objectiv...

  20. 2′,6′-Dihalostyrylanilines, Pyridines, and Pyrimidines for the Inhibition of the Catalytic Subunit of Methionine S-Adenosyltransferase-2

    PubMed Central

    2015-01-01

    Inhibition of the catalytic subunit of the heterodimeric methionine S-adenosyl transferase-2 (MAT2A) with fluorinated N,N-dialkylaminostilbenes (FIDAS agents) offers a potential avenue for the treatment of liver and colorectal cancers where upregulation of this enzyme occurs. A study of structure–activity relationships led to the identification of the most active compounds as those with (1) either a 2,6-difluorostyryl or 2-chloro-6-fluorostyryl subunit, (2) either an N-methylamino or N,N-dimethylamino group attached in a para orientation relative to the 2,6-dihalostyryl subunit, and (3) either an N-methylaniline or a 2-(N,N-dimethylamino)pyridine ring. These modifications led to FIDAS agents that were active in the low nanomolar range, that formed water-soluble hydrochloride salts, and that possessed the desired property of not inhibiting the human hERG potassium ion channel at concentrations at which the FIDAS agents inhibit MAT2A. The active FIDAS agents may inhibit cancer cells through alterations of methylation reactions essential for cancer cell survival and growth. PMID:24950374

  1. Dysregulated Hepatic Methionine Metabolism Drives Homocysteine Elevation in Diet-Induced Nonalcoholic Fatty Liver Disease

    PubMed Central

    Pacana, Tommy; Cazanave, Sophie; Verdianelli, Aurora; Patel, Vaishali; Min, Hae-Ki; Mirshahi, Faridoddin; Quinlivan, Eoin; Sanyal, Arun J.

    2015-01-01

    Methionine metabolism plays a central role in methylation reactions, production of glutathione and methylarginines, and modulating homocysteine levels. The mechanisms by which these are affected in NAFLD are not fully understood. The aim is to perform a metabolomic, molecular and epigenetic analyses of hepatic methionine metabolism in diet-induced NAFLD. Female 129S1/SvlmJ;C57Bl/6J mice were fed a chow (n = 6) or high-fat high-cholesterol (HFHC) diet (n = 8) for 52 weeks. Metabolomic study, enzymatic expression and DNA methylation analyses were performed. HFHC diet led to weight gain, marked steatosis and extensive fibrosis. In the methionine cycle, hepatic methionine was depleted (30%, p< 0.01) while s-adenosylmethionine (SAM)/methionine ratio (p< 0.05), s-adenosylhomocysteine (SAH) (35%, p< 0.01) and homocysteine (25%, p< 0.01) were increased significantly. SAH hydrolase protein levels decreased significantly (p <0.01). Serine, a substrate for both homocysteine remethylation and transsulfuration, was depleted (45%, p< 0.01). In the transsulfuration pathway, cystathionine and cysteine trended upward while glutathione decreased significantly (p< 0.05). In the transmethylation pathway, levels of glycine N-methyltransferase (GNMT), the most abundant methyltransferase in the liver, decreased. The phosphatidylcholine (PC)/ phosphatidylethanolamine (PE) ratio increased significantly (p< 0.01), indicative of increased phosphatidylethanolamine methyltransferase (PEMT) activity. The protein levels of protein arginine methytransferase 1 (PRMT1) increased significantly, but its products, monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), decreased significantly. Circulating ADMA increased and approached significance (p< 0.06). Protein expression of methionine adenosyltransferase 1A, cystathionine β-synthase, γ-glutamylcysteine synthetase, betaine-homocysteine methyltransferase, and methionine synthase remained unchanged. Although gene expression of the DNA

  2. Shear stress–induced unfolding of VWF accelerates oxidation of key methionine residues in the A1A2A3 region

    PubMed Central

    Chen, Junmei; Gallagher, Ryan; Zheng, Ying; Chung, Dominic W.

    2011-01-01

    VWF is required for platelet adhesion to sites of vessel injury, a process vital for both hemostasis and thrombosis. Enhanced VWF secretion and oxidative stress are both hallmarks of inflammation. We recently showed that the neutrophil oxidant hypochlorous acid (HOCl) inhibits VWF proteolysis by ADAMTS13 by oxidizing VWF methionine 1606 (M1606) in the A2 domain. M1606 was readily oxidized in a substrate peptide, but required urea in multimeric plasma VWF. In the present study, we examined whether shear stress enhances VWF oxidation. With an HOCl-generating system containing myeloperoxidase (MPO) and H2O2, we found that shear stress accelerated M1606 oxidation, with 56% becoming oxidized within 1 hour. Seven other methionine residues in the VWF A1A2A3 region (containing the sites for platelet and collagen binding and ADAMTS13 cleavage) were variably oxidized, one completely. Oxidized methionines accumulated preferentially in the largest VWF multimers. HOCl-oxidized VWF was hyperfunctional, agglutinating platelets at ristocetin concentrations that induced minimal agglutination using unoxidized VWF and binding more of the nanobody AU/VWFa-11, which detects a gain-of-function conformation of the A1 domain. These findings suggest that neutrophil oxidants will both render newly secreted VWF uncleavable and alter the largest plasma VWF forms such that they become hyperfunctional and resistant to proteolysis by ADAMTS13. PMID:21917758

  3. Ethylene production from methionine

    PubMed Central

    Lieberman, M.; Kunishi, A. T.; Mapson, L. W.; Wardale, D. A.

    1965-01-01

    1. A new reaction is described in which ethylene is formed from the Cu+-catalysed breakdown of methionine in phosphate buffer at 30° in air. Some of the other products of the reaction are methionine sulphone, methionine sulphoxide, homocysteic acid, homocystine, acrolein, dimethyl disulphide, methanethiol, ethyl methyl sulphide, methane and ethane. These are considered to be produced in different reaction pathways. 2. Hydrogen peroxide is an intermediate in this reaction and can support ethylene production in the model system in anaerobic atmospheres. Cuprous copper is the active form that catalyses the formation of ethylene from an oxidized intermediate. The initial reaction is probably a Strecker degradation, but the aldehyde product is further degraded to ethylene and other products. 3. Methional (CH3·S·CH2·CH2·CHO) is the most effective producer of ethylene in the model system and appears to be an intermediate in the reaction. 4. The evidence, from both tracer studies and from other precursors of ethylene in the reaction, indicates that ethylene is derived from the −CH2·CH2− group of methionine. PMID:16749150

  4. Dietary L-methionine supplementation mitigates gamma-radiation induced global DNA hypomethylation: enhanced metabolic flux towards S-adenosyl-L-methionine (SAM) biosynthesis increases genomic methylation potential.

    PubMed

    Batra, Vipen; Verma, Poonam

    2014-07-01

    The objective of this study was to examine the effect of (60)Co-gamma (γ) radiation on modulation of genomic DNA methylation, if any, of mice maintained (6 weeks) on normal control diet (NCD) and L-methionine supplemented diet (MSD). To elucidate the possible underlying mechanism(s), we exposed the animals to γ-radiation (2, 3 and 4 Gy) and investigated the profile of downstream metabolites and enzymes involved in S-adenosyl-L-methionine (SAM) generation. Liver samples were also subjected to histopathological examinations. Compared to NCD fed and irradiated animals, hepatic folate, choline and L-methionine levels decreased moderately, while hepatic SAM levels increased in MSD fed and irradiated animals. Under these conditions, a marked modulation of methionine adenosyltransferase (MAT) and L-methionine synthase (MSase) activities was observed. Concomitant with increase in liver SAM pool, increased DNA methyltransferase (dnmt) activity in MSD fed mice indicated enhanced metabolic flux towards DNA methylation. Further results showed that genomic DNA methylation and 5-methyl-2'-deoxy cytidine residues were maintained at normal levels in MSD fed and irradiated mice compared to NCD fed and irradiated animals. In conclusion, our results suggest that increasing supply of preformed methyl groups, via dietary L-methionine supplementation might significantly increase methylation potential of radiation stress compromised DNA methylation cycle. PMID:24721433

  5. Computational Analysis Reveals the Association of Threonine 118 Methionine Mutation in PMP22 Resulting in CMT-1A

    PubMed Central

    Swetha, Rayapadi G.

    2014-01-01

    The T118M mutation in PMP22 gene is associated with Charcot Marie Tooth, type 1A (CMT1A). CMT1A is a form of Charcot-Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. Mutations in CMT related disorder are seen to increase the stability of the protein resulting in the diseased state. We performed SNP analysis for all the nsSNPs of PMP22 protein and carried out molecular dynamics simulation for T118M mutation to compare the stability difference between the wild type protein structure and the mutant protein structure. The mutation T118M resulted in the overall increase in the stability of the mutant protein. The superimposed structure shows marked structural variation between the wild type and the mutant protein structures. PMID:25400662

  6. Crystal structure of tRNA m(1)A58 methyltransferase TrmI from Aquifex aeolicus in complex with S-adenosyl-L-methionine.

    PubMed

    Kuratani, Mitsuo; Yanagisawa, Tatsuo; Ishii, Ryohei; Matsuno, Michiyo; Si, Shu-Yi; Katsura, Kazushige; Ushikoshi-Nakayama, Ryoko; Shibata, Rie; Shirouzu, Mikako; Bessho, Yoshitaka; Yokoyama, Shigeyuki

    2014-09-01

    The N (1)-methyladenosine residue at position 58 of tRNA is found in the three domains of life, and contributes to the stability of the three-dimensional L-shaped tRNA structure. In thermophilic bacteria, this modification is important for thermal adaptation, and is catalyzed by the tRNA m(1)A58 methyltransferase TrmI, using S-adenosyl-L-methionine (AdoMet) as the methyl donor. We present the 2.2 Å crystal structure of TrmI from the extremely thermophilic bacterium Aquifex aeolicus, in complex with AdoMet. There are four molecules per asymmetric unit, and they form a tetramer. Based on a comparison of the AdoMet binding mode of A. aeolicus TrmI to those of the Thermus thermophilus and Pyrococcus abyssi TrmIs, we discuss their similarities and differences. Although the binding modes to the N6 amino group of the adenine moiety of AdoMet are similar, using the side chains of acidic residues as well as hydrogen bonds, the positions of the amino acid residues involved in binding are diverse among the TrmIs from A. aeolicus, T. thermophilus, and P. abyssi. PMID:24894648

  7. Structure of ATP-Bound Human ATP:Cobalamin Adenosyltransferase

    SciTech Connect

    Schubert,H.; Hill, C.

    2006-01-01

    Mutations in the gene encoding human ATP:cobalamin adenosyltransferase (hATR) can result in the metabolic disorder known as methylmalonic aciduria (MMA). This enzyme catalyzes the final step in the conversion of cyanocobalamin (vitamin B{sub 12}) to the essential human cofactor adenosylcobalamin. Here we present the 2.5 {angstrom} crystal structure of ATP bound to hATR refined to an R{sub free} value of 25.2%. The enzyme forms a tightly associated trimer, where the monomer comprises a five-helix bundle and the active sites lie on the subunit interfaces. Only two of the three active sites within the trimer contain the bound ATP substrate, thereby providing examples of apo- and substrate-bound-active sites within the same crystal structure. Comparison of the empty and occupied sites indicates that twenty residues at the enzyme's N-terminus become ordered upon binding of ATP to form a novel ATP-binding site and an extended cleft that likely binds cobalamin. The structure explains the role of 20 invariant residues; six are involved in ATP binding, including Arg190, which hydrogen bonds to ATP atoms on both sides of the scissile bond. Ten of the hydrogen bonds are required for structural stability, and four are in positions to interact with cobalamin. The structure also reveals how the point mutations that cause MMA are deficient in these functions.

  8. Photooxidation of Methionine

    ERIC Educational Resources Information Center

    Lewis, Catherine; Scouten, William H.

    1976-01-01

    Describes an experiment in which the photooxidation of methionine using free methylene blue as the sensitizer is applied to the isolated amino acid or to the methionyl residues of a complex polypeptide. (MLH)

  9. PqqE from Methylobacterium extorquens AM1: a radical S-adenosyl-l-methionine enzyme with an unusual tolerance to oxygen.

    PubMed

    Saichana, Natsaran; Tanizawa, Katsuyuki; Pechoušek, Jiří; Novák, Petr; Yakushi, Toshiharu; Toyama, Hirohide; Frébortová, Jitka

    2016-01-01

    Methylobacterium extorquens AM1 is an aerobic facultative methylotroph known to secrete pyrroloquinoline quinone (PQQ), a cofactor of a number of bacterial dehydrogenases, into the culture medium. To elucidate the molecular mechanism of PQQ biosynthesis, we are focusing on PqqE which is believed to be the enzyme catalysing the first reaction of the pathway. PqqE belongs to the radical S-adenosyl-l-methionine (SAM) superfamily, in which most, if not all, enzymes are very sensitive to dissolved oxygen and rapidly inactivated under aerobic conditions. We here report that PqqE from M. extorquens AM1 is markedly oxygen-tolerant; it was efficiently expressed in Escherichia coli cells grown aerobically and affinity-purified to near homogeneity. The purified and reconstituted PqqE contained multiple (likely three) iron-sulphur clusters and showed the reductive SAM cleavage activity that was ascribed to the consensus [4Fe-4S](2+) cluster bound at the N-terminus region. Mössbauer spectrometric analyses of the as-purified and reconstituted enzymes revealed the presence of [4Fe-4S](2+) and [2Fe-2S](2+) clusters as the major forms with the former being predominant in the reconstituted enzyme. PqqE from M.extorquens AM1 may serve as a convenient tool for studying the molecular mechanism of PQQ biosynthesis, avoiding the necessity of establishing strictly anaerobic conditions. PMID:26188050

  10. Reduction of methionine sulfoxide to methionine by Escherichia coli.

    PubMed Central

    Ejiri, S I; Weissbach, H; Brot, N

    1979-01-01

    L-Methionine-dl-sulfoxide can support the growth of an Escherichia coli methionine auxotroph, suggesting the presence of an enzyme(s) capable of reducing the sulfoxide to methionine. This was verified by showing that a cell-free extract of E. coli catalyzes the conversion of methionine sulfoxide to methionine. This reaction required reduced nicotinamide adenine dinucleotide phosphate and a generating system for this compound. The specific activity of the enzyme increased during logarithmic growth and was maximal when the culture attained a density of about 10(9) cells per ml. PMID:37234

  11. Methionine requirements in healthy adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate methionine requirements in healthy adolescents, we conducted an experiment in 28 children age 15.6+2.1 years, wt. 57.8+9.7 kg, using the intravenous indicator amino acid oxidation and balance (IV-IAAOB) technique. Children were randomly assigned to 7 different levels of methionine int...

  12. Selenium and Methionine Sulfoxide Reduction.

    PubMed

    Gladyshev, Vadim N

    2014-10-01

    Selenium is an essential trace element because it is present in proteins in the form of selenocysteine residue. Functionally characterized selenoproteins are oxidoreductases. Selenoprotein methionine-R-sulfoxide reductase B1 (MsrB1) is a repair enzyme that reduces ROS-oxidized methionine residues in proteins. Here, we explored a possibility that reversible methionine oxidation is also a mechanism that regulates protein function. We found that MsrB1, together with Mical proteins, regulated mammalian actin assembly via stereospecific methionine oxidation and reduction in a reversible, site-specific manner. Two methionine residues in actin were specifically converted to methionine-R-sulfoxide by Mical1 and Mical2 and reduced back to methionine by MsrB1, supporting actin disassembly and assembly, respectively. Macrophages utilized this redox control during cellular activation by stimulating MsrB1 expression and activity. Thus, we identified the regulatory role of MsrB1 as a Mical antagonist in orchestrating actin dynamics and macrophage function. More generally, our study showed that proteins can be regulated by reversible site-specific methionine-R-sulfoxidation and that selenium is involved in this regulation by being a catalytic component of MsrB1. PMID:26461418

  13. Methionine catabolism in Saccharomyces cerevisiae.

    PubMed

    Perpète, Philippe; Duthoit, Olivier; De Maeyer, Simon; Imray, Louise; Lawton, Andrew I; Stavropoulos, Konstantinos E; Gitonga, Virginia W; Hewlins, Michael J E; Dickinson, J Richard

    2006-01-01

    The catabolism of methionine to methionol and methanethiol in Saccharomyces cerevisiae was studied using (13)C NMR spectroscopy, GC-MS, enzyme assays and a number of mutants. Methionine is first transaminated to alpha-keto-gamma-(methylthio)butyrate. Methionol is formed by a decarboxylation reaction, which yields methional, followed by reduction. The decarboxylation is effected specifically by Ydr380wp. Methanethiol is formed from both methionine and alpha-keto-gamma-(methylthio)butyrate by a demethiolase activity. In all except one strain examined, demethiolase was induced by the presence of methionine in the growth medium. This pathway results in the production of alpha-ketobutyrate, a carbon skeleton, which can be re-utilized. Hence, methionine catabolism is more complex and economical than the other amino acid catabolic pathways in yeast, which use the Ehrlich pathway and result solely in the formation of a fusel alcohol. PMID:16423070

  14. Biosynthesis of ethylene from methionine in aminoethoxyvinylglycine-resistant avocado tissue.

    PubMed

    Baker, J E; Anderson, J D; Adams, D O; Apelbaum, A; Lieberman, M

    1982-01-01

    This study was conducted to determine if aminoethoxyvinylglycine (AVG) insensitivity in avocado (Persea americana Mill., Lula, Haas, and Bacon) tissue was due to an alternate pathway of ethylene biosynthesis from methionine. AVG, at 0.1 millimolar, had little or no inhibitory effect on either total ethylene production or [(14)C] ethylene production from [(14)C]methionine in avocado tissue at various stages of ripening. However, aminoxyacetic acid (AOA), which inhibits 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (the AVG-sensitive enzyme of ethylene biosynthesis), inhibited ethylene production in avocado tissue. Total ethylene production was stimulated, and [(14)C]ethylene production from [(14)C]methionine was lowered by treating avocado tissue with 1 millimolar ACC. An inhibitor of methionine adenosyltransferase (EC 2.5.1.6), l-2-amino-4-hexynoic acid (AHA), at 1.5 millimolar, effectively inhibited [(14)C]ethylene production from [(14)C]methionine in avocado tissue but had no effect on total ethylene production during a 2-hour incubation. Rates of [(14)C]AVG uptake by avocado and apple (Malus domestica Borkh., Golden Delicious) tissues were similar, and [(14)C]AVG was the only radioactive compound in alcohol-soluble fractions of the tissues. Hence, AVG-insensitivity in avocado tissue does not appear to be due to lack of uptake or to metabolism of AVG by avocado tissue. ACC synthase activity in extracts of avocado tissue was strongly inhibited (about 60%) by 10 micromolar AVG. Insensitivity of ethylene production in avocado tissue to AVG may be due to inaccessibility of ACC synthase to AVG. AVG-resistance in the avocado system is, therefore, different from that of early climacteric apple tissue, in which AVG-insensitivity of total ethylene production appears to be due to a high level of endogenous ACC relative to its rate of conversion to ethylene. However, the sensitivity of the avocado system to AOA and AHA, dilution of labeled ethylene production by ACC

  15. Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes

    PubMed Central

    Delgado, Miguel; Garrido, Francisco; Pérez-Miguelsanz, Juliana; Pacheco, María; Partearroyo, Teresa; Pérez-Sala, Dolores

    2014-01-01

    Abstract Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities, and metabolite concentrations suffered more moderate changes following a similar trend. Interestingly, galactosamine treatment induced hepatic nuclear accumulation of methionine adenosyltransferase (MAT) α1 and S-adenosylhomocysteine hydrolase tetramers, their active assemblies. In fact, galactosamine-treated livers showed enhanced nuclear MAT activity. Acetaminophen (APAP) intoxication mimicked most galactosamine effects on hepatic MATα1, including accumulation of nuclear tetramers. H35 cells that overexpress tagged-MATα1 reproduced the subcellular distribution observed in liver, and the changes induced by galactosamine and APAP that were also observed upon glutathione depletion by buthionine sulfoximine. The H35 nuclear accumulation of tagged-MATα1 induced by these agents correlated with decreased glutathione reduced form/glutathione oxidized form ratios and was prevented by N-acetylcysteine (NAC) and glutathione ethyl ester. However, the changes in epigenetic modifications associated with tagged-MATα1 nuclear accumulation were only prevented by NAC in galactosamine-treated cells. Innovation: Cytoplasmic and nuclear changes in proteins that regulate the methylation index follow opposite trends in acute liver injury, their nuclear accumulation showing potential as disease marker. Conclusion: Altogether these results demonstrate galactosamine- and APAP-induced nuclear accumulation of methionine metabolism enzymes as active oligomers and unveil the implication of

  16. Identification of L-Methionine-S-Sulfoximine as the Convulsant Isomer of Methionine Sulfoximine*

    PubMed Central

    Rowe, W. Bruce; Meister, Alton

    1970-01-01

    The convulsant agent methionine sulfoximine inhibits brain glutamine synthetase irreversibly and the inhibitor becomes bound to the active site of the enzyme as methionine sulfoximine phosphate. Only one of the four isomers of methionine sulfoximine, L-methionine-S-sulfoximine, inhibits glutamine synthetase. In the present work, D-methionine-SR-sulfoximine, and highly purified preparations of L-methionine-S-sulfoximine and L-methionine-R-sulfoximine were tested in mice for convulsant activity; only L-methionine-S-sulfoximine produced convulsions. The finding that only one of the four optical isomers of methionine sulfoximine induces convulsions, and that only this same isomer inhibits glutamine synthetase, lends support to the conclusion that these two effects of methionine sulfoximine are closely connected. PMID:4393740

  17. Methionine restriction and lifespan control

    PubMed Central

    Lee, Byung Cheon; Kaya, Alaattin; Gladyshev, Vadim N.

    2016-01-01

    Dietary restriction (DR) without malnutrition is associated with longevity in various organisms. However, it has also been shown that reduced calorie intake is often ineffective in extending lifespan. Selecting optimal dietary regimens for DR studies is complicated, as the same regimen may lead to different outcomes depending on genotype and environmental factors. Recent studies suggested that interventions such as moderate protein restriction with/without adequate nutrition (e.g. particular amino acids or carbohydrates) may have additional beneficial effects mediated by certain metabolic and hormonal factors implicated in the biology of aging, regardless of total calorie intake. In particular, it was shown that restriction of a single amino acid, methionine, can mimic the effects of DR and extend lifespan in various model organisms. We discuss beneficial effects of methionine-restricted (MR) diet, the molecular pathways involved, and the use of this regimen in longevity interventions. PMID:26663138

  18. Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level.

    PubMed

    Li, Ying; Cong, Hua; Liu, Bingnan; Song, Jinzhu; Sun, Xueying; Zhang, Junzheng; Yang, Qian

    2016-09-01

    Relieving the feedback inhibition of key enzymes in a metabolic pathway is frequently the first step of producer-strain construction by genetic engineering. However, the strict feedback regulation exercised by microorganisms in methionine biosynthesis often makes it difficult to produce methionine at a high level. In this study, Corynebacterium glutamicum ATCC 13032 was metabolically engineered for methionine production. First, the metD gene encoding the methionine uptake system was deleted to achieve extracellular accumulation of methionine. Then, random mutagenesis was performed to remove feedback inhibition by metabolic end-products. The resulting strain C. glutamicum ENM-16 was further engineered to block or decrease competitive branch pathways by deleting the thrB gene and changing the start codon of the dapA gene, followed by point mutations of lysC (C932T) and pyc (G1A, C1372T) to increase methionine precursor supply. To enrich the NADPH pool, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in the pentose phosphate pathway were mutated to reduce their sensitivity to inhibition by intracellular metabolites. The resultant strain C. glutamicum LY-5 produced 6.85 ± 0.23 g methionine l(-1) with substrate-specific yield (Y P/S) of 0.08 mol per mol of glucose after 72 h fed-batch fermentation. The strategies described here will be useful for construction of methionine engineering strains. PMID:27255137

  19. Sex-specific dysregulation of cysteine oxidation and the methionine and folate cycles in female cystathionine gamma-lyase null mice: a serendipitous model of the methylfolate trap.

    PubMed

    Jiang, Hua; Hurt, K Joseph; Breen, Kelsey; Stabler, Sally P; Allen, Robert H; Orlicky, David J; Maclean, Kenneth N

    2015-01-01

    In addition to its role in the endogenous synthesis of cysteine, cystathionine gamma-lyase (CGL) is a major physiological source of the vasorelaxant hydrogen sulfide. Cgl null mice are potentially useful for studying the influence of this compound upon vascular tone and endothelial function. Here, we confirm a previous report that female Cgl null mice exhibit an approximate 45-fold increase in plasma total homocysteine compared to wild type controls. This level of homocysteine is approximately 3.5-fold higher than that observed in male Cgl null mice and is essentially equivalent to that observed in mouse models of cystathionine beta synthase deficient homocystinuria. Cgl null mice of both sexes exhibited decreased expression of methylenetetrahydrofolate reductase and cysteinesulfinate decarboxylase compared to WT controls. Female Cgl null mice exhibited a sex-specific induction of betaine homocysteine S-methyltransferase and methionine adenosyltransferase 1, alpha and a 70% decrease in methionine synthase expression accompanied by significantly decreased plasma methionine. Decreased plasma cysteine levels in female Cgl null mice were associated with sex-specific dysregulation of cysteine dioxygenase expression. Comparative histological assessment between cystathionine beta-synthase and Cgl null mice indicated that the therapeutic potential of cystathionine against liver injury merits possible further investigation. Collectively, our data demonstrates the importance of considering sex when investigating mouse models of inborn errors of metabolism and indicate that while female Cgl null mice are of questionable utility for studying the physiological role of hydrogen sulfide, they could serve as a useful model for studying the consequences of methionine synthase deficiency and the methylfolate trap. PMID:26276101

  20. Sex-specific dysregulation of cysteine oxidation and the methionine and folate cycles in female cystathionine gamma-lyase null mice: a serendipitous model of the methylfolate trap

    PubMed Central

    Jiang, Hua; Hurt, K. Joseph; Breen, Kelsey; Stabler, Sally P.; Allen, Robert H.; Orlicky, David J.; Maclean, Kenneth N.

    2015-01-01

    ABSTRACT In addition to its role in the endogenous synthesis of cysteine, cystathionine gamma-lyase (CGL) is a major physiological source of the vasorelaxant hydrogen sulfide. Cgl null mice are potentially useful for studying the influence of this compound upon vascular tone and endothelial function. Here, we confirm a previous report that female Cgl null mice exhibit an approximate 45-fold increase in plasma total homocysteine compared to wild type controls. This level of homocysteine is approximately 3.5-fold higher than that observed in male Cgl null mice and is essentially equivalent to that observed in mouse models of cystathionine beta synthase deficient homocystinuria. Cgl null mice of both sexes exhibited decreased expression of methylenetetrahydrofolate reductase and cysteinesulfinate decarboxylase compared to WT controls. Female Cgl null mice exhibited a sex-specific induction of betaine homocysteine S-methyltransferase and methionine adenosyltransferase 1, alpha and a 70% decrease in methionine synthase expression accompanied by significantly decreased plasma methionine. Decreased plasma cysteine levels in female Cgl null mice were associated with sex-specific dysregulation of cysteine dioxygenase expression. Comparative histological assessment between cystathionine beta-synthase and Cgl null mice indicated that the therapeutic potential of cystathionine against liver injury merits possible further investigation. Collectively, our data demonstrates the importance of considering sex when investigating mouse models of inborn errors of metabolism and indicate that while female Cgl null mice are of questionable utility for studying the physiological role of hydrogen sulfide, they could serve as a useful model for studying the consequences of methionine synthase deficiency and the methylfolate trap. PMID:26276101

  1. Wanted and Wanting: Antibody Against Methionine Sulfoxide

    PubMed Central

    Wehr, Nancy B.; Levine, Rodney L.

    2012-01-01

    Methionine residues in protein can be oxidized by reactive oxygen or nitrogen species to generate methionine sulfoxide. This covalent modification has been implicated in processes ranging from normal cell signaling to neurodegenerative diseases. A general method for detecting methionine sulfoxide in proteins would be of great value in studying these processes, but development of a chemical or immunochemical technique has been elusive. Recently, an antiserum raised against an oxidized corn protein, DZS18, was reported to be specific for methionine sulfoxide in proteins (Arch. Biochem. Biophys. 485:35–40 2009.) However, data included in that report indicate that the antiserum is not specific. Utilizing well-characterized native and methionine-oxidized glutamine synthetase and aprotinin, we confirm that the antiserum does not possess specificity for methionine sulfoxide. PMID:22771451

  2. A dodecylamine derivative of cyanocobalamin potently inhibits the activities of cobalamin-dependent methylmalonyl-CoA mutase and methionine synthase of Caenorhabditis elegans

    PubMed Central

    Bito, Tomohiro; Yabuta, Yukinori; Ichiyanagi, Tsuyoshi; Kawano, Tsuyoshi; Watanabe, Fumio

    2014-01-01

    In this study, we showed that cyanocobalamin dodecylamine, a ribose 5′-carbamate derivative of cyanocobalamin, was absorbed and accumulated to significant levels by Caenorhabditis elegans and was not further metabolized. The levels of methylmalonic acid and homocysteine, which serve as indicators of cobalamin deficiency, were significantly increased in C. elegans treated with the dodecylamine derivative, indicating severe cobalamin deficiency. Kinetic studies show that the affinity of the cyanocobalamin dodecylamine derivative was greater for two cobalamin-dependent enzymes, methylmalonyl-CoA mutase and methionine synthase, compared with their respective coenzymes, suggesting that the dodecylamine derivative inactivated these enzymes. The dodecylamine derivative did not affect the levels of mRNAs encoding these enzymes or those of other proteins involved in intercellular cobalamin metabolism, including methylmalonyl-CoA mutase (mmcm-1), methylmalonic acidemia cobalamin A complementation group (mmaa-1), methylmalonic aciduria cblC type (cblc-1), and methionine synthase reductase (mtrr-1). In contrast, the level of the mRNAs encoding cob(I)alamin adenosyltransferase (mmab-1) was increased significantly and identical to that of cobalamin-deficient C. elegans. These results indicate that the cyanocobalamin-dodecylamine derivative acts as a potent inhibitor of cobalamin-dependent enzymes and induces severe cobalamin deficiency in C. elegans. PMID:25161880

  3. Efficiency of methionine retention in ducks.

    PubMed

    Adeola, Olayiwola

    2007-03-01

    The accretion of methionine and protein as a function of methionine intake was assessed in growing ducks between 22 and 42 d post-hatching. Four graded doses of dl-methionine at 0, 0 x 5, 1 x 0 or 1 x 5 g/kg diet were added to a methionine-limiting basal diet and fed to four replicate groups of four ducks each. The growth and efficiency of food use for growth increased linearly (P<0 x 05) as a function of methionine intake. The accretion of body protein increased (P<0 x 001) from 87 x 5 to 182 x 2 g, and that of methionine from 1616 to 3125 mg, over the 21 d period as dietary methionine increased. The accretion rate of methionine in the body (y, mg/d) as a function of methionine intake (x, mg/d) of ducks fed diets containing supplemental methionine at 0, 0 x 5, 1 x 0 or 1 x 5 g/kg diet from day 22 to day 42 post-hatching gave the regression equation: y=-148 x 86 (se 32 x 558)+0 x 312 (se 0 x 0384)X, r2=0 x 8253. For protein accretion rate in the body (y, mg/d) as a function of methionine intake (x, mg/d), the regression equation was: y= -9782 (se 2204)+19 x 505 (se 2 x 5994)x, r2=0 x 8009. There was a linear relationship between methionine (y, mg/d) and protein (x, mg/d) accretion in ducks that was described by the equation y=12 x 757 (se 7 x 4019)+0 x 01 525 (se 0 x 00 107)x, r2=0 x 9355. The results of these studies suggest a constant utilisation of methionine over the range 2 x 4-3 x 9 g digestible methionine/kg diet, with an efficiency of 31 %. Furthermore, the results suggest a quantitative relationship of 15 mg methionine for every gram of protein accretion. PMID:17313709

  4. Methionine production--a critical review.

    PubMed

    Willke, Thomas

    2014-12-01

    This paper presents an updated critical review about several attempts to contribute methionine (Met) to the world market with an emphasis on fermentation processes, especially from natural biological sources. Analytical methods for the determination of methionine are reviewed as well as applications in feed, food, pharmacy, and medicine. Fermentation studies published within the last five decades are elucidated critically, mainly with respect to the sulfur balance, substrate yield, and the analytical validity. From all the published fermentation data, it can be concluded that up to now no more than 5 g/L methionine are achievable without using genetically modified organisms (GMOs). The highest L-methionine concentration from natural sources reached so far amounts to 35 g/L and is published as a patent using a GMO of Escherichia coli. The review closes with a comprehensive overview of the role and activities of global methionine manufacturers. Some current market data is also presented. PMID:25381187

  5. Increasing levels of dietary crystalline methionine affect plasma methionine profiles, ammonia excretion, and the expression of genes related to the hepatic intermediary metabolism in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Rolland, Marine; Skov, Peter V; Larsen, Bodil K; Holm, Jørgen; Gómez-Requeni, Pedro; Dalsgaard, Johanne

    2016-08-01

    Strictly carnivorous fish with high requirements for dietary protein, such as rainbow trout (Oncorhynchus mykiss) are interesting models for studying the role of amino acids as key regulators of intermediary metabolism. Methionine is an essential amino acid for rainbow trout, and works as a signalling factor in different metabolic pathways. The study investigated the effect of increasing dietary methionine intake on the intermediary metabolism in the liver of juvenile rainbow trout. For this purpose, five diets were formulated with increasing methionine levels from 0.60 to 1.29% dry matter. The diets were fed in excess for six weeks before three sampling campaigns carried out successively to elucidate (i) the hepatic expression of selected genes involved in lipid, glucose and amino acid metabolism; (ii) the postprandial ammonia excretion; and (iii) the postprandial plasma methionine concentrations. The transcript levels of enzymes involved in lipid metabolism (fatty acid synthase, glucose 6 phosphate dehydrogenase and carnitine palmitoyl transferase 1 a), gluconeogenesis (fructose-1,6-biphosphatase) and amino acid catabolism (alanine amino transferase and glutamate dehydrogenase) were significantly affected by the increase in dietary methionine. Changes in gene expression reflected to some extent the decrease in ammonia excretion (P=0.022) and in the hepatosomatic index (HSI; P<0.001) when dietary methionine increased. Postprandial plasma methionine concentrations correlated positively with the dietary level (P<0.001) at the different sampling points. The study shows that the expression of several genes related to the hepatic intermediary metabolism in rainbow trout responded in a dose-dependent manner to increasing levels of dietary methionine. PMID:27105833

  6. Methionine metabolism in Yucatan miniature swine.

    PubMed

    McBreairty, Laura E

    2016-06-01

    Methionine is an essential amino acid which when not incorporated into protein, can be converted to S-adenosylmethionine, the universal methyl donor in over 200 transmethylation reactions, which include creatine and phosphatidylcholine (PC) synthesis, as well as deoxyribonucleic acid (DNA) methylation. Following transmethylation, homocysteine is formed, which can be converted to cysteine via transsulfuration or remethylated to methionine by receiving a methyl group from folate or betaine. Changes to methyl group availability in utero can lead to permanent changes in epigenetic patterns of DNA methylation, which has been implicated in "fetal programming", a phenomenon associated with poor nutrition during fetal development that results in low birth weight and disease in later life. It has been shown that programming can also occur in the neonate. Our global objective was to understand how the variability of nutrients involved in methionine metabolism can affect methionine and methyl group availability. We hypothesize that nutrients that converge on methionine metabolism can affect methionine availability for its various functions. In this thesis, we used intrauterine growth restricted (IUGR) piglets to investigate whether a global nutritional insult in utero can lead to a perturbed methionine metabolism. Our results demonstrate that IUGR piglets have a lower capacity to dispose of homocysteine via both transsulfuration and remethylation pathways, as well as a lower incorporation of methyl groups into PC. The second objective of this thesis was to determine whether variation in methionine supply and demand can affect methionine availability. We demonstrated that stimulating either acute or chronic creatine synthesis leads to lower methyl incorporation into protein and PC in pigs. Furthermore, when methionine is limiting, supplementation with either folate or betaine leads to higher methionine availability for protein synthesis. Finally, because creatine is

  7. Immunomodulating effects of methionine enkephalin.

    PubMed

    Li, X Y

    1998-01-01

    Methionine enkephalin (Met-Enk), the endogenous neuropeptide, is suggested to be involved in the regulatory loop between immune and neuroendocrine systems. Our studies showed that Met-Enk over a wide range of concentrations increased interleukin-1 (IL-1) production from mouse peritoneal macrophages induced by lipopolysaccharides (LPS) and naloxone did not block the enhancing effect. Met-Enk promoted the proliferation of mouse splenocyte and the production of IL-2 and IL-6 in a dose-dependent manner. The up-regulating effects of IL-2 and IL-6 not only augmented their mRNA transcription but also increased their stability. Thus Met-Enk appears to be an important immunomodulatory signaling molecule to exert regulatory actions concerned with the expressing of pre-inflammatory cytokines. PMID:10375747

  8. Metabolism of 5-methylthioribose to methionine

    SciTech Connect

    Miyazaki, J.H.; Yang, S.F.

    1987-06-01

    During ethylene biosynthesis, the H/sub 3/CS-group of S-adenosylmethionine is released as 5'-methylthioadenosine, which is recycled to methionine via 5-methylthioribose (MTR). In mungbean hypocotyls and cell-free extracts of avocado, (/sup 14/C)MTR was converted into labeled methionine via 2-keto-4-methylthiobutyric acid (KMB) and 2-hydroxy-4-methylthiobutyric acid (HMB), as intermediates. Incubation of (ribose-U-/sup 14/C)MTR with avocado extract resulted in the production of (/sup 14/C)formate, indicating the conversion of MTR to KMB involves a loss of formate, presumably from C-1 of MTR. Tracer studies showed that KMB was converted readily in vivo and in vitro to methionine, while HMB was converted much more slowly. The conversion of KMB to methionine by dialyzed avocado extract requires an amino donor. Among several potential donors examined, L-glutamine was the most efficient. Anaerobiosis inhibited only partially the oxidation of MTR to formate, KMB/HMB, and methionine by avocado extract. The role of O/sub 2/ in the conversion of MTR to methionine is discussed.

  9. l-Methionine Placental Uptake

    PubMed Central

    Araújo, João R.; Correia-Branco, Ana; Ramalho, Carla; Gonçalves, Pedro; Pinho, Maria J.; Keating, Elisa

    2013-01-01

    Our aim was to investigate the influence of gestational diabetes mellitus (GDM) and GDM-associated conditions upon the placental uptake of 14C-l-methionine (14C-l-Met). The 14C-l-Met uptake by human trophoblasts (TBs) obtained from normal pregnancies (normal trophoblast [NTB] cells) is mainly system l-type amino acid transporter 1 (LAT1 [L])-mediated, although a small contribution of system y+LAT2 is also present. Comparison of 14C-l-Met uptake by NTB and by human TBs obtained from GDM pregnancies (diabetic trophoblast [DTB] cells) reveals similar kinetics, but a contribution of systems A, LAT2, and b0+ and a greater contribution of system y+LAT1 appears to exist in DTB cells. Short-term exposure to insulin and long-term exposure to high glucose, tumor necrosis factor-α, and leptin decrease 14C-l-Met uptake in a human TB (Bewo) cell line. The effect of leptin was dependent upon phosphoinositide 3-kinase, extracellular-signal-regulated kinase 1/2 (ERK/MEK 1/2), and p38 mitogen-activated protein kinase. In conclusion, GDM does not quantitatively alter 14C-l-Met placental uptake, although it changes the nature of transporters involved in that process. PMID:23653387

  10. Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins

    PubMed Central

    2012-01-01

    Background Methionine (Met) residues in proteins can be readily oxidized by reactive oxygen species to Met sulfoxide (MetO). MetO is a promising physiological marker of oxidative stress and its inefficient repair by MetO reductases (Msrs) has been linked to neurodegeneration and aging. Conventional methods of assaying MetO formation and reduction rely on chromatographic or mass spectrometry procedures, but the use of Met-rich proteins (MRPs) may offer a more streamlined alternative. Results We carried out a computational search of completely sequenced genomes for MRPs deficient in cysteine (Cys) residues and identified several proteins containing 20% or more Met residues. We used these MRPs to examine Met oxidation and MetO reduction by in-gel shift assays and immunoblot assays with antibodies generated against various oxidized MRPs. The oxidation of Cys-free MRPs by hydrogen peroxide could be conveniently monitored by SDS-PAGE and was specific for Met, as evidenced by quantitative reduction of these proteins with Msrs in DTT- and thioredoxin-dependent assays. We found that hypochlorite was especially efficient in oxidizing MRPs. Finally, we further developed a procedure wherein antibodies made against oxidized MRPs were isolated on affinity resins containing same or other oxidized or reduced MRPs. This procedure yielded reagents specific for MetO in these proteins, but proved to be ineffective in developing antibodies with broad MetO specificity. Conclusion Our data show that MRPs provide a convenient tool for characterization of Met oxidation, MetO reduction and Msr activities, and could be used for various aspects of redox biology involving reversible Met oxidation. PMID:23088625

  11. The dynamics of methionine supply and demand during early development.

    PubMed

    McBreairty, Laura E; Bertolo, Robert F

    2016-06-01

    Methionine is an indispensable amino acid that, when not incorporated into protein, is converted into the methyl donor S-adenosylmethionine as entry into the methionine cycle. Following transmethylation, homocysteine is either remethylated to reform methionine or irreversibly trans-sulfurated to form cysteine. Methionine flux to transmethylation and to protein synthesis are both high in the neonate and this review focuses on the dynamics of methionine supply and demand during early development, when growth requires expansion of pools of protein and transmethylation products such as creatine and phosphatidylcholine (PC). The nutrients folate and betaine (derived from choline) donate a methyl group during remethylation, providing an endogenous supply of methionine to meet the methionine demand. During early development, variability in the dietary supply of these methionine cycle-related nutrients can affect both the supply and the demand of methionine. For example, a greater need for creatine synthesis can limit methionine availability for protein and PC synthesis, whereas increased availability of remethylation nutrients can increase protein synthesis if dietary methionine is limiting. Moreover, changes to methyl group availability early in life can lead to permanent changes in epigenetic patterns of DNA methylation, which have been implicated in the early origins of adult disease phenomena. This review aims to summarize how changes in methyl supply and demand can affect the availability of methionine for various functions and highlights the importance of variability in methionine-related nutrients in the infant diet. PMID:27177124

  12. Dissimilation of Methionine by Achromobacter starkeyi1

    PubMed Central

    Ruiz-Herrera, José; Starkey, Robert L.

    1970-01-01

    Methionine was decomposed by some bacteria which were isolated from soil. The sulfur of the methionine was liberated as methanethiol, and part of this became oxidized to dimethyl disulfide. Detailed studies with one of these cultures, Achromobacter starkeyi, indicated that the first step in methionine decomposition was its oxidadative deamination to α-keto-γ-methyl mercaptobutyrate by a constitutive amino acid oxidase. The following steps were carried out by inducible enzymes, the synthesis of which was inhibited by chloramphenicol. α-Keto-γ-methyl mercaptobutyrate was split producing methanethiol and α-keto butyrate which was oxidized to propionate. The metabolism of propionate was similar to that described for animal tissues; the propionate was carboxylated to succinate via methyl malonyl coenzyme A, and the succinate was metabolized through the Krebs cycle. PMID:16559105

  13. Methionine kinetics and first pass disappearance in healthy adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methionine, an indispensable amino acid serves as precursor for important substrates. There are no data on methionine first-pass disappearance (SU) and whole body kinetics in healthy children receiving methionine by the oral or intravenous route. We studied four healthy adolescents, (age 15.0 +/- 1....

  14. 21 CFR 582.5475 - Methionine.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methionine. 582.5475 Section 582.5475 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  15. 21 CFR 582.5475 - Methionine.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methionine. 582.5475 Section 582.5475 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary...

  16. Enzymatic reduction of protein-bound methionine sulfoxide.

    PubMed Central

    Brot, N; Weissbach, L; Werth, J; Weissbach, H

    1981-01-01

    An enzyme that catalyzes the reduction of methionine sulfoxide residues in ribosomal protein L12 has been partially purified from Escherichia coli extracts. Methionine sulfoxide present in oxidize [Met]enkephalin is also reduced by the purified enzyme. The enzyme is different from a previously reported E. coli enzyme that catalyzes the reduction of methionine sulfoxide to methionine [Ejiri, S. I., Weissbach, H. & Brot, N. (1980) Anal. Biochem. 102, 393--398]. Extracts of rat tissues, Euglena gracilis, Tetrahymena pyriformis, HeLa cells, and spinach also can catalyze the reduction of methionine sulfoxide residues in protein. PMID:7017726

  17. Factors influencing methionine toxicity in young bobwhite quail

    USGS Publications Warehouse

    Serafin, J.A.

    1981-01-01

    Young Bobwhite quail (Colinus virginianus) were fed low and adequate protein purified diets with and without excess methionine to evaluate factors affecting methionine toxicity. Growth of quail fed an adequate protein (27%) diet, without supplemental glycine, was depressed by 1.75% and 2.25% excess methionine. Supplemental glycine (.3%) alleviated growth depression caused by 2.25% excess methionine. Quail fed 1.75% and 2.25% excess methionine developed signs of toxicity characterized by weakness, a lowered, outstretched neck when moving, and ataxia. In addition, quail would fall on their sides when disturbed and spin with their heads retracted. These conditions were transient in nature. Growth of quail fed a low protein (18.9%) diet was depressed by 1% and 1.5% excess methionine and DL-homocystine. Quail fed 1% and 1.5% excess methionine in this diet also developed signs of toxicity, the incidence of which was greater and the duration longer than occurred with quail fed adequate protein. Supplementing a low protein (20.15%) diet with .3% or .6% glycine or threonine or a combination of these amino acids did not alleviate growth depression caused by 1.5% excess methionine; however, 2% and 3% supplemental glycine were somewhat effective. Supplements of glycine (2%, 3%) and threonine (1%) completely reversed growth depression from 1% excess methionine but did not influence growth of controls, indicating that both amino acids counteract methionine toxicity. Both glycine and threonine alone improved growth by about the same extent in diets with 1% or 1.5% excess methionine; however, these amino acids alleviated less than 30% of the growth depression resulting from 1.5% excess methionine. The effectiveness of glycine in alleviating methionine toxicity in a low protein diet was decreased, and hemoglobin levels were depressed with 1.5% excess methionine compared to less amounts.

  18. Methionine dependency of cultured human lymphocytes.

    PubMed

    Hall, C A; Begley, J A; Chu, R C

    1986-06-01

    Human peripheral blood lymphocytes stimulated with phytohemagglutinin and a lymphocyte model consisting of the RPMI 6410 cell, a human virus-transformed B cell, required added methionine (Met) for growth of the cultures. This failure to meet all needs for Met via endogenous synthesis, which is characteristic of oncogenic transformation, occurred even in the presence of adequate homocysteine, methylfolate (5-CH3-H4PteGlu) and cobalamin (Cbl)-dependent methionine synthetase activity. Folinic acid (5-CHO-H4PteGlu), which provides available folate independently of Cbl, improved growth only slightly in the absence of Met. Free Cbl at 222 nM, an amount great enough to alter other intracellular events, failed to increase growth in the absence of Met, but 0.22 nM Cbl bound to transcobalamin II did, however, enhance growth. PMID:3703873

  19. Methionine restriction and life-span control.

    PubMed

    Lee, Byung Cheon; Kaya, Alaattin; Gladyshev, Vadim N

    2016-01-01

    Dietary restriction (DR) without malnutrition is associated with longevity in various organisms. However, it has also been shown that reduced calorie intake is often ineffective in extending life span. Selecting optimal dietary regimens for DR studies is complicated, as the same regimen may lead to different outcomes depending on genotype and environmental factors. Recent studies suggested that interventions such as moderate protein restriction with or without adequate nutrition (e.g., particular amino acids or carbohydrates) may have additional beneficial effects mediated by certain metabolic and hormonal factors implicated in the biology of aging, regardless of total calorie intake. In particular, it was shown that restriction of a single amino acid, methionine, can mimic the effects of DR and extend life span in various model organisms. We discuss the beneficial effects of a methionine-restricted diet, the molecular pathways involved, and the use of this regimen in longevity interventions. PMID:26663138

  20. Experimental and theoretical proton affinities of methionine, methionine sulfoxide and their N- and C-terminal derivatives

    NASA Astrophysics Data System (ADS)

    Lioe, Hadi; O'Hair, Richard A. J.; Gronert, Scott; Austin, Allen; Reid, Gavin E.

    2007-11-01

    The proton affinities of methionine, methionine sulfoxide and their derivatives (methionine methyl ester, methionine sulfoxide methyl ester, methionine methyl amide, methionine sulfoxide methyl amide, N-acetyl methionine, N-acetyl methionine sulfoxide, N-acetyl methionine methyl ester, N-acetyl methionine sulfoxide methyl ester, N-acetyl methionine methyl amide and N-acetyl methionine sulfoxide methyl amide) were experimentally determined using the kinetic method, in which proton bound dimers formed via electrospray ionization (ESI) were subjected to collision induced dissociation (CID) in a triple quadrupole mass spectrometer. In addition, theoretical calculations carried out at the MP2/6-311 + G(2d,p)//B3LYP/6-31 + G(d,p) level of theory to determine the global minima of the neutral and protonated species of all derivatives studied, were used to predict theoretical proton affinities. The density function theory calculations not only support the experimental proton affinities, but also provide structural insights into the types of hydrogen bonding that stabilize the neutral and protonated methionine or methionine sulfoxide derivatives. Comparison of the proton affinities of the various methionine and methionine sulfoxide derivatives reveals that: (i) oxidation of methionine derivatives to methionine sulfoxide derivatives results in an increase in proton affinity due to higher intrinsic proton affinity and an increase in the ring size formed through charge complexation of the sulfoxide group, which allows more efficient hydrogen bonding compared to the sulfide group; (ii) C-terminal modification by methyl esterification or methyl amidation increases the proton affinity in the order of methyl amide > methyl ester > carboxylic acid due to improved charge stabilization; (iii) N-terminal modification by N-acetylation decreases proton affinity of the derivatives due to lower intrinsic proton affinity of the N-acetyl group as well as due to stabilization of the attached

  1. Evaluation of a shorter methionine loading test.

    PubMed

    de Jonge, Robert; Griffioen, Pieter H; van Zelst, Bertrand; Brouns, R Montserrate; Visser, Willy; Lindemans, Jan

    2004-01-01

    We validated whether a shorter methionine loading test is as accurate as the original 6-h test in identifying hyperhomocysteinemic patients and investigated determinants of fasting and post-load homocysteine concentration. Plasma homocysteine was determined in EDTA-blood from women with a history of pre-eclampsia (n=106) after 12 h fasting and 3 and 6 h after an oral methionine load (0.1 g/kg body weight). The 677C>T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene, vitamin B6, vitamin B12, folate and creatinine were measured as determinants of homocysteine concentration. Good correlation and agreement between 3-h and 6-h plasma concentration of post-load (r=0.93, Kendall's tau-b=0.85) and delta (post-load minus the fasting value; r=0.90, Kendall's tau-b=0.79) homocysteine was observed and gross misclassification did not occur after division of 3-h and 6-h homocysteine scores into quartiles. Multiple linear regression revealed MTHFR 677 TT (p=0.01), folate (p=0.04) and vitamin B12 (p=0.06) as determinants of fasting homocysteine concentration; only MTHFR 677TT was related to 3-h (p=0.04) and 6-h (p=0.004) post-load homocysteine concentration. The MTHFR 677TT genotype resulted in >30% higher fasting and 3-h and 6-h post-load homocysteine concentrations compared to the wild-type CC genotype. This study shows that the 3-h methionine loading test is as good as the 6-h methionine loading test in identifying hyperhomocysteinemic patients. Furthermore, remethylation parameters (MTHFR 677C>T) strongly affect both fasting and post-load homocysteine. PMID:15497468

  2. Cobalamin inactivation decreases purine and methionine synthesis in cultured lymphoblasts.

    PubMed

    Boss, G R

    1985-07-01

    The megaloblastic anemia of cobalamin deficiency appears secondary to decreased methionine synthetase activity. Decreased activity of this enzyme should cause 5-methyltetrahydrofolate to accumulate intracellularly, and consequently, decrease purine and DNA synthesis; this is the basis of the "methylfolate trap" hypothesis of cobalamin deficiency. However, only some of the clinical and biochemical manifestations of cobalamin deficiency can be explained by the methylfolate trap. We investigated cobalamin deficiency by treating cultured human lymphoblasts with N2O since N2O inhibits methionine synthetase activity by inactivating cobalamin. We found that 4 h of N2O exposure reduced rates of methionine synthesis by 89%. Rates of purine synthesis were not significantly reduced by N2O when folate and methionine were present at 100 microM in the medium; however, at the physiologic methionine concentration of 10 microM, N2O decreased rates of purine synthesis by 33 and 57% in the presence of 100 microM folate and in the absence of folate, respectively. The dependency of rates of purine synthesis on methionine availability would be expected in cells with restricted methionine synthetic capacity because methionine is the immediate precursor of S-adenosylmethionine, a potent inhibitor of 5-methyltetrahydrofolate synthesis; methionine serves as a source of formate for purine synthesis; and rates of purine synthesis are dependent on the intracellular availability of essential amino acids. We conclude that cobalamin inactivation decreases purine synthesis by both methylfolate trapping and reduction of intracellular methionine synthesis. PMID:2862163

  3. N-Terminal methionine processing by the zinc-activated Plasmodium falciparum methionine aminopeptidase 1b.

    PubMed

    Calcagno, Sarah; Klein, Christian D

    2016-08-01

    The methionine aminopeptidase 1b from Plasmodium falciparum (PfMetAP 1b) was cloned, expressed in Escherichia coli and characterized. Surprisingly, and in contrast to other methionine aminopeptidases (MetAPs) that require heavy-metal cofactors such as cobalt, the enzyme is reliably activated by zinc ions. Immobilization of the enzyme is possible by His-tag metal chelation to iminodiacetic acid-agarose and by covalent binding to chloroacetamido-hexyl-agarose. The covalently immobilized enzyme shows long-term stability, allowing a continuous, heterogenous processing of N-terminal methionines, for example, in recombinant proteins. Activation by zinc, instead of cobalt as for other MetAPs, avoids the introduction of heavy metals with toxicological liabilities and oxidative potential into biotechnological processes. The PfMetAP 1b therefore represents a useful tool for the enzymatic, posttranslational processing of recombinant proteins. PMID:27023914

  4. Methionine sulphoxide reductases revisited: free methionine as a primary target of H₂O₂stress in auxotrophic fission yeast.

    PubMed

    García-Santamarina, Sarela; Boronat, Susanna; Ayté, José; Hidalgo, Elena

    2013-12-01

    Amino acid methionine can suffer reversible oxidation to sulphoxide and further irreversible over-oxidation to methionine sulphone. As part of the cellular antioxidant scavenging activities are the methionine sulphoxide reductases (Msrs), with a reported role in methionine sulphoxide reduction, both free and in proteins. Three families of Msrs have been described, but the fission yeast genome only includes one representative for two of these families: MsrA/Mxr1 and MsrB/Mxr2. We have investigated their role in methionine reduction and H2 O2 sensitivity. We show here that MsrA/Mxr1 is able to reduce free oxidized methionine. Cells lacking each one of the genes are not significantly sensitive to different types of oxidative stresses, neither display altered life span. However, only when deletion of msrA/mxr1 is combined with deletion of met6, which confers methionine auxotrophy, the survival upon H2 O2 stress decreases by 100-fold. In fact, cells lacking only Met6, and which therefore require addition of methionine to the growth media, are extremely sensitive to H2 O2 stress. These and other evidences suggest that oxidation of free methionine is a primary target of peroxide toxicity in cells devoid of methionine biosynthetic capacity, and that an important role of Msrs is to recycle this oxidized free amino acid. PMID:24118096

  5. A Methionine Residue Promotes Hyperoxidation of the Catalytic Cysteine of Mouse Methionine Sulfoxide Reductase A.

    PubMed

    Kim, Geumsoo; Levine, Rodney L

    2016-06-28

    Methionine sulfoxide reductase A (msrA) reduces methionine sulfoxide in proteins back to methionine. Its catalytic cysteine (Cys72-SH) has a low pKa that facilitates oxidation by methionine sulfoxide to cysteine sulfenic acid. If the catalytic cycle proceeds efficiently, the sulfenic acid is reduced back to cysteine at the expense of thioredoxin. However, the sulfenic acid is vulnerable to "irreversible" oxidation to cysteine sulfinic acid that inactivates msrA (hyperoxidation). We observed that human msrA is resistant to hyperoxidation while mouse msrA is readily hyperoxidized by micromolar concentrations of hydrogen peroxide. We investigated the basis of this difference in susceptibility to hyperoxidation and established that it is controlled by the presence or absence of a Met residue in the carboxyl-terminal domain of the enzyme, Met229. This residue is Val in human msrA, and when it was mutated to Met, human msrA became sensitive to hyperoxidation. Conversely, mouse msrA was rendered insensitive to hyperoxidation when Met229 was mutated to Val or one of five other residues. Positioning of the methionine at residue 229 is not critical, as hyperoxidation occurred as long as the methionine was located within the group of 14 carboxyl-terminal residues. The carboxyl domain of msrA is known to be flexible and to have access to the active site, and Met residues are known to form stable, noncovalent bonds with aromatic residues through interaction of the sulfur atom with the aromatic ring. We propose that Met229 forms such a bond with Trp74 at the active site, preventing formation of a protective sulfenylamide with Cys72 sulfenic acid. As a consequence, the sulfenic acid is available for facile, irreversible oxidation to cysteine sulfinic acid. PMID:27259041

  6. Comparison of the effects of seleno-l-methionine, seleno-dl-methionine, and selenized yeast on reproduction of mallards

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.

    1996-01-01

    The toxicities of seleno-L-methionine, seleno-DL-methionine, and selenized yeast were compared. Ten pairs of mallards were fed a control diet and 15 pairs were fed diets containing 10 ppm selenium as seleno-DL-methionine, seleno-L-methionine, or selenized yeast. Hatching of fertile eggs was significantly lower for females fed 10 ppm selenium as seleno-DL-methionine (7.6%) and seleno-L-methionine (6.4%) than for controls (41.3%). Survival of ducklings was lower when their parents had been fed 10 ppm selenium as seleno-L-methionine (20.0%) than for controls (98.4%). The number of 6-day-old ducklings produced per female was significantly lower for mallards fed 10 ppm selenium as seleno-DL-methionine (0.47) or selenized yeast (2.67) than for controls (6.10), and was significantly lower for mallards fed seleno-L-methionine (0.13) than for mallards fed selenized yeast. The eighth eggs of females fed the DL or L forms of selenomethionine contained means of 9.2 and 8.9 ppm selenium, wet weight; these means were higher than the mean (6.6 ppm) for females fed selenized yeast. Among embryos that died at 7 days of age or older, the percentage of embryos that were deformed was 1.3% for controls, 24.6% for seleno-DL-methionine, 28.2% for seleno-L-methionine, and 11.0% for selenized yeast. The results suggested that seleno-DL-methionine and seleno-L-methionine were of similar toxicity and were both more toxic than selenium from selenized yeast.

  7. Comparison of methionine sources around requirement levels using a methionine efficacy method in 0 to 28 day old broilers.

    PubMed

    Agostini, P S; Dalibard, P; Mercier, Y; Van der Aar, P; Van der Klis, J D

    2016-03-01

    The addition of methionine in the poultry feed industry is still facing the relative efficacy dilemma between DL-methionine (DLM) and hydroxy-methionine (HMTBA). The aim of this study was to compare the effect of dietary DLM and HMTBA on broiler performance at different levels of total sulfur amino acids (TSAA). The treatments consisted of a basal diet without methionine addition, and 4 increasing methionine doses for both sources resulting in TSAA/Lysine ratios from 0.62 to 0.73 in the starter phase and 0.59 to 0.82 in the grower phase. The comparison of product performance was performed by three-way ANOVA analysis and by methionine efficacy calculation as an alternative method of comparison. Growth results obtained during the starter phase with the different methionine supplementations did not show significant growth responses to TSAA levels, indicating a lower methionine requirement in the starter phase than currently assumed. However, a significant methionine dose effect was obtained for the period 10 to 28 day of age and for the entire growth period of 0 to 28 day of age. Excepting a significant gender effect, the statistical analysis did not allow for the discrimination of methionine sources, and no interaction between source and dose level was observed up to 28 days of age. A significant interaction between source and dose level was observed for methionine efficacy for the grower phase, and the total growth period showed better HMTBA efficacy at higher TSAA value. The exponential model fitted to each methionine source for body weight response depending on methionine intake or for feed conversion ratio (FCR) depending on methionine doses did not allow the methionine sources to be distinguished. Altogether, these results conclude that methionine sources lead to similar performances response when compared at TSAA values around the broiler requirement level. These results also showed that at TSAA values above requirement, HMTBA had a better methionine efficacy

  8. Methionine-to-Cysteine Recycling in Klebsiella aerogenes

    PubMed Central

    Seiflein, Thomas A.; Lawrence, Jeffrey G.

    2001-01-01

    In the enteric bacteria Escherichia coli and Salmonella enterica, sulfate is reduced to sulfide and assimilated into the amino acid cysteine; in turn, cysteine provides the sulfur atom for other sulfur-bearing molecules in the cell, including methionine. These organisms cannot use methionine as a sole source of sulfur. Here we report that this constraint is not shared by many other enteric bacteria, which can use either cysteine or methionine as the sole source of sulfur. The enteric bacterium Klebsiella aerogenes appears to use at least two pathways to allow the reduced sulfur of methionine to be recycled into cysteine. In addition, the ability to recycle methionine on solid media, where cys mutants cannot use methionine as a sulfur source, appears to be different from that in liquid media, where they can. One pathway likely uses a cystathionine intermediate to convert homocysteine to cysteine and is induced under conditions of sulfur starvation, which is likely sensed by low levels of the sulfate reduction intermediate adenosine-5′-phosphosulfate. The CysB regulatory proteins appear to control activation of this pathway. A second pathway may use a methanesulfonate intermediate to convert methionine-derived methanethiol to sulfite. While the transsulfurylation pathway may be directed to recovery of methionine, the methanethiol pathway likely represents a general salvage mechanism for recovery of alkane sulfide and alkane sulfonates. Therefore, the relatively distinct biosyntheses of cysteine and methionine in E. coli and Salmonella appear to be more intertwined in Klebsiella. PMID:11114934

  9. A 4-week toxicity study of methionine in male rats.

    PubMed

    Chin, Keigi; Toue, Sakino; Kawamata, Yasuko; Watanabe, Akiko; Miwa, Tadashi; Smriga, Miro; Sakai, Ryosei

    2015-01-01

    To examine 4-week toxicity of l-methionine (methionine), 5-week-old Fisher strain male rats were fed on diets containing 0, 0.1, 0.3, 0.9, 2.7 (w/w) of added methionine. Although no deaths were recorded, the highest dose of methionine (2.7% [w/w] of diet) reduced food intake and significantly suppressed growth rate. Growth suppression was characterized by an increase in hemolysis, splenic, and hepatic accumulation of hemosiderin, hemolytic anemia, and promotion of hematopoiesis. Other changes observed in the highest methionine intake group were a decrease in white blood cell count, thymus atrophy, and histological abnormalities in the adrenal gland and testis. Small, but significant, growth suppression, accompanied by some minor changes in plasma biochemical parameters, was also seen in rats fed on a test diet containing 0.9% (w/w) of additional methionine. Thus, no-observed-adverse-effect-level (NOAEL) and lowest-observed-adverse-effect level (LOAEL) of diet-added methionine were determined at 0.3% and 0.9% (w/w), corresponding to 236 and 705 mg/kg/d body weight, respectively. Since the basal diet contained protein-bound methionine at 0.5% (w/w), NOAEL and LOAEL of total dietary methionine were estimated at 0.8% and 1.4% (w/w) of diet. PMID:25939350

  10. Characteristics of methionine production by an engineered Corynebacterium glutamicum strain.

    PubMed

    Park, Soo-Dong; Lee, Joo-Young; Sim, Soo-Yeon; Kim, Younhee; Lee, Heung-Shick

    2007-07-01

    A methionine-producing strain was derived from a lysine-producing Corynebacterium glutamicum through a process of genetic manipulation in order to assess its potential to synthesize and accumulate methionine during growth. The strain carries a deregulated hom gene (hom(FBR)) to abolish feedback inhibition of homoserine dehydrogenase by threonine and a deletion of the thrB gene (delta thrB) to abolish threonine synthesis. The constructed C. glutamicum MH20-22B/hom(FBR)/delta thrB strain accumulated 2.9 g/l of methionine by batch fermentation and showed resistance to methionine analogue ethionine at concentrations up to 30 mM. The growth of the strain was apparently impaired as a result of the accumulation of methionine biosynthetic intermediate, homocysteine. Production assays also revealed that the accumulation of methionine in the growth medium was transient and declined as the carbon source was depleted. During the period of methionine disappearance, the methionine biosynthetic genes were completely repressed in the engineered strains but not in the parental strain. After all, we have not only successfully constructed a methionine-producing C. glutamicum strain by genetic manipulation, but also revealed cellular constraints in attaining high yield and productivity. PMID:17604670

  11. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  12. Oxidation of methionine residues in proteins of activated human neutrophils.

    PubMed Central

    Fliss, H; Weissbach, H; Brot, N

    1983-01-01

    A simple assay for the detection of 35S-labeled methionine sulfoxide residues in proteins is described. The assay, which is based on the ability of CNBr to react with methionine but not with methionine sulfoxide, requires the prelabeling of cellular proteins with [35S]methionine. The assay was used to study the extent of methionine oxidation in newly synthesized proteins of both activated and quiescent human neutrophils. In cells undergoing a phorbol 12-myristate 13-acetate-induced respiratory burst, about 66% of all methionine residues in newly synthesized proteins were oxidized to the sulfoxide derivative, as compared with 9% in cells not treated with the phorbol ester. In contrast, quantitation of methionine sulfoxide content in the total cellular protein by means of amino acid analysis showed that only 22% of all methionine residues were oxidized in activated cells as compared with 9% in quiescent cells. It is proposed that methionine residues in nascent polypeptide chains are more susceptible to oxidation than those in completed proteins. PMID:6580633

  13. Interference by methionine on valine uptake in Acremonium chrysogenum.

    PubMed Central

    Alonso, M J; Luengo, J M

    1987-01-01

    The incorporation of L-[U-14C]valine into delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), a direct biosynthetic precursor of penicillins and cephalosporins, was studied. When DL-methionine was added to Acremonium chrysogenum culture broths, no labeled ACV was found, while a large amount of radioactive ACV was detected when methionine was not present. DL-Norleucine, a nonsulfur analog of methionine, also inhibited the synthesis of radioactive ACV to some degree. This effect was due to the inhibition of valine transport by methionine and norleucine. PMID:3566258

  14. Regulation of thrombosis and vascular function by protein methionine oxidation

    PubMed Central

    Gu, Sean X.; Stevens, Jeff W.

    2015-01-01

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  15. Identification of Methionine Sulfoxide Diastereomers in Immunoglobulin Gamma Antibodies Using Methionine Sulfoxide Reductase enzymes

    SciTech Connect

    Khor, Hui K.; Jacoby, Michael E.; Squier, Thomas C.; Chu, Grace C.; Chelius, Dirk

    2010-06-01

    During prolonged periods of storage methionines in antibodies and other proteins are known to become oxidized to form methionine sulfoxides and sulfones. While these post-translational modifications are commonly identified by peptide mapping, it is currently problematic to identify the relative abundances of the S- and R-diastereomers of methionine sulfoxide (Met(O)) due to their identical polarities and masses. Accordingly, we have developed a separation methodology for the rapid and quantitative determination of the relative abundances of Met(O) diastereomers. Identification of these diastereomers takes advantage of the complementary stereospecificities of methionine sulfoxide reductase (Msr) enzymes MsrA and MsrB, which respectively promote the selective reduction of S- and R-diastereomers of Met(O). In addition, an MsrBA fusion protein that contained both Msr enzyme activities permitted the quantitative reduction of all Met(O). Using these Msr enzymes in combination with peptide mapping we are able to detect and differentiate Met-diastereomers in a monoclonal IgG2 and IgG1 antibody. We also monitored the formation of sulfones and studied the rate of oxidation in the different Met residues in our IgG2 antibody. The reported ability to separate and identify diastereomers of Met(O) permits a more complete characterization of Met oxidation products. All the affected Met residues (M251, M427, M396) in this study are conserved in human IgG sequences and therefore offer predictive potential in characterizing oxidative modification.

  16. Sulfur amino acid metabolism in children with severe childhood undernutrition: methionine kinetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Children with edematous but not nonedematous severe childhood undernutrition (SCU) have lower plasma and erythrocyte-free concentrations of cysteine and methionine, which suggests a decreased availability of methionine for cysteine synthesis. We propose that methionine production and metabolism will...

  17. Structural Characterization of a Human-Type Corrinoid Adenosyltransferase Confirms That Coenzyme B[subscript 12] Is Synthesized through a Four-Coordinate Intermediate

    SciTech Connect

    St. Maurice, Martin; Mera, Paola; Park, Kiyoung; Brunold, Thomas C.; Escalante-Semerena, Jorge C.; Rayment, Ivan

    2008-11-18

    ATP:cob(I)alamin adenosyltransferases (ACAs) catalyze the transfer of the 5{prime}-deoxyadenosyl moiety from ATP to the upper axial ligand position of cobalamin in the synthesis of coenzyme B{sub 12}. For the ACA-catalyzed reaction to proceed, cob(II)alamin must be reduced to cob(I)alamin in the enzyme active site. This reduction is facilitated through the generation of a four-coordinate cob(II)alamin intermediate on the enzyme. We have determined the high-resolution crystal structure of a human-type ACA from Lactobacillus reuteri with a four-coordinate cob(II)alamin bound in the enzyme active site and with the product, adenosylcobalamin, partially occupied in the active site. The assembled structures represent snapshots of the steps in the ACA-catalyzed formation of the cobalt-carbon bond of coenzyme B{sub 12}. The structures define the corrinoid binding site and provide visual evidence for a base-off, four-coordinate cob(II)alamin intermediate. The complete structural description of ACA-mediated catalysis reveals the molecular features of four-coordinate cob(II)alamin stabilization and provides additional insights into the molecular basis for dysfunction in human patients suffering from methylmalonic aciduria.

  18. Structure and function of the methionine aminopeptidases.

    PubMed

    Lowther, W T; Matthews, B W

    2000-03-01

    The removal of the N-terminal methionine from proteins and peptides is dependent upon a novel class of proteases typified by the dinuclear metalloenzyme methionine aminopeptidase from Escherichia coli (eMetAP). Substantial progress has recently been made in determining the structures of several members of this family. The identification of human MetAP as the target of putative anti-cancer drugs reiterates the importance of this family of enzymes. Determination of the modes of binding to E. coli MetAP of a substrate-like bestatin-based inhibitor, as well as phosphorus-containing transition-state analogs and reaction products has led to a rationalization of the substrate specificity and suggested the presumed catalytic mechanism. The conservation of key active site residues and ligand interactions between the MetAPs and other enzyme of the same fold suggest that avoidance of cross-reactivity may be an important consideration in the design of inhibitors directed toward a single member of the family. PMID:10708856

  19. Methionine as a Precursor of Ethylene—Commentary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lieberman et al. showed in a 1966 publication of Plant Physiology that methionine is a precursor of ethylene. It was the first paper that showed ethylene carbons are derived from carbons 3 and 4 of methionine. This paper catalyzed remarkable interest among plant biologists to elucidate the biosynth...

  20. POSSIBLE LINK BETWEEN METHIONINE OXIDATION AND PROTEIN PHOSPHORYLATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aerobic metabolism leads to the production of reactive oxygen species that may damage proteins. Methionine residues in proteins are particularly susceptible to oxidation to methionine sulfoxide (MetSO) converting its side chain from hydrophobic to hydrophilic. We postulated that this could have a si...

  1. High Methionine Diet Poses Cardiac Threat: A Molecular Insight.

    PubMed

    Chaturvedi, Pankaj; Kamat, Pradip K; Kalani, Anuradha; Familtseva, Anastasia; Tyagi, Suresh C

    2016-07-01

    High methionine diet (HMD) for example red meat which includes lamb, beef, pork can pose cardiac threat and vascular dysfunction but the mechanisms are unclear. We hypothesize that a diet rich in methionine can malfunction the cardiovascular system in three ways: (1) by augmenting oxidative stress; (2) by inflammatory manifestations; and (3) by matrix/vascular remodeling. To test this hypothesis we used four groups of mice: (1) WT; (2) WT + methionine; (3) CBS(+/-) ; (4) CBS(+/-) +methionine. We observed high oxidative stress in mice fed with methionine which was even higher in CBS(+/-) and CBS(+/-) +methionine. Higher oxidative stress was indicated by high levels of SOD-1 in methionine fed mouse hearts whereas IL-1β, IL-6, TNFα, and TLR4 showed high inflammatory manifestations. The upregulated levels of eNOS/iNOS and upregulated levels of MMP2/MMP9 along with high collagen deposition indicated vascular and matrix remodeling in methionine fed mouse. We evaluated the cardiac function which was dysregulated in the mice fed with HMD. These mice had decreased ejection fraction and left ventricular dysfunction which subsequently leads to adverse cardiac remodeling. In conclusion, our study clearly shows that HMD poses a cardiac threat by increasing oxidative stress, inflammatory manifestations, matrix/vascular remodeling, and decreased cardiac function. PMID:26565991

  2. Methionine transmethylation and transsulfuration in the piglet gastrointestinal tract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methionine is an indispensable sulfur amino acid that functions as a key precursor for the synthesis of homocysteine and cysteine. Studies in adult humans suggest that splanchnic tissues convert dietary methionine to homocysteine and cysteine by means of transmethylation and transsulfuration, respec...

  3. Bioavailability of different dietary supplemental methionine sources in animals.

    PubMed

    Zhang, Shuai; Wong, Eric A; Gilbert, Elizabeth R

    2015-01-01

    Dietary methionine is indispensable for animal maintenance, growth and development. L-methionine (L-Met), and its synthetic forms DL-methionine (DL-Met) and 2-hydroxy-4 (methylthio) butanoic acid (HMTBA) are common supplemental methionine sources in animal diets. There are different characteristics for cellular absorption, transport, metabolism and bio-efficiency between these three dietary methionine sources. Moreover, there are differences in their utilization among various species such as chickens, pigs and ruminants. As a methionine precursor, HMTBA is efficacious in the promotion of growth in animals. It is absorbed mainly by monocarboxylate transporter 1 (MCT1), coupled with the activity of the Na(+)/H(+) exchanger (NHE3), while DL-Met uptake occurs via multiple carrier-mediated systems. Liver, kidney and small intestine can metabolize D-Met and HMTBA to L-Met through oxidation and transamination. In ruminants, the non-hepatic tissues act as major sites of HMTBA conversion, which are different from that in chickens and pigs. HMTBA also has additional benefits in anti-oxidation. Understanding the characteristics of uptake and metabolism of different methionine sources will greatly benefit the industry and bioscience research. PMID:25961426

  4. Resonance Raman spectroscopic study of the interaction between Co(II)rrinoids and the ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri.

    PubMed

    Park, Kiyoung; Mera, Paola E; Escalante-Semerena, Jorge C; Brunold, Thomas C

    2016-09-01

    The human-type ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri (LrPduO) catalyzes the adenosylation of Co(II)rrinoids to generate adenosylcobalamin (AdoCbl) or adenosylcobinamide (AdoCbi(+)). This process requires the formation of "supernucleophilic" Co(I)rrinoid intermediates in the enzyme active site which are properly positioned to abstract the adeonsyl moiety from co-substrate ATP. Previous magnetic circular dichroism (MCD) spectroscopic and X-ray crystallographic analyses revealed that LrPduO achieves the thermodynamically challenging reduction of Co(II)rrinoids by displacing the axial ligand with a non-coordinating phenylalanine residue to produce a four-coordinate species. However, relatively little is currently known about the interaction between the tetradentate equatorial ligand of Co(II)rrinoids (the corrin ring) and the enzyme active site. To address this issue, we have collected resonance Raman (rR) data of Co(II)rrinoids free in solution and bound to the LrPduO active site. The relevant resonance-enhanced vibrational features of the free Co(II)rrinoids are assigned on the basis of rR intensity calculations using density functional theory to establish a suitable framework for interpreting rR spectral changes that occur upon Co(II)rrinoid binding to the LrPduO/ATP complex in terms of structural perturbations of the corrin ring. To complement our rR data, we have also obtained MCD spectra of Co(II)rrinoids bound to LrPduO complexed with the ATP analogue UTP. Collectively, our results provide compelling evidence that in the LrPduO active site, the corrin ring of Co(II)rrinoids is firmly locked in place by several amino acid side chains so as to facilitate the dissociation of the axial ligand. PMID:27383231

  5. Spectroscopic Studies of the Salmonella enterica Adenosyltransferase Enzyme SeCobA: Molecular-Level Insight into the Mechanism of Substrate Cob(II)alamin Activation

    PubMed Central

    2015-01-01

    CobA from Salmonella enterica (SeCobA) is a member of the family of ATP:Co(I)rrinoid adenosyltransferase (ACAT) enzymes that participate in the biosynthesis of adenosylcobalamin by catalyzing the transfer of the adenosyl group from an ATP molecule to a reactive Co(I)rrinoid species transiently generated in the enzyme active site. This reaction is thermodynamically challenging, as the reduction potential of the Co(II)rrinoid precursor in solution is far more negative than that of available reducing agents in the cell (e.g., flavodoxin), precluding nonenzymic reduction to the Co(I) oxidation state. However, in the active sites of ACATs, the Co(II)/Co(I) redox potential is increased by >250 mV via the formation of a unique four-coordinate (4c) Co(II)rrinoid species. In the case of the SeCobA ACAT, crystallographic and kinetic studies have revealed that the phenylalanine 91 (F91) and tryptophan 93 (W93) residues are critical for in vivo activity, presumably by blocking access to the lower axial ligand site of the Co(II)rrinoid substrate. To further assess the importance of the F91 and W93 residues with respect to enzymatic function, we have characterized various SeCobA active-site variants using electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopies. Our data provide unprecedented insight into the mechanism by which SeCobA converts the Co(II)rrinoid substrate to 4c species, with the hydrophobicity, size, and ability to participate in offset π-stacking interactions of key active-site residues all being critical for activity. The structural changes that occur upon Co(II)rrinoid binding also appear to be crucial for properly orienting the transiently generated Co(I) “supernucleophile” for rapid reaction with cosubstrate ATP. PMID:25423616

  6. Inhibition of Mycobacterium tuberculosis Methionine Aminopeptidases by Bengamide Derivatives

    SciTech Connect

    Lu, Jing-Ping; Yuan, Xiu-Hua; Yuan, Hai; Wang, Wen-Long; Wan, Baojie; Franzblau, Scott G.; Ye, Qi-Zhuang

    2012-05-29

    Methionine aminopeptidase (MetAP) carries out an essential function of protein N-terminal processing in many bacteria and is a promising target for the development of novel antitubercular agents. Natural bengamides potently inhibit the proliferation of mammalian cells by targeting MetAP enzymes, and the X-ray crystal structure of human type 2 MetAP in complex with a bengamide derivative reveals the key interactions at the active site. By preserving the interactions with the conserved residues inside the binding pocket while exploring the differences between bacterial and human MetAPs around the binding pocket, seven bengamide derivatives were synthesized and evaluated for inhibition of MtMetAP1a and MtMetAP1c in different metalloforms, inhibition of M. tuberculosis growth in replicating and non-replicating states, and inhibition of human K562 cell growth. Potent inhibition of MtMetAP1a and MtMetAP1c and modest growth inhibition of M. tuberculosis were observed for some of these derivatives. Crystal structures of MtMetAP1c in complex with two of the derivatives provided valuable structural information for improvement of these inhibitors for potency and selectivity.

  7. 21 CFR 172.399 - Zinc methionine sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional... reaction between equimolar amounts of zinc sulfate and DL-methionine in purified water. (b) The...

  8. 21 CFR 172.372 - N-Acetyl-L-methionine.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false N-Acetyl-L-methionine. 172.372 Section 172.372 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.372 N-Acetyl-L-methionine....

  9. Modeling the oxidation of methionine residues by peroxides in proteins.

    PubMed

    Chennamsetty, Naresh; Quan, Yong; Nashine, Vishal; Sadineni, Vikram; Lyngberg, Olav; Krystek, Stanley

    2015-04-01

    We report the use of molecular modeling to predict the oxidation propensity of methionine residues in proteins. Oxidation of methionine to the sulfoxide form is one of the major degradation pathways for therapeutic proteins. Oxidation can occur during production, formulation, or storage of pharmaceuticals and it often reduces or eliminates biological activity. We use a molecular model based on atomistic simulations called 2-shell water coordination number to predict the oxidation rates for several model proteins and therapeutic candidates. In addition, we implement models that are based on static and simulation average of the solvent-accessible area (SAA) for either the side chain or the sulfur atom in the methionine residue. We then compare the results from the different models against the experimentally measured relative rates of methionine oxidation. We find that both the 2-shell model and the simulation-averaged SAA models are accurate in predicting the oxidation propensity of methionine residues for the proteins tested. We also find the appropriate parameter ranges where the models are most accurate. These models have significant predictive power and can be used to enable further protein engineering or to guide formulation approaches in stabilizing the unstable methionine residues. PMID:25641333

  10. Methionine salvage pathway in relation to ethylene biosynthesis

    SciTech Connect

    Miyazaki, J.H.

    1987-01-01

    The recycling of methionine during ethylene biosynthesis (the methionine cycle) was studied. During ethylene biosynthesis, the H/sub 3/CS-group of S-adenosylmethionine (SAM) is released at 5'-methylthioadenosine (MTA), which is recycled to methionine via 5'-methylthioribose (MTS). In mungbean hypocotyls and cell-free extracts of avocado fruit, (/sup 14/C)MTR was converted to labeled methionine via 2-keto-4-methylthiobutyric acid (KMB) and 2-hydroxy-4-methylthiobutyric acid (HMB) as intermediates. Radioactive tracer studies showed that KMB was converted readily in vivo and in vitro to methionine, while HMB was converted much more slowly. The conversion of KMB to methionine by dialyzed avocado extract required an amino group donor. Among several potential donors tested, L-glutamine was the most efficient. Incubation of (ribose-U-/sup 14/C)MTR with avocado extract resulted in the production of (/sup 14/C)formate, with little evolution of other /sup 14/C-labeled one-carbon compounds, indicating that the conversion of MTR to KMB involves a loss of formate, presumably from C-1 of MTR.

  11. Nutritional value and safety of methionine derivatives, isomeric dipeptides and hydroxy analogs in mice.

    PubMed

    Friedman, M; Gumbmann, M R

    1988-03-01

    Weight gains in mice fed amino acid diets containing methionine and 16 methionine derivatives and analogs were compared at graded dietary concentrations. Linear response was closely approximated for concentrations below those yielding maximum growth. Derivatization of L-methionine generally lowered potency, calculated as the ratio of the slopes of the two dose-response curves. However, the three isomeric dipeptides L-L-, L-D- and D-L-methionylmethionine, N-acetyl- and N-formyl-L-methionine, L-methionine sulfoxide and D-methionine were well utilized. The double derivative N-acetyl-L-methionine sulfoxide reduced potency below 60%. D-Methionine sulfoxide, N-acetyl-D-methionine and D-methionyl-D-methionine had potencies between 4 and 40%. The calcium salts of L- and D-alpha-hydroxy analogs of methionine had potencies of 55.4 and 85.7%, respectively. Several of the analogs were less growth-inhibiting or toxic at high concentrations in the diet than was L-methionine. These results imply that some methionine dipeptides or analogs may be better candidates for fortifying foods than L-methionine. Possible biochemical pathways for the utilization of methionine derivatives and analogs are also described. PMID:3351635

  12. Carboxymethylation of methionine residues in bovine pituitary luteinizing hormone and its subunits. Location of specifically modified methionine residues.

    PubMed Central

    Cheng, K W

    1976-01-01

    Bovine lutropin (luteinizing hormone) was carboxymethylated at pH3.0 for 12 h at 37 degrees C with iodoacetic acid for specific modification of methionine residues. To facilitate the location of preferentially modified methionine residues, iodoE114C]acetic acid was added as tracer. The alpha and beta subunits of bovine lutropin were carboxymethylated with a 2- or 5-fold molar excess of iodoacetic acid either in the presence or absence of their counterpart subunits. The modified subunits were separated and isolated by counter-current distribution followed by gel filtration on Sephadex G-100. To locate the modified methiones, the isolated alpha or beta chain was reduced. S-carboxymethylated and subjected to tryptic hydrolysis. The tryptic peptides were fractionated by gel filtration on Bio-Gel P-10. From analyses of the purified 14C-labelled tryptic peptides, it was observed that methionine-8 and -33 in bovine lutropin alpha chain and methionine-52 in the beta chain were preferentially modified. Similar results were obtained when isolated alpha and beta subunits were individually carboxymethylated in the absence of their counterpart subunit under identical conditions. The fact that a recombinant of native human lutropin alpha chain, in which a valine residue is present in the position corresponding to methionine-8 of bovine lutropin alpha chain, and carboxymethylated bovine lutropin beta chain regenerated a substantial amount of receptor-site-binding activity indicated that methionine-8 in bovine alpha chain was biologically not essential. These studies showed clearly that both methionine-33 in the alpha chain and methionine-52 in the beta subunit were involved for optimum binding between bovine lutropin and its receptors for expression of hormonal activity. Images PLATE 1 PMID:999646

  13. A sulfonium cation intermediate in the mechanism of methionine sulfoxide reductase B: a DFT study.

    PubMed

    Robinet, Jesse J; Dokainish, Hisham M; Paterson, David J; Gauld, James W

    2011-07-28

    The hybrid density functional theory method B3LYP in combination with three systematically larger active site models has been used to investigate the substrate binding and catalytic mechanism by which Neisseria gonorrhoeae methionine sulfoxide reductase B (MsrB) reduces methionine-R-sulfoxide (Met-R-SO) to methionine. The first step in the overall mechanism is nucleophilic attack of an active site thiolate at the sulfur of Met-R-SO to form an enzyme-substrate sulfurane. This occurs with concomitant proton transfer from an active site histidine (His480) residue to the substrates oxygen center. The barrier for this step, calculated using our largest most complete active site model, is 17.2 kJ mol(-1). A subsequent conformational rearrangement and intramolecular -OH transfer to form an enzyme-derived sulfenic acid ((Cys495)S-OH) is not enzymatically feasible. Instead, transfer of a second proton from a second histidyl active site residue (His477) to the sulfurane's oxygen center to give water and a sulfonium cation intermediate is found to be greatly preferred, occurring with a quite low barrier of just 1.2 kJ mol(-1). Formation of the final product complex in which an intraprotein disulfide bond is formed with generation of methionine preferably occurs in one step via nucleophilic attack of the sulfur of a second enzyme thiolate ((Cys440)S(-)) at the S(Cys495) center of the sulfonium intermediate with a barrier of 23.8 kJ mol(-1). An alternate pathway for formation of the products via a sulfenic acid intermediate involves enzymatically feasible, but higher energy barriers. The role and impact of hydrogen bonding and active site residues on the properties and stability of substrate and mechanism intermediates and the affects of mutating His477 are also examined and discussed. PMID:21721538

  14. Detection of oxidized methionine in selected proteins, cellular extracts, and blood serums by novel anti-methionine sulfoxide antibodies

    PubMed Central

    Oien, Derek B.; Canello, Tamar; Gabizon, Ruth; Gasset, Maria; Lundquist, Brandi L.; Burns, Jeff M; Moskovitz, Jackob

    2009-01-01

    Methionine sulfoxide (MetO) is a common posttranslational modification to proteins occurring in vivo. These modifications are prevalent when reactive oxygen species levels are increased. To enable the detection of MetO in pure and extracted proteins from various sources, we have developed novel antibodies that can recognize MetO-proteins. These antibodies are polyclonal antibodies raised against an oxidized methionine-rich zein protein (MetO-DZS18) that are shown to recognize methionine oxidation in pure proteins and mouse and yeast extracts. Furthermore, mouse serum albumin and immunoglobulin (IgG) were shown to accumulate MetO as function of age especially in serums of methionine sulfoxide reductase A knockout mice. Interestingly, high levels of methionine-oxidized IgG in serums of subjects diagnosed with Alzheimer’s disease were detected by western blot analysis using these antibodies. It is suggested that anti-MetO-DZS18 antibodies can be applied in the identification of proteins that undergo methionine oxidation under oxidative stress, aging, or disease state conditions. PMID:19388147

  15. The low-methionine content of vegan diets may make methionine restriction feasible as a life extension strategy.

    PubMed

    McCarty, Mark F; Barroso-Aranda, Jorge; Contreras, Francisco

    2009-02-01

    Recent studies confirm that dietary methionine restriction increases both mean and maximal lifespan in rats and mice, achieving "aging retardant" effects very similar to those of caloric restriction, including a suppression of mitochondrial superoxide generation. Although voluntary caloric restriction is never likely to gain much popularity as a pro-longevity strategy for humans, it may be more feasible to achieve moderate methionine restriction, in light of the fact that vegan diets tend to be relatively low in this amino acid. Plant proteins - especially those derived from legumes or nuts - tend to be lower in methionine than animal proteins. Furthermore, the total protein content of vegan diets, as a function of calorie content, tends to be lower than that of omnivore diets, and plant protein has somewhat lower bioavailability than animal protein. Whole-food vegan diets that moderate bean and soy intake, while including ample amounts of fruit and wine or beer, can be quite low in methionine, while supplying abundant nutrition for health (assuming concurrent B12 supplementation). Furthermore, low-fat vegan diets, coupled with exercise training, can be expected to promote longevity by decreasing systemic levels of insulin and free IGF-I; the latter effect would be amplified by methionine restriction - though it is not clear whether IGF-I down-regulation is the sole basis for the impact of low-methionine diets on longevity in rodents. PMID:18789600

  16. Toxicity of seleno-l-methionine, seleno-dl-methionine, high selenium wheat, and selenized yeast to mallard ducklings

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; LeCaptain, L.J.

    1996-01-01

    The toxicity of four chemical forms of selenium (seleno-L-methionine, seleno-DL-methionine, selenized yeast, and high selenium wheat) was compared in day-old mallard ducklings (Anas platyrhynchos). In the first experiment, in which the basal diet was 75% wheat, survival after 2 weeks was lower for ducklings fed 30 ?g/g selenium as seleno-L-methionine (36%) than for ducklings fed 30 ?g/g selenium as seleno-DL-methionine (100%) or 30 ?g/g selenium from high selenium yeast (88%). In a second experiment, in which the basal diet was a commercial duck feed, survival after 2 weeks was 100% in ducklings fed 30 ?g/g selenium as seleno-DL-methionine, seleno-L-methionine, or selenized yeast. The greater toxicity of the L form of selenomethionine was probably related to the palatability or nutritional nature of the wheat-based diet used in experiment 1, but the exact reason for the difference between the DL and L forms is unknown. Biologically incorporated selenium, derived from high selenium wheat was no more toxic than selenium derived from the two purified forms of selenomethionine, and the selenium in selenized yeast was not as toxic as that in the two forms of selenomethionine.

  17. Modulation of potassium channel function by methionine oxidation and reduction

    PubMed Central

    Ciorba, Matthew A.; Heinemann, Stefan H.; Weissbach, Herbert; Brot, Nathan; Hoshi, Toshinori

    1997-01-01

    Oxidation of amino acid residues in proteins can be caused by a variety of oxidizing agents normally produced by cells. The oxidation of methionine in proteins to methionine sulfoxide is implicated in aging as well as in pathological conditions, and it is a reversible reaction mediated by a ubiquitous enzyme, peptide methionine sulfoxide reductase. The reversibility of methionine oxidation suggests that it could act as a cellular regulatory mechanism although no such in vivo activity has been demonstrated. We show here that oxidation of a methionine residue in a voltage-dependent potassium channel modulates its inactivation. When this methionine residue is oxidized to methionine sulfoxide, the inactivation is disrupted, and it is reversed by coexpression with peptide methionine sulfoxide reductase. The results suggest that oxidation and reduction of methionine could play a dynamic role in the cellular signal transduction process in a variety of systems. PMID:9275229

  18. Spectroscopic Studies of the EutT Adenosyltransferase from Salmonella enterica: Mechanism of Four-Coordinate Co(II)Cbl Formation.

    PubMed

    Pallares, Ivan G; Moore, Theodore C; Escalante-Semerena, Jorge C; Brunold, Thomas C

    2016-03-23

    EutT from Salmonella enterica is a member of a class of enzymes termed ATP:Co(I)rrinoid adenosyltransferases (ACATs), implicated in the biosynthesis of adenosylcobalamin (AdoCbl). In the presence of cosubstrate ATP, ACATs raise the Co(II)/Co(I) reduction potential of their cob(II)alamin [Co(II)Cbl] substrate by >250 mV via the formation of a unique four-coordinate (4c) Co(II)Cbl species, thereby facilitating the formation of a "supernucleophilic" cob(I)alamin intermediate required for the formation of the AdoCbl product. Previous kinetic studies of EutT revealed the importance of a HX11CCX2C(83) motif for catalytic activity and have led to the proposal that residues in this motif serve as the binding site for a divalent transition metal cofactor [e.g., Fe(II) or Zn(II)]. This motif is absent in other ACAT families, suggesting that EutT employs a distinct mechanism for AdoCbl formation. To assess how metal ion binding to the HX11CCX2C(83) motif affects the relative yield of 4c Co(II)Cbl generated in the EutT active site, we have characterized several enzyme variants by using electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopies. Our results indicate that Fe(II) or Zn(II) binding to the HX11CCX2C(83) motif of EutT is required for promoting the formation of 4c Co(II)Cbl. Intriguingly, our spectroscopic data also reveal the presence of an equilibrium between five-coordinate "base-on" and "base-off" Co(II)Cbl species bound to the EutT active site at low ATP concentrations, which shifts in favor of "base-off" Co(II)Cbl in the presence of excess ATP, suggesting that the base-off species serves as a precursor to 4c Co(II)Cbl. PMID:26886077

  19. Quercetin Increases Hepatic Homocysteine Remethylation and Transsulfuration in Rats Fed a Methionine-Enriched Diet

    PubMed Central

    Meng, Bin; Gao, Weina; Wei, Jingyu; Pu, Lingling; Tang, Zhenchuang; Guo, Changjiang

    2015-01-01

    This study was aimed at investigating the effects of quercetin on mRNA expression and activity of critical enzymes in homocysteine metabolism in rats fed a methionine-enriched diet. Rats were fed for 6 weeks the following diets, that is, control, 0.5% quercetin, 1.0% methionine, and 1.0% methionine plus 0.5% quercetin diets. Serum homocysteine was significantly increased after methionine treatment and decreased after the addition of quercetin. The mRNA expression of methionine synthase was significantly increased after methionine or methionine plus quercetin supplementation, while its enzymatic activity was significantly increased after methionine plus quercetin supplementation. The mRNA expression and enzymatic activity of cystathionine β-synthase and cystathionine γ-lyase were upregulated after quercetin, methionine, or quercetin plus methionine treatment and a more significant increase was observed for hepatic cystathionine β-synthase in the methionine plus quercetin treated rats, suggesting an interaction between methionine and quercetin. Meanwhile, hepatic ratio of S-adenosylmethionine to S-adenosylhomocysteine was significantly decreased in response to methionine supplementation and normalized after the addition of quercetin. It is concluded that quercetin reduces serum homocysteine by increasing remethylation and transsulfuration of homocysteine in rats exposed to a methionine-enriched diet. PMID:26558284

  20. Genetic engineering for high methionine grain legumes.

    PubMed

    Müntz, K; Christov, V; Saalbach, G; Saalbach, I; Waddell, D; Pickardt, T; Schieder, O; Wüstenhagen, T

    1998-08-01

    Methionine (Met) is the primary limiting essential amino acid in grain legumes. The imbalance in amino acid composition restricts their biological value (BV) to 55 to 75% of that of animal protein. So far improvement of the BV could not be achieved by conventional breeding. Therefore, genetic engineering was employed by several laboratories to resolve the problem. Three strategies have been followed. A) Engineering for increased free Met levels; B) engineering of endogenous storage proteins with increased numbers of Met residues; C) transfer of foreign genes encoding Met-rich proteins, e.g. the Brazil nut 2S albumin (BNA) and its homologue from sunflower, into grain legumes. The latter strategy turned out to be most promising. In all cases the gene was put under the control of a developmentally regulated seed specific promoter and transferred into grain legumes using the bacterial Agrobacterium tumefaciens-system. Integration into and copy numbers in the plant genome as well as Mendelian inheritance and gene dosage effects were verified. After correct precursor processing the mature 2S albumin was intracellularly deposited in protein bodies which are part of the vacuolar compartment. The foreign protein amounted to 5 to 10% of the total seed protein in the best transgenic lines of narbon bean (Vicia narbonensis L., used in the authors' laboratories), lupins (Lupinus angustifolius L., used in CSIRO, Australia), and soybean (Glycine max (L.) Merr., used by Pioneer Hi-Bred, Inc., USA). In the narbon bean the increase of Met was directly related to the amount of 2S albumin in the transgenic seeds, but in soybean it remained below the theoretically expected value. Nevertheless, trangenic soybean reached 100%, whereas narbon bean and lupins reached approximately 80% of the FAO-standard for nutritionally balanced food proteins. These results document that the Met problem of grain legumes can be resolved by genetic engineering. PMID:9739551

  1. Methionine recycling pathways and antimalarial drug design.

    PubMed Central

    Sufrin, J R; Meshnick, S R; Spiess, A J; Garofalo-Hannan, J; Pan, X Q; Bacchi, C J

    1995-01-01

    5'-Deoxy-5'-(methylthio)adenosine (MTA) is an S-adenosylmethionine metabolite that is generated as a by-product of polyamine biosynthesis. In mammalian cells, MTA undergoes a phosphorolytic cleavage catalyzed by MTA phosphorylase to produce adenine and 5-deoxy-5-(methylthio)ribose-1-phosphate (MTRP). Adenine is utilized in purine salvage pathways, and MTRP is subsequently recycled to methionine. Whereas some microorganisms metabolize MTA to MTRP via MTA phosphorylase, others metabolize MTA to MTRP in two steps via initial cleavage by MTA nucleosidase to adenine and 5-deoxy-5-(methylthio)ribose (MTR) followed by conversion of MTR to MTRP by MTR kinase. In order to assess the extent to which these pathways may be operative in Plasmodium falciparum, we have examined a series of 5'-alkyl-substituted analogs of MTA and the related MTR analogs and compared their abilities to inhibit in vitro growth of this malarial parasite. The MTR analogs 5-deoxy-5-(ethylthio)ribose and 5-deoxy-5-(hydroxyethylthio)ribose were inactive at concentrations up to 1 mM, and 5-deoxy-5-(monofluoroethylthio)ribose was weakly active (50% inhibitory concentration = 700 microM). In comparison, the MTA analogs, 5'-deoxy-5'-(ethylthio)adenosine,5'-deoxy-5'-(hydroxyethylthio)ade nosine (HETA), and 5'-deoxy-5'-(monofluoroethylthio)adenosine, had 50% inhibitory concentrations of 80, 46, and 61 microM, respectively. Extracts of P. falciparum were found to have substantial MTA phosphorylase activity. Coadministration of MTA with HETA partially protected the parasites against the growth-inhibitory effects of HETA. Results of this study indicate that P. falciparum has an active MTA phosphorylase that can be targeted by analogs of MTA. PMID:8585735

  2. Protein methionine oxidation augments reperfusion injury in acute ischemic stroke

    PubMed Central

    Gu, Sean X.; Blokhin, Ilya O.; Wilson, Katina M.; Dhanesha, Nirav; Doddapattar, Prakash; Grumbach, Isabella M.; Chauhan, Anil K.; Lentz, Steven R.

    2016-01-01

    Reperfusion injury can exacerbate tissue damage in ischemic stroke, but little is known about the mechanisms linking ROS to stroke severity. Here, we tested the hypothesis that protein methionine oxidation potentiates NF-κB activation and contributes to cerebral ischemia/reperfusion injury. We found that overexpression of methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that reverses protein methionine oxidation, attenuated ROS-augmented NF-κB activation in endothelial cells, in part, by protecting against the oxidation of methionine residues in the regulatory domain of calcium/calmodulin-dependent protein kinase II (CaMKII). In a murine model, MsrA deficiency resulted in increased NF-κB activation and neutrophil infiltration, larger infarct volumes, and more severe neurological impairment after transient cerebral ischemia/reperfusion injury. This phenotype was prevented by inhibition of NF-κB or CaMKII. MsrA-deficient mice also exhibited enhanced leukocyte rolling and upregulation of E-selectin, an endothelial NF-κB–dependent adhesion molecule known to contribute to neurovascular inflammation in ischemic stroke. Finally, bone marrow transplantation experiments demonstrated that the neuroprotective effect was mediated by MsrA expressed in nonhematopoietic cells. These findings suggest that protein methionine oxidation in nonmyeloid cells is a key mechanism of postischemic oxidative injury mediated by NF-κB activation, leading to neutrophil recruitment and neurovascular inflammation in acute ischemic stroke. PMID:27294204

  3. Metabolism of Radiolabeled Methionine in Hepatocellular Carcinoma

    PubMed Central

    Kuang, Yu; Wang, Fangjing; Corn, David J.; Tian, Haibin; Lee, Zhenghong

    2015-01-01

    Purpose Radiolabeled methionine (Met) promises to be useful in the positron emission tomography (PET) imaging of hepatocellular carcinoma (HCC). However, its metabolic routes in HCC have not yet been fully understood. In this study, the metabolic pathway(s) of radiolabeled Met in HCC were investigated. Procedures To simulate the rapid blood clearance of radiolabeled Met, pulse–chase experiments were conducted. L-[methyl-3H]-Met or L-[1-14C]-Met was pulsed over control or cycloheximide- treated WCH17 cells and rat hepatocytes for 5 min and chased with cold media. The water-soluble, lipid-soluble, DNA, RNA, and protein phases were subsequently extracted and measured from the acid-precipitable and acid-soluble fractions of whole cells. The radioactive metabolites Met, S- adenosylmethionine (SAM), S-adenosylhomocysteine, Met sulfoxide, and Met sulfone were further separated by radio thin layer chromatography. Results (1) The uptake of L-[methyl-3H]-Met in both cell types was higher than that of L-[1-14C]-Met. In rat hepatocytes, the uptake of L-[methyl-3H]-Met was significantly higher than that of L-[1-14C]-Met, which may contribute to its physiologic accumulation in surrounding hepatic tissues seen in PET imaging of HCC using L-[methyl-11C]-Met. Compared to rat hepatocytes, WCH17 cells had significantly higher uptake of both radiotracers. (2) For L-[methyl-3H]-Met, the major intracellular uptake was found mostly in the protein phase and, to a lesser degree, in the phosphatidylethanolamine (PE) methylation pathway, which is fairly stabilized within the 55-min chase period (the main metabolites were SAM, Met, Met sulfoxide, and Met sulfone). In contrast, the uptake of Met in rat hepatocytes mainly points to phosphatidylcholine (PC) synthesis through the PE methylation pathway (the main metabolite was PC). (3) Both cell types incorporated L-[1-14C]-Met predominantly into protein synthesis. (4) Finally, when the protein synthesis pathway was inhibited, the incorporation

  4. Engineering of methionine chain elongation part of glucoraphanin pathway in E. coli.

    PubMed

    Mirza, Nadia; Crocoll, Christoph; Erik Olsen, Carl; Ann Halkier, Barbara

    2016-05-01

    The methionine-derived glucosinolate glucoraphanin is associated with the health-promoting properties of broccoli. This has developed a strong interest in producing this compound in high amounts from a microbial source. Glucoraphanin synthesis starts with a five-gene chain elongation pathway that converts methionine to dihomo-methionine, which is subsequently converted to glucoraphanin by the seven-gene glucosinolate core structure pathway. As dihomo-methionine is the precursor amino acid for glucoraphanin production, a first challenge is to establish an expression system for production of dihomo-methionine. In planta, the methionine chain elongation enzymes are physically separated within the cell with the first enzyme in the cytosol while the rest are located in the chloroplast. A de-compartmentalization approach was applied to produce dihomo-methionine by expression of the respective plant genes in Escherichia coli cytosol. Introduction of two plasmids encoding the methionine chain elongation pathway into E. coli resulted in production of 25mgL(-1) of dihomo-methionine. In addition to chain-elongated methionine products, side-products from chain elongation of leucine were produced. Methionine supplementation enhanced dihomo-methionine production to 57mgL(-1), while keeping a steady level of the chain-elongated leucine products. Engineering of the de-compartmentalized pathway of dihomo-methionine in E. coli cytosol provides an important first step for microbial production of the health-promoting glucoraphanin. PMID:26410451

  5. Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors

    PubMed Central

    Tarrago, Lionel; Péterfi, Zalán; Lee, Byung Cheon; Michel, Thomas; Gladyshev, Vadim N.

    2015-01-01

    Methionine can be reversibly oxidized to methionine sulfoxide (MetO) under physiological and pathophysiological conditions, but its use as a redox marker suffers from the lack of tools to detect and quantify MetO within cells. In this work, we created a pair of complementary stereospecific genetically-encoded mechanism-based ratiometric fluorescent sensors of MetO by inserting a circularly yellow fluorescent protein between yeast methionine sulfoxide reductases and thioredoxins. The two sensors, named MetSOx and MetROx for their ability to detect S and R-forms of MetO, respectively, were utilized for targeted analysis of protein oxidation, regulation and repair, as well as for monitoring MetO in bacterial and mammalian cells, analyzing compartment-specific changes in MetO, and examining responses to physiological stimuli. PMID:25799144

  6. Maternal obesity disrupts the methionine cycle in baboon pregnancy

    PubMed Central

    Nathanielsz, Peter W; Yan, Jian; Green, Ralph; Nijland, Mark; Miller, Joshua W; Wu, Guoyao; McDonald, Thomas J; Caudill, Marie A

    2015-01-01

    Maternal intake of dietary methyl-micronutrients (e.g. folate, choline, betaine and vitamin B-12) during pregnancy is essential for normal maternal and fetal methionine metabolism, and is critical for important metabolic processes including those involved in developmental programming. Maternal obesity and nutrient excess during pregnancy influence developmental programming potentially predisposing adult offspring to a variety of chronic health problems. In the present study, we hypothesized that maternal obesity would dysregulate the maternal and fetal methionine cycle. To test this hypothesis, we developed a nulliparous baboon obesity model fed a high fat, high energy diet (HF-HED) prior to and during gestation, and examined methionine cycle biomarkers (e.g., circulating concentrations of homocysteine, methionine, choline, betaine, key amino acids, folate, and vitamin B-12). Animals were group housed allowing full physical activity and social interaction. Maternal prepregnancy percent body fat was 5% in controls and 19% in HF-HED mothers, while fetal weight was 16% lower in offspring of HF-HED mothers at term. Maternal and fetal homocysteine were higher, while maternal and fetal vitamin B-12 and betaine were lower in the HF-HED group. Elevations in circulating maternal folate were evident in the HF-HED group indicating impaired folate metabolism (methyl-trap) as a consequence of maternal vitamin B-12 depletion. Finally, fetal methionine, glycine, serine, and taurine were lower in the HF-HED fetuses. These data show that maternal obesity disturbs the methionine cycle in primate pregnancy, providing a mechanism for the epigenetic changes observed among obese pregnant women and suggesting diagnostic and therapeutic opportunities in human pregnancies complicated by obesity. PMID:26537341

  7. Maternal obesity disrupts the methionine cycle in baboon pregnancy.

    PubMed

    Nathanielsz, Peter W; Yan, Jian; Green, Ralph; Nijland, Mark; Miller, Joshua W; Wu, Guoyao; McDonald, Thomas J; Caudill, Marie A

    2015-11-01

    Maternal intake of dietary methyl-micronutrients (e.g. folate, choline, betaine and vitamin B-12) during pregnancy is essential for normal maternal and fetal methionine metabolism, and is critical for important metabolic processes including those involved in developmental programming. Maternal obesity and nutrient excess during pregnancy influence developmental programming potentially predisposing adult offspring to a variety of chronic health problems. In the present study, we hypothesized that maternal obesity would dysregulate the maternal and fetal methionine cycle. To test this hypothesis, we developed a nulliparous baboon obesity model fed a high fat, high energy diet (HF-HED) prior to and during gestation, and examined methionine cycle biomarkers (e.g., circulating concentrations of homocysteine, methionine, choline, betaine, key amino acids, folate, and vitamin B-12). Animals were group housed allowing full physical activity and social interaction. Maternal prepregnancy percent body fat was 5% in controls and 19% in HF-HED mothers, while fetal weight was 16% lower in offspring of HF-HED mothers at term. Maternal and fetal homocysteine were higher, while maternal and fetal vitamin B-12 and betaine were lower in the HF-HED group. Elevations in circulating maternal folate were evident in the HF-HED group indicating impaired folate metabolism (methyl-trap) as a consequence of maternal vitamin B-12 depletion. Finally, fetal methionine, glycine, serine, and taurine were lower in the HF-HED fetuses. These data show that maternal obesity disturbs the methionine cycle in primate pregnancy, providing a mechanism for the epigenetic changes observed among obese pregnant women and suggesting diagnostic and therapeutic opportunities in human pregnancies complicated by obesity. PMID:26537341

  8. Traumatic Brain Injury Alters Methionine Metabolism: Implications for Pathophysiology

    PubMed Central

    Dash, Pramod K.; Hergenroeder, Georgene W.; Jeter, Cameron B.; Choi, H. Alex; Kobori, Nobuhide; Moore, Anthony N.

    2016-01-01

    Methionine is an essential proteinogenic amino acid that is obtained from the diet. In addition to its requirement for protein biosynthesis, methionine is metabolized to generate metabolites that play key roles in a number of cellular functions. Metabolism of methionine via the transmethylation pathway generates S-adenosylmethionine (SAM) that serves as the principal methyl (−CH3) donor for DNA and histone methyltransferases (MTs) to regulate epigenetic changes in gene expression. SAM is also required for methylation of other cellular proteins that serve various functions and phosphatidylcholine synthesis that participate in cellular signaling. Under conditions of oxidative stress, homocysteine (which is derived from SAM) enters the transsulfuration pathway to generate glutathione, an important cytoprotective molecule against oxidative damage. As both experimental and clinical studies have shown that traumatic brain injury (TBI) alters DNA and histone methylation and causes oxidative stress, we examined if TBI alters the plasma levels of methionine and its metabolites in human patients. Blood samples were collected from healthy volunteers (HV; n = 20) and patients with mild TBI (mTBI; GCS > 12; n = 20) or severe TBI (sTBI; GCS < 8; n = 20) within the first 24 h of injury. The levels of methionine and its metabolites in the plasma samples were analyzed by either liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry (LC-MS or GC-MS). sTBI decreased the levels of methionine, SAM, betaine and 2-methylglycine as compared to HV, indicating a decrease in metabolism through the transmethylation cycle. In addition, precursors for the generation of glutathione, cysteine and glycine were also found to be decreased as were intermediate metabolites of the gamma-glutamyl cycle (gamma-glutamyl amino acids and 5-oxoproline). mTBI also decreased the levels of methionine, α-ketobutyrate, 2 hydroxybutyrate and glycine, albeit to lesser degrees than

  9. Traumatic Brain Injury Alters Methionine Metabolism: Implications for Pathophysiology.

    PubMed

    Dash, Pramod K; Hergenroeder, Georgene W; Jeter, Cameron B; Choi, H Alex; Kobori, Nobuhide; Moore, Anthony N

    2016-01-01

    Methionine is an essential proteinogenic amino acid that is obtained from the diet. In addition to its requirement for protein biosynthesis, methionine is metabolized to generate metabolites that play key roles in a number of cellular functions. Metabolism of methionine via the transmethylation pathway generates S-adenosylmethionine (SAM) that serves as the principal methyl (-CH3) donor for DNA and histone methyltransferases (MTs) to regulate epigenetic changes in gene expression. SAM is also required for methylation of other cellular proteins that serve various functions and phosphatidylcholine synthesis that participate in cellular signaling. Under conditions of oxidative stress, homocysteine (which is derived from SAM) enters the transsulfuration pathway to generate glutathione, an important cytoprotective molecule against oxidative damage. As both experimental and clinical studies have shown that traumatic brain injury (TBI) alters DNA and histone methylation and causes oxidative stress, we examined if TBI alters the plasma levels of methionine and its metabolites in human patients. Blood samples were collected from healthy volunteers (HV; n = 20) and patients with mild TBI (mTBI; GCS > 12; n = 20) or severe TBI (sTBI; GCS < 8; n = 20) within the first 24 h of injury. The levels of methionine and its metabolites in the plasma samples were analyzed by either liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry (LC-MS or GC-MS). sTBI decreased the levels of methionine, SAM, betaine and 2-methylglycine as compared to HV, indicating a decrease in metabolism through the transmethylation cycle. In addition, precursors for the generation of glutathione, cysteine and glycine were also found to be decreased as were intermediate metabolites of the gamma-glutamyl cycle (gamma-glutamyl amino acids and 5-oxoproline). mTBI also decreased the levels of methionine, α-ketobutyrate, 2 hydroxybutyrate and glycine, albeit to lesser degrees than detected

  10. /sup 15/N and /sup 13/C NMR determination of methionine metabolism in developing soybean cotyledons

    SciTech Connect

    Coker, G.T. III; Garbow, J.R.; Schaefer, J.

    1987-03-01

    The metabolism of D- and L-methionine by immature cotyledons of soybean (Glycine max, L. cv Elf) grown in culture has been investigated using solid-state /sup 13/C and /sup 15/N nuclear magnetic resonance. D-Methionine is taken up by the cotyledons and converted to an amide, most likely by N-malonylation. About 16% of the L-methionine taken up is incorporated intact into protein, and 25% remains as soluble methionine. Almost two-thirds of the L-methionine that enters the cotyledons is degraded. The largest percentage of this is used in transmethylation of the carboxyl groups of pectin. Methionine is not extensively converted to polyamines. The authors attribute the stimulation of growth of the cotyledons by exogenous methionine to the bypassing of a rate-limiting methyl-transfer step in the synthesis of methionine itself, and subsequently of pectins and proteins.

  11. Liquid methionine hydroxy analog (free acid) and DL-methionine attenuate calcium-induced kidney damage in domestic fowl.

    PubMed

    Wideman, R F; Ford, B C; Leach, R M; Wise, D F; Robey, W W

    1993-07-01

    To evaluate the possibility that kidney damage may be induced by the commercial practice of feeding high-Ca (HCa) prelayer rations, and to evaluate the protective efficacy of supplementing HCa diets with liquid methionine hydroxy analog free acid or DL-methionine, 12-wk-old female Single Comb White Leghorn pullets were fed one of the following corn-soybean meal-based diets until they reached 22 wk of age: normal-Ca (NC, 1% Ca); HCa (HC, 3.5% Ca); HCa supplemented with .34 or .68% liquid methionine hydroxy analog free acid (HC3A or HC6A); or HCa supplemented with .3 or .6% DL-methionine (HC3DL or HC6DL). The unsupplemented HC diet caused a significant reduction in kidney mass and a significant increase in the incidence of gross kidney damage and urolithiasis in pullets necropsied at 22 wk of age. Calcium-induced kidney damage was attenuated in a dose-response fashion by supplementing the HC diet with liquid methionine hydroxy analog and DL-methionine. None of the diets caused a significant metabolic acidosis. Plasma uric acid concentrations were not predictive of the extent of Ca-induced kidney damage. Analyses of glomerular size distributions indicated that subclinical or "hidden" kidney damage may not progressively develop into urolithiasis as hens mature. When compared with hens reared on the NC diet, rearing hens on the HC, HC3A, HC3DL, HC6A, or HC6DL diets did not consistently affect hen-day egg production, egg mass, eggshell mass, percentage eggshell, or bone mineralization. PMID:8346150

  12. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4’-sulfonyl derivative of L-methionine (dabsyl Met), the ...

  13. 21 CFR 582.5477 - Methionine hydroxy analog and its calcium salts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methionine hydroxy analog and its calcium salts... Nutrients and/or Dietary Supplements 1 § 582.5477 Methionine hydroxy analog and its calcium salts. (a) Product. Methionine hydroxy analog and its calcium salts. (b) (c) Limitations, restrictions,...

  14. 21 CFR 582.5477 - Methionine hydroxy analog and its calcium salts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methionine hydroxy analog and its calcium salts... Nutrients and/or Dietary Supplements 1 § 582.5477 Methionine hydroxy analog and its calcium salts. (a) Product. Methionine hydroxy analog and its calcium salts. (b) (c) Limitations, restrictions,...

  15. 21 CFR 582.5477 - Methionine hydroxy analog and its calcium salts.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methionine hydroxy analog and its calcium salts... Nutrients and/or Dietary Supplements 1 § 582.5477 Methionine hydroxy analog and its calcium salts. (a) Product. Methionine hydroxy analog and its calcium salts. (b) (c) Limitations, restrictions,...

  16. 21 CFR 582.5477 - Methionine hydroxy analog and its calcium salts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Methionine hydroxy analog and its calcium salts... Nutrients and/or Dietary Supplements 1 § 582.5477 Methionine hydroxy analog and its calcium salts. (a) Product. Methionine hydroxy analog and its calcium salts. (b) (c) Limitations, restrictions,...

  17. Recurrent selection to control grain methionine content and improve nutritional value of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methionine is an essential amino acid that is limiting in maize-based diets. The objective of this work was to determine if we could alter methionine content in random-mated maize populations by recurrent selection for grain methionine content. In one study, we developed two populations by selecting...

  18. Enhancing S-adenosyl-methionine catabolism extends Drosophila lifespan.

    PubMed

    Obata, Fumiaki; Miura, Masayuki

    2015-01-01

    Methionine restriction extends the lifespan of various model organisms. Limiting S-adenosyl-methionine (SAM) synthesis, the first metabolic reaction of dietary methionine, extends longevity in Caenorhabditis elegans but accelerates pathology in mammals. Here, we show that, as an alternative to inhibiting SAM synthesis, enhancement of SAM catabolism by glycine N-methyltransferase (Gnmt) extends the lifespan in Drosophila. Gnmt strongly buffers systemic SAM levels by producing sarcosine in either high-methionine or low-sams conditions. During ageing, systemic SAM levels in flies are increased. Gnmt is transcriptionally induced in a dFoxO-dependent manner; however, this is insufficient to suppress SAM elevation completely in old flies. Overexpression of gnmt suppresses this age-dependent SAM increase and extends longevity. Pro-longevity regimens, such as dietary restriction or reduced insulin signalling, attenuate the age-dependent SAM increase, and rely at least partially on Gnmt function to exert their lifespan-extending effect in Drosophila. Our study suggests that regulation of SAM levels by Gnmt is a key component of lifespan extension. PMID:26383889

  19. Methionine restriction improves renal insulin signalling in aged kidneys.

    PubMed

    Grant, Louise; Lees, Emma K; Forney, Laura A; Mody, Nimesh; Gettys, Thomas; Brown, Paul A J; Wilson, Heather M; Delibegovic, Mirela

    2016-07-01

    Dietary methionine restriction (MR) leads to loss of adiposity, improved insulin sensitivity and lifespan extension. The possibility that dietary MR can protect the kidney from age-associated deterioration has not been addressed. Aged (10-month old) male and female mice were placed on a MR (0.172% methionine) or control diet (0.86% methionine) for 8-weeks and blood glucose, renal insulin signalling, and gene expression were assessed. Methionine restriction lead to decreased blood glucose levels compared to control-fed mice, and enhanced insulin-stimulated phosphorylation of PKB/Akt and S6 in kidneys, indicative of improved glucose homeostasis. Increased expression of lipogenic genes and downregulation of PEPCK were observed, suggesting that kidneys from MR-fed animals are more insulin sensitive. Interestingly, renal gene expression of the mitochondrial uncoupling protein UCP1 was upregulated in MR-fed animals, as were the anti-ageing and renoprotective genes Sirt1, FGF21, klotho, and β-klotho. This was associated with alterations in renal histology trending towards reduced frequency of proximal tubule intersections containing vacuoles in mice that had been on dietary MR for 190days compared to control-fed mice, which exhibited a pre-diabetic status. Our results indicate that dietary MR may offer therapeutic potential in ameliorating the renal functional decline related to ageing and other disorders associated with metabolic dysfunction by enhancing renal insulin sensitivity and renoprotective gene expression. PMID:27453066

  20. Whole body methionine kinetics, transmethylation, transulfuration and remethylation during pregnancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is evidence from a study of pregnant American women that methionine transmethylation (TM) and remethylation (RM) rates increase and transulfuration (TS) decreases as pregnancy progresses from trimester 1 to 3. To determine whether pregnant Indian women can make this adaptation successfully, me...

  1. (11)C-Methionine uptake in secondary brain epilepsy.

    PubMed

    Lopci, E; Bello, L; Chiti, A

    2014-01-01

    Carbon-11 methionine ((11)C-Methionine) is a radio-labeled amino acid currently utilized in Positron Emission Tomography (PET) for imaging primary and metastatic brain tumors. Its clinical use relies mostly on oncologic applications, but the tracer has the potential to investigate other non-malignant conditions. So far, very limited evidence concerns the use of (11)C-Methionine in patients suffering from seizure; however, the tracer can find a proper utilization in this setting especially as a diagnostic complement to (18)F-Fluorodeoxyglucose ((18)F-FDG). Herein we report the case of a 57-year-old patient presenting with epileptic crises secondary to a brain metastasis from bladder carcinoma, who was investigated in our institution with (11)C-Methionine PET. The scan documented the disease recurrence in the left parietal lobe associated with a diffused tracer uptake in the surrounding cerebral circumvolutions, derived from the comitial status. After surgical removal of the metastatic lesion, the patient experienced a complete recovery of symptoms and no further onset of secondary seizure. PMID:24630372

  2. The role of methionine metabolism in inflammatory bowel disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methionine (Met) cycle activity is critical for normal cell functions. Met metabolites S-adenosylmethionine (SAM) and methylthioadenosine (MTA) are anti-inflammatory, yet their role in inflammatory bowel disease (IBD) is poorly understood. We hypothesize that active IBD leads to changes in Met metab...

  3. Methionine splanchnic uptake is increased in critically ill children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During critical illness the splanchnic area is profoundly affected. There is no information on splanchnic uptake of amino acids in vivo, in critically ill children. Methionine splanchnic uptake in critically ill children will differ from estimates in healthy adults. We studied 24 critically ill chil...

  4. ALTERED METHIONINE METABOLISM IN LONG LIVING AMES DWARF MICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ames dwarf mice (df/df) are deficient in growth hormone, prolactin, and thyroid-stimulating hormone and live significantly longer than their normal siblings. In the current study, we found that the hormone deficiencies affect methionine metabolism. We previously reported that the dwarf mice exhibit ...

  5. Technical note: Methionine, a precursor of methane in living plants

    NASA Astrophysics Data System (ADS)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2014-11-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued, not only about their contribution to the global methane budget, but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds identified. We made use of stable isotope techniques to verify in vivo formation of methane and, in order to identify the carbon precursor, 13C-positionally labelled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labelled methionine clearly identified the sulphur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  6. Technical Note: Methionine, a precursor of methane in living plants

    NASA Astrophysics Data System (ADS)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  7. Oxidized methionine is not a prion-specific covalent modification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The oxidation of methionine residues in the '-helical region of PrPC has been proposed to be important for prion formation. This proposal has been supported by structural studies, model systems and antibody-based experimental evidence. We developed a sensitive mass spectrometry-based method to stu...

  8. Identification of oxidized methionine residues in peptides containing two methionine residues by derivatization and matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Hollemeyer, Klaus; Heinzle, Elmar; Tholey, Andreas

    2002-11-01

    Oxidation of methionine residues in peptides and proteins occurs in vivo or may be an artifact resulting from purification steps. We present a three step method for the localization of methionine sulfoxides in peptides with two methionine residues. In the first step, the N-terminus as well as other reactive side chain functions are blocked by acetylation. The resulting protected peptides are cleaved by cyanogen bromide. The cleavage does not occur at methionine sulfoxide but only at reduced methionine residues forming new amino termini. The newly formed amino group is then derivatized with a bromine containing compound in the last step of the procedure. The resulting peptide can easily be identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry using both the characteristic isotope pattern of the halogen and the metastable loss of methanesulfenic acid from oxidized residues. This procedure allows the unequivocal localization of oxidized methionines even in complex peptide mixtures. PMID:12442252

  9. Correlation of carnitine levels to methionine and lysine intake.

    PubMed

    Krajcovicová-Kudlácková, M; Simoncic, R; Béderová, A; Babinská, K; Béder, I

    2000-01-01

    Plasma carnitine levels were measured in two alternative nutrition groups--strict vegetarians (vegans) and lactoovovegetarians (vegetarians consuming limited amounts of animal products such as milk products and eggs). The results were compared to an average sample of probands on mixed nutrition (omnivores). Carnitine levels were correlated with the intake of essential amino acids, methionine and lysine (as substrates of its endogenous synthesis), since the intake of carnitine in food is negligible in the alternative nutrition groups (the highest carnitine content is in meat, lower is in milk products, while fruit, cereals and vegetables contain low or no carnitine at all). An average carnitine level in vegans was significantly reduced with hypocarnitinemia present in 52.9% of probands. Similarly, the intake of methionine and lysine was significantly lower in this group due to the exclusive consumption of plant proteins with reduced content of these amino acids. Carnitine level in lactoovovegetarians was also significantly reduced, but the incidence of values below 30 micromol/l was lower than in vegans representing 17.8% vs. 3.3% in omnivores. Intake of methionine and lysine was also significantly reduced in this group, but still higher compared to vegans (73% of protein intake covered by plant proteins). Significant positive correlation of carnitine levels with methionine and lysine intake in alternative nutrition groups indicates that a significant portion of carnitine requirement is covered by endogenous synthesis. Approximately two thirds of carnitine requirement in omnivores comes from exogenous sources. The results demonstrate the risks of alternative nutrition with respect to the intake of essential amino acids, methionine and lysine, and with respect to the intake and biosynthesis of carnitine. PMID:11043928

  10. The determination of methionine in proteins by gas-liquid chromatography.

    PubMed Central

    Ellinger, G M; Duncan, A

    1976-01-01

    Intact methionine residues in proteins were rapidly and precisely determined by measuring methyl thiocyanate released during the reaction with CNBr and separated by g.l.c. Conditions for the reaction and for chromatography on columns of Porapak P-S are described. The recovery of methyl thiocyanate from several methionine derivatives and analogues were examined. Carbamoylmethionine was adopted as a stable primary standard and ethyl thiocyanate as internal standard. The measured methionine content of several isolated proteins was close to the theoretical value indicated by previous work and the results for these and a range of food proteins agreed well with results obtained by ion-exchange chromatography after performic acid oxidation. Since CNBr does not react with methionine sulphoxide and a preliminary hydrolysis is not required, the method discriminates between methionine and any methionine sulphoxide that may be present. It could be useful in studies on the nutritional availability of methionine in processed foods. PMID:949322

  11. Effects of supplements of folic acid, vitamin B12, and rumen-protected methionine on whole body metabolism of methionine and glucose in lactating dairy cows.

    PubMed

    Preynat, A; Lapierre, H; Thivierge, M C; Palin, M F; Matte, J J; Desrochers, A; Girard, C L

    2009-02-01

    The present experiment was undertaken to determine the effects of dietary supplements of rumen-protected methionine and intramuscular injections of folic acid and vitamin B(12), given 3 wk before to 16 wk after calving, on glucose and methionine metabolism of lactating dairy cows. Twenty-four multiparous Holstein cows were assigned to 6 blocks of 4 cows each according to their previous milk production. Within each block, 2 cows were fed a diet estimated to supply methionine as 1.83% metabolizable protein, equivalent to 76% of methionine requirement, whereas the 2 other cows were fed the same diet supplemented daily with 18 g of rumen-protected methionine. Within each diet, the cows were administrated either no vitamin supplement or weekly intramuscular injections of 160 mg of folic acid plus 10 mg of vitamin B(12.) To investigate metabolic changes at 12 wk of lactation, glucose and methionine kinetics were measured by isotope dilution using infusions of 3[U-(13)C]glucose, [(13)C]NaHCO(3) and 3[1-(13)C,(2)H(3)] methionine. Milk and plasma concentrations of folic acid and vitamin B(12) increased with vitamin injections. Supplementary B-vitamins increased milk production from 34.7 to 38.9 +/- 1.0 kg/d and increased milk lactose, protein, and total solids yields. Whole-body glucose flux tended to increase with vitamin supplementation with a similar quantitative magnitude as the milk lactose yield increase. Vitamin supplementation increased methionine utilization for protein synthesis through increased protein turnover when methionine was deficient and through decreased methionine oxidation when rumen-protected methionine was fed. Vitamin supplementation decreased plasma concentrations of homocysteine independently of rumen-protected methionine feeding, although no effect of vitamin supplementation was measured on methionine remethylation, but this could be due to the limitation of the technique used. Therefore, the effects of these B-vitamins on lactation performance

  12. Efficacy of DL-methionine hydroxy analogue-free acid in comparison to DL-methionine in growing male white Pekin ducks.

    PubMed

    Kluge, H; Gessner, D K; Herzog, E; Eder, K

    2016-03-01

    The present study was performed to assess the bioefficacy of DL-methionine hydroxy analogue-free acid (MHA) in comparison to DL-methionine (DLM) as sources of methionine for growing male white Pekin ducks in the first 3 wk of life. For this aim, 580 1-day-old male ducks were allocated into 12 treatment groups and received a basal diet that contained 0.29% of methionine, 0.34% of cysteine and 0.63% of total sulphur containing amino acids or the same diet supplemented with either DLM or MHA in amounts to supply 0.05, 0.10, 0.15, 0.20, and 0.25% of methionine equivalents. Ducks fed the control diet without methionine supplement had the lowest final body weights, daily body weight gains and feed intake among all groups. Supplementation of methionine improved final body weights and daily body weight gains in a dose dependent-manner. There was, however, no significant effect of the source of methionine on all of the performance responses. Evaluation of the data of daily body weight gains with an exponential model of regression revealed a nearly identical efficacy (slope of the curves) of both compounds for growth (DLM = 100%, MHA = 101%). According to the exponential model of regression, 95% of the maximum values of daily body weight gain were reached at methionine supplementary levels of 0.080% and 0.079% for DLM and MHA, respectively. Overall, the present study indicates that MHA and DLM have a similar efficacy as sources of methionine for growing ducks. It is moreover shown that dietary methionine concentrations of 0.37% are required to reach 95% of the maximum of daily body weight gains in ducks during the first 3 wk of life. PMID:26706358

  13. Structure of methionine γ-lyase from Clostridium sporogenes.

    PubMed

    Revtovich, Svetlana; Anufrieva, Natalya; Morozova, Elena; Kulikova, Vitalia; Nikulin, Alexey; Demidkina, Tatyana

    2016-01-01

    Methionine γ-lyase (MGL) is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the γ-elimination reaction of L-methionine. The enzyme is a promising target for therapeutic intervention in some anaerobic pathogens and has attracted interest as a potential cancer treatment. The crystal structure of MGL from Clostridium sporogenes has been determined at 2.37 Å resolution. The fold of the protein is similar to those of homologous enzymes from Citrobacter freundii, Entamoeba histolytica, Pseudomonas putida and Trichomonas vaginalis. A comparison of these structures revealed differences in the conformation of two flexible regions of the N- and C-terminal domains involved in the active-site architecture. PMID:26750487

  14. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    DOE PAGESBeta

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Lavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.; Coates, John D.

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and amore » putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often stressed in the environment by reactive chlorine species (RCS) of

  15. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    SciTech Connect

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Lavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.; Coates, John D.

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and a putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often

  16. Comparative genomics of transcriptional regulation of methionine metabolism in Proteobacteria.

    PubMed

    Leyn, Semen A; Suvorova, Inna A; Kholina, Tatiana D; Sherstneva, Sofia S; Novichkov, Pavel S; Gelfand, Mikhail S; Rodionov, Dmitry A

    2014-01-01

    Methionine metabolism and uptake genes in Proteobacteria are controlled by a variety of RNA and DNA regulatory systems. We have applied comparative genomics to reconstruct regulons for three known transcription factors, MetJ, MetR, and SahR, and three known riboswitch motifs, SAH, SAM-SAH, and SAM_alpha, in ∼ 200 genomes from 22 taxonomic groups of Proteobacteria. We also identified two novel regulons: a SahR-like transcription factor SamR controlling various methionine biosynthesis genes in the Xanthomonadales group, and a potential RNA regulatory element with terminator-antiterminator mechanism controlling the metX or metZ genes in beta-proteobacteria. For each analyzed regulator we identified the core, taxon-specific and genome-specific regulon members. By analyzing the distribution of these regulators in bacterial genomes and by comparing their regulon contents we elucidated possible evolutionary scenarios for the regulation of the methionine metabolism genes in Proteobacteria. PMID:25411846

  17. Comparative genomics of transcriptional regulation of methionine metabolism in proteobacteria

    DOE PAGESBeta

    Leyn, Semen A.; Suvorova, Inna A.; Kholina, Tatiana D.; Sherstneva, Sofia S.; Novichkov, Pavel S.; Gelfand, Mikhail S.; Rodionov, Dmitry A.; Kuipers, Oscar P.

    2014-11-20

    Methionine metabolism and uptake genes in Proteobacteria are controlled by a variety of RNA and DNA regulatory systems. We have applied comparative genomics to reconstruct regulons for three known transcription factors, MetJ, MetR, and SahR, and three known riboswitch motifs, SAH, SAM-SAH, and SAM_alpha, in ~200 genomes from 22 taxonomic groups of Proteobacteria. We also identified two novel regulons: a SahR-like transcription factor SamR controlling various methionine biosynthesis genes in the Xanthomonadales group, and a potential RNA regulatory element with terminator-antiterminator mechanism controlling the metX or metZ genes in beta-proteobacteria. For each analyzed regulator we identified the core, taxon-specific andmore » genome-specific regulon members. By analyzing the distribution of these regulators in bacterial genomes and by comparing their regulon contents we elucidated possible evolutionary scenarios for the regulation of the methionine metabolism genes in Proteobacteria.« less

  18. Comparative genomics of transcriptional regulation of methionine metabolism in proteobacteria

    SciTech Connect

    Leyn, Semen A.; Suvorova, Inna A.; Kholina, Tatiana D.; Sherstneva, Sofia S.; Novichkov, Pavel S.; Gelfand, Mikhail S.; Rodionov, Dmitry A.; Kuipers, Oscar P.

    2014-11-20

    Methionine metabolism and uptake genes in Proteobacteria are controlled by a variety of RNA and DNA regulatory systems. We have applied comparative genomics to reconstruct regulons for three known transcription factors, MetJ, MetR, and SahR, and three known riboswitch motifs, SAH, SAM-SAH, and SAM_alpha, in ~200 genomes from 22 taxonomic groups of Proteobacteria. We also identified two novel regulons: a SahR-like transcription factor SamR controlling various methionine biosynthesis genes in the Xanthomonadales group, and a potential RNA regulatory element with terminator-antiterminator mechanism controlling the metX or metZ genes in beta-proteobacteria. For each analyzed regulator we identified the core, taxon-specific and genome-specific regulon members. By analyzing the distribution of these regulators in bacterial genomes and by comparing their regulon contents we elucidated possible evolutionary scenarios for the regulation of the methionine metabolism genes in Proteobacteria.

  19. Dynamics of methionine ligand rebinding in cytochrome c.

    PubMed

    Zhang, Ping; Małolepsza, Edyta; Straub, John E

    2012-06-14

    Geminate recombination of the methionine ligand to the heme iron in ferrous cytochrome c protein following photodissociation displays rich kinetics. It is of particular interest to develop an understanding of fast and slow rebinding time scales, observed in experimental studies, in terms of features of the underlying complex energy landscape. The classical empirical force field in the heme pocket has been extended by incorporating ab initio potential energy surface calculations representing the ground singlet state and quintet state associated with methionine bond breaking and rebinding. An algorithm based on the Landau-Zener nonadiabatic transition theory has been employed to model the electronic surface hopping between two spin states during the process of ligand dissociation and recombination. Multiple conformational substates of the dissociated methionine ligand are found to participate in the reaction dynamics. Varying time scales for interconversion between substates lead to a mechanism elucidating the fast and slow rebinding time scales. The reaction system may be understood in terms of a two-dimensional reaction coordinate distinctly separated from the coupled bath of surrounding protein and solvent degrees of freedom. Insights into the reaction dynamics provided by this study lead to suggestions for future experiments to further probe the role of dynamic heterogeneity in the kinetics of ligand-protein binding. PMID:22432601

  20. Comparative Genomics of Transcriptional Regulation of Methionine Metabolism in Proteobacteria

    PubMed Central

    Leyn, Semen A.; Suvorova, Inna A.; Kholina, Tatiana D.; Sherstneva, Sofia S.; Novichkov, Pavel S.; Gelfand, Mikhail S.; Rodionov, Dmitry A.

    2014-01-01

    Methionine metabolism and uptake genes in Proteobacteria are controlled by a variety of RNA and DNA regulatory systems. We have applied comparative genomics to reconstruct regulons for three known transcription factors, MetJ, MetR, and SahR, and three known riboswitch motifs, SAH, SAM-SAH, and SAM_alpha, in ∼200 genomes from 22 taxonomic groups of Proteobacteria. We also identified two novel regulons: a SahR-like transcription factor SamR controlling various methionine biosynthesis genes in the Xanthomonadales group, and a potential RNA regulatory element with terminator-antiterminator mechanism controlling the metX or metZ genes in beta-proteobacteria. For each analyzed regulator we identified the core, taxon-specific and genome-specific regulon members. By analyzing the distribution of these regulators in bacterial genomes and by comparing their regulon contents we elucidated possible evolutionary scenarios for the regulation of the methionine metabolism genes in Proteobacteria. PMID:25411846

  1. Potential for Development of an Escherichia coli—Based Biosensor for Assessing Bioavailable Methionine: A Review

    PubMed Central

    Chalova, Vesela I.; Froelich, Clifford A.; Ricke, Steven C.

    2010-01-01

    Methionine is an essential amino acid for animals and is typically considered one of the first limiting amino acids in animal feed formulations. Methionine deficiency or excess in animal diets can lead to sub-optimal animal performance and increased environmental pollution, which necessitates its accurate quantification and proper dosage in animal rations. Animal bioassays are the current industry standard to quantify methionine bioavailability. However, animal-based assays are not only time consuming, but expensive and are becoming more scrutinized by governmental regulations. In addition, a variety of artifacts can hinder the variability and time efficacy of these assays. Microbiological assays, which are based on a microbial response to external supplementation of a particular nutrient such as methionine, appear to be attractive potential alternatives to the already established standards. They are rapid and inexpensive in vitro assays which are characterized with relatively accurate and consistent estimation of digestible methionine in feeds and feed ingredients. The current review discusses the potential to develop Escherichia coli-based microbial biosensors for methionine bioavailability quantification. Methionine biosynthesis and regulation pathways are overviewed in relation to genetic manipulation required for the generation of a respective methionine auxotroph that could be practical for a routine bioassay. A prospective utilization of Escherichia coli methionine biosensor would allow for inexpensive and rapid methionine quantification and ultimately enable timely assessment of nutritional profiles of feedstuffs. PMID:22319312

  2. The Pediatric Methionine Requirement Should Incorporate Remethylation Potential and Transmethylation Demands.

    PubMed

    Robinson, Jason L; Bertolo, Robert F

    2016-05-01

    The metabolic demand for methionine is great in neonates. Indeed, methionine is the only indispensable sulfur amino acid and is required not only for protein synthesis and growth but is also partitioned to a greater extent to transsulfuration for cysteine and taurine synthesis and to >50 transmethylation reactions that serve to methylate DNA and synthesize metabolites, including creatine and phosphatidylcholine. Therefore, the pediatric methionine requirement must accommodate the demands of rapid protein turnover as well as vast nonprotein demands. Because cysteine spares the methionine requirement, it is likely that the dietary provision of transmethylation products can also feasibly spare methionine. However, understanding the requirement of methionine is further complicated because demethylated methionine can be remethylated by the dietary methyl donors folate and betaine (derived from choline). Intakes of dietary methyl donors are highly variable, which is of particular concern for newborns. It has been demonstrated that many populations have enhanced requirements for these nutrients, and nutrient fortification may exacerbate this phenomenon by selecting phenotypes that increase methyl requirements. Moreover, higher transmethylation rates can limit methyl supply and affect other transmethylation reactions as well as protein synthesis. Therefore, careful investigations are needed to determine how remethylation and transmethylation contribute to the methionine requirement. The purpose of this review is to support our hypothesis that dietary methyl donors and consumers can drive methionine availability for protein synthesis and transmethylation reactions. We argue that nutritional strategies in neonates need to ensure that methionine is available to meet requirements for growth as well as for transmethylation products. PMID:27184279

  3. Purification and comparison of two forms of S-adenosyl-L-methionine synthetase from rat liver.

    PubMed

    Cabrero, C; Puerta, J; Alemany, S

    1987-12-30

    Only two S-adenosyl-L-methionine synthetase forms exist in rat liver: high-Mr S-adenosyl-L-methionine synthetase and low-Mr S-adenosyl-L-methionine synthetase, which have been purified to apparent homogeneity as judged by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. High-Mr S-adenosyl-L-methionine synthetase had an apparent molecular mass, determined by gel filtration, of 210 kDa and was a tetramer constituted by 48.5-kDa subunits, estimated by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The apparent molecular mass of low-Mr S-adenosyl-L-methionine synthetase, as estimated by gel filtration, was 110 kDa and was constituted by two subunits of 47 kDa. An antiserum against low-Mr S-adenosyl-L-methionine synthetase cross-reacted with the two forms. Reverse-phase HPLC runs of tryptic digestions of high-Mr and low-Mr S-adenosyl-L-methionine synthetase showed that the peptide maps of the two forms were very similar, if not identical. High-Mr S-adenosyl-L-methionine synthetase activity was inhibited by S-adenosyl-L-methionine and pyrophosphate. Depending on the dose used, S-adenosyl-L-methionine activated or inhibited low-Mr S-adenosyl-L-methionine synthetase and pyrophosphate had no effect on this form. The two synthetases showed a different specific activity at the physiological concentration of methionine. This report shows that even though the two forms are constructed of the same polypeptide chains, they are regulated in a different manner by methionine and by the products of the reaction. PMID:3121322

  4. Soluble methionine enhances accumulation of a 15 kDa zein, a methionine-rich storage protein, in transgenic alfalfa but not in transgenic tobacco plants.

    PubMed

    Amira, Golan; Ifat, Matityahu; Tal, Avraham; Hana, Badani; Shmuel, Galili; Rachel, Amir

    2005-09-01

    With the general aim of elevating the content of the essential amino acid methionine in vegetative tissues of plants, alfalfa (Medicago sativa L.) and tobacco plants, as well as BY2 tobacco suspension cells, were transformed with a beta-zein::3HA gene under the 35S promoter of cauliflower mosaic virus encoding a rumen-stable methionine-rich storage protein of 15 kDa zein. To examine whether soluble methionine content limited the accumulation of the 15 kDa zein::3HA, methionine was first added to the growth medium of the different transgenic plants and the level of the alien protein was determined. Results demonstrated that the added methionine enhanced the accumulation of the 15 kDa zein::3HA in transgenic alfalfa and tobacco BY2 cells, but not in whole transgenic tobacco plants. Next, the endogenous levels of methionine were elevated in the transgenic tobacco and alfalfa plants by crossing them with plants expressing the Arabidopsis cystathionine gamma-synthase (AtCGS) having significantly higher levels of soluble methionine in their leaves. Compared with plants expressing only the 15 kDa zein::3HA, transgenic alfalfa co-expressing both alien genes showed significantly enhanced levels of this protein concurrently with a reduction in the soluble methionine content, thus implying that soluble methionine was incorporated into the 15 kDa zein::3HA. Similar phenomena also occurred in tobacco, but were considerably less pronounced. The results demonstrate that the accumulation of the 15 kDa zein::3HA is regulated in a species-specific manner and that soluble methionine plays a major role in the accumulation of the 15 kDa zein in some plant species but less so in others. PMID:16061510

  5. Comparison of L-(1-/sup 11/C)methionine and L-methyl-(/sup 11/C)methionine for measuring in vivo protein synthesis rates with PET

    SciTech Connect

    Ishiwata, K.; Vaalburg, W.; Elsinga, P.H.; Paans, A.M.; Woldring, M.G.

    1988-08-01

    To evaluate the feasibility of using either L-(1-11C)-methionine or L-(methyl-11C)methionine for measuring protein synthesis rates by positron emission tomography (PET) in normal and neoplastic tissues, distribution and metabolic studies with 14C- and 11C-labeled methionines were carried out in rats bearing Walker 256 carcinosarcoma. The tissue distributions of the two 14C-labeled methionines were similar except for liver tissue. Similar distribution patterns were observed in vivo by PET using 11C-labeled methionines. The highest 14C incorporation rate into the protein-bound fraction was found in the liver followed by tumor, brain, and pancreas. The incorporation rates in liver and pancreas were different for the two methionines. By chloroform-methanol fractionation of these four tissues, in liver significantly different amounts of 14C were observed in macromolecules. Also in brain tissue slight differences were found. By HPLC analyses of the protein-free fractions of plasma, tumor, and brain tissue at 60 min after injection, for both methionines several 14C-labeled metabolites in different amounts, were detected. About half of the 14C-labeled material in the protein-free fraction was found to be methionine. In these three tissues the amount of nonprotein metabolites and (14C)bicarbonate amount ranged from 10% to 17% and 12% to 15% for L-(1-14C)methionine and L-(methyl-14C)methionine, respectively. From these results it can be concluded that the minor metabolic pathways have to be investigated in order to quantitatively model the protein synthesis by PET.

  6. Diversity of Plant Methionine Sulfoxide Reductases B and Evolution of a Form Specific for Free Methionine Sulfoxide

    PubMed Central

    Le, Dung Tien; Tarrago, Lionel; Watanabe, Yasuko; Kaya, Alaattin; Lee, Byung Cheon; Tran, Uyen; Nishiyama, Rie; Fomenko, Dmitri E.; Gladyshev, Vadim N.; Tran, Lam-Son Phan

    2013-01-01

    Methionine can be reversibly oxidized to methionine sulfoxide (MetO) under physiological conditions. Organisms evolved two distinct methionine sulfoxide reductase families (MSRA & MSRB) to repair oxidized methionine residues. We found that 5 MSRB genes exist in the soybean genome, including GmMSRB1 and two segmentally duplicated gene pairs (GmMSRB2 and GmMSRB5, GmMSRB3 and GmMSRB4). GmMSRB2 and GmMSRB4 proteins showed MSRB activity toward protein-based MetO with either DTT or thioredoxin (TRX) as reductants, whereas GmMSRB1 was active only with DTT. GmMSRB2 had a typical MSRB mechanism with Cys121 and Cys 68 as catalytic and resolving residues, respectively. Surprisingly, this enzyme also possessed the MSRB activity toward free Met-R-O with kinetic parameters similar to those reported for fRMSR from Escherichia coli, an enzyme specific for free Met-R-O. Overexpression of GmMSRB2 or GmMSRB4 in the yeast cytosol supported the growth of the triple MSRA/MSRB/fRMSR (Δ3MSRs) mutant on MetO and protected cells against H2O2-induced stress. Taken together, our data reveal an unexpected diversity of MSRBs in plants and indicate that, in contrast to mammals that cannot reduce free Met-R-O and microorganisms that use fRMSR for this purpose, plants evolved MSRBs for the reduction of both free and protein-based MetO. PMID:23776515

  7. Novel Mechanism for Scavenging of Hypochlorite Involving a Periplasmic Methionine-Rich Peptide and Methionine Sulfoxide Reductase

    PubMed Central

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Iavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.

    2015-01-01

    ABSTRACT Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and a putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. PMID:25968643

  8. (35S)methionine interaction with rat liver tRNA and effect of chemical carcinogens

    SciTech Connect

    Kanduc, D.; Quagliariello, E. )

    1991-07-01

    The interaction of (35S)methionine with hepatic tRNA in normal, carcinogen-treated, and partially hepatectomized rats was studied. tRNA was preferentially labeled following (35S)methionine (1.6 mCi, 25 mg/kg body wt) administration by intraperitoneal injection. The extent of (35S)methionine-tRNA interaction was impaired by partial hepatectomy and by conditions having a carcinogenic potential.

  9. Methionine sulfoximine, an alternative selection for the bar marker in plants.

    PubMed

    Maughan, S C; Cobbett, C S

    2003-04-24

    Methionine sulfoximine, like phosphinothricin (PPT), the active agent in the herbicide BASTA, is a glutamate analogue that inhibits growth of wildtype Arabidopsis plants through its action on glutamine synthetase. The bar gene, which confers resistance to PPT, also confers resistance to methionine sulfoximine. In this study we show that methionine sulfoximine is an effective and economical alternative to PPT as a selective agent in agar medium. PMID:12697389

  10. Oxidation of Methionine Residues in Polypeptide Ions Via Gas-Phase Ion/Ion Chemistry

    NASA Astrophysics Data System (ADS)

    Pilo, Alice L.; McLuckey, Scott A.

    2014-06-01

    The gas-phase oxidation of methionine residues is demonstrated here using ion/ion reactions with periodate anions. Periodate anions are observed to attach in varying degrees to all polypeptide ions irrespective of amino acid composition. Direct proton transfer yielding a charge-reduced peptide ion is also observed. In the case of methionine and, to a much lesser degree, tryptophan-containing peptide ions, collisional activation of the complex ion generated by periodate attachment yields an oxidized peptide product (i.e., [M + H + O]+), in addition to periodic acid detachment. Detachment of periodic acid takes place exclusively for peptides that do not contain either a methionine or tryptophan side chain. In the case of methionine-containing peptides, the [M + H + O]+ product is observed at a much greater abundance than the proton transfer product (viz., [M + H]+). Collisional activation of oxidized Met-containing peptides yields a signature loss of 64 Da from the precursor and/or product ions. This unique loss corresponds to the ejection of methanesulfenic acid from the oxidized methionine side chain and is commonly used in solution-phase proteomics studies to determine the presence of oxidized methionine residues. The present work shows that periodate anions can be used to `label' methionine residues in polypeptides in the gas phase. The selectivity of the periodate anion for the methionine side chain suggests several applications including identification and location of methionine residues in sequencing applications.

  11. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway.

    PubMed

    Campbell, Kate; Vowinckel, Jakob; Keller, Markus A; Ralser, Markus

    2016-04-01

    Nutrient uptake and metabolism have a significant impact on the way cells respond to stress. The amino acid methionine is, in particular, a key player in the oxidative stress response, and acting as a reactive oxygen species scavenger, methionine is implicated in caloric restriction phenotypes and aging. We here provide evidence that some effects of methionine in stress situations are indirect and caused by altered activity of the nicotinamide adenine dinucleotide phosphate (NADPH) producing oxidative part of the pentose phosphate pathway (PPP). In Saccharomyces cerevisiae, both methionine prototrophic (MET15) and auxotrophic (met15Δ) cells supplemented with methionine showed an increase in PPP metabolite concentrations downstream of the NADPH producing enzyme, 6-phosphogluconate dehydrogenase. Proteomics revealed this enzyme to also increase in expression compared to methionine self-synthesizing cells. Oxidant tolerance was increased in cells preincubated with methionine; however, this effect was abolished when flux through the oxidative PPP was prevented by deletion of its rate limiting enzyme, ZWF1. Stress resistance phenotypes that follow methionine supplementation hence involve the oxidative PPP. Effects of methionine on oxidative metabolism, stress signaling, and aging have thus to be seen in the context of an altered activity of this NADP reducing pathway. Antioxid. Redox Signal. 24, 543-547. PMID:26596469

  12. Methionine Metabolism Alters Oxidative Stress Resistance via the Pentose Phosphate Pathway

    PubMed Central

    Campbell, Kate; Vowinckel, Jakob; Keller, Markus A.

    2016-01-01

    Abstract Nutrient uptake and metabolism have a significant impact on the way cells respond to stress. The amino acid methionine is, in particular, a key player in the oxidative stress response, and acting as a reactive oxygen species scavenger, methionine is implicated in caloric restriction phenotypes and aging. We here provide evidence that some effects of methionine in stress situations are indirect and caused by altered activity of the nicotinamide adenine dinucleotide phosphate (NADPH) producing oxidative part of the pentose phosphate pathway (PPP). In Saccharomyces cerevisiae, both methionine prototrophic (MET15) and auxotrophic (met15Δ) cells supplemented with methionine showed an increase in PPP metabolite concentrations downstream of the NADPH producing enzyme, 6-phosphogluconate dehydrogenase. Proteomics revealed this enzyme to also increase in expression compared to methionine self-synthesizing cells. Oxidant tolerance was increased in cells preincubated with methionine; however, this effect was abolished when flux through the oxidative PPP was prevented by deletion of its rate limiting enzyme, ZWF1. Stress resistance phenotypes that follow methionine supplementation hence involve the oxidative PPP. Effects of methionine on oxidative metabolism, stress signaling, and aging have thus to be seen in the context of an altered activity of this NADP reducing pathway. Antioxid. Redox Signal. 24, 543–547. PMID:26596469

  13. Influence of protein level and supplemental methionine in practical rations for young endangered masked bobwhite quail

    USGS Publications Warehouse

    Serafin, J.A.

    1982-01-01

    A study was conducted to examine the protein requirement of young endangered masked Bobwhite quail (Colinus virginianus ridgwayi). Five practical starting rations containing 24 to 32% protein were fed alone and supplemented with methionine for 5 weeks. Supplemental methionine significantly improved growth of quail fed diets containing 24 and 26% protein. Increasing the protein level improved growth of quail fed unsupplemented diets but did not do so when diets contained supplemental methionine. A methionine-supplemented ration containing 24% protein appeared adequate for supporting rapid growth of masked Bobwhite quail.

  14. Higher endogenous methionine in transgenic Arabidopsis seeds affects the composition of storage proteins and lipids.

    PubMed

    Cohen, Hagai; Pajak, Agnieszka; Pandurangan, Sudhakar; Amir, Rachel; Marsolais, Frédéric

    2016-06-01

    Previous in vitro studies demonstrate that exogenous application of the sulfur-containing amino acid methionine into cultured soybean cotyledons and seedlings reduces the level of methionine-poor storage proteins and elevates those that are methionine-rich. However, the effect of higher endogenous methionine in seeds on the composition of storage products in vivo is not studied yet. We have recently produced transgenic Arabidopsis seeds having significantly higher levels of methionine. In the present work we used these seeds as a model system and profiled them for changes in the abundances of 12S-globulins and 2S-albumins, the two major groups of storage proteins, using 2D-gels and MALDI-MS detection. The findings suggest that higher methionine affects from a certain threshold the accumulation of several subunits of 12S-globulins and 2S-albumins, regardless of their methionine contents, resulting in higher total protein contents. The mRNA abundances of most of the genes encoding these proteins were either correlated or not correlated with the abundances of these proteins, implying that methionine may regulate storage proteins at both transcriptional and post-transcriptional levels. The elevations in total protein contents resulted in reduction of total lipids and altered the fatty acid composition. Altogether, the data provide new insights into the regulatory roles of elevated methionine levels on seed composition. PMID:26888094

  15. Methionine kinetics in adult men: effects of dietary betaine on L-(2H3-methyl-1-13C)methionine

    SciTech Connect

    Storch, K.J.; Wagner, D.A.; Young, V.R. )

    1991-08-01

    The effects of a daily 3-g supplement of betaine on kinetic aspects of L-(2H3-methyl-1-13C)methionine (MET) metabolism in healthy young adult men were explored. Four groups of four subjects each were given a control diet, based on an L-amino acid mixture supplying 29.5 and 21.9 mg.kg-1.d-1 of L-methionine and L-cystine for 4 d before the tracer study, conducted on day 5 during the fed state. Two groups received the control diet and two groups received the betaine supplement. Tracer was given intravenously (iv) or orally. The transmethylation rate of MET (TM), homocysteine remethylation (RM), and oxidation of methionine were estimated from plasma methionine labeling and 13C enrichment of expired air. RM tended to increase (P = 0.14) but the TM and methionine oxidation were significantly (P less than 0.05) higher after betaine supplementation when estimated with the oral tracer. No differences were detected with the intravenous tracer. Methionine concentration in plasma obtained from blood taken from subjects in the fed state was higher (P less than 0.01) with betaine supplementation. These results suggest that excess methyl-group intake may increase the dietary requirement for methionine.

  16. Insights into the reactivation of cobalamin-dependent methionine synthase

    SciTech Connect

    Koutmos, Markos; Datta, Supratim; Pattridge, Katherine A.; Smith, Janet L.; Matthews, Rowena G.

    2009-12-10

    Cobalamin-dependent methionine synthase (MetH) is a modular protein that catalyzes the transfer of a methyl group from methyltetrahydrofolate to homocysteine to produce methionine and tetrahydrofolate. The cobalamin cofactor, which serves as both acceptor and donor of the methyl group, is oxidized once every {approx}2,000 catalytic cycles and must be reactivated by the uptake of an electron from reduced flavodoxin and a methyl group from S-adenosyl-L-methionine (AdoMet). Previous structures of a C-terminal fragment of MetH (MetH{sup CT}) revealed a reactivation conformation that juxtaposes the cobalamin- and AdoMet-binding domains. Here we describe 2 structures of a disulfide stabilized MetH{sup CT} ({sub s-s}MetH{sup CT}) that offer further insight into the reactivation of MetH. The structure of {sub s-s}MetH{sup CT} with cob(II)alamin and S-adenosyl-L-homocysteine represents the enzyme in the reactivation step preceding electron transfer from flavodoxin. The structure supports earlier suggestions that the enzyme acts to lower the reduction potential of the Co(II)/Co(I) couple by elongating the bond between the cobalt and its upper axial water ligand, effectively making the cobalt 4-coordinate, and illuminates the role of Tyr-1139 in the stabilization of this 4-coordinate state. The structure of {sub s-s}MetH{sub CT} with aquocobalamin may represent a transient state at the end of reactivation as the newly remethylated 5-coordinate methylcobalamin returns to the 6-coordinate state, triggering the rearrangement to a catalytic conformation.

  17. An unusual peptide deformylase features in the human mitochondrial N-terminal methionine excision pathway.

    PubMed

    Serero, Alexandre; Giglione, Carmela; Sardini, Alessandro; Martinez-Sanz, Juan; Meinnel, Thierry

    2003-12-26

    Dedicated machinery for N-terminal methionine excision (NME) was recently identified in plant organelles and shown to be essential in plastids. We report here the existence of mitochondrial NME in mammals, as shown by the identification of cDNAs encoding specific peptide deformylases (PDFs) and new methionine aminopeptidases (MAP1D). We cloned the two full-length human cDNAs and showed that the N-terminal domains of the encoded enzymes were specifically involved in targeting to mitochondria. In contrast to mitochondrial MAP1D, the human PDF sequence differed from that of known PDFs in several key features. We characterized the human PDF fully in vivo and in vitro. Comparison of the processed human enzyme with the plant mitochondrial PDF1A, to which it is phylogenetically related, showed that the human enzyme had an extra N-terminal domain involved in both mitochondrial targeting and enzyme stability. Mammalian PDFs also display non-random substitutions in the conserved motifs important for activity. Human PDF site-directed mutagenesis variants were studied and compared with the corresponding plant PDF1A variants. We found that amino acid substitutions in human PDF specifically altered its catalytic site, resulting in an enzyme intermediate between bacterial PDF1Bs and plant PDF1As. Because (i) human PDF was found to be active both in vitro and in vivo, (ii) the entire machinery is conserved and expressed in most animals, (iii) the mitochondrial genome expresses substrates for these enzymes, and (iv) mRNA synthesis is regulated, we conclude that animal mitochondria have a functional NME machinery that can be regulated. PMID:14532271

  18. Methionine restriction slows down senescence in human diploid fibroblasts

    PubMed Central

    Kozieł, Rafał; Ruckenstuhl, Christoph; Albertini, Eva; Neuhaus, Michael; Netzberger, Christine; Bust, Maria; Madeo, Frank; Wiesner, Rudolf J; Jansen-Dürr, Pidder

    2014-01-01

    Methionine restriction (MetR) extends lifespan in animal models including rodents. Using human diploid fibroblasts (HDF), we report here that MetR significantly extends their replicative lifespan, thereby postponing cellular senescence. MetR significantly decreased activity of mitochondrial complex IV and diminished the accumulation of reactive oxygen species. Lifespan extension was accompanied by a significant decrease in the levels of subunits of mitochondrial complex IV, but also complex I, which was due to a decreased translation rate of several mtDNA-encoded subunits. Together, these findings indicate that MetR slows down aging in human cells by modulating mitochondrial protein synthesis and respiratory chain assembly. PMID:25273919

  19. Methionine sustituted polyamides are RNAse mimics that inhibit translation.

    PubMed

    Kumar, Rohtash; Garneau, Philippe; Nguyen, Nhi; William Lown, J; Pelletier, Jerry

    2004-04-01

    RNAse mimics are small molecules that can cleave RNA in a fashion similar to ribonucleases. These compounds would be very useful as gene specific reagents if their activities could be regulated and targeted. We demonstrate here that polyamides with methionine substituents show enhanced RNA cleavage activity relative to other polyamides. Conjugation of these compounds to aminoglycosides produced RNAse mimics that are capable of inhibiting eukaryotic protein synthesis. As a new class of compounds capable of interacting with nucleic acids, these novel aminoglycoside-polyamides constitute promising scaffolds for the construction of nuclease mimics with biological activity. PMID:15203891

  20. Expression of the biochemical defect of methionine dependence in fresh patient tumors in primary histoculture.

    PubMed

    Guo, H Y; Herrera, H; Groce, A; Hoffman, R M

    1993-06-01

    Methionine dependence is a metabolic defect that occurs in many human tumor cell lines but not normal in unestablished cell strains. Methionine-dependent tumor cell lines are unable to proliferate and arrest in the late S/G2 phase of the cell cycle when methionine is replaced by its immediate precursor homocysteine in the culture medium (MET-HCY+ medium). However, it is not known whether methionine dependence occurs in fresh patient tumors as it does in cell lines. In order to determine whether methionine dependence occurs in fresh patient tumors as well as whether methionine dependence occurs in fresh patient tumors as well as in cell lines we took advantage of the technique of sponge-gel-supported histoculture to grow tumors directly from surgery. We then measured nuclear DNA content by image analysis to determine the cell cycle position in MET-HCY+ compared to MET+HCY- medium in 21 human patient tumors. Human tumor cell lines found to be methionine dependent by cell count were used as positive controls and were found to have marked reduction of cells in G1 compared to total cells in the cell cycle in MET-HCY+ medium with respect to the G1: total cell ratio in MET+HCY- medium. Therefore late cell cycle arrest was used as a marker of methionine dependence for histocultured patient tumors. We found that 5 human tumors of 21, including tumors of the colon, breast, ovary, prostate, and a melanoma, were methionine dependent based on cell cycle analysis. These data on fresh human tumors indicate that methionine dependence may frequently occur in the cancer patient population. Implications for potential therapy based on methionine dependence are discussed. PMID:8495409

  1. Thermodynamics of the dissolution of crystalline L-methionine in water

    NASA Astrophysics Data System (ADS)

    Lytkin, A. I.; Chernikov, V. V.; Krutova, O. N.; Damrina, K. V.; Skvortsov, I. A.

    2016-05-01

    The enthalpies of dissolution of crystalline L-methionine in water and aqueous solutions of potasium hydroxide at 298.15 K are measured by means of direct calorimetry. The standard enthalpies of formation are calculated for L-methionine and products of its dissociation in aqueous solution.

  2. A NOVEL S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE FROM RAT LIVER CYTOSOL

    EPA Science Inventory

    A Novel S-Adenosyl-L-methionine: Arsenic(III) Methyltransferase from Rat Liver Cytosol
    Shan Lin, Qing Shi, F. Brent Nix, Miroslav Styblo, Melinda A. Beck, Karen M. Herbin-Davis, Larry L. Hall, Josef B. Simeonsson, and David J. Thomas
    S-adenosyl-L-methionine (AdoMet): ar...

  3. Interactive effects of selenium, methionine, and dietary protein on survival, growth, and physiology in mallard ducklings

    USGS Publications Warehouse

    Hoffman, D.J.; Sanderson, C.J.; LeCaptain, L.J.; Cromartie, E.; Pendleton, G.W.

    1992-01-01

    Concentrations of over 100 ppm (100 mg/kg) selenium (Se) have been found in aquatic food chains associated with irrigation drainwater. Both quantity and composition of dietary protein for wild ducklings may vary in selenium-contaminated environments. Day-old mallard (Anas platyrhynchos) ducklings received one of the following diets containing 22% protein: unsupplemented (controls), 15 ppm Se (as selenomethionine), 60 ppm Se, methionine supplemented, 15 ppm Se with methionine supplement, or 60 ppm Se with methionine supplement. In a second concurrent experiment the above sequence was repeated with a protein-restricted (11%) but isocaloric diet. In a third concurrent experiment all ducklings received 44% protein with 0, 15, or 60 ppm Se added. After 4 weeks, blood and tissue samples were collected for biochemical and histological examination. With 22% protein and 60 ppm Se in the diet, duckling survival and growth was reduced and histopathological lesions of the liver occurred. Antagonistic interactive effects occurred between supplementary methionine and Se, including complete to partial alleviation of the following Se effects by methionine: mortality, hepatic lesions, and altered glutathione and thiol status. With 11% protein, growth of controls was less than that with 22% protein, Se (60 ppm) caused 100% mortality, and methionine supplementation, although protective afforded less protection than it did with 22% protein. With 44% protein, ducklings experienced physiological stress, and Se was more toxic than with methionine-supplemented 22% protein. These findings suggest the potential for antagonistic effects of Se, methionine, and protein on duckling survival and physiology.

  4. Ontogeny of methionine utilization and splanchnic uptake in critically ill children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the rates of methionine splanchnic uptake and utilization in critically ill pediatric patients, we used two kinetic models: the plasma methionine enrichment,and the "intracellular" homocysteine enrichment. Twenty-four patients, eight infants, eight children, and eight adolescents, were ...

  5. From yeast to human: exploring the comparative biology of methionine restriction in extending eukaryotic life span.

    PubMed

    McIsaac, R Scott; Lewis, Kaitlyn N; Gibney, Patrick A; Buffenstein, Rochelle

    2016-01-01

    Methionine restriction is a widely reported intervention for increasing life span in several model organisms. Low circulating levels of methionine are evident in the long-lived naked mole-rat, suggesting that it naturally presents with a life-extending phenotype akin to that observed in methionine-restricted animals. Similarly, long-lived dwarf mice also appear to have altered methionine metabolism. The mechanisms underlying methionine-restriction effects on life-span extension, however, remain unknown, as do their potential connections with caloric restriction, another well-established intervention for prolonging life span. Paradoxically, methionine is enriched in proteins expressed in mitochondria and may itself serve an important role in the detoxification of reactive oxygen species and may thereby contribute to delayed aging. Collectively, we highlight the evidence that modulation of the methionine metabolic network can extend life span-from yeast to humans-and explore the evidence that sulfur amino acids and the concomitant transsulfuration pathway play a privileged role in this regard. However, systematic studies in single organisms (particularly those that exhibit extreme longevity) are still required to distinguish the fundamental principles concerning the role of methionine and other amino acids in regulating life span. PMID:26995762

  6. Influence of dietary methionine on the metabolism of selenomethionine in rats

    SciTech Connect

    Butler, J.A.; Beilstein, M.A.; Whanger, P.D. )

    1989-07-01

    To determine the influence of methionine on selenomethionine (SeMet) metabolism, weanling male rats were fed for 8 wk a basal diet marginally deficient in sulfur amino acids, containing 2.0 micrograms selenium (Se)/g as DL-SeMet and supplemented with 0, 0.3, 0.6 or 1.2% DL-methionine. Increased dietary methionine caused decreased selenium deposition in all tissues examined but increased glutathione peroxidase activity in testes, liver and lungs. A positive correlation was found between dietary methionine and the calculated percentage of selenium associated with GSHPx. In a second experiment, {sup 75}SeMet was injected into weanling male rats which had been fed the basal diet containing 2.0 micrograms selenium as DL-SeMet with or without the addition of 1.0% methionine. The selenoamino acid content of tissues and the distribution of {sup 75}Se in erythrocyte proteins were determined. In comparison to the rats fed the basal diet without added methionine, significantly more {sup 75}Se-selenocysteine was found in liver and muscle, more {sup 75}Se was found in erythrocyte GSHPx and less {sup 75}Se was found in erythrocyte hemoglobin of rats fed 1.0% methionine. These data suggest that methionine diverts SeMet from incorporation into general proteins and enhances its conversion to selenocysteine for specific selenium-requiring proteins, such as GSHPx.

  7. Response of lactating cows to methionine or methionine plus lysine added to high protein diets based on alfalfa and heated soybeans.

    PubMed

    Armentano, L E; Bertics, S J; Ducharme, G A

    1997-06-01

    Lactation diets based on wilted alfalfa silage and heated whole soybeans are common in the midwestern US. We examined the milk production response of multiparous Holstein cows to the addition of ruminally protected methionine at two percentages to a basal total mixed ration. An additional total mixed ration included both methionine and lysine supplementation. Sixteen Holstein cows in early lactation were used in a replicated 4 x 4 Latin square design with 21-d periods. Milk production, milk composition, and dry matter intake were determined for the last 5 d of each period. Milk production (41.5 kg/d), dry matter intake (25.9 kg/d), and milk fat concentration (3.26%) were unaffected by the supplementation of amino acids. The addition of methionine increased milk protein concentration and yield linearly. Each gram of methionine increased milk protein yield by 4 g, and milk protein concentration increased from 2.89 to 2.99% with the addition of 10.5 g/d of methionine. The proportion of casein N in total milk N was unaffected by treatment. The addition of lysine did not elicit a response. Total mixed rations based on alfalfa haylage, heated soybeans, and animal proteins were clearly limited by their methionine content but were adequate in their lysine content. PMID:9201591

  8. In Salmonella enterica, the Gcn5-Related Acetyltransferase MddA (Formerly YncA) Acetylates Methionine Sulfoximine and Methionine Sulfone, Blocking Their Toxic Effects

    PubMed Central

    Hentchel, Kristy L.

    2014-01-01

    Protein and small-molecule acylation reactions are widespread in nature. Many of the enzymes catalyzing acylation reactions belong to the Gcn5-related N-acetyltransferase (GNAT; PF00583) family, named after the yeast Gcn5 protein. The genome of Salmonella enterica serovar Typhimurium LT2 encodes 26 GNATs, 11 of which have no known physiological role. Here, we provide in vivo and in vitro evidence for the role of the MddA (methionine derivative detoxifier; formerly YncA) GNAT in the detoxification of oxidized forms of methionine, including methionine sulfoximine (MSX) and methionine sulfone (MSO). MSX and MSO inhibited the growth of an S. enterica ΔmddA strain unless glutamine or methionine was present in the medium. We used an in vitro spectrophotometric assay and mass spectrometry to show that MddA acetylated MSX and MSO. An mddA+ strain displayed biphasic growth kinetics in the presence of MSX and glutamine. Deletion of two amino acid transporters (GlnHPQ and MetNIQ) in a ΔmddA strain restored growth in the presence of MSX. Notably, MSO was transported by GlnHPQ but not by MetNIQ. In summary, MddA is the mechanism used by S. enterica to respond to oxidized forms of methionine, which MddA detoxifies by acetyl coenzyme A-dependent acetylation. PMID:25368301

  9. In Salmonella enterica, the Gcn5-related acetyltransferase MddA (formerly YncA) acetylates methionine sulfoximine and methionine sulfone, blocking their toxic effects.

    PubMed

    Hentchel, Kristy L; Escalante-Semerena, Jorge C

    2015-01-01

    Protein and small-molecule acylation reactions are widespread in nature. Many of the enzymes catalyzing acylation reactions belong to the Gcn5-related N-acetyltransferase (GNAT; PF00583) family, named after the yeast Gcn5 protein. The genome of Salmonella enterica serovar Typhimurium LT2 encodes 26 GNATs, 11 of which have no known physiological role. Here, we provide in vivo and in vitro evidence for the role of the MddA (methionine derivative detoxifier; formerly YncA) GNAT in the detoxification of oxidized forms of methionine, including methionine sulfoximine (MSX) and methionine sulfone (MSO). MSX and MSO inhibited the growth of an S. enterica ΔmddA strain unless glutamine or methionine was present in the medium. We used an in vitro spectrophotometric assay and mass spectrometry to show that MddA acetylated MSX and MSO. An mddA(+) strain displayed biphasic growth kinetics in the presence of MSX and glutamine. Deletion of two amino acid transporters (GlnHPQ and MetNIQ) in a ΔmddA strain restored growth in the presence of MSX. Notably, MSO was transported by GlnHPQ but not by MetNIQ. In summary, MddA is the mechanism used by S. enterica to respond to oxidized forms of methionine, which MddA detoxifies by acetyl coenzyme A-dependent acetylation. PMID:25368301

  10. Growth and ferroelectric properties of L-, D-, and DL-methionine-doped triglycine sulfate crystals

    NASA Astrophysics Data System (ADS)

    Kikuta, Toshio; Yamazaki, Toshinari; Nakatani, Noriyuki

    2010-12-01

    Single crystals of triglycine sulfate (TGS) doped with L-, D-, and DL-methionine have been prepared. Doping effects on the crystal morphology, the ferroelectric domain structure, and the generation of internal bias field Eb were investigated. These effects were compared with each other and also compared with those of alanine-doped crystals. Though L-methionine-doped crystals show the asymmetric morphology analogous to L-alanine-doped crystals, these two crystals are distinct from each other in their domain structure and the generation of Eb. It was ascertained that the asymmetry caused by L- and D-methionine are mutually reversed in the b-axis. For the doping of racemic mixture DL-methionine, we could recognize the overlap of doping effects caused by the both enantiomers of methionine.

  11. Methionine deficiency reduces autophagy and accelerates death in intestinal epithelial cells infected with enterotoxigenic Escherichia coli.

    PubMed

    Tang, Yulong; Tan, Bie; Xiong, Xia; Li, Fengna; Ren, Wenkai; Kong, Xiangfeng; Qiu, Wei; Hardwidge, Philip R; Yin, Yulong

    2015-10-01

    Infections by enterotoxigenic Escherichia coli (ETEC) result in large economic losses to the swine industry worldwide. Dietary supplementation with amino acids has been considered as a potential mechanism to improve host defenses against infection. The goal of this study was to determine whether methionine deprivation alters ETEC interactions with porcine intestinal epithelial cells. IPEC-1 cells were cultured in media with or without L-methionine. Methionine deprivation resulted in enhanced ETEC adhesion and increased both the cytotoxicity and apoptotic responses of IPEC-1 cells infected with ETEC. Methionine deprivation inhibited IPEC-1 cell autophagic responses, suggesting that the increased cytotoxicity of ETEC to methionine-deprived IPEC-1 cells might be due to defects in autophagy. PMID:24965529

  12. Thioredoxin-dependent Redox Regulation of Cellular Signaling and Stress Response through Reversible Oxidation of Methionines

    SciTech Connect

    Bigelow, Diana J.; Squier, Thomas C.

    2011-06-01

    Generation of reactive oxygen species (ROS) is a common feature of many forms of stress to which plants are exposed. Successful adaptation to changing environmental conditions requires sensitive sensors of ROS such as protein-bound methionines that are converted to their corresponding methionine sulfoxides, which in turn can influence cellular signaling pathways. Such a signaling protein is calmodulin, which represents an early and central point in calcium signaling pathways important to stress response in plants. We describe recent work elucidating fundamental mechanisms of reversible methionine oxidation within calmodulin, including the sensitivity of individual methionines within plant and animal calmodulin to ROS, the structural and functional consequences of their oxidation, and the interactions of oxidized calmodulin with methionine sulfoxide reductase enzymes.

  13. Methionine-dependent histone methylation at developmentally important gene loci in mouse preimplantation embryos.

    PubMed

    Kudo, Mari; Ikeda, Shuntaro; Sugimoto, Miki; Kume, Shinichi

    2015-12-01

    The involvement of specific nutrients in epigenetic gene regulation is a possible mechanism underlying nutrition-directed phenotypic alteration. However, the involvement of nutrients in gene-specific epigenetic regulation remains poorly understood. Methionine has been received attention as a possible nutrient involved in epigenetic modifications, as it is a precursor of the universal methyl donor for epigenetic methylation of DNA and histones. In the present study, the disruption of methionine metabolism by ethionine, an antimetabolite of methionine, induced abnormally higher expression of genes related to cell lineage differentiation and resulted in impaired blastocyst development of mouse preimplantation embryos in vitro. These effects were mitigated by the presence of methionine. Importantly, ethionine treatment induced lower trimethylation of histone H3 lysine 9 but did not affect methylation of DNA in the promoter regions of the examined genes. These results demonstrated that intact methionine metabolism is required for proper epigenetic histone modifications and normal expression of developmentally important genes during preimplantation development. PMID:26372092

  14. Regulation of C1 metabolism by l-methionine in Saccharomyces cerevisiae

    PubMed Central

    Lor, K. L.; Cossins, E. A.

    1972-01-01

    1. The concentrations of folate derivatives in aerobic cultures of Saccharomyces cerevisiae (A.T.C.C. 9763) were determined by microbiological assay employing Lactobacillus casei (A.T.C.C. 7469) and Pediococcus cerevisiae (A.T.C.C. 8081). Cells cultured in media lacking l-methionine contained higher concentrations of folate derivatives than cells grown in the same media supplemented with 2.5μmol of l-methionine/ml. The concentrations of highly conjugated derivatives were also decreased by supplementing the growth medium with l-methionine. 2. DEAE-cellulose column chromatography of extracts prepared from cells grown under these conditions revealed that the concentrations of methylated tetrahydrofolates were drastically decreased by the methionine supplement. Smaller decreases were also observed in the concentrations of formylated and unsubstituted derivatives. 3. The concentrations of four enzymes of C1 metabolism were compared after 6h of growth in the presence and in the absence of l-methionine (2.5μmol/ml). The specific activities of formyltetrahydrofolate synthetase, methylenetetrahydrofolate reductase and serine hydroxymethyltransferase were not altered by this treatment but that of 5-methyltetrahydrofolate–homocysteine methyltransferase was decreased by approx. 65% when l-methionine was supplied. The activities of 5-methyltetrahydrofolate–homocysteine methyltransferase, serine hydroxymethyltransferase and formyltetrahydrofolate synthetase were not appreciably altered by l-methionine in vitro. In contrast this amino acid was found to inhibit the activity of methylenetetrahydrofolate reductase. 4. Feeding experiments employing sodium [14C]formate indicated that cells grown in the presence of exogenous methionine, although having less ability to convert formate into methionine, readily incorporated 14C into serine and the adenosyl moiety of S-adenosylmethionine. 5. It is suggested that exogenous l-methionine controls C1 metabolism in Saccharomyces

  15. [Effects of L-methionine on nitrification and N2O emission in subtropical forest soil].

    PubMed

    Lin, Wei; Pei, Guang-ting; Ma, Hong-liang; Gao, Ren; Yin, Yun-feng; Peng, Yuan-zhen

    2015-09-01

    The objective of this study was to investigate the influence of L-methionine on nitrification and nitrous oxide emission in a red soil under laboratory incubation experiments. A subtropical broad-leaved forest soil sample was collected from Wanmulin natural reserve in Fujian Province, Southeast China. Five treatments were carried out with three replications, i. e., control (CK), L- methionine addition (M), L-methionine and NH(4+)-N addition (MA), L-methionine and NO(2-)-N addition (MN), L-methionine and glucose addition (MC). The soil moisture was maintained at 60% WHC or 90% WHC. The results indicated that the soil NH(4+)-N content in the M treatment significantly increased by 0.8%-61.3%, while the soil NO(3-)-N content reduced by 13.2%-40.7% compared with CK. Under 60% WHC condition, soil NO(2-)-N content in the MC treatment was higher than in the M treatment, soil NO(3-)-N content in the MA and MN treatments were greater than that in the M treatment, and greater in the MN treatment than in the MA treatment. The soil NO(3-)-N content was lowest in the M treatment after incubation. These results suggested that L-methionine could inhibit nitrosation process of autotrophic nitrification. To some extent, carbon addition as glucose with L-methionine decreased the NH(4+)-N content, inhibited the autotrophic nitrification and their effects were dependent on water level. Under 90% WHC condition, carbon addition improved denitrification more obviously, but the decrease of NO(3-)-N content was not sufficient to prove the inhibition of hetero-nitrification due to carbon addition in the presence of L-methionine. The nitrous oxide emission from soil was increased by L-methionine addition. Compared with 60% WHC condition, the nitrous oxide emission was higher under 90% WHC condition, and the promotion of L-methionine addition on N2O was greater when glucose added. PMID:26785545

  16. Structural insights into the mechanism of four-coordinate Cob(II)alamin formation in the active site of the Salmonella enterica ATP:Co(I)rrinoid adenosyltransferase enzyme: critical role of residues Phe91 and Trp93.

    PubMed

    Moore, Theodore C; Newmister, Sean A; Rayment, Ivan; Escalante-Semerena, Jorge C

    2012-12-01

    ATP:co(I)rrinoid adenosyltransferases (ACATs) are enzymes that catalyze the formation of adenosylcobalamin (AdoCbl, coenzyme B(12)) from cobalamin and ATP. There are three families of ACATs, namely, CobA, EutT, and PduO. In Salmonella enterica, CobA is the housekeeping enzyme that is required for de novo AdoCbl synthesis and for salvaging incomplete precursors and cobalamin from the environment. Here, we report the crystal structure of CobA in complex with ATP, four-coordinate cobalamin, and five-coordinate cobalamin. This provides the first crystallographic evidence of the existence of cob(II)alamin in the active site of CobA. The structure suggests a mechanism in which the enzyme adopts a closed conformation and two residues, Phe91 and Trp93, displace 5,6-dimethylbenzimidazole, the lower nucleotide ligand base of cobalamin, to generate a transient four-coordinate cobalamin, which is critical in the formation of the AdoCbl Co-C bond. In vivo and in vitro mutational analyses of Phe91 and Trp93 emphasize the important role of bulky hydrophobic side chains in the active site. The proposed manner in which CobA increases the redox potential of the cob(II)alamin/cob(I)alamin couple to facilitate formation of the Co-C bond appears to be analogous to that utilized by the PduO-type ACATs, where in both cases the polar coordination of the lower ligand to the cobalt ion is eliminated by placing that face of the corrin ring adjacent to a cluster of bulky hydrophobic side chains. PMID:23148601

  17. [Inhibitory effect of tumor growth by methionine-enkephalin].

    PubMed

    Mascarenhas, G; Quirico-Santos, T

    1992-03-01

    Methionine-enkephalin (Met-Enk) is an endogenous opioid pentapeptide derived from the prohormone proenkephalin A, present in neuroendocrine and hematopoietic cells. Enkephalins are known to play an important role on the processes of induction, activation and control of immunomodulatory events. Met-Enk has been considered a potent antitumoral agent. The present study shows that Met-Enk exerts an inhibitory effect on the growth of a macrophage derived fibrous histiocytoma (MC-II) inoculated intradermally into BALB/cJ mice. Such effect was mainly influenced by the protocol, route of administration and concentration of Met-Enk used for treatment. Neither higher doses of Met-Enk injected intracerebrally or subcutaneously, nor the use of various protocols of treatment, did modify the process of tumorigenesis. In contrast, low dose (0.25 mg/kg) of Met-Enk injected intracerebrally together with tumor inoculation, significantly reduced tumor growth and prolonged survival rate. PMID:1339154

  18. Novel broad-spectrum inhibitors of bacterial methionine aminopeptidase.

    PubMed

    Rose, Jonathan A; Lahiri, Sushmita D; McKinney, David C; Albert, Rob; Morningstar, Marshall L; Shapiro, Adam B; Fisher, Stewart L; Fleming, Paul R

    2015-08-15

    With increasing emergence of multi-drug resistant infections, there is a dire need for new classes of compounds that act through unique mechanisms. In this work, we describe the discovery and optimization of a novel series of inhibitors of bacterial methionine aminopeptidase (MAP). Through a high-throughput screening campaign, one azepinone amide hit was found that resembled the native peptide substrate and possessed moderate biochemical potency against three bacterial isozymes. X-ray crystallography was used in combination with substrate-based design to direct the rational optimization of analogs with sub-micromolar potency. The novel compounds presented here represent potent broad-spectrum biochemical inhibitors of bacterial MAP and have the potential to lead to the development of new medicines to combat serious multi-drug resistant infections. PMID:26099541

  19. Methionine enkephalin, its role in immunoregulation and cancer therapy.

    PubMed

    Zhao, Dingliang; Plotnikoff, Nicolas; Griffin, Noreen; Song, Tao; Shan, Fengping

    2016-08-01

    Methionine enkephalin (MENK), an endogenous neuropeptide has a crucial role in both neuroendocrine and immune systems. MENK is believed to have an immunoregulatory activity to have cancer biotherapy activity by binding to the opioid receptors on immune and cancer cells. Clinical trial studies in cancer patients have shown that MENK activates immune cells directly and by inhibiting regulatory T-cells (Tregs). MENK may also change the tumor microenvironment by binding to opioid receptor on or in cancer cells. All of these mechanisms of action have biologic significance and potential for use in cancer immunotherapy. Furthermore, they reveal a relationship between the endocrine and immune systems. Due to the apparent role of MENK in cancer therapy we reviewed herein, the research undertaken with MENK in recent years; which has advanced our understanding of the role MENK has in cancer progression and its relationship to immunity, supporting MENK as a new strategy for cancer immunotherapy. PMID:26927200

  20. Reinventing cell penetrating peptides using glycosylated methionine sulfonium ion sequences

    DOE PAGESBeta

    Kramer, Jessica R.; Schmidt, Nathan W.; Mayle, Kristine M.; Kamei, Daniel T.; Wong, Gerard C.L.; Deming, Timothy J.

    2015-04-15

    Cell penetrating peptides (CPPs) are intriguing molecules that have received much attention, both in terms of mechanistic analysis and as transporters for intracellular therapeutic delivery. Most CPPs contain an abundance of cationic charged residues, typically arginine, where the amino acid compositions, rather than specific sequences, tend to determine their ability to enter cells. Hydrophobic residues are often added to cationic sequences to create efficient CPPs, but typically at the penalty of increased cytotoxicity. Here, we examined polypeptides containing glycosylated, cationic derivatives of methionine, where we found these hydrophilic polypeptides to be surprisingly effective as CPPs and to also possess lowmore » cytotoxicity. X-ray analysis of how these new polypeptides interact with lipid membranes revealed that the incorporation of sterically demanding hydrophilic cationic groups in polypeptides is an unprecedented new concept for design of potent CPPs.« less

  1. Reinventing Cell Penetrating Peptides Using Glycosylated Methionine Sulfonium Ion Sequences

    PubMed Central

    2015-01-01

    Cell penetrating peptides (CPPs) are intriguing molecules that have received much attention, both in terms of mechanistic analysis and as transporters for intracellular therapeutic delivery. Most CPPs contain an abundance of cationic charged residues, typically arginine, where the amino acid compositions, rather than specific sequences, tend to determine their ability to enter cells. Hydrophobic residues are often added to cationic sequences to create efficient CPPs, but typically at the penalty of increased cytotoxicity. Here, we examined polypeptides containing glycosylated, cationic derivatives of methionine, where we found these hydrophilic polypeptides to be surprisingly effective as CPPs and to also possess low cytotoxicity. X-ray analysis of how these new polypeptides interact with lipid membranes revealed that the incorporation of sterically demanding hydrophilic cationic groups in polypeptides is an unprecedented new concept for design of potent CPPs. PMID:27162954

  2. Reinventing cell penetrating peptides using glycosylated methionine sulfonium ion sequences

    SciTech Connect

    Kramer, Jessica R.; Schmidt, Nathan W.; Mayle, Kristine M.; Kamei, Daniel T.; Wong, Gerard C.L.; Deming, Timothy J.

    2015-04-15

    Cell penetrating peptides (CPPs) are intriguing molecules that have received much attention, both in terms of mechanistic analysis and as transporters for intracellular therapeutic delivery. Most CPPs contain an abundance of cationic charged residues, typically arginine, where the amino acid compositions, rather than specific sequences, tend to determine their ability to enter cells. Hydrophobic residues are often added to cationic sequences to create efficient CPPs, but typically at the penalty of increased cytotoxicity. Here, we examined polypeptides containing glycosylated, cationic derivatives of methionine, where we found these hydrophilic polypeptides to be surprisingly effective as CPPs and to also possess low cytotoxicity. X-ray analysis of how these new polypeptides interact with lipid membranes revealed that the incorporation of sterically demanding hydrophilic cationic groups in polypeptides is an unprecedented new concept for design of potent CPPs.

  3. Methionine deficiency does not increase polyamine turnover through depletion of hepatic S-adenosylmethionine in juvenile Atlantic salmon.

    PubMed

    Espe, Marit; Andersen, Synne Marte; Holen, Elisabeth; Rønnestad, Ivar; Veiseth-Kent, Eva; Zerrahn, Jens-Erik; Aksnes, Anders

    2014-10-28

    During the last few decades, plant protein ingredients such as soya proteins have replaced fishmeal in the diets of aquacultured species. This may affect the requirement and metabolism of methionine as soya contains less methionine compared with fishmeal. To assess whether methionine limitation affects decarboxylated S-adenosylmethionine availability and polyamine status, in the present study, juvenile Atlantic salmon were fed a methionine-deficient plant protein-based diet or the same diet supplemented with dl-methionine for 8 weeks. The test diets were compared with a fishmeal-based control diet to assess their effects on the growth performance of fish. Methionine limitation reduced growth and protein accretion, but when fish were fed the dl-methionine-supplemented diet their growth and protein accretion equalled those of fish fed the fishmeal-based control diet. Methionine limitation reduced free methionine concentrations in the plasma and muscle, while those in the liver were not affected. S-adenosylmethionine (SAM) concentrations were higher in the liver of fish fed the methionine-deficient diet, while S-adenosylhomocysteine concentrations were not affected. Putrescine concentrations were higher and spermine concentrations were lower in the liver of fish fed the methionine-deficient diet, while the gene expression of SAM decarboxylase (SAMdc) and the rate-limiting enzyme of polyamine synthesis ornithine decarboxylase (ODC) was not affected. Polyamine turnover, as assessed by spermine/spermidine acetyltransferase (SSAT) abundance, activity and gene expression, was not affected by treatment. However, the gene expression of the cytokine TNF-α increased in fish fed the methionine-deficient diet, indicative of stressful conditions in the liver. Even though taurine concentrations in the liver were not affected by treatment, methionine and taurine concentrations in muscle decreased due to methionine deficiency. Concomitantly, liver phospholipid and cholesterol

  4. Interlobe communication in 13C-methionine-labeled human transferrin.

    PubMed

    Beatty, E J; Cox, M C; Frenkiel, T A; Tam, B M; Mason, A B; MacGillivray, R T; Sadler, P J; Woodworth, R C

    1996-06-18

    [1H, 13C] NMR investigations of metal-induced conformational changes in the blood serum protein transferrin (80 kDa) are reported. These are thought to play an important role in the recognition of this protein by its cellular receptors. [1H, 13C] NMR resonance assignments are presented for all nine methionine 13CH3 groups of recombinant deglycosylated human transferrin on the basis of studies of recombinant N-lobe (40 kDa, five Met residues), NOESY-relayed [1H, 13C] HMQC spectra, and structural considerations. The first specific assignments for C-lobe resonances of transferrin are presented. Using methionine 13CH3 resonances as probes, it is shown that, with oxalate as the synergistic anion, Ga3+ binds preferentially to the C-lobe and subsequently to the N-lobe. The NMR shifts of Met464, which is in the Trp460-centered hydrophobic patch of helix 5 in the C-lobe in contact with the anion and metal binding site, show that Ga3+ binding causes movement of side chains within this helix, as is also the case in the N-lobe. The C-lobe residue Met382, which contacts the N-lobe hinge region, is perturbed when Ga3+ binds to the N-lobe, indicative of interlobe communication, a feature which may control the recognition of fully-metallated transferrin by its receptor. These results demonstrate that selective 13C labeling is a powerful method for probing the structure and dynamics of high-molecular-mass proteins. PMID:8672464

  5. Catalysis and Inhibition of Mycobacterium tuberculosis Methionine Aminopeptidase

    SciTech Connect

    Lu, Jing-Ping; Chai, Sergio C.; Ye, Qi-Zhuang

    2010-09-07

    Methionine aminopeptidase (MetAP) carries out an important cotranslational N-terminal methionine excision of nascent proteins and represents a potential target to develop antibacterial and antitubercular drugs. We cloned one of the two MetAPs in Mycobacterium tuberculosis (MtMetAP1c from the mapB gene) and purified it to homogeneity as an apoenzyme. Its activity required a divalent metal ion, and Co(II), Ni(II), Mn(II), and Fe(II) were among activators of the enzyme. Co(II) and Fe(II) had the tightest binding, while Ni(II) was the most efficient cofactor for the catalysis. MtMetAP1c was also functional in E. coli cells because a plasmid-expressed MtMetAP1c complemented the essential function of MetAP in E. coli and supported the cell growth. A set of potent MtMetAP1c inhibitors were identified, and they showed high selectivity toward the Fe(II)-form, the Mn(II)-form, or the Co(II) and Ni(II) forms of the enzyme, respectively. These metalloform selective inhibitors were used to assign the metalloform of the cellular MtMetAP1c. The fact that only the Fe(II)-form selective inhibitors inhibited the cellular MtMetAP1c activity and inhibited the MtMetAP1c-complemented cell growth suggests that Fe(II) is the native metal used by MtMetAP1c in an E. coli cellular environment. Finally, X-ray structures of MtMetAP1c in complex with three metalloform-selective inhibitors were analyzed, which showed different binding modes and different interactions with metal ions and active site residues.

  6. Sulphur Atoms from Methionines Interacting with Aromatic Residues Are Less Prone to Oxidation.

    PubMed

    Aledo, Juan C; Cantón, Francisco R; Veredas, Francisco J

    2015-01-01

    Methionine residues exhibit different degrees of susceptibility to oxidation. Although solvent accessibility is a relevant factor, oxidation at particular sites cannot be unequivocally explained by accessibility alone. To explore other possible structural determinants, we assembled different sets of oxidation-sensitive and oxidation-resistant methionines contained in human proteins. Comparisons of the proteins containing oxidized methionines with all proteins in the human proteome led to the conclusion that the former exhibit a significantly higher mean value of methionine content than the latter. Within a given protein, an examination of the sequence surrounding the non-oxidized methionine revealed a preference for neighbouring tyrosine and tryptophan residues, but not for phenylalanine residues. However, because the interaction between sulphur atoms and aromatic residues has been reported to be important for the stabilization of protein structure, we carried out an analysis of the spatial interatomic distances between methionines and aromatic residues, including phenylalanine. The results of these analyses uncovered a new determinant for methionine oxidation: the S-aromatic motif, which decreases the reactivity of the involved sulphur towards oxidants. PMID:26597773

  7. Sulphur Atoms from Methionines Interacting with Aromatic Residues Are Less Prone to Oxidation

    PubMed Central

    Aledo, Juan C.; Cantón, Francisco R.; Veredas, Francisco J.

    2015-01-01

    Methionine residues exhibit different degrees of susceptibility to oxidation. Although solvent accessibility is a relevant factor, oxidation at particular sites cannot be unequivocally explained by accessibility alone. To explore other possible structural determinants, we assembled different sets of oxidation-sensitive and oxidation-resistant methionines contained in human proteins. Comparisons of the proteins containing oxidized methionines with all proteins in the human proteome led to the conclusion that the former exhibit a significantly higher mean value of methionine content than the latter. Within a given protein, an examination of the sequence surrounding the non-oxidized methionine revealed a preference for neighbouring tyrosine and tryptophan residues, but not for phenylalanine residues. However, because the interaction between sulphur atoms and aromatic residues has been reported to be important for the stabilization of protein structure, we carried out an analysis of the spatial interatomic distances between methionines and aromatic residues, including phenylalanine. The results of these analyses uncovered a new determinant for methionine oxidation: the S-aromatic motif, which decreases the reactivity of the involved sulphur towards oxidants. PMID:26597773

  8. Methionine protects against hyperthermia-induced cell injury in cultured bovine mammary epithelial cells.

    PubMed

    Han, Zhao-Yu; Mu, Tian; Yang, Zhen

    2015-01-01

    The aim of this study was to investigate the effects of methionine on cell proliferation, antioxidant activity, apoptosis, the expression levels of related genes (HSF-1, HSP70, Bax and Bcl-2) and the expression levels of protein (HSP70) in mammary epithelial cells, after heat treatment. Methionine (60 mg/L) increased the viability and attenuated morphological damage in hyperthermia-treated bovine mammary epithelial cells (BMECs). Additionally, methionine significantly reduced lactate dehydrogenase leakage, malondialdehyde formation, nitric oxide, and nitric oxide synthase activity. Superoxide dismutase, catalase, and glutathione peroxidase enzymatic activity was increased significantly in the presence of methionine. Bovine mammary epithelial cells also exhibited a certain amount of HSP70 reserve after methionine pretreatment for 24 h, and the expression level of the HSP70 gene and protein further increased with incubation at 42 °C for 30 min. Compared to the control, the expression of HSF-1 mRNA increased, and there was a significantly reduced expression of Bax/Bcl-2 mRNA and a reduced activity of caspase-3 against heat stress. Methionine also increased survival and decreased early apoptosis of hyperthermia-treated BMECs. Thus, methionine has cytoprotective effects on hyperthermia-induced damage in BMECs. PMID:25108357

  9. Sulphur Atoms from Methionines Interacting with Aromatic Residues Are Less Prone to Oxidation

    NASA Astrophysics Data System (ADS)

    Aledo, Juan C.; Cantón, Francisco R.; Veredas, Francisco J.

    2015-11-01

    Methionine residues exhibit different degrees of susceptibility to oxidation. Although solvent accessibility is a relevant factor, oxidation at particular sites cannot be unequivocally explained by accessibility alone. To explore other possible structural determinants, we assembled different sets of oxidation-sensitive and oxidation-resistant methionines contained in human proteins. Comparisons of the proteins containing oxidized methionines with all proteins in the human proteome led to the conclusion that the former exhibit a significantly higher mean value of methionine content than the latter. Within a given protein, an examination of the sequence surrounding the non-oxidized methionine revealed a preference for neighbouring tyrosine and tryptophan residues, but not for phenylalanine residues. However, because the interaction between sulphur atoms and aromatic residues has been reported to be important for the stabilization of protein structure, we carried out an analysis of the spatial interatomic distances between methionines and aromatic residues, including phenylalanine. The results of these analyses uncovered a new determinant for methionine oxidation: the S-aromatic motif, which decreases the reactivity of the involved sulphur towards oxidants.

  10. Partial derepression of the isoleucine-valine enzymes during methionine starvation is Salmonella typhimurium.

    PubMed

    Rizzino, A; Mastanduno, M; Freundlich, M

    1977-03-18

    Methionine starvation of methionine auxotrophs in the presence of excess branched-chain amino acids results in a partial derepression of the isoleucine and valine enzymes. Reversed-phase chromatography indicated that isoleucine, valine and leucine tRNA were altered during methionine starvation. In addition, the total tRNA isolated from cells under these conditions were undermethylated. The observed derepression may be caused by the inability of methyl-deficient tRNA's to participate adequately in normal regulatory functions. PMID:321028

  11. Gonadotropin hyperstimulation influences the 35S-methionine metabolism of mouse preimplantation embryos.

    PubMed

    Wetzels, A M; Artz, M T; Goverde, H J; Bastiaans, B A; Hamilton, C J; Rolland, R

    1995-11-01

    The effects of gonadotropin stimulation on mouse embryo uptake and incorporation of 35S-methionine were studied. We found that the uptake of 35S-methionine was reduced in embryos of stimulated females in both the two-cell and the blastocyst developmental stage. The incorporation of 35S-methionine into protein was not statistically significantly different between the embryos of stimulated and those of unstimulated females. Qualitatively, protein synthesis was equal in both groups as determined with one-dimensional SDS-PAGE. The results are discussed and we conclude that mouse embryo viability in vivo is decreased by ovarian stimulation. PMID:8624434

  12. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells.

    PubMed

    Maddocks, Oliver D K; Labuschagne, Christiaan F; Adams, Peter D; Vousden, Karen H

    2016-01-21

    Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids. PMID:26774282

  13. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells

    PubMed Central

    Maddocks, Oliver D.K.; Labuschagne, Christiaan F.; Adams, Peter D.; Vousden, Karen H.

    2016-01-01

    Summary Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids. PMID:26774282

  14. Methionine and choline regulate the metabolic phenotype of a ketogenic diet.

    PubMed

    Pissios, Pavlos; Hong, Shangyu; Kennedy, Adam Richard; Prasad, Deepthi; Liu, Fen-Fen; Maratos-Flier, Eleftheria

    2013-01-01

    Low-carbohydrate ketogenic diets are commonly used as weight loss alternatives to low-fat diets, however the physiological and molecular adaptations to these diets are not completely understood. It is assumed that the metabolic phenotype of the ketogenic diet (KD) is caused by the absence of carbohydrate and high fat content, however in rodents the protein content of KD affects weight gain and ketosis. In this study we examined the role of methionine and choline in mediating the metabolic effects of KD. We have found that choline was more effective than methionine in decreasing the liver steatosis of KD-fed mice. On the other hand, methionine supplementation was more effective than choline in restoring weight gain and normalizing the expression of several fatty acid and inflammatory genes in the liver of KD-fed mice. Our results indicate that choline and methionine restriction rather than carbohydrate restriction underlies many of the metabolic effects of KD. PMID:24049742

  15. High-quality life extension by the enzyme peptide methionine sulfoxide reductase

    PubMed Central

    Ruan, Hongyu; Tang, Xiang Dong; Chen, M.-L.; Joiner, M. A.; Sun, Guangrong; Brot, Nathan; Weissbach, Herbert; Heinemann, Stephen H.; Iverson, Linda; Wu, Chun-Fang; Hoshi, Toshinori

    2002-01-01

    Cumulative oxidative damages to cell constituents are considered to contribute to aging and age-related diseases. The enzyme peptide methionine sulfoxide reductase A (MSRA) catalyzes the repair of oxidized methionine in proteins by reducing methionine sulfoxide back to methionine. However, whether MSRA plays a role in the aging process is poorly understood. Here we report that overexpression of the msrA gene predominantly in the nervous system markedly extends the lifespan of the fruit fly Drosophila. The MSRA transgenic animals are more resistant to paraquat-induced oxidative stress, and the onset of senescence-induced decline in the general activity level and reproductive capacity is delayed markedly. The results suggest that oxidative damage is an important determinant of lifespan, and MSRA may be important in increasing the lifespan in other organisms including humans. PMID:11867705

  16. Appropriate statistical methods to compare dose responses of methionine sources.

    PubMed

    Kratzer, D D; Littell, R C

    2006-05-01

    Two sources of methionine (Met) activity are frequently used in commercial feed formulation: DL-2-hydroxy-4-(methylthio) butanoic acid (HMTBA), most commonly available as an 88% solution with 12% water; and DL-methionine (DLM, 99% powder). Despite the fact that both compounds have been in commercial use for over 50 yr, controversy and confusion remain with respect to their relative bioefficacy (RBE). This paper presents a review of the use of a nonlinear common plateau asymptotic regression technique (NLCPAR) that has been used to compare the 2 Met sources with particular emphasis on the validity of the basic assumptions of that model. The thesis of this paper is that the controversy is due, at least in part, to the misapplication of this regression technique to estimate the RBE of HMTBA and DLM. The NLCPAR model is a bioassay with the key dependent assumptions that HMTBA is a dilution of DLM, and that each follows dose-response curves of the same form and approach a common plateau. Because both provide Met activity, it may be considered reasonable to accept these assumptions; however, specifically testing them demonstrated that the assumption of a common dose-response is not supported by data. The common plateau assumption was tested with an alternative approach of fitting nonlinear separate plateaus asymptotic regression (NLSPAR) to a set of 13 published broiler studies in which the NLCPAR model had been used to estimate RBE of HMTBA and DLM. The hypothesis of a common plateau was rejected (P < 0.01), meaning that the conclusion that HMTBA had lower bioefficacy than DLM based on the NLCPAR methodology was not valid. An example using published data demonstrated that the NLSPAR model was a significantly better fit than the NLCPAR model, and showed that HMTBA and DLM followed different dose responses. Consequently, there was no single value for RBE for the entire dose range; rather, the RBE of the 2 compounds varied with use level. The evidence presented here

  17. Impact of methionine oxidation on calmodulin structural dynamics

    SciTech Connect

    McCarthy, Megan R.; Thompson, Andrew R.; Nitu, Florentin; Moen, Rebecca J.; Olenek, Michael J.; Klein, Jennifer C.; Thomas, David D.

    2015-01-09

    Highlights: • We measured the distance distribution between two spin labels on calmodulin by DEER. • Two structural states, open and closed, were resolved at both low and high Ca. • Ca shifted the equilibrium toward the open state by a factor of 13. • Methionine oxidation, simulated by glutamine substitution, decreased the Ca effect. • These results have important implications for aging in muscle and other tissues. - Abstract: We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron–electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous X-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM’s structural heterogeneity in solution: in both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ∼4 nm (closed) and another at ∼6 nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each

  18. Crystallization and preliminary X-ray analysis of l-methionine γ-lyase 1 from Entamoeba histolytica

    SciTech Connect

    Sato, Dan; Karaki, Tsuyoshi; Shimizu, Akira; Kamei, Kaeko; Harada, Shigeharu; Nozaki, Tomoyoshi

    2008-08-01

    l-Methionine γ-lyase 1, a key enzyme in sulfur-containing amino-acid degradation, from the protozoan parasite E. histolytica was crystallized in a form suitable for X-ray structure analysis. l-Methionine γ-lyase (MGL) is a pyridoxal phosphate-dependent enzyme that is involved in the degradation of sulfur-containing amino acids. MGL is an attractive drug target against amoebiasis because the mammalian host of its causative agent Entamoeba histolytica lacks MGL. For the development of anti-amoebic agents based on the structure of MGL, one of two MGL isoenzymes (EhMGL1) was crystallized in the monoclinic space group P2{sub 1}, with unit-cell parameters a = 99.12, b = 85.38, c = 115.37 Å, β = 101.82°. The crystals diffract to beyond 2.0 Å resolution. The presence of a tetramer in the asymmetric unit (4 × 42.4 kDa) gives a Matthews coefficient of 2.8 Å{sup 3} Da{sup −1} and a solvent content of 56%. The structure was solved by the molecular-replacement method and structure refinement is now in progress.

  19. Palm tocotrienol-rich fraction inhibits methionine-induced cystathionine β-synthase in rat liver.

    PubMed

    Kamisah, Yusof; Norsidah, Ku-Zaifah; Azizi, Ayob; Faizah, Othman; Nonan, Mohd Rizal; Asmadi, Ahmad Yusof

    2015-12-01

    Oxidative stress plays an important role in cardiovascular diseases. The study investigated the effects of dietary palm tocotrienol-rich fraction on homocysteine metabolism in rats fed a high-methionine diet. Forty-two male Wistar rats were randomly assigned to six groups. Five groups were fed with high-methionine diet (1%) for 10 weeks. Groups 2 to 5 were also given dietary folate (8 mg/kg) and three doses of palm tocotrienol-rich fraction (30, 60 and 150 mg/kg) from week 6 to week 10. The last group was only given basal rat chow. High-methionine diet increased plasma homocysteine after 10 weeks, which was prevented by the supplementations of folate and high-dose palm tocotrienol-rich fraction. Hepatic S-adenosyl methionine (SAM) content was unaffected in all groups but S-adenosyl homocysteine (SAH) content was reduced in the folate group. Folate supplementation increased the SAM/SAH ratio, while in the palm tocotrienol-rich fraction groups, the ratio was lower compared with the folate. Augmented activity of hepatic cystathionine β-synthase and lipid peroxidation content by high-methionine diet was inhibited by palm tocotrienol-rich fraction supplementations (moderate and high doses), but not by folate. The supplemented groups had lower hepatic lipid peroxidation than the high-methionine diet. In conclusion, palm tocotrienol-rich fraction reduced high-methionine-induced hyperhomocysteinaemia possibly by reducing hepatic oxidative stress in high-methionine-fed rats. It may also exert a direct inhibitory effect on hepatic cystathionine β-synthase. PMID:26403767

  20. Methionine Biosynthesis is Essential for Infection in the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Gagey, Marie Josèphe; Frelin, Océane; Beffa, Roland; Lebrun, Marc Henri; Droux, Michel

    2015-01-01

    Methionine is a sulfur amino acid standing at the crossroads of several biosynthetic pathways. In fungi, the last step of methionine biosynthesis is catalyzed by a cobalamine-independent methionine synthase (Met6, EC 2.1.1.14). In the present work, we studied the role of Met6 in the infection process of the rice blast fungus, Magnaporthe oryzae. To this end MET6 null mutants were obtained by targeted gene replacement. On minimum medium, MET6 null mutants were auxotrophic for methionine. Even when grown in presence of excess methionine, these mutants displayed developmental defects, such as reduced mycelium pigmentation, aerial hypha formation and sporulation. They also displayed characteristic metabolic signatures such as increased levels of cysteine, cystathionine, homocysteine, S-adenosylmethionine, S-adenosylhomocysteine while methionine and glutathione levels remained unchanged. These metabolic perturbations were associated with the over-expression of MgCBS1 involved in the reversed transsulfuration pathway that metabolizes homocysteine into cysteine and MgSAM1 and MgSAHH1 involved in the methyl cycle. This suggests a physiological adaptation of M. oryzae to metabolic defects induced by the loss of Met6, in particular an increase in homocysteine levels. Pathogenicity assays showed that MET6 null mutants were non-pathogenic on both barley and rice leaves. These mutants were defective in appressorium-mediated penetration and invasive infectious growth. These pathogenicity defects were rescued by addition of exogenous methionine and S-methylmethionine. These results show that M. oryzae cannot assimilate sufficient methionine from plant tissues and must synthesize this amino acid de novo to fulfill its sulfur amino acid requirement during infection. PMID:25856162

  1. Metabolic engineering of Corynebacterium glutamicum ATCC13032 to produce S-adenosyl-L-methionine.

    PubMed

    Han, Guoqiang; Hu, Xiaoqing; Qin, Tianyu; Li, Ye; Wang, Xiaoyuan

    2016-02-01

    As an important biological methyl group donor, S-adenosyl-L-methionine is used as nutritional supplement or drug for various diseases, but bacterial strains that can efficiently produce S-adenosyl-L-methionine are not available. In this study, Corynebacterium glutamicum strain HW104 which can accumulate S-adenosyl-L-methionine was constructed from C. glutamicum ATCC13032 by deleting four genes thrB, metB, mcbR and Ncgl2640, and six genes metK, vgb, lysC(m), hom(m), metX and metY were overexpressed in HW104 in different combinations, forming strains HW104/pJYW-4-metK-vgb, HW104/pJYW-4-SAM2C-vgb, HW104/pJYW-4-metK-vgb-metYX, and HW104/pJYW-4-metK-vgb-metYX-hom(m)-lysC(m). Fermentation experiments showed that HW104/pJYW-4-metK-vgb produced more S-adenosyl-L-methionine than other strains, and the yield achieved 196.7 mg/L (12.15 mg/g DCW) after 48h. The results demonstrate the potential application of C. glutamicum for production of S-adenosyl-L-methionine without addition of L-methionine. PMID:26777246

  2. Metformin Eased Cognitive Impairment Induced by Chronic L-methionine Administration: Potential Role of Oxidative Stress

    PubMed Central

    Alzoubi, Karem. H; Khabour, Omar. F; Al-azzam, Sayer I; Tashtoush, Murad H; Mhaidat, Nizar M

    2014-01-01

    Chronic administration of L-methionine leads to memory impairment, which is attributed to increase in the level of oxidative stress in the brain. On the other hand, metformin is a commonly used antidiabetic drug with strong antioxidant properties. In the current study, we tested if chronic metformin administration prevents memory impairment induced by administration of L-methionine. In addition, a number of molecules related to the action of metformin on cognitive functions were examined. Both metformin and L-methionine were administered to animals by oral gavage. Testing of spatial learning and memory was carried out using radial arm water maze (RAWM). Additionally, hippocampal levels or activities of catalase, thiobarbituric acid reactive substances (TBARs), glutathione peroxidase (GPx), glutathione (GSH), oxidized glutathione (GSSG) and GSH/GSSG ratio were determined. Results showed that chronic L-methionine administration resulted in both short- and long- term memory impairment, whereas metformin treatment prevented such effect. Additionally, L-methionine treatment induced significant elevation in GSSG and TBARs, along with reduction in GSH/GSSG ratio and activities of catalase, and GPx. These effects were shown to be restored by metformin treatment. In conclusion, L-methionine induced memory impairment, and treatment with metformin prevented this impairment probably by normalizing oxidative stress in the hippocampus. PMID:24669211

  3. Enzymatic aminoacylation of sequence-specific RNA minihelices and hybrid duplexes with methionine.

    PubMed Central

    Martinis, S A; Schimmel, P

    1992-01-01

    RNA hairpin helices whose sequences are based on the acceptor stems of alanine and histidine tRNAs are specifically aminoacylated with their cognate amino acids. In these examples, major determinants for the identities of the respective tRNAs reside in the acceptor stem; the anticodon and other parts of the tRNA are dispensable for aminoacylation. In contrast, the anticodon is a major determinant for the identity of a methionine tRNA. RNA hairpin helices and hybrid duplexes that reconstruct the acceptor-T psi C stem and the acceptor stem, respectively, of methionine tRNA were investigated here for aminoacylation with methionine. Direct visualization of the aminoacylated RNA product on an acidic polyacrylamide gel by phosphor imaging demonstrated specific aminoacylation with substrates that contained as few as 7 base pairs. No aminoacylation with methionine was detected with several analogous RNA substrates whose sequences were based on noncognate tRNAs. While the efficiency of aminoacylation is reduced by orders of magnitude relative to methionine tRNA, the results establish that specific aminoacylation with methionine of small duplex substrates can be achieved without the anticodon or other domains of the tRNA. The results, combined with earlier studies, suggest a highly specific adaptation of the structures of aminoacyl-tRNA synthetases to the acceptor stems of their cognate tRNAs, resulting in a relationship between the nucleotide sequences/structures of small RNA duplexes and specific amino acids. Images PMID:1729719

  4. Influence of dietary protein and excess methionine on choline needs for young bobwhite quail

    USGS Publications Warehouse

    Serafin, J.A.

    1982-01-01

    Experiments were conducted with young Bobwhite quail (Colinus virginianus) to investigate the effect of differing dietary protein levels and nondetrimental amounts of excess methionine on choline needs. Growth and feed consumption of quail fed an adequate (27.3%) protein purified diet supplemented with 2000 mg/kg of choline were unaffected by increasing the level of excess methionine to 1.75%; however, greater amounts (2.0%, 2.25%) of excess methionine depressed growth (P less than .01), reduced feed consumption (P less than .01), and decreased feed utilization (P less than .05). Quail fed a purified diet containing 13.85% protein and 515 mg/kg of choline grew poorly. Growth was unaffected by additional choline in this diet. Growth was suboptimal among quail fed purified diets containing adequate or high (41.55%) levels of protein in which choline was limiting; however, a high level of protein did not in itself affect performance. Growth was improved by supplemental choline in these diets. Growth of quail fed purified diets with up to 1.35% excess methionine which were limiting (531 mg/kg) in choline was less than that of groups fed 2000 mg/kg of added dietary choline (P less than .01); however, excess methionine did not significantly influence growth of quail fed choline-deficient diets. These experiments indicate that neither high dietary protein nor excess methionine, fed at non-growth-depressing levels, increases dietary choline needs for young Bobwhite quail.

  5. Disruption of Methionine Metabolism in Drosophila melanogaster Impacts Histone Methylation and Results in Loss of Viability

    PubMed Central

    Liu, Mengying; Barnes, Valerie L.; Pile, Lori A.

    2015-01-01

    Histone methylation levels, which are determined by the action of both histone demethylases and methyltransferases, impact multiple biological processes by affecting gene expression activity. Methionine metabolism generates the major methyl donor S-adenosylmethionine (SAM) for histone methylation. The functions of methionine metabolic enzymes in regulating biological processes as well as the interaction between the methionine pathway and histone methylation, however, are still not fully understood. Here, we report that reduced levels of some enzymes involved in methionine metabolism and histone demethylases lead to lethality as well as wing development and cell proliferation defects in Drosophila melanogaster. Additionally, disruption of methionine metabolism can directly affect histone methylation levels. Reduction of little imaginal discs (LID) histone demethylase, but not lysine-specific demethylase 2 (KDM2) demethylase, is able to counter the effects on histone methylation due to reduction of SAM synthetase (SAM-S). Taken together, these results reveal an essential role of key enzymes that control methionine metabolism and histone methylation. Additionally, these findings are an indication of a strong connection between metabolism and epigenetics. PMID:26546310

  6. Effect of interstitial irradiation and glucose metabolism and methionine uptake in glioma patients

    SciTech Connect

    Pietrzyk, U.; Herholz, K.; Wueker, M.

    1994-05-01

    Interstitial radiation by stereotactic I-125 seed implants is an established therapy for brain glioma. We studied its effect on tissue glucose metabolism and methionine uptake because of its relevance for therapy planning and monitoring. Six patients with gliomas of histological grade 2 or 3 received permanent CT-guided stereotactic implants of 100 to 490 MBq I-125. FDG PET, and in 3 subjects also C-11-methionine PET, was performed before and one year after seed implantation on a Siemens ECAT EXACT. All scans were 3-D matched to CT, isodose volumes were determined, and changes of glucose metabolism and methionine uptake were evaluated in tumor and brain tissue as a function of radiation dose. There was a consistent dose-dependent decrease of methionine uptake after one year: less than 20% change for cumulated doses {<=}60 Gy, then a decline down to a reduction by 30-70% for doses {>=}150 Gy. Glucose metabolism showed a much more variable response without clear dose dependency. Average maximum reduction was 23% (S.D. 24%), and an increase of glucose metabolic rates in irradiated tissue up to 43% was noted in 5 patients. In one case recurrent tumor outside of the 170 Gy isodose was most clearly seen by increased methionin uptake. In conclusion, C-11-methionine appears suited for monitoring of therapeutic radiation effects, whereas FDG shows a more variable response and often increased glycolysis in irradiated tissue.

  7. Methionine restriction on lipid metabolism and its possible mechanisms.

    PubMed

    Zhou, Xihong; He, Liuqin; Wan, Dan; Yang, Huansheng; Yao, Kang; Wu, Guoyao; Wu, Xin; Yin, Yulong

    2016-07-01

    Methionine restriction (MR) exerts many beneficial effects, such as increasing longevity, decreasing oxidative damage and alleviating inflammatory responses. Much attention has been recently focused on the effects of MR on metabolic health, especially lipid metabolism, since the increasing incidence of obesity, insulin resistance and type 2 diabetes causes a worldwide health problem. In general, MR is considered to increase de novo lipogenesis, lipolysis and fatty acid oxidation, with a result of reduced fat accumulation. However, different responses in lipid metabolism between adipose tissue and liver are declared. Therefore, in this review, we will focus on the changes of lipid metabolism responses to dietary MR. Moreover, the comparison of alterations of fat metabolism responses to dietary MR between adipose tissue and liver, and the comparison of changes between rodents and pigs is made to illustrate the tissue- and species-specific responses. In addition, the possible mechanisms that might be engaged in the regulation of MR diet on lipid metabolism are also discussed. PMID:27156065

  8. Methionine AminoPeptidase Type-2 Inhibitors Targeting Angiogenesis.

    PubMed

    Ehlers, Tedman; Furness, Scott; Robinson, Thomas Philip; Zhong, Haizhen A; Goldsmith, David; Aribser, Jack; Bowen, J Phillip

    2016-01-01

    Angiogenesis has been identified as a crucial process in the development and spread of cancers. There are many regulators of angiogenesis which are not yet fully understood. Methionine aminiopeptidase is a metalloenzyme with two structurally distinct forms in humans, Type-1 (MetAP-1) and Type-2 (MetAP-2). It has been shown that small molecule inhibitors of MetAP-2 suppress endothelial cell proliferation. The initial discovery by Donald Ingber of MetAP-2 inhibition as a potential target in angiogenesis began with a fortuitous observation similar to the discovery of penicillin activity by Sir Alexander Fleming. From a drug design perspective, MetAP-2 is an attractive target. Fumagillin and ovalicin, known natural products, bind with IC50 values in low nanomolar concentrations. Crystal structures of the bound complexes provide 3-dimensional coordinates for advanced computational studies. More recent discoveries have shown other biological activities for MetAP-2 inhibition, which has generated new interests in the design of novel inhibitors. Semisynthetic fumagillin derivatives such as AGM-1470 (TNP-470) have been shown to have better drug properties, but have not been very successful in clinical trials. The rationale and development of novel multicyclic analogs of fumagillin are reviewed. PMID:26369821

  9. Methionine Uptake and Required Radiation Dose to Control Glioblastoma

    SciTech Connect

    Iuchi, Toshihiko; Hatano, Kazuo; Uchino, Yoshio; Itami, Makiko; Hasegawa, Yuzo; Kawasaki, Koichiro; Sakaida, Tsukasa; Hara, Ryusuke

    2015-09-01

    Purpose: The purpose of this study was to retrospectively assess the feasibility of radiation therapy planning for glioblastoma multiforme (GBM) based on the use of methionine (MET) positron emission tomography (PET), and the correlation among MET uptake, radiation dose, and tumor control. Methods and Materials: Twenty-two patients with GBM who underwent MET-PET prior to radiation therapy were enrolled. MET uptake in 30 regions of interest (ROIs) from 22 GBMs, biologically effective doses (BEDs) for the ROIs and their ratios (MET uptake:BED) were compared in terms of whether the ROIs were controlled for >12 months. Results: MET uptake was significantly correlated with tumor control (odds ratio [OR], 10.0; P=.005); however, there was a higher level of correlation between MET uptake:BED ratio and tumor control (OR, 40.0; P<.0001). These data indicated that the required BEDs for controlling the ROIs could be predicted in terms of MET uptake; BED could be calculated as [34.0 × MET uptake] Gy from the optimal threshold of the MET uptake:BED ratio for tumor control. Conclusions: Target delineation based on MET-PET was demonstrated to be feasible for radiation therapy treatment planning. MET-PET could not only provide precise visualization of infiltrating tumor cells but also predict the required radiation doses to control target regions.

  10. Fragmentation network of doubly charged methionine: Interpretation using graph theory.

    PubMed

    Ha, D T; Yamazaki, K; Wang, Y; Alcamí, M; Maeda, S; Kono, H; Martín, F; Kukk, E

    2016-09-01

    The fragmentation of doubly charged gas-phase methionine (HO2CCH(NH2)CH2CH2SCH3) is systematically studied using the self-consistent charge density functional tight-binding molecular dynamics (MD) simulation method. We applied graph theory to analyze the large number of the calculated MD trajectories, which appears to be a highly effective and convenient means of extracting versatile information from the large data. The present theoretical results strongly concur with the earlier studied experimental ones. Essentially, the dication dissociates into acidic group CO2H and basic group C4NSH10. The former may carry a single or no charge and stays intact in most cases, whereas the latter may hold either a single or a double charge and tends to dissociate into smaller fragments. The decay of the basic group is observed to follow the Arrhenius law. The dissociation pathways to CO2H and C4NSH10 and subsequent fragmentations are also supported by ab initio calculations. PMID:27608997

  11. Kinetics of methionine transport and metabolism by Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense.

    PubMed

    Goldberg, B; Rattendi, D; Lloyd, D; Yarlett, N; Bacchi, C J

    2000-05-01

    Methionine is an essential amino acid for both prokaryotic and eukaryotic organisms; however, little is known concerning its utilization in African trypanosomes, protozoa of the Trypanosoma brucei group. This study explored the Michaelis-Menten kinetic constants for transport and pool formation as well as metabolic utilization of methionine by two divergent strains of African trypanosomes, Trypanosoma brucei brucei (a veterinary pathogen), highly sensitive to trypanocidal agents, and Trypanosoma brucei rhodesiense (a human pathogenic isolate), highly refractory to trypanocidal arsenicals. The Michaelis-Menten constants derived by Hanes-Woolf analysis for transport of methionine for T. b. brucei and T. b. rhodesiense, respectively, were as follows: K(M) values, 1. 15 and 1.75 mM; V(max) values, 3.97 x 10(-5) and 4.86 x 10(-5) mol/L/min. Very similar values were obtained by Lineweaver-Burk analysis (K(M), 0.25 and 1.0 mM; V(max), 1 x 10(-5) and 2.0 x 10(-5) mol/L/min, T. b. brucei and T. b. rhodesiense, respectively). Cooperativity analyses by Hill (log-log) plot gave Hill coefficients (n) of 6 and 2 for T. b. brucei and T. b. rhodesiense, respectively. Cytosolic accumulation of methionine after 10-min incubation with 25 mM exogenous methionine was 1.8-fold greater in T. b. rhodesiense than T. b. brucei (2.1 vs 1.1 mM, respectively). In African trypanosomes as in their mammalian host, S-adenosylmethionine (AdoMet) is the major product of methionine metabolism. Accumulation of AdoMet was measured by HPLC analysis of cytosolic extracts incubated in the presence of increasing cytosolic methionine. In trypanosomes incubated for 10 min with saturating methionine, both organisms accumulated similar amounts of AdoMet (approximately 23 microM), but the level of trans-sulfuration products (cystathionine and cysteine) in T. b. rhodesiense was double that of T. b. brucei. Methionine incorporation during protein synthesis in T. b. brucei was 2.5 times that of T. b. rhodesiense

  12. 1- sup 13 C; methyl-2H3 methionine kinetics in humans: Methionine conservation and cystine sparing

    SciTech Connect

    Storch, K.J.; Wagner, D.A.; Burke, J.F.; Young, V.R. )

    1990-05-01

    Methionine (Met) conservation in healthy young adult men (4/diet group) was explored by supplying one of the following three L-amino acid based diets: (1) adequate Met but no cystine; (2) neither Met nor cystine; or (3) no Met but cystine supplementation. After 5 days, subjects received a continuous intravenous infusion of L-(1-13C; methyl-2H3)Met for 5 h while the diet was given as small isocaloric isonitrogenous meals. Estimates were made of rates of Met incorporation into protein synthesis (S) and release from body proteins (B), transmethylation (TM), remethylation of homocysteine (RM), and transsulfuration (TS). For the adequate Met diet, the rates were S = 24 +/- 2, B = 18 +/- 1, TM = 12.4 +/- 1.7, RM = 4.7 +/- 1.1, and TS = 7.6 +/- 0.6 (SE) mumol.kg-1.h-1. The sulfur amino acid-devoid diet significantly (P less than 0.05) reduced S, TM, RM, and TS. Supplementation of this diet with cystine reduced Met oxidation (P = 0.05). Therefore, two loci are quantitatively important regulatory points in Met conservation in vivo: (1) the distribution of Met between the pathways of protein anabolism and TM (Met locus) and (2) the distribution of homocysteine between RM and TS (homocysteine locus).

  13. A method for determination of unoxidized and total methionine in protein concentrates, with special reference to fish meals.

    PubMed

    Njaa, L R

    1980-03-01

    1. An automated colorimetric method for determination of methionine using an iodoplatinate reagent is described. Methionine sulphoxide does not react under the chosen conditions. 2. The method may be used to distinguish between unoxidized and total methionine by doing one determination without and one determination with previous reduction of a portion of the sample with titanium trichloride. Methionine sulphoxide is then obtained by difference. 3. The method has been used with protein concentrates, mainly fish meals, after hydrolysis with barium hydroxide. Interference from cysteine-cystine is eliminated by adding a small amount of cadmium acetate to the sample before hydrolysis. 4. Results obtained for total methionine and for methionine sulphoxide by independent methods show good agreement with results obtained with the iodoplatinate method. PMID:7378341

  14. Modulation of cell cycle and gene expression in pancreatic tumor cell lines by methionine deprivation (methionine stress): implications to the therapy of pancreatic adenocarcinoma.

    PubMed

    Kokkinakis, Demetrius M; Liu, Xiaoyan; Neuner, Russell D

    2005-09-01

    The effect of methionine deprivation (methionine stress) on the proliferation, survival, resistance to chemotherapy, and regulation of gene and protein expression in pancreatic tumor lines is examined. Methionine stress prevents successful mitosis and promotes cell cycle arrest and accumulation of cells with multiple micronuclei with decondensed chromatin. Inhibition of mitosis correlates with CDK1 down-regulation and/or inhibition of its function by Tyr(15) phosphorylation or Thr(161) dephosphorylation. Inhibition of cell cycle progression correlates with loss of hyperphosphorylated Rb and up-regulation of p21 via p53 and/or transforming growth factor-beta (TGF-beta) activation depending on p53 status. Although methionine stress-induced toxicity is not solely dependent on p53, the gain in p21 and loss in CDK1 transcription are more enhanced in wild-type p53 tumors. Up-regulation of SMAD7, a TGF-beta signaling inhibitor, suggests that SMAD7 does not restrict the TGF-beta-mediated induction of p21, although it may prevent up-regulation of p27. cDNA oligoarray analysis indicated a pleiotropic response to methionine stress. Cell cycle and mitotic arrest is in agreement with up-regulation of NF2, ETS2, CLU, GADD45alpha, GADD45beta, and GADD45gamma and down-regulation of AURKB, TOP2A, CCNA, CCNB, PRC1, BUB1, NuSAP, IFI16, and BRCA1. Down-regulation of AREG, AGTR1, M-CSF, and EGF, IGF, and VEGF receptors and up-regulation of GNA11 and IGFBP4 signify loss of growth factor support. PIN1, FEN1, and cABL up-regulation and LMNB1, AREG, RhoB, CCNG, TYMS, F3, and MGMT down-regulation suggest that methionine stress sensitizes the tumor cells to DNA-alkylating drugs, 5-fluorouracil, and radiation. Increased sensitivity of pancreatic tumor cell lines to temozolomide is shown under methionine stress conditions and is attributed in part to diminished O(6)-methylguanine-DNA methyltransferase and possibly to inhibition of the cell cycle progression. PMID:16170025

  15. Hepatic Effects of a Methionine-Choline-Deficient Diet in Hepatocyte RXRα-null Mice

    PubMed Central

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He, Lin; Klaassen, Curtis D.; Wan, Yu-Jui Yvonne

    2009-01-01

    Retinoid X receptor-α (RXRα) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXRα deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXRα-null (H-RXRα-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid β-oxidation were not altered in WT mice, but were decreased in the MCD diet-fed H-RXRα-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXRα-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXRα-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXRα-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXRα-null mice. In conclusion, these data suggest a critical role for RXRα in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury. PMID:18952117

  16. Hepatic effects of a methionine-choline-deficient diet in hepatocyte RXR{alpha}-null mice

    SciTech Connect

    Gyamfi, Maxwell Afari; Tanaka, Yuji; He Lin; Klaassen, Curtis D.; Wan, Y.-J.Y.

    2009-01-15

    Retinoid X receptor-{alpha} (RXR{alpha}) is an obligate partner for several nuclear hormone receptors that regulate important physiological processes in the liver. In this study the impact of hepatocyte RXR{alpha} deficiency on methionine and choline deficient (MCD) diet-induced steatosis, oxidative stress, inflammation, and hepatic transporters gene expression were examined. The mRNA of sterol regulatory element-binding protein (SREBP)-regulated genes, important for lipid synthesis, were not altered in wild type (WT) mice, but were increased 2.0- to 5.4-fold in hepatocyte RXR{alpha}-null (H-RXR{alpha}-null) mice fed a MCD diet for 14 days. Furthermore, hepatic mRNAs and proteins essential for fatty acid {beta}-oxidation were not altered in WT mice, but were decreased in the MCD diet-fed H-RXR{alpha}-null mice, resulting in increased hepatic free fatty acid levels. Cyp2e1 enzyme activity and lipid peroxide levels were induced only in MCD-fed WT mice. In contrast, hepatic mRNA levels of pro-inflammatory factors were increased only in H-RXR{alpha}-null mice fed the MCD diet. Hepatic uptake transporters Oatp1a1 and Oatp1b2 mRNA levels were decreased in WT mice fed the MCD diet, whereas the efflux transporter Mrp4 was increased. However, in the H-RXR{alpha}-null mice, the MCD diet only moderately decreased Oatp1a1 and induced both Oatp1a4 and Mrp4 gene expression. Whereas the MCD diet increased serum bile acid levels and alkaline phosphatase activity in both WT and H-RXR{alpha}-null mice, serum ALT levels were induced (2.9-fold) only in the H-RXR{alpha}-null mice. In conclusion, these data suggest a critical role for RXR{alpha} in hepatic fatty acid homeostasis and protection against MCD-induced hepatocyte injury.

  17. Role of methionine in the active site of alpha-galactosidase from Trichoderma reesei.

    PubMed Central

    Kachurin, A M; Golubev, A M; Geisow, M M; Veselkina, O S; Isaeva-Ivanova, L S; Neustroev, K N

    1995-01-01

    alpha-Galactosidase from Trichoderma reesei when treated with H2O2 shows a 12-fold increase in activity towards p-nitrophenyl alpha-D-galactopyranoside. A similar effect is produced by the treatment of alpha-galactosidase with other non-specific oxidants: NaIO4, KMnO4 and K4S4O8. In addition to the increase in activity, the Michaelis constant rises from 0.2 to 1.4 mM, the temperature coefficient decreases by a factor of 1.5 and the pH-activity curve falls off sharply with increasing pH. Galactose (a competitive inhibitor of alpha-galactosidase; Ki 0.09 mM for the native enzyme at pH 4.4) effectively inhibits oxidative activation of the enzyme, because the observed activity changes are related to oxidation of the catalytically important methionine in the active site. NMR measurements and amino acid analysis show that oxidation to methionine sulphoxide of one of five methionines is sufficient to activate alpha-galactosidase. Binding of galactose prevents this. Oxidative activation does not lead to conversion of other H2O2-sensitive amino acid residues, such as histidine, tyrosine, tryptophan and cysteine. The catalytically important cysteine thiol group is quantitatively titrated after protein oxidative activation. Further oxidation of methionines (up to four of five residues) can be achieved by increasing the oxidation time and/or by prior denaturation of the protein. Obviously, a methionine located in the active site of alpha-galactosidase is more accessible. The oxidative-activation phenomenon can be explained by a conformational change in the active site as a result of conversion of non-polar methionine into polar methionine sulphoxide. Images Figure 10 PMID:8948456

  18. Methionine oxidation induces amyloid fibril formation by full-length apolipoprotein A-I

    PubMed Central

    Wong, Yuan Qi; Binger, Katrina J.; Howlett, Geoffrey J.; Griffin, Michael D. W.

    2010-01-01

    Apolipoprotein A-I (apoA-I) is the major protein component of HDL, where it plays an important role in cholesterol transport. The deposition of apoA-I derived amyloid is associated with various hereditary systemic amyloidoses and atherosclerosis; however, very little is known about the mechanism of apoA-I amyloid formation. Methionine residues in apoA-I are oxidized via several mechanisms in vivo to form methionine sulfoxide (MetO), and significant levels of methionine oxidized apoA-I (MetO-apoA-I) are present in normal human serum. We investigated the effect of methionine oxidation on the structure, stability, and aggregation of full-length, lipid-free apoA-I. Circular dichrosim spectroscopy showed that oxidation of all three methionine residues in apoA-I caused partial unfolding of the protein and decreased its thermal stability, reducing the melting temperature (Tm) from 58.7 °C for native apoA-I to 48.2 °C for MetO-apoA-I. Analytical ultracentrifugation revealed that methionine oxidation inhibited the native self association of apoA-I to form dimers and tetramers. Incubation of MetO-apoA-I for extended periods resulted in aggregation of the protein, and these aggregates bound Thioflavin T and Congo Red. Inspection of the aggregates by electron microscopy revealed fibrillar structures with a ribbon-like morphology, widths of approximately 11 nm, and lengths of up to several microns. X-ray fibre diffraction studies of the fibrils revealed a diffraction pattern with orthogonal peaks at spacings of 4.64 Å and 9.92 Å, indicating a cross-β amyloid structure. This systematic study of fibril formation by full-length apoA-I represents the first demonstration that methionine oxidation can induce amyloid fibril formation. PMID:20133843

  19. Methionine restriction inhibits chemically-induced malignant transformation in the BALB/c 3T3 cell transformation assay.

    PubMed

    Nicken, Petra; Empl, Michael T; Gerhard, Daniel; Hausmann, Julia; Steinberg, Pablo

    2016-09-01

    High consumption of red meat entails a higher risk of developing colorectal cancer. Methionine, which is more frequently a component of animal proteins, and folic acid are members of the one carbon cycle and as such important players in DNA methylation and cancer development. Therefore, dietary modifications involving altered methionine and folic acid content might inhibit colon cancer development. In the present study, the BALB/c 3T3 cell transformation assay was used to investigate whether methionine and folic acid are able to influence the malignant transformation of mouse fibroblasts after treatment with the known tumour initiator 3-methylcholanthrene. Three different methionine concentrations (representing a -40%, a "normal" and a +40% cell culture medium concentration, respectively) and two different folic acid concentrations (6 and 20 μM) were thereby investigated. Methionine restriction led to a decrease of type III foci, while enhancement of both methionine and folic acid did not significantly increase the cell transformation rate. Interestingly, the focus-lowering effect of methionine was only significant in conjunction with an elevated folic acid concentration. In summary, we conclude that the malignant transformation of mouse fibroblasts is influenced by methionine levels and that methionine restriction could be a possible approach to reduce cancer development. PMID:27427305

  20. Definitive Endoderm Differentiation of Human Embryonic Stem Cells Combined with Selective Elimination of Undifferentiated Cells by Methionine Deprivation.

    PubMed

    Tsuyama, Tomonori; Shiraki, Nobuaki; Kume, Shoen

    2016-01-01

    Human embryonic stem cells (ESCs) show a characteristic feature in that they are highly dependent on methionine metabolism. Undifferentiated human ESCs cannot survive under the condition that methionine is deprived from culture medium. We describe here a procedure for definitive endoderm differentiation from human ESCs, in which human ESCs are subject to 10 days (d) differentiation combined with methionine deprivation between differentiation day (d) 8 to d10. Methionine deprivation results in elimination of undifferentiated cells from the culture with no significant loss of definitive endoderm cells, as compared to those cultured under complete condition throughout the whole culture period. PMID:25822724

  1. Impact of food supplementation and methionine on high densities of cotton rats: Support of the amino-acid-quality hypothesis?

    USGS Publications Warehouse

    Webb, R.E.; Leslie, David M., Jr.; Lochmiller, R.L.; Masters, R.E.

    2005-01-01

    Considerable research supports the tenet that quantity and quality of food limit vertebrate populations. We evaluated predictions that increased availabilities of food and the essential amino acid methionine were related to population limitation of the hispid cotton rat (Sigmodon hispidus). Effects of supplemental food and methionine on density, survival, and reproductive parameters of wild cotton rats were assessed in north-central Oklahoma in 1998-1999. Twelve enclosed groups of 16 adult cotton rats each (8 male, 8 female) were randomly assigned to either no supplementation (control), supplementation with a mixed ration that had methionine at slightly below maintenance levels (0.20%), or a methionine-enhanced mixed ration (1.20%). In general, densities of cotton rats were twice as high and were sustained longer with dietary supplementation, and methionine-supplemented populations maintained the highest densities. Treatment effects on survival depended on time of year, with higher survival in supplemented enclosures in October and November. Per capita recruitment was highest with methionine-enhanced food. Treatment effects on proportions of overall and female cotton rats in reproductive condition depended on sampling date, but males were most reproductively active with methionine supplementation. Methionine supplementation resulted in an earlier and longer reproductive season. Density-dependent and density-independent factors no doubt interplay to determine population dynamics of cotton rats, but our results suggest that methionine plays a role in the population dynamics of wild cotton rats, apparently by enhancing overall density, recruitment, and reproductive activity of males.

  2. Conserved methionine dictates substrate preference in Nramp-family divalent metal transporters.

    PubMed

    Bozzi, Aaron T; Bane, Lukas B; Weihofen, Wilhelm A; McCabe, Anne L; Singharoy, Abhishek; Chipot, Christophe J; Schulten, Klaus; Gaudet, Rachelle

    2016-09-13

    Natural resistance-associated macrophage protein (Nramp) family transporters catalyze uptake of essential divalent transition metals like iron and manganese. To discriminate against abundant competitors, the Nramp metal-binding site should favor softer transition metals, which interact either covalently or ionically with coordinating molecules, over hard calcium and magnesium, which interact mainly ionically. The metal-binding site contains an unusual, but conserved, methionine, and its sulfur coordinates transition metal substrates, suggesting a vital role in their transport. Using a bacterial Nramp model system, we show that, surprisingly, this conserved methionine is dispensable for transport of the physiological manganese substrate and similar divalents iron and cobalt, with several small amino acid replacements still enabling robust uptake. Moreover, the methionine sulfur's presence makes the toxic metal cadmium a preferred substrate. However, a methionine-to-alanine substitution enables transport of calcium and magnesium. Thus, the putative evolutionary pressure to maintain the Nramp metal-binding methionine likely exists because it-more effectively than any other amino acid-increases selectivity for low-abundance transition metal transport in the presence of high-abundance divalents like calcium and magnesium. PMID:27573840

  3. Suppression of Methionine Oxidation of a Pharmaceutical Antibody Stored in a Polymer-Based Syringe.

    PubMed

    Masato, Amano; Kiichi, Fukui; Uchiyama, Susumu

    2016-02-01

    Oxidation of methionine residues is one of the well-known deteriorations in monoclonal antibody (mAb) therapeutics. Because methionine oxidation may affect their efficacy and pharmacokinetic profile, oxidation levels should be strictly controlled during their storage period. In this study, we revealed that when a therapeutic antibody was filled into a cyclo olefin polymer-based syringe and stored in a blister pack with an oxygen absorber, the methionine oxidation production under thermal or light stress was suppressed because of the reduction in the concentration of dissolved oxygen. Also unexpectedly, fewer amounts of the high-molecular-weight species and the acidic variants of the antibody were generated under thermal or light stress. Although the high-molecular-weight species contains methionine oxidants at similar levels to those in a monomer species, they were likely to be constituted from a higher amount of the oxidative species of internal disulfide linkage, tyrosine, or histidine. Because the dissolved oxygen could be readily removed from the mAb solution in the polymer-based syringe owing to its high gas permeability, this study shows the advantages of the polymer-based syringe with an oxygen absorber over glass syringes in terms of the suppression of the methionine oxidation and oxidative high molecular species. PMID:26462145

  4. Intermediates in the recycling of 5-methylthioribose to methionine in fruits.

    PubMed

    Kushad, M M; Richardson, D G; Ferro, A J

    1983-10-01

    The recycling of 5-methylthioribose (MTR) to methionine in avocado (Persea americana Mill, cv Hass) and tomato (Lycopersicum esculentum Mill, cv unknown) was examined. [(14)CH(3)]MTR was not metabolized in cell free extract from avocado fruit. Either [(14)CH(3)]MTR plus ATP or [(14)CH(3)]5-methylthioribose-1-phosphate (MTR-1-P) alone, however, were metabolized to two new products by these extracts. MTR kinase activity has previously been detected in these fruit extracts. These data indicate that MTR must be converted to MTR-1-P by MTR kinase before further metabolism can occur. The products of MTR-1-P metabolism were tentatively identified as alpha-keto-gamma-methylthiobutyric acid (alpha-KMB) and alpha-hydroxy-gamma-methylthiobutyric acid (alpha-HMB) by chromatography in several solvent systems. [(35)S]alpha-KMB was found to be further metabolized to methionine and alpha-HMB by these extracts, whereas alpha-HMB was not. However, alpha-HMB inhibited the conversion of alpha-KMB to methionine. Both [U-(14)C]alpha-KMB and [U-(14)C]methionine, but not [U-(14)C]alpha-HMB, were converted to ethylene in tomato pericarp tissue. In addition, aminoethoxyvinylglycine inhibited the conversion of alpha-KMB to ethylene. These data suggest that the recycling pathway leading to ethylene is MTR --> MTR-1-P --> alpha-KMB --> methionine --> S-adenosylmethionine --> 1-aminocyclopropane-1-carboxylic acid --> ethylene. PMID:16663204

  5. A Methionine-Induced Animal Model of Schizophrenia: Face and Predictive Validity

    PubMed Central

    Wang, Lien; Alachkar, Amal; Sanathara, Nayna; Belluzzi, James D.; Wang, Zhiwei

    2015-01-01

    Background: Modulating the methylation process induces broad biochemical changes, some of which may be involved in schizophrenia. Methylation is in particular central to epigenesis, which is also recognized as a factor in the etiology of schizophrenia. Because methionine administration to patients with schizophrenia has been reported to exacerbate their psychotic symptoms and because mice treated with methionine exhibited social deficits and prepulse inhibition impairment, we investigated whether methionine administration could lead to behavioral changes that reflect schizophrenic symptoms in mice. Methods: l-Methionine was administered to mice twice a day for 7 days. Results: We found that this treatment induces behavioral responses that reflect the 3 types of schizophrenia-like symptoms (positive, negative, or cognitive deficits) as monitored in a battery of behavioral assays (locomotion, stereotypy, social interaction, forced swimming, prepulse inhibition, novel object recognition, and inhibitory avoidance). Moreover, these responses were differentially reversed by typical haloperidol and atypical clozapine antipsychotics in ways that parallel their effects in schizophrenics. Conclusion: We thus propose the l-methionine treatment as an animal model recapitulating several symptoms of schizophrenia. We have established the face and predictive validity for this model. Our model relies on an essential natural amino acid and on an intervention that is relatively simple and time effective and may offer an additional tool for assessing novel antipsychotics. PMID:25991655

  6. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis.

    PubMed

    Uthus, Eric O

    2010-06-01

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4'-sulfonyl derivative of l-methionine (dabsyl Met), the product of the enzymatic reactions when either dabsyl l-methionine S-sulfoxide or dabsyl l-methionine R-sulfoxide is used as a substrate. The method provides baseline resolution of the substrates and, therefore, can be used to easily determine the purity of the substrates. The method is rapid ( approximately 20min sample to sample), requires no column regeneration, and uses very small amounts of buffers. Separation was performed by using a 75-mum internal diameter polyimide-coated fused silica capillary (no inside coating) with 60cm total length (50cm to the detector window). Samples were separated at 22.5kV, and the separation buffer was 25mM KH(2)PO(4) (pH 8.0) containing 0.9ml of N-lauroylsarcosine (sodium salt, 30% [w/v] solution) per 100ml of buffer. Prior to use, the capillary was conditioned with the same buffer that also contained 25mM sodium dodecyl sulfate. The CE method is compared with high-performance liquid chromatography (HPLC) as determined by comparing results from measurements of hepatic enzyme activities in mice fed either deficient or adequate selenium. PMID:20167203

  7. Ameliorative role of Atorvastatin and Pitavastatin in L-Methionine induced vascular dementia in rats

    PubMed Central

    Koladiya, Rajeshkumar U; Jaggi, Amteshwar S; Singh, Nirmal; Sharma, Bhupesh K

    2008-01-01

    Background Statins, HMG-CoA reductase inhibitors, are widely prescribed drugs for dyslipidemias. Recent studies have indicated number of cholesterol independent actions of statins including their beneficial effects on vascular endothelial dysfunction and memory deficits associated with dementia of Alzheimer's type. However the potential of statins in dementia of vascular origin still remains to be explored. Therefore, the present study has been designed to investigate the effect of Atorvastatin & Pitavastatin on vascular endothelial dysfunction associated memory deficits in rats. In this study L-Methionine induced vascular dementia was assessed by Morris water-maze (MWM) test. Biochemical analysis was also performed to unfold possible mechanism of statins mediated modulation of vascular dementia. Results L-Methionine produced endothelial dysfunction as reflected by significant decrease in serum nitrite concentration. L-Methionine treated rats performed poorly on MWM indicating impairment of memory as well. These rats also showed a significant rise in brain oxidative stress, acetylcholinesterase (AChE) activity and serum total cholesterol levels. Both Atorvastatin as well as Pitavastatin attenuated L-Methionine induced endothelial dysfunction associated memory deficits. Statins also reversed L-Methionine induced rise in brain oxidative stress, AChE activity and serum cholesterol. Conclusion The beneficial effects of statins may be attributed to their multiple effects and the study highlights the potential of these drugs in vascular dementia. PMID:18691432

  8. Tumbling chemotaxis mutants of Escherichia coli: possible gene-dependent effect of methionine starvation.

    PubMed Central

    Kondoh, H

    1980-01-01

    Some mutants defective in chemotaxis show incessant tumbling behavior and are called tumbling mutants. Previously described tumbling mutations lie in two genes, cheB and cheZ (41.5 min on Escherichia coli map). Genetic analysis of various tumbling mutants, however, revealed that two more genetic loci, cheC (43 min) and cheE (99.2 min), could also mutate to produce tumbling mutants. The genetic map around cheC was revised: his flaP flaQ flaR flbD flaA (= cheC) flaE. flbD is a new gene. When cells were starved for methionine, the tumbling mutants changed their swimming behavior depending on the che gene mutated. cheZ mutants, like wild-type bacteria, ceased tumbling shortly after removal of methionine. The tumbling of cheB or cheE mutants was depressed after prolonged methionine starvation in the presence of a constant level of an attractant. cheC tumbling mutants appeared unique in that they did not cease tumbling even when cells were deprived of methionine. By contrast, arsenate treatment of the tumbling mutants resulted in smooth swimming of the cells in every case. These results suggest that two different processes are involved in regulation of tumbling; one requiring methionine and the other requiring some phosphorylated compound. PMID:6991478

  9. Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity.

    PubMed

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M; Bortolato, Marco

    2014-10-01

    Catechol-O-methyl transferase (COMT) plays a key role in the degradation of brain dopamine (DA). Specifically, low COMT activity results in higher DA levels in the prefrontal cortex (PFC), thereby reducing the vulnerability for attentional and cognitive deficits in both psychotic and healthy individuals. COMT activity is markedly reduced by a non-synonymous single-nucleotide polymorphism (SNP) that generates a valine-to-methionine substitution on the residue 108/158, by means of as-yet incompletely understood post-translational mechanisms. One post-translational modification is methionine sulfoxide, which can be reduced by the methionine sulfoxide reductase (Msr) A and B enzymes. We used recombinant COMT proteins (Val/Met108) and mice (wild-type (WT) and MsrA knockout) to determine the effect of methionine oxidation on COMT activity and COMT interaction with Msr, through a combination of enzymatic activity and Western blot assays. Recombinant COMT activity is positively regulated by MsrA, especially under oxidative conditions, whereas brains of MsrA knockout mice exhibited lower COMT activity (as compared with their WT counterparts). These results suggest that COMT activity may be reduced by methionine oxidation, and point to Msr as a key molecular determinant for the modulation of COMT activity in the brain. The role of Msr in modulating cognitive functions in healthy individuals and schizophrenia patients is yet to be determined. PMID:24735585

  10. Impact of methionine oxidation on calmodulin structural dynamics.

    PubMed

    McCarthy, Megan R; Thompson, Andrew R; Nitu, Florentin; Moen, Rebecca J; Olenek, Michael J; Klein, Jennifer C; Thomas, David D

    2015-01-01

    We have used electron paramagnetic resonance (EPR) to examine the structural impact of oxidizing specific methionine (M) side chains in calmodulin (CaM). It has been shown that oxidation of either M109 or M124 in CaM diminishes CaM regulation of the muscle calcium release channel, the ryanodine receptor (RyR), and that mutation of M to Q (glutamine) in either case produces functional effects identical to those of oxidation. Here we have used site-directed spin labeling and double electron-electron resonance (DEER), a pulsed EPR technique that measures distances between spin labels, to characterize the structural changes resulting from these mutations. Spin labels were attached to a pair of introduced cysteine residues, one in the C-lobe (T117C) and one in the N-lobe (T34C) of CaM, and DEER was used to determine the distribution of interspin distances. Ca binding induced a large increase in the mean distance, in concert with previous X-ray crystallography and NMR data, showing a closed structure in the absence of Ca and an open structure in the presence of Ca. DEER revealed additional information about CaM's structural heterogeneity in solution: in both the presence and absence of Ca, CaM populates both structural states, one with probes separated by ∼4nm (closed) and another at ∼6nm (open). Ca shifts the structural equilibrium constant toward the open state by a factor of 13. DEER reveals the distribution of interprobe distances, showing that each of these states is itself partially disordered, with the width of each population ranging from 1 to 3nm. Both mutations (M109Q and M124Q) decrease the effect of Ca on the structure of CaM, primarily by decreasing the closed-to-open equilibrium constant in the presence of Ca. We propose that Met oxidation alters CaM's functional interaction with its target proteins by perturbing this Ca-dependent structural shift. PMID:25478640

  11. S-adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis.

    PubMed

    Duce, A M; Ortíz, P; Cabrero, C; Mato, J M

    1988-01-01

    We have measured the activity S-adenosyl-L-methionine synthetase in liver biopsies from a group of controls (n = 17) and in 26 cirrhotics (12 alcoholic and 14 posthepatic). The activity of this enzyme was markedly reduced in the group of cirrhotics (285 +/- 32 pmoles per min per mg protein) when compared with that observed in controls (505 +/- 37 pmoles per min per mg protein). No differences in S-adenosyl-L-methionine synthetase was observed between both groups of cirrhotics. Similarly, a marked reduction in the activity phospholipid methyltransferase was also observed in liver biopsies from the same group of cirrhotics (105 +/- 12 pmoles per min per mg protein) when compared with the control subjects (241 +/- 13 pmoles per min per mg protein). Again, no difference in the activity of this enzyme was observed between both groups of cirrhotics. These results indicated a marked deficiency in the metabolism of S-adenosyl-L-methionine in cirrhosis. PMID:3338721

  12. Utilization of supplemental methionine sources by primary cultures of chick hepatocytes

    SciTech Connect

    Dibner, J.J.

    1983-10-01

    Utilization of 2-hydroxy-4-(methylthio) butanoic acid (HMB) as a substrate for protein synthesis was studied by using primary cultures of chick liver cells. Cultures were prepared by enzymatic dissociation of livers from week old Hubbard broiler chicks and were maintained for 4 days under nonproliferative conditions. Hepatocyte differentiation was verified by using dexamethasone induction of tyrosine aminotransferase activity. Conversion of (14C)HMB to L-methionine was shown by chromatographic analysis of hepatocyte protein hydrolysate and incorporation into protein was proven by cycloheximide inhibition of synthesis. When incorporation of HMB was compared to that of DL-methionine (DLM) equimolar quantities of the two sources were found in liver cell protein. These results support, at a cellular level, the conclusion that HMB and DLM are biochemically equivalent sources of methionine for protein synthesis.

  13. Transcriptional regulation of methionine synthase by homocysteine and choline in Aspergillus nidulans.

    PubMed Central

    Kacprzak, Magdalena M; Lewandowska, Irmina; Matthews, Rowena G; Paszewski, Andrzej

    2003-01-01

    Roles played by homocysteine and choline in the regulation of MS (methionine synthase) have been examined in fungi. The Aspergillus nidulans metH gene encoding MS was cloned and characterized. Its transcription was not regulated by methionine, but was enhanced by homocysteine and repressed by choline and betaine. MS activity levels were regulated in a similar way. The repression by betaine was due to its metabolic conversion to choline, which was found to be very efficient in A. nidulans. Betaine and choline supplementation stimulated growth of leaky metH mutants apparently by decreasing the demand for methyl groups and thus saving methionine and S -adenosylmethionine. We have also found that homocysteine stimulates transcription of MS-encoding genes in Saccharomyces cerevisiae and Schizosaccharomyces pombe. PMID:12954077

  14. Effect of Maternal Methionine Supplementation on the Transcriptome of Bovine Preimplantation Embryos

    PubMed Central

    Peñagaricano, Francisco; Souza, Alex H.; Carvalho, Paulo D.; Driver, Ashley M.; Gambra, Rocio; Kropp, Jenna; Hackbart, Katherine S.; Luchini, Daniel; Shaver, Randy D.; Wiltbank, Milo C.; Khatib, Hasan

    2013-01-01

    Maternal nutrition exclusively during the periconceptional period can induce remarkable effects on both oocyte maturation and early embryo development, which in turn can have lifelong consequences. The objective of this study was to evaluate the effect of maternal methionine supplementation on the transcriptome of bovine preimplantation embryos. Holstein cows were randomly assigned to one of two treatments differing in level of dietary methionine (1.89 Met vs. 2.43 Met % of metabolizable protein) from calving until embryo flushing. High quality preimplantation embryos from individual cows were pooled and then analyzed by RNA sequencing. Remarkably, a subtle difference in methionine supplementation in maternal diet was sufficient to cause significant changes in the transcriptome of the embryos. A total of 276 genes out of 10,662 showed differential expression between treatments (FDR <0.10). Interestingly, several of the most significant genes are related to embryonic development (e.g., VIM, IFI6, BCL2A1, and TBX15) and immune response (e.g., NKG7, TYROBP, SLAMF7, LCP1, and BLA-DQB). Likewise, gene set enrichment analysis revealed that several Gene Ontology terms, InterPro entries, and KEGG pathways were enriched (FDR <0.05) with differentially expressed genes involved in embryo development and immune system. The expression of most genes was decreased by maternal methionine supplementation, consistent with reduced transcription of genes with increased methylation of specific genes by increased methionine. Overall, our findings provide evidence that supplementing methionine to dams prior to conception and during the preimplantation period can modulate gene expression in bovine blastocysts. The ramifications of the observed gene expression changes for subsequent development of the pregnancy and physiology of the offspring warrant further investigation in future studies. PMID:23991086

  15. Betaine supplementation is less effective than methionine restriction in correcting phenotypes of CBS deficient mice.

    PubMed

    Gupta, Sapna; Wang, Liqun; Kruger, Warren D

    2016-01-01

    Cystathionine beta synthase (CBS) deficiency is a recessive inborn error of metabolism characterized by elevated serum total homocysteine (tHcy). Betaine supplementation, which can lower tHcy by stimulating homocysteine remethylation to methionine, is often given to CBS deficient patients in combination with other treatments such as methionine restriction and supplemental B-vitamins. However, the effectiveness of betaine supplementation by itself in the treatment of CBS deficiency has not been well explored. Here, we have examined the effect of a betaine supplemented diet on the Tg-I278T Cbs (-/-) mouse model of CBS deficiency and compared its effectiveness to our previously published data using a methionine restricted diet. Tg-I278T Cbs (-/-) mice on betaine, from the time of weaning until for 240 days of age, had a 40 % decrease in mean tHcy level and a 137 % increase in serum methionine levels. Betaine-treated Tg-I278T Cbs (-/-) mice also exhibited increased levels of betaine-dependent homocysteine methyl transferase (BHMT), increased levels of the lipogenic enzyme stearoyl-coenzyme A desaturase (SCD-1), and increased lipid droplet accumulation in the liver. Betaine supplementation largely reversed the hair loss phenotype in Tg-I278T Cbs (-/-) animals, but was far less effective than methionine restriction in reversing the weight-loss, fat-loss, and osteoporosis phenotypes. Surprisingly, betaine supplementation had several negative effects in control Tg-I278T Cbs (+/-) mice including decreased weight gain, lean mass, and bone mineral density. Our findings indicate that while betaine supplementation does have some beneficial effects, it is not as effective as methionine restriction for reversing the phenotypes associated with severe CBS deficiency in mice. PMID:26231230

  16. Evolution of initiator tRNAs and selection of methionine as the initiating amino acid.

    PubMed

    Bhattacharyya, Souvik; Varshney, Umesh

    2016-09-01

    Transfer RNAs (tRNAs) have been important in shaping biomolecular evolution. Initiator tRNAs (tRNAi), a special class of tRNAs, carry methionine (or its derivative, formyl-methionine) to ribosomes to start an enormously energy consuming but a highly regulated process of protein synthesis. The processes of tRNAi evolution, and selection of methionine as the universal initiating amino acid remain an enigmatic problem. We constructed phylogenetic trees using the whole sequence, the acceptor-TψC arm ('minihelix'), and the anticodon-dihydrouridine arm regions of tRNAi from 158 species belonging to all 3 domains of life. All the trees distinctly assembled into 3 domains of life. Large trees, generated using data for all the tRNAs of a vast number of species, fail to reveal the major evolutionary events and identity of the probable elongator tRNA sequences that could be ancestor of tRNAi. Therefore, we constructed trees using the minihelix or the whole sequence of species specific tRNAs, and iterated our analysis on 50 eubacterial species. We identified tRNA(Pro), tRNA(Glu), or tRNA(Thr) (but surprisingly not elongator tRNA(Met)) as probable ancestors of tRNAi. We then determined the factors imposing selection of methionine as the initiating amino acid. Overall frequency of occurrence of methionine, whose metabolic cost of synthesis is the highest among all amino acids, remains almost unchanged across the 3 domains of life. Our correlation analysis shows that its high metabolic cost is independent of many physicochemical properties of the side chain. Our results indicate that selection of methionine, as the initiating amino acid was possibly a consequence of the evolution of one-carbon metabolism, which plays an important role in regulating translation initiation. PMID:27322343

  17. Identification of methionine as a possible precursor to the selenocysteine catalytic site of glutathione peroxidase

    SciTech Connect

    Chung, C.K.

    1985-01-01

    The selenium (Se) moiety of glutathione peroxidase (GSHPx) occurs as selenocysteine and is present at the catalytic active site of the enzyme which catalyzes the reduction of hydrogen peroxides and lipid peroxides. The presence of this unusual amino acid at the active site raises the question as to the origin of the carbon skeleton of Se-cysteine. ICR Swiss mice were fed a Se deficient diet for 50 days and then were fed a Se adequate diet (1 ppm Se as SeO/sub 3/). Mice were i.p. injected with either (U-/sup 14/C) methionine, serine, or alanine (0.5 ..mu..Ci/0.1 ml/mouse/day) for 25 days. Recovered GSHPx activity in liver and blood was carboxymethylated (CM) with iodoacetic acid. CM-GSHPx was partially purified by column chromatography. /sup 14/C-GSHPx fractions were collected, lyophilized, and hydrolyzed. /sup 14/C-amino acids were separated by TLC and ion-exchange chromatography. TLC (phenol, cyclohexane, acetic acid, and water (90;6.5;3.5;8)) revealed a GSHPx /sup 14/C-amino acid derived from U-/sup 14/C-methionine, but not from serine or alanine corresponding to CM-selenocysteine (R/sub f/; 0.16). Ion-exchange chromatography of U-/sup 14/C-methionine labeled GSHPx hydrolyzate revealed two radio carbon ninhydrin positive peaks corresponding to /sup 14/C-CM-selenocysteine and /sup 14/C-methionine. No corresponding /sup 14/C-labeled peaks were observed for CM-selenocysteine derived from U-/sup 14/C serine or alanine. The results suggest that methionine may contribute a portion of the carbon skeleton to selenocysteine which may include an alternative metabolic pathway. Animal studies demonstrated that GSHPx activity is increased by methionine supplementation may be due to its contribution of carbon source to the catalytic site of the enzyme.

  18. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis.

    PubMed

    Kudou, Daizou; Yasuda, Eri; Hirai, Yoshiyuki; Tamura, Takashi; Inagaki, Kenji

    2015-10-01

    A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time. PMID:25817696

  19. Effect of L-Methionine on the Optical Properties of Potassium Acid Phthalate

    NASA Astrophysics Data System (ADS)

    Parey, N. A.; Shah, M. A.

    The effect of L-methionine doping on the optical properties of potassium acid phthalate have been studied. Bulk single crystals of L-methionine-doped potassium acid phthalate (LMDKAP) were grown by a slow cooling method using a constant temperature bath. X-ray powder diffraction study has revealed the significant variation in the cell parameter values and the shift in peak positions, which confirms the presence of dopant in the sample. The UV-VIS cut off wavelength of LMDKAP was found to be 300 nm and it is slightly less than KAP. The presence of functional groups present in LMDKAP were confirmed through FT-IR analysis.

  20. Isotopic Dilution GC/MS Method for Methionine Determination in Biological Media

    NASA Astrophysics Data System (ADS)

    Horj, Elena; Iordache, Andreea; Culea, Monica

    2011-10-01

    The isotopic dilution mass spectrometry technique is the method of choice for sensitive and accurate determination of analytes in biological samples. The aim of this work was to establish a sensitive analytical method for the determination of methionine in different biological media. Quantitation of methionine from the resultant tracer spectrum requires deconvolution of the enrichment of the isotopomers. Deconvolution of the ion abundance ratios to yield tracer-to-tracee ratio for the isotopomer was done using Brauman's least squares approach. Comparison with regression curve calculation method is presented. The method was applied for amino-acids determination in beef, pork and fish meat.

  1. Modified bean seed protein phaseolin did not accumulate stably in transgenic tobacco seeds after methionine enhancement mutations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major seed storage protein phaseolin of common bean (Phaseolus vulgaris L.) is deficient in methionine, an essential amino acid for human and animal health. To improve the nutritional quality of common bean, we designed methionine enhancement of phaseolin based on the three dimensional structure...

  2. Differences in plasma metabolomics between sows fed DL-methionine and its hydroxy analogue reveal a strong association of milk composition and neonatal growth with maternal methionine nutrition.

    PubMed

    Zhang, Xiaoling; Li, Hao; Liu, Guangmang; Wan, Haifeng; Mercier, Yves; Wu, Caimei; Wu, Xiuqun; Che, Lianqiang; Lin, Yan; Xu, Shengyu; Tian, Gang; Chen, Daiwen; Wu, De; Fang, Zhengfeng

    2015-02-28

    The aim of the present study was to determine whether increased consumption of methionine as DL-methionine (DLM) or its hydroxy analogue DL-2-hydroxy-4-methylthiobutanoic acid (HMTBA) could benefit milk synthesis and neonatal growth. For this purpose, eighteen cross-bred (Landrace × Yorkshire) primiparous sows were fed a control (CON), DLM or HMTBA diet (n 6 per diet) from 0 to 14 d post-partum. At postnatal day 14, piglets in the HMTBA group had higher body weight (P= 0·02) than those in the CON group, tended (P= 0·07) to be higher than those in the DLM group, and had higher (P< 0·05) mRNA abundance of jejunal fatty acid-binding protein 2, intestinal than those in the CON and DLM groups. Compared with the CON diet-fed sows, milk protein, non-fat solid, and lysine, histidine and ornithine concentrations decreased in the DLM diet-fed sows (P< 0·05), and milk fat, lactose, and cysteine and taurine concentrations increased in the HMTBA diet-fed sows (P< 0·05). Plasma homocysteine and urea N concentrations that averaged across time were increased (P< 0·05) in sows fed the DLM diet compared with those fed the CON diet. Metabolomic results based on ¹H NMR spectroscopy revealed that consumption of the HMTBA and DLM diets increased (P< 0·05) both sow plasma methionine and valine levels; however, consumption of the DLM diet led to lower (P< 0·05) plasma levels of lysine, tyrosine, glucose and acetate and higher (P< 0·05) plasma levels of citrate, lactate, formate, glycerol, myo-inositol and N-acetyl glycoprotein in sows. Collectively, neonatal growth and milk synthesis were regulated by dietary methionine levels and sources, which resulted in marked alterations in amino acid, lipid and glycogen metabolism. PMID:25639894

  3. Methionine-enriched diet decreases hippocampal antioxidant defences and impairs spontaneous behaviour and long-term potentiation in rats.

    PubMed

    Viggiano, Alessandro; Viggiano, Emanuela; Monda, Marcellino; Ingrosso, Diego; Perna, Alessandra F; De Luca, Bruno

    2012-08-30

    Diets high in methionine lead to elevation of plasma homocysteine levels which are possibly linked to neurodegenerative diseases and oxidative stress. In the present study, we investigated the effects of methionine-enriched diet on antioxidant defences, on rat spontaneous behaviour and on the ability to sustain long-term potentiation in the dentate gyrus (DG). Sprague-Dawley rats were fed either a standard laboratory diet or a methionine enriched-diet (1% or 5% methionine in drinking water) for 8 weeks. After the 8 weeks, the animals were tested for spontaneous motor activity and habituation in an open field maze, for anxiety-like behaviour in an elevated plus maze and for the ability to sustain long-term potentiation (LTP) induced in the dentate gyrus under urethane anaesthesia. The brains were then removed and histochemically stained for superoxide dismutase (SOD) activity. Rats fed on 5% methionine significantly reduced total distance travelled during the open field test and exhibited no habituation with respect to the other two groups. Rats fed on 5% methionine also showed a significant increase of the anxiety level. Moreover, in this group, the ability to induce LTP in DG was impaired. SOD activity was significantly increased in the cerebral cortex of the rats fed on 1% and 5% methionine with respect to the control group. In conclusion, 5% methionine in drinking water led to evident impairment of locomotor skills and of synaptic plasticity. SOD activity in the cortex was increased in both the groups fed on 1% and 5% methionine, thus suggesting that metabolic adjustments, triggered by the methionine-enriched diet, are likely mediated by reactive oxygen species. PMID:22781143

  4. Methionine and serine synergistically suppress hyperhomocysteinemia induced by choline deficiency, but not by guanidinoacetic acid, in rats fed a low casein diet.

    PubMed

    Liu, Yi-qun; Liu, Ying; Morita, Tatsuya; Sugiyama, Kimio

    2011-01-01

    The effects of dietary supplementation with 0.5% methionine, 2.5% serine, or both on hyperhomocysteinemia induced by deprivation of dietary choline or by dietary addition of 0.5% guanidinoacetic acid (GAA) were investigated in rats fed a 10% casein diet. Hyperhomocysteinemia induced by choline deprivation was not suppressed by methionine alone and was only partially suppressed by serine alone, whereas it was completely suppressed by a combination of methionine and serine, suggesting a synergistic effect of methionine and serine. Fatty liver was also completely prevented by the combination of methionine and serine. Compared with methionine alone, the combination of methionine and serine decreased hepatic S-adenosylhomocysteine and homocysteine concentrations and increased hepatic betaine and serine concentrations and betaine-homocysteine S-methyltransferase activity. GAA-induced hyperhomocysteinemia was partially suppressed by methionine alone, but no interacting effect of methionine and serine was detected. In contrast, GAA-induced fatty liver was completely prevented by the combination of methionine and serine. These results indicate that a combination of methionine and serine is effective in suppressing both hyperhomocysteinemia and fatty liver induced by choline deprivation, and that methionine alone is effective in suppressing GAA-induced hyperhomocysteinemia partially. PMID:22146711

  5. CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE (CYT19)

    EPA Science Inventory

    CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE (cyt19)

    Stephen B. Waters1 , Felicia Walton1 , Miroslav Styblo1 , Karen Herbin-Davis2, and David J. Thomas2 1 School of Medicine, University of North Carolina at Chape...

  6. Independent and additive effects of glutamic acid and methionine on yeast longevity.

    PubMed

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian

    2013-01-01

    It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan. PMID:24244480

  7. Intrauterine bacterial inoculation and level of dietary methionine alter amino acid metabolism in nulliparous yearling ewes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using an intrauterine bacterial inoculation method, our objective was to determine the effects of acute sepsis and level of dietary metabolizable-methionine on splanchnic metabolism of amino acids in ewes. Twenty-five nulliparous yearling Rambouillet-cross ewes (initial BW = 65.1 ± 0.6 kg), surgical...

  8. 21 CFR 582.5477 - Methionine hydroxy analog and its calcium salts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Methionine hydroxy analog and its calcium salts. 582.5477 Section 582.5477 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1...

  9. The Protein Oxidation Repair Enzyme Methionine Sulfoxide Reductase A Modulates Aβ Aggregation and Toxicity In Vivo

    PubMed Central

    Minniti, Alicia N.; Arrazola, Macarena S.; Bravo-Zehnder, Marcela; Ramos, Francisca; Inestrosa, Nibaldo C.

    2015-01-01

    Abstract Aims: To examine the role of the enzyme methionine sulfoxide reductase A-1 (MSRA-1) in amyloid-β peptide (Aβ)-peptide aggregation and toxicity in vivo, using a Caenorhabditis elegans model of the human amyloidogenic disease inclusion body myositis. Results: MSRA-1 specifically reduces oxidized methionines in proteins. Therefore, a deletion of the msra-1 gene was introduced into transgenic C. elegans worms that express the Aβ-peptide in muscle cells to prevent the reduction of oxidized methionines in proteins. In a constitutive transgenic Aβ strain that lacks MSRA-1, the number of amyloid aggregates decreases while the number of oligomeric Aβ species increases. These results correlate with enhanced synaptic dysfunction and mislocalization of the nicotinic acetylcholine receptor ACR-16 at the neuromuscular junction (NMJ). Innovation: This approach aims at modulating the oxidation of Aβ in vivo indirectly by dismantling the methionine sulfoxide repair system. The evidence presented here shows that the absence of MSRA-1 influences Aβ aggregation and aggravates locomotor behavior and NMJ dysfunction. The results suggest that therapies which boost the activity of the Msr system could have a beneficial effect in managing amyloidogenic pathologies. Conclusion: The absence of MSRA-1 modulates Aβ-peptide aggregation and increments its deleterious effects in vivo. Antioxid. Redox Signal. 22, 48–62. PMID:24988428

  10. Acceleration of Selenium Volatilization in Seleniferous Agricultural Drainage Sediments Amended With Methionine and Casein.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytoremediation is a potential tool for the management of excessive Se in drainage sediment residing in the San Luis Drain in central California via plant extraction or biological volatilization of Se. This two-year field study in 2004/2005 examined the ability of organic amendments-methionine and ...

  11. Coupling Oxidative Signals to Protein Phosphorylation via Methionine Oxidation in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mechanisms involved in sensing oxidative signaling molecules such as H2O2 in plant and animal cells are not completely understood. In the present study, we tested the postulate that oxidation of methionine (Met) to Met sulfoxide (MetSO) can couple oxidative signals to changes in protein phosphor...

  12. Convergent signaling pathways – interaction between methionine oxidation and serine/threonine/tyrosine O-phosphorylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidation of Methionine (Met) to Met sulfoxide (MetSO) is a frequently found reversible post-translational modification. It has been presumed that the major functional role for oxidation-labile Met residues is to protect proteins/cells from oxidative stress. However, Met oxidation has been establi...

  13. Evaluating a quantitative methionine requirement for juvenile Pacific white shrimp Litopenaeus vannamei

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 10-wk feeding trial was conducted as a third study (all conducted in our laboratory) to determine a quantitative requirement of juvenile Litopenaeus vannamei for sulfur amino acid methionine. Juvenile shrimp (mean weight 0.61 +/- 0.13 g) were reared in 110-L aquaria in a seawater recirculating sy...

  14. Carbon-11-methionine and PET in evaluation of treatment response of breast cancer.

    PubMed Central

    Huovinen, R.; Leskinen-Kallio, S.; Någren, K.; Lehikoinen, P.; Ruotsalainen, U.; Teräs, M.

    1993-01-01

    Uptake of L-methyl-11C-methionine (11C-methionine) in breast cancer metastases was studied with positron emission tomography (PET). Eight patients with soft tissue metastases were studied twice: before the onset of chemotherapy (4), hormonal therapy (3) or radiotherapy (1) and 3-14 weeks later. The radioactivity concentration of the low molecular weight fraction of venous plasma samples separated by fast gel filtration was used as input function. The input corrected uptake rate of 11C-methionine (Ki) in breast cancer metastases before the treatment ranged between 0.035 and 0.186 1 min-1 and the standardised uptake value (SUV) between 2.0 and 11.4. The uptake of 11C-methionine into the metastases decreased when clinical objective stability or regression of the metastases was later obtained and increased in cases where progressive disease was seen during treatment. We conclude that metabolic changes in the amino acid metabolism detected by PET precede the clinical response, and may be of clinical value in predicting the treatment response. Images Figure 1 PMID:8471437

  15. Cu**I Recognition Via Cation-Pi And Methionine Interactions in CusF

    SciTech Connect

    Xue, Y.; Davis, A.V.; Balakrishnan, G.; Stasser, J.P.; Staehlin, B.M.; Focia, P.; Spiro, T.G.; Penner-Hahn, J.E.; O'Halloran, T.V.

    2009-05-28

    Methionine-rich motifs have an important role in copper trafficking factors, including the CusF protein. Here we show that CusF uses a new metal recognition site wherein Cu(I) is tetragonally displaced from a Met2His ligand plane toward a conserved tryptophan.

  16. PROLONGED SURVIVAL OF FEMALE AKR MICE FED DIETS SUPPLEMENTED WITH METHIONINE AND CHOLINE

    EPA Science Inventory

    Female mice of the AKR/J(AK) strain were fed a control diet (Purina chow) or a lipotrope-supplemented diet (Purina chow plus 2% D.L-methionine and 1% choline chloride) beginning at one week after weaning. ice of this inbred strain spontaneously develop thymic lymphoma, with close...

  17. CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT S-ADENOSYL-1-METHIONINE: ARSENIC (III) METHYLTRANSFERASE

    EPA Science Inventory

    CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT
    S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE

    Stephen B. Waters, Ph.D., Miroslav Styblo, Ph.D., Melinda A. Beck, Ph.D., University of North Carolina at Chapel Hill; David J. Thomas, Ph.D., U.S. Environmental...

  18. Oxidation of an Adjacent Methionine Residue Inhibits Regulatory Seryl-phosphorylation of Pyruvate Dehydrogenase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Met residue is located adjacent to phosphorylation site 1 in the sequences of mitochondrial pyruvate dehydrogenase E1alpha subunits. When synthetic peptides including site 1 were treated with Hydrogen peroxide, the Met residue was oxidized to methionine sulfoxide (MetSO), and the peptides were no...

  19. Tissue nonautonomous effects of fat body methionine metabolism on imaginal disc repair in Drosophila.

    PubMed

    Kashio, Soshiro; Obata, Fumiaki; Zhang, Liu; Katsuyama, Tomonori; Chihara, Takahiro; Miura, Masayuki

    2016-02-16

    Regulatory mechanisms for tissue repair and regeneration within damaged tissue have been extensively studied. However, the systemic regulation of tissue repair remains poorly understood. To elucidate tissue nonautonomous control of repair process, it is essential to induce local damage, independent of genetic manipulations in uninjured parts of the body. Herein, we develop a system in Drosophila for spatiotemporal tissue injury using a temperature-sensitive form of diphtheria toxin A domain driven by the Q system to study factors contributing to imaginal disc repair. Using this technique, we demonstrate that methionine metabolism in the fat body, a counterpart of mammalian liver and adipose tissue, supports the repair processes of wing discs. Local injury to wing discs decreases methionine and S-adenosylmethionine, whereas it increases S-adenosylhomocysteine in the fat body. Fat body-specific genetic manipulation of methionine metabolism results in defective disc repair but does not affect normal wing development. Our data indicate the contribution of tissue interactions to tissue repair in Drosophila, as local damage to wing discs influences fat body metabolism, and proper control of methionine metabolism in the fat body, in turn, affects wing regeneration. PMID:26831070

  20. PET evaluation of spinal cord tumor using sup 11 C-methionine

    SciTech Connect

    Higano, S.; Shishido, F.; Nagashima, M.; Tomura, N.; Murakami, M.; Inugami, A.; Fujita, H.; Tabata, K.; Yasui, N.; Uemura, K. )

    1990-03-01

    A cervical cord tumor was examined with positron emission tomography using L-methyl-({sup 11}C)methionine. The radioactive tracer accumulated in the solid parts (but not in the associated cysts) of the neoplasm, which at histology was found to be an ependymoma.

  1. INFLUENCE OF DIETARY METHIONINE SOURCE ON VOLATILE SULFUR COMPOUNDS IN BROILER EXCRETA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the impact of methionine source on volatile sulfur compounds in broiler excreta a trial was conducted using straight run broiler chicks raised in battery cages. Chicks were randomly distributed into 3 replications of 5 treatment groups with 16 birds per pen. The treatment groups were d...

  2. Prediction of (L)-methionine VCD spectra in the gas phase and water solution.

    PubMed

    Rode, Joanna E; Dobrowolski, Jan Cz; Sadlej, Joanna

    2013-11-21

    In this paper we provide a computational study of the l-methionine conformational landscape and VCD spectra in the gas phase and a water environment simulated by implicit PCM and the hybrid model, i.e., a combination of explicit "microsolvation" and implicit models. In the gas phase, two groups of conformers differing in H-bonding, i.e., OH···NH2 and NH···O═C, could be distinguished based solely on the IR ν(OH) and ν(NH) stretching vibrations range. On the other hand, VCD better reflected chain differences. The most stable OH···NH2 conformer was predicted to be easily detected, and the presence of two out of four NH···O═C conformers could be confirmed. Three zwitterionic methionine conformers were shown to dominate in water. Their VCD spectra, simulated within the hybrid model at the B3LYP-IEF-PCM/aug-cc-pVDZ level of theory, indicated that they could be recognized in the mixture. Use of the hybrid model is crucial for good reproduction of the hydrogen bonding pattern in the VCD spectra of methionine in water solution. However, the 1300-800 cm(-1) region of the skeleton vibrations of methionine appeared to be relatively insensitive to the model of the solvent. PMID:24195697

  3. Overexpression of methionine-R-sulfoxide reductases has no influence on fruit fly aging

    PubMed Central

    Shchedrina, Valentina A.; Vorbrüggen, Gerd; Cheon Lee, Byung; Kim, Hwa-Young; Kabil, Hadise; Harshman, Lawrence G.; Gladyshev, Vadim N.

    2009-01-01

    Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine residues in proteins. This function implicated Msrs in antioxidant defense and the regulation of aging. There are two known Msr types in animals: MsrA specific for the reduction of methionine-S-sulfoxide, and MsrB that catalyzes the reduction of methionine-R-sulfoxide. In a previous study, overexpression of MsrA in the nervous system of Drosophila was found to extend lifespan by 70%. Overexpression of MsrA in yeast also extended lifespan, whereas MsrB overexpression did so only under calorie restriction conditions. The effect of MsrB overexpression on lifespan has not yet been characterized in any animal model systems. Here, the GAL4-UAS binary system was used to drive overexpression of cytosolic Drosophila MsrB and mitochondrial mouse MsrB2 in whole body, fatbody, and the nervous system of flies. In contrast to MsrA, MsrB overexpression had no consistent effect on the lifespan of fruit flies on both corn meal and sugar yeast diets. Physical activity, fecundity, and stress resistance were also similar in MsrB-overexpressing and control flies. Thus, MsrA and MsrB, the two proteins with identical function in antioxidant protein repair, have different effects on aging in fruit flies. PMID:19409408

  4. Sulfur amino acid deficiency upregulates intestinal methionine cycle activity and suppresses epithelial growth in neonatal pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recently showed that the developing gut is a significant site of methionine transmethylation to homocysteine and transsulfuration to cysteine. We hypothesized that sulfur amino acid (SAA) deficiency would preferentially reduce mucosal growth and antioxidant function in neonatal pigs. Neonatal pi...

  5. Nonnatural amino acid incorporation into the methionine 214 position of the metzincin Pseudomonas aeruginosa alkaline protease

    PubMed Central

    Walasek, Paula; Honek, John F

    2005-01-01

    Background The alkaline protease from Pseudomonas aeruginosa (AprA) is a member of the metzincin superfamily of metalloendoproteases. A key feature of these proteases is a conserved methionine-containing 1,4-tight β turn at the base of the active site zinc binding region. Results To explore the invariant methionine position in this class of protease, incorporation of a nonnatural fluorinated methionine, L-difluoromethionine (DFM), into this site was accomplished. Although overproduction of the N-terminal catalytic fragment of AprA resulted in protein aggregates which could not be resolved, successful heterologous production of the entire AprA was accomplished in the presence and absence of the nonnatural amino acid. DFM incorporation was found to only slightly alter the enzyme kinetics of AprA. In addition, differential scanning calorimetry indicated no significant alteration in the thermal stability of the modified enzyme. Conclusion Although invariant in all metzincin proteases, the methionine 214 position in AprA can be successfully replaced by the nonnatural amino acid DFM resulting in little effect on protein structure and function. This study indicates that the increased size of the methyl group by the introduction of two fluorines is still sufficiently non-sterically demanding, and bodes well for the application of DFM to biophysical studies of protein structure and function in this class of protease. PMID:16221305

  6. Corynebacterium diphtheriae Methionine Sulfoxide Reductase A Exploits a Unique Mycothiol Redox Relay Mechanism*

    PubMed Central

    Tossounian, Maria-Armineh; Pedre, Brandán; Wahni, Khadija; Erdogan, Huriye; Vertommen, Didier; Van Molle, Inge; Messens, Joris

    2015-01-01

    Methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in proteins and play a pivotal role in cellular redox signaling. We have unraveled the redox relay mechanisms of methionine sulfoxide reductase A of the pathogen Corynebacterium diphtheriae (Cd-MsrA) and shown that this enzyme is coupled to two independent redox relay pathways. Steady-state kinetics combined with mass spectrometry of Cd-MsrA mutants give a view of the essential cysteine residues for catalysis. Cd-MsrA combines a nucleophilic cysteine sulfenylation reaction with an intramolecular disulfide bond cascade linked to the thioredoxin pathway. Within this cascade, the oxidative equivalents are transferred to the surface of the protein while releasing the reduced substrate. Alternatively, MsrA catalyzes methionine sulfoxide reduction linked to the mycothiol/mycoredoxin-1 pathway. After the nucleophilic cysteine sulfenylation reaction, MsrA forms a mixed disulfide with mycothiol, which is transferred via a thiol disulfide relay mechanism to a second cysteine for reduction by mycoredoxin-1. With x-ray crystallography, we visualize two essential intermediates of the thioredoxin relay mechanism and a cacodylate molecule mimicking the substrate interactions in the active site. The interplay of both redox pathways in redox signaling regulation forms the basis for further research into the oxidative stress response of this pathogen. PMID:25752606

  7. Methionine as a potential precursor for halogenated compounds by the reaction with iron minerals

    NASA Astrophysics Data System (ADS)

    Tubbesing, C.; Krause, T.; Mulder, I.; Kotte, K.; Schöler, H. F.

    2012-04-01

    Volatile halogenated compounds (VOX) play an important role in different photochemical reactions within the troposphere and the stratosphere. Soils and sediments seem to act as a major natural source for VOX, but investigations of the reaction mechanisms are rather scarce. To get further information on potential intermediates the reaction of the amino acid methionine with the ferrous and ferric iron minerals pyrite and ferrihydrite as well as solute ferrous sulfate was studied using a gas chromatography-flame ionization detector (GC-FID). Methionine is an important amino acid in the biosynthesis of plants used as a starting compound for the messenger ethene with aminocyclopropane carboxylic acid as an intermediate product. This pathway may also occur under abiotic conditions. Ethene is assumed as precursor for various halogenated C2-compounds like vinyl chloride and dichloroethene. Due to its ubiquity by an average concentration of 10 to 290 ng/g soil and its potential to regenerate in soils and organic litter by microorganisms, methionine may be an important educt for both abiotic and biotic terrestrial halogenation processes. In laboratory tests methionine was exposed to different iron species like pyrite, iron sulfate or ferrihydrite. The oxidant H2O2 was used to start the reaction. Production values of methyl chloride and other halogenated compounds are discussed in the context of methionine as their potential precursor and several Fe-minerals as soil-borne catalysers. Several possible intermediates for the production of VOX have been detected e.g. methane, ethene or propane. A formation of isobutylene is noteworthy for some cases. In addition to VOC the production of methyl chloride and dimethyl sulfide (DMS) was observed. Only the DMS bears upon a specific mineral. The samples containing pyrite reveal the highest concentrations. To get a better assessment of methionine, respectively VOC released from methionine as precursors for halogenated compounds

  8. Methionine kinetics and balance at the 1985 FAO/WHO/UNU intake requirement in adult men studied with L-(2H3-methyl-1-13C)methionine as a tracer

    SciTech Connect

    Young, V.R.; Wagner, D.A.; Burini, R.; Storch, K.J. )

    1991-08-01

    The upper range of the requirement for methionine plus cystine in healthy adults was proposed in 1985 by FAO/WHO/UNU to be 13 mg.kg body wt-1.d-1. To explore the validity of this estimate, five healthy, young adult men were given for 7 d a diet based on an L-amino acid mixture supplying 13 mg methionine.kg-1.d-1 (87 mumol.kg-1.d-1) without cystine. Constant intravenous infusions of L-(2H3-methyl-1-13C)methionine were given on days 5 and 7 while subjects were in the fed and postabsorptive states, respectively. Estimates were made of methionine oxidation, and daily methionine balance was derived from the intake-oxidation data. For the five subjects, methionine balances were -0.9, +0.7, +3.5, -3.1, and -3.8 mg kg-1.d-1, or -6, +5, +23, -21, and -26 mumol.kg-1.d-1. These findings lead to the conclusion that the upper range of the requirement for methionine plus cystine probably exceeds 13 mg.kg-1.d-1 in healthy young adults. The implications of this conclusion for establishing an appropriate amount of sulfur amino acids in an amino acid requirement pattern for adults is discussed.

  9. Gender differences in methionine accumulation and metabolism in freshly isolated mouse hepatocytes: Potential roles in toxicity

    SciTech Connect

    Dever, Joseph T.; Elfarra, Adnan A.

    2009-05-01

    L-Methionine (Met) is hepatotoxic at high concentrations. Because Met toxicity in freshly isolated mouse hepatocytes is gender-dependent, the goal of this study was to assess the roles of Met accumulation and metabolism in the increased sensitivity of male hepatocytes to Met toxicity compared with female hepatocytes. Male hepatocytes incubated with Met (30 mM) at 37 {sup o}C exhibited higher levels of intracellular Met at 0.5, 1.0, and 1.5 h, respectively, compared to female hepatocytes. Conversely, female hepatocytes had higher levels of S-adenosyl-L-methionine compared to male hepatocytes. Female hepatocytes also exhibited higher L-methionine-L-sulfoxide levels relative to control hepatocytes, whereas the increases in L-methionine-D-sulfoxide (Met-D-O) levels were similar in hepatocytes of both genders. Addition of aminooxyacetic acid (AOAA), an inhibitor of Met transamination, significantly increased Met levels at 1.5 h and increased Met-D-O levels at 1.0 and 1.5 h only in Met-exposed male hepatocytes. No gender differences in cytosolic Met transamination activity by glutamine transaminase K were detected. However, female mouse liver cytosol exhibited higher methionine-DL-sulfoxide (MetO) reductase activity than male mouse liver cytosol at low (0.25 and 0.5 mM) MetO concentrations. Collectively, these results suggest that increased cellular Met accumulation, decreased Met transmethylation, and increased Met and MetO transamination in male mouse hepatocytes may be contributing to the higher sensitivity of the male mouse hepatocytes to Met toxicity in comparison with female mouse hepatocytes.

  10. Volatile sulphur compounds and pathways of L-methionine catabolism in Williopsis yeasts.

    PubMed

    Tan, Amelia W J; Lee, Pin-Rou; Seow, Yi-Xin; Ong, Peter K C; Liu, Shao-Quan

    2012-08-01

    Volatile sulphur compounds (VSCs) are important to the food industry due to their high potency and presence in many foods. This study assessed for the first time VSC production and pathways of L: -methionine catabolism in yeasts from the genus Williopsis with a view to understanding VSC formation and their potential flavour impact. Five strains of Williopsis saturnus (var. saturnus, var. subsufficiens, var. suavolens, var. sargentensis and var. mrakii) were screened for VSC production in a synthetic medium supplemented with L: -methionine. A diverse range of VSCs were produced including dimethyl disulphide, dimethyl trisulphide, 3-(methylthio)-1-propanal (methional), 3-(methylthio)-1-propanol (methionol), 3-(methylthio)-1-propene, 3-(methylthio)-1-propyl acetate, 3-(methylthio)-1-propanoic acid (methionic acid) and ethyl 3-(methylthio)-1-propanoate, though the production of these VSCs varied between yeast strains. W. saturnus var. saturnus NCYC22 was selected for further studies due to its relatively high VSC production. VSC production was characterised step-wise with yeast strain NCYC22 in coconut cream at different L: -methionine concentrations (0.00-0.20%) and under various inorganic sulphate (0.00-0.20%) and nitrogen (ammonia) supplementation (0.00-0.20%), respectively. Optimal VSC production was obtained with 0.1% of L: -methionine, while supplementation of sulphate had no significant effect. Nitrogen supplementation showed a dramatic inhibitory effect on VSC production. Based on the production of VSCs, the study suggests that the Ehrlich pathway of L: -methionine catabolism is operative in W. saturnus yeasts and can be manipulated by adjusting certain nutrient parameters to control VSC production. PMID:22370952

  11. Dynamic study of supratentorial gliomas with L-methyl-/sup 11/C-methionine and positron emission tomography

    SciTech Connect

    Lilja, A.; Bergstroem, K.H.; Hartvig, P.; Spaennare, B.H.; Halldin, C.; Lundqvist, H.; Langstrom, B.

    1985-07-01

    The regional kinetics of intravenously injected L-methyl-/sup 11/C-methionine (/sup 11/C-L-methionine) in the brain was investigated by positron emission tomography (PET) in 14 patients with gliomas. In both tumor and unaffected brain the tracer uptake reached a nearly constant level in 5 min or less. The ratio between the uptake of /sup 11/C-L-methionine by high-grade tumors and the uptake by unaffected brain was 1.9-4.8. In two cases of low-grade astrocytoma the ratio was 0.8-1.0. High uptakes of /sup 11/C-L-methionine occurred in gliomas even in the absence of blood-brain barrier defects as observed by other methods. This indicates that besides active transport of amino acid, a larger extracellular space in tumor as compared with unaffected brain tissue may also contribute to the increased uptake of /sup 11/C-L-methionine--derived radioactivity. In some patients delineation of the tumors was improved by use of PET with /sup 11/C-L-methionine as compared with computed tomography, angiography, and, in some instances, PET with /sup 68/Ga-EDTA. PET with /sup 11/C-L-methionine permits better evaluation of the tumor extent and may affect preoperative grading.

  12. Cyanocobalamin [c-lactam] inhibits vitamin B12 and causes cytotoxicity in HL60 cells: methionine protects cells completely.

    PubMed

    Matthews, J H

    1997-06-15

    The [c-lactam] derivative of cobalamin antagonizes vitamin B12 in vivo. Therefore, we investigated its effects in tissue culture to develop a model in which to study vitamin B12-deficient hemopoiesis. HL60 cells were cultured in medium containing either methionine or L-homocysteine thiolactone, and various concentrations of 5-methyltetrahydrofolate or pteroylglutamic acid. In medium with L-homocysteine thiolactone, 5-methyltetrahydrofolate, and dialyzed serum, cyanocobalamin [c-lactam] caused cell death, reversible by additional vitamin B12. Pteroylglutamic acid did not prevent this cytotoxic effect. Methionine completely protected cells against cyanocobalamin [c-lactam] for periods of up to 4 months of culture, irrespective of the folate source. Cyanocobalamin [c-lactam] reversibly impaired the incorporation of 5-[14CH3]-tetrahydrofolate and [1-(14)C] propionic acid by intact cells, consistent with inhibition of methionine synthase and methylmalonyl-CoA mutase. A substantial proportion of 5-[14CH3]-tetrahydrofolate uptake could not be suppressed by methionine and may, therefore, have occurred outside of the methionine synthase pathway. These findings are the first indication that cyanocobalamin [c-lactam] antagonizes vitamin B12 in vitro and causes cell death from methionine deficiency. The model should be valuable for investigating the biochemical pathology of vitamin B12-deficient hemopoiesis. The results suggest that methylfolate is not trapped when methionine synthase is inhibited in HL60 cells, but they do not disprove the methylfolate trap hypothesis as applied to normal blood cells. PMID:9192785

  13. Methionine sulfoxide profiling of milk proteins to assess the influence of lipids on protein oxidation in milk.

    PubMed

    Wüst, Johannes; Pischetsrieder, Monika

    2016-06-15

    Thermal treatment of milk and milk products leads to protein oxidation, mainly the formation of methionine sulfoxide. Reactive oxygen species, responsible for the oxidation, can be generated by Maillard reaction, autoxidation of sugars, or lipid peroxidation. The present study investigated the influence of milk fat on methionine oxidation in milk. For this purpose, quantitative methionine sulfoxide profiling of all ten methionine residues of β-lactoglobulin, α-lactalbumin, and αs1-casein was carried out by ultrahigh-performance liquid chromatography-electrospray ionization tandem mass spectrometry with scheduled multiple reaction monitoring (UHPLC-ESI-MS/MS-sMRM). Analysis of defatted and regular raw milk samples after heating for up to 8 min at 120 °C and analysis of ultrahigh-temperature milk samples with 0.1%, 1.5%, and 3.5% fat revealed that methionine oxidation of the five residues of the whey proteins and of residues M 123, M 135, and M 196 of αs1-casein was not affected or even suppressed in the presence of milk fat. Only the oxidation of residues M 54 and M 60 of αs1-casein was promoted by lipids. In evaporated milk samples, formation of methionine sulfoxide was hardly influenced by the fat content of the samples. Thus, it can be concluded that lipid oxidation products are not the major cause of methionine oxidation in milk. PMID:26927981

  14. Comprehensive profiling of amino acid response uncovers unique methionine-deprived response dependent on intact creatine biosynthesis.

    PubMed

    Tang, Xiaohu; Keenan, Melissa M; Wu, Jianli; Lin, Chih-An; Dubois, Laura; Thompson, J Will; Freedland, Stephen J; Murphy, Susan K; Chi, Jen-Tsan

    2015-04-01

    Besides being building blocks for protein synthesis, amino acids serve a wide variety of cellular functions, including acting as metabolic intermediates for ATP generation and for redox homeostasis. Upon amino acid deprivation, free uncharged tRNAs trigger GCN2-ATF4 to mediate the well-characterized transcriptional amino acid response (AAR). However, it is not clear whether the deprivation of different individual amino acids triggers identical or distinct AARs. Here, we characterized the global transcriptional response upon deprivation of one amino acid at a time. With the exception of glycine, which was not required for the proliferation of MCF7 cells, we found that the deprivation of most amino acids triggered a shared transcriptional response that included the activation of ATF4, p53 and TXNIP. However, there was also significant heterogeneity among different individual AARs. The most dramatic transcriptional response was triggered by methionine deprivation, which activated an extensive and unique response in different cell types. We uncovered that the specific methionine-deprived transcriptional response required creatine biosynthesis. This dependency on creatine biosynthesis was caused by the consumption of S-Adenosyl-L-methionine (SAM) during creatine biosynthesis that helps to deplete SAM under methionine deprivation and reduces histone methylations. As such, the simultaneous deprivation of methionine and sources of creatine biosynthesis (either arginine or glycine) abolished the reduction of histone methylation and the methionine-specific transcriptional response. Arginine-derived ornithine was also required for the complete induction of the methionine-deprived specific gene response. Collectively, our data identify a previously unknown set of heterogeneous amino acid responses and reveal a distinct methionine-deprived transcriptional response that results from the crosstalk of arginine, glycine and methionine metabolism via arginine

  15. Comprehensive Profiling of Amino Acid Response Uncovers Unique Methionine-Deprived Response Dependent on Intact Creatine Biosynthesis

    PubMed Central

    Tang, Xiaohu; Keenan, Melissa M.; Wu, Jianli; Lin, Chih-An; Dubois, Laura; Thompson, J. Will; Freedland, Stephen J.; Murphy, Susan K.; Chi, Jen-Tsan

    2015-01-01

    Besides being building blocks for protein synthesis, amino acids serve a wide variety of cellular functions, including acting as metabolic intermediates for ATP generation and for redox homeostasis. Upon amino acid deprivation, free uncharged tRNAs trigger GCN2-ATF4 to mediate the well-characterized transcriptional amino acid response (AAR). However, it is not clear whether the deprivation of different individual amino acids triggers identical or distinct AARs. Here, we characterized the global transcriptional response upon deprivation of one amino acid at a time. With the exception of glycine, which was not required for the proliferation of MCF7 cells, we found that the deprivation of most amino acids triggered a shared transcriptional response that included the activation of ATF4, p53 and TXNIP. However, there was also significant heterogeneity among different individual AARs. The most dramatic transcriptional response was triggered by methionine deprivation, which activated an extensive and unique response in different cell types. We uncovered that the specific methionine-deprived transcriptional response required creatine biosynthesis. This dependency on creatine biosynthesis was caused by the consumption of S-Adenosyl-L-methionine (SAM) during creatine biosynthesis that helps to deplete SAM under methionine deprivation and reduces histone methylations. As such, the simultaneous deprivation of methionine and sources of creatine biosynthesis (either arginine or glycine) abolished the reduction of histone methylation and the methionine-specific transcriptional response. Arginine-derived ornithine was also required for the complete induction of the methionine-deprived specific gene response. Collectively, our data identify a previously unknown set of heterogeneous amino acid responses and reveal a distinct methionine-deprived transcriptional response that results from the crosstalk of arginine, glycine and methionine metabolism via arginine

  16. Functional identification of APIP as human mtnB, a key enzyme in the methionine salvage pathway.

    PubMed

    Mary, Camille; Duek, Paula; Salleron, Lisa; Tienz, Petra; Bumann, Dirk; Bairoch, Amos; Lane, Lydie

    2012-01-01

    The methionine salvage pathway is widely distributed among some eubacteria, yeast, plants and animals and recycles the sulfur-containing metabolite 5-methylthioadenosine (MTA) to methionine. In eukaryotic cells, the methionine salvage pathway takes place in the cytosol and usually involves six enzymatic activities: MTA phosphorylase (MTAP, EC 2.4.2.28), 5'-methylthioribose-1-phosphate isomerase (mtnA, EC 5.3.1.23), 5'-methylthioribulose-1-phosphate dehydratase (mtnB, EC: 4.2.1.109), 2,3-dioxomethiopentane-1-phosphate enolase/phosphatase (mtnC, EC 3.1.3.77), aci-reductone dioxygenase (mtnD, EC 1.13.11.54) and 4-methylthio-2-oxo-butanoate (MTOB) transaminase (EC 2.6.1.-). The aim of this study was to complete the available information on the methionine salvage pathway in human by identifying the enzyme responsible for the dehydratase step. Using a bioinformatics approach, we propose that a protein called APIP could perform this role. The involvement of this protein in the methionine salvage pathway was investigated directly in HeLa cells by transient and stable short hairpin RNA interference. We show that APIP depletion specifically impaired the capacity of cells to grow in media where methionine is replaced by MTA. Using a Shigella mutant auxotroph for methionine, we confirm that the knockdown of APIP specifically affects the recycling of methionine. We also show that mutation of three potential phosphorylation sites does not affect APIP activity whereas mutation of the potential zinc binding site completely abrogates it. Finally, we show that the N-terminal region of APIP that is missing in the short isoform is required for activity. Together, these results confirm the involvement of APIP in the methionine salvage pathway, which plays a key role in many biological functions like cancer, apoptosis, microbial proliferation and inflammation. PMID:23285211

  17. Functional Identification of APIP as Human mtnB, a Key Enzyme in the Methionine Salvage Pathway

    PubMed Central

    Mary, Camille; Duek, Paula; Salleron, Lisa; Tienz, Petra; Bumann, Dirk; Bairoch, Amos; Lane, Lydie

    2012-01-01

    The methionine salvage pathway is widely distributed among some eubacteria, yeast, plants and animals and recycles the sulfur-containing metabolite 5-methylthioadenosine (MTA) to methionine. In eukaryotic cells, the methionine salvage pathway takes place in the cytosol and usually involves six enzymatic activities: MTA phosphorylase (MTAP, EC 2.4.2.28), 5′-methylthioribose-1-phosphate isomerase (mtnA, EC 5.3.1.23), 5′-methylthioribulose-1-phosphate dehydratase (mtnB, EC: 4.2.1.109), 2,3-dioxomethiopentane-1-phosphate enolase/phosphatase (mtnC, EC 3.1.3.77), aci-reductone dioxygenase (mtnD, EC 1.13.11.54) and 4-methylthio-2-oxo-butanoate (MTOB) transaminase (EC 2.6.1.-). The aim of this study was to complete the available information on the methionine salvage pathway in human by identifying the enzyme responsible for the dehydratase step. Using a bioinformatics approach, we propose that a protein called APIP could perform this role. The involvement of this protein in the methionine salvage pathway was investigated directly in HeLa cells by transient and stable short hairpin RNA interference. We show that APIP depletion specifically impaired the capacity of cells to grow in media where methionine is replaced by MTA. Using a Shigella mutant auxotroph for methionine, we confirm that the knockdown of APIP specifically affects the recycling of methionine. We also show that mutation of three potential phosphorylation sites does not affect APIP activity whereas mutation of the potential zinc binding site completely abrogates it. Finally, we show that the N-terminal region of APIP that is missing in the short isoform is required for activity. Together, these results confirm the involvement of APIP in the methionine salvage pathway, which plays a key role in many biological functions like cancer, apoptosis, microbial proliferation and inflammation. PMID:23285211

  18. Production and Fate of Methylated Sulfur Compounds from Methionine and Dimethylsulfoniopropionate in Anoxic Salt Marsh Sediments †

    PubMed Central

    Kiene, Ronald P.; Visscher, Pieter T.

    1987-01-01

    Anoxic salt marsh sediments were amended with dl-methionine and dimethylsulfoniopropionate (DMSP). Microbial metabolism of methionine yielded methane thiol (MSH) as the major volatile organosulfur product, with the formation of lesser amounts of dimethylsulfide (DMS). Biological transformation of DMSP resulted in the rapid release of DMS and only small amounts of MSH. Experiments with microbial inhibitors indicated that production of MSH from methionine was carried out by procaryotic organisms, probably sulfate-reducing bacteria. Methane-producing bacteria did not metabolize methionine. The involvement of specific groups of organisms in DMSP hydrolysis could not be determined with the inhibitors used, because DMSP was hydrolyzed in all samples except those which were autoclaved. Unamended sediment slurries, prepared from Spartina alterniflora sediments, contained significant (1 to 10 μM) concentrations of DMS. Endogenous methylated sulfur compounds and those produced from added methionine and DMSP were consumed by sediment microbes. Both sulfate-reducing and methane-producing bacteria were involved in DMS and MSH consumption. Methanogenesis was stimulated by the volatile organosulfur compounds released from methionine and DMSP. However, apparent competition for these compounds exists between methanogens and sulfate reducers. At low (1 μM) concentrations of methionine, the terminal S-methyl group was metabolized almost exclusively to CO2 and only small amounts of CH4. At higher (>100 μM) concentrations of methionine, the proportion of the methyl-sulfur group converted to CH4 increased. The results of this study demonstrate that methionine and DMSP are potential precursors of methylated sulfur compounds in anoxic sediments and that the microbial community is capable of metabolizing volatile methylated sulfur compounds. PMID:16347461

  19. Quantitative study in vivo of methionine cycle in humans using (methyl-/sup 2/H/sub 3/)- and (1-/sup 13/C)methionine

    SciTech Connect

    Storch, K.J.; Wagner, D.A.; Burke, J.F.; Young, V.R.

    1988-09-01

    Kinetic aspects of body methionine (MET) metabolism were examined in healthy young men during the fed and postabsorptive (PA) states. Rates of MET incorporation (S) into and release (B) from body proteins; transmethylation (TM); and remethylation (RM) and transsulfuration (TS) of homocysteine (HCY) were estimated with the aid of a 5-h constant intravenous infusion of (methyl-2H3)- and (1-13C)methionine. The isotopic data (plasma methionine labeling and 13C enrichment of expired air) were submitted to a stochastic model of amino acid metabolism. During the fed state, the subjects (n = 4) received, at 20-min intervals, small isonitrogenous isocaloric meals containing a complete L-amino acid mixture supplying MET at a rate equivalent to 198 mumol.kg body wt-1.day-1. The PA subjects (n = 4) received the isotope after a 10-h overnight fast. For the PA group, the components of MET metabolism were as follows: S, 20 +/- 0.5; B, 24 +/- 0.5; TM, 5.8 +/- 0.6; RM, 1.8 +/- 0.4; and TS, 4.0 +/- 0.4 (+/-SE) mumol.kg-1.h-1. During the fed state the values were S, 26 +/- 2.5; B, 18 +/- 2; TM, 14 +/- 1.3; RM, 5.7 +/- 0.9; and TS 8.3 +/- 0.6 mumol.kg-1.h-1. The meal-induced changes in B, TM, RM, and TS were significant (P less than 0.05). Comparison of the partitioning of MET between S and TM (these two pathways of MET disposal constitute the ''methionine locus'') in the PA and in the fed states indicates that the MET locus is of regulatory importance in MET homeostasis. A twofold increase in the partitioning of MET to TM was observed in the fed state. The increase in HCY recycling, relative to TS (these two pathways of HCY disposal constitute the ''HCY locus''), in the fed state did not reach statistical significance when compared with the PA state. Total daily TM are estimated to be 238 +/- 22 mumol/kg. This is similar to the estimate generated by the methyl balance model of Mudd and Poole which approximated 241 mumol/kg.

  20. Identification and characterization of a methionine γ-lyase in the calicheamicin biosynthetic cluster of Micromonospora echinospora.

    PubMed

    Song, Haigang; Xu, Ri; Guo, Zhihong

    2015-01-01

    CalE6 is a previously uncharacterized protein involved in the biosynthesis of calicheamicins in Micromonospora echinospora. It is a pyridoxal-5'-phosphate-dependent enzyme and exhibits high sequence homology to cystathionine γ-lyases and cystathionine γ-synthases. However, it was found to be active towards methionine and to convert this amino acid into α-ketobutyrate, ammonium, and methanethiol. The crystal structure of the cofactor-bound holoenzyme was resolved at 2.0 Å; it contains two active site residues, Gly105 and Val322, specific for methionine γ-lyases. Modeling of methionine into the active site allows identification of the active site residues responsible for substrate recognition and catalysis. These findings support that CalE6 is a putative methionine γ-lyase producing methanethiol as a building block in biosynthesis of calicheamicins. PMID:25404066

  1. Fibrin Clot Structure and Mechanics Associated with Specific Oxidation of Methionine Residues in Fibrinogen

    PubMed Central

    Weigandt, Katie M.; White, Nathan; Chung, Dominic; Ellingson, Erica; Wang, Yi; Fu, Xiaoyun; Pozzo, Danilo C.

    2012-01-01

    Using a combination of structural and mechanical characterization, we examine the effect of fibrinogen oxidation on the formation of fibrin clots. We find that treatment with hypochlorous acid preferentially oxidizes specific methionine residues on the α, β, and γ chains of fibrinogen. Oxidation is associated with the formation of a dense network of thin fibers after activation by thrombin. Additionally, both the linear and nonlinear mechanical properties of oxidized fibrin gels are found to be altered with oxidation. Finally, the structural modifications induced by oxidation are associated with delayed fibrin lysis via plasminogen and tissue plasminogen activator. Based on these results, we speculate that methionine oxidation of specific residues may be related to hindered lateral aggregation of protofibrils in fibrin gels. PMID:23283239

  2. Crystal structure and dimerization equilibria of PcoC, a methionine-rich copper resistance protein from Escherichia coli

    SciTech Connect

    Wernimont, A.K.; Huffman, D.L.; Finney, L.A.; Demeler, B.; O'Halloran, T.V.; Rosenzweig, A.C.

    2010-03-08

    PcoC is a soluble periplasmic protein encoded by the plasmid-born pco copper resistance operon of Escherichia coli. Like PcoA, a multicopper oxidase encoded in the same locus and its chromosomal homolog CueO, PcoC contains unusual methionine rich sequences. Although essential for copper resistance, the functions of PcoC, PcoA, and their conserved methionine-rich sequences are not known. Similar methionine motifs observed in eukaryotic copper transporters have been proposed to bind copper, but there are no precedents for such metal binding sites in structurally characterized proteins. The high-resolution structures of apo PcoC, determined for both the native and selenomethionine-containing proteins, reveal a seven-stranded barrel with the methionines unexpectedly housed on a solvent-exposed loop. Several potential metal-binding sites can be discerned by comparing the structures to spectroscopic data reported for copper-loaded PcoC. In the native structure, the methionine loop interacts with the same loop on a second molecule in the asymmetric unit. In the selenomethionine structure, the methionine loops are more exposed, forming hydrophobic patches on the protein surface. These two arrangements suggest that the methionine motifs might function in protein-protein interactions between PcoC molecules or with other methionine-rich proteins such as PcoA. Analytical ultracentrifugation data indicate that a weak monomer-dimer equilibrium exists in solution for the apo protein. Dimerization is significantly enhanced upon binding Cu(I) with a measured {Delta}({Delta}G{sup o}) {le} -8.0 kJ/mole, suggesting that copper might bind at the dimer interface.

  3. A Methionine Deficient Diet Enhances Adipose Tissue Lipid Metabolism and Alters Anti-Oxidant Pathways in Young Growing Pigs

    PubMed Central

    Castellano, Rosa; Perruchot, Marie-Hélène; Conde-Aguilera, José Alberto; van Milgen, Jaap; Collin, Anne; Tesseraud, Sophie; Mercier, Yves; Gondret, Florence

    2015-01-01

    Methionine is a rate-limiting amino-acid for protein synthesis but non-proteinogenic roles on lipid metabolism and oxidative stress have been demonstrated. Contrary to rodents where a dietary methionine deficiency led to a lower adiposity, an increased lipid accretion rate has been reported in growing pigs fed a methionine deficient diet. This study aimed to clarify the effects of a dietary methionine deficiency on different aspects of tissue lipid metabolism and anti-oxidant pathways in young pigs. Post-weaned pigs (9.8 kg initial body weight) were restrictively-fed diets providing either an adequate (CTRL) or a deficient methionine supply (MD) during 10 days (n=6 per group). At the end of the feeding trial, pigs fed the MD diet had higher lipid content in subcutaneous adipose tissue. Expression levels of genes involved in glucose uptake, lipogenesis but also lipolysis, and activities of NADPH enzyme suppliers were generally higher in subcutaneous and perirenal adipose tissues of MD pigs, suggesting an increased lipid turnover in those pigs. Activities of the anti-oxidant enzymes superoxide dismutase, catalase and glutathione reductase were increased in adipose tissues and muscle of MD pigs. Expression level and activity of the glutathione peroxidase were also higher in liver of MD pigs, but hepatic contents in the reduced and oxidized forms of glutathione and glutathione reductase activity were lower compared with control pigs. In plasma, superoxide dismutase activity was higher but total anti-oxidant power was lower in MD pigs. These results show that a dietary methionine deficiency resulted in increased levels of lipogenesis and lipolytic indicators in porcine adipose tissues. Decreased glutathione content in the liver and coordinated increase of enzymatic antioxidant activities in adipose tissues altered the cellular redox status of young pigs fed a methionine-deficient diet. These findings illustrate that a rapidly growing animal differently adapts tissue

  4. Adenosine Kinase Deficiency Disrupts the Methionine Cycle and Causes Hypermethioninemia, Encephalopathy, and Abnormal Liver Function

    PubMed Central

    Bjursell, Magnus K.; Blom, Henk J.; Cayuela, Jordi Asin; Engvall, Martin L.; Lesko, Nicole; Balasubramaniam, Shanti; Brandberg, Göran; Halldin, Maria; Falkenberg, Maria; Jakobs, Cornelis; Smith, Desiree; Struys, Eduard; von Döbeln, Ulrika; Gustafsson, Claes M.; Lundeberg, Joakim; Wedell, Anna

    2011-01-01

    Four inborn errors of metabolism (IEMs) are known to cause hypermethioninemia by directly interfering with the methionine cycle. Hypermethioninemia is occasionally discovered incidentally, but it is often disregarded as an unspecific finding, particularly if liver disease is involved. In many individuals the hypermethioninemia resolves without further deterioration, but it can also represent an early sign of a severe, progressive neurodevelopmental disorder. Further investigation of unclear hypermethioninemia is therefore important. We studied two siblings affected by severe developmental delay and liver dysfunction. Biochemical analysis revealed increased plasma levels of methionine, S-adenosylmethionine (AdoMet), and S-adenosylhomocysteine (AdoHcy) but normal or mildly elevated homocysteine (Hcy) levels, indicating a block in the methionine cycle. We excluded S-adenosylhomocysteine hydrolase (SAHH) deficiency, which causes a similar biochemical phenotype, by using genetic and biochemical techniques and hypothesized that there was a functional block in the SAHH enzyme as a result of a recessive mutation in a different gene. Using exome sequencing, we identified a homozygous c.902C>A (p.Ala301Glu) missense mutation in the adenosine kinase gene (ADK), the function of which fits perfectly with this hypothesis. Increased urinary adenosine excretion confirmed ADK deficiency in the siblings. Four additional individuals from two unrelated families with a similar presentation were identified and shown to have a homozygous c.653A>C (p.Asp218Ala) and c.38G>A (p.Gly13Glu) mutation, respectively, in the same gene. All three missense mutations were deleterious, as shown by activity measurements on recombinant enzymes. ADK deficiency is a previously undescribed, severe IEM shedding light on a functional link between the methionine cycle and adenosine metabolism. PMID:21963049

  5. Thiol–disulfide exchange is involved in the catalytic mechanism of peptide methionine sulfoxide reductase

    PubMed Central

    Lowther, W. Todd; Brot, Nathan; Weissbach, Herbert; Honek, John F.; Matthews, Brian W.

    2000-01-01

    Peptide methionine sulfoxide reductase (MsrA; EC 1.8.4.6) reverses the inactivation of many proteins due to the oxidation of critical methionine residues by reducing methionine sulfoxide, Met(O), to methionine. MsrA activity is independent of bound metal and cofactors but does require reducing equivalents from either DTT or a thioredoxin-regenerating system. In an effort to understand these observations, the four cysteine residues of bovine MsrA were mutated to serine in a series of permutations. An analysis of the enzymatic activity of the variants and their free sulfhydryl states by mass spectrometry revealed that thiol–disulfide exchange occurs during catalysis. In particular, the strictly conserved Cys-72 was found to be essential for activity and could form disulfide bonds, only upon incubation with substrate, with either Cys-218 or Cys-227, located at the C terminus. The significantly decreased activity of the Cys-218 and Cys-227 variants in the presence of thioredoxin suggested that these residues shuttle reducing equivalents from thioredoxin to the active site. A reaction mechanism based on the known reactivities of thiols with sulfoxides and the available data for MsrA was formulated. In this scheme, Cys-72 acts as a nucleophile and attacks the sulfur atom of the sulfoxide moiety, leading to the formation of a covalent, tetracoordinate intermediate. Collapse of the intermediate is facilitated by proton transfer and the concomitant attack of Cys-218 on Cys-72, leading to the formation of a disulfide bond. The active site is returned to the reduced state for another round of catalysis by a series of thiol—disulfide exchange reactions via Cys-227, DTT, or thioredoxin. PMID:10841552

  6. A continuous spectrophotometric assay and nonlinear kinetic analysis of methionine γ-lyase catalysis.

    PubMed

    Foo, Timothy C; Terentis, Andrew C; Venkatachalam, Kallidaikurichi V

    2016-08-15

    In this article, we present a new, easy-to-implement assay for methionine γ-lyase (MGL)-catalyzed γ-elimination reactions of l-methionine and its analogues that produce α-ketobutyrate (α-KB) as product. The assay employs ultraviolet-visible (UV-Vis) spectrophotometry to continuously monitor the rate of formation of α-KB by its absorbance at 315 nm. We also employ a nonlinear data analysis method that obviates the need for an "initial slope" determination, which can introduce errors when the progress curves are nonlinear. The spectrophotometric assay is validated through product analysis by (1)H NMR (nuclear magnetic resonance), which showed that under the conditions of study l-methionine (l-met) and l-methionine sulfone (l-met sulfone) substrates were converted to α-KB product with greater than 99% yield. Using this assay method, we determined for the first time the Michaelis-Menten parameters for a recombinant form of MGL from Porphyromonas gingivalis, obtaining respective kcat and Km values of 328 ± 8 min(-1) and 1.2 ± 0.1 mM for l-met γ-elimination and 2048 ± 59 min(-1) and 38 ± 2 mM for l-met sulfone γ-elimination reactions. We envisage that this assay method will be useful for determining the activity of MGL γ-elimination reactions that produce α-KB as the end product. PMID:27235171

  7. Dietary B vitamin and methionine intakes and lung cancer risk among female never smokers in China

    PubMed Central

    Takata, Yumie; Cai, Qiuyin; Beeghly-Fadiel, Alicia; Li, Honglan; Shrubsole, Martha J.; Ji, Bu-Tian; Yang, Gong; Chow, Wong-Ho; Gao, Yu-Tang; Zheng, Wei; Shu, Xiao-Ou

    2012-01-01

    Purpose B vitamins and methionine have been postulated to have potential effects on carcinogenesis; however, findings from previous epidemiologic studies on B vitamins, methionine, and lung cancer risk are inconsistent. We investigated associations of dietary intakes of B vitamins (i.e., riboflavin, niacin, vitamin B6, folate, and vitamin B12) and methionine with lung cancer risk among female never smokers. Methods The Shanghai Women’s Health Study, a population-based, prospective cohort study, included 74,941 women. During a median follow-up of 11.2 years, 428 incident lung cancer cases accrued among 71,267 women with no history of smoking or cancer at baseline. Baseline dietary intakes were derived from a validated, interviewer-administered food frequency questionnaire. Cancer incidence and vital status were ascertained through annual linkage to the Shanghai Cancer Registry and Shanghai Vital Statistics Registry databases and through biennial in-person follow-ups with participants. Adjusted hazard ratios (HR) and 95% confidence intervals (CI) were calculated using Cox regression. Results Dietary riboflavin intake was inversely associated with lung cancer risk (HR = 0.62; 95% CI = 0.43–0.89; P-trend = 0.03 for the highest quartile compared with the lowest). A higher than median intake of methionine was associated with lower risk of lung cancer (HR = 0.78; 95% CI = 0.60–0.99), however, there was no dose-response relation. Intakes of other B vitamins were not associated with lung cancer risk. Conclusions Our study suggests that dietary riboflavin intake may be inversely associated with lung cancer risk among female never smokers, which warrants further investigation. PMID:23065072

  8. Regeneration Mechanisms of Arabidopsis thaliana Methionine Sulfoxide Reductases B by Glutaredoxins and Thioredoxins*

    PubMed Central

    Tarrago, Lionel; Laugier, Edith; Zaffagnini, Mirko; Marchand, Christophe; Le Maréchal, Pierre; Rouhier, Nicolas; Lemaire, Stéphane D.; Rey, Pascal

    2009-01-01

    Methionine oxidation leads to the formation of S- and R-diastereomers of methionine sulfoxide (MetSO), which are reduced back to methionine by methionine sulfoxide reductases (MSRs) A and B, respectively. MSRBs are classified in two groups depending on the conservation of one or two redox-active Cys; 2-Cys MSRBs possess a catalytic Cys-reducing MetSO and a resolving Cys, allowing regeneration by thioredoxins. The second type, 1-Cys MSRBs, possess only the catalytic Cys. The biochemical mechanisms involved in activity regeneration of 1-Cys MSRBs remain largely elusive. In the present work we used recombinant plastidial Arabidopsis thaliana MSRB1 and MSRB2 as models for 1-Cys and 2-Cys MSRBs, respectively, to delineate the Trx- and glutaredoxin-dependent reduction mechanisms. Activity assays carried out using a series of cysteine mutants and various reductants combined with measurements of free thiols under distinct oxidation conditions and mass spectrometry experiments show that the 2-Cys MSRB2 is reduced by Trx through a dithiol-disulfide exchange involving both redox-active Cys of the two partners. Regarding 1-Cys MSRB1, oxidation of the enzyme after substrate reduction leads to the formation of a stable sulfenic acid on the catalytic Cys, which is subsequently glutathionylated. The deglutathionylation of MSRB1 is achieved by both mono- and dithiol glutaredoxins and involves only their N-terminal conserved catalytic Cys. This study proposes a detailed mechanism of the regeneration of 1-Cys MSRB activity by glutaredoxins, which likely constitute physiological reductants for this type of MSR. PMID:19457862

  9. Rapid Method for Quantifying the Extent of Methionine Oxidation in Intact Calmodulin

    SciTech Connect

    Galeva, Nadezhda A.; Esch, S Wynn; Williams, Todd D.; Markillie, Lye MENG.; Squier, Thomas C.

    2005-09-01

    We have developed a method for rapidly quantifying the extent to which the functionally important Met144 and Met145 residues near the C-terminus of calmodulin (CaM) are converted to the corresponding sulfoxides, Met(O). The method utilizes a whole protein collision induced dissociation (CID) approach on an electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) mass spectrometer. Using standards of CaM oxidized by hydrogen peroxide (H2O2) or peroxynitrite (ONOO-), we demonstrated that CID fragmentation of the protein ions resulted in a series of C-terminal singly charged y1?y15 ions. Fragments larger than y4 exhibited mass shifts of +16 or +32 Da, corresponding to oxidation of one or two methionines, respectively. To assess the extent of oxidative modification for Met144 and Met145 to Met(O), we averaged the ratio of intensities for yn, yn +16, and yn +32 ions, where n = 6?9. By alternating MS and CID scans at low and high collision energies, this technique allowed us to rapidly determine both the distribution of intact CaM oxiforms and the extent of oxidative modification in the C-terminal region of the protein in a single run. We have applied the method to studies of the repair of fully oxidized CaM by methionine sulfoxide reductases (MsrA and MsrB), which normally function in concert to reduce the S and R stereoisomers of methionine sulfoxide. We found that repair of Met(O)144 and Met(O)145 did not go to completion, but was more efficient than average Met repair. Absence of complete repair is consistent with previous studies showing that accumulation of methionine sulfoxide in CaM can occur during aging.

  10. Methionine-choline deprivation alters liver and brain acetylcholinesterase activity in C57BL6 mice.

    PubMed

    Vučević, Danijela B; Cerović, Ivana B; Mladenović, Dušan R; Vesković, Milena N; Stevanović, Ivana; Jorgačević, Bojan Z; Ješić Vukićević, Rada; Radosavljević, Tatjana S

    2016-07-01

    Choline and methionine are precursors of acetylcholine, whose hydrolysis is catalyzed by acetylcholinesterase (AChE). Considering the possibility of their common deficiency, we investigated the influence of methionine-choline deprivation on AChE activity in liver and various brain regions (hypothalamus, hippocampus, cerebral cortex and striatum) in mice fed with methionine-choline deficient (MCD) diet. Male C57BL/6 mice (n = 28) were randomly and equally divided into following groups: control group fed with standard diet for 6 weeks (C) and groups fed with MCD diet for 2 weeks (MCD2), 4 weeks (MCD4) and for 6 weeks (MCD6). After the diet, mice were sacrificied and AChE activity in liver and brain was determined spectrophotometrically. Hepatic AChE activity was higher in MCD2, MCD4 and MCD6 compared to control (p < 0.01), with most prominent increase in MCD6. AChE activity in hypothalamus was higher in MCD4 and MCD6 vs. control (p < 0.05 and p < 0.01, respectively), as well as in MCD6 compared to MCD4 (p < 0.01). In hippocampus, increase in AChE activity was shown in MCD6 compared to control (p < 0.01). In cortex and striatum, increase in AChE activity was noted in MCD6 compared to control (p < 0.05). Our findings indicate the increase of hepatic and brain AChE activity in mice caused by methionine-choline deprivation. PMID:27174897

  11. The Allosteric Regulatory Mechanism of the Escherichia coli MetNI Methionine ATP Binding Cassette (ABC) Transporter*

    PubMed Central

    Yang, Janet G.; Rees, Douglas C.

    2015-01-01

    The MetNI methionine importer of Escherichia coli, an ATP binding cassette (ABC) transporter, uses the energy of ATP binding and hydrolysis to catalyze the high affinity uptake of d- and l-methionine. Early in vivo studies showed that the uptake of external methionine is repressed by the level of the internal methionine pool, a phenomenon termed transinhibition. Our understanding of the MetNI mechanism has thus far been limited to a series of crystal structures in an inward-facing conformation. To understand the molecular mechanism of transinhibition, we studied the kinetics of ATP hydrolysis using detergent-solubilized MetNI. We find that transinhibition is due to noncompetitive inhibition by l-methionine, much like a negative feedback loop. Thermodynamic analyses revealed two allosteric methionine binding sites per transporter. This quantitative analysis of transinhibition, the first to our knowledge for a structurally defined transporter, builds upon the previously proposed structurally based model for regulation. This mechanism of regulation at the transporter activity level could be applicable to not only ABC transporters but other types of membrane transporters as well. PMID:25678706

  12. [Genetic bases of methionine dependence in Yersinia pestis strains of major and non-major subspecies].

    PubMed

    Odinokov, G N; Eroshenko, G A; Krasnov, Ia M; Kukleva, L M; Shavina, N Iu; Pavlova, A I; Kutyrev, V V

    2011-03-01

    Structural and functional organization of genes responsible for biosynthesis of amino acid methionine, which plays a leading role in cellular metabolism of bacteria, was studied in 24 natural Yersinia pestis strains of the major and minor subspecies from various natural plague foci located in the territory of Russian Federation and neighbouring foreign countries, and also in Y. pestis and Y. pseudotuberculosis strains recorded in the files of NCBI GenBank database. Conservatism of genes metA, metB, metC, metE, and metH as well as regulatory genes metR and metJ involved in biosynthesis of this amino acid was established. Sequencing of the variable locus of gene metB in natural Y. pestis strains of major and minor subspecies revealed that the reason for the methionine dependence of strains belonging to the major subspecies is a deletion of a single nucleotide (-G) in the 988 position from the beginning of the gene, whereas this dependence in strains belonging to subspecies hissarica results from the appearance of a single nucleotide (+G) insertion in the 989 position of gene metB. These mutations are absent in strains of the caucasica, altaica, and ulegeica subspecies of the plague agent and in strains of pseudotuberculosis microbe, which correlates with their capacity for methionine biosynthesis. PMID:21542303

  13. Predicting side-chain conformations of methionine using a hard-sphere model with stereochemical constraints

    NASA Astrophysics Data System (ADS)

    Virrueta, A.; Gaines, J.; O'Hern, C. S.; Regan, L.

    2015-03-01

    Current research in the O'Hern and Regan laboratories focuses on the development of hard-sphere models with stereochemical constraints for protein structure prediction as an alternative to molecular dynamics methods that utilize knowledge-based corrections in their force-fields. Beginning with simple hydrophobic dipeptides like valine, leucine, and isoleucine, we have shown that our model is able to reproduce the side-chain dihedral angle distributions derived from sets of high-resolution protein crystal structures. However, methionine remains an exception - our model yields a chi-3 side-chain dihedral angle distribution that is relatively uniform from 60 to 300 degrees, while the observed distribution displays peaks at 60, 180, and 300 degrees. Our goal is to resolve this discrepancy by considering clashes with neighboring residues, and averaging the reduced distribution of allowable methionine structures taken from a set of crystallized proteins. We will also re-evaluate the electron density maps from which these protein structures are derived to ensure that the methionines and their local environments are correctly modeled. This work will ultimately serve as a tool for computing side-chain entropy and protein stability. A. V. is supported by an NSF Graduate Research Fellowship and a Ford Foundation Fellowship. J. G. is supported by NIH training Grant NIH-5T15LM007056-28.

  14. Reconstruction of Cysteine Biosynthesis Using Engineered Cysteine-Free and Methionine-Free Enzymes

    NASA Technical Reports Server (NTRS)

    Wang, Kendrick; Fujishima, Kosuke; Abe, Nozomi; Nakahigashi, Kenji; Endy, Drew; Rothschild, Lynn J.

    2016-01-01

    Ten of the proteinogenic amino acids can be generated abiotically while the remaining thirteen require biology for their synthesis. Paradoxically, the biosynthesis pathways observed in nature require enzymes that are made with the amino acids they produce. For example, Escherichia coli produces cysteine from serine via two enzymes that contain cysteine. Here, we substituted alternate amino acids for cysteine and also methionine, which is biosynthesized from cysteine, in serine acetyl transferase (CysE) and O-acetylserine sulfhydrylase (CysM). CysE function was rescued by cysteine-and-methionine-free enzymes and CysM function was rescued by cysteine-free enzymes. Structural modeling suggests that methionine stabilizes CysM and is present in the active site of CysM. Cysteine is not conserved among CysE and CysM protein orthologs, suggesting that cysteine is not functionally important for its own synthesis. Engineering biosynthetic enzymes that lack the amino acids being synthesized provides insights into the evolution of amino acid biosynthesis and pathways for bioengineering.

  15. Evoked release of methionine enkephalin from tolerant/dependent enteric ganglia: paradoxical dependence on morphine.

    PubMed

    Gintzler, A R; Chan, W C; Glass, J

    1987-04-01

    Experiments were performed in order to determine whether the state of tolerance to and dependence upon opiates is associated with changes in one or more of the characteristics of the electrically induced release of methionine enkephalin from enteric ganglia. Acute morphine pretreatment substantially reduces the magnitude of the evoked release of this peptide from opiate-naive ilea. However, the rate of the evoked release of enkephalin from morphine-pretreated, tolerant/dependent preparations is indistinguishable from that observed for untreated, naive ilea. Paradoxically, 15 min after acute in vitro withdrawal of morphine form such preparations, the presence of morphine appears to be prerequisite for the manifestation of electrically evoked release of methionine enkephalin. The evoked release of this peptide from ilea 60 min after withdrawal is no longer dependent upon morphine. Moreover, the magnitude of the increase in the rate of enkephalin release from these preparations is almost double that observed for opiate-naive ilea. These data indicate that the manifestation of opiate tolerance/dependence for the release of methionine enkephalin from enteric ganglia comprises several adaptive processes, the consequences of which can be observed at different stages of withdrawal. PMID:3470809

  16. Hepatic overexpression of methionine sulfoxide reductase A reduces atherosclerosis in apolipoprotein E-deficient mice.

    PubMed

    Xu, Yan-Yong; Du, Fen; Meng, Bing; Xie, Guang-Hui; Cao, Jia; Fan, Daping; Yu, Hong

    2015-10-01

    Methionine sulfoxide reductase A (MsrA), a specific enzyme that converts methionine-S-sulfoxide to methionine, plays an important role in the regulation of protein function and the maintenance of redox homeostasis. In this study, we examined the impact of hepatic MsrA overexpression on lipid metabolism and atherosclerosis in apoE-deficient (apoE(-/-)) mice. In vitro study showed that in HepG2 cells, lentivirus-mediated human MsrA (hMsrA) overexpression upregulated the expression levels of several key lipoprotein-metabolism-related genes such as liver X receptor α, scavenger receptor class B type I, and ABCA1. ApoE(-/-) mice were intravenously injected with lentivirus to achieve high-level hMsrA expression predominantly in the liver. We found that hepatic hMsrA expression significantly reduced plasma VLDL/LDL levels, improved plasma superoxide dismutase, and paraoxonase-1 activities, and decreased plasma serum amyloid A level in apoE(-/-) mice fed a Western diet, by significantly altering the expression of several genes in the liver involving cholesterol selective uptake, conversion and excretion into bile, TG biosynthesis, and inflammation. Moreover, overexpression of hMsrA resulted in reduced hepatic steatosis and aortic atherosclerosis. These results suggest that hepatic MsrA may be an effective therapeutic target for ameliorating dyslipidemia and reducing atherosclerosis-related cardiovascular diseases. PMID:26318157

  17. Differential degradation of [35S]methionine polypeptides in Duchenne muscular dystrophy skin fibroblasts in vitro.

    PubMed Central

    Rodemann, H P; Bayreuther, K

    1986-01-01

    Rates of protein turnover have been measured in three normal and three Duchenne muscular dystrophy (DMD) skin fibroblast cell lines. Cell populations were analyzed at identical states with regard to cell number, state of topoinhibition, and cumulative population doublings (CPD). Net protein synthesis measured by the incorporation of [35S]methionine in an 18-hr pulse was reduced by an average of 34%; degradation of total cellular protein measured after an 18-hr pulse with [35S]methionine and a 24-hr chase was enhanced by an average of 50% in DMD fibroblasts. Two-dimensional gel electrophoresis analyses revealed that the breakdown of the majority of [35S]methionine polypeptides was markedly increased in DMD fibroblasts. Quantitative determinations of the differential degradation rates of 10 selected proteins in the tropomyosin region of two-dimensional gels were undertaken by scintillation counting and computer analyses. In three series of experiments, the degradation of the 10 proteins in DMD fibroblasts was enhanced by individual polypeptides between 12.0% and 151.2% as measured by scintillation counting or between 0.8% and 128% as determined by computer analyses. Images PMID:3457376

  18. Nonsense mutation in the regulatory gene ETH2 involved in methionine biosynthesis in Saccharomyces cervisiae.

    PubMed

    Masselot, M; Robichon-Szulmajster, H

    1972-08-01

    Ethionine-resistant mutants, mapping at the locus eth2-the product of which is involved in pleiotropic regulation of methionine biosynthesis-have been isolated in a strain carrying five ochre nonsense mutations. Selection for nonsense suppressors in such a strain led to characterization of several allele-specific but gene non-specific suppressors which are active on the recessive heteroallele eth2-2 (resulting in partial recovery of sensitivity toward ethionine) as well as on the five other suppressible alleles. Two of these suppressors are unlinked to the eth2 gene and either dominant or semi-dominant. It is concluded that the mutation eth2-2 resulted in a nonsense codon. Enzyme studies indicate that this mutation results in a complete absence of an active product of gene eth2, in contrast with the effect of a former mutation eth2-1 which was interpreted as leading to a modified product of this gene (Cherest, Surdin-Kerjan and de Robichon-Szulmajster 1971). This conclusion is based on the absence of repressibility of methionine group I enzymes and the observation that in a heteroallelic diploid, eth2-1 expression is not masked by eth2-2. The nonsense suppressors studied lead to at least partial recovery of repressibility of methionine group I enzymes. All these results support the idea that the product of gene ETH2 is an aporepressor protein. PMID:4560067

  19. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of Mycobacterium tuberculosis.

    PubMed

    Berney, Michael; Berney-Meyer, Linda; Wong, Ka-Wing; Chen, Bing; Chen, Mei; Kim, John; Wang, Jingxin; Harris, David; Parkhill, Julian; Chan, John; Wang, Feng; Jacobs, William R

    2015-08-11

    Multidrug resistance, strong side effects, and compliance problems in TB chemotherapy mandate new ways to kill Mycobacterium tuberculosis (Mtb). Here we show that deletion of the gene encoding homoserine transacetylase (metA) inactivates methionine and S-adenosylmethionine (SAM) biosynthesis in Mtb and renders this pathogen exquisitely sensitive to killing in immunocompetent or immunocompromised mice, leading to rapid clearance from host tissues. Mtb ΔmetA is unable to proliferate in primary human macrophages, and in vitro starvation leads to extraordinarily rapid killing with no appearance of suppressor mutants. Cell death of Mtb ΔmetA is faster than that of other auxotrophic mutants (i.e., tryptophan, pantothenate, leucine, biotin), suggesting a particularly potent mechanism of killing. Time-course metabolomics showed complete depletion of intracellular methionine and SAM. SAM depletion was consistent with a significant decrease in methylation at the DNA level (measured by single-molecule real-time sequencing) and with the induction of several essential methyltransferases involved in biotin and menaquinone biosynthesis, both of which are vital biological processes and validated targets of antimycobacterial drugs. Mtb ΔmetA could be partially rescued by biotin supplementation, confirming a multitarget cell death mechanism. The work presented here uncovers a previously unidentified vulnerability of Mtb-the incapacity to scavenge intermediates of SAM and methionine biosynthesis from the host. This vulnerability unveils an entirely new drug target space with the promise of rapid killing of the tubercle bacillus by a new mechanism of action. PMID:26221021

  20. Dietary methionine can sustain cytosolic redox homeostasis in the mouse liver

    PubMed Central

    Eriksson, Sofi; Prigge, Justin R.; Talago, Emily A.; Arnér, Elias S. J.; Schmidt, Edward E.

    2015-01-01

    Across phyla, reduced nicotinamide adenine dinucleotide phosphate (NADPH) transfers intracellular reducing power to thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR), thereby supporting fundamental housekeeping and antioxidant pathways. Here we show that a third, NADPH-independent, pathway can bypass the need for TrxR1 and GR in mammalian liver. Most mice genetically engineered to lack both TrxR1 and GR in all hepatocytes (“TR/GR-null livers”) remain long-term viable. TR/GR-null livers cannot reduce oxidized glutathione disulfide but still require continuous glutathione synthesis. Inhibition of cystathionine gamma-lyase causes rapid necrosis of TR/GR-null livers, indicating that methionine-fueled trans-sulfuration supplies the necessary cysteine precursor for glutathione synthesis via an NADPH-independent pathway. We further show that dietary methionine provides the cytosolic disulfide reducing power and all sulfur amino acids in TR/GR-null livers. Although NADPH is generally considered an essential reducing currency, these results indicate that hepatocytes can adequately sustain cytosolic redox homeostasis pathways using either NADPH or methionine. PMID:25790857

  1. The first international mini-symposium on methionine restriction and lifespan.

    PubMed

    Ables, Gene P; Brown-Borg, Holly M; Buffenstein, Rochelle; Church, Christopher D; Elshorbagy, Amany K; Gladyshev, Vadim N; Huang, Tsang-Hai; Miller, Richard A; Mitchell, James R; Richie, John P; Rogina, Blanka; Stipanuk, Martha H; Orentreich, David S; Orentreich, Norman

    2014-01-01

    It has been 20 years since the Orentreich Foundation for the Advancement of Science, under the leadership Dr. Norman Orentreich, first reported that low methionine (Met) ingestion by rats extends lifespan (Orentreich et al., 1993). Since then, several studies have replicated the effects of dietary methionine restricted (MR) in delaying age-related diseases (Richie et al., 1994; Miller et al., 2005; Ables et al., 2012; Sanchez-Roman and Barja, 2013). We report the abstracts from the First International Mini-Symposium on Methionine Restriction and Lifespan held in Tarrytown, NY, September 2013. The goals were (1) to gather researchers with an interest in MR and lifespan, (2) to exchange knowledge, (3) to generate ideas for future investigations, and (4) to strengthen relationships within this community. The presentations highlighted the importance of research on cysteine, growth hormone (GH), and ATF4 in the paradigm of aging. In addition, the effects of dietary restriction or MR in the kidneys, liver, bones, and the adipose tissue were discussed. The symposium also emphasized the value of other species, e.g., the naked mole rat, Brandt's bat, and Drosophila, in aging research. Overall, the symposium consolidated scientists with similar research interests and provided opportunities to conduct future collaborative studies (Figure 3). PMID:24847356

  2. Oxidative Stress Inactivates Cobalamin-Independent Methionine Synthase (MetE) in Escherichia coli

    PubMed Central

    2004-01-01

    In nature, Escherichia coli are exposed to harsh and non-ideal growth environments—nutrients may be limiting, and cells are often challenged by oxidative stress. For E. coli cells confronting these realities, there appears to be a link between oxidative stress, methionine availability, and the enzyme that catalyzes the final step of methionine biosynthesis, cobalamin-independent methionine synthase (MetE). We found that E. coli cells subjected to transient oxidative stress during growth in minimal medium develop a methionine auxotrophy, which can be traced to an effect on MetE. Further experiments demonstrated that the purified enzyme is inactivated by oxidized glutathione (GSSG) at a rate that correlates with protein oxidation. The unique site of oxidation was identified by selectively cleaving N-terminally to each reduced cysteine and analyzing the results by liquid chromatography mass spectrometry. Stoichiometric glutathionylation of MetE by GSSG occurs at cysteine 645, which is strategically located at the entrance to the active site. Direct evidence of MetE oxidation in vivo was obtained from thiol-trapping experiments in two different E. coli strains that contain highly oxidizing cytoplasmic environments. Moreover, MetE is completely oxidized in wild-type E. coli treated with the thiol-oxidizing agent diamide; reduced enzyme reappears just prior to the cells resuming normal growth. We argue that for E. coli experiencing oxidizing conditions in minimal medium, MetE is readily inactivated, resulting in cellular methionine limitation. Glutathionylation of the protein provides a strategy to modulate in vivo activity of the enzyme while protecting the active site from further damage, in an easily reversible manner. While glutathionylation of proteins is a fairly common mode of redox regulation in eukaryotes, very few proteins in E. coli are known to be modified in this manner. Our results are complementary to the independent findings of Leichert and Jakob

  3. Effects of Methionine Supplementation on the Expression of Protein Deposition-Related Genes in Acute Heat Stress-Exposed Broilers

    PubMed Central

    Grieser, Daiane Oliveira; Zancanela, Vittor; Voltolini, Débora Marques; Khatlab, Angélica Souza; Guimarães, Simone Eliza Facioni; Soares, Maria Amélia Menck; Neto, Adhemar Rodrigues Oliveira

    2015-01-01

    The objective of this study was to evaluate the effect of heat stress and methionine supplementation on the gene expression of insulin-like growth factor I (IGF-I), growth hormone receptor (GHR), phosphatidylinositol 3-kinase, and regulatory 1 (PI3KR1) in the liver, as well as the expression of the atrogin 1 and cathepsin L2 (CTSL2) genes in the breast muscle of broilers. Broilers from 1–21 and 22–42 days of age were divided into three treatments related to methionine supplementation as follows: without methionine supplementation (MD), recommended level of methionine (DL1), and excess supplementation of methionine (DL2). The animals were either maintained at a thermal comfort temperature or exposed to heat stress (HS) (38°C for 24 hours, starting on day 20 or day 41 for experiments 1 and 2, respectively). The heat stress increased the body temperature at both ages. Starter period: The HS animals presented increased plasma creatinine content (P<0.0001) and the highest CTSL2 gene expression (P<0.0001). The methionine supplementation increased the IGF-I (P = 0.0144) and GHR (P = 0.0011) gene expression and decreased the CTSL2 (P = 0.0004) and atrogin 1 (P = 0.0012) gene expression. Grower period: Significant effects for the interaction between supplementation and environment were observed for GHR (P = 0.0252) and CTSL2 (P = 0.0011) gene expression. The highest GHR expression was observed in animals that remained in thermal comfort on the DL2 diet, and the lowest expression occurred in the HS animals fed the MD diet. For CTSL2, the HS animals fed the MD diet presented the highest CTSL2 gene expression, and the lowest expression was observed in the animals maintained at thermal comfort on DL1 and DL2 diets. Only methionine supplementation had effect on atrogin-1 gene expression (P<0.0001), with higher methionine content in the diet lower atrogin-1 gene expression was observed. Our results suggest that heat stress induces greater protein degradation and that

  4. Variability of plasma and urine betaine in diabetes mellitus and its relationship to methionine load test responses: an observational study

    PubMed Central

    2012-01-01

    Background Since betaine is an osmolyte and methyl donor, and abnormal betaine loss is common in diabetes mellitus (>20% patients), we investigated the relationship between betaine and the post-methionine load rise in homocysteine, in diabetes and control subjects. The post-methionine load test is reported to be both an independent vascular risk factor and a measure of betaine sufficiency. Methods Patients with type 2 diabetes (n = 34) and control subjects (n = 17) were recruited. We measured baseline fasting plasma and 4-hour post-methionine load (L-methionine, 0.1 mg/kg body weight) concentrations of homocysteine, betaine, and the betaine metabolite N,N-dimethylglycine. Baseline urine excretions of betaine, dimethylglycine and glucose were measured on morning urine samples as the ratio to urine creatinine. Statistical determinants of the post-methionine load increase in homocysteine were identified in multiple linear regression models. Results Plasma betaine concentrations and urinary betaine excretions were significantly (p < 0.001) more variable in the subjects with diabetes compared with the controls. Dimethylglycine excretion (p = 0.00014) and plasma dimethylglycine concentrations (p = 0.039) were also more variable. In diabetes, plasma betaine was a significant negative determinant (p < 0.001) of the post-methionine load increase in homocysteine. However, it was not conclusive that this was different from the relationship in the controls. In the patients with diabetes, a strong relationship was found between urinary betaine excretion and urinary glucose excretion (but not with plasma glucose). Conclusions Both high and low plasma betaine concentrations, and high and low urinary betaine excretions, are more prevalent in diabetes. The availability of betaine affects the response in the methionine load test. The benefits of increasing betaine intake should be investigated. PMID:22510294

  5. Methionine oxidation reduces lag-times for amyloid-β(1-40) fiber formation but generates highly fragmented fibers.

    PubMed

    Gu, Miao; Viles, John H

    2016-09-01

    Oxidative stress and the formation of amyloid plaques containing amyloid-β (Aβ) peptides are two key hallmarks of Alzheimer's disease. A proportion of methionine (Met) at position 35 within Aβ is oxidized to methionine sulphoxide (Met(OX)) within the Alzheimer's plaques. These oxidative processes may be the key to understanding the early stages of Alzheimer's disease. In vitro oxidation of Aβ, by the physiological oxidant H2O2, was monitored using (1)H NMR and mass spectrometry. Here we investigate the effect of Aβ methionine oxidation on fiber formation kinetics and morphology using the amyloid specific fluorescence dye Thioflavin T (ThT) and Transmission Electron Microscopy (TEM). Methionine oxidation reduces the total amount of fibers generated for both dominant forms of Aβ, however there are marked differences in the effect of Met(OX) between Aβ(1-40) and Aβ(1-42). Surprisingly the presence of Met(OX) reduces lag-times for Aβ(1-40) fiber formation but extends lag-times for Aβ(1-42). TEM indicates a change in fiber morphology with a pronounced reduction in fiber length for both methionine oxidized Aβ(1-40) and Aβ(1-42). In contrast, the morphology of preformed amyloid fibers is largely unaffected by the presence of H2O2. Our studies suggest that methionine oxidation promotes highly fragmented fiber assemblies of Aβ. Oxidative stress associated with Alzheimer's disease can cause oxidation of methionine within Aβ and this in turn will influence the complex assembly of Aβ monomer into amyloid fibers, which is likely to impact Aβ toxicity. PMID:27108954

  6. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen (1O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. 1O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. 1O2 concentrations in solution were linearly related to the emission intensities of airborne 1O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an 1O2 trapping agent. Products from 1O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of 1O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. 1O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with 1O2, evolution of methionine oxidation pathways at different ionization states and in different media is described.

  7. Mechanistic and Kinetic Study of Singlet O2 Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry.

    PubMed

    Liu, Fangwei; Lu, Wenchao; Yin, Xunlong; Liu, Jianbo

    2016-01-01

    We report a reaction apparatus developed to monitor singlet oxygen ((1)O2) reactions in solution using on-line ESI mass spectrometry and spectroscopy measurements. (1)O2 was generated in the gas phase by the reaction of H2O2 with Cl2, detected by its emission at 1270 nm, and bubbled into aqueous solution continuously. (1)O2 concentrations in solution were linearly related to the emission intensities of airborne (1)O2, and their absolute scales were established based on a calibration using 9,10-anthracene dipropionate dianion as an (1)O2 trapping agent. Products from (1)O2 oxidation were monitored by UV-Vis absorption and positive/negative ESI mass spectra, and product structures were elucidated using collision-induced dissociation-tandem mass spectrometry. To suppress electrical discharge in negative ESI of aqueous solution, methanol was added to electrospray via in-spray solution mixing using theta-glass ESI emitters. Capitalizing on this apparatus, the reaction of (1)O2 with methionine was investigated. We have identified methionine oxidation intermediates and products at different pH, and measured reaction rate constants. (1)O2 oxidation of methionine is mediated by persulfoxide in both acidic and basic solutions. Persulfoxide continues to react with another methionine, yielding methionine sulfoxide as end-product albeit with a much lower reaction rate in basic solution. Density functional theory was used to explore reaction potential energy surfaces and establish kinetic models, with solvation effects simulated using the polarized continuum model. Combined with our previous study of gas-phase methionine ions with (1)O2, evolution of methionine oxidation pathways at different ionization states and in different media is described. PMID:26306590

  8. Metal-Catalyzed Oxidation of Protein Methionine Residues in Human Parathyroid Hormone (1-34): Formation of Homocysteine and a Novel Methionine-Dependent Hydrolysis Reaction

    PubMed Central

    Mozziconacci, Olivier; Ji, Junyan A.; Wang, Y. John; Schöneich, Christian

    2013-01-01

    The oxidation of PTH(1-34) catalyzed by ferrous ethylenediaminetetraacetic acid (EDTA) is site-specific. The oxidation of PTH(1-34) is localized primarily to the residues Met[8] and His[9]. Beyond the transformation of Met[8] and His[9] into methionine sulfoxide and 2-oxo-histidine, respectively, we observed a hydrolytic cleavage between Met[8] and His[9]. This hydrolysis requires the presence of FeII and oxygen and can be prevented by diethylenetriaminepentaacetic acid (DTPA) and phosphate buffer. Conditions leading to this site-specific hydrolysis also promote the transformation of Met[8] into homocysteine, indicating that the hydrolysis and transformation of homocysteine may proceed through a common intermediate. PMID:23289936

  9. S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3

    PubMed Central

    Jayaram, Hariharan; Hoelper, Dominik; Jain, Siddhant U.; Cantone, Nico; Lundgren, Stefan M.; Poy, Florence; Allis, C. David; Cummings, Richard; Bellon, Steven; Lewis, Peter W.

    2016-01-01

    Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases. PMID:27185940

  10. S-adenosyl methionine is necessary for inhibition of the methyltransferase G9a by the lysine 9 to methionine mutation on histone H3.

    PubMed

    Jayaram, Hariharan; Hoelper, Dominik; Jain, Siddhant U; Cantone, Nico; Lundgren, Stefan M; Poy, Florence; Allis, C David; Cummings, Richard; Bellon, Steven; Lewis, Peter W

    2016-05-31

    Lysine to methionine (K-to-M) mutations in genes encoding histone H3 are thought to drive a subset of pediatric brain and bone cancers. These high-frequency K-to-M mutations occur at sites of methylation on histone H3, and tumors containing the mutant histones exhibit a global loss of specific histone methylation marks. Previous studies showed that K-to-M mutant histones, also known as oncohistones, are potent orthosteric inhibitors of specific Su(var)3-9, Enhancer-of-zeste, Trithorax (SET) domain methyltransferases. However, the biochemical and biophysical details of the interaction between K-to-M mutant histones and the respective SET domain methyltransferases are currently unknown. Here, we use the histone H3K9-directed methyltransferase G9a as a model to explore the mechanism of inhibition by K-to-M oncohistones. X-ray cocrystal structures revealed that the K9M residue of histone H3 occupies the active site cavity of G9a, and kinetic analysis indicates competitive inhibition of G9a by histone H3K9M. Additionally, we find that the cofactor S-adenosyl methionine (SAM) is necessary for stable interaction between G9a and H3K9M histone. Consistent with the formation of a ternary complex, we find that the inhibitory peptide is uncompetitive with regard to SAM. These data and others indicate that K-to-M oncohistones promote global loss of specific lysine methylation through sequestration and inhibition of SAM-bound SET domain methyltransferases. PMID:27185940

  11. Endosperm protein synthesis and L-(/sup 35/S)methionine incorporation in maize kernels cultured in vitro

    SciTech Connect

    Cully, D.E.; Gengenbach, B.G.; Smith, J.A.; Rubenstein, I.; Connely, J.A.; Park, W.D.

    1984-02-01

    This study was conducted to examine protein synthesis and L-(/sup 35/S)methionine incorporation into the endosperm of Zea mays L. kernels developing in vitro. Two-day-old kernels of the inbred line W64A were placed in culture on a defined medium containing 10 microCuries L-(/sup 35/S)methionine per milliliter (13 milliCuries per millimole) and harvested at 10, 15, 20, 25, 30, 35, and 40 days after pollination. Cultured kernels attained a final endosperm mass of 120 milligrams compared to 175 milligrams for field-grown controls. Field and cultured kernels had similar concentrations (microgram per milligram endosperm for total protein, albumin plus globulin, zein, and glutelin fractions at most kernel ages. Sodium, dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing patterns for endosperm proteins were similar for field and cultured kernels throughout development. By 15 days, over 70% of the L-(/sup 35/S)methionine taken up was present in endosperm proteins. Label incorporation visualized by fluorography generally followed the protein intensity of the stained gels. The high methionine content, low molecular weight zeins (i.e. 15 and 9 kilodaltons) were highly labeled. All of the radioactivity in hydrolyzed zein samples was recovered in the methionine peak indicating minimal conversion to L-(/sup 35/S)cysteine. The procedure described here is suitable for long term culture and labeling experiments in which continued kernel development is required.

  12. Endosperm Protein Synthesis and l-[35S]Methionine Incorporation in Maize Kernels Cultured In Vitro1

    PubMed Central

    Cully, David E.; Gengenbach, Burle G.; Smith, Jane A.; Rubenstein, Irwin; Connelly, James A.; Park, William D.

    1984-01-01

    This study was conducted to examine protein synthesis and l-[35S] methionine incorporation into the endosperm of Zea mays L. kernels developing in vitro. Two-day-old kernels of the inbred line W64A were placed in culture on a defined medium containing 10 microCuries l-[35S] methionine per milliliter (13 milliCuries per millimole) and harvested at 10, 15, 20, 25, 30, 35, and 40 days after pollination. Cultured kernels attained a final endosperm mass of 120 milligrams compared to 175 milligrams for field-grown controls. Field and cultured kernels had similar concentrations (microgram per milligram endospern) for total protein, albumin plus globulin, zein, and glutelin fractions at most kernel ages. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing patterns for endosperm proteins were similar for field and cultured kernels throughout development. By 15 days, over 70% of the l-[35S]methionine taken up was present in endosperm proteins. Label incorporation visualized by fluorography generally followed the protein intensity of the stained gels. The high methionine content, low molecular weight zeins (i.e. 15 and 9 kilodaltons) were highly labeled. All of the radioactivity in hydrolyzed zein samples was recovered in the methionine peak indicating minimal conversion to l-[35S]cysteine. The procedure described here is suitable for long term culture and labeling experiments in which continued kernel development is required. Images Fig. 2 Fig. 3 Fig. 4 PMID:16663428

  13. Functioning methionine sulfoxide reductases A and B are present in human epidermal melanocytes in the cytosol and in the nucleus

    SciTech Connect

    Schallreuter, Karin U.; Chavan, Bhaven; Gillbro, Johanna M.

    2006-03-31

    Oxidation of methionine residues by reactive oxygen (ROS) in protein structures leads to the formation of methionine sulfoxide which can consequently lead to a plethora of impaired functionality. The generation of methionine sulfoxide yields ultimately a diastereomeric mixture of the S and R sulfoxides. So far two distinct enzyme families have been identified. MSRA reduces methionine S-sulfoxide, while MSRB reduces the R-diastereomer. It has been shown that these enzymes are involved in regulation of protein function and in elimination of ROS via reversible methionine formation besides protein repair. Importantly, both enzymes require coupling to the NADPH/thioredoxin reductase/thioredoxin electron donor system. In this report, we show for First time the expression and function of both sulfoxide reductases together with thioredoxin reductase in the cytosol as well as in the nucleus of epidermal melanocytes which are especially sensitive to ROS. Since this cell resides in the basal layer of the epidermis and its numbers and functions are reduced upon ageing and for instance also in depigmentation processes, we believe that this discovery adds an intricate repair mechanism to melanocyte homeostasis and survival.

  14. The contribution of methionine to the stability of the Escherichia coli MetNIQ ABC transporter - substrate binding protein complex

    PubMed Central

    Nguyen, Phong T.; Li, Qi Wen; Kadaba, Neena S.; Lai, Jeffrey Y.; Yang, Janet G.; Rees, Douglas C.

    2015-01-01

    Despite the ubiquitous role of ATP Binding Cassette (ABC) importers in nutrient uptake, only the E. coli maltose and vitamin B12 ABC transporters have been structurally characterized in multiple conformations relevant to the alternating access transport mechanism. To complement our previous structure determination of the E. coli MetNI methionine importer in the inward facing conformation (Kadaba et al. (2008) Science 321, 250–253), we have explored conditions stabilizing the outward facing conformation. Using two variants, the Walker B E166Q mutation with ATP+EDTA to stabilize MetNI in the ATP-bound conformation and the N229A variant of the binding protein MetQ, shown in this work to disrupt methionine binding, a high affinity MetNIQ complex was formed with a dissociation constant measured to be 27 nM. Using wild type MetQ containing a co-purified methionine (for which the crystal structure is reported at 1.6 Å resolution), the dissociation constant for complex formation with MetNI is measured to be ~40-fold weaker, indicating that complex formation lowers the affinity of MetQ for methionine by this amount. Preparation of a stable MetNIQ complex is an essential step towards the crystallographic analysis of the outward facing conformation, a key intermediate in the uptake of methionine by this transport system. PMID:25803078

  15. Immune function and hematology of male cotton rats (Sigmodon hispidus) in response to food supplementation and methionine

    USGS Publications Warehouse

    Webb, R.E.; Leslie, David M., Jr.; Lochmiller, R.L.; Masters, R.E.

    2003-01-01

    We examined effects of supplementation of food quantity and quality (=enhanced methionine) on hematologic and immunologic parameters of wild, but enclosed, adult male cotton rats (Sigmodon hispidus) in north-central Oklahoma. Sheet metal enclosures were stocked with a high density of wild-caught cotton rats (160 animals/ha) and randomly assigned a treatment of no supplementation, mixed-ration supplementation or methionine-enhanced supplementation. Aside from small increases in counts of red blood cells and hematocrit levels, most indices of erythrocytic characteristics were not affected by supplementation with the mixed-ration or enhanced methionine. In contrast, platelet counts were highest in mixed-ration and methionine treatments and counts of total white blood cells were highest with methionine supplementation, albeit relative proportions of different leukocytes did not differ among treatments. Immunologically, neither delayed-type hypersensitivity response nor hemolytic-complement activity differed among treatments. Supplementation of food quantity and quality did not broadly affect hematologic parameters and immune function of male cotton rats, but enhanced platelet and leukocyte counts may confer advantages to overall health. Clarification of the role of such effects on population limitation or regulation requires additional research. ?? 2003 Elsevier Inc. All rights reserved.

  16. Inward facing conformations of the MetNI methionine ABC transporter: Implications for the mechanism of transinhibition

    PubMed Central

    Johnson, Eric; Nguyen, Phong T; Yeates, Todd O; Rees, Douglas C

    2012-01-01

    Two new crystal structures of the Escherichia coli high affinity methionine uptake ATP Binding Cassette (ABC) transporter MetNI, purified in the detergents cyclohexyl-pentyl-β-d-maltoside (CY5) and n-decyl-β-d-maltopyranoside (DM), have been solved in inward facing conformations to resolutions of 2.9 and 4.0 Å, respectively. Compared to the previously reported 3.7 Å resolution structure of MetNI purified in n-dodecyl-β-d-maltopyranoside (DDM), the higher resolution of the CY5 data enabled significant improvements to the structural model in several regions, including corrections to the sequence registry, and identification of ADP in the nucleotide binding site. CY5 crystals soaked with selenomethionine established details of the methionine binding site in the C2 regulatory domain of the ABC subunit, including the displacement of the side chain of MetN residue methionine 301 by the exogenous ligand. When compared to the CY5 or DDM structures, the DM structure exhibits a significant repositioning of the dimeric C2 domains, including an unexpected register shift in the intermolecular β-sheet hydrogen bonding between monomers, and a narrowing of the nucleotide binding space. The immediate proximity of the exogenous methionine binding site to the conformationally variable dimeric interface provides an indication of how methionine binding to the regulatory domains might mediate the phenomenon of transinhibition. PMID:22095702

  17. MtnBD Is a Multifunctional Fusion Enzyme in the Methionine Salvage Pathway of Tetrahymena thermophila

    PubMed Central

    Nakano, Toshihiro; Ohki, Izuru; Yokota, Akiho; Ashida, Hiroki

    2013-01-01

    To recycle reduced sulfur to methionine in the methionine salvage pathway (MSP), 5-methylthioribulose-1-phosphate is converted to 2-keto-4-methylthiobutyrate, the methionine precursor, by four steps; dehydratase, enolase, phosphatase, and dioxygenase reactions (catalyzed by MtnB, MtnW, MtnX and MtnD, respectively, in Bacillus subtilis). It has been proposed that the MtnBD fusion enzyme in Tetrahymena thermophila catalyzes four sequential reactions from the dehydratase to dioxygenase steps, based on the results of molecular biological analyses of mutant yeast strains with knocked-out MSP genes, suggesting that new catalytic function can be acquired by fusion of enzymes. This result raises the question of how the MtnBD fusion enzyme can catalyze four very different reactions, especially since there are no homologous domains for enolase and phosphatase (MtnW and MtnX, respectively, in B. subtilis) in the peptide. Here, we tried to identify the domains responsible for catalyzing the four reactions using recombinant proteins of full-length MtnBD and each domain alone. UV-visible and 1H-NMR spectral analyses of reaction products revealed that the MtnB domain catalyzes dehydration and enolization and the MtnD domain catalyzes dioxygenation. Contrary to a previous report, conversion of 5-methylthioribulose-1-phosphate to 2-keto-4-methylthiobutyrate was dependent on addition of an exogenous phosphatase from B. subtilis. This was observed for both the MtnB domain and full-length MtnBD, suggesting that MtnBD does not catalyze the phosphatase reaction. Our results suggest that the MtnB domain of T. thermophila MtnBD acquired the new function to catalyze both the dehydratase and enolase reactions through evolutionary gene mutations, rather than fusion of MSP genes. PMID:23840871

  18. Structural Basis for the Differential Regulation of DNA by the Methionine Repressor MetJ

    SciTech Connect

    Augustus, Anne; Reardon, Patrick; Heller, William T; Spicer, Leonard D.

    2006-01-01

    The Met regulon in Escherichia coli encodes several proteins responsible for the biosynthesis of methionine. Regulation of the expression of most of these proteins is governed by the methionine repressor protein MetJ and its co-repressor, the methionine derivative S-adenosylmethionine. Genes controlled by MetJ contain from two to five sequential copies of a homologous 8-bp sequence called the metbox. A crystal structure for one of the complexes, the repressor tetramer bound to two metboxes, has been reported (Somers, W. S., and S. E. Phillips (1992) Nature 359, 387-393), but little structural work on the larger assemblies has been done presumably because of the difficulties in crystallization and the variability in the number and sequences of metboxes for the various genes. Small angle neutron scattering was used to study complexes of MetJ and S-adenosylmethionine with double-stranded DNA containing two, three, and five metboxes. Our results demonstrate that the crystal structure of the two-metbox complex is not the native solution conformation of the complex. Instead, the system adopts a less compact conformation in which there is decreased interaction between the adjacent MetJ dimers. Models built of the higher order complexes from the scattering data show that the three-metbox complex is organized much like the two-metbox complex. However, the five-metbox complex differs significantly from the smaller complexes, providing much closer packing of the adjacent MetJ dimers and allowing additional contacts not available in the crystal structure. The results suggest that there is a structural basis for the differences observed in the regulatory effectiveness of MetJ for the various genes of the Met regulon.

  19. Impact of methionine oxidation as an initial event on the pathway of human prion protein conversion.

    PubMed

    Elmallah, Mohammed I Y; Borgmeyer, Uwe; Betzel, Christian; Redecke, Lars

    2013-01-01

    Prion diseases comprise a group of fatal neurodegenerative disorders characterized by the autocatalytic conversion of the cellular prion protein PrP(C) into the infectious misfolded isoform PrP(Sc). Increasing evidence supports a specific role of oxidative stress in the onset of pathogenesis. Although the associated molecular mechanisms remain to be elucidated in detail, several studies currently suggest that methionine oxidation already detected in misfolded PrP(Sc) destabilizes the native PrP fold as an early event in the conversion pathway. To obtain more insights about the specific impact of surface-exposed methionine residues on the oxidative-induced conversion of human PrP we designed, produced, and comparatively investigated two new pseudosulfoxidation mutants of human PrP 121-231 that comprises the well-folded C-terminal domain. Applying circular dichroism spectroscopy and dynamic light scattering techniques we showed that pseudosulfoxidation of all surface exposed Met residues formed a monomeric molten globule-like species with striking similarities to misfolding intermediates recently reported by other groups. However, individual pseudosulfoxidation at the polymorphic M129 site did not significantly contribute to the structural destabilization. Further metal-induced oxidation of the partly unfolded pseudosulfoxidation mutant resulted in the formation of an oligomeric state that shares a comparable size and stability with PrP oligomers detected after the application of different other triggers for structural conversion, indicating a generic misfolding pathway of PrP. The obtained results highlight the specific importance of methionine oxidation at surface exposed residues for PrP misfolding, strongly supporting the hypothesis that increased oxidative stress could be one causative event for sporadic prion diseases and other neurodegenerative disorders. PMID:24121542

  20. Increased Catalytic Efficiency Following Gene Fusion of Bifunctional Methionine Sulfoxide Reductase Enzymes from Shewanella oneidensis

    SciTech Connect

    Chen, Baowei; Markillie, Lye Meng; Xiong, Yijia; Mayer, M. Uljana; Squier, Thomas C.

    2007-11-11

    Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificies that respectively reduce the S- and R-stereoisomers of methionine sulfoxide (MetSO), and together function as critical antioxidant enzymes. In some pathogenic and metal reducing bacteria these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate the impact of gene fusion on the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme and a genetically engineered MsrB protein. We report that MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin; in comparison only partial repair is observed using both MsrA and MsrB enzymes together at 25 °C. MsrBA has a twenty-fold enhanced rate of repair for MetSO in proteins in comparison with the individual MsrA or MsrB enzymes alone and respective 14- and 50-fold increases in catalytic efficiency (i.e., kcat/KM). In comparison, MsrBA and MsrA have similar catalytic efficiencies when free MetSO is used as a substrate. These results indicate that the individual domains within bifunctional MsrBA work cooperatively to selectively recognize and reduce MetSO in highly oxidized proteins. The enhanced catalytic activity of MsrBA against oxidized proteins and its common expression in bacterial pathogens is consistent with an important role for this enzyme activity in promoting bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation.

  1. Fern L-methionine decarboxylase: Kinetics and mechanism of decarboxylation and abortive transamination

    SciTech Connect

    Akhtar, M.; Stevenson, D.E.; Gani, D. )

    1990-08-21

    L-Methionine decarboxylase from Dryopteris filix-mas catalyzes the decarboxylation of L-methionine and a range of straight- and branched-chain L-amino acids to give the corresponding amine products. The deuterium solvent isotope effects for the decarboxylation of (2S)-methionine are {sup D}(V/K) = 6.5 and {sup D}V = 2.3, for (2S)-valine are {sup D}(V/K) = 1.9 and {sup D}V = 2.6, and for (2S)-lecuine are {sup D}(V/K) = 2.5 and {sup D}V = 1.0 at pL 5.5. At pL 6.0 and above, where the value of k{sub cat} for all of the substrates is low, the solvent isotope effects on V{sub max} for methionine are 1.1-1.2 whereas the effects on V/K remain unchanged, indicating that the solvent-sensitive transition state occurs before the first irreversible step, carbon dioxide desorption. At very high concentration, the product amine can promote transamination of the coenzyme. However, the reaction occurs infrequently and does not influence the partitioning between decarboxylation and substrate-mediated abortive transamination under steady-state turnover conditions. The partition ratio, normal catalytic versus abortive events, can be determined from the amount of substrate consumed by a known amount of enzyme at infinite time, and the rate of inactivation can be determined by measuring the decrease in enzyme activity with respect to time. Experiments conducted in deuterium oxide allowed the solvent isotope effects for the partition ratio and the abortive reaction to be determined. {sup 1}H NMR spectroscopic analysis of 3-(methylthio)-1-aminopropane isolated from incubations conducted in 50 molar % deuterium oxide at pL 4.8 and at pL 6.5 indicated that the proton donor was monoprotic and, therefore, is probably the imidazolium side chain of a histidine residue.

  2. Catalytic Promiscuity of the Radical S-adenosyl-L-methionine Enzyme NosL

    PubMed Central

    Ding, Wei; Ji, Xinjian; Li, Yongzhen; Zhang, Qi

    2016-01-01

    Catalytic promiscuity plays a key role in enzyme evolution and the acquisition of novel biological functions. Because of the high reactivity of radical species, in our view enzymes involving radical-mediated mechanisms could intrinsically be more prone to catalytic promiscuity. This mini-review summarizes the recent advances in the study of NosL, a radical S-adenosyl-L-methionine (SAM)-dependent L-tryptophan (L-Trp) lyase. We demonstrate here the interesting chemistry and remarkable catalytic promiscuity of NosL, and attempt to highlight the high evolvability of radical SAM enzymes and the potential to engineer these enzymes for novel and improved activities. PMID:27446906

  3. The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1α Transcriptional Coactivator.

    PubMed

    Tavares, Clint D J; Sharabi, Kfir; Dominy, John E; Lee, Yoonjin; Isasa, Marta; Orozco, Jose M; Jedrychowski, Mark P; Kamenecka, Theodore M; Griffin, Patrick R; Gygi, Steven P; Puigserver, Pere

    2016-05-13

    Methionine is an essential sulfur amino acid that is engaged in key cellular functions such as protein synthesis and is a precursor for critical metabolites involved in maintaining cellular homeostasis. In mammals, in response to nutrient conditions, the liver plays a significant role in regulating methionine concentrations by altering its flux through the transmethylation, transsulfuration, and transamination metabolic pathways. A comprehensive understanding of how hepatic methionine metabolism intersects with other regulatory nutrient signaling and transcriptional events is, however, lacking. Here, we show that methionine and derived-sulfur metabolites in the transamination pathway activate the GCN5 acetyltransferase promoting acetylation of the transcriptional coactivator PGC-1α to control hepatic gluconeogenesis. Methionine was the only essential amino acid that rapidly induced PGC-1α acetylation through activating the GCN5 acetyltransferase. Experiments employing metabolic pathway intermediates revealed that methionine transamination, and not the transmethylation or transsulfuration pathways, contributed to methionine-induced PGC-1α acetylation. Moreover, aminooxyacetic acid, a transaminase inhibitor, was able to potently suppress PGC-1α acetylation stimulated by methionine, which was accompanied by predicted alterations in PGC-1α-mediated gluconeogenic gene expression and glucose production in primary murine hepatocytes. Methionine administration in mice likewise induced hepatic PGC-1α acetylation, suppressed the gluconeogenic gene program, and lowered glycemia, indicating that a similar phenomenon occurs in vivo These results highlight a communication between methionine metabolism and PGC-1α-mediated hepatic gluconeogenesis, suggesting that influencing methionine metabolic flux has the potential to be therapeutically exploited for diabetes treatment. PMID:27022023

  4. New multilayer coating using quaternary ammonium chitosan and κ-carrageenan in capillary electrophoresis: application in fast analysis of betaine and methionine.

    PubMed

    Vitali, Luciano; Della Betta, Fabiana; Costa, Ana Carolina O; Vaz, Fernando Antonio Simas; Oliveira, Marcone Augusto Leal; Vistuba, Jacqueline Pereira; Fávere, Valfredo T; Micke, Gustavo A

    2014-06-01

    The aim of this study was to develop a new multilayer coating with crosslinked quaternary ammonium chitosan (hydroxypropyltrimethyl ammonium chloride chitosan; HACC) and κ-carrageenan for use in capillary electrophoresis. A new semi-permanent multilayer coating was formed using the procedure developed and the method does not require the presence of polymers in the background electrolyte (BGE). The new capillary multilayer coating showed a cathodic electroosmotic flow (EOF) of around 30×10(-9) m(2) V(-1) s(-1) which is pH-independent in the range of pH 2 to 10. The enhanced EOF at low pH obtained contributed significantly to the development of a fast method of separation. The multilayer coating was then applied in the development of a fast separation method to determine betaine and methionine in pharmaceutical formulations by capillary zone electrophoresis (CZE). The BGE used to determine the betaine and methionine concentrations was composed of 10 mmol L(-1) tris(hydroxymethyl) aminomethane, 40 mmol L(-1) phosphoric acid and 10% (v/v) ethanol, at pH 2.1. A fused-silica capillary of 32 cm (50 µm ID×375 µm OD) was used in the experiments and samples and standards were analyzed employing the short-end injection procedure (8.5 cm effective length). The instrumental analysis time of the optimized method was 1.53 min (approx. 39 runs per hour). The validation of the proposed method for the determination of betaine and methionine showed good linearity (R(2)>0.999), adequate limit of detection (LOD <8 mg L(-1)) for the concentration in the samples and inter-day precision values lower than 3.5% (peak area and time migration). The results for the quantification of the amino acids in the samples determined by the CZE-UV method developed were statistically equal to those obtained with the comparative LC-MS/MS method according to the paired t-test with a confidence level of 95%. PMID:24725863

  5. Preparation, crystallization and preliminary X-ray analysis of the methionine synthase (MetE) from Streptococcus mutans

    SciTech Connect

    Fu, Tian-Min; Zhang, Xiao-Yan; Li, Lan-Fen; Liang, Yu-He Su, Xiao-Dong

    2006-10-01

    Methionine synthase (MetE) from S. mutans was expressed, purified and crystallized. Diffraction data have been collected to 2.2 Å resolution. The Streptococcus mutans metE gene encodes methionine synthase (MetE), which catalyzes the direct transfer of a methyl group from methyltetrahydrofolate to homocysteine in the last step of methionine synthesis. metE was cloned into pET28a and the gene product was expressed at high levels in the Escherichia coli strain BL21 (DE3). MetE was purified to homogeneity using Ni{sup 2+}-chelating chromatography followed by size-exclusion chromatography. Crystals of the protein were obtained by the hanging-drop vapour-diffusion method and diffracted to 2.2 Å resolution. The crystal belongs to space group P2{sub 1}, with unit-cell parameters a = 52.85, b = 99.48, c = 77.88 Å, β = 94.55°.

  6. 13C MR imaging of methionine-rich gliomas at 4.7T: a pilot study.

    PubMed

    Sasao, Akira; Hirai, Toshinori; Iriguchi, Norio; Nakamura, Hideo; Kudo, Mareina; Sasao, Ako; Yamashita, Yasuyuki

    2011-01-01

    We explored the feasibility of using carbon-13 ((13)C) magnetic resonance imaging ((13)C-MRI) to depict (13)C-labeled methionine-enriched gliomas at 4.7 tesla. We transplanted 2 types of glioma cells separately to 2 subcutaneous tissue sites on the backs of mice weighing 15 to 20 g. After confirming tumor growth, we used (13)C-MRI and (1)H-MRI to scan 4 mice that had been administered (13)C-labeled methionine and 2 control mice. (13)C-MRI of all 4 transplanted mice administered with (13)C-labeled methionine revealed 2 areas of hyperintensity that corresponded to the tumor sites on (1)H-MR images, but no such areas were visualized in transplanted controls. Our data suggest that (13)C-MRI can show the accumulation of (13)C-labeled tracer by gliomas. PMID:21720117

  7. Cobalamin inactivation by nitrous oxide produces severe neurological impairment in fruit bats: protection by methionine and aggravation by folates

    SciTech Connect

    van der Westhuyzen, J.; Fernandes-Costa, F.; Metz, J.

    1982-11-01

    Nitrous oxide, which inactivates cobalamin when administered to fruit bats, results in severe neurological impairment leading to ataxia, paralysis and death. This occurs after about 6 weeks in animals depleted of cobalamin by dietary restriction, and after about 10 weeks in cobalamin replete bats. Supplementation of the diet with pteroylglutamic acid caused acceleration of the neurological impairment--the first unequivocal demonstration of aggravation of the neurological lesion in cobalamin deficiency by pteroylglutamic acid. The administration of formyltetrahydropteroylglutamic acid produced similar aggravation of the neurological lesion. Supplementation of the diet with methionine protected the bats from neurological impairment, but failed to prevent death. Methionine supplementation protected against the exacerbating effect of folate, preventing the development of neurological changes. These findings lend support to the hypothesis that the neurological lesion in cobalamin deficiency may be related to a deficiency in the methyl donor S-adenosylmethionine which follows diminished synthesis of methionine.

  8. S1 pocket fingerprints of human and bacterial methionine aminopeptidases determined using fluorogenic libraries of substrates and phosphorus based inhibitors.

    PubMed

    Poreba, Marcin; Gajda, Anna; Picha, Jan; Jiracek, Jiri; Marschner, Aline; Klein, Christian D; Salvesen, Guy S; Drag, Marcin

    2012-03-01

    Methionyl aminopeptidases (MetAPs) are metallo-dependent proteases responsible for removing of N-terminal methionine residue of peptides and proteins during protein maturation and activation. In this report we use a comprehensive strategy to screen the substrate specificity of three methionyl aminopeptidases: Homo sapiens MetAP-1, Homo sapiens MetAP-2 and Escherichia coli MetAP-1. By utilizing a 65-membered fluorogenic substrate library consisting of natural and unnatural amino acids we established detailed substrate preferences of each enzyme in the S1 pocket. Our results show that this pocket is highly conserved for all investigated MetAPs, very stringent for methionine, and that several unnatural amino acids with methionine-like characteristics were also well hydrolyzed by MetAPs. The substrate-derived results were verified using several phosphonate and phosphinate-based inhibitors. PMID:22085501

  9. YjeH Is a Novel Exporter of l-Methionine and Branched-Chain Amino Acids in Escherichia coli

    PubMed Central

    Liu, Qian; Liang, Yong; Zhang, Yun; Shang, Xiuling; Liu, Shuwen; Wen, Jifu

    2015-01-01

    Amino acid efflux transport systems have important physiological functions and play vital roles in the fermentative production of amino acids. However, no methionine exporter has yet been identified in Escherichia coli. In this study, we identified a novel amino acid exporter, YjeH, in E. coli. The yjeH overexpression strain exhibited high tolerance to the structural analogues of l-methionine and branched-chain amino acids, decreased intracellular amino acid levels, and enhanced export rates in the presence of a Met-Met, Leu-Leu, Ile-Ile, or Val-Val dipeptide, suggesting that YjeH functions as an exporter of l-methionine and the three branched-chain amino acids. The export of the four amino acids in the yjeH overexpression strain was competitively inhibited in relation to each other. The expression of yjeH was strongly induced by increasing cytoplasmic concentrations of substrate amino acids. Green fluorescent protein (GFP)-tagged YjeH was visualized by total internal reflection fluorescence microscopy to confirm the plasma membrane localization of YjeH. Phylogenetic analysis of transporters indicated that YjeH belongs to the amino acid efflux family of the amino acid/polyamine/organocation (APC) superfamily. Structural modeling revealed that YjeH has the typical “5 + 5” transmembrane α-helical segment (TMS) inverted-repeat fold of APC superfamily transporters, and its binding sites are strictly conserved. The enhanced capacity of l-methionine export by the overexpression of yjeH in an l-methionine-producing strain resulted in a 70% improvement in titer. This study supplements the transporter classification and provides a substantial basis for the application of the methionine exporter in metabolic engineering. PMID:26319875

  10. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21.

    PubMed

    Lees, Emma K; Król, Elżbieta; Grant, Louise; Shearer, Kirsty; Wyse, Cathy; Moncur, Eleanor; Bykowska, Aleksandra S; Mody, Nimesh; Gettys, Thomas W; Delibegovic, Mirela

    2014-10-01

    Methionine restriction (MR) decreases body weight and adiposity and improves glucose homeostasis in rodents. Similar to caloric restriction, MR extends lifespan, but is accompanied by increased food intake and energy expenditure. Most studies have examined MR in young animals; therefore, the aim of this study was to investigate the ability of MR to reverse age-induced obesity and insulin resistance in adult animals. Male C57BL/6J mice aged 2 and 12 months old were fed MR (0.172% methionine) or control diet (0.86% methionine) for 8 weeks or 48 h. Food intake and whole-body physiology were assessed and serum/tissues analyzed biochemically. Methionine restriction in 12-month-old mice completely reversed age-induced alterations in body weight, adiposity, physical activity, and glucose tolerance to the levels measured in healthy 2-month-old control-fed mice. This was despite a significant increase in food intake in 12-month-old MR-fed mice. Methionine restriction decreased hepatic lipogenic gene expression and caused a remodeling of lipid metabolism in white adipose tissue, alongside increased insulin-induced phosphorylation of the insulin receptor (IR) and Akt in peripheral tissues. Mice restricted of methionine exhibited increased circulating and hepatic gene expression levels of FGF21, phosphorylation of eIF2a, and expression of ATF4, with a concomitant decrease in IRE1α phosphorylation. Short-term 48-h MR treatment increased hepatic FGF21 expression/secretion and insulin signaling and improved whole-body glucose homeostasis without affecting body weight. Our findings suggest that MR feeding can reverse the negative effects of aging on body mass, adiposity, and insulin resistance through an FGF21 mechanism. These findings implicate MR dietary intervention as a viable therapy for age-induced metabolic syndrome in adult humans. PMID:24935677

  11. Structural effects of methionine oxidation on isolated subdomains of human fibrin D and αC regions.

    PubMed

    Burney, Patrick R; White, Nathan; Pfaendtner, Jim

    2014-01-01

    Oxidation of key methionine residues on fibrin leads to altered fibrin polymerization producing severely altered fibrin gel structure and function. This is important because fibrinogen and its modification by oxidative stress have been implicated as key contributors to both pathological thrombotic and hemorrhagic diseases ranging from cardiovascular thrombosis to the acute coagulopathy of trauma. However, how oxidation leads to altered fibrin polymerization remains poorly understood at the molecular level. We have applied a powerful and novel well-tempered ensemble parallel tempering (PT-WTE) technique along with conventional molecular dynamics (MD) simulation to investigate the molecular-level consequences of selective methionine oxidation of fibrinogen. We offer new insights into molecular mechanisms of oxidation-induced changes in fibrin polymerization, while focusing on the D region knob 'B' and hole 'b' interaction and αC-domain interactions, both of which are hypothesized to contribute to the lateral aggregation mechanism of fibrin fibrils. Methionine oxidation did not alter the native state or the stability of a bound knob 'B' surrogate when interacting with hole 'b' in the D region. However, applying PT-WTE simulation to a human homology model of the bovine N-terminal subdomain fragment from the αC-domain revealed that methionine oxidation altered the conformation of the hairpin-linking region to favor open rather than closed hairpin structures. We attribute this alteration to the disruption of the hairpin-linking region's conformation, with oxidation increasing the radius of gyration for this segment. This result is in agreement with experimental data demonstrating decreased fibrin protofibril lateral aggregation when methionine oxidation is present in the same αC-domain fragment. Therefore, single methionine oxidation within the αC-domain is a likely molecular mechanism. PMID:24475207

  12. Structural Effects of Methionine Oxidation on Isolated Subdomains of Human Fibrin D and αC Regions

    PubMed Central

    Burney, Patrick R.; White, Nathan; Pfaendtner, Jim

    2014-01-01

    Oxidation of key methionine residues on fibrin leads to altered fibrin polymerization producing severely altered fibrin gel structure and function. This is important because fibrinogen and its modification by oxidative stress have been implicated as key contributors to both pathological thrombotic and hemorrhagic diseases ranging from cardiovascular thrombosis to the acute coagulopathy of trauma. However, how oxidation leads to altered fibrin polymerization remains poorly understood at the molecular level. We have applied a powerful and novel well-tempered ensemble parallel tempering (PT-WTE) technique along with conventional molecular dynamics (MD) simulation to investigate the molecular-level consequences of selective methionine oxidation of fibrinogen. We offer new insights into molecular mechanisms of oxidation-induced changes in fibrin polymerization, while focusing on the D region knob ‘B’ and hole ‘b’ interaction and αC-domain interactions, both of which are hypothesized to contribute to the lateral aggregation mechanism of fibrin fibrils. Methionine oxidation did not alter the native state or the stability of a bound knob ‘B’ surrogate when interacting with hole ‘b’ in the D region. However, applying PT-WTE simulation to a human homology model of the bovine N-terminal subdomain fragment from the αC-domain revealed that methionine oxidation altered the conformation of the hairpin-linking region to favor open rather than closed hairpin structures. We attribute this alteration to the disruption of the hairpin-linking region's conformation, with oxidation increasing the radius of gyration for this segment. This result is in agreement with experimental data demonstrating decreased fibrin protofibril lateral aggregation when methionine oxidation is present in the same αC-domain fragment. Therefore, single methionine oxidation within the αC-domain is a likely molecular mechanism. PMID:24475207

  13. YjeH Is a Novel Exporter of l-Methionine and Branched-Chain Amino Acids in Escherichia coli.

    PubMed

    Liu, Qian; Liang, Yong; Zhang, Yun; Shang, Xiuling; Liu, Shuwen; Wen, Jifu; Wen, Tingyi

    2015-11-01

    Amino acid efflux transport systems have important physiological functions and play vital roles in the fermentative production of amino acids. However, no methionine exporter has yet been identified in Escherichia coli. In this study, we identified a novel amino acid exporter, YjeH, in E. coli. The yjeH overexpression strain exhibited high tolerance to the structural analogues of l-methionine and branched-chain amino acids, decreased intracellular amino acid levels, and enhanced export rates in the presence of a Met-Met, Leu-Leu, Ile-Ile, or Val-Val dipeptide, suggesting that YjeH functions as an exporter of l-methionine and the three branched-chain amino acids. The export of the four amino acids in the yjeH overexpression strain was competitively inhibited in relation to each other. The expression of yjeH was strongly induced by increasing cytoplasmic concentrations of substrate amino acids. Green fluorescent protein (GFP)-tagged YjeH was visualized by total internal reflection fluorescence microscopy to confirm the plasma membrane localization of YjeH. Phylogenetic analysis of transporters indicated that YjeH belongs to the amino acid efflux family of the amino acid/polyamine/organocation (APC) superfamily. Structural modeling revealed that YjeH has the typical "5 + 5" transmembrane α-helical segment (TMS) inverted-repeat fold of APC superfamily transporters, and its binding sites are strictly conserved. The enhanced capacity of l-methionine export by the overexpression of yjeH in an l-methionine-producing strain resulted in a 70% improvement in titer. This study supplements the transporter classification and provides a substantial basis for the application of the methionine exporter in metabolic engineering. PMID:26319875

  14. Methionine synthase A2756G variation is associated with the risk of retinoblastoma in Iranian children.

    PubMed

    Akbari, Mohammad Taghi; Naderi, Asieh; Saremi, Leila; Sayad, Arezou; Irani, Shiva; Ahani, Ali

    2015-12-01

    Association of epigenetic modifications with cancer has been widely studied. Gene-specific hypermethylation and global DNA hypomethylation are the most frequently observed patterns in great number of tumors. The methionine synthase (MTR) gene plays key role in maintaining adequate intracellular folate, methionine and normal homocysteine concentrations and, its polymorphism have been associated with the risk of retinoblastoma and other neoplasms. We evaluated the association of MTR A2756G polymorphism with the risk of retinoblastoma in an Iranian population. Totally, 150 retinoblastoma patients and 300 individuals with no family history of cancer as control were included in this study. Genotyping of the A2756G polymorphism was performed by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP) using the restriction enzymes HaeIII. Our results showed that the "G" was the minor allele with a frequency of 31.7% and 20.3% in both retinoblastoma and control groups, respectively. The frequency of the 2756GG genotype (P=0.023) and 2756G allele (P=0.0001) were significantly higher in the patients than control group, respectively. Individual with the 2756GG genotype had a 2.99 fold increased risk for retinoblastoma. According to our results, the MTR A2756G polymorphism was associated with the risk of retinoblastoma in Iranian patients. PMID:26595280

  15. Milk production in dairy goats supplemented with different levels of ruminally protected methionine.

    PubMed

    Alonso-Mélendez, Erick; Mendoza, Germán D; Castrejón-Pineda, Francisco A; Ducoing-Watty, Andrés E

    2016-05-01

    The objective of the study reported in this Research Communication was to evaluate graded levels of ruminally protected methionine (RPM) in dairy goat rations on milk production and live weight changes during 155 d of lactation. Twenty-five primiparous dairy goats (crosses of Toggenburg, French Alpine and Saanen; 45·4 ± 1·0 kg BW) were fed a basal diet (10·10% CP, 6·13 DP and 2·34 Mcal/kg ME) of corn silage, oat hay, alfalfa hay and concentrate (80% forage, 20% concentrate). After kidding, the treatments, which consisted of four oral doses of ruminally protected methionine (RPM) at 0, 1, 2 and 3 g/d, were randomly assigned to the goats. The experiment was conducted for 110 d with measurements of milk production and composition, body weight and dry matter intake. No treatment effects were detected in milk production and composition. However, goats with RPM showed a positive live weight changes during lactation which were improved as dose was increased (linear P < 0·01) whereas goats without RPM showed weight loss during the experiment. PMID:27048778

  16. Methionine sulfoxide reductase: chemistry, substrate binding, recycling process and oxidase activity.

    PubMed

    Boschi-Muller, Sandrine; Branlant, Guy

    2014-12-01

    Three classes of methionine sulfoxide reductases are known: MsrA and MsrB which are implicated stereo-selectively in the repair of protein oxidized on their methionine residues; and fRMsr, discovered more recently, which binds and reduces selectively free L-Met-R-O. It is now well established that the chemical mechanism of the reductase step passes through formation of a sulfenic acid intermediate. The oxidized catalytic cysteine can then be recycled by either Trx when a recycling cysteine is operative or a reductant like glutathione in the absence of recycling cysteine which is the case for 30% of the MsrBs. Recently, it was shown that a subclass of MsrAs with two recycling cysteines displays an oxidase activity. This reverse activity needs the accumulation of the sulfenic acid intermediate. The present review focuses on recent insights into the catalytic mechanism of action of the Msrs based on kinetic studies, theoretical chemistry investigations and new structural data. Major attention is placed on how the sulfenic acid intermediate can be formed and the oxidized catalytic cysteine returns back to its reduced form. PMID:25108804

  17. Metal active site elasticity linked to activation of homocysteine in methionine synthases

    SciTech Connect

    Koutmos, Markos; Pejchal, Robert; Bomer, Theresa M.; Matthews, Rowena G.; Smith, Janet L.; Ludwig, Martha L.

    2008-04-02

    Enzymes possessing catalytic zinc centers perform a variety of fundamental processes in nature, including methyl transfer to thiols. Cobalamin-independent (MetE) and cobalamin-dependent (MetH) methionine synthases are two such enzyme families. Although they perform the same net reaction, transfer of a methyl group from methyltetrahydrofolate to homocysteine (Hcy) to form methionine, they display markedly different catalytic strategies, modular organization, and active site zinc centers. Here we report crystal structures of zinc-replete MetE and MetH, both in the presence and absence of Hcy. Structural investigation of the catalytic zinc sites of these two methyltransferases reveals an unexpected inversion of zinc geometry upon binding of Hcy and displacement of an endogenous ligand in both enzymes. In both cases a significant movement of the zinc relative to the protein scaffold accompanies inversion. These structures provide new information on the activation of thiols by zinc-containing enzymes and have led us to propose a paradigm for the mechanism of action of the catalytic zinc sites in these and related methyltransferases. Specifically, zinc is mobile in the active sites of MetE and MetH, and its dynamic nature helps facilitate the active site conformational changes necessary for thiol activation and methyl transfer.

  18. Identification, biochemical and structural evaluation of species-specific inhibitors against type I methionine aminopeptidases.

    PubMed

    Kishor, Chandan; Arya, Tarun; Reddi, Ravikumar; Chen, Xiaochun; Saddanapu, Venkateshwarlu; Marapaka, Anil Kumar; Gumpena, Rajesh; Ma, Dawei; Liu, Jun O; Addlagatta, Anthony

    2013-07-11

    Methionine aminopeptidases (MetAPs) are essential enzymes that make them good drug targets in cancer and microbial infections. MetAPs remove the initiator methionine from newly synthesized peptides in every living cell. MetAPs are broadly divided into type I and type II classes. Both prokaryotes and eukaryotes contain type I MetAPs, while eukaryotes have additional type II MetAP enzyme. Although several inhibitors have been reported against type I enzymes, subclass specificity is scarce. Here, using the fine differences in the entrance of the active sites of MetAPs from Mycobacterium tuberculosis , Enterococcus faecalis , and human, three hotspots have been identified and pyridinylpyrimidine-based molecules were selected from a commercial source to target these hotspots. In the biochemical evaluation, many of the 38 compounds displayed differential behavior against these three enzymes. Crystal structures of four selected inhibitors in complex with human MetAP1b and molecular modeling studies provided the basis for the binding specificity. PMID:23767698

  19. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling

    PubMed Central

    Herz, Hans-Martin; Morgan, Marc; Gao, Xin; Jackson, Jessica; Rickels, Ryan; Swanson, Selene K.; Florens, Laurence; Washburn, Michael P.; Eissenberg, Joel C.; Shilatifard, Ali

    2015-01-01

    Histone H3 lysine27-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. Here, we establish a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles Polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing de-repression of PRC2 target genes and developmental perturbations. Similarly, a H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M nucleosomes and its overexpression in Drosophila results in loss of H3K9 methylation levels and heterochromatic silencing defects. Here we establish histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin-signaling pathways. PMID:25170156

  20. Methionine sulfoxide reductase A regulates cell growth through the p53-p21 pathway

    SciTech Connect

    Choi, Seung Hee; Kim, Hwa-Young

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Down-regulation of MsrA inhibits normal cell proliferation. Black-Right-Pointing-Pointer MsrA deficiency leads to an increase in p21 by enhanced p53 acetylation. Black-Right-Pointing-Pointer Down-regulation of MsrA causes cell cycle arrest at the G{sub 2}/M stage. Black-Right-Pointing-Pointer MsrA is a regulator of cell growth that mediates the p53-p21 pathway. -- Abstract: MsrA is an oxidoreductase that catalyzes the stereospecific reduction of methionine-S-sulfoxide to methionine. Although MsrA is well-characterized as an antioxidant and has been implicated in the aging process and cellular senescence, its roles in cell proliferation are poorly understood. Here, we report a critical role of MsrA in normal cell proliferation and describe the regulation mechanism of cell growth by this protein. Down-regulation of MsrA inhibited cell proliferation, but MsrA overexpression did not promote it. MsrA deficiency led to an increase in p21, a major cyclin-dependent kinase inhibitor, thereby causing cell cycle arrest at the G{sub 2}/M stage. While protein levels of p53 were not altered upon MsrA deficiency, its acetylation level was significantly elevated, which subsequently activated p21 transcription. The data suggest that MsrA is a regulator of cell growth that mediates the p53-p21 pathway.

  1. Expression, purification and crystallization of l-methionine γ-lyase 2 from Entamoeba histolytica

    SciTech Connect

    Sato, Dan; Yamagata, Wataru; Kamei, Kaeko; Nozaki, Tomoyoshi; Harada, Shigeharu

    2006-10-01

    l-Methionine γ-lyase 2 from E. histolytica, a key enzyme in sulfur-containing amino-acid degradation in this protozoan parasite, has been crystallized in a form suitable for X-ray structure analysis. l-Methionine γ-lyase (MGL) is considered to be an attractive target for rational drug development because the enzyme is absent in mammalian hosts. To enable structure-based design of drugs targeting MGL, one of the two MGL isoenzymes (EhMGL2) was crystallized in the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 88.89, b = 102.68, c = 169.87 Å. The crystal diffracted to a resolution of 2.0 Å. The presence of a tetramer in the asymmetric unit (4 × 43.1 kDa) gives a Matthews coefficient of 2.2 Å{sup 3} Da{sup −1}. The structure was solved by the molecular-replacement method and structure refinement is now in progress.

  2. Methionine oxidation of amyloid peptides by peroxovanadium complexes: inhibition of fibril formation through a distinct mechanism.

    PubMed

    He, Lei; Wang, Xuesong; Zhu, Dengsen; Zhao, Cong; Du, Weihong

    2015-12-01

    Fibril formation of amyloid peptides is linked to a number of pathological states. The prion protein (PrP) and amyloid-β (Aβ) are two remarkable examples that are correlated with prion disorders and Alzheimer's disease, respectively. Metal complexes, such as those formed by platinum and ruthenium compounds, can act as inhibitors against peptide aggregation primarily through metal coordination. This study revealed the inhibitory effect of two peroxovanadium complexes, (NH4)[VO(O2)2(bipy)]·4H2O (1) and (NH4)[VO(O2)2(phen)]·2H2O (2), on amyloid fibril formation of PrP106-126 and Aβ1-42via site-specific oxidation of methionine residues, besides direct binding of the complexes with the peptides. Complexes 1 and 2 showed higher anti-amyloidogenic activity on PrP106-126 aggregation than on Aβ1-42, though their regulation on the cytotoxicity induced by the two peptides could not be differentiated. The action efficacy may be attributed to the different molecular structures of the vanadium complex and the peptide sequence. Results reflected that methionine oxidation may be a crucial action mode in inhibiting amyloid fibril formation. This study offers a possible application value for peroxovanadium complexes against amyloid proteins. PMID:26444976

  3. Kinetic analysis of site-directed mutants of methionine synthase from Candida albicans

    SciTech Connect

    Prasannan, Priya; Suliman, Huda S.; Robertus, Jon D.

    2009-05-15

    Fungal methionine synthase catalyzes the transfer of a methyl group from 5-methyl-tetrahydrofolate to homocysteine to create methionine. The enzyme, called Met6p in fungi, is required for the growth of the pathogen Candida albicans, and is consequently a reasonable target for antifungal drug design. In order to understand the mechanism of this class of enzyme, we created a three-dimensional model of the C. albicans enzyme based on the known structure of the homologous enzyme from Arabidopsis thaliana. A fusion protein was created and shown to have enzyme activity similar to the wild-type Met6p. Fusion proteins containing mutations at eight key sites were expressed and assayed in this background. The D614 carboxylate appears to ion pair with the amino group of homocysteine and is essential for activity. Similarly, D504 appears to bind to the polar edge of the folate and is also required for activity. Other groups tested have lesser roles in substrate binding and catalysis.

  4. Topological analyses of time-dependent electronic structures: application to electron-transfers in methionine enkephalin.

    PubMed

    Pilmé, Julien; Luppi, Eleonora; Bergès, Jacqueline; Houée-Lévin, Chantal; de la Lande, Aurélien

    2014-08-01

    We have studied electron transfers (ET) between electron donors and acceptors, taking as illustrative example the case of ET in methionine enkephalin. Recent pulse and gamma radiolysis experiments suggested that an ultrafast ET takes place from the C-terminal tyrosine residue to the N-terminal, oxidized, methionine residue. According to standard theoretical frameworks like the Marcus theory, ET can be decomposed into two successive steps: i) the achievement through thermal fluctuations, of a set of nuclear coordinates associated with degeneracy of the two electronic states, ii) the electron tunneling from the donor molecular orbital to the acceptor molecular orbital. Here, we focus on the analysis of the time-dependent electronic dynamics during the tunneling event. This is done by extending the approaches based on the topological analyses of stationary electronic density and of the electron localization function (ELF) to the time-dependent domain. Furthermore, we analyzed isosurfaces of the divergence of the current density, showing the paths that are followed by the tunneling electron from the donor to the acceptor. We show how these functions can be calculated with constrained density functional theory. Beyond this work, the topological tools used here can open up new opportunities for the electronic description in the time-dependent domain. PMID:25060148

  5. Progress in the microbial production of S-adenosyl-L-methionine.

    PubMed

    Chen, Hailong; Wang, Zhilai; Cai, Haibo; Zhou, Changlin

    2016-09-01

    S-Adenosyl-L-methionine (SAM), which exists in all living organisms, serves as an activated group donor in a range of metabolic reactions, including trans-methylation, trans-sulfuration and trans-propylamine. Compared with its chemical synthesis and enzyme catalysis production, the microbial production of SAM is feasible for industrial applications. The current clinical demand for SAM is constantly increasing. Therefore, vast interest exists in engineering the SAM metabolism in cells for increasing product titers. Here, we provided an overview of updates on SAM microbial productivity improvements with an emphasis on various strategies that have been used to enhance SAM production based on increasing the precursor and co-factor availabilities in microbes. These strategies included the sections of SAM-producing microbes and their mutant screening, optimization of the fermentation process, and the metabolic engineering. The SAM-producing strains that were used extensively were Saccharomyces cerevisiae, Pichia pastoris, Candida utilis, Scheffersomyces stipitis, Kluyveromyces lactis, Kluyveromyces marxianus, Corynebacterium glutamicum, and Escherichia coli, in addition to others. The optimization of the fermentation process mainly focused on the enhancement of the methionine, ATP, and other co-factor levels through pulsed feeding as well as the optimization of nitrogen and carbon sources. Various metabolic engineering strategies using precise control of gene expression in engineered strains were also highlighted in the present review. In addition, some prospects on SAM microbial production were discussed. PMID:27465853

  6. Calorie restriction and methionine restriction in control of endogenous hydrogen sulfide production by the transsulfuration pathway.

    PubMed

    Hine, Christopher; Mitchell, James R

    2015-08-01

    H2S is a gas easily identified by its distinctive odor. Although environmental exposure to H2S has been viewed alternately as therapeutic or toxic through the centuries, H2S has recently regained recognition for its numerous beneficial biological effects. Most experiments documenting such benefits, including improved glucose tolerance, increased stress resistance, and even lifespan extension, are based on exposure of experimental organisms to exogenous sources of H2S. However, appreciation is growing for the importance of H2S produced endogenously by the evolutionary conserved transsulfuration pathway (TSP) in health and longevity. Recent data implicate H2S produced by the TSP in pleiotropic benefits of dietary restriction (DR), or reduced nutrient/energy intake without malnutrition. DR, best known as the most reliable way to extend lifespan in a wide range of experimental organisms, includes various regimens aimed at either reducing overall calorie intake (calorie restriction, intermittent/every-other-day fasting) or reducing particular nutrients such as protein or the essential amino acid, methionine (methionine restriction), with overlapping functional benefits on stress resistance, metabolic fitness and lifespan. Here we will review the small but growing body of literature linking the TSP to the functional benefits of DR in part through the production of endogenous H2S, with an emphasis on regulation of the TSP and H2S production by diet and mechanisms of beneficial H2S action. PMID:25523462

  7. Calorie restriction and methionine restriction in control of endogenous hydrogen sulfide production by the transsulfuration pathway

    PubMed Central

    Hine, Christopher; Mitchell, James R.

    2015-01-01

    H2S is a gas easily identified by its distinctive odor. Although environmental exposure to H2S has been viewed alternately as therapeutic or toxic through the centuries, H2S has recently regained recognition for its numerous beneficial biological effects. Most experiments documenting such benefits, including improved glucose tolerance, increased stress resistance, and even lifespan extension, are based on exposure of experimental organisms to exogenous sources of H2S. However, appreciation is growing for the importance of H2S produced endogenously by the evolutionary conserved transsulfuration pathway (TSP) in health and longevity. Recent data implicate H2S produced by the TSP in pleiotropic benefits of dietary restriction (DR), or reduced nutrient/energy intake without malnutrition. DR, best known as the most reliable way to extend lifespan in a wide range of experimental organisms, includes various regimens aimed at either reducing overall calorie intake (calorie restriction, intermittent/ every-other-day fasting) or reducing particular nutrients such as protein or the essential amino acid, methionine (methionine restriction), with overlapping functional benefits on stress resistance, metabolic fitness and lifespan. Here we will review the small but growing body of literature linking the TSP to the functional benefits of DR in part through the production of endogenous H2S, with an emphasis on regulation of the TSP and H2S production by diet and mechanisms of beneficial H2S action. PMID:25523462

  8. Association between methionine synthase reductase A66G polymorphism and primary infertility in Chinese males.

    PubMed

    Li, X Y; Ye, J Z; Ding, X P; Zhang, X H; Ma, T J; Zhong, R; Ren, H Y

    2015-01-01

    We examined the association between the methionine synthase reductase (MTRR A66G), methylenetetrahydrofolate reductase (MTHFR C677T and A1298C), and methionine synthase (MS A2756G) genotypes and non-obstructive male infertility in a Chinese population. This case-control study included 162 infertile Chinese patients with azoospermia (N = 100) or oligoasthenozoospermia (N = 62) and 120 fertile men as controls. The polymorphisms MTRR A66G, MTHFR C677T, A1298C, and MS A2756G were identified by direct DNA sequencing and the results were statistically analyzed. We found no association between the incidence of any of these variants in azoospermia patients and control populations. The frequency of the MTRR66 polymorphic genotypes (AG, AG+GG) was significantly higher in the oligoasthenozoospermia group compared to the controls (P = 0.013, 0.012). Our findings revealed an association between the single-nucleotide polymorphism A66G in the MTRR gene and male infertility, particularly in oligoasthenozoospermia males, suggesting that this polymorphism is a genetic risk factor for male infertility in Chinese men. PMID:25966116

  9. Histone H3 lysine-to-methionine mutants as a paradigm to study chromatin signaling.

    PubMed

    Herz, Hans-Martin; Morgan, Marc; Gao, Xin; Jackson, Jessica; Rickels, Ryan; Swanson, Selene K; Florens, Laurence; Washburn, Michael P; Eissenberg, Joel C; Shilatifard, Ali

    2014-08-29

    Histone H3 lysine(27)-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways. PMID:25170156

  10. Metabolomic analysis revealed glycylglycine accumulation in astrocytes after methionine enkephalin administration exhibiting neuron protective effects.

    PubMed

    Zhao, Chungang; Du, Huijie; Xu, Li; Wang, Jiao; Tang, Ling; Cao, Yunfeng; Li, Chen; Wang, Qingjun; Liu, Yang; Shan, Fengping; Feng, Juan; Xu, Fang; Gao, Peng

    2015-11-10

    Owing to its unrevealed etiology, multiple sclerosis lacks specific therapies up to now. Experiential administration of methionine enkephalin (MENK) on mouse model improved disease manifestations to some extent. In order to gain more insight on the significance of MENK application, a capillary electrophoresis-mass spectrometry (CE-MS) technique was employed to profile intracellular metabolite fluctuation in 5 astrocytoma cell lines challenged by MENK. The processed data were first evaluated through a bioinformatic process to ensure their compatibility with the study aims and then subjected to multivariate analysis. The results indicated that MENK administration increased intracellular tyrosine, phenylalanine, methionine and glycylglycine. Exemplified by U87 cells, glycylglycine inhibited cell proliferation as well as MENK but it also decreased cell nitric oxide excretion which could not be evoked by MENK. The neuron protective effects were also mirrored by the increased expression of some genes related to remyelination. This study demonstrated CE-MS to be a promising tool for cell metabolomic analysis and benefited the therapeutic exploring of multiple sclerosis with respect to metabolism intervention. PMID:26163404

  11. Respiratory chain cysteine and methionine usage indicate a causal role for thiyl radicals in aging.

    PubMed

    Moosmann, Bernd

    2011-01-01

    The identification of longevity-related structural adaptations in biological macromolecules may yield relevant insights into the molecular mechanisms of aging. In screening fully sequenced animal proteomes for signals associated with longevity, it was found that cysteine depletion in respiratory chain complexes was the by far strongest predictor on the amino acid usage level to co-vary with lifespan. This association was though restricted to aerobic animals, whereas anaerobic animals showed variable cysteine accumulation. By contrast, methionine accumulation, a prominent feature of mitochondrially encoded proteins affording competitive antioxidant protection, was not predictive of longevity, but rather paralleled aerobic metabolic capacity. Hence, the easily oxidized sulfur-containing amino acids cysteine (a thiol) and methionine (a thioether) show doubly diametrical behaviour in two central paradigms of respiratory oxidative stress. From this comparison, it is concluded that only the one-electron oxidation of thiols to thiyl radicals contributes to aging, whereas other forms of sulfur oxidation, especially even-electron oxidation of both thiols and thioethers, are less critically involved, presumably as their consequences may be much more easily repaired. Thiyl radicals may yet act as chain-transfer agents to entail an irreversible intramembrane cross-linking ("plastination") of some of the a priori most hydrophobic and insoluble proteins known, the respiratory chain complexes. PMID:20850516

  12. Structural Insights into Interaction between Mammalian Methionine Sulfoxide Reductase B1 and Thioredoxin

    PubMed Central

    Dobrovolska, Olena; Rychkov, Georgy; Shumilina, Elena; Nerinovski, Kirill; Schmidt, Alexander; Shabalin, Konstantin; Yakimov, Alexander; Dikiy, Alexander

    2012-01-01

    Maintenance of the cellular redox balance has vital importance for correcting organism functioning. Methionine sulfoxide reductases (Msrs) are among the key members of the cellular antioxidant defence system. To work properly, methionine sulfoxide reductases need to be reduced by their biological partner, thioredoxin (Trx). This process, according to the available kinetic data, represents the slowest step in the Msrs catalytic cycle. In the present paper, we investigated structural aspects of the intermolecular complex formation between mammalian MsrB1 and Trx. NMR spectroscopy and biocomputing were the two mostly used through the research approaches. The formation of NMR detectable MsrB1/Trx complex was monitored and studied in attempt to understand MsrB1 reduction mechanism. Using NMR data, molecular mechanics, protein docking, and molecular dynamics simulations, it was found that intermediate MsrB1/Trx complex is stabilized by interprotein β-layer. The complex formation accompanied by distortion of disulfide bond within MsrB1 facilitates the reduction of oxidized MsrB1 as it is evidenced by the obtained data. PMID:22505815

  13. Methionine Oxidation Perturbs the Structural Core of the Prion Protein and Suggests a Generic Misfolding Pathway*

    PubMed Central

    Younan, Nadine D.; Nadal, Rebecca C.; Davies, Paul; Brown, David R.; Viles, John H.

    2012-01-01

    Oxidative stress and misfolding of the prion protein (PrPC) are fundamental to prion diseases. We have therefore probed the effect of oxidation on the structure and stability of PrPC. Urea unfolding studies indicate that H2O2 oxidation reduces the thermodynamic stability of PrPC by as much as 9 kJ/mol. 1H-15N NMR studies indicate methionine oxidation perturbs key hydrophobic residues on one face of helix-C as follows: Met-205, Val-209, and Met-212 together with residues Val-160 and Tyr-156. These hydrophobic residues pack together and form the structured core of the protein, stabilizing its ternary structure. Copper-catalyzed oxidation of PrPC causes a more significant alteration of the structure, generating a monomeric molten globule species that retains its native helical content. Further copper-catalyzed oxidation promotes extended β-strand structures that lack a cooperative fold. This transition from the helical molten globule to β-conformation has striking similarities to a misfolding intermediate generated at low pH. PrP may therefore share a generic misfolding pathway to amyloid fibers, irrespective of the conditions promoting misfolding. Our observations support the hypothesis that oxidation of PrP destabilizes the native fold of PrPC, facilitating the transition to PrPSc. This study gives a structural and thermodynamic explanation for the high levels of oxidized methionine in scrapie isolates. PMID:22654104

  14. Methionine and methionine sulfoxide alter parameters of oxidative stress in the liver of young rats: in vitro and in vivo studies.

    PubMed

    Costa, Marcelo Zanusso; da Silva, Tatiane Morgana; Flores, Natália Porto; Schmitz, Felipe; da Silva Scherer, Emilene Barros; Viau, Cassiana Macagnan; Saffi, Jenifer; Barschak, Alethéa Gatto; de Souza Wyse, Angela Terezinha; Spanevello, Roselia Maria; Stefanello, Francieli Moro

    2013-12-01

    It has been shown that elevation of plasma methionine (Met) and its metabolites may occur in several genetic abnormalities. In this study we investigated the in vitro and in vivo effects of the Met and methionine sulfoxide (MetO) on oxidative stress parameters in the liver of rats. For in vitro studies, liver homogenates were incubated with Met, MetO, and Mix (Met + MetO). For in vivo studies, the animals were divided into groups: saline, Met 0.4 g/kg, MetO 0.1 g/kg, and Met 0.4 g/kg + MetO 0.1 g/kg. The animals were euthanized 1 and 3 h after injection. In vitro results showed that Met 1 and 2 mM and Mix increased catalase (CAT) activity. Superoxide dismutase (SOD) was enhanced by Met 1 and 2 mM, MetO 0.5 mM, and Mix. Dichlorofluorescein oxidation was increased by Met 1 mM and Mix. In vivo results showed that Met, MetO, and Mix decreased TBARS levels at 1 h. Total thiol content decreased 1 h after and increased 3 h after MetO and Met plus MetO administrations. Carbonyl content was enhanced by Met and was reduced by MetO 1 h after administration. Met, MetO and Met plus MetO decreased CAT activity 1 and 3 h after administration. Furthermore, only MetO increased SOD activity. In addition, Met, MetO, and Mix decreased dichlorofluorescein oxidation at 1 and 3 h. Our data indicate that Met/MetO in vivo and in vitro modify liver homeostasis by altering the redox cellular state. However, the hepatic changes caused by these compounds suggest a short-time adaptation of this tissue. PMID:23963990

  15. Methionine excess in diet induces acute lethal hepatitis in mice lacking cystathionine γ-lyase, an animal model of cystathioninuria.

    PubMed

    Yamada, Hidenori; Akahoshi, Noriyuki; Kamata, Shotaro; Hagiya, Yoshifumi; Hishiki, Takako; Nagahata, Yoshiko; Matsuura, Tomomi; Takano, Naoharu; Mori, Masatomo; Ishizaki, Yasuki; Izumi, Takashi; Kumagai, Yoshito; Kasahara, Tadashi; Suematsu, Makoto; Ishii, Isao

    2012-05-01

    Physiological roles of the transsulfuration pathway have been recognized by its contribution to the synthesis of cytoprotective cysteine metabolites, such as glutathione, taurine/hypotaurine, and hydrogen sulfide (H(2)S), whereas its roles in protecting against methionine toxicity remained to be clarified. This study aimed at revealing these roles by analyzing high-methionine diet-fed transsulfuration-defective cystathionine γ-lyase-deficient (Cth(-/-)) mice. Wild-type and Cth(-/-) mice were fed a standard diet (1 × Met: 0.44%) or a high-methionine diet (3 × Met or 6 × Met), and hepatic conditions were monitored by serum biochemistry and histology. Metabolome analysis was performed for methionine derivatives using capillary electrophoresis- or liquid chromatography-mass spectrometry and sulfur-detecting gas chromatography. The 6 × Met-fed Cth(-/-) (not 1 × Met-fed Cth(-/-) or 6 × Met-fed wild type) mice displayed acute hepatitis, which was characterized by markedly elevated levels of serum alanine/aspartate aminotransferases and serum/hepatic lipid peroxidation, inflammatory cell infiltration, and hepatocyte ballooning; thereafter, they died of gastrointestinal bleeding due to coagulation factor deficiency. After 1 week on 6 × Met, blood levels of ammonia/homocysteine and hepatic levels of methanethiol/3-methylthiopropionate (a methionine transamination product/methanethiol precursor) became significantly higher in Cth(-/-) mice than in wild-type mice. Although hepatic levels of methionine sulfoxide became higher in 6 × Met-fed wild-type mice and Cth(-/-) mice, those of glutathione, taurine/hypotaurine, and H(2)S became lower and serum levels of homocysteine became much higher in 6 × Met-fed Cth(-/-) mice than in wild-type mice. Thus, transsulfuration plays a critical role in the detoxification of excessive methionine by circumventing aberrant accumulation of its toxic transamination metabolites, including ammonia, methanethiol, and 3-methylthiopropionate

  16. Methionine Sulfoxide Reductase A Negatively Controls Microglia-Mediated Neuroinflammation via Inhibiting ROS/MAPKs/NF-κB Signaling Pathways Through a Catalytic Antioxidant Function

    PubMed Central

    Fan, Hua; Wu, Peng-Fei; Zhang, Ling; Hu, Zhuang-Li; Wang, Wen; Guan, Xin-Lei; Luo, Han; Ni, Ming; Yang, Jing-Wen; Li, Ming-Xing

    2015-01-01

    Abstract Aims: Oxidative burst is one of the earliest biochemical events in the inflammatory activation of microglia. Here, we investigated the potential role of methionine sulfoxide reductase A (MsrA), a key antioxidant enzyme, in the control of microglia-mediated neuroinflammation. Results: MsrA was detected in rat microglia and its expression was upregulated on microglial activation. Silencing of MsrA exacerbated lipopolysaccharide (LPS)-induced activation of microglia and the production of inflammatory markers, indicating that MsrA may function as an endogenous protective mechanism for limiting uncontrolled neuroinflammation. Application of exogenous MsrA by transducing Tat-rMsrA fusion protein into microglia attenuated LPS-induced neuroinflammatory events, which was indicated by an increased Iba1 (a specific microglial marker) expression and the secretion of pro-inflammatory cytokines, and this attenuation was accompanied by inhibiting multiple signaling pathways such as p38 and ERK mitogen-activated protein kinases (MAPKs) and nuclear factor kappaB (NF-κB). These effects were due to MsrA-mediated reactive oxygen species (ROS) elimination, which may be derived from a catalytic effect of MsrA on the reaction of methionine with ROS. Furthermore, the transduction of Tat-rMsrA fusion protein suppressed the activation of microglia and the expression of pro-inflammatory factors in a rat model of neuroinflammation in vivo. Innovation: This study provides the first direct evidence for the biological significance of MsrA in microglia-mediated neuroinflammation. Conclusion: Our data provide a profound insight into the role of endogenous antioxidative defense systems such as MsrA in the control of microglial function. Antioxid. Redox Signal. 22, 832–847. PMID:25602783

  17. Analyses of Fruit Flies That Do Not Express Selenoproteins or Express the Mouse Selenoprotein, Methionine Sulfoxide Reductase B1, Reveal a Role of Selenoproteins in Stress Resistance*

    PubMed Central

    Shchedrina, Valentina A.; Kabil, Hadise; Vorbruggen, Gerd; Lee, Byung Cheon; Turanov, Anton A.; Hirosawa-Takamori, Mitsuko; Kim, Hwa-Young; Harshman, Lawrence G.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    Selenoproteins are essential in vertebrates because of their crucial role in cellular redox homeostasis, but some invertebrates that lack selenoproteins have recently been identified. Genetic disruption of selenoprotein biosynthesis had no effect on lifespan and oxidative stress resistance of Drosophila melanogaster. In the current study, fruit flies with knock-out of the selenocysteine-specific elongation factor were metabolically labeled with 75Se; they did not incorporate selenium into proteins and had the same lifespan on a chemically defined diet with or without selenium supplementation. These flies were, however, more susceptible to starvation than controls, and this effect could be ascribed to the function of selenoprotein K. We further expressed mouse methionine sulfoxide reductase B1 (MsrB1), a selenoenzyme that catalyzes the reduction of oxidized methionine residues and has protein repair function, in the whole body or the nervous system of fruit flies. This exogenous selenoprotein could only be expressed when the Drosophila selenocysteine insertion sequence element was used, whereas the corresponding mouse element did not support selenoprotein synthesis. Ectopic expression of MsrB1 in the nervous system led to an increase in the resistance against oxidative stress and starvation, but did not affect lifespan and reproduction, whereas ubiquitous MsrB1 expression had no effect. Dietary selenium did not influence lifespan of MsrB1-expressing flies. Thus, in contrast to vertebrates, fruit flies preserve only three selenoproteins, which are not essential and play a role only under certain stress conditions, thereby limiting the use of the micronutrient selenium by these organisms. PMID:21622567

  18. Anti-tumor effect of L-methionine-deprived total parenteral nutrition with 5-fluorouracil administration on Yoshida sarcoma-bearing rats.

    PubMed Central

    Goseki, N; Endo, M; Onodera, T; Kosaki, G

    1991-01-01

    L-methionine-deprived total parenteral nutrition (methionine-deprived TPN), infusing amino acid solution devoid of L-methionine and L-cysteine by the method of TPN as an only protein source, showed enhancement of the effect of several anti-cancer agents. In this study the combined effect of the methionine-deprived TPN with administration of 5-fluorouracil (5-FU) was examined in Yoshida Sarcoma (YS)-bearing rats, from aspects of effects on the tumor metastasis and the host animal's life span, in the following four groups treated with: methionine-deprived TPN with administration of 5-FU, methionine-deprived TPN without administration of 5-FU, L-methionine-contained TPN plus 5-FU, and L-methionine-contained TPN without 5-FU. In the first experiment, TPN was continued for 8 days in the four groups, and the anti-cancer effect of methionine-deprived TPN and administration of 5-FU based on both the growth of the primary tumor at the implanted site and the tumor metastasis was studied from the view point of pathologic findings of animals killed immediately after these treatments. In experiment 2 the survival period was examined after these treatments for 10 days with subsequent oral feeding until death. The results were as follows: proliferation of YS, transplanted subcutaneously, was markedly suppressed; particularly hematogenous metastasis, characteristic in YS, was prominently blunted then obtained an apparent longer survival period in rats treated with the methionine-deprived TPN with administration of 5-FU. PMID:1905913

  19. Novel reactions of one-electron oxidized radicals of selenomethionine in comparison with methionine.

    PubMed

    Mishra, B; Sharma, A; Naumov, S; Priyadarsini, K I

    2009-05-28

    Pulse radiolysis studies on hydroxyl (*OH) radical reactions of selenomethionine (SeM), a selenium analogue of methionine, were carried out, and the resultant transient radical cations and their subsequent reactions have been reported. At pH<3, the >Se*-OH radical adducts produced on reaction of SeM with *OH radical were converted to selenium centered radical cations (Se*+M), which react with another molecule of SeM to form dimer radical cation M(Se therefore Se)M+. At pH 7, the >Se*-OH radical adducts were converted to a monomer radical of the type (Se therefore N)M+ that acquires intramolecular stability through interaction with the lone pair of the N atom and this radical is denoted as SeM*+. SeM*+ decayed by first order kinetics, and the reduction potential of the couple SeM*+/SeM was determined to be 1.21+/-0.05 V vs NHE at pH 7. SeM*+ oxidized ABTS2- and TMPD with rate constants of (2.5+/-0.1)x10(8) and (6.1+/-0.2)x10(8) M(-1) s(-1), respectively, and reacted with hydroxide ion with a rate constant of (3.8+/-0.9)x10(5) M(-1) s(-1). SeM*+ reacts with molecular oxygen, and the rate constant for this reaction was determined to be (4.3+/-0.2)x10(8) M(-1) s(-1); similar reaction with methionine could not be observed experimentally. Like methionine radical cations, SeM*+ undergoes decarboxylation, although with lesser yield, to produce reducing 3-methyl-selenopropyl amino radicals (referred as alpha-amino radicals). The formation of these radicals was confirmed both by the estimation of the liberated CO2 and by one-electron reduction of MV2+, thionine, and PNAP. These results have been supported by quantum chemical calculations. Implications of these results in the biological role of SeM have also been briefly discussed. PMID:19408939

  20. Increased Catalytic Efficiency Following Gene Fusion of Bifunctional Methionine Sulfoxide Reductase Enzymes from Shewanella oneidensis

    PubMed Central

    Chen, Baowei; Markillie, Lye Meng; Xiong, Yijia; Mayer, M. Uljana; Squier, Thomas C.

    2008-01-01

    Methionine sulfoxide reductase enzymes MsrA and MsrB have complementary stereospecificies that respectively reduce the S- and R-stereoisomers of methionine sulfoxide (MetSO), and together function as critical antioxidant enzymes. In some pathogenic and metal -reducing bacteria these genes are fused to form a bifunctional methionine sulfoxide reductase (i.e., MsrBA) enzyme. To investigate how gene fusion affects the substrate specificity and catalytic activities of Msr, we have cloned and expressed the MsrBA enzyme from Shewanella oneidensis, a metal-reducing bacterium and fish pathogen. For comparison, we also cloned and expressed the wild-type MsrA enzyme from Shewanella oneidensis and a genetically engineered MsrB protein. MsrBA is able to completely reduce (i.e., repair) MetSO in the calcium regulatory protein calmodulin (CaM); while only partial repair is observed using both MsrA and MsrB enzymes together at 25 °C. A restoration of the normal protein fold is observed coincident with the repair of MetSO in oxidized CaM by MsrBA, as monitored by the time-dependent increases in the anisotropy associated with the rigidly bound multiuse affinity probe 4′5′-bis(1,3,2-dithoarsolan-2yl)fluorescein (FlAsH). Underlying the efficient repair of MetSO in oxidized CaM is the coordinate activity of the two catalytic domains in the MsrBA fusion protein, which results in an order of magnitude rate enhancement in comparison to the individual MsrA or MsrB enzymes alone. The coordinate binding of both domains of MsrBA permits the full repair of all MetSO in CaMox. The common expression of Msr fusion proteins in bacterial pathogens is consistent with an important role for this enzyme activity in the maintenance of protein function necessary for bacterial survival under highly oxidizing conditions associated with pathogenesis or bioremediation. PMID:17997579

  1. Effects of proteome rebalancing and sulfur nutrition on the accumulation of methionine rich d-zein in transgenic soybeans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Expression of heterologous methionine-rich proteins to increase the overall sulfur amino acid content of soybean seeds has been only marginally successful, presumably due to low accumulation of transgenes in soybeans. Proteome rebalancing of seed proteins has been shown to promote the accumulation o...

  2. Kinetic evidence that methionine sulfoxide reductase A can reveal its oxidase activity in the presence of thioredoxin.

    PubMed

    Kriznik, Alexandre; Boschi-Muller, Sandrine; Branlant, Guy

    2014-04-15

    The mouse methionine sulfoxide reductase A (MsrA) belongs to the subclass of MsrAs with one catalytic and two recycling Cys corresponding to Cys51, Cys198 and Cys206 in Escherichia coli MsrA, respectively. It was previously shown that in the absence of thioredoxin, the mouse and the E. coli MsrAs, which reduce two mol of methionine-O substrate per mol of enzyme, displays an in vitro S-stereospecific methionine oxidase activity. In the present study carried out with E. coli MsrA, kinetic evidence are presented which show that formation of the second mol of Ac-L-Met-NHMe is rate-limiting in the absence of thioredoxin. In the presence of thioredoxin, the overall rate-limiting step is associated with the thioredoxin-recycling process. Kinetic arguments are presented which support the accumulation of the E. coli MsrA under Cys51 sulfenic acid state in the presence of Trx. Thus, the methionine oxidase activity could be operative in vivo without the action of a regulatory protein in order to block the action of Trx as previously proposed. PMID:24632144

  3. NITROGEN METABOLISM OF BEEF STEERS FED ENDOPHYTE-FREE TALL FESCUE HAY: EFFECTS OF RUMINALLY PROTECTED METHIONINE SUPPLEMENTATION.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Level of nitrogen (N) intake and ruminally protected methionine supplementation were evaluated in 8 Angus growing steers (initial weight 253 21 kg, final weight 296 21 kg) in a replicated, 4X4 Latin square design. The steers were fed two endophyte-free tall fescue (Festuca arundinacea) hays tha...

  4. Analysis of Methionine Oxidation in Myosin Isoforms in Porcine Skeletal Muscle by LC-MS/MS Analysis

    PubMed Central

    Jeong, Jin-Yeon; Jung, Eun-Young; Jeong, Tae-Chul; Yang, Han-Sul; Kim, Gap-Don

    2016-01-01

    The purpose of this study was to analyze oxidized methionines in the myosin isoforms of porcine longissimus thoracis, psoas major, and semimembranosus muscles by liquid chromatography (LC) and mass spectrometry (MS). A total of 836 queries matched to four myosin isoforms (myosin-1, -2, -4, and -7) were analyzed and each myosin isoform was identified by its unique peptides (7.3-13.3). Forty-four peptides were observed from all three muscles. Seventeen peptides were unique to the myosin isoform and the others were common peptides expressed in two or more myosin isoforms. Five were identified as oxidized peptides with one or two methionine sulfoxides with 16 amu of mass modification. Methionines on residues 215 (215), 438 (438), 853 (851), 856 (854), 1071 (1069), and 1106 (1104) of myosin-1 (myosin-4) were oxidized by the addition of oxygen. Myosin-2 had two oxidized methionines on residues 215 and 438. No queries matched to myosin-7 were observed as oxidized peptides. LC-MS/MS allows analysis of the oxidation of specific amino acids on specific residue sites, as well as in specific proteins in the food system. PMID:27194935

  5. Comparative toxicity of selenate, selenite, seleno-DL-methionine and seleno-DL-cystine to Daphnia magna

    SciTech Connect

    Maier, K.J.; Foe, C.G.; Knight, A.W. )

    1993-04-01

    Elevated concentrations of the trace element selenium (Se) have resulted in the degradation of several aquatic ecosystems. This study evaluated the comparative toxicity of several aqueous chemical species of selenium to an aquatic cladoceran, Daphnia magna. Responses to mixtures of these selenium forms, varying the sulfate concentration, were also examined. Initial experiments compared the toxicity of aqueous forms of selenate, selenite, seleno-DL-methionine, and seleno-DL-cystine to neonate Daphnia magna, resulting in 4-h LC50 values of 2.84, 0.55, 0.31, and 2.01 mg Se per liter, respectively. Immobilization was an acute sublethal response observed during exposure to the organic selenium forms only. The 48-h IC50 values were 0.045 and 0.52 mg Se per liter for seleno-DL-methionine and seleno-DL-cystine, respectively. Evaluation of the invertebrate response to various combinations of selenate, selenite, and seleno-DL-methionine demonstrated that the toxicities of these forms of selenium are additive. Increasing the concentration of sulfate decreased, varied, and left unaffected the toxicities of selenate, selenite, and seleno-DL-methionine, respectively. These results indicate that both the chemical form of selenium and the sulfate concentration can influence the toxicity of selenium.

  6. Mice fed a lipogenic methionine-choline-deficient diet develop hypermetabolism coincident with hepatic suppression of SCD-1.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipogenic diets that are completely devoid of methionine and choline (MCD) induce hepatic steatosis. MCD feeding also provokes systemic weight loss, for unclear reasons. In this study, we found that MCD feeding causes profound hepatic suppression of the gene encoding stearoyl-coenzyme A desaturase-1...

  7. Comparison of methionine chelated versus sulfate trace minerals on rate and efficiency of gain and pregnancy rates in beef heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives of this experiment were to compare rate and efficiency of gain, and conception rates of yearling heifers supplemented with Cu, Zn, and Mn as either metal methionine hydroxy analogue chelated trace minerals (CTM; provided as MINTREX) or the same trace minerals in SO4 form. The experimental...

  8. Influence of oxygen and pH on methanethiol production from L-methionine by Brevibacterium lines CNRZ 918

    SciTech Connect

    Ferchichi, M.; Hemme, D.; Bouillanne, C.

    1986-04-01

    The effects of dissolved oxygen concentration and pH on the growth of Brevibacterium linens CNRZ 918 and its production of methanethiol from L-methionine were investigated. Optimal specific methanethiol production was obtained at 25% saturation of dissolved oxygen and at a pH between 8 and 9, whereas optimal cell growth occurred at 50% oxygen saturation and when the pH was maintained constantly at 7. Methanethiol production by nonproliferating bacteria required the presence of L-methionine (7 mM) in the culture medium. This was probably due to the induction of enzyme systems involved in the process. The intracellular concentration of L-methionine seemed to play a key role in this process. B. linens CNRZ 918 tolerated alkaline pHs with a maximal growth pH of approximately 9. Its orange pigmentation seemed to depend on the presence of L-methionine in the culture medium and on the concentration of dissolved oxygen.

  9. HPLC Separation of the (S,S)- and (R,S)- forms of S-Adenosyl-L-methionine

    PubMed Central

    Zhang, Jianyu; Klinman, Judith P.

    2015-01-01

    S-Adenosyl-L-methionine, an important biological cofactor, exists in two chiral forms, (S,S)- and (R,S)-, only the former of which is biologically active. Herein, we develop a chromatographic method to obtain pure (S,S)-AdoMet using a single C18 column. PMID:25681113

  10. Investigations on the mechanical, optical and structural properties on L-methionine-doped triglycine sulfate single crystals

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, D.; Kumar, J.; Tonelli, M.

    2012-04-01

    Single crystals of L-methionine-doped triglycine sulfate (LMTGS) were grown by the low temperature solution growth method. The influence of the dopant on the morphological changes has been studied and reported. The grown crystals were characterized using Laue X-ray diffraction, microhardness and polaroid absorption studies.

  11. Growth enhancement of the halotolerant Brevibacterium sp. JCM 6894 by methionine externally added to a chemically defined medium.

    PubMed

    Mimura, Haruo

    2014-01-01

    We examined amino acid requirements for the growth of the halotolerant Brevibacterium sp. JCM 6894 in the absence and presence of 1.2 M NaCl in a chemically defined medium. The experiment was also carried out in the presence of 1.2 M KCl. As a result, growth was highly enhanced by methionine in the absence and presence of KCl as well as NaCl up to 1.2 M. However, growth in the presence of 150 mM methionine was repressed by leucine (up to 100 mM)and valine (up to 100 mM). Concentration-dependent growth inhibition was observed in the presence of isoleucine (up to 150 mM) and threonine (up to 300 mM). When the cells were incubated in the absence of externally added K+, growth was strongly repressed, even in the presence of 150 mM methionine. The growth, however, recovered drastically by the addition of 1 mM KCl, regardless of the presence and absence of 1.2 M NaCl. These results indicate that methionine, which seems to be symported into cytoplasm with K+, plays an important role in the growth of the strain under salt stress. PMID:25252648

  12. Boron doped diamond and glassy carbon electrodes comparative study of the oxidation behaviour of cysteine and methionine.

    PubMed

    Enache, T A; Oliveira-Brett, A M

    2011-04-01

    The electrochemical oxidation behaviour at boron doped diamond and glassy carbon electrodes of the sulphur-containing amino acids cysteine and methionine, using cyclic and differential pulse voltammetry over a wide pH range, was compared. The oxidation reactions of these amino acids are irreversible, diffusion-controlled pH dependent processes, and occur in a complex cascade mechanism. The amino acid cysteine undergoes similar three consecutive oxidation reactions at both electrodes. The first step involves the oxidation of the sulfhydryl group with radical formation, that undergoes nucleophilic attack by water to give an intermediate species that is oxidized in the second step to cysteic acid. The oxidation of the sulfhydryl group leads to a disulfide bridge between two similar cysteine moieties forming cysteine. The subsequent oxidation of cystine occurs at a higher potential, due to the strong disulfide bridge covalent bond. The electro-oxidation of methionine at a glassy carbon electrode occurs in two steps, corresponding to the formation of sulfoxide and sulfone, involving the adsorption and protonation/deprotonation of the thiol group, followed by electrochemical oxidation. Methionine undergoes a one-step oxidation reaction at boron doped diamond electrodes due to the negligible adsorption, and the oxidation also leads to the formation of methionine sulfone. PMID:21377428

  13. Oxidation of methionine in PrP is dependent upon the oxidant and the amino acid two positions removed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Introduction. Methionine oxidation has been shown both to be associated with prion formation and implicated in the inhibition of amyloid formation in model systems. This work is based on model systems where hydrogen peroxide was used as an oxidant. Materials and Methods. We developed...

  14. Redox Modulation of Cellular Signaling and Metabolism Through Reversible Oxidation of Methionine Sensors in Calcium Regulatory Proteins

    SciTech Connect

    Bigelow, Diana J.; Squier, Thomas C.

    2005-01-17

    Adaptive responses associated with environmental stressors are critical to cell survival. These involve the modulation of central signaling protein functions through site-specific and enzymatically reversible oxidative modifications of methionines to coordinate cellular metabolism, energy utilization, and calcium signaling. Under conditions when cellular redox and antioxidant defenses are overwhelmed, the selective oxidation of critical methionines within selected protein sensors functions to down-regulate energy metabolism and the further generation of reactive oxygen species (ROS). Mechanistically, these functional changes within protein sensors take advantage of the helix-breaking character of methionine sulfoxide. Thus, depending on either the ecological niche of the organism or the cellular milieu of different organ systems, cellular metabolism can be fine-tuned to maintain optimal function in the face of variable amounts of collateral oxidative damage. The sensitivity of several calcium regulatory proteins to oxidative modification provides cellular sensors that link oxidative stress to cellular response and recovery. Calmodulin (CaM) is one such critical calcium regulatory protein, which is functionally sensitive to methionine oxidation. Helix destabilization resulting from the oxidation of either Met{sup 144} or Met{sup 145} results in the nonproductive association between CaM and target proteins. The ability of oxidized CaM to stabilize its target proteins in an inhibited state with an affinity similar to that of native (unoxidized) CaM permits this central regulatory protein to function as a cellular rheostat that down-regulates energy metabolism in response to oxidative stress. Likewise, oxidation of a methionine within a critical switch region of the regulatory protein phospholamban is expected to destabilize the phosphorylationdependent helix formation necessary for the release of enzyme inhibition, resulting in a down-regulation of the Ca-ATPase in

  15. EPR study of gamma irradiated DL-methionine sulfone single crystals

    NASA Astrophysics Data System (ADS)

    Karabulut, Bünyamin; Yıldırım, İlkay

    2015-12-01

    Electron paramagnetic resonance (EPR) study of gamma irradiated dl-2-amino-4-(Methylsulfonyl) butyric acid (dl-methionine sulfone, hereafter dl-ABA) single crystals and powder was performed at room temperature. It has been found that this compound indicates the existence of C. O2- and N. H2 radicals after γ-irradiation. While g and hyperfine splitting values for the N. H2 radical were observed, for the C. O2- radical, only the g factor was measured. The EPR spectra have shown that N. H2 radical has two groups each having two distinct sites and C. O2- radical has one site. The principal g and hyperfine values for all sites were analyzed.

  16. Structure-Functional Study of Tyrosine and Methionine Dipeptides: An Approach to Antioxidant Activity Prediction

    PubMed Central

    Torkova, Anna; Koroleva, Olga; Khrameeva, Ekaterina; Fedorova, Tatyana; Tsentalovich, Mikhail

    2015-01-01

    Quantum chemical methods allow screening and prediction of peptide antioxidant activity on the basis of known experimental data. It can be used to design the selective proteolysis of protein sources in order to obtain products with antioxidant activity. Molecular geometry and electronic descriptors of redox-active amino acids, as well as tyrosine and methionine-containing dipeptides, were studied by Density Functional Theory method. The calculated data was used to reveal several descriptors responsible for the antioxidant capacities of the model compounds based on their experimentally obtained antioxidant capacities against ABTS (2,2′-Azino-bis-(3-ethyl-benzothiazoline-6-sulfonate)) and peroxyl radical. A formula to predict antioxidant activity of peptides was proposed. PMID:26512651

  17. Ergothioneine Contents in Fruiting Bodies and Their Enhancement in Mycelial Cultures by the Addition of Methionine

    PubMed Central

    Lee, Wi Young; Ahn, Jin Kwon; Ka, Kang-Hyeon

    2009-01-01

    The levels of ergothioneine (ERG), which have been shown to act as an excellent antioxidant, were determined in both fruiting bodies and mycelia of various mushroom species. We found that ERG accumulated at different levels in fruiting bodies of mushrooms and showed up to a 92.3-fold difference between mushrooms. We also found that ERG accumulated at higher levels in mycelia than in fruiting bodies of economically important mushroom species such as Ganoderma neo-japonicum, G. applanatum and Paecilomyces tenuipes. The addition of 2 mM methionine (Met) to mycelial culture medium increased the ERG contents in most mushroom species tested, indicating that Met is a good additive to enhance the ERG levels in a variety of mushroom species. Taking these results into consideration, we suggest that the addition of Met to the mycelial culture medium is an efficient way to enhance the antioxidant properties in economically important mushroom species. PMID:23983506

  18. Structure-Functional Study of Tyrosine and Methionine Dipeptides: An Approach to Antioxidant Activity Prediction.

    PubMed

    Torkova, Anna; Koroleva, Olga; Khrameeva, Ekaterina; Fedorova, Tatyana; Tsentalovich, Mikhail

    2015-01-01

    Quantum chemical methods allow screening and prediction of peptide antioxidant activity on the basis of known experimental data. It can be used to design the selective proteolysis of protein sources in order to obtain products with antioxidant activity. Molecular geometry and electronic descriptors of redox-active amino acids, as well as tyrosine and methionine-containing dipeptides, were studied by Density Functional Theory method. The calculated data was used to reveal several descriptors responsible for the antioxidant capacities of the model compounds based on their experimentally obtained antioxidant capacities against ABTS (2,2'-Azino-bis-(3-ethyl-benzothiazoline-6-sulfonate)) and peroxyl radical. A formula to predict antioxidant activity of peptides was proposed. PMID:26512651

  19. Radical S-Adenosyl-l-methionine Chemistry in the Synthesis of Hydrogenase and Nitrogenase Metal Cofactors*

    PubMed Central

    Byer, Amanda S.; Shepard, Eric M.; Peters, John W.; Broderick, Joan B.

    2015-01-01

    Nitrogenase, [FeFe]-hydrogenase, and [Fe]-hydrogenase enzymes perform catalysis at metal cofactors with biologically unusual non-protein ligands. The FeMo cofactor of nitrogenase has a MoFe7S9 cluster with a central carbon, whereas the H-cluster of [FeFe]-hydrogenase contains a 2Fe subcluster coordinated by cyanide and CO ligands as well as dithiomethylamine; the [Fe]-hydrogenase cofactor has CO and guanylylpyridinol ligands at a mononuclear iron site. Intriguingly, radical S-adenosyl-l-methionine enzymes are vital for the assembly of all three of these diverse cofactors. This minireview presents and discusses the current state of knowledge of the radical S-adenosylmethionine enzymes required for synthesis of these remarkable metal cofactors. PMID:25477518

  20. Chemoenzymatic synthesis and in situ application of S-adenosyl-L-methionine analogs

    PubMed Central

    Thomsen, Marie; Vogensen, Stine B.; Buchardt, Jens; Burkart, Michael D.

    2013-01-01

    Analogs of S-adenosyl-L-methionine (SAM) are increasingly applied to the methyltransferase (MT) catalysed modification of biomolecules including proteins, nucleic acids, and small molecules. However, SAM and analogs suffer from an inherent instability, and their chemical synthesis is challenged by low yields and difficulties in stereoisomer isolation and inhibition. Here we report the chemoenzymatic synthesis of a series of SAM analogs using wild-type (wt) and point mutants of two recently identified halogenases, SalL and FDAS. Molecular modelling studies are used to guide the rational design of mutants, and the enzymatic conversion of L-Met and other analogs into SAM analogs is demonstrated. We also apply this in situ enzymatic synthesis to the modification of a small peptide substrate by protein arginine methyltransferase 1 (PRMT1). This technique offers an attractive alternative to chemical synthesis and can be applied in situ to overcome stability and activity issues. PMID:24100405

  1. Effects of rumen-protected methionine and choline supplementation on the preimplantation embryo in Holstein cows.

    PubMed

    Acosta, D A V; Denicol, A C; Tribulo, P; Rivelli, M I; Skenandore, C; Zhou, Z; Luchini, D; Corrêa, M N; Hansen, P J; Cardoso, F C

    2016-06-01

    Our objective was to determine the effects of supplementing methionine and choline during the prepartum and postpartum periods on preimplantation embryos of Holstein cows. Multiparous cows were assigned in a randomized complete-block design into four treatments from 21 days before calving to 30 days in milk (DIM). Treatments (TRT) were MET (n = 9, fed the basal diet + rumen-protected methionine at a rate of 0.08% [w:w] of the dry matter [DM], Smartamine M), CHO (n = 8, fed the basal diet + choline 60 g/d, Reashure), MIX (n = 11, fed the basal diet + Smartamine M and 60 g/d Reashure), and CON (n = 8, no supplementation, fed the close-up and fresh cow diets). Cows were randomly reassigned to two new groups (GRP) to receive the following diets from 31 to 72 DIM; control (CNT, n = 16, fed a basal diet) and SMT (n = 20, fed the basal diet + 0.08% [w:w] of the dry matter intake as methionine). An progesterone intravaginal insert (CIDR) device was inserted in all cows after follicular aspiration (60 DIM) and superovulation began at Day 61.5 using FSH in eight decreasing doses at 12-hour intervals over a 4-day period. On Days 63 and 64, all cows received two injections of PGF2α, and CIDR was removed on Day 65. Twenty-four hours after CIDR removal, ovulation was induced with GnRH. Cows received artificial insemination at 12 hours and 24 hours after GnRH. Embryos were flushed 6.5 days after artificial insemination. Global methylation of the embryos was assessed by immunofluorescent labeling of 5-methylcytosine, whereas lipid content was assessed by staining with Nile red. Nuclear staining was used to count the total number of cells per embryo. There was no difference between TRT, GRP, or their interaction (P > 0.05) for embryo recovery, embryos recovered, embryo quality, embryo stage, or cells per embryo. Methylation of the DNA had a TRT by GRP interaction (P = 0.01). Embryos from cows in CON-CNT had greater (P = 0.04) methylation (0.87

  2. Selective Gold Recovery and Catalysis in a Highly Flexible Methionine-Decorated Metal-Organic Framework.

    PubMed

    Mon, Marta; Ferrando-Soria, Jesús; Grancha, Thais; Fortea-Pérez, Francisco R; Gascon, Jorge; Leyva-Pérez, Antonio; Armentano, Donatella; Pardo, Emilio

    2016-06-29

    A novel chiral 3D bioMOF exhibiting functional channels with thio-alkyl chains derived from the natural amino acid l-methionine (1) has been rationally prepared. The well-known strong affinity of gold for sulfur derivatives, together with the extremely high flexibility of the thioether "arms" decorating the channels, account for a selective capture of gold(III) and gold(I) salts in the presence of other metal cations typically found in electronic wastes. The X-ray single-crystal structures of the different gold adsorbates Au(III)@1 and Au(I)@1 suggest that the selective metal capture occurs in a metal ion recognition process somehow mimicking what happens in biological systems and protein receptors. Both Au(III)@1 and Au(I)@1 display high activity as heterogeneous catalyst for the hydroalkoxylation of alkynes, further expanding the application of these novel hybrid materials. PMID:27295383

  3. Dietary methionine availability affects the main factors involved in muscle protein turnover in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Belghit, Ikram; Skiba-Cassy, Sandrine; Geurden, Inge; Dias, Karine; Surget, Anne; Kaushik, Sadasivam; Panserat, Stéphane; Seiliez, Iban

    2014-08-28

    Methionine is a limiting essential amino acid in most plant-based ingredients of fish feed. In the present study, we aimed to determine the effect of dietary methionine concentrations on several main factors involved in the regulation of mRNA translation and the two major proteolytic pathways (ubiquitin-proteasome and autophagy-lysosomal) in the white muscle of rainbow trout (Oncorhynchus mykiss). The fish were fed for 6 weeks one of the three isonitrogenous diets providing three different methionine concentrations (deficient (DEF), adequate (ADQ) and excess (EXC)). At the end of the experiment, the fish fed the DEF diet had a significantly lower body weight and feed efficiency compared with those fed the EXC and ADQ diets. This reduction in the growth of fish fed the DEF diet was accompanied by a decrease in the activation of the translation initiation factors ribosomal protein S6 and eIF2α. The levels of the main autophagy-related markers (LC3-II and beclin 1) as well as the expression of several autophagy genes (atg4b, atg12 l, Uvrag, SQSTM1, Mul1 and Bnip3) were higher in the white muscle of fish fed the DEF diet. Similarly, the mRNA levels of several proteasome-related genes (Fbx32, MuRF2, MuRF3, ZNF216 and Trim32) were significantly up-regulated by methionine limitation. Together, these results extend our understanding of mechanisms regulating the reduction of muscle growth induced by dietary methionine deficiency, providing valuable information on the biomarkers of the effects of low-fishmeal diets. PMID:24877663

  4. Molecular imaging of 1p/19q deletion in oligodendroglial tumours with 11C-methionine positron emission tomography

    PubMed Central

    Iwadate, Yasuo; Shinozaki, Natsuki; Matsutani, Tomoo; Uchino, Yoshio; Saeki, Naokatsu

    2016-01-01

    Objective Chromosome 1p/19q deletion is an established prognostic and predictive marker in the WHO grade III oligodendroglial tumours (OT). To estimate the genetic status preoperatively, the authors investigated the correlation between the uptake of 11C-methionine in positron emission tomography (PET) and the 1p/19q status in grades II and III OT. Methods We retrospectively reviewed 144 patients with gliomas who received 11C-methionine PET. 66 cases with grades II–III oligodendrogliomas or oligoastrocytomas underwent fluorescence in situ hybridisation to determine the 1p/19q status. The tissue uptake of 11C-methionine was expressed as the ratio of the maximum standardised uptake value (SUVmax) in tumour areas to the mean SUV (SUVmean) in the contralateral normal brain (tumour-to-normal tissue (T/N) ratio). Results The T/N ratio in 11C-methionine PET was significantly higher in grade III OT than in grade II tumours. The mean T/N ratio of the grade II tumours without 1p/19q deletion was significantly higher than that of the grade II tumours with 1p/19q deletion (mean 2.67 vs 1.94, respectively; p=0.0457). In grade III tumours, the mean T/N ratio of the tumours without 1p/19q deletion was also significantly higher than that of the tumours with 1p/19q deletion (mean 4.83 vs 3.49, respectively; p=0.0261). The rate of IDH1 mutation was lower and the rate of contrast enhancement on MRIs was higher in the 1p/19q non-deleted OT than those with 1p/19q deletion, which may contribute to the high T/N ratio. Conclusions Among suspected OT, 11C-methionine PET may help us preoperatively discriminate tumours with and without 1p/19q deletion. PMID:26848169

  5. Methionine Sulfoxide Reductases Preferentially Reduce Unfolded Oxidized Proteins and Protect Cells from Oxidative Protein Unfolding*

    PubMed Central

    Tarrago, Lionel; Kaya, Alaattin; Weerapana, Eranthie; Marino, Stefano M.; Gladyshev, Vadim N.

    2012-01-01

    Reduction of methionine sulfoxide (MetO) residues in proteins is catalyzed by methionine sulfoxide reductases A (MSRA) and B (MSRB), which act in a stereospecific manner. Catalytic properties of these enzymes were previously established mostly using low molecular weight MetO-containing compounds, whereas little is known about the catalysis of MetO reduction in proteins, the physiological substrates of MSRA and MSRB. In this work we exploited an NADPH-dependent thioredoxin system and determined the kinetic parameters of yeast MSRA and MSRB using three different MetO-containing proteins. Both enzymes showed Michaelis-Menten kinetics with the Km lower for protein than for small MetO-containing substrates. MSRA reduced both oxidized proteins and low molecular weight MetO-containing compounds with similar catalytic efficiencies, whereas MSRB was specialized for the reduction of MetO in proteins. Using oxidized glutathione S-transferase as a model substrate, we showed that both MSR types were more efficient in reducing MetO in unfolded than in folded proteins and that their activities increased with the unfolding state. Biochemical quantification and identification of MetO reduced in the substrates by mass spectrometry revealed that the increased activity was due to better access to oxidized MetO in unfolded proteins; it also showed that MSRA was intrinsically more active with unfolded proteins regardless of MetO availability. Moreover, MSRs most efficiently protected cells from oxidative stress that was accompanied by protein unfolding. Overall, this study indicates that MSRs serve a critical function in the folding process by repairing oxidatively damaged nascent polypeptides and unfolded proteins. PMID:22628550

  6. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur

    PubMed Central

    Ueki, Iori

    2010-01-01

    Synthesis of cysteine as a product of the transsulfuration pathway can be viewed as part of methionine or homocysteine degradation, with cysteine being the vehicle for sulfur conversion to end products (sulfate, taurine) that can be excreted in the urine. Transsulfuration is regulated by stimulation of cystathionine β-synthase and inhibition of methylene tetrahydrofolate reductase in response to changes in the level of S-adenosylmethionine, and this promotes homocysteine degradation when methionine availability is high. Cysteine is catabolized by several desulfuration reactions that release sulfur in a reduced oxidation state, generating sulfane sulfur or hydrogen sulfide (H2S), which can be further oxidized to sulfate. Cysteine desulfuration is accomplished by alternate reactions catalyzed by cystathionine β-synthase and cystathionine γ-lyase. Cysteine is also catabolized by pathways that require the initial oxidation of the cysteine thiol by cysteine dioxygenase to form cysteinesulfinate. The oxidative pathway leads to production of taurine and sulfate in a ratio of approximately 2:1. Relative metabolism of cysteine by desulfuration versus oxidative pathways is influenced by cysteine dioxygenase activity, which is low in animals fed low-protein diets and high in animals fed excess sulfur amino acids. Thus, desulfuration reactions dominate when cysteine is deficient, whereas oxidative catabolism dominates when cysteine is in excess. In rats consuming a diet with an adequate level of sulfur amino acids, about two thirds of cysteine catabolism occurs by oxidative pathways and one third by desulfuration pathways. Cysteine dioxygenase is robustly regulated in response to cysteine availability and may function to provide a pathway to siphon cysteine to less toxic metabolites than those produced by cysteine desulfuration reactions. PMID:20162368

  7. [S-adenosyl-L-methionine (SAMe) and its use in hepatology].

    PubMed

    Frezza, M; Terpin, M M; Peri, A

    1992-01-01

    S-adenosyl-L-methionine (SAMe), a molecule naturally present in several body tissues and fluids, is produced, by SAMe synthetase, from ATP and methionine. SAMe has a fundamental role, as methyl group donor, in transmethylation reactions in which the synthesis of membrane phospholipids (especially phosphatidylcholine) is mandatory for the maintenance of membrane fluidity. Another metabolic pathway involving SAMe, transsulphuration, is initiated with the release of -CH3 from the molecule and the formation of S-Adenosyl-homocysteine and then homocysteine and cysteine, a precursor of glutathione the main cellular antioxidant, responsible of detoxification of various compounds and xenobiotics. At last SAMe is implicated in aminopropylation process for the polyamine synthesis. The development of stable double salt of p-toluene sulphonic acid and sulphuric acid of SAMe enables the clinical use of the drug, as a therapeutical agent, for the treatment of a number of liver dysfunctions. In various animal and human models, including controlled trials, it has been demonstrated that SAMe can ameliorate some biochemical parameters and pruritus in cholestasis induced by a range of compounds (i.e. oestrogens, lithocolate, etc) and in intrahepatic cholestasis superimposed to chronic liver disease. Concerning alcohol toxicity, SAMe prevents, in ethanol fed baboons, depletion of glutathione levels, normalizes the mitochondrial enzymes and improves the histological hepatic lesions. In human healthy volunteers it has been recently demonstrated that SAMe, after ethanol ingestion, significantly lowers plasma concentration of ethanol and acetaldehyde as well. Finally, SAMe has been proposed, instead of N-acetylcysteine, as precursor of glutathione, in patients who present late after ingestion of an overdose of paracetamol. PMID:1299337

  8. Carboxymethylation of methionine residues in bovine pituitary luteinizing hormone and its subunits. Effects on the binding activity with receptor sites and interactions between subunits.

    PubMed Central

    Cheng, K W

    1976-01-01

    The reaction of iodoacetic acid with bovine lutropin (luteinizing hormone) at pH 3.0 was specific for methionine residues; it was slow and reached its equilibrium after 12 h at 37 degrees C. The number of modified methionine residues increased proportionately with the amount of the alkylating reagent in the reaction mixture. In the presence of a 20-fold molar excess of iodoacetic acid with respect to methionine, essentially all methionine residues in both subunits of bovine lutropin were carboxymethylated. Studies of various recombinations of modified and native alpha and beta subunits showed that methionine residues in bovine lutropin were not essential for interactions between subunits. Various recombinants were characterized by polyacrylamide-gel electrophoresis and gel filtration of Sephadex G-100. Immunological cross-reactivity by radioimmunoassay of the recombinants of modified alpha and beta subunits was relatively similar to that of the native subunits. However, the biological activity measured by receptor-site binding of the recombinants of alpha and beta chains with a total of three alkylated methionine residues was less than 5% of the activity of native lutropin. It is noteworthy that recombinants of a modified subunit and a native counterpart subunit regenerated 20-30 % of biological activity. These findings suggested that at least 1-2 methionine residues in each subunit are involved in the hormone-receptor interaction for bovine lutropin. Images PLATE 1 PMID:187169

  9. Extensive modifications for methionine enhancement in the beta-barrels do not alter the structural stability of the bean seed storage protein phaseolin.

    PubMed

    Dyer, J M; Nelson, J W; Murai, N

    1995-11-01

    Common beans are widely utilized as a food source, yet are low in the essential amino acid methionine. As an initial step to overcome this defect the methionine content of the primary bean seed storage protein phaseolin was increased by replacing 20 evolutionarily variant hydrophobic residues with methionine and inserting short, methionine-rich sequences into turn and loop regions of the protein structure. Methionine enhancement ranged from 5 to 30 residues. An Escherichia coli expression system was developed to characterize the structural stability of the mutant proteins. Proteins of expected sizes were obtained for all constructs except for negative controls, which were rapidly degraded in E. coli. Thermal denaturation of the purified proteins demonstrated that both wild-type and mutant phaseolin proteins denatured reversibly at approximately 61 degrees C. In addition, urea denaturation experiments of the wild-type and a mutant protein (with 30 additional methionines) confirmed that the structural stability of the proteins was very similar. Remarkably, these results indicate that the phaseolin protein tolerates extensive modifications, including 20 substitutions and two loop inserts for methionine enhancement in the beta-barrel and loop structures, with extremely small effects on protein stability. PMID:8747427

  10. MAT1A variants are associated with hypertension, stroke, and DNA damage and are modulated by vlasma vitamin B6 and folate concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated plasma homocysteine is a cardiovascular disease (CVD) risk factor. However, the mechanism underlying this relationship is not understood. S-adenosylmethionine synthetase isoform type-1 (MAT1A) is a key enzyme in the metabolism of homocysteine, converting dietary methionine into S-adenosyl m...

  11. A False-Negative Case of Primary Central Nervous System Lymphoma on 11C-Methionine PET and Intense 18F-FDG Uptake.

    PubMed

    García-Garzon, J R; Villasboas-Rosciolesi, Diego; Baquero, Miguel; Bassa, Pere; Soler, Marina; Riera, Eduard

    2016-08-01

    We report a case of a 44-year-old man with neurological symptoms and MRI findings, which were unable to differentiate between glioma and lymphoma. Metabolic characterization by means of PET imaging with F-FDG and C-methionine is proposed to determine the benign or tumor (high- and low-grade) origin of brain lesions. In this case, the MRI lesion corresponded with an inconclusive metabolic pattern of intense F-FDG uptake and no significant C-methionine uptake. Pathological study revealed a false-negative case of C-methionine due to lymphoma. PMID:27187734

  12. Source of carbohydrate and metabolizable lysine and methionine in the diet of recently weaned dairy calves on digestion and growth.

    PubMed

    Hill, T M; Quigley, J D; Bateman, H G; Aldrich, J M; Schlotterbeck, R L

    2016-04-01

    Two 56-d trials with weaned Holstein dairy calves (initially 72±1.8kg of body weight, 58 to 60d of age) fed 95% concentrate and 5% chopped grass hay diets were conducted. Each trial used 96 calves (4 calves/pen). During 15 of the last 21d of the first trial and 10 of 14d of the second and third week of the second trial, fecal samples were taken to estimate digestibility using acid-insoluble ash as an internal marker. Digestibility estimates along with 56-d average daily gain (ADG), hip width change, body condition score, and fecal score were analyzed with pen as the experimental unit. In trial 1, a textured diet (19% crude protein) with high starch [52% starch, 13% neutral detergent fiber (NDF)] based on whole corn and oats or a pelleted low-starch (20% starch, 35% NDF), high-digestible fiber diet were used. Within starch level, diets were formulated from supplemental soybean meal or soybean meal with blood meal and Alimet (Novus International Inc., St. Charles, MO) to provide 2 metabolizable protein levels (1 and 1.07% metabolizable lysine plus methionine). The 4 treatments were analyzed as a completely randomized design with a 2 by 2 factorial arrangement (6 pens/diet). In trial 2, all pelleted diets (19% crude protein) were fed. Diets were based on soybean hulls, wheat middlings, or corn, which contained increasing concentrations of starch (13, 27, and 42% starch and 42, 23, and 16% NDF, respectively; 8 pens/diet). Contrast statements were constructed to separate differences in the means (soybean hulls plus wheat middlings vs. corn; soybean hulls vs. wheat middlings). In trial 1, intake of organic matter (OM) did not differ. Digestibility of OM was greater in calves fed high- versus low starch-diets. Digestibility of NDF and starch were less in calves fed the high- versus low-starch diets. Calf ADG and hip width change were greater for high- versus low-starch diets. Source of protein did not influence digestibility or ADG. In trial 2, intake of OM was not

  13. Hypochlorous acid reacts with the N-terminal methionines of proteins to give dehydromethionine, a potential biomarker for neutrophil-induced oxidative stress.

    PubMed

    Beal, Jennifer L; Foster, Steven B; Ashby, Michael T

    2009-11-24

    Electrophilic halogenating agents, including hypohalous acids and haloamines, oxidize free methionine and the N-terminal methionines of peptides and proteins (e.g., Met-1 of anti-inflammatory peptide 1 and ubiquitin) to produce dehydromethionine (a five-membered isothiazolidinium heterocycle). Amide derivatives of methionine are oxidized to the corresponding sulfoxide derivatives under the same reaction conditions (e.g., Met-3 of anti-inflammatory peptide 1). Other biological oxidants, including hydrogen peroxide and peroxynitrite, also produce only the corresponding sulfoxides. Hypothiocyanite does not react with methionine residues. We suggest that dehydromethionine may be a useful biomarker for the myeloperoxidase-induced oxidative stress associated with many inflammatory diseases. PMID:19839600

  14. The Semiquinone at the Qi Site of the bc1 Complex Explored Using HYSCORE Spectroscopy and Specific Isotopic Labeling of Ubiquinone in Rhodobacter sphaeroides via 13C Methionine and Construction of a Methionine Auxotroph

    PubMed Central

    2015-01-01

    Specific isotopic labeling at the residue or substituent level extends the scope of different spectroscopic approaches to the atomistic level. Here we describe 13C isotopic labeling of the methyl and methoxy ring substituents of ubiquinone, achieved through construction of a methionine auxotroph in Rhodobacter sphaeroides strain BC17 supplemented with l-methionine with the side chain methyl group 13C-labeled. Two-dimensional electron spin echo envelope modulation (HYSCORE) was applied to study the 13C methyl and methoxy hyperfine couplings in the semiquinone generated in situ at the Qi site of the bc1 complex in its membrane environment. The data were used to characterize the distribution of unpaired spin density and the conformations of the methoxy substituents based on density functional theory calculations of 13C hyperfine tensors in the semiquinone of the geometry-optimized X-ray structure of the bc1 complex (Protein Data Bank entry 1PP9) with the highest available resolution. Comparison with other proteins indicates individual orientations of the methoxy groups in each particular case are always different from the methoxy conformations in the anion radical prepared in a frozen alcohol solution. The protocol used in the generation of the methionine auxotroph is more generally applicable and, because it introduces a gene deletion using a suicide plasmid, can be applied repeatedly. PMID:25184535

  15. Application of an eremomycin-chiral stationary phase for the separation of DL-methionine using simulated moving bed technology.

    PubMed

    Zhang, L; Gedicke, K; Kuznetsov, M A; Staroverov, S M; Seidel-Morgenstern, A

    2007-08-24

    Recently a new chiral stationary phase (CSP) was introduced, based on the immobilization of the macrocyclic glycopeptide eremomycin to epoxy-activated silica. The application of this new CSP to preparative enantioseparation using simulated moving bed (SMB) chromatography will be presented. MeOH-H(2)O (0.1M NaH(2)PO(4))=20/80 (v/v) was used as the mobile phase to separate the enantiomers of methionine. Successful separation was realized providing productivities around 15 g(product)/l(stat)/h for both l and d-methionine under nonlinear conditions. In such delicate continuous chromatographic separation processes, besides productivity, the long-term stability of the applied stationary phases is of importance. Column to column fluctuations were negligible and long-term stability of the preparative stationary phase was satisfactory according to the results of perturbation experiments performed before and after long-term SMB runs. PMID:17482626

  16. Folate, vitamin B(6) , vitamin B(12) , methionine and alcohol intake in relation to ovarian cancer risk.

    PubMed

    Harris, Holly R; Cramer, Daniel W; Vitonis, Allison F; DePari, Mary; Terry, Kathryn L

    2012-08-15

    Folate, methionine, vitamin B(6) and vitamin B(12) may influence carcinogenesis due to their roles in the one-carbon metabolism pathway, which is critical for DNA synthesis, methylation and repair. Low intake of these nutrients has been associated with an increased risk of breast, colon and endometrial cancers. Previous studies that have examined the relation between these nutrients and ovarian cancer risk have been inconsistent and have had limited power to examine the relation by histologic subtype. We investigated the association between folate, methionine, vitamin B(6) , vitamin B(12) and alcohol among 1910 women with ovarian cancer and 1989 controls from a case-control study conducted in eastern Massachusetts and New Hampshire from 1992 to 2008. Diet was assessed via food frequency questionnaire. Participants were asked to recall diet one-year before diagnosis or interview. Logistic regression models were used to calculate odds ratios (OR) and 95% confidence intervals (95% CIs). We also examined whether the associations varied by ovarian cancer histologies using polytomous logistic regression. We observed an inverse association between dietary vitamin B(6) (covariate-adjusted OR = 0.76, 95% CI 0.64-0.92; p(trend) = 0.002) and methionine intake (covariate-adjusted OR = 0.72, 95% CI = 0.60-0.87; p(trend) < 0.001) and ovarian cancer risk comparing the highest to lowest quartile. The association with dietary vitamin B(6) was strongest for serous borderline (covariate-adjusted OR = 0.49, 95% CI = 0.32-0.77; p(trend) = 0.001) and serous invasive (covariate-adjusted OR = 0.74, 95% CI = 0.58-0.94; p(trend) = 0.012) subtypes. Overall, we observed no significant association between folate and ovarian cancer risk. One-carbon metabolism related nutrients, especially vitamin B(6) and methionine, may lower ovarian cancer risk. PMID:21953625

  17. Method for the typing of Clostridium difficile based on polyacrylamide gel electrophoresis of (/sup 35/S)methionine-labeled proteins

    SciTech Connect

    Tabaqchali, S.; O'Farrell, S.; Holland, D.; Silman, R.

    1986-01-01

    A typing method for Clostridium difficile based on the incorporation of (/sup 35/S)methionine into cellular proteins, their separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and their visualization by autoradiography is described. On analysis of the radiolabeled-protein profiles, nine distinct groups were observed (A to E and W to Z). The method, which is simple, reproducible, and readily expandable, has been applied in epidemiological studies to demonstrate cross-infection and hospital acquisition of C. difficile.

  18. Pulmonary delivery of d-methionine is associated with an increase in ALCAR and glutathione in cochlear fluids.

    PubMed

    Grondin, Yohann; Cotanche, Douglas A; Manneberg, Otto; Molina, Ramon; Treviño-Villarreal, J Humberto; Sepulveda, Rosalinda; Clifford, Royce; Bortoni, Magda E; Forsberg, Scott; Labrecque, Brian; Altshul, Larisa; Brain, Joseph D; Jackson, Ronald L; Rogers, Rick A

    2013-04-01

    In animals, hearing loss resulting from cochlear mechanosensory cell damage can be mitigated by antioxidants such as d-methionine (d-met) and acetyl-l-carnitine (ALCAR). The systemic routes of administration of these compounds, that must of necessity transit trough the cochlear fluids, may affect the antioxidant levels in the cochlea and the resulting oto-protective effect. In this study, we analyzed the pharmacokinetics of [(14)C]d-met in the cochlea and four other tissues after intratracheal (IT), intranasal (IN), and oral by gavage (OG) administration and compared it to intravenous administration (IV). We then analyzed the effect of these four routes on the antioxidant content of the cochlear fluids after d-met or ALCAR administration, by liquid chromatography/mass spectrometry. Our results showed that the concentration of methionine and ALCAR in cochlear fluids significantly increased after their respective systemic administration. Interestingly, d-met administration also contributed to an increase of ALCAR. Our results also showed that the delivery routes differently affected the bioavailability of administered [(14)C]d-met as well as the concentrations of methionine, ALCAR and the ratio of oxidized to reduced glutathione. Overall, pulmonary delivery via IT administration achieved high concentrations of methionine, ALCAR, and oxidative-related metabolites in cochlear fluids, in some cases surpassing IV administration, while IN route appeared to be the least efficacious. To our knowledge, this is the first report of the direct measurements of antioxidant levels in cochlear fluids after their systemic administration. This report also demonstrates the validity of the pulmonary administration of antioxidants and highlights the different contributions of d-met and ALCAR allowing to further investigate their impact on oxidative stress in the cochlear microenvironment. PMID:23296212

  19. Dietary methionine and n-6/n-3 polyunsaturated fatty acid ratio reduce adverse effects of infectious bursal disease in broilers.

    PubMed

    Maroufyan, E; Kasim, A; Ebrahimi, M; Loh, T C; Hair-Bejo, M; Soleimani, A F

    2012-09-01

    This study was carried out to investigate the modulatory effects of dietary methionine and n-6/n-3 polyunsaturated fatty acids (PUFA) ratio on immune response and performance of infectious bursal disease (IBD)-challenged broiler chickens. In total, 350 one-day-old male broiler chicks were assigned to 1 of the 6 dietary treatment groups in a 3 × 2 factorial arrangement. There were 3 n-6/n-3 PUFA ratios (45, 5.5, and 1.5) and 2 levels of methionine (NRC recommendation and twice NRC recommendation). The results showed that birds fed with dietary n-6/n-3 PUFA ratio of 5.5 had higher BW, lower feed intake, and superior FCR than other groups. However, the highest antibody response was observed in birds with dietary n-6/n-3 PUFA ratio of 1.5. Lowering n-6/n-3 PUFA ratio reduced bursa lesion score equally in birds fed with n-6/n-3 PUFA ratio of 5.5 and 1.5. Supplementation of methionine by twice the recommendation also improved FCR and reduced feed intake and bursa lesion score. However, in this study, the optimum performance (as measured by BW, feed intake, and FCR) did not coincide with the optimum immune response (as measured by antibody titer). It seems that dietary n-3 PUFA modulates the broiler chicken performance and immune response in a dose-dependent but nonlinear manner. Therefore, it can be suggested that a balance of moderate level of dietary n-6/n-3 PUFA ratio (5.5) and methionine level (twice recommendation) might enhance immune response together with performance in IBD-challenged broiler chickens. PMID:22912451

  20. 11C-Methionine positron emission tomography-computed tomography in localization of methoxyisobutyl isonitrile negative ectopic parathyroid adenoma

    PubMed Central

    Seniaray, Nikhil; Sharma, Harshul; Arbind, Arpana; Jaimini, Abhinav; D’souza, Maria; Saw, Sanjeev; Hazari, Puja Panwar; Mishra, A. K.; Sharma, Rajnish; Mondal, Anupam

    2016-01-01

    Primary hyperparathyroidism is caused by parathyroid adenomas in 85% of the cases. Since parathyroid adenomas are known for their ectopic location, presurgical localization of the suspected site of adenoma is desirable. However, current imaging modalities are not always successful in localizing ectopic parathyroid adenomas. The aim of this case report is to show that 11C-methionine positron emission tomography could accurately localize ectopic parathyroid adenomas in patients in whom conventional imaging had failed or is inconclusive. PMID:26917896

  1. Metabolic basis for the isoleucine, pantothenate or methionine requirement of ilvG strains of Salmonella typhimurium.

    PubMed

    Primerano, D A; Burns, R O

    1982-06-01

    Salmonella typhimurium strain DU501, which was found to be deficient in acetohydroxy acid synthase II (AHAS II) and to possess elevated levels of transaminase B and biosynthetic threonine deaminase, required isoleucine, methionine, or pantothenate for growth. This strain accumulated alpha-ketobutyrate and, to a lesser extent, alpha-aminobutyrate. We found that alpha-ketobutyrate was a competitive substrate for ketopantoate hydroxymethyltransferase, the first enzyme in pantothenate biosynthesis. This competition with the normal substrate, alpha-ketoisovalerate, limited the supply of pantothenate, which resulted in a requirement for methionine. Evidence is presented to support the conclusion that the ambivalent requirement for either pantothenate or methionine is related to a decrease in succinyl coenzyme A, which is produced from pantothenate and which is an obligatory precursor of methionine biosynthesis. The autointoxification by endogenously produced alpha-ketobutyrate could be mimicked in wild-type S. typhimurium by exogenously supplied alpha-ketobutyrate or salicylate, a known inhibitor of pantothenate biosynthesis. The accumulation of alpha-ketobutyrate was initiated by the inability of the residual AHAS activity provided by AHAS I to efficiently remove the alpha-ketobutyrate produced by biosynthetic threonine deaminase. The accumulation of alpha-ketobutyrate was amplified by the action of transaminase B, which decreased the isoleucine pool by catalyzing the formation of alpha-keto-beta-methylvalerate and aminobutyrate from isoleucine and alpha-ketobutyrate; this resulted in release of threonine deaminase from end product inhibition and unbridled production of alpha-ketobutyrate. Isoleucine satisfied the auxotrophic requirement of the AHAS II-deficient strain by curtailing the activity of threonine deaminase. Additional lines of evidence based on genetic and physiological experiments are presented to support the basis for the autointoxification of strain DU501

  2. Associations between Intake of Folate, Methionine, and Vitamins B-12, B-6 and Prostate Cancer Risk in American Veterans

    PubMed Central

    Vidal, Adriana C.; Grant, Delores J.; Williams, Christina D.; Masko, Elizabeth; Allott, Emma H.; Shuler, Kathryn; McPhail, Megan; Gaines, Alexis; Calloway, Elizabeth; Gerber, Leah; Chi, Jen-Tsan; Freedland, Stephen J.; Hoyo, Cathrine

    2012-01-01

    Prostate cancer (PC) is the second leading cause of cancer death in men. Recent reports suggest that excess of nutrients involved in the one-carbon metabolism pathway increases PC risk; however, empirical data are lacking. Veteran American men (272 controls and 144 PC cases) who attended the Durham Veteran American Medical Center between 2004–2009 were enrolled into a case-control study. Intake of folate, vitamin B12, B6, and methionine were measured using a food frequency questionnaire. Regression models were used to evaluate the association among one-carbon cycle nutrients, MTHFR genetic variants, and prostate cancer. Higher dietary methionine intake was associated with PC risk (OR = 2.1; 95%CI 1.1–3.9) The risk was most pronounced in men with Gleason sum <7 (OR = 2.75; 95%CI 1.32– 5.73). The association of higher methionine intake and PC risk was only apparent in men who carried at least one MTHFR A1298C allele (OR = 6.7; 95%CI = 1.6–27.8), compared to MTHFR A1298A noncarrier men (OR = 0.9; 95%CI = 0.24–3.92) (p-interaction = 0.045). There was no evidence for associations between B vitamins (folate, B12, and B6) and PC risk. Our results suggest that carrying the MTHFR A1298C variants modifies the association between high methionine intake and PC risk. Larger studies are required to validate these findings. PMID:22927849

  3. Effect of l-Methionine and S-Adenosylmethionine on Growth of an Adenine Mutant of Saccharomyces cerevisiae

    PubMed Central

    Yall, Irving; Norrell, Stephen A.; Joseph, Ronald; Knudsen, Richard C.

    1967-01-01

    A pink, adenine-requiring yeast utilized adenine, hypoxanthine, or S-adenosylmethionine (SAM), in quantities up to 3 μmoles per 100 ml of medium, as equivalent sources of purine for cell growth, but not methylthioadenosine or S-adenosylhomocysteine. Utilization of SAM for growth was inhibited by the presence of l-methionine in quantities greater than 0.6 μmole per 100 ml of medium. However, 6 μmoles of l-methionine had no effect on growth when adenine or hypoxanthine was the source of purine. These sources also reversed the inhibitory effects of 6 μmoles of the amino acid on the utilization of SAM. The presence of 400 μmoles of the amino acid resulted in some inhibition of growth when the organisms were grown with adenine, hypoxanthine, or adenine plus SAM but had no effect on the total uptake of adenine-8-14C. Studies on the uptake of radioactivity from a mixture of SAM-adenine-8-14C and 3H-labeled SAM-methyl indicated that these components were taken into the cells at different rates which were altered by the presence of l-methionine. The fixation of 35S from 35S-labeled adenosylmethionine into the cells was inhibited by the presence of the amino acid. The cells synthesized and accumulated SAM in the presence of 400 μmoles of l-methionine plus adenine even when exogenous SAM was supplied. Approximately 47% of radioactivity fixed from exogenous SAM-adenine-8-14C and 12% from 3H-labeled SAM-methyl were found in reisolated SAM. PMID:6025443

  4. D-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs

    SciTech Connect

    Cheng, P.-W.; Liu, S.-H.; Young, Y.-H.; Lin-Shiau, Shoei-Yn . E-mail: syl@ha.mc.ntu.edu.tw

    2006-09-01

    Cisplatin has been used as a chemotherapeutic agent to treat many kinds of malignancies. Its damage to the vestibulo-ocular reflex (VOR) system has been reported. However, the underlying biochemical change in the inner ear or central vestibular nervous system is not fully understood. In this study, we attempted to examine whether cisplatin-induced vestibulotoxicity and D-methionine protection were correlated with the changes of ATPase activities and oxidative stress of ampullary tissue of vestibules as well as cerebellar cortex (the inhibitory center of VOR system) of guinea pigs. By means of a caloric test coupled with electronystagmographic recordings, we found that cisplatin exposure caused a dose-dependent (1, 3, or 5 mg/kg) vestibular dysfunction as revealed by a decrease of slow phase velocity (SPV). In addition, cisplatin significantly inhibited the Na{sup +}, K{sup +}-ATPase and Ca{sup 2+}-ATPase activities in the ampullary tissue with a good dose-response relationship but not those of cerebellar cortex. Regression analysis indicated that a decrease of SPV was well correlated with the reduction of Na{sup +}, K{sup +}-ATPase and Ca{sup 2+}-ATPase activities of the ampullary tissue. D-Methionine (300 mg/kg) reduced both abnormalities of SPV and ATPase activities in a correlated manner. Moreover, cisplatin exposure led to a significant dose-dependent increase of lipid peroxidation and nitric oxide concentrations of the vestibules, which could be significantly suppressed by D-methionine. However, cisplatin did not alter the levels of lipid peroxidation and nitric oxide of the cerebellum. In conclusion, cisplatin inhibited ATPase activities and increased oxidative stress in guinea pig vestibular labyrinths. D-Methionine attenuated cisplatin-induced vestibulotoxicity associated with ionic disturbance through its antioxidative property.

  5. The α-tocopherol status and expression of α-tocopherol-related proteins in methionine-choline deficient rats treated with vitamin E

    PubMed Central

    Miyazaki, Hiroshi; Takitani, Kimitaka; Koh, Maki; Yoden, Atsushi; Tamai, Hiroshi

    2014-01-01

    Non-alcoholic fatty liver disease is the most common liver disorder in developed countries, and its incidence is increasing in all population groups. As an antioxidant, vitamin E is effective in the treatment of non-alcoholic fatty liver disease, although the mechanism is still unclear. Methionine-choline deficient Wistar rats (n = 5) used as an experimental model of non-alcoholic fatty liver disease were fed a vitamin E-enriched diet (500 mg/kg) for 4 weeks. The effects were assessed by measuring lipid peroxidation, α-tocopherol levels, and the expression of α-tocopherol-related proteins in the liver. In vitamin E-treated methionine-choline deficient rats, lipid peroxidation was reduced, but liver histopathological changes were not improved. Hepatic α-tocopherol levels in these rats were significantly elevated compared to normal rats treated with vitamin E. Expression of liver α-tocopherol transfer protein in vitamin E-treated methionine-choline deficient rats was significantly repressed compared to methionine-choline deficient rats. The expression of liver cytochrome P450 4F2 and ATP-binding cassette transporter protein 1, involved in metabolism and transport of α-tocopherol, respectively, was significantly repressed in vitamin E-treated methionine-choline deficient rats. In methionine-choline deficient rats, vitamin E treatment altered the hepatic α-tocopherol-related protein expression, which may affect α-tocopherol status in the liver, leading to reduced lipid peroxidation. PMID:24895482

  6. EPR and NMR spectroscopies provide input on the coordination of Cu(I) and Ag(I) to a disordered methionine segment.

    PubMed

    Shenberger, Yulia; Gottlieb, Hugo E; Ruthstein, Sharon

    2015-06-01

    Methionine motifs are methionine-rich metal-binding segments found in many human, yeast, and bacterial proteins involved in the transportation of copper ion to other cellular pathways, and in protecting copper from oxidation. Methionine motifs are found to bind Ag(I) and Cu(I) ions. Proteins or peptides that can bind different metal ions should have the ability to differentiate between them, to be able to shuttle them to various pathways in the cell. This study utilizes electron paramagnetic resonance spectroscopy together with circular dichroism and nuclear magnetic resonance to probe structural changes in the methionine segment upon coordinating Cu(I) and Ag(I) metal ions. The data collected here indicate that methionine segments experience structural changes while coordinating Cu(I) and Ag(I), however, the differences between the coordination of Cu(I) vs. Ag(I) to the methionine segment are mild. Since Cu(I) and Ag(I) metal ions are pretty similar in their nature and charge, the minor structural changes reported here are significant towards the understanding of the differences in the transport mechanism of these two metal ions in prokaryotic and eukaryotic cells. PMID:25822808

  7. Gene expression and biochemical analysis of cheese-ripening yeasts: focus on catabolism of L-methionine, lactate, and lactose.

    PubMed

    Cholet, Orianne; Hénaut, Alain; Casaregola, Serge; Bonnarme, Pascal

    2007-04-01

    DNA microarrays of 86 genes from the yeasts Debaryomyces hansenii, Kluyveromyces marxianus, and Yarrowia lipolytica were developed to determine which genes were expressed in a medium mimicking a cheese-ripening environment. These genes were selected for potential involvement in lactose/lactate catabolism and the biosynthesis of sulfur-flavored compounds. Hybridization conditions to follow specifically the expression of homologous genes belonging to different species were set up. The microarray was first validated on pure cultures of each yeast; no interspecies cross-hybridization was observed. Expression patterns of targeted genes were studied in pure cultures of each yeast, as well as in coculture, and compared to biochemical data. As expected, a high expression of the LAC genes of K. marxianus was observed. This is a yeast that efficiently degrades lactose. Several lactate dehydrogenase-encoding genes were also expressed essentially in D. hansenii and K. marxianus, which are two efficient deacidifying yeasts in cheese ripening. A set of genes possibly involved in l-methionine catabolism was also used on the array. Y. lipolytica, which efficiently assimilates l-methionine, also exhibited a high expression of the Saccharomyces cerevisiae orthologs BAT2 and ARO8, which are involved in the l-methionine degradation pathway. Our data provide the first evidence that the use of a multispecies microarray could be a powerful tool to investigate targeted metabolism and possible metabolic interactions between species within microbial cocultures. PMID:17308183

  8. Metabolome analysis of Saccharomyces cerevisiae and optimization of culture medium for S-adenosyl-L-methionine production.

    PubMed

    Hayakawa, Kenshi; Matsuda, Fumio; Shimizu, Hiroshi

    2016-12-01

    S-Adenosyl-L-methionine (SAM) is a fine chemical used as a nutritional supplement and a prescription drug. It is industrially produced using Saccharomyces cerevisiae owing to its high SAM content. To investigate the optimization of culture medium components for higher SAM production, metabolome analysis was conducted to compare the intracellular metabolite concentrations between Kyokai no. 6 (high SAM-producing) and laboratory yeast S288C (control) under different SAM production conditions. Metabolome analysis and the result of principal component analysis showed that the rate-limiting step for SAM production was ATP supply and the levels of degradation products of adenosine nucleotides were higher in Kyokai 6 strain than in the S288C strain under the L-methionine supplemented condition. Analysis of ATP accumulation showed that the levels of intracellular ATP in the Kyokai 6 strain were also higher compared to those in the S288C strain. Furthermore, as expected from metabolome analysis, the SAM content of Kyokai 6 strain cultivated in the medium without yeast extract increased by 2.5-fold compared to that in the additional condition, by increasing intracellular ATP level with inhibited cell growth. These results suggest that high SAM production is attributed to the enhanced ATP supply with L-methionine condition and high efficiency of intracellular ATP consumption. PMID:27277079

  9. Distinct patterns of the histone marks associated with recruitment of the methionine chain-elongation pathway from leucine biosynthesis.

    PubMed

    Xue, Ming; Long, Jingcheng; Jiang, Qinlong; Wang, Minghui; Chen, Sixue; Pang, Qiuying; He, Yan

    2015-02-01

    Aliphatic glucosinolates (GLSs) are derived from chain-elongated methionine produced by an iterative three-step process, known to be evolutionarily recruited from leucine biosynthesis. The divergence of homologous genes between two pathways is mainly linked to the alterations in biochemical features. In this study, it was discovered that a distinct pattern of histone modifications is associated with and/or contributes to the divergence of the two pathways. In general, genes involved in leucine biosynthesis were robustly associated with H3k4me2 and H3K4me3. In contrast, despite the considerable abundances of H3K4me2 observed in some of genes involved in methionine chain elongation, H3K4me3 was completely missing. This H3K4m3-depleted pattern had no effect on gene transcription, whereas it seemingly co-evolved with the entire pathway of aliphatic GLS biosynthesis. The results reveal a novel association of the epigenetic marks with plant secondary metabolism, and may help to understand the recruitment of the methionine chain-elongation pathway from leucine biosynthesis. PMID:25428994

  10. Selective deuteration of tryptophan and methionine residues in maltose binding protein: a model system for neutron scattering.

    PubMed

    Laux, Valerie; Callow, Phil; Svergun, Dmitri I; Timmins, Peter A; Forsyth, V Trevor; Haertlein, Michael

    2008-07-01

    We describe methods that have been developed within the ILL-EMBL Deuteration Laboratory for the production of maltose binding protein (MBP) that has been selectively labelled either with deuterated tryptophan or deuterated methionine (single labelling), or both (double labelling). MBP is used as an important model system for biophysical studies, and selective labelling can be helpful in the analysis of small-angle neutron scattering (SANS) data, neutron reflection (NR) data, and high-resolution neutron diffraction data. The selective labelling was carried out in E. coli high-cell density cultures using auxotrophic mutants in minimal medium containing the required deuterated precursors. Five types of sample were prepared and studied: (1) unmodified hydrogenated MBP (H-MBP), (2) perdeuterated MBP (D-MBP), (3) singly labelled MBP with the tryptophan residues deuterated (D-trp MBP), (4) singly labelled MBP with methionine residues deuterated (D-met MBP) and (5) doubly labelled MBP with both tryptophan and methionine residues deuterated (D-trp/met MBP). Labelled samples were characterised by size exclusion chromatography, gel electrophoresis, light scattering and mass spectroscopy. Preliminary small-angle neutron scattering (SANS) experiments have also been carried out and show measurable differences between the SANS data recorded for the various labelled analogues. More detailed SANS experiments using these labelled MBP analogues are planned; the degree to which such data could enhance structure determination by SANS is discussed. PMID:18274740

  11. Methionine Sulfoxide Reductase B2 is Highly Expressed in the Retina and Protects Retinal Pigmented Epithelium Cells from Oxidative Damage

    PubMed Central

    Pascual, Iranzu; Larrayoz, Ignacio M.; Campos, Maria M.; Rodriguez, Ignacio R.

    2010-01-01

    Methionine sulfoxide reductase B2 (MSRB2) is a mitochondrial enzyme that converts methionine sulfoxide (R) enantiomer back to methionine. This enzyme is suspected of functioning to protect mitochondrial proteins from oxidative damage. In this study we report that the retina is one of the human tissues with highest levels of MSRB2 mRNA expression. Other tissues with high expression were heart, kidney and skeletal muscle. Over-expression of a MSRB2-GFP fusion protein increased the MSR enzymatic activity three-fold in stably transfected cultured RPE cells. This overexpression augmented the resistance of these cells to the toxicity induced by 7-ketocholesterol, tert-butyl hydroperoxide and all-trans retinoic acid. By contrast, knockdown of MSRB2 by a miRNA in stably transfected cells did not convey increased sensitivity to the oxidative stress. In the monkey retina MSRB2 localized to the ganglion cell layer (GLC), the outer plexiform layer (OPL) and the retinal pigment epithelium (RPE). MSRB2 expression is most pronounced in the OPL of the macula and foveal regions suggesting an association with the cone synaptic mitochondria. Our data suggests that MSRB2 plays an important function in protecting cones from multiple type of oxidative stress and may be critical in preserving central vision. PMID:20026324

  12. Methionine sulfoxide reductase A (MsrA) contributes to Salmonella Typhimurium survival against oxidative attack of neutrophils.

    PubMed

    Trivedi, Raj Narayan; Agarwal, Pranjali; Kumawat, Manoj; Pesingi, Pavan Kumar; Gupta, Vivek Kumar; Goswami, Tapas Kumar; Mahawar, Manish

    2015-12-01

    Salmonella Typhimurium (ST) must evade neutrophil assault for infection establishment in the host. Myeloperoxidase generated HOCl is the key antimicrobial agent produced by the neutrophils; and methionine (Met) residues are the primary targets of this oxidant. Oxidation of Mets leads to methionine sulfoxide (Met-SO) formation and consequently compromises the protein function(s). Methionine sulfoxide reductase A (MsrA) reductively repairs Met-SO to Mets. In this manner, MsrA maintains the function(s) of key proteins which are important for virulence of ST and enhance the survival of this bacterium under oxidative stress. We constructed msrA gene deletion strain (ΔmsrA). The primers located in the flanking regions to ΔmsrA gene amplified 850 and 300 bp amplicons in ST and ΔmsrA strains, respectively. The ΔmsrA strain grew normally in in vitro broth culture. However, ΔmsrA strain showed high susceptibility (p<0.001) to very low concentrations of HOCl which was restored (at least in part) by plasmid based complementation. ΔmsrA strain was hypersensitive (than ST) to the granules isolated from neutrophils. Further, the ΔmsrA strain was significantly (p<0.05) more susceptible to neutrophil mediated killing. PMID:26224245

  13. Methylenetetrahydrofolate reductase gene polymorphisms in Burkina Faso: impact on plasma fasting homocysteine and after methionine loading test.

    PubMed

    Angius, Andrea; Simpore, Jacques; Persico, Ivana; Sassu, Alessandro; Prodi, Dionigio Antonio; Musumeci, Salvatore

    2007-01-01

    In Burkina Faso the levels of plasma homocysteine (Hcy) are lower and the methionine loading tests suggest a more effective Hcy metabolism. The polymorphisms of methylenetetrahydrofolate reductase (MTHFR) showed a relevant difference in the allele frequencies of T MTHFR-677 in young and in old subjects, while the allele frequency of C MTHFR-1298 was comparable in young and old subjects. The aim of this paper was to study the impact of the MTHFR polymorphisms on plasma fasting Hcy and after methionine loading in Burkina Faso. The young subjects with CC MTHFR-677 genotype had levels of Hcy significantly lower than CT and TT subjects. The level of Hcy in subjects who had AA, AC and CC MTHFR-1298 genotypes were comparable. The levels of Hcy after the methionine loading test were significantly higher in CT and TT MTHFR-677 genotype. These results suggest that the genetic situation in Burkina Faso is different from that of other Western countries and this guarantees the maintenance of lower plasma levels of Hcy in young and old Africans. The elevated levels of plasma Hcy in old subjects compared to young subjects, against the low prevalence of the T allele in elderly subjects, is discussed. PMID:17323822

  14. Methionine Sulfoxide Reductases Protect against Oxidative Stress in Staphylococcus aureus Encountering Exogenous Oxidants and Human Neutrophils

    PubMed Central

    Pang, Yun Yun; Schwartz, Jamie; Bloomberg, Sarah; Boyd, Jeffrey M; Horswill, Alexander R.; Nauseef, William M.

    2013-01-01

    To establish infection successfully, S. aureus must evade clearance by polymorphonuclear neutrophils (PMN). We studied the expression and regulation of the methionine sulfoxide reductases (Msr) that are involved in the repair of oxidized staphylococcal proteins and investigated their influence over the fate of S. aureus exposed to oxidants or PMN. We evaluated a mutant deficient in msrA1 and msrB for susceptibility to hydrogen peroxide, hypochlorous acid and PMN. The expression of msrA1 in wild-type bacteria ingested by human PMN was assessed by real-time PCR. The regulation of msr was studied by screening a library of two-component regulatory system (TCS) mutants for altered msr responses. Relative to the wild-type, bacteria deficient in Msr were more susceptible to oxidants and to PMN. Upregulation of staphylococcal msrA1 occurred within the phagosomes of normal PMN and PMN deficient in NADPH oxidase activity. Furthermore, PMN granule-rich extract stimulated the upregulation of msrA1. Modulation of msrA1 within PMN was shown to be partly dependent on the VraSR TCS. Msr contributes to staphylococcal responses to oxidative attack and PMN. Our study highlights a novel interaction between the oxidative protein repair pathway and the VraSR TCS that is involved in cell wall homeostasis. PMID:24247266

  15. Cellular and molecular remodeling of inguinal adipose tissue mitochondria by dietary methionine restriction.

    PubMed

    Patil, Yuvraj N; Dille, Kelly N; Burk, David H; Cortez, Cory C; Gettys, Thomas W

    2015-11-01

    Dietary methionine restriction (MR) produces a coordinated series of biochemical and physiological responses that improve biomarkers of metabolic health, increase energy expenditure, limit fat accretion and improve overall insulin sensitivity. Inguinal white adipose tissue (IWAT) is a primary target and site of action where the diet initiates transcriptional programs linked to enhancing both synthesis and oxidation of lipid. Using a combination of ex vivo approaches to assess dietary effects on cell morphology and function, we report that dietary MR produced a fourfold increase in multilocular, UCP1-expressing cells within this depot in conjunction with significant increases in mitochondrial content, size and cristae density. Dietary MR increased expression of multiple enzymes within the citric acid cycle, as well as respiratory complexes I, II and III. The physiological significance of these responses, evaluated in isolated mitochondria by high-resolution respirometry, was a significant increase in respiratory capacity measured using multiple substrates. The morphological, transcriptional and biochemical remodeling of IWAT mitochondria enhances the synthetic and oxidative capacity of this tissue and collectively underlies its expanded role as a significant contributor to the overall increase in metabolic flexibility and uncoupled respiration produced by the diet. PMID:26278039

  16. H2S protects against methionine-induced oxidative stress in brain endothelial cells.

    PubMed

    Tyagi, Neetu; Moshal, Karni S; Sen, Utpal; Vacek, Thomas P; Kumar, Munish; Hughes, William M; Kundu, Soumi; Tyagi, Suresh C

    2009-01-01

    Homocysteine (Hcy) causes cerebrovascular dysfunction by inducing oxidative stress. However, to date, there are no strategies to prevent Hcy-induced oxidative damage. Hcy is an H2S precursor formed from methionine (Met) metabolism. We aimed to investigate whether H2S ameliorated Met-induced oxidative stress in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to Met treatment in the presence or absence of NaHS (donor of H2S). Met-induced cell toxicity increased the levels of free radicals in a concentration-dependent manner. Met increased NADPH-oxidase-4 (NOX-4) expression and mitigated thioredxion-1(Trx-1) expression. Pretreatment of bEnd3 with NaHS (0.05 mM) attenuated the production of free radicals in the presence of Met and protected the cells from oxidative damage. Furthermore, NaHS enhanced inhibitory effects of apocynin, N-acetyl-l-cysteine (NAC), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), Nomega-nitro-l-arginine methyl ester (L-NAME) on ROS production and redox enzymes levels induced by Met. In conclusion, the administration of H2S protected the cells from oxidative stress induced by hyperhomocysteinemia (HHcy), which suggested that NaHS/H2S may have therapeutic potential against Met-induced oxidative stress. PMID:18837652

  17. Incorporation of Methionine Analogues Into Bombyx mori Silk Fibroin for Click Modifications.

    PubMed

    Teramoto, Hidetoshi; Kojima, Katsura

    2015-05-01

    Bombyx mori silk fibroin incorporating three methionine (Met) analogues-homopropargylglycine (Hpg), azidohomoalanine (Aha), and homoallylglycine (Hag)-can be produced simply by adding them to the diet of B. mori larvae. The Met analogues are recognized by methionyl-tRNA synthetase, bound to tRNA(Met), and used for the translation of adenine-uracil-guanine (AUG) codons competitively with Met. In the presence of the standard amount of Met in the diet, incorporation of these analogues remains low. Lowering the amount of Met in the diet drastically improves incorporation efficiencies. Alkyne and azide groups in Hpg and Aha incorporated into silk fibroin can be selectively modified with Cu-catalyzed azide-alkyne cycloaddition reactions (click chemistry). Since Met residues exist only at the N-terminal domain of the fibroin heavy chain and in the fibroin light chain, good access to the reactive sites is expected and domain-selective modifications are possible without perturbing other major domains, including repetitive domains. PMID:25644632

  18. Arabidopsis Peptide Methionine Sulfoxide Reductase2 Prevents Cellular Oxidative Damage in Long NightsW⃞

    PubMed Central

    Bechtold, Ulrike; Murphy, Denis J.; Mullineaux, Philip M.

    2004-01-01

    Peptide methionine sulfoxide reductase (PMSR) is a ubiquitous enzyme that repairs oxidatively damaged proteins. In Arabidopsis (Arabidopsis thaliana), a null mutation in PMSR2 (pmsr2-1), encoding a cytosolic isoform of the enzyme, exhibited reduced growth in short-day conditions. In wild-type plants, a diurnally regulated peak of total PMSR activity occurred at the end of the 16-h dark period that was absent in pmsr2-1 plants. This PMSR activity peak in the wild-type plant coincided with increased oxidative stress late in the dark period in the mutant. In pmsr2-1, the inability to repair proteins resulted in higher levels of their turnover, which in turn placed an increased burden on cellular metabolism. This caused increased respiration rates, leading to the observed higher levels of oxidative stress. In wild-type plants, the repair of damaged proteins by PMSR2 at the end of the night in a short-day diurnal cycle alleviates this potential burden on metabolism. Although PMSR2 is not absolutely required for viability of plants, the observation of increased damage to proteins in these long nights suggests the timing of expression of PMSR2 is an important adaptation for conservation of their resources. PMID:15031406

  19. Structure of a microsporidian methionine aminopeptidase type 2 complexed with fumagillin and TNP-470

    SciTech Connect

    Alvarado, J.; Nemkal, A; Sauder, J; Russell, M; Akiyoshi, D; Shi, W; Almo, S; Weiss, L

    2009-01-01

    Microsporidia are protists that have been reported to cause infections in both vertebrates and invertebrates. They have emerged as human pathogens particularly in patients that are immunosuppressed and cases of gastrointestinal infection, encephalitis, keratitis, sinusitis, myositis and disseminated infection are well described in the literature. While benzimidazoles are active against many species of microsporidia, these drugs do not have significant activity against Enterocytozoon bieneusi. Fumagillin and its analogues have been demonstrated to have activity in vitro and in animal models of microsporidiosis and human infections due to E. bieneusi. Fumagillin and its analogues inhibit methionine aminopeptidase type 2. Encephalitozoon cuniculi MetAP2 (EcMetAP2) was cloned and expressed as an active enzyme using a baculovirus system. The crystal structure of EcMetAP2 was determined with and without the bound inhibitors fumagillin and TNP-470. This structure classifies EcMetAP2 as a member of the MetAP2c family. The EcMetAP2 structure was used to generate a homology model of the E. bieneusi MetAP2. Comparison of microsporidian MetAP2 structures with human MetAP2 provides insights into the design of inhibitors that might exhibit specificity for microsporidian MetAP2.

  20. S-Adenosyl-L-methionine increases serum BUN and creatinine in cisplatin-treated mice.

    PubMed

    Ochoa, Bernardo; Bobadilla, Norma; Arrellín, Gerardo; Herrera, Luis A

    2009-01-01

    Cisplatin is an effective antineoplastic agent in the treatment of various solid tumors, although its full clinical utility is limited because of its renal toxicity. Several measures to protect the kidneys from cisplatin toxicity have been investigated and implemented in clinical trials; however, none of these were completely effective or without secondary effects. The aim of this study was to investigate S-adenosyl-L-methionine (SAM) as an agent that protects against cisplatin nephrotoxicity without affecting the antineoplastic activity of cisplatin. The cytotoxic effect was evaluated in cultured HeLa cells treated with cisplatin, SAM, and the combination cisplatin + SAM. No modification of the cytotoxic effect of cisplatin was induced by SAM. Similarly, SAM did not influence the antitumoral activity of cisplatin observed in HeLa cells implanted in nude mice. However, a significant increase in renal dysfunction was induced by SAM in animals treated with cisplatin. To our knowledge, this is the first report of a potential severe adverse effect of SAM administration, which should be considered for further evaluation due to the wide use of SAM as a nutritional supplement in humans. PMID:19064128

  1. Characterization of a S-adenosyl-l-methionine (SAM)-accumulating strain of Scheffersomyces stipitis.

    PubMed

    Križanović, Stela; Butorac, Ana; Mrvčić, Jasna; Krpan, Maja; Cindrić, Mario; Bačun-Družina, Višnja; Stanzer, Damir

    2015-06-01

    S-adenosyl-l-methionine (SAM) is an important molecule in the cellular metabolism of mammals. In this study, we examined several of the physiological characteristics of a SAM-accumulating strain of the yeast Scheffersomyces stipitis (M12), including SAM production, ergosterol content, and ethanol tolerance. S. stipitis M12 accumulated up to 52.48 mg SAM/g dry cell weight. Proteome analyses showed that the disruption of C-24 methylation in ergosterol biosynthesis, a step mediated by C-24 sterol methyltransferase (Erg6p), results in greater SAM accumulation by S. stipitis M12 compared to the wild-type strain. A comparative proteome-wide analysis identified 25 proteins that were differentially expressed by S. stipitis M12. These proteins are involved in ribosome biogenesis, translation, the stress response, ubiquitin-dependent catabolic processes, the cell cycle, ethanol tolerance, posttranslational modification, peroxisomal membrane stability, epigenetic regulation, the actin cytoskeleton and cell morphology, iron and copper homeostasis, cell signaling, and energy metabolism. PMID:26496619

  2. Hepatoprotective effects of lycopene on liver enzymes involved in methionine and xenobiotic metabolism in hyperhomocysteinemic rats.

    PubMed

    Yefsah-Idres, Aicha; Benazzoug, Yasmina; Otman, Amel; Latour, Alizée; Middendorp, Sandrine; Janel, Nathalie

    2016-06-15

    Hyperhomocysteinemia, defined by an increased plasma homocysteine level, is commonly associated with chronic liver diseases. A link between the elevated homocysteine level and oxidative stress has been demonstrated. Indeed the pathogenesis of liver diseases in the case of hyperhomocysteinemia could be due to this production of oxidative stress. Many studies have demonstrated the antioxidative properties of lycopene, a carotenoid. Therefore, the present study was designed to induce hyperhomocysteinemia in male Wistar rats in order to analyze the effect of lycopene supplementation on homocysteine metabolism, on phase I and phase II xenobiotic-metabolizing enzyme activities, and on liver injury by histological examination and analysis of biochemical markers. We found that rats with a high methionine diet showed abnormal histological features, with an increase of serum homocysteine, alanine aminotransferase and aspartate aminotransferase levels, decreased hepatic cystathionine beta synthase and S-adenosyl-homocysteine hydrolase activities and an increased hepatic malondialdehyde level. We demonstrated the reversal effect of lycopene supplementation on hyperhomocysteinemia. Taken together, these findings provide additional clues on the hepatoprotective effects of lycopene. PMID:27232443

  3. Crystal structure of dengue virus methyltransferase without S-adenosyl-L-methionine.

    PubMed

    Noble, Christian G; Li, Shi-Hua; Dong, Hongping; Chew, Sock Hui; Shi, Pei-Yong

    2014-11-01

    Flavivirus methyltransferase is a genetically-validated antiviral target. Crystal structures of almost all available flavivirus methyltransferases contain S-adenosyl-L-methionine (SAM), the methyl donor molecule that co-purifies with the enzymes. This raises a possibility that SAM is an integral structural component required for the folding of dengue virus (DENV) methyltransferase. Here we exclude this possibility by solving the crystal structure of DENV methyltransferase without SAM. The SAM ligand was removed from the enzyme through a urea-mediated denaturation-and-renaturation protocol. The crystal structure of the SAM-depleted enzyme exhibits a vacant SAM-binding pocket, with a conformation identical to that of the SAM-enzyme co-crystal structure. Functionally, equivalent enzymatic activities (N-7 methylation, 2'-O methylation, and GMP-enzyme complex formation) were detected for the SAM-depleted and SAM-containing recombinant proteins. These results clearly indicate that the SAM molecule is not an essential component for the correct folding of DENV methyltransferase. Furthermore, the results imply a potential antiviral approach to search for inhibitors that can bind to the SAM-binding pocket and compete against SAM binding. To demonstrate this potential, we have soaked crystals of DENV methyltransferase without a bound SAM with the natural product Sinefungin and show that preformed crystals are capable of binding ligands in this pocket. PMID:25241250

  4. The methionine precursor DL-2-hydroxy-(4-methylthio)butanoic acid protects intestinal epithelial barrier function.

    PubMed

    Martín-Venegas, Raquel; Brufau, M Teresa; Guerrero-Zamora, Ana Maria; Mercier, Yves; Geraert, Pierre-André; Ferrer, Ruth

    2013-12-01

    DL-2-hydroxy-(4-methylthio)butanoic acid (HMTBA) is a source of dietary methionine (Met) that is widely used in poultry nutrition. We have previously shown that HMTBA is preferentially diverted to the transsulfuration pathway, which gives antioxidant metabolites such as taurine and glutathione. Therefore, here we hypothesize that this Met source can protect epithelial barrier function in an in vitro model of intestinal inflammation of Caco-2 cells. The results show that HMTBA prevents the increase in paracellular permeability induced by H2O2 or tumour necrosis factor-α. This effect can be attributed to the increased production of taurine and reduced glutathione. Similar results were obtained for DL-Met, although the protective role of the amino acid was less pronounced than that of the hydroxy analogue. In conclusion, the diversion to the transsulfuration pathway means that this Met precursor is of greater value than previously thought, due to its capacity to improve intestinal homeostasis and the quality of poultry products destined for human consumption. PMID:23870881

  5. Dietary Methionine Restriction in Mice Elicits an Adaptive Cardiovascular Response to Hyperhomocysteinemia

    PubMed Central

    Ables, Gene P.; Ouattara, Amadou; Hampton, Thomas G.; Cooke, Diana; Perodin, Frantz; Augie, Ines; Orentreich, David S.

    2015-01-01

    Dietary methionine restriction (MR) in rodents increased lifespan despite higher heart-to-body weight ratio (w/w) and hyperhomocysteinemia, which are symptoms associated with increased risk for cardiovascular disease. We investigated this paradoxical effect of MR on cardiac function using young, old, and apolipoprotein E-deficient (ApoE-KO) mice. Indeed, MR animals exhibited higher heart-to-body weight ratio (w/w) and hyperhomocysteinemia with a molecular pattern consistent with cardiac stress while maintaining the integrity of cardiac structure. Baseline cardiac function, which was measured by non-invasive electrocardiography (ECG), showed that young MR mice had prolonged QRS intervals compared with control-fed (CF) mice, whereas old and ApoE-KO mice showed similar results for both groups. Following β-adrenergic challenge, responses of MR mice were either similar or attenuated compared with CF mice. Cardiac contractility, which was measured by isolated heart retrograde perfusion, was similar in both groups of old mice. Finally, the MR diet induced secretion of cardioprotective hormones, adiponectin and fibroblast growth factor 21 (FGF21), in MR mice with concomitant alterations in cardiac metabolic molecular signatures. Our findings demonstrate that MR diet does not alter cardiac function in mice despite the presence of hyperhomocysteinemia because of the adaptive responses of increased adiponectin and FGF21 levels. PMID:25744495

  6. Choline or methionine reverses impaired secretion of VLDL by hepatocytes from choline-deficient rats

    SciTech Connect

    Yao, Z.; Vance, D.E.

    1987-05-01

    Male rats fed a choline-deficient (CD) diet for three days accumulated triacylglycerol (TG) in the liver. Hepatocytes from these rats were cultured and maintained in a medium + choline. The rate of secretion of TG was reduced by 50% in the CD cells. Correspondingly, (/sup 3/H)oleate and (/sup 3/H)glycerol were incorporated at a 2-fold higher rate into TG secreted by choline-supplemented cells compared to CD cells. Isolation of lipoprotein fractions by ultracentrifugation showed that the reduced secretion of TG by CD hepatocytes was mainly due to an impaired secretion of very low density lipoprotein (VLDL). Incorporation of (/sup 3/H)leucine into secreted apoB/sub H/, apoB/sub L/ and apoE was markedly reduced in CD cells compared to choline-supplemented cells. Secretion of high density lipoprotein was not reduced in the CD hepatocytes. Normal secretion of VLDL was resumed upon addition of methionine to the CD cells.

  7. Mechanism of 1-Cys type methionine sulfoxide reductase A regeneration by glutaredoxin.

    PubMed

    Kim, Moon-Jung; Jeong, Jaeho; Jeong, Jihye; Hwang, Kwang Yeon; Lee, Kong-Joo; Kim, Hwa-Young

    2015-02-20

    Glutaredoxin (Grx), a major redox regulator, can act as a reductant of methionine sulfoxide reductase A (MsrA). However, the biochemical mechanisms involved in MsrA activity regeneration by Grx remain largely unknown. In this study, we investigated the regeneration mechanism of 1-Cys type Clostridium oremlandii MsrA (cMsrA) lacking a resolving Cys residue in a Grx-dependent assay. Kinetic analysis showed that cMsrA could be reduced by both monothiol and dithiol Grxs as efficiently as by in vitro reductant dithiothreitol. Our data revealed that the catalytic Cys sulfenic acid intermediate is not glutathionylated in the presence of the substrate, and that Grx instead directly formed a complex with cMsrA. Mass spectrometry analysis identified a disulfide bond between the N-terminal catalytic Cys of the active site of Grx and the catalytic Cys of cMsrA. This mixed disulfide bond could be resolved by glutathione. Based on these findings, we propose a model for regeneration of 1-Cys type cMsrA by Grx that involves no glutathionylation on the catalytic Cys of cMsrA. This mechanism contrasts with that of the previously known 1-Cys type MsrB. PMID:25600814

  8. QUANTIFICATION OF RESERVE POOL DOPAMINE IN METHIONINE SULFOXIDE REDUCTASE A NULL MICE

    PubMed Central

    Ortiz, Andrea N.; Oien, Derek B.; Moskovitz, Jackob; Johnson, Michael A.

    2012-01-01

    Methionine sulfoxide reductase A knockout (MsrA−/−) mice, which serve as a potential model for neurodegeneration, suffer from increased oxidative stress and have previously been found to have chronically elevated brain dopamine content levels relative to control mice. Additionally, these high levels parallel increased presynaptic dopamine release. In this work, fast-scan cyclic voltammetry at carbon-fiber microelectrodes was used to quantify striatal reserve pool dopamine in knockout mice and wild-type control mice. Reserve pool dopamine efflux, induced by amphetamine, was measured in brain slices from knockout and wild type mice in the presence of α-methyl-p-tyrosine, a dopamine synthesis inhibitor. Additionally, the stimulated release of reserve pool dopamine, mobilized by cocaine, was measured. Both efflux and stimulated release measurements were enhanced in slices from knockout mice, suggesting that these mice have greater reserve pool dopamine stores than wild-type and that these stores are effectively mobilized. Moreover, dopamine transporter labeling data indicate that the difference in measured dopamine efflux was likely not caused by altered dopamine transporter protein expression. Additionally, slices from MsrA−/− and wild-type mice were equally responsive to increasing extracellular calcium concentrations, suggesting that potential differences in either calcium entry or intracellular calcium handling are not responsible for increased reserve pool dopamine release. Collectively, these results demonstrate that MsrA−/− knockout mice maintain a larger dopamine reserve pool than wild-type control mice, and that this pool is readily mobilized. PMID:21219974

  9. Effects of excessive dietary methionine on oxidative stress and dyslipidemia in chronic ethanol-treated rats

    PubMed Central

    Kim, Seon-Young; Kim, Hyewon

    2015-01-01

    BACKGROUND/OBJECTIVE The aim of this study was to examine the effect of high dietary methionine (Met) consumption on plasma and hepatic oxidative stress and dyslipidemia in chronic ethanol fed rats. MATERIALS/METHODS Male Wistar rats were fed control or ethanol-containing liquid diets supplemented without (E group) or with DL-Met at 0.6% (EM1 group) or 0.8% (EM2 group) for five weeks. Plasma aminothiols, lipids, malondialdehyde (MDA), alanine aminotransferase (ALT), and aspartate aminotransferase were measured. Hepatic folate, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) were measured. RESULTS DL-Met supplementation was found to increase plasma levels of homocysteine (Hcy), triglyceride (TG), total cholesterol (TC), and MDA compared to rats fed ethanol alone and decrease plasma ALT. However, DL-Met supplementation did not significantly change plasma levels of HDL-cholesterol, cysteine, cysteinylglycine, and glutathione. In addition, DL-Met supplementation increased hepatic levels of folate, SAM, SAH, and SAM:SAH ratio. Our data showed that DL-Met supplementation can increase plasma oxidative stress and atherogenic effects by elevating plasma Hcy, TG, and TC in ethanol-fed rats. CONCLUSION The present results demonstrate that Met supplementation increases plasma oxidative stress and atherogenic effects by inducing dyslipidemia and hyperhomocysteinemia in ethanol-fed rats. PMID:25861420

  10. Peptide methionine sulfoxide reductase contributes to the maintenance of adhesins in three major pathogens.

    PubMed Central

    Wizemann, T M; Moskovitz, J; Pearce, B J; Cundell, D; Arvidson, C G; So, M; Weissbach, H; Brot, N; Masure, H R

    1996-01-01

    Pathogenic bacteria rely on adhesins to bind to host tissues. Therefore, the maintenance of the functional properties of these extracellular macromolecules is essential for the pathogenicity of these microorganisms. We report that peptide methionine sulfoxide reductase (MsrA), a repair enzyme, contributes to the maintenance of adhesins in Streptococcus pneumoniae, Neisseria gonorrhoeae, and Escherichia coli. A screen of a library of pneumococcal mutants for loss of adherence uncovered a MsrA mutant with 75% reduced binding to GalNAcbeta1-4Gal containing eukaryotic cell receptors that are present on type II lung cells and vascular endothelial cells. Subsequently, it was shown that an E. coli msrA mutant displayed decreased type I fimbriae-mediated, mannose-dependent, agglutination of erythrocytes. Previous work [Taha, M. K., So, M., Seifert, H. S., Billyard, E. & Marchal, C. (1988) EMBO J. 7, 4367-4378] has shown that mutants with defects in the pilA-pilB locus from N. gonorrhoeae were altered in their production of type IV pili. We show that pneumococcal MsrA and gonococcal PilB expressed in E. coli have MsrA activity. Together these data suggest that MsrA is required for the proper expression or maintenance of functional adhesins on the surfaces of these three major pathogenic bacteria. Images Fig. 2 Fig. 3 Fig. 4 PMID:8755589

  11. Incorporation of radiolabeled polyamines and methionine into turnip yellow mosaic virus in protoplasts from infected plants

    SciTech Connect

    Balint, R.; Cohen, S.S.

    1985-07-15

    Turnip yellow mosaic virus contains large amounts of nonexchangeable spermidine and induces an accumulation of spermidine in infected Chinese cabbage. By 7 days after inoculation, a majority of protoplasts isolated from newly emerging leaves stain with fluorescent antibody to the virus. (/sup 14/C)Spermidine (10 microM) was taken up by these cells in amounts comparable to the original endogenous pool within 24 hr. However, after an initial rise, the spermidine content of the cell returned to its original level, implying considerable regulation of the endogenous pool(s). Putrescine and spermine were major products of the metabolism of exogenous spermidine. Radioactivity from exogenous (/sup 14/C)spermidine was also readily incorporated into the ribonucleoprotein component(s) of the virus, where it appeared as both spermidine and spermine. The specific radioactivities of the viral polyamines were approximately twice those of spermidine and spermine extracted from the whole cell. Radioactivity from (2-/sup 14/C)methionine was readily incorporated into the protein, spermidine, and spermine of the virus. Again, the specific activities of these amines were substantially higher in the virus than in the whole cell. Thus, newly formed virus contained predominantly newly synthesized spermidine and spermine. However, inhibition of spermidine synthesis by dicyclohexylamine led to incorporation of preexisting spermidine and increased amounts of spermine into newly formed virus.

  12. Antisense inhibition of threonine synthase leads to high methionine content in transgenic potato plants.

    PubMed

    Zeh, M; Casazza, A P; Kreft, O; Roessner, U; Bieberich, K; Willmitzer, L; Hoefgen, R; Hesse, H

    2001-11-01

    Methionine (Met) and threonine (Thr) are members of the aspartate family of amino acids. In plants, their biosynthetic pathways diverge at the level of O-phosphohomo-serine (Ser). The enzymes cystathionine gamma-synthase and Thr synthase (TS) compete for the common substrate O-phosphohomo-Ser with the notable feature that plant TS is activated through S-adenosyl-Met, a metabolite derived from Met. To investigate the regulation of this branch point, we engineered TS antisense potato (Solanum tuberosum cv Désirée) plants using the constitutive cauliflower mosaic virus 35S promoter. In leaf tissues, these transgenics exhibit a reduction of TS activity down to 6% of wild-type levels. Thr levels are reduced to 45% wild-type controls, whereas Met levels increase up to 239-fold depending on the transgenic line and environmental conditions. Increased levels of homo-Ser and homo-cysteine indicate increased carbon allocation into the aspartate pathway. In contrast to findings in Arabidopsis, increased Met content has no detectable effect on mRNA or protein levels or on the enzymatic activity of cystathionine gamma-synthase in potato. Tubers of TS antisense potato plants contain a Met level increased by a factor of 30 and no reduction in Thr. These plants offer a major biotechnological advance toward the development of crop plants with improved nutritional quality. PMID:11706163

  13. Clonostachys rosea demethiolase STR3 controls the conversion of methionine into methanethiol

    PubMed Central

    Jia, Kai-Zhi; Zhang, Quan; Sun, Lin-Yang; Xu, Yang-Hua; Li, Hong-Mei; Tang, Ya-Jie

    2016-01-01

    Eukaryote-derived methioninase, catalyzing the one-step degradation of methionine (Met) to methanethiol (MTL), has received much attention for its low immunogenic potential and use as a therapeutic agent against Met-dependent tumors. Although biological and chemical degradation pathways for Met-MTL conversion are proposed, the concrete molecular mechanism for Met-MTL conversion in eukaryotes is still unclear. Previous studies demonstrated that α-keto-methylthiobutyric acid (KMBA), the intermediate for Met-MTL conversion, was located extracellularly and the demethiolase STR3 possessed no activities towards Met, which rule out the possibility of intracellular Met-MTL conversion pathway inside eukaryotes. We report here that degradation of Met resulted in intracellular accumulation of KMBA in Clonostachys rosea. Addition of Met to culture media led to the production of MTL and downregulation of STR3, while incubation of Met with surrogate substrate α-ketoglutaric acid enhanced the synthesis of MTL and triggered the upregulation of STR3. Subsequent biochemical analysis with recombinant STR3 showed that STR3 directly converted both Met and its transamination product KMBA to MTL. These results indicated that STR3 as rate-limiting enzyme degrades Met and KMBA into MTL. Our findings suggest STR3 is a potential target for therapeutic agents against Met-dependent tumors and aging. PMID:26902928

  14. Clonostachys rosea demethiolase STR3 controls the conversion of methionine into methanethiol.

    PubMed

    Jia, Kai-Zhi; Zhang, Quan; Sun, Lin-Yang; Xu, Yang-Hua; Li, Hong-Mei; Tang, Ya-Jie

    2016-01-01

    Eukaryote-derived methioninase, catalyzing the one-step degradation of methionine (Met) to methanethiol (MTL), has received much attention for its low immunogenic potential and use as a therapeutic agent against Met-dependent tumors. Although biological and chemical degradation pathways for Met-MTL conversion are proposed, the concrete molecular mechanism for Met-MTL conversion in eukaryotes is still unclear. Previous studies demonstrated that α-keto-methylthiobutyric acid (KMBA), the intermediate for Met-MTL conversion, was located extracellularly and the demethiolase STR3 possessed no activities towards Met, which rule out the possibility of intracellular Met-MTL conversion pathway inside eukaryotes. We report here that degradation of Met resulted in intracellular accumulation of KMBA in Clonostachys rosea. Addition of Met to culture media led to the production of MTL and downregulation of STR3, while incubation of Met with surrogate substrate α-ketoglutaric acid enhanced the synthesis of MTL and triggered the upregulation of STR3. Subsequent biochemical analysis with recombinant STR3 showed that STR3 directly converted both Met and its transamination product KMBA to MTL. These results indicated that STR3 as rate-limiting enzyme degrades Met and KMBA into MTL. Our findings suggest STR3 is a potential target for therapeutic agents against Met-dependent tumors and aging. PMID:26902928

  15. Fungal cobalamin-independent methionine synthase: Insights from the model organism, Neurospora crassa.

    PubMed

    Wheatley, Robert W; Ng, Kenneth K S; Kapoor, Manju

    2016-01-15

    Two families of methionine synthases, distinct in catalytic and structural features, have been encountered: MetH, the cobalamin-dependent enzyme and MetE, the cobalamin-independent form. The MetE family is of mechanistic interest due to the chemically challenging nature of the reaction and is a potential target for antifungal therapeutics since the human genome encodes only MetH. Here we report the identification, purification, and crystal structure of MetE from the filamentous fungus Neurospora crassa (ncMetE). ncMetE was highly thermostable and crystallized readily, making it ideal for study. Crystal structures of native ncMetE in complex with either Zn(2+)or Cd(2+) were solved at resolution limits of 2.10 Å and 1.88 Å, respectively. The monomeric protein contains two domains, each containing a (βα)8 barrel core, and a long α-helical segment spans the length of the protein, connecting the domains. Zn(2+) bound in the C-terminal domain exhibits tetrahedral coordination with the side chains of His 652, Cys 654, Glu 676 and Cys 737. A Cd(2+) replete structure revealed a supermetalated enzyme and demonstrated the inate flexibility of the metal binding site. An extensive analysis of sequence conservation within the MetE family identified 57 highly conserved residues and 60 additional residues that were conserved in all fungal sequences examined. PMID:26657067

  16. S-adenosyl-L-methionine and lead intoxication: its therapeutic effect varying the route of administration

    SciTech Connect

    Paredes, S.R.; Fukuda, H.; Kozicki, P.A.; Rossetti, M.V.; Conti, H.; Batlle, A.M.

    1986-12-01

    A comparative study on the effect of oral and subcutaneous (sc) or intravenous (iv) administration of S-adenosyl-L-methionine (SAM) in lead poisoning was carried out. SAM was given daily sc (20 mg/kg) and orally (80 mg/kg) to acute lead-intoxicated mice for 20 days. Chronic lead-poisoned patients received SAM, administered intravenously at a daily dose of 12 mg/kg or orally at a dose of 25-30 mg/kg. Independent of the method of administration in either animals or patients, GSH concentration in reduced lead intoxication was increased after SAM dosing. Corresponding blood lead content rapidly decreased and a significant recovery of hepatic and erythrocytic delta-aminolevulinate dehydratase (ALA-D), initially reduced, was clearly produced in the groups receiving SAM, although the response was slightly slower when SAM was given orally. It was found that the bulk of body lead burden was excreted in the feces, showing a peak within the first 24-48 hr and being much greater in animals treated with SAM. In these cases, urinary lead excretion was very low. Lead ALA-D inhibition was also evidenced by elevated urinary excretion of delta-aminolevulinic acid (ALA), porphobilinogen (PBG), and porphyrins. During treatment, precursors and porphyrins elimination declined, reaching normal levels soon after therapy ended. A good correlation between the recovery of both GSH levels and ALA-D activity and decreased lead content was observed.

  17. Recombinant methionine aminopeptidase protein of Babesia microti: immunobiochemical characterization as a vaccine candidate against human babesiosis.

    PubMed

    Munkhjargal, Tserendorj; Yokoyama, Naoaki; Igarashi, Ikuo

    2016-09-01

    Human babesiosis is the most important zoonotic protozoan infection in the world. This is the first report of the cloning, expression, purification, and immunobiochemical characterization of a methionine aminopeptidase 1 (MetAP1) protein from Babesia microti (B. microti). The gene encodes a MetAP1 protein of B. microti (BmMetAP1) of approximately 66.8 kDa that includes glutathione S-transferase (GST) tag and shows MetAP activity. BmMetAP1 was detected in a lysate of B. microti and further localized in cytoplasm of the B. microti merozoite. rBmMetAP1 was found to be immunogenic, eliciting a high antibody titer in mice. Moreover, rBmMetAP1 stimulated the production of IFN-γ and IL-12 but not IL-4. Finally, rBmMetAP1 was able to provide considerable protection to mice against a B. microti challenge infection based on a reduction in peak parasitemia levels and earlier clearance of the parasite as compared with control mice. Taken together, these results suggest that rBmMetAP1 confers significant protection against experimental B. microti infection and might be considered a potential vaccine target against human babesiosis. PMID:27306898

  18. Methionine hydroxy analogue enhanced fish immunity via modulation of NF-κB, TOR, MLCK, MAPKs and Nrf2 signaling in young grass carp (Ctenopharyngodon idella).

    PubMed

    Pan, Fei-Yu; Feng, Lin; Jiang, Wei-Dan; Jiang, Jun; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Tang, Wu-Neng; Zhang, Yong-An; Zhou, Xiao-Qiu; Liu, Yang

    2016-09-01

    Our study investigated the effect of dietary methionine hydroxy analogue (MHA) on growth and immunity (head kidney, spleen and skin) of young grass carp (Ctenopharyngodon idella). A total of 630 grass carp (259.70 ± 0.47 g) were fed graded levels of MHA (0, 2.4, 4.4, 6.4, 8.5 and 10.5 g/kg diet) and one dl-methionine (DLM) group (6.4 g/kg diet) for 8 weeks. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila for 14 days. The results indicated that optimal MHA increased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents and up-regulated mRNA levels of liver expressed antimicrobial peptide 2, hepcidin (head kidney), β-defensin-1 in the immune organs (P < 0.05), suggesting that MHA could enhance antimicrobial ability of fish. Meanwhile, optimal MHA enhanced the immune function of immune organs via down-regulating pro-inflammatory cytokines mRNA levels and up-regulated anti-inflammatory cytokines mRNA levels, which might be attributed to the down-regulation of nuclear factor κB p65, c-Rel, IκB kinase β, p38 mitogen activated protein kinase, eIF4E-binding protein1 (4E-BP1) and 4E-BP2 mRNA levels and up-regulation of inhibitor of κBα, ribosomal protein S6 kinase 1 and target of rapamycin mRNA levels (P < 0.05). In addition, optimal MHA improved cellular structure integrity of immune organs via repressing death receptor and mitochondria pathways induced apoptosis, which might be related to the down-regulation of c-Jun-N-terminal kinase mRNA levels (P < 0.05). Simultaneously, optimal MHA improved cellular structure integrity of immune organs via elevating glutathione contents, antioxidant enzymes activities and corresponding isoforms mRNA levels to attenuate oxidative damage, which might be to the up-regulation of NF-E2-related factor 2 mRNA levels and down-regulation of Kelch-like ECH-associating protein 1a mRNA levels (P < 0.05). Besides, optimal MHA improved

  19. Co-expression of glutathione S-transferase with methionine aminopeptidase: a system of producing enriched N-terminal processed proteins in Escherichia coli.

    PubMed Central

    Hwang, D D; Liu, L F; Kuan, I C; Lin, L Y; Tam, T C; Tam, M F

    1999-01-01

    We describe here an Escherichia coli expression system that produces recombinant proteins enriched in the N-terminal processed form, by using glutathione S-transferase cGSTM1-1 and rGSTT1-1 as models, where c and r refer to chick and rat respectively. Approximately 90% of the cGSTM1-1 or rGSTT1-1 overexpressed in E. coli under the control of a phoA promoter retained the initiator methionine residue that was absent from the mature isoenzymes isolated from tissues. The amount of initiator methionine was decreased to 40% of the expressed cGSTM1-1 when the isoenzyme was co-expressed with an exogenous methionine aminopeptidase gene under the control of a separate phoA promoter. The recombinant proteins expressed were mainly methionine aminopeptidase. The yield of cGSTM1-1 was decreased to 10% of that expressed in the absence of the exogenous methionine aminopeptidase gene. By replacing the phoA with its natural promoter, the expression of methionine aminopeptidase decreased drastically. The yield of the co-expressed cGSTM1-1 was approx. 60% of that in the absence of the exogenous methionine aminopeptidase gene; approx. 65% of the initiator methionine residues were removed from the enzyme. Under similar conditions, N-terminal processing was observed in approx. 70% of the recombinant rGSTT1-1 expressed. By increasing the concentration of phosphate in the growth medium, the amount of initiator methionine on cGSTM1-1 was decreased to 14% of the overexpressed isoenzymes, whereas no further improvement could be observed for rGSTT1-1. The initiator methionine residue does not affect the enzymic activities of either cGSTM1-1 or rGSTT1-1. However, the epoxidase activity and the 4-nitrobenzyl chloride-conjugating activity of the purified recombinant rGSTT1-1 are markedly higher that those reported recently for the same isoenzyme isolated from rat livers. PMID:10024508

  20. Mechanistic Diversity in the RuBisCO Superfamily: The Enolase in the Methionine

    SciTech Connect

    Imker,H.; Fedorov, A.; Fedorov, E.; Almo, S.; Gerlt, J.

    2007-01-01

    D-Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO), the most abundant enzyme, is the paradigm member of the recently recognized mechanistically diverse RuBisCO superfamily. The RuBisCO reaction is initiated by abstraction of the proton from C3 of the D-ribulose 1,5-bisphosphate substrate by a carbamate oxygen of carboxylated Lys 201 (spinach enzyme). Heterofunctional homologues of RuBisCO found in species of Bacilli catalyze the tautomerization ('enolization') of 2,3-diketo-5-methylthiopentane 1-phosphate (DK-MTP 1-P) in the methionine salvage pathway in which 5-methylthio-D-ribose (MTR) derived from 5'-methylthioadenosine is converted to methionine [Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO, Science 302, 286-290]. The reaction catalyzed by this 'enolase' is accomplished by abstraction of a proton from C1 of the DK-MTP 1-P substrate to form the tautomerized product, a conjugated enol. Because the RuBisCO- and 'enolase'-catalyzed reactions differ in the regiochemistry of proton abstraction but are expected to share stabilization of an enolate anion intermediate by coordination to an active site Mg{sup 2+}, we sought to establish structure-function relationships for the 'enolase' reaction so that the structural basis for the functional diversity could be established. We determined the stereochemical course of the reaction catalyzed by the 'enolases' from Bacillus subtilis and Geobacillus kaustophilus. Using stereospecifically deuterated samples of an alternate substrate derived from D-ribose (5-OH group instead of the 5-methylthio group in MTR) as well as of the natural DK-MTP 1-P substrate, we determined that the 'enolase'-catalyzed reaction involves abstraction of the 1-proS proton. We also determined the structure of the activated 'enolase' from G. kaustophilus (carboxylated on Lys 173) liganded with Mg{sup 2+} and 2

  1. Myeloperoxidase-mediated Methionine Oxidation Promotes an Amyloidogenic Outcome for Apolipoprotein A-I*

    PubMed Central

    Chan, Gary K. L.; Witkowski, Andrzej; Gantz, Donald L.; Zhang, Tianqi O.; Zanni, Martin T.; Jayaraman, Shobini; Cavigiolio, Giorgio

    2015-01-01

    High plasma levels of apolipoprotein A-I (apoA-I) correlate with cardiovascular health, whereas dysfunctional apoA-I is a cause of atherosclerosis. In the atherosclerotic plaques, amyloid deposition increases with aging. Notably, apoA-I is the main component of these amyloids. Recent studies identified high levels of oxidized lipid-free apoA-I in atherosclerotic plaques. Likely, myeloperoxidase (MPO) secreted by activated macrophages in atherosclerotic lesions is the promoter of such apoA-I oxidation. We hypothesized that apoA-I oxidation by MPO levels similar to those present in the artery walls in atherosclerosis can promote apoA-I structural changes and amyloid fibril formation. ApoA-I was exposed to exhaustive chemical (H2O2) oxidation or physiological levels of enzymatic (MPO) oxidation and incubated at 37 °C and pH 6.0 to induce fibril formation. Both chemically and enzymatically oxidized apoA-I produced fibrillar amyloids after a few hours of incubation. The amyloid fibrils were composed of full-length apoA-I with differential oxidation of the three methionines. Met to Leu apoA-I variants were used to establish the predominant role of oxidation of Met-86 and Met-148 in the fibril formation process. Importantly, a small amount of preformed apoA-I fibrils was able to seed amyloid formation in oxidized apoA-I at pH 7.0. In contrast to hereditary amyloidosis, wherein specific mutations of apoA-I cause protein destabilization and amyloid deposition, oxidative conditions similar to those promoted by local inflammation in atherosclerosis are sufficient to transform full-length wild-type apoA-I into an amyloidogenic protein. Thus, MPO-mediated oxidation may be implicated in the mechanism that leads to amyloid deposition in the atherosclerotic plaques in vivo. PMID:25759391

  2. Effects of zinc-methionine on growth performance, intestinal flora and immune function in pigeon squabs.

    PubMed

    Wang, Y; Yi, L; Zhao, M L; Wu, J Q; Wang, M Y; Cheng, X C

    2014-01-01

    1. Different concentrations of zinc-methionine (Zn-Met) were given to pigeon squabs, and the resulting effects on growth, immune functions and intestinal microflora were investigated from hatching to 28 d of age. A total of 180 artificially hatched pigeon squabs were randomly allotted to each of three treatments with three replicates of 20 squabs. The three treatments given were either one ml (2 mg/ml) Zn-Met, one ml (10 mg/ml) Zn-Met or one ml 0.9% NaCl solution. 2. The results showed that Zn-Met improved the growth performance of squabs. The average daily and average weekly weight gain was significantly greater in squabs treated with Zn-Met than in the control group. 3. The group given 2 and 10 mg supplemental Zn-Met had heavier thymus, spleen and bursa of Fabricius than the control group at d 28. 4. Maternal antibody titres against Newcastle disease haemagglutination inhibition and alpha-naphthyl acetate esterase were significantly higher in squabs treated with supplemental 2 and 10 mg Zn-Met compared to the control group at d 14 and d 28. 5. Additionally, the squabs given supplemental 2 mg Zn-Met exhibited significantly higher Bacillaceae, Lactobacillus, Enterococcus and Bifidobacterium populations at d 14 and d 28, but lower Escherichia coli populations at d 28 compared to the control group. On the contrary, Lactobacillus, Enterococcus and Bifidobacterium populations were significantly decreased with 10 mg Zn-Met at d 28. 6. This study indicates that supplementation with Zn-Met has a positive effect on growth performance, immune function and regulation of intestinal flora in pigeons. An inclusion level of 2 mg seems to be better than 10 mg Zn-Met per day per bird. PMID:24784175

  3. Methionine Ligand Interaction in a Blue Copper Protein Characterized by Site-Selective Infrared Spectroscopy.

    PubMed

    Le Sueur, Amanda L; Schaugaard, Richard N; Baik, Mu-Hyun; Thielges, Megan C

    2016-06-01

    The reactivity of metal sites in proteins is tuned by protein-based ligands. For example, in blue copper proteins such as plastocyanin (Pc), the structure imparts a highly elongated bond between the Cu and a methionine (Met) axial ligand to modulate its redox properties. Despite extensive study, a complete understanding of the contribution of the protein to redox activity is challenged by experimentally accessing both redox states of metalloproteins. Using infrared (IR) spectroscopy in combination with site-selective labeling with carbon-deuterium (C-D) vibrational probes, we characterized the localized changes at the Cu ligand Met97 in the oxidized and reduced states, as well as the Zn(II) or Co(II)-substituted, the pH-induced low-coordinate, the apoprotein, and the unfolded states. The IR absorptions of (d3-methyl)Met97 are highly sensitive to interaction of the sulfur-based orbitals with the metal center and are demonstrated to be useful reporters of its modulation in the different states. Unrestricted Kohn-Sham density functional theory calculations performed on a model of the Cu site of Pc confirm the observed dependence. IR spectroscopy was then applied to characterize the impact of binding to the physiological redox partner cytochrome (cyt) f. The spectral changes suggest a slightly stronger Cu-S(Met97) interaction in the complex with cyt f that has potential to modulate the electron transfer properties. Besides providing direct, molecular-level comparison of the oxidized and reduced states of Pc from the perspective of the axial Met ligand and evidence for perturbation of the Cu site properties by redox partner binding, this study demonstrates the localized spatial information afforded by IR spectroscopy of selectively incorporated C-D probes. PMID:27164303

  4. Divergent evolution of an atypical S-adenosyl-l-methionine-dependent monooxygenase involved in anthracycline biosynthesis.

    PubMed

    Grocholski, Thadée; Dinis, Pedro; Niiranen, Laila; Niemi, Jarmo; Metsä-Ketelä, Mikko

    2015-08-11

    Bacterial secondary metabolic pathways are responsible for the biosynthesis of thousands of bioactive natural products. Many enzymes residing in these pathways have evolved to catalyze unusual chemical transformations, which is facilitated by an evolutionary pressure promoting chemical diversity. Such divergent enzyme evolution has been observed in S-adenosyl-L-methionine (SAM)-dependent methyltransferases involved in the biosynthesis of anthracycline anticancer antibiotics; whereas DnrK from the daunorubicin pathway is a canonical 4-O-methyltransferase, the closely related RdmB (52% sequence identity) from the rhodomycin pathways is an atypical 10-hydroxylase that requires SAM, a thiol reducing agent, and molecular oxygen for activity. Here, we have used extensive chimeragenesis to gain insight into the functional differentiation of RdmB and show that insertion of a single serine residue to DnrK is sufficient for introduction of the monooxygenation activity. The crystal structure of DnrK-Ser in complex with aclacinomycin T and S-adenosyl-L-homocysteine refined to 1.9-Å resolution revealed that the inserted serine S297 resides in an α-helical segment adjacent to the substrate, but in a manner where the side chain points away from the active site. Further experimental work indicated that the shift in activity is mediated by rotation of a preceding phenylalanine F296 toward the active site, which blocks a channel to the surface of the protein that is present in native DnrK. The channel is also closed in RdmB and may be important for monooxygenation in a solvent-free environment. Finally, we postulate that the hydroxylation ability of RdmB originates from a previously undetected 10-decarboxylation activity of DnrK. PMID:26216966

  5. Manipulation of dietary methionine+cysteine and threonine in broilers significantly decreases environmental nitrogen excretion.

    PubMed

    Donato, D C Z; Sakomura, N K; Silva, E P; Troni, A R; Vargas, L; Guagnoni, M A N; Meda, B

    2016-06-01

    The intensification of livestock have increased the emission of pollutants to the environment, leading to a growing interest in seeking strategies that minimise these emissions. Studies have shown that it is possible to manipulate diets by reducing CP levels and thus reducing nitrogen (N) excretion, without compromising performance. However, there is no knowledge of any study that has focused on reducing N excretion and relating this reduction to individual amino acids. This study investigated the effect of dietary methionine+cysteine (MC) and threonine (THR), the two most limiting amino acids for broiler production, on nitrogen excretion (NE) and nitrogen deposition (ND) and determined the efficiency of utilisation of both amino acids for protein deposition. Six trials were conducted to measure the NE and ND in broiler chickens during three rearing phases in response to dietary amino acid. The efficiency of utilisation of the amino acids was calculated by linear regression of body protein deposition and the amino acid intake. Despite the differences between sexes and phases, the efficiency of utilisation was the same, being 0.60 and 0.59 for MC and THR, respectively. The rate of NE behaved exponentially, increasing with amino acid intake, and can exceed 50% of N intake, being higher than ND. On average, for a reduction in intake of each unit of MC or THR (mg) there is a reduction of 0.5% of NE. Although this reduction seems low, considering that it corresponds to changes in one amino acid only, the impact on a large scale would be significant. Knowledge of how animals respond to NE and ND/protein deposition according to amino acid dietary content may represent new efforts towards reducing the impact on environment. PMID:27076031

  6. The impact of methionine source on poultry fecal matter odor volatiles.

    PubMed

    Chavez, C; Coufal, C D; Lacey, R E; Carey, J B

    2004-03-01

    To determine the impact of Met source on volatile compounds of broiler excreta, 2 trials were conducted using straight-run broiler chicks that were randomly distributed in battery cages with 3 replicate pens of 16 birds each. The treatment groups were 1) dry Met hydroxy analogue (52% Met activity), 2) sodium methioninate aqueous solution (45.9% Met activity), 3) liquid Met hydroxy analogue (88% Met activity), 4) DL-Met, (98% Met activity), and 5) no supplemental Met. All starter diets were formulated to contain 3,135 kcal of ME/kg, 23% crude protein, and 0.8% total Met activity and otherwise met NRC nutrient requirements. Diets were fed ad libitum from d 1 to termination of the study (5 to 6 wk). Feed consumption and feed conversion were measured daily, and all birds were weighed weekly. There were no significant differences in BW, feed consumption, or feed conversion among the treatments in either trial. All excreta were collected in litter pans daily lined with aluminum foil. Litter pans for each pen were individually transferred to a separate room for weekly odor volatile analysis. An electronic nose was used to capture 3 to 4 air samples from various locations for each pan of broiler excreta resulting in a total of 10 air samples from each treatment group. All data taken from the electronic nose were evaluated using analysis of variance. Results indicated that there were significant differences in volatiles in the broiler excreta for all treatment groups. These data indicate that different Met sources may result in the production of different odor-related compounds in broiler excreta. PMID:15049487

  7. S-adenosyl-L-methionine prevents and reverses erythrocyte membrane alterations in cirrhosis.

    PubMed

    Muriel, P

    1993-01-01

    Transmethylation is an important means of altering the biological activity of a wide variety of compounds. In human and experimental CCl4-liver cirrhosis the intrahepatic content of S-adenosyl-L-methionine (SAM), an active methyl donor, and the SAM-transmethylase activity are markedly reduced. Previously, it has been reported that SAM administration preserves hepatocyte plasma membrane Na+/K(+)-ATPase and Ca(2+)-ATPase activities in cirrhotic rats. Therefore, the aim of this work was to study the effect of SAM administration on the membrane lipid composition and the ATPase activity on erythrocytes derived from CCl4-cirrhotic rats. Male Wistar rats were used in these experiments. In group 1, cirrhosis was induced by i.p. administration of CCl4. Animals of group 2 received, in addition to CCl4, three daily doses of SAM (20 mg kg-1, i.m.). Group 3 consisted of cirrhotic animals that, after 8 weeks of CCl4 treatment, received SAM (20 mg kg-1, i.m., three times daily) for 4 weeks without discontinuation of CCl4. Group 4 included animals treated with SAM alone. Seventy-two hours after the end of treatment the rats were anaesthetized, blood was collected by heart puncture and the erythrocyte plasma membranes were isolated. The Na+/K(+)- and (Ca2+ +Mg2+)-ATPase activities and the cholesterol (CH) and phospholipid (PL) contents were determined in the plasma membranes. The Na+/K(+)- and Ca(2+)-ATPase activities were both significantly decreased (twofold) in the CCl4-treated group as compared to controls. Administration of SAM completely prevented this fall in both ATPases. In group 4, the Na+/K(+)-ATPase activity was partially restored but the Ca(2+)-ATPase activity was completely restored.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8392094

  8. Prevention of aneuploidy by S-adenosyl-methionine in human cells treated with sodium arsenite.

    PubMed

    Ramírez, Tzutzuy; Stopper, Helga; Hock, Robert; Herrera, Luis A

    2007-04-01

    Alterations in methyl group's metabolism affect availability of S-adenosyl-L-methionine (SAM); these modifications can be originated by enzyme polymorphisms, nutritional deficiencies, and exposure to chemical agents. There are several types of chemicals that interfere with methyl groups, among them is arsenic. It deserves special attention because it modifies a number of cell functions that influence the development of diseases such as cancer. Since part of arsenic's toxicity is influenced by changes on SAM availability, in a previous study we investigated whether exogenous addition of SAM to cells treated with sodium arsenite (NaAsO(2)) has an effect on its genotoxicity. Results demonstrated that SAM reduces the frequency of cells presenting micronuclei (MN) and tubulin-cytoskeleton defects after treatment with NaAsO(2). MN are fragments of the cell nucleus that may contain whole chromosomes or chromosome fragments depending on whether they derive either from the aneugenic or from the clastogenic action of chemicals. Therefore one question generated by these results was whether SAM reduced only the frequency MN resulting from aneugenic damage. To answer this question, in the present work we used an all-centromere DNA probe to distinguish the type of MN reduced by SAM after treatment with NaAsO(2) and vinblastine. In addition, the capacity of SAM to reduce clastogenicity was also evaluated. Results show that SAM decreases the frequency of cells with MN containing whole chromosomes in cultures treated either with NaAsO(2) or with vinblastine; however, induction of double-strand breaks by NaAsO(2) was not prevented by SAM. PMID:17241646

  9. Functional variant in methionine synthase reductase intron-1 is associated with pleiotropic congenital malformations.

    PubMed

    Cheng, Haiqin; Li, Huili; Bu, Zhaoli; Zhang, Qin; Bai, Baoling; Zhao, Hong; Li, Ren-Ke; Zhang, Ting; Xie, Jun

    2015-09-01

    Congenital malformations, such as neural tube defects (NTDs) and congenital heart disease (CHD), cause significant fetal mortality and childhood morbidity. NTDs are a common congenital anomaly, and are typically induced by higher maternal homocysteine (Hcy) levels and abnormal folate metabolism. The gene encoding methionine synthase reductase (MTRR) is essential for adequate remethylation of Hcy. Previous studies have focused on the coding region of genes involved in one-carbon metabolism, but recent research demonstrates that an allelic change in a non-coding region of MTRR (rs326119) increases the risk of CHD. We hypothesized that this variant might contribute to the etiology of NTDs as well, based on a common role during early embryogenesis. In the present study, 244 neural tube defect cases and 407 controls from northern China were analyzed to determine any association (by χ (2) test) between rs326119 and disease phenotypes. Significant increased risk of anencephaly was seen in MTRR variant rs326119 heterozygote (het) and homozygote (hom) individuals [odds ratios (OR)het = 1.81; ORhom = 2.05)]. Furthermore, this variant was also a risk factor for congenital malformations of the adrenal gland (OR = 1.85), likely due to multiple systemic malformations in the NTDs case population. Our present data indicate that the rs326119 non-coding variant of MTRR has a pleiotropic effect on the development of multiple tissues, especially during early stages in utero. This suggests the allelic state of MTRR is a significant clinical factor affecting Hcy levels and optimal folic supplementation. PMID:26045171

  10. Long-term methionine-diet induced mild hyperhomocysteinemia associated cardiac metabolic dysfunction in multiparous rats

    PubMed Central

    Song, Su; Kertowidjojo, Elizabeth; Ojaimi, Caroline; Martin-Fernandez, Beatriz; Kandhi, Sharath; Wolin, Michael; Hintze, Thomas H

    2015-01-01

    Mild hyperhomocysteinemia (HHcy, clinically defined as less than 30 μmol/L) is an independent cardiovascular disease (CVD) risk factor, and is associated with many complications during pregnancy, such as preeclampsia (PE). The aim of this study was to assess the effect of long-term mild HHcy on cardiac metabolic function of multiparous rats. Female rats were mated 3 to 4 times and were fed with methionine in drinking water to increase plasma Hcy (2.9 ± 0.3 to 10.5 ± 2.3 μmol/L) until termination. This caused significant increase of heart weight/body weight (0.24 ± 0.01 to 0.27 ± 0.01 g/100 g) and left ventricle weight (0.69 ± 0.03 to 0.78 ± 0.01 g). Superoxide production was increased by 2.5-fold in HHcy hearts using lucigenin chemiluminescence. The ability of bradykinin and carbachol to regulate myocardial oxygen consumption (MVO2) in vitro was impaired by 59% and 66% in HHcy heart, and it was restored by ascorbic acid (AA), tempol, or apocynin (Apo). Protein expression of p22phox subunit of NAD(P)H oxidase was increased by 2.6-fold, but there were no changes in other NAD(P)H oxidase subunits, NOSs or SODs. Microarray revealed 1518 genes to be differentially regulated (P < 0.05). The mRNA level of NAD(P)H oxidase subunits, NOSs or SODs remained unchanged. In conclusion, long-term mild HHcy increases cardiac superoxide mainly through regulation of p22phox component of the NAD(P)H oxidase and impairs the ability of NO to regulate MVO2 in heart of multiparous mothers. PMID:26009634

  11. Methionine synthetase activity of human lymphocytes both replete in and depleted of vitamin B12.

    PubMed

    Hall, C A; Begley, J A; Chu, R C

    1986-10-01

    The activity of the enzyme methionine synthetase (MS) (methyltetrahydrofolate:homocysteine methyltransferase) (EC 2.1.1.13) was measured in human lymphocytes of various types and cobalamin (vitamin B12) status. Total and holo MS activity was low in unstimulated peripheral blood lymphocytes from persons with tissue deficiency of cobalamin, but not in cells from those with low serum cobalamin levels for other reasons. The MS activity of the lymphocyte was increased by treatment of the patients with vitamin B12. The number of lymphocytes was often low or low normal in the circulation of those deficient in cobalamin. Holo MS activity was low in an established line of human B cells, RPMI 6410 cells, depleted of cobalamin. The total and holo MS activity of both RPMI 6410 cells, replete or depleted, and lymphocytes stimulated in culture was increased by cobalamin in vitro; 222 nmol/L free cobalamin was roughly the equivalent of 0.22 nmol/L cobalamin bound to transcobalamin II. Both lymphocytes and RPMI 6410 cells required folate for growth and could meet these needs via methylfolate, homocysteine, and the cobalamin-dependent MS reaction. Depleted RPMI 6410 cells, however, used cobalamin in some way in addition to the provision of available folate from methylfolate. The consequences of the reduced MS activity in deficient cells could include a reduction in available folate with diminished capacity for clonal expansion of lymphocytes in reaction to infection and impairment of essential methylations including those of protein synthesis. The prompt induction of MS activity by cobalamin, especially in the in vitro model, suggests an effect of therapeutic vitamin B12 well in advance of the numerical increase in cells of the blood. PMID:3760673

  12. GNMT expression increases hepatic folate contents and folate-dependent methionine synthase-mediated homocysteine remethylation.

    PubMed

    Wang, Yi-Cheng; Chen, Yi-Ming; Lin, Yan-Jun; Liu, Shih-Ping; Chiang, En-Pei Isabel

    2011-01-01

    Glycine N-methyltransferase (GNMT) is a major hepatic enzyme that converts S-adenosylmethionine to S-adenosylhomocysteine while generating sarcosine from glycine, hence it can regulate mediating methyl group availability in mammalian cells. GNMT is also a major hepatic folate binding protein that binds to, and, subsequently, may be inhibited by 5-methyltetrafolate. GNMT is commonly diminished in human hepatoma; yet its role in cellular folate metabolism, in tumorigenesis and antifolate therapies, is not understood completely. In the present study, we investigated the impacts of GNMT expression on cell growth, folate status, methylfolate-dependent reactions and antifolate cytotoxicity. GNMT-diminished hepatoma cell lines transfected with GNMT were cultured under folate abundance or restriction. Folate-dependent homocysteine remethylation fluxes were investigated using stable isotopic tracers and gas chromatography/mass spectrometry. Folate status was compared between wild-type (WT), GNMT transgenic (GNMT(tg)) and GNMT knockout (GNMT(ko)) mice. In the cell model, GNMT expression increased folate concentration, induced folate-dependent homocysteine remethylation, and reduced antifolate methotrexate cytotoxicity. In the mouse models, GNMT(tg) had increased hepatic folate significantly, whereas GNMT(ko) had reduced folate. Liver folate levels correlated well with GNMT expressions (r = 0.53, P = 0.002); and methionine synthase expression was reduced significantly in GNMT(ko), demonstrating impaired methylfolate-dependent metabolism by GNMT deletion. In conclusion, we demonstrated novel findings that restoring GNMT assists methylfolate-dependent reactions and ameliorates the consequences of folate depletion. GNMT expression in vivo improves folate retention and bioavailability in the liver. Studies on how GNMT expression impacts the distribution of different folate cofactors and the regulation of specific folate dependent reactions are underway. PMID:21210071

  13. Molecular and biochemical characterization of methionine aminopeptidase of Babesia bovis as a potent drug target.

    PubMed

    Munkhjargal, Tserendorj; Ishizaki, Takahiro; Guswanto, Azirwan; Takemae, Hitoshi; Yokoyama, Naoaki; Igarashi, Ikuo

    2016-05-15

    Aminopeptidases are increasingly being investigated as therapeutic targets in various diseases. In this study, we cloned, expressed, and biochemically characterized a member of the methionine aminopeptidase (MAP) family from Babesia bovis (B. bovis) to develop a potential molecular drug target. Recombinant B. bovis MAP (rBvMAP) was expressed in Escherichia coli (E. coli) as a glutathione S-transferase (GST)-fusion protein, and we found that it was antigenic. An antiserum against the rBvMAP protein was generated in mice, and then a native B. bovis MAP was identified in B. bovis by Western blot assay. Further, an immunolocalization assay showed that MAP is present in the cytoplasm of the B. bovis merozoite. Analysis of the biochemical properties of rBvMAP revealed that it was enzymatically active, with optimum activity at pH 7.5. Enhanced enzymatic activity was observed in the presence of divalent manganese cations and was effectively inhibited by a metal chelator, ethylenediaminetetraacetic acid (EDTA). Moreover, the enzymatic activity of BvMAP was inhibited by amastatin and bestatin as inhibitors of MAP (MAPi) in a dose-dependent manner. Importantly, MAPi was also found to significantly inhibit the growth of Babesia parasites both in vitro and in vivo; additionally, they induced high levels of cytokines and immunoglobulin (IgG) titers in the host. Therefore, our results suggest that BvMAP is a molecular target of amastatin and bestatin, and those inhibitors may be drug candidates for the treatment of babesiosis, though more studies are required to confirm this. PMID:27084466

  14. Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress.

    PubMed

    Romsang, Adisak; Atichartpongkul, Sopapan; Trinachartvanit, Wachareeporn; Vattanaviboon, Paiboon; Mongkolsuk, Skorn

    2013-08-01

    Pseudomonas aeruginosa PAO1 has two differentially expressed methionine sulfoxide reductase genes: msrA (PA5018) and msrB (PA2827). The msrA gene is expressed constitutively at a high level throughout all growth phases, whereas msrB expression is highly induced by oxidative stress, such as sodium hypochlorite (NaOCl) treatment. Inactivation of either msrA or msrB or both genes (msrA msrB mutant) rendered the mutants less resistant than the parental PAO1 strain to oxidants such as NaOCl and H2O2. Unexpectedly, msr mutants have disparate resistance patterns when exposed to paraquat, a superoxide generator. The msrA mutant had a higher paraquat resistance level than the msrB mutant, which had a lower paraquat resistance level than the PAO1 strain. The expression levels of msrA showed an inverse correlation with the paraquat resistance level, and this atypical paraquat resistance pattern was not observed with msrB. Virulence testing using a Drosophila melanogaster model revealed that the msrA, msrB, and, to a greater extent, msrA msrB double mutants had an attenuated virulence phenotype. The data indicate that msrA and msrB are essential genes for oxidative stress protection and bacterial virulence. The pattern of expression and mutant phenotypes of P. aeruginosa msrA and msrB differ from previously characterized msr genes from other bacteria. Thus, as highly conserved genes, the msrA and msrB have diverse expression patterns and physiological roles that depend on the environmental niche where the bacteria thrive. PMID:23687271

  15. Effect of different forms of methionine on lactational performance of dairy cows.

    PubMed

    Rulquin, H; Graulet, B; Delaby, L; Robert, J C

    2006-11-01

    Methionine is one of the first limiting AA in dairy cows. The use of rumen-protected Met to correct deficient diets is limited by the lack of a product that could be incorporated into a pelleted concentrate. The main objective of this trial was to test, at practical doses (approximately 10 g of absorbable Met), the efficacy of 2 forms of pelletable Met hydroxy analogs, D,L-2-hydroxy-4-(methylthio)-butanoic acid (HMB) and the isopropyl ester of HMB (HMBi), to provide Met to cows, especially for milk protein synthesis, compared with a negative control and to Smartamine M (SmM). These treatments were tested according to a 4 x 4 Latin square in 16 Holstein cows. Plasma Met concentrations were increased by 110 and 65% that of the control value after HMBi and SmM treatments, respectively. Milk protein yield increased by 32 and 41 g/d for HMBi and SmM, respectively. D,L-2-hydroxy-4-(methylthio)-butanoic acid supplementation did not improve Met availability to the cows for milk protein synthesis. The HMBi treatment induced an increase in 15:0 in milk at the expense of a general reduction in even-numbered short-and medium-chain fatty acids. Moreover, HMBi and SmM supplements led to an increase in the saturation level of C18 fatty acids consistent with the improvement of Met supply. It was concluded that HMBi is a new "rumen-protected" form of Met that can be supplied to cows integrated into pellets. PMID:17033026

  16. Understanding the physical basis for the side-chain conformational preferences of methionine.

    PubMed

    Virrueta, Alejandro; O'Hern, Corey S; Regan, Lynne

    2016-07-01

    Methionine (Met) is a structurally versatile amino acid most commonly found in protein cores and at protein-protein interfaces. Thus, a complete description of the structure of Met is important for a fundamental understanding of protein structure and design. In previous work, we showed that the hard-sphere dipeptide model is able to recapitulate the side-chain dihedral angle distributions observed in high-resolution protein crystal structures for the nine amino acids we have studied to date: Val, Thr, Ser, Leu, Ile, Cys, Tyr, Trp, and Phe. Using the same approach, we are also able to predict the observed χ1 and χ2 side-chain dihedral angle distributions for Met. However, the form of the side-chain dihedral angle distribution P(χ3 ) predicted by the hard-sphere model does not match the observed distribution. We investigate the possible origins of the discrepancy and find that specific bond lengths and angles in Met side chains strongly influence P(χ3 ). We then identify minimal additions to the hard-sphere dipeptide model necessary to quantitatively predict P(χ3 ) of Met, and its near isosteres norleucine (Nle) and selenomethionine (Mse). We find that adding weak attractive interactions between hydrogen atoms to the model is sufficient to achieve predictions for P(χ3 ) that closely match the observed P(χ3 ) distributions for Met, Nle, and Mse. We explicitly show that weak attractive interactions between hydrogens do not negatively affect the agreement between the predicted and observed side-chain dihedral angle distribution for Val, Leu, Ile, and Phe, as we expect for other amino acids. Proteins 2016; 84:900-911. © 2016 Wiley Periodicals, Inc. PMID:26917446

  17. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies

    PubMed Central

    Stracke, Jan; Emrich, Thomas; Rueger, Petra; Schlothauer, Tilman; Kling, Lothar; Knaupp, Alexander; Hertenberger, Hubert; Wolfert, Andreas; Spick, Christian; Lau, Wilma; Drabner, Georg; Reiff, Ulrike; Koll, Hans; Papadimitriou, Apollon

    2014-01-01

    Preserving the chemical and structural integrity of therapeutic antibodies during manufacturing and storage is a major challenge during pharmaceutical development. Oxidation of Fc methionines Met252 and Met428 is frequently observed, which leads to reduced affinity to FcRn and faster plasma clearance if present at high levels. Because oxidation occurs in both positions simultaneously, their individual contribution to the concomitant changes in pharmacokinetic properties has not been clearly established. A novel pH-gradient FcRn affinity chromatography method was applied to isolate three antibody oxidation variants from an oxidized IgG1 preparation based on their FcRn binding properties. Physico-chemical characterization revealed that the three oxidation variants differed predominantly in the number of oxMet252 per IgG (0, 1, or 2), but not significantly in the content of oxMet428. Corresponding to the increase in oxMet252 content, stepwise reduction of FcRn affinity in vitro, as well as faster clearance and shorter terminal half-life, in huFcRn-transgenic mice were observed. A single Met252 oxidation per antibody had no significant effect on pharmacokinetics (PK) compared with unmodified IgG. Importantly, only molecules with both heavy chains oxidized at Met252 exhibited significantly faster clearance. In contrast, Met428 oxidation had no apparent negative effect on PK and even led to somewhat improved FcRn binding and slower clearance. This minor effect, however, seemed to be abrogated by the dominant effect of Met252 oxidation. The novel approach of functional chromatographic separation of IgG oxidation variants followed by physico-chemical and biological characterization has yielded the first experimentally-backed explanation for the unaltered PK properties of antibody preparations containing relatively high Met252 and Met428 oxidation levels. PMID:25517308

  18. Does a methionine-to-norleucine substitution in PGLa influence peptide-membrane interactions?

    PubMed

    Radchenko, Dmytro S; Kattge, Saskia; Kara, Sezgin; Ulrich, Anne S; Afonin, Sergii

    2016-09-01

    Yes. To understand the molecular mechanisms of amphiphilic membrane-active peptides, it is essential to study their interactions with lipid bilayers under near-native conditions. Amino acid composition largely determines the non-specific properties of peptides, on the basis of the physicochemical properties of the side chains. The resultant effects on peptides' functional properties include influences on the conformation, structural dynamics and binding affinities within the peptide interactome. Here, we studied the effect of substituting oxidation-prone methionine (Met) with non-oxidizable norleucine (Nle) in the model α-helical antimicrobial peptide PGLa, through systematic comparison of PGLa with the (2)Met/(2)Nle mutant. Both peptides were evaluated for their bacteriostatic and hemolytic activities (using in situ assays), for their conformational preferences in isotropic solutions (using circular dichroism spectropolarimetry) and for their abilities to modulate membrane curvature (using a solid-state (31)P NMR assay). We determined the membrane-bound states in detail and characterized the orientational dynamics of both peptides in oriented phospholipid membranes by solid-state (19)F NMR spectroscopy. On the one hand, the bioactivity results, the structure in the diluted membrane-mimicking environments and the strong inhibition of the negative membrane curvature were comparable between PGLa and the mutant. On the other hand, the alignments in DMPC bilayer were qualitatively the same but differed in absolute values - the more hydrophobic Nle residue inserted deeper in the membrane core. Furthermore, the mutant peptide displayed a significantly reduced ability to re-orient from the monomeric, surficial to the putative dimeric, tilted state. Overall, these results confirm the functional isosterism of Nle and Met in the helical membrane-active peptides but highlight differences in the ways in which the two residues affect non-specific binding to the lipid bilayer

  19. The Development of Recurrent Seizures after Continuous Intrahippocampal Infusion of Methionine Sulfoximine in Rats

    PubMed Central

    Wang, Yue; Zaveri, Hitten P.; Lee, Tih-Shih W; Eid, Tore

    2009-01-01

    Glutamine synthetase is deficient in astrocytes in the epileptogenic hippocampus in human mesial temporal lobe epilepsy (MTLE). To explore the role of this deficiency in the pathophysiology of MTLE, rats were continuously infused with the glutamine synthetase inhibitor methionine sulfoximine (MSO, 0.625 µg/h) or 0.9% NaCl (saline control) unilaterally into the hippocampus. The seizures caused by MSO were assessed by video-intracranial electroencephalogram (EEG) monitoring. All (28 of 28) of the MSO-treated animals and none (0 of 12) of the saline-treated animals developed recurrent seizures. Most recurrent seizures appeared in clusters of 2 days’ duration (median; range, 1 to 12 days). The first cluster was characterized by frequent, predominantly Stage I seizures, which presented after the first 9.5 h of infusion (median; range, 5.5 to 31.7 h). Subsequent clusters of less-frequent, mainly partial seizures occurred after a clinically silent interval of 7.1 days (median; range, 1.8 to 16.2 days). The ictal intracranial EEGs shared several characteristics with recordings of partial seizures in humans, such as a distinct evolution of the amplitude and frequency of the EEG signal. The neuropathology caused by MSO had similarities to hippocampal sclerosis in 23.1% of cases, whereas 26.9% of the animals had minimal neuronal loss in the hippocampus. Moderate to severe diffuse neuronal loss was observed in 50% of the animals. In conclusion, the model of intrahippocampal MSO infusion replicates key features of human MTLE and may represent a useful tool for further studies of the cellular, molecular and electrophysiological mechanisms of this disorder. PMID:19747915

  20. Regulation of O6-methylguanine-DNA methyltransferase by methionine in human tumour cells.

    PubMed Central

    Kokkinakis, D. M.; von Wronski, M. A.; Vuong, T. H.; Brent, T. P.; Schold, S. C.

    1997-01-01

    Methionine (MET)-dependent cell lines require MET to proliferate, and homocysteine (HCY) does not act as a substitute for this requirement. From six O6-methylguanine-DNA methyltransferase (MGMT)-efficient (mer+) cell lines tested, two medulloblastomas (Daoy and D-341) and a lung non-small-cell adenocarcinoma with metastatic potential (H-1623) were most sensitive to MET deprivation, while two glioblastomas (U-138, D-263) and a small-cell lung carcinoma H-1944 were moderately to weakly dependent. Regardless of the degree of MET dependence, all of these lines down-regulated their MGMT activity within 48-72 h of transfer from MET+HCY- to MET-HCY+ media, long before the eradication of the culture. Reduction of MGMT activity was due to a decline of both MGMT mRNA and protein levels. However, the reduction was not related to the methylation status of the MGMT promoter at the SmaI site or the HpaII sites in the body of the gene; such sites have been shown to be associated in MGMT regulation and in defining the mer phenotype. MET-dependent, mer+ tumour cells cultured in MET-HCY+ were more sensitive to BCNU (IC50 = 5-10 microM) than those cultured in MET+HCY-(IC50 = 45-90 microM), while MET-independent or mer- cell lines were unaffected. This indicates that reduction of MGMT, imposed by the absence of MET, renders mer+ tumour cells more susceptible to alkylating agents. The relatively selective suppression of MGMT activity in mer+ MET-dependent tumour cells, in combination with the inability of such cells to proliferate in the absence of MET, may lead to the development of more effective treatment strategies for mer+ MET-dependent tumours. Images Figure 3 Figure 4 Figure 5 PMID:9062396

  1. Phase II evaluation of S-adenosyl-L-methionine (SAMe) for the treatment of hot flashes

    PubMed Central

    Kadakia, Kunal C.; Loprinzi, Charles L.; Atherton, Pamela J.; Fee-Schroeder, Kelliann C.; Sood, Amit; Barton, Debra L.

    2016-01-01

    Purpose Hot flashes are a significant source of symptom burden that negatively impacts quality of life (QOL). For women who have contraindications to, or are unwilling to consider, estrogens or antidepressants for bothersome hot flashes, there are limited effective pharmacologic or complementary and alternative medicines. Methods This single-arm phase II trial studied the efficacy of S-adenosyl-L-methionine (SAMe) for the treatment of hot flashes. Eligible women were required to have reported ≥14 hot flashes per week for ≥1 month. The patients were treated with SAMe at a dose of 400 mg twice daily to evaluate whether a reduction in hot flash score appeared to be better than the historical placebo response of approximately 25 %. The women kept a daily hot flash diary during a baseline week and then daily during weeks 2–7. The primary endpoint was the change from baseline to week 7 in hot flash score and hot flash frequency. Secondary endpoints included toxicity analyses and the effect of SAMe on QOL. Results From October 28, 2010 to January 30, 2012, 43 women were treated with SAMe. The decrease in mean percent of baseline hot flash score and frequency was 35.4 and 32.6 %, respectively. When compared to the historical placebo response of 25 %, the effect of SAMe on hot flash score was not statistically significant (p=0.09). Treatment was well tolerated with expected grade 1/2 gastrointestinal toxicity and no negative effect on QOL. Conclusions The use of SAMe does not appear to significantly reduce hot flashes more than would be expected with a placebo. PMID:26248653

  2. One-carbon metabolism nutrient status and plasma S-adenosylmethionine concentrations in middle-aged and older Chinese in Singapore

    PubMed Central

    Inoue-Choi, Maki; Nelson, Heather H; Robien, Kim; Arning, Erland; Bottiglieri, Teodoro; Koh, Woon-Puay; Yuan, Jian-Min

    2012-01-01

    S-adenosylmethionine (SAM) is a primary methyl donor for the methylation of many molecules including DNA. DNA methylation is believed to play an important role in functions of cells and genes. Dietary, genetic and metabolic factors that influence systematic SAM levels are not fully understood. We conducted cross-sectional analysis to evaluate associations between plasma concentrations of one-carbon metabolism nutrients and metabolites and plasma SAM concentrations using healthy individuals within the Singapore Chinese Health Study. Plasma SAM, betaine, choline, folate, total homocysteine (Hcy), methionine, S-adenosylhomocysteine (SAH), vitamin B6 and vitamin B12 concentrations were quantified. Genotypes of methionine adenosyltransferases (MAT1A, MAT2A and MAT2B) were also determined. Linear regression and path analysis were performed to depict the directed dependencies in one-carbon metabolism. Age and body mass index were positively associated while cigarette smoking were inversely associated with plasma SAM concentrations. Plasma choline, methionine and SAH were positively and strongly associated with plasma SAM after adjustment for confounders. Plasma betaine and folate were positively associated with plasma SAM only in men. Men carrying the variant MAT1A genotypes had lower plasma SAM concentrations than men carrying the wild type genotype (p for gene x gender interaction = 0.02). This effect modification by gender was restricted to individuals with low plasma methionine. In conclusion, plasma choline, methionine and SAH were strongly associated with plasma SAM concentrations. The MAT1A genetic polymorphism may impact plasma SAM concentrations in men with low plasma methionine concentrations. PMID:22724053

  3. Influence of dietary protein level and the amino acids methionine and lysine on leather properties of blue fox (Alopex lagopus) pelts.

    PubMed

    Dahlman, Tuula; Mäntysalo, Marja; Rasmussen, Palle V; Skovløkke, L L

    2002-12-01

    The influence of dietary protein, methionine, and lysine on leather quality in blue fox pelts was studied. The pelt material originated from animals in two consecutive feeding trials (Exp. 1 and Exp. 2) with three protein levels: conventional, slightly lowered, and very low. The two lowest protein diets were fed as such or as supplemented with methionine or with lysine (lysine only in Exp. 2). The following physical leather properties were measured: breaking load (BRL), tensile strength (TEN), relative elongation at break (PEB), straining of skins at pelting, and shrinkage at dressing. A decline in the dietary protein content reduced BRL and, hence, leather firmness, and increased straining and the corresponding shrinking in Exp. 1. The supplemented methionine tended to improve leather strength and elasticity by increasing TEN and PEB in Exp. 1, whereas lysine elicited no response. Methionine supplementation at the slightly lowered protein level increased BRL in both experiments by almost 10% as compared with the respective non-supplemented diet. We conclude that with high protein quality diets, a level of 200 g/kg DM (as digestible protein) appears to be adequate for producing pelts with firm, elastic leather, provided that an adequate amount of methionine is included in the diet. PMID:12553694

  4. Amino-terminal processing of proteins: hemoglobin South Florida, a variant with retention of initiator methionine and N alpha-acetylation.

    PubMed Central

    Boissel, J P; Kasper, T J; Shah, S C; Malone, J I; Bunn, H F

    1985-01-01

    The hemoglobin variant South Florida has been shown by protein sequencing and fast-atom-bombardment mass spectroscopy to have a substitution of methionine for the NH2-terminal valine of the beta-globin chain. In addition, there was complete retention of the initiator methionine on the mutant polypeptide. Approximately 20% of the protein was acetylated at the NH2 terminus of the beta chain. A search of a comprehensive data bank of protein and gene sequences revealed 84 unrelated vertebrate proteins that have not undergone cleavage of leader sequences. A highly nonrandom distribution of residues at the NH2 termini of these proteins predicts removal of the initiator methionine as well as NH2-terminal acetylation. Proteins that undergo removal commonly have serine, alanine, glycine, or valine, as the NH2-terminal residues. The first three residues favor N alpha-acetylation. Proteins that retain the initiator methionine commonly have a charged residue or methionine at the second position. Information on Hb South Florida and other hemoglobins coupled with this survey of primary sequence provides insights into the NH2-terminal processing of proteins. PMID:3866233

  5. Overexpression of peptide-methionine sulfoxide reductase in Saccharomyces cerevisiae and human T cells provides them with high resistance to oxidative stress

    PubMed Central

    Moskovitz, Jackob; Flescher, Eliezer; Berlett, Barbara S.; Azare, Janeen; Poston, J. Michael; Stadtman, Earl R.

    1998-01-01

    The yeast peptide-methionine sulfoxide reductase (MsrA) was overexpressed in a Saccharomyces cerevisiae null mutant of msrA by using a high-copy plasmid harboring the msrA gene and its promoter. The resulting strain had about 25-fold higher MsrA activity than its parent strain. When exposed to either hydrogen peroxide, paraquat, or 2,2′-azobis-(2-amidinopropane) dihydrochloride treatment, the MsrA overexpressed strain grew better, had lower free and protein-bound methionine sulfoxide and had a better survival rate under these conditions than did the msrA mutant and its parent strain. Substitution of methionine with methionine sulfoxide in a medium lacking hydrogen peroxide had little effect on the growth pattern, which suggests that the oxidation of free methionine in the growth medium was not the main cause of growth inhibition of the msrA mutant. Ultraviolet A radiation did not result in obvious differences in survival rates among the three strains. An enhanced resistance to hydrogen peroxide treatment was shown in human T lymphocyte cells (Molt-4) that were stably transfected with the bovine msrA and exposed to hydrogen peroxide. The survival rate of the transfected strain was much better than its parent strain when grown in the presence of hydrogen peroxide. These results support the proposition that the msrA gene is involved in the resistance of yeast and mammalian cells to oxidative stress. PMID:9826655

  6. Effects of Dietary Copper-Methionine on Matrix Metalloproteinase-2 in the Lungs of Cold-Stressed Broilers as an Animal Model for Pulmonary Hypertension.

    PubMed

    Bagheri Varzaneh, Mina; Rahmani, Hamidreza; Jahanian, Rahman; Mahdavi, Amir Hossein; Perreau, Corinne; Perrot, Gwenn; Brézillon, Stéphane; Maquart, François-Xavier

    2016-08-01

    The objective of the present study was to investigate the effects of different levels of copper (as supplemental copper-methionine) on ascites incidence and matrix metalloproteinase-2 (MMP-2) changes in the lungs of cold-stressed broilers. For this purpose, 480 1-day-old Ross 308 broiler chickens were randomly assigned to six treatments. Treatments consisted of two ambient temperatures (thermoneutral and cold stress) each combined with 0, 100, and 200 mg supplemental copper/kg as copper-methionine in a 2 × 3 factorial arrangement in a completely randomized design with four replicates. Ascites was diagnosed based on abdominal and pericardial fluid accumulation at 45 days of age. Fourty-eight broilers were killed at 38 and 45 days of age, and their lungs were collected for biological analysis. Results showed that MMP-2 increased in the lungs of ascitic broilers and that copper-methionine supplementation significantly reduced MMP-2 in cold-stressed broiler chickens. Treatments did not affect tissue inhibitor of metalloproteinase-2 (TIMP-2) at 38 and 45 days of age, and no difference was observed between 100 and 200 mg/kg copper-methionine treatments. In conclusion, copper-methionine at higher than conventional levels of supplementation decreased ascites incidence in low temperature through reduced MMP-2 concentration. Further research is warranted to investigate the effect of copper on MMP-2 concentrations in other tissues with high oxygen demand. PMID:26749413

  7. Effect of Dietary Combination of Methionine and Fish Oil on Cellular Immunity and Plasma Fatty Acids in Infectious Bursal Disease Challenged Chickens

    PubMed Central

    Kasim, Azhar; Yong Meng, Goh; Teck Chwen, Loh; Kamalidehghan, Behnam; Soleimani Farjam, Abdoreza

    2013-01-01

    This study was carried out to investigate the modulatory effects of dietary methionine and fish oil on immune response, plasma fatty acid profile, and blood parameters of infectious bursal disease (IBD) challenged broiler chickens. A total of 300 one-day-old male broiler chicks were assigned to one of six dietary treatment groups in a 3 × 2 factorial arrangement. There were three levels of fish oil (0, 2.5 and 5.5%), and two levels of methionine (NRC recommendation and twice NRC recommendation). The results showed that the birds fed with 5.5% fish oil had higher total protein, white blood cell count, and IL-2 concentration than those of other groups at 7 days after IBD challenge. Inclusion of fish oil in diet had no effect on IFN-γ concentration. However, supplementation of methionine twice the recommendation enhanced the serum IFN-γ and globulin concentration. Neither of fish oil nor methionine supplementation affected the liver enzymes concentration. It can be suggested that a balance of moderate level of fish oil (2.5%) and methionine level (twice NRC recommendation) might enhance immune response in IBD challenged broiler chickens. PMID:24198724

  8. Nuclear magnetic resonance studies of amino acids and proteins. Side-chain mobility of methionine in the crystalline amonio acid and in crystallne sperm whale (Physeter catodon) myoglobin

    SciTech Connect

    Keniry, M.A.; Rothgeb, T.M.; Smith, R.L.; Gutowsky, H.S.; Oldfield, E.

    1983-04-12

    Deuterium (/sup 2/H) nuclear magnetic resonance (NMR) spectra and spin-lattice relaxation times (T/sub 1/) were obtained of L-(epsilon-/sup 2/H/sub 3/)methionine, L-(epsilon-/sup 2/H/sub 3/)methionine in a D,L lattice, and (S-methyl-/sup 2/H/sub 3/)methionine in the crystalline solid state, as a function of temperature, in addition to obtaining /sup 2/H T/sub 1/ and line-width results as a function of temperature on (epsilon-/sup 2/H/sub 3/)methionine-labeled sperm whale (Physeter catodon) myoglobins by using the method of magnetic ordering. Also recorded were /sup 13/C cross-polarization ''magic-angle'' sample-spinning NMR spectra of (epsilon-/sup 13/C)methionine-labeled crystalline cyanoferrimyoglobin (at 37.7 MHz, corresponding to a magnetic field strength of 3.52 T) and of the same protein in aqueous solution. (JMT)

  9. Biosynthesis of ethylene from methionine. Isolation of the putative intermediate 4-methylthio-2-oxobutanoate from culture fluids of bacteria and fungi.

    PubMed Central

    Billington, D C; Golding, B T; Primrose, S B

    1979-01-01

    Methods are described for identifying the 2,4-dinitrophenylhydrazones of 4-methylthio-2-oxobutanoate by means of t.l.c., n.m.r. and mass spectroscopy. By using these methods 4-methylthio-2-oxobutanoate, a putative intermediate in the biosynthesis of ethylene from methionine, has been identified in culture fluids of Aeromonas hydrophila B12E and a coryneform bacterium D7F grown in the presence of methionine. Relative to 4-methylthio-2-oxobutanoate, the yield of 3-(methylthio)propanal (methional) from the same cultures was less than 1%. Because 4-[2H]methylthio-2-oxobutanoate was obtained from cultures grown on [Me-2H]methionine, the 4-methylthio-2-oxobutanoate must be derived from methionine. By means of t.l.c. alone, 4-methylthio-2-oxobutanoate was identified in the culture fluids of a range of bacteria, the yeast Saccharomyces cerevisiae and the fungus Penicillium digitatum. A photochemical assay developed for 4-methylthio-2-oxobutanoate shows it to be a product of the metabolism of methionine by Escherichia, Pseudomonas, Bacillus, Acinetobacter, Aeromonas, Rhizobium and Corynebacterium species. PMID:42392

  10. Effects of proteome rebalancing and sulfur nutrition on the accumulation of methionine rich δ-zein in transgenic soybeans

    PubMed Central

    Kim, Won-Seok; Jez, Joseph M.; Krishnan, Hari B.

    2014-01-01

    Expression of heterologous methionine-rich proteins to increase the overall sulfur amino acid content of soybean seeds has been only marginally successful, presumably due to low accumulation of transgenes in soybeans or due to gene silencing. Proteome rebalancing of seed proteins has been shown to promote the accumulation of foreign proteins. In this study, we have utilized RNAi technology to suppress the expression of the β-conglycinin, the abundant 7S seed storage proteins of soybean. Western blot and 2D-gel analysis revealed that β-conglycinin knockdown line (SAM) failed to accumulate the α′, α, and β-subunits of β-conglycinin. The proteome rebalanced SAM retained the overall protein and oil content similar to that of wild-type soybean. We also generated transgenic soybean lines expressing methionine-rich 11 kDa δ-zein under the control of either the glycinin or β-conglycinin promoter. The introgression of the 11 kDa δ-zein into β-conglycinin knockdown line did not enhance the accumulation of the 11 kDa δ-zein. However, when the same plants were grown in sulfur-rich medium, we observed 3- to 16-fold increased accumulation of the 11 kDa δ-zein. Transmission electron microscopy observation revealed that seeds grown in sulfur-rich medium contained numerous endoplasmic reticulum derived protein bodies. Our findings suggest that sulfur availability, not proteome rebalancing, is needed for high-level accumulation of heterologous methionine-rich proteins in soybean seeds. PMID:25426134

  11. Alpha-lipoic acid affects the oxidative stress in various brain structures in mice with methionine and choline deficiency.

    PubMed

    Veskovic, Milena; Mladenovic, Dusan; Jorgacevic, Bojan; Stevanovic, Ivana; de Luka, Silvio; Radosavljevic, Tatjana

    2015-04-01

    Deficiency in methionine or choline can induce oxidative stress in various organs such as liver, kidney, heart, and brain. This study was to examine the effects of alpha-lipoic acid (LA) on oxidative stress induced by methionine and choline deficiency (MCD) in several brain structures. Male mice C57BL/6 (n = 28) were divided into four groups: (1) control - continuously fed with standard chow; (2) LA - fed with standard chow and receiving LA; (3) MCD2 - fed with MCD diet for two weeks, and (4) MCD2+LA - fed with MCD diet for two weeks and receiving LA (100 mg/kg/day intraperitonealy [i.p.]). Brain tissue (cortex, hypothalamus, striatum and hippocampus) was taken for determination of oxidative stress parameters. MCD diet induced a significant increase in malondialdehyde and NOx concentration in all brain regions, while LA restored their content to normal values. Similar to this, in MCD2 group, activity of total SOD, MnSOD, and Cu/ZnSOD was reduced by MCD diet, while LA treatment improved their activities in all brain structures. Besides, in MCD2 group a decrease in catalase activity in cortex and GSH content in hypothalamus was evident, while LA treatment induced an increase in catalase activity in cortex and striatum and GSH content in hypothalamus. LA treatment can significantly reduce lipid peroxidation and nitrosative stress, caused by MCD diet, in all brain regions by restoring antioxidant enzymes activities, predominantly total SOD, MnSOD, and Cu/ZnSOD, and to a lesser extent by modulating catalase activity and GSH content. LA supplementation may be used in order to prevent brain oxidative injury induced by methionine and choline deficiency. PMID:25193852

  12. Evolved cobalamin-independent methionine synthase (MetE) improves the acetate and thermal tolerance of Escherichia coli.

    PubMed

    Mordukhova, Elena A; Pan, Jae-Gu

    2013-12-01

    Acetate-mediated growth inhibition of Escherichia coli has been found to be a consequence of the accumulation of homocysteine, the substrate of the cobalamin-independent methionine synthase (MetE) that catalyzes the final step of methionine biosynthesis. To improve the acetate resistance of E. coli, we randomly mutated the MetE enzyme and isolated a mutant enzyme, designated MetE-214 (V39A, R46C, T106I, and K713E), that conferred accelerated growth in the E. coli K-12 WE strain in the presence of acetate. Additionally, replacement of cysteine 645, which is a unique site of oxidation in the MetE protein, with alanine improved acetate tolerance, and introduction of the C645A mutation into the MetE-214 mutant enzyme resulted in the highest growth rate in acetate-treated E. coli cells among three mutant MetE proteins. E. coli WE strains harboring acetate-tolerant MetE mutants were less inhibited by homocysteine in l-isoleucine-enriched medium. Furthermore, the acetate-tolerant MetE mutants stimulated the growth of the host strain at elevated temperatures (44 and 45°C). Unexpectedly, the mutant MetE enzymes displayed a reduced melting temperature (Tm) but an enhanced in vivo stability. Thus, we demonstrate improved E. coli growth in the presence of acetate or at elevated temperatures solely due to mutations in the MetE enzyme. Furthermore, when an E. coli WE strain carrying the MetE mutant was combined with a previously found MetA (homoserine o-succinyltransferase) mutant enzyme, the MetA/MetE strain was found to grow at 45°C, a nonpermissive growth temperature for E. coli in defined medium, with a similar growth rate as if it were supplemented by l-methionine. PMID:24123739

  13. Evolved Cobalamin-Independent Methionine Synthase (MetE) Improves the Acetate and Thermal Tolerance of Escherichia coli

    PubMed Central

    Mordukhova, Elena A.

    2013-01-01

    Acetate-mediated growth inhibition of Escherichia coli has been found to be a consequence of the accumulation of homocysteine, the substrate of the cobalamin-independent methionine synthase (MetE) that catalyzes the final step of methionine biosynthesis. To improve the acetate resistance of E. coli, we randomly mutated the MetE enzyme and isolated a mutant enzyme, designated MetE-214 (V39A, R46C, T106I, and K713E), that conferred accelerated growth in the E. coli K-12 WE strain in the presence of acetate. Additionally, replacement of cysteine 645, which is a unique site of oxidation in the MetE protein, with alanine improved acetate tolerance, and introduction of the C645A mutation into the MetE-214 mutant enzyme resulted in the highest growth rate in acetate-treated E. coli cells among three mutant MetE proteins. E. coli WE strains harboring acetate-tolerant MetE mutants were less inhibited by homocysteine in l-isoleucine-enriched medium. Furthermore, the acetate-tolerant MetE mutants stimulated the growth of the host strain at elevated temperatures (44 and 45°C). Unexpectedly, the mutant MetE enzymes displayed a reduced melting temperature (Tm) but an enhanced in vivo stability. Thus, we demonstrate improved E. coli growth in the presence of acetate or at elevated temperatures solely due to mutations in the MetE enzyme. Furthermore, when an E. coli WE strain carrying the MetE mutant was combined with a previously found MetA (homoserine o-succinyltransferase) mutant enzyme, the MetA/MetE strain was found to grow at 45°C, a nonpermissive growth temperature for E. coli in defined medium, with a similar growth rate as if it were supplemented by l-methionine. PMID:24123739

  14. Methionine depletion with recombinant methioninase: In vitro and in vivo efficacy against neuroblastoma and its synergism with chemotherapeutic drugs

    PubMed Central

    Hu, Jian; Cheung, Nai-Kong V.

    2009-01-01

    Methionine starvation can modulate gene methylation, cell cycle transition, and pathways related to survival following DNA damage. Methionine depletion by recombinant methioninase (rMETase) may have in vitro and in vivo efficacy against neuroblastoma (NB), especially when combined with chemotherapeutic drugs. rMETase from Pseudomonas Putida was produced in E. Coli and purified by ion-exchange chromatography. rMETase alone inhibited the proliferation of 15/15 NB cell lines in vitro. Among these 15 cell lines, only 66N demonstrated rMETase-induced apoptosis. rMETase alone suppressed LAN-1 and NMB-7 xenografts (p<0.01) and no toxicities were noted other than reversible weight loss. In vitro efficacy experiments combining rMETase and chemotherapeutic agents were carried out using SK-N-LD and SK-N-BE(1)N established at diagnosis, as well as LAN-1, SK-N-BE(2)C, and NMB-7 established at relapse. Microtubule depolymerization agents including vincristine, vinorelbine, vinblatine, and mebendazole showed synergism when tested in combination with rMETase in all 5 cell lines. Among DNA damaging agents, synergy with rMETase was observed only in cell lines established at diagnosis, and not at relapse. Cell cycle analysis showed that rMETase arrested G2 phase, and not M phase. In vivo efficacy experiments using LAN-1 and NMB-7 xenografts showed that rMETase rendered vincristine more effective than vincristine alone in tumor growth suppression (p<0.001). In conclusion, methionine depletion inhibited NB proliferation and arrested tumor cells at G2 phase. rMETase synergized with microtubule depolymerization agents. Moreover, synergism between rMETase and DNA damaging agents was dependent on whether cell lines were established at diagnosis or at relapse. PMID:19089915

  15. Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.

    PubMed

    Si, Meiru; Zhang, Lei; Chaudhry, Muhammad Tausif; Ding, Wei; Xu, Yixiang; Chen, Can; Akbar, Ali; Shen, Xihui; Liu, Shuang-Jiang

    2015-04-01

    Oxidation of methionine leads to the formation of the S and R diastereomers of methionine sulfoxide (MetO), which can be reversed by the actions of two structurally unrelated classes of methionine sulfoxide reductase (Msr), MsrA and MsrB, respectively. Although MsrAs have long been demonstrated in numerous bacteria, their physiological and biochemical functions remain largely unknown in Actinomycetes. Here, we report that a Corynebacterium glutamicum methionine sulfoxide reductase A (CgMsrA) that belongs to the 3-Cys family of MsrAs plays important roles in oxidative stress resistance. Deletion of the msrA gene in C. glutamicum resulted in decrease of cell viability, increase of ROS production, and increase of protein carbonylation levels under various stress conditions. The physiological roles of CgMsrA in resistance to oxidative stresses were corroborated by its induced expression under various stresses, regulated directly by the stress-responsive extracytoplasmic-function (ECF) sigma factor SigH. Activity assays performed with various regeneration pathways showed that CgMsrA can reduce MetO via both the thioredoxin/thioredoxin reductase (Trx/TrxR) and mycoredoxin 1/mycothione reductase/mycothiol (Mrx1/Mtr/MSH) pathways. Site-directed mutagenesis confirmed that Cys56 is the peroxidatic cysteine that is oxidized to sulfenic acid, while Cys204 and Cys213 are the resolving Cys residues that form an intramolecular disulfide bond. Mrx1 reduces the sulfenic acid intermediate via the formation of an S-mycothiolated MsrA intermediate (MsrA-SSM) which is then recycled by mycoredoxin and the second molecule of mycothiol, similarly to the glutathione/glutaredoxin/glutathione reductase (GSH/Grx/GR) system. However, Trx reduces the Cys204-Cys213 disulfide bond in CgMsrA produced during MetO reduction via the formation of a transient intermolecular disulfide bond between Trx and CgMsrA. While both the Trx/TrxR and Mrx1/Mtr/MSH pathways are operative in reducing CgMsrA under

  16. Differential identification of Candida species and other yeasts by analysis of (/sup 35/S)methionine-labeled polypeptide profiles

    SciTech Connect

    Shen, H.D.; Choo, K.B.; Tsai, W.C.; Jen, T.M.; Yeh, J.Y.; Han, S.H.

    1988-12-01

    This paper describes a scheme for differential identification of Candida species and other yeasts based on autoradiographic analysis of protein profiles of (/sup 35/S)methionine-labeled cellular proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using ATCC strains as references, protein profile analysis showed that different Candida and other yeast species produced distinctively different patterns. Good agreement in results obtained with this approach and with other conventional systems was observed. Being accurate and reproducible, this approach provides a basis for the development of an alternative method for the identification of yeasts isolated from clinical specimens.

  17. Effect of leucine-to-methionine substitutions on the diffraction quality of histone chaperone SET/TAF-Ibeta/INHAT crystals.

    PubMed

    Senda, Miki; Muto, Shinsuke; Horikoshi, Masami; Senda, Toshiya

    2008-10-01

    One of the most frequent problems in crystallization is poor quality of the crystals. In order to overcome this obstacle several methods have been utilized, including amino-acid substitutions of the target protein. Here, an example is presented of crystal-quality improvement by leucine-to-methionine substitutions. A variant protein with three amino-acid substitutions enabled improvement of the crystal quality of the histone chaperone SET/TAF-Ibeta/INHAT when combined with optimization of the cryoconditions. This procedure improved the resolution of the SET/TAF-Ibeta/INHAT crystals from around 5.5 to 2.3 A without changing the crystallization conditions. PMID:18931446

  18. Analyzing the catalytic role of Asp97 in the methionine aminopeptidase from Escherichia coli

    PubMed Central

    Mitra, Sanghamitra; Job, Kathleen M.; Meng, Lu; Bennett, Brian; Holz, Richard C.

    2009-01-01

    An active site aspartate residue, Asp97, in the methionine aminopeptidase (MetAPs) from Escherichia coli (EcMetAP-I) was mutated to alanine, glutamate, and asparagine. Asp97 is the lone carboxylate residue bound to the crystallographically determined second metal-binding site in EcMetAP-I. These mutant EcMetAP-I enzymes have been kinetically and spectroscopically characterized. Inductively coupled plasma–atomic emission spectroscopy analysis revealed that 1.0 ± 0.1 equivalents of cobalt were associated with each of the Asp97-mutated EcMetAP-Is. The effect on activity after altering Asp97 to alanine, glutamate or asparagine is, in general, due to a ~ 9000-fold decrease in kca towards Met-Gly-Met-Met as compared to the wild-type enzyme. The Co(II) d–d spectra for wild-type, D97E and D97A EcMetAP-I exhibited very little difference in form, in each case, between the monocobalt(II) and dicobalt(II) EcMetAP-I, and only a doubling of intensity was observed upon addition of a second Co(II) ion. In contrast, the electronic absorption spectra of [Co_(D97N EcMetAP-I)] and [CoCo(D97N EcMetAP-I)] were distinct, as were the EPR spectra. On the basis of the observed molar absorptivities, the Co(II) ions binding to the D97E, D97A and D97N EcMetAP-I active sites are pentacoordinate. Combination of these data suggests that mutating the only nonbridging ligand in the second divalent metal-binding site in MetAPs to an alanine, which effectively removes the ability of the enzyme to form a dinuclear site, provides a MetAP enzyme that retains catalytic activity, albeit at extremely low levels. Although mononuclear MetAPs are active, the physiologically relevant form of the enzyme is probably dinuclear, given that the majority of the data reported to date are consistent with weak cooperative binding. PMID:19019076

  19. Interplay between Gliotoxin Resistance, Secretion, and the Methyl/Methionine Cycle in Aspergillus fumigatus

    PubMed Central

    Owens, Rebecca A.; O'Keeffe, Grainne; Smith, Elizabeth B.; Dolan, Stephen K.; Hammel, Stephen; Sheridan, Kevin J.; Fitzpatrick, David A.; Keane, Thomas M.

    2015-01-01

    Mechanistic studies on gliotoxin biosynthesis and self-protection in Aspergillus fumigatus, both of which require the gliotoxin oxidoreductase GliT, have revealed a rich landscape of highly novel biochemistries, yet key aspects of this complex molecular architecture remain obscure. Here we show that an A. fumigatus ΔgliA strain is completely deficient in gliotoxin secretion but still retains the ability to efflux bisdethiobis(methylthio)gliotoxin (BmGT). This correlates with a significant increase in sensitivity to exogenous gliotoxin because gliotoxin trapped inside the cell leads to (i) activation of the gli cluster, as disabling gli cluster activation, via gliZ deletion, attenuates the sensitivity of an A. fumigatus ΔgliT strain to gliotoxin, thus implicating cluster activation as a factor in gliotoxin sensitivity, and (ii) increased methylation activity due to excess substrate (dithiol gliotoxin) for the gliotoxin bis-thiomethyltransferase GtmA. Intracellular dithiol gliotoxin is oxidized by GliT and subsequently effluxed by GliA. In the absence of GliA, gliotoxin persists in the cell and is converted to BmGT, with levels significantly higher than those in the wild type. Similarly, in the ΔgliT strain, gliotoxin oxidation is impeded, and methylation occurs unchecked, leading to significant S-adenosylmethionine (SAM) depletion and S-adenosylhomocysteine (SAH) overproduction. This in turn significantly contributes to the observed hypersensitivity of gliT-deficient A. fumigatus to gliotoxin. Our observations reveal a key role for GliT in preventing dysregulation of the methyl/methionine cycle to control intracellular SAM and SAH homeostasis during gliotoxin biosynthesis and exposure. Moreover, we reveal attenuated GliT abundance in the A. fumigatus ΔgliK strain, but not the ΔgliG strain, following exposure to gliotoxin, correlating with relative sensitivities. Overall, we illuminate new systems interactions that have evolved in gliotoxin-producing, compared

  20. A Copper-Methionine Interaction Controls the pH-Dependent Activation of Peptidylglycine Monooxygenase†

    PubMed Central

    Bauman, Andrew T.; Broers, Brenda A.; kline, Chelsey D.; Blackburn, Ninian J.

    2011-01-01

    The pH dependence of native PHM and its M314H variant have been studied in detail. For WT PHM the intensity of the Cu-S interaction visible in the Cu(I) EXAFS data is inversely proportional to catalytic activity over the pH range 3 - 8. A previous model based on more limited data was interpreted in terms of two protein conformations involving an inactive met-on form and an active flexible met-off form which derived its catalytic activity from the ability to couple into vibrational modes critical for proton tunneling. The new studies comparing the WT and M314H variant have led to an evolution of this model where the met-on form has been found to be derived from coordination of an additional Met residue, rather than a more rigid conformer of M314 as previously proposed. The catalytic activity of the mutant decreased by 96% due to effects on both kcat and KM but it displayed the same activity/pH profile with a maximum around pH 6. At pH 8, the reduced Cu(I) form gave spectra which could be simulated by replacing the CuM Cu-S(Met) interaction with a Cu-N/O but the data did not unambiguously assign the ligand to the imidazole side chain of H314. At pH 3.5 the EXAFS still showed the presence of a strong Cu-S interaction, establishing that the met-on form observed at low pH in WT cannot be due to a strengthening of the CuM-methionine interaction, but must arise from a different Cu-S interaction. Therefore, lowering the pH causes a conformational change at one of the Cu centers which brings a new S-donor residue into a favorable orientation for coordination to copper and generating an inactive form. Cys coordination is unlikely since all Cys residues in PHM are engaged in disulfide crosslinks. Sequence comparison with the PHM homologues TBM and DBM suggest that M109 (adjacent to the H-site ligands H107 and H108) is the most likely candidate. A model is presented in which H108 protonates with a pKA of 4.6 to generate the inactive low-pH form with CuH coordinated by M109, H

  1. Parental dietary seleno-L-methionine exposure and resultant offspring developmental toxicity.

    PubMed

    Chernick, Melissa; Ware, Megan; Albright, Elizabeth; Kwok, Kevin W H; Dong, Wu; Zheng, Na; Hinton, David E

    2016-01-01

    Selenium (Se) leaches into water from agricultural soils and from storage sites for coal fly ash. Se toxicity causes population and community level effects in fishes and birds. We used the laboratory aquarium model fish, Japanese medaka (Oryzias latipes), an asynchronous breeder, to determine aspects of uptake in adults and resultant developmental toxicity in their offspring. The superior imaging properties of the model enabled detailed descriptions of phenotypic alterations not commonly reported in the existing Se literature. Adult males and females in treatment groups were exposed, separately and together, to a dry diet spiked with 0, 12.5, 25, or 50 μg/g (dry weight) seleno-L-methionine (SeMet) for 6 days, and their embryo progeny collected for 5 days, maintained under controlled conditions and observed daily for hatchability, mortality and/or developmental toxicity. Sites of alteration included: craniofacial, pericardium and abdomen (Pc/Ab), notochord, gall bladder, spleen, blood, and swim bladder. Next, adult tissue Se concentrations (liver, skeletal muscle, ovary and testis) were determined and compared in treatment groups of bred and unbred individuals. No significant difference was found across treatment groups at the various SeMet concentrations; and, subsequent analysis compared exposed vs. control in each of the treatment groups at 10 dpf. Increased embryo mortality was observed in all treatment groups, compared to controls, and embryos had a decreased hatching rate when both parents were exposed. Exposure resulted in significantly more total altered phenotypes than controls. When altered phenotypes following exposure of both parents were higher than maternal only exposure, a male role was suggested. The comparisons between treatment groups revealed that particular types of phenotypic change may be driven by the sex of the exposed parent. Additionally, breeding reduced Se concentrations in some adult tissues, specifically the liver of exposed females

  2. New polar constituents of the pupae of the silkworm Bombyx mori L. I. Isolation and identification of methionine sulfoxide, methionine sulfone, and gamma-cyclic di-L-glutamate.

    PubMed

    Tanaka, Ryuichiro

    2007-12-01

    In addition to serine (L:D = 68:32), methionine sulfoxide (MSO), L-methionine sulfone (L-MSO(2)), and disodium gamma-cyclic di-L-glutamate were identified in a methanol extract of Bombyx mori L. pupae. MSO was isolated in a diastereomeric mixture of L(+)- and D(+)-MSO in a ratio of 99:1. The presence of these compounds in other developmental stages, including eggs, larvae (1st, 4th, 5th, and mature 5th instar), adults, and excrement (feces and urine) was investigated. The L(+)-isomer of MSO was present in extracts of the 1st and 5th instar larvae, adults, and eggs, but was not detected in feces or urine. The D(+)-isomer was found only in pupal stage extracts, and was excreted into the meconium with L(+)-isomer. L-MSO(2) and gamma-cyclic di-L-glutamate were not detected at other insect life stages or in the insect excrement. gamma-Cyclic di-L-glutamate is thought be produced due to blockage of the glutamate synthetic pathway (glutamine synthetase) by L-MSO(2) and Mg(2+). The biochemical role of L-MSO(2) during the pupal life stage remains unknown, but importantly, the stage-specific expression suggests that it is a candidate molecule for the induction of diapause. PMID:18071251

  3. Conversion of rat liver S-adenosyl-L-methionine synthetase from high-Mr form to low-Mr form by LiBr.

    PubMed

    Cabrero, C; Alemany, S

    1988-02-10

    Rat liver S-adenosyl-L-methionine synthetase exists in two forms which are, respectively, a dimer and a tetramer of an Mr 48,500 subunit. The high-molecular-mass form is converted into the low-molecular-mass form by incubation with 1.4 M LiBr. The kinetic properties of the low-molecular-mass form obtained by LiBr treatment are the same as those obtained with the low-molecular-mass S-adenosyl-L-methionine synthetase form purified from rat liver cytosol. These results demonstrate that the differences in specific activity and regulatory properties of the high-molecular-mass and the low-molecular-mass S-adenosyl-L-methionine synthetase forms are due to their different polymeric states. PMID:2827780

  4. Further studies on the hepatoprotective effects of Anoectochilus formosanus.

    PubMed

    Fang, Hsun-Lang; Wu, Jin-Bin; Lin, Wei-Lii; Ho, Hui-Ya; Lin, Wen-Chuan

    2008-03-01

    The purpose of this study was to investigate the hepatoprotective effects of Anoectochilus formosanus effective fraction (AFEF) on chronic liver damage induced by carbon tetrachloride (CCl4) in mice. CCl4 (5%; 0.1 mL/10 g body weight) was given twice a week for 9 weeks, and mice received AFEF throughout the whole experimental period. Plasma GPT, hepatic levels of hydroxyproline and malondialdehyde were significantly lower in mice treated with AFEF compared with those treated with CCl4 only. Liver pathology in the AFEF-treated mice was also improved. RT-PCR analysis showed that AFEF treatment increased the expression of methionine adenosyltransferase 1A and decreased the expression of collagen(alpha1)(I) and transforming growth factor-beta1. These results clearly demonstrated that AFEF reduced the hepatic damage induced by CCl4 in mice. PMID:17886219

  5. Storage Protein Composition of Soybean Cotyledons Grown In Vitro in Media of Various Sulfate Concentrations in the Presence and Absence of Exogenous l-Methionine

    PubMed Central

    Holowach, Lorraine P.; Thompson, John F.; Madison, James T.

    1984-01-01

    Immature soybean (Glycine max L. Merrill cv Provar) cotyledons were grown aseptically for 6 days in complete culture medium with zero, deficient (17 micromolar), sufficient (1.5 millimolar), or supraoptimal (7.5 millimolar) levels of sulfate. Some cotyledons at each sulfate concentration were supplemented with l-methionine. No sulfate or 17 micromolar sulfate were inadequate for growth and protein accumulation, but all the major subunits of the 7S and 11S storage protein fractions were detected. The ratio of 11S to 7S proteins was <1.0. Addition of 8.4 millimolar methionine overcame the restriction of cotyledon growth and protein accumulation in the sulfate-deficient media, and the ratio of 11S to 7S proteins was significantly increased. The amino acid compositions of the 7S and 11S fractions from sulfate-sufficient cotyledons and from sulfate-deficient cotyledons were not significantly different. There was no difference in fresh weight or total protein accumulation in cotyledons grown in 1.5 millimolar or 7.5 millimolar sulfate. At 7.5 millimolars sulfate, the 11S to 7S ratio was significantly increased, and the amount of β-subunit in the 7S fraction decreased. At all sulfate levels supplemented with methionine, the 11S to 7S ratio was greater than 1, and no β-subunit was detected in the 7S fraction. Supplemental methionine in media of any sulfate concentration increased growth and protein methionine content to a greater extent than high (7.5 millimolar) sulfate only. Adding supraoptimal sulfate is not equivalent to supplementing with methionine. Results of this study of in vitro growth are compared to results of studies of seed development on intact plants supplied with various sulfur concentrations. Images Fig. 1 Fig. 2 PMID:16663464

  6. l-Methionine sulfoximine, but not phosphinothricin, is a substrate for an acetyltransferase (gene PA4866) from Pseudomonas aeruginosa: structural and functional studies.

    PubMed

    Davies, Anna M; Tata, Renée; Beavil, Rebecca L; Sutton, Brian J; Brown, Paul R

    2007-02-20

    The gene PA4866 from Pseudomonas aeruginosa is documented in the Pseudomonas genome database as encoding a 172 amino acid hypothetical acetyltransferase. We and others have described the 3D structure of this protein (termed pita) [Davies et al. (2005) Proteins: Struct., Funct., Bioinf. 61, 677-679; Nocek et al., unpublished results], and structures have also been reported for homologues from Agrobacterium tumefaciens (Rajashankar et al., unpublished results) and Bacillus subtilis [Badger et al. (2005) Proteins: Struct., Funct., Bioinf. 60, 787-796]. Pita homologues are found in a large number of bacterial genomes, and while the majority of these have been assigned putative phosphinothricin acetyltransferase activity, their true function is unknown. In this paper we report that pita has no activity toward phosphinothricin. Instead, we demonstrate that pita acts as an acetyltransferase using the glutamate analogues l-methionine sulfoximine and l-methionine sulfone as substrates, with Km(app) values of 1.3 +/- 0.21 and 1.3 +/- 0.13 mM and kcat(app) values of 505 +/- 43 and 610 +/- 23 s-1 for l-methionine sulfoximine and l-methionine sulfone, respectively. A high-resolution (1.55 A) crystal structure of pita in complex with one of these substrates (l-methionine sulfoximine) has been solved, revealing the mode of its interaction with the enzyme. Comparison with the apoenzyme structure has also revealed how certain active site residues undergo a conformational change upon substrate binding. To investigate the role of pita in P. aeruginosa, a mutant strain, Depp4, in which pita was inactivated through an in-frame deletion, was constructed by allelic exchange. Growth of strain Dep