Science.gov

Sample records for methyl ethyl ketone

  1. Methyl ethyl ketone (MEK)

    Integrated Risk Information System (IRIS)

    Methyl ethyl ketone ( MEK ) ( CASRN 78 - 93 - 3 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonc

  2. EXTRACTION OF TETRAVALENT PLUTONIUM VALUES WITH METHYL ETHYL KETONE, METHYL ISOBUTYL KETONE ACETOPHENONE OR MENTHONE

    DOEpatents

    Seaborg, G.T.

    1961-08-01

    A process is described for extracting tetravalent plutonium from an aqueous acid solution with methyl ethyl ketone, methyl isobutyl ketone, or acetophenone and with the extraction of either tetravalent or hexavalent plutonium into menthone. (AEC)

  3. IRIS TOXICOLOGICAL REVIEW OF METHYL ETHYL KETONE (2003 Final)

    EPA Science Inventory

    EPA is announcing the release of the final report, "Toxicological Review of Methyl Ethyl Ketone: in support of the Integrated Risk Information System (IRIS)". The updated Summary for Methyl Ethyl Ketone and accompanying Quickview have also been added to the IRIS Database.

  4. Coulometric generation of hydrogen ions by oxidation of mercury in methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.

    PubMed

    Mihajlović, R P; Joksimović, V M; Mihajlović, Lj V

    2003-11-01

    Mercury(II)-chloride reacts with anhydrous methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone in a precise stoichiometry ratio (1:2), and weakly ionized compounds of mercury with ketones are formed and equivalent quantity of HCl is released. The application of a mercury anode for the quantitative generation of H(+) ions in 0.25 M sodium perchlorate in anhydrous methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone has been investigated. Current/potentials curves for the solvents, titrated bases, indicator and mercury showed that in these solvents mercury is oxidized at potentials much more negative than those for the titrated bases and other components present in the solution. The protons generated in this way have been used for the titration of some organic bases, with either visual or potentiometric end-point detection. The oxidation of mercury in methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone and the reaction of mercury ions with these solvents have been found to proceed with 100% current efficiency. PMID:18969192

  5. Vibrational spectroscopic studies and computational study of ethyl methyl ketone thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Anoop, M. R.; Binil, P. S.; Suma, S.; Sudarsanakumar, M. R.; Y, Sheena Mary.; Varghese, Hema Tresa; Panicker, C. Yohannan

    2010-04-01

    FT-IR and FT-Raman spectra of ethyl methyl ketone thiosemicarbazone were recorded and analyzed. The crystal structure is also described. The vibrational wavenumbers were computed using HF/6-31G(d) and B3LYP/6-31G(d) basis sets and are assigned with the aid of MOLEKEL program. The first hyperpolarizability, infrared intensities and Raman activities are also reported. The calculated first hyperpolarizability is comparable with the reported values of similar derivatives and is an attractive molecule for future applications in non-linear optics. The geometrical parameters of the title compound obtained from XRD studies are in agreement with the calculated values. The red shift of the NH stretching wavenumber in the infrared spectrum compared to the computed wavenumber indicates the weakening of the N-H bond resulting in proton transfer to the neighbouring sulfur atom.

  6. 40 CFR 63.61 - Deletion of methyl ethyl ketone from the list of hazardous air pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the list of hazardous air pollutants. 63.61 Section 63.61 Protection of Environment ENVIRONMENTAL... POLLUTANTS FOR SOURCE CATEGORIES List of Hazardous Air Pollutants, Petitions Process, Lesser Quantity... pollutants. The substance methyl ethyl ketone (MEK, 2-Butanone) (CAS Number 78-93-3) is deleted from the...

  7. 40 CFR 63.61 - Deletion of methyl ethyl ketone from the list of hazardous air pollutants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Deletion of methyl ethyl ketone from the list of hazardous air pollutants. 63.61 Section 63.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS...

  8. 40 CFR 63.61 - Deletion of methyl ethyl ketone from the list of hazardous air pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Deletion of methyl ethyl ketone from the list of hazardous air pollutants. 63.61 Section 63.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS...

  9. 40 CFR 63.61 - Deletion of methyl ethyl ketone from the list of hazardous air pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Deletion of methyl ethyl ketone from the list of hazardous air pollutants. 63.61 Section 63.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS...

  10. Leaf uptake of methyl ethyl ketone and croton aldehyde by Castanopsis sieboldii and Viburnum odoratissimum saplings

    NASA Astrophysics Data System (ADS)

    Tani, Akira; Tobe, Seita; Shimizu, Sachie

    2013-05-01

    Methyl ethyl ketone (MEK) is an abundant ketone in the urban atmosphere and croton aldehyde (CA) is a strong irritant to eye, nose, and throat. The use of plants able to absorb these compounds is one suggested mitigation method. In order to investigate this method, we determined the uptake rate of these compounds by leaves of two tree species, Castanopsis sieboldii and Viburnum odoratissimum var. awabuki. Using a flow-through chamber method, we found that these species were capable of absorbing both compounds. We also confirmed that the uptake rate of these compounds normalized to the fumigated concentration (AN) was higher at higher light intensities and that there was a linear relationship between AN and stomatal conductance (gS) for both tree species. In concentration-varying experiments, the uptake of MEK and CA seemed to be restricted by partitioning of MEK between leaf water and air. The ratio of the intercellular VOC concentration (Ci) to the fumigated concentration (Ca) for CA was zero, and the ratio ranged from 0.63 to 0.76 for MEK. The more efficient CA uptake ability may be the result of higher partitioning of CA into leaf water. Our present and previous results also suggest that plant MEK uptake ability was different across plant species, depending on the VOC conversion speed inside leaves.

  11. Inhalation developmental toxicology studies: Teratology study of methyl ethyl ketone in mice: Final report

    SciTech Connect

    Mast, T.J.; Dill, J.A.; Evanoff, J.J.; Rommereim, R.L.; Weigel, R.J.; Westerberg, R.B.

    1989-02-01

    Methyl ethyl ketone (MEK) is a widely used industrial solvent which results in considerable human exposure. In order to assess the potential for MEK to cause developmental toxicity in rodents, four groups of Swiss (CD-1) mice were exposed to 0, 400, 1000 or 3000 ppM MEK vapors, 7 h/day, 7 dy/wk. Ten virgin females and approx.30 plug-positive females per group were exposed concurrently for 10 consecutive days (6--15 dg for mated mice). Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice on 18 dg. Uterine implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Exposure of pregnant mice to these concentrations of MEK did not result in apparent maternal toxicity, although there was a slight, treatment-correlated increase in liver to body weight ratios which was significant for the 3000-ppM group. Mild developmental toxicity was evident at 3000-ppM as a reduction in mean fetal body weight. This reduction was statistically significant for the males only, although the relative decrease in mean fetal body weight was the same for both sexes. 17 refs., 4 figs., 10 tabs.

  12. Study of thermal decomposition of methyl ethyl ketone peroxide using DSC and simulation.

    PubMed

    Tseng, Jo-Ming; Chang, Ying-Yu; Su, Teh-Sheng; Shu, Chi-Min

    2007-04-11

    Methyl ethyl ketone peroxide (MEKPO) is a typical organic peroxide with thermally unstable nature that has been broadly employed in the manufacturing process of acrylic resins, as a hardening agent for fiberglass-reinforced plastics, and as a curing agent for unsaturated polyester resins. The aim of this study was to identify the characteristics of MEKPO 31 wt.% while mixing with contaminants, such as H(2)SO(4), HCl, and NaCl under runaway conditions. To acquire the thermal runaway data, DSC and a simulation were used for thermal analysis. The results showed that the thermal decomposition of MEKPO and MEKPO+H(2)SO(4) follows two stages. The first one can be modeled by using an empirical nth order rate equation. The second stage can be modeled as autocatalytic. MEKPO+HCl and MEKPO+NaCl included two independent autocatalytic reactions. The decomposition of MEKPO in the presence of Cl- ions (added in MEKPO either in the form of HCl or NaCl) follows a significantly different path, an earlier decomposition "onset" temperature, higher amount of generated thermal power and smaller temperature of no return (T(NR)) and time to maximum rate (TMR) values. Simulations based on experimental data indicated that the effect of H(2)SO(4) was the most dangerous contaminant on MEKPO 31 wt.%. However, the impact of Cl ions was also important. It is therefore recommended that the means of fire fighting employed for this substance to be free of Cl-. PMID:16905247

  13. Methyl ethyl ketone (MEK) in urine as biological index of exposure.

    PubMed

    Imbriani, M; Ghittori, S; Pezzagno, G; Capodaglio, E

    1989-11-01

    Fifteen human volunteers were exposed to methyl ethyl ketone (MEK) vapor at 11.9-621.8 mg/m3 for a period of 2 to 4 hours at rest (ten cases) and during light physical exercise (five cases). Subsequently 78 workers occupationally exposed to MEK in a manufacture of leather suitcases (median value: 75.5 mg/m3; geometrical standard deviation: 3.12 mg/m3; range: 6-790) were studied. The analyses were performed by means of a Gas Chromatograph (GC) Hewlett-Packard 5880 A connected with a Mass Selective Detector (MSD). The relative uptake (R) of MEK was about 0.54 (standard deviation: 0.05) and it keeps practically constant either at rest or during light effort (V < 30 L/min). A linear relationship existed in the experimentally exposed subjects between urinary concentration (Cu) and amount of MEK absorbed (U) (Cu = 3.05 x U-162.1; r = 0.95; n = 15) (Cu = micrograms/L; U = mg). Both in the experimentally exposed subjects and in the occupationally exposed workers, the urinary concentration of MEK shoved a linear relationship to the corresponding environmental time-weighted average concentration (CI). The correlation coefficients (r) were 0.93 in occupationally exposed subjects (regression equation: Cu = 0.004 x CI + 0.118; n = 78); Cu = mg/L; CI = mg/m3) and more than 0.93 in experimentally exposed groups. The findings indicate that the urinary concentration of MEK can be used as an appropriate biological exposure indicator.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2562745

  14. Effect of ethanol, carbon tetrachloride, and methyl ethyl ketone on butanol oxidase activity in rat lung and liver

    SciTech Connect

    Carlson, G.P. )

    1989-01-01

    Tha ability of the rat liver to oxidize 2-butanol via a cytochrome P-450-mediated mixed-function oxidase reaction is well known. The purpose of this study was to examine this microsomal alcohol oxidizing system in rat lung and determine if it could be altered by treatments that inhibit or induce this activity. 2-Butanol was incubated with microsomal preparations from male rats, and methyl ethyl ketone production was measured by gas chromatography. The rate was six to eight times lower in lung than in liver. Administration of low doses of ethanol (0.5 ml/kg and 1.0 ml/kg) ip for 7 d did not alter activity in the liver but was inhibitory in the lung, as was a high dose of 3.0 ml/kg in the liver. Carbon tetrachloride (1.0 ml/kg, ip) decreased activity in both tissues, especially the lung. The effects of the two inhibitors were not additive. Methyl ethyl ketone induced 2-butanol oxidation in both tissues. The lung possesses butanol oxidase activity that is alterable by both inhibitors and inducers.

  15. Kinetic study of the reaction of the hydroxyl radical (OH) with methyl ethyl ketone (2-butanone) and its deuterated isotopomers at low pressure

    NASA Astrophysics Data System (ADS)

    Liljegren, J. A.; Stevens, P. S.

    2012-12-01

    Methyl ethyl ketone (2-butanone) in the atmosphere comes from a variety of sources. It is produced commercially as an industrial ketone. It can be formed as a result of the OH or Cl-initiated oxidation of C4-C6 alkanes, primarily n-butane, or from the reaction of some alkenes with OH or O3. Biogenic sources include direct emissions from certain plants as well as emissions from decaying plant matter. Methyl ethyl ketone is removed from the atmosphere primarily by its reaction with OH. A product of this reaction includes acetaldehyde, which is a hazardous air pollutant, can further react to produce peroxy acetyl nitrate (PAN), and can be a significant source of free radicals to the atmosphere. The absolute rate constant for the reaction of OH with methyl ethyl ketone has been measured as a function of temperature at low pressure using discharge-flow techniques coupled with laser induced fluorescence (LIF) detection of OH. In addition, measurements of the rate constants for the reactions of OH with two deuterated isotopomers of methyl ethyl ketone, including CD3C(O)CH2CH3 and CH3C(O)CD2CD3, will be presented to gain a better understanding of the mechanism for this reaction. Theoretical studies of the potential energy surface for this reaction suggest that the reaction proceeds through the formation of a hydrogen-bonded pre-reactive complex, similar to that of several other atmospherically relevant oxygenated VOCs such as acetone, acetic acid, and hydroxyacetone.

  16. The synthesis and investigation of impurities found in Clandestine Laboratories: Baeyer-Villiger Route Part I; Synthesis of P2P from benzaldehyde and methyl ethyl ketone.

    PubMed

    Doughty, David; Painter, Ben; Pigou, Paul E; Johnston, Martin R

    2016-06-01

    The synthesis of impurities detected in clandestinely manufactured Amphetamine Type Stimulants (ATS) has emerged as more desirable than simple "fingerprint" profiling. We have been investigating the impurities formed when phenyl-2-propanone (P2P) 5, a key ATS precursor, is synthesised in three steps; an aldol condensation of benzaldehyde and methyl ethyl ketone (MEK); a Baeyer-Villiger reaction; and ester hydrolysis. We have identified and selectively synthesised several impurities that may be used as route specific markers for this series of synthetic steps. Specifically these impurities are 3-methyl-4-phenyl-3-buten-2-one 3, 2-methyl-1,5-diphenylpenta-1,4-diene-3-one 9, 2-(methylamino)-3-methyl-4-phenyl-3-butene 16, 2-(Methylamino)-3-methyl-4-phenylbutane 17, and 1-(methylamino)-2-methyl-1,5-diphenylpenta-4-ene-3-one 22. PMID:27081790

  17. Methyl isobutyl ketone (MIBK)

    Integrated Risk Information System (IRIS)

    Methyl Isobutyl Ketone ( MIBK ) ; CASRN 108 - 10 - 1 ; Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for

  18. Photolytic degradation of chlorophenols from industrial wastewaters by organic oxidants peroxy acetic acid, para nitro benzoic acid and methyl ethyl ketone peroxide: identification of reaction products.

    PubMed

    Sharma, Swati; Mukhopadhyay, Mausumi; Murthy, Zagabathuni Venkata Panchakshari

    2014-01-01

    In this investigation, chlorophenol (CP) containing industrial wastewater was remediated by ultraviolet irradiation in conjunction with organic oxidants, peroxy acetic acid (PAA); para nitro benzoic acid (PNBA); and methyl ethyl ketone peroxide (MEKP). CP mineralization was studied with regard to chemical oxygen demand (COD) and chloride ion release under identical test conditions. COD depletion to the extent of 81% by PAA, 66% by PNBA, and 67% by MEKP was noted along with an upwardly mobile trend of chloride ion release upon irradiation of samples at 254 nm. A 90-99% decrease in CP concentration (as per high pressure liquid chromatography (HPLC) analysis) was achieved with an additional 15.0 ml of organic oxidant in all cases. Gas chromatography high resolution mass spectroscopy (GC-HRMS) results also indicated the formation of such reaction products as are free from chlorine substitutions. This treatment also leads to total decolorization of the collected samples. PMID:24647192

  19. The effects of simultaneous exposure to methyl ethyl ketone and toluene on urinary biomarkers of occupational N,N-dimethylformamide exposure.

    PubMed

    Chang, Ho-Yuan; Yun, Yuan-Der; Yu, Yi-Chun; Shih, Tung-Sheng; Lin, Ming-Song; Kuo, Hsien-Wen; Chen, Kuo-Ming

    2005-03-15

    General regulations and risk assessment regarding toxicants are single-compound oriented even though humans are exposed to multi-chemicals in the general environment. This study investigated the effects of different levels of N,N-dimethylformamide (DMF) and co-exposure levels of methyl ethyl ketone (MEK) and toluene (TOL) on two biomarkers of DMF exposure: non-metabolized urinary (U-)DMF and the DMF metabolite urinary N-methylformamide (NMF). Thirty-five workers were selected from a two-stage field investigation strategy and were classified into four groups based on DMF exposure and co-exposure levels. Breathing-zone air concentrations of DMF, MEK, and TOL as well as dermal DMF exposure were determined. Post-shift U-DMF and U-NMF levels were determined for each individual. U-DMF concentrations were significantly higher in high-DMF groups than in low-DMF groups, but U-NMF concentrations were significantly (P<0.05) lower in the high-DMF-high-co-exposure group than in the high-DMF-low-co-exposure group; there were no significant differences between two low-DMF groups. The ratio of U-NMF to U-DMF showed the biotransformation from DMF to NMF was significantly suppressed at high co-exposure (P<0.001) for high-DMF exposure groups, possibly because of competitive inhibition of CYP2E1, the responsible enzyme involved. Due to the ubiquity of MEK/TOL in DMF-exposed occupational settings, the biological exposure index for occupational DMF exposure should be re-evaluated at high co-exposure levels. PMID:15649622

  20. Stereoselective titanium-mediated aldol reactions of a chiral lactate-derived ethyl ketone with ketones.

    PubMed

    Alcoberro, Sandra; Gómez-Palomino, Alejandro; Solà, Ricard; Romea, Pedro; Urpí, Fèlix; Font-Bardia, Mercè

    2014-01-17

    Aldol reactions of titanium enolates of lactate-derived ethyl ketone 1 with other ketones proceed in a very efficient and stereocontrolled manner provided that a further equivalent of TiCl4 is added to the reacting mixture. The scope of these reactions encompasses simple ketones such as acetone or cyclohexanone as well as other ketones that contain potential chelating groups such as pyruvate esters or α- and β-hydroxy ketones. PMID:24372372

  1. Theoretical and kinetic study of the reaction of ethyl methyl ketone with HO2 for T = 600-1600 K. Part II: addition reaction channels.

    PubMed

    Zhou, Chong-Wen; Mendes, Jorge; Curran, Henry J

    2013-06-01

    The temperature and pressure dependence of the addition reaction of ethyl methyl ketone (EMK) with HO2 radical has been calculated using the master equation method employing conventional transition state theory estimates for the microcanonical rate coefficients in the temperature range of 600-1600 K. Geometries, frequencies, and hindrance potentials were obtained at the B3LYP/6-311G(d,p) level of theory. A modified G3(MP2,CC) method has been used to calculate accurate electronic energies for all of the species involved in the reactions. The rigid-rotor harmonic oscillator approximation has been used for all of the vibrations except for the torsional degrees of freedom which are being treated as 1D hindered rotors. Asymmetric Eckart barriers were used to model tunneling effect in a one-dimensional reaction coordinate through saddle points. Our calculated results show that the four reaction channels forming 1-buten-2-ol + HO2 radical (R5), 2-buten-2-ol + HO2 radical (R10), acetic acid + ethylene + OH radical (R13), and 2-methyl-2-oxetanol + OH radical (R15) are the dominant channels. When the temperature is below 1000 K, the reaction R15 forming the cyclic ether, 2-methyl-2-oxetanol, is dominant while the reaction R13 forming acetic acid + ethylene + OH radical becomes increasingly dominant at temperatures above 1000 K. The other two channels forming 1-buten-2-ol, 2-buten-2-ol, and HO2 radical are not dominant but are still important product channels over the whole temperature range investigated here. No pressure dependence has been found for the reaction channels forming 2-methyl-2-oxetanol + OH radical and acetic acid + ethylene + OH radical. A slightly negative pressure dependence has been found for the reaction channels producing the two butenols. Rate constants for the four important reaction channels at 1 atm (in cm(3) mol(-1) s(-1)) are k(R5) = 2.67 × 10(15) × T(-1.32)exp(-16637/T), k(R10) = 1.62 × 10(8) × T(0.57)exp(-13142/T), k(R13) = 2.29 × 10(17) × T

  2. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  3. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  4. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  5. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Methyl n-butyl ketone. 721.4925... Substances § 721.4925 Methyl n-butyl ketone. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance methyl n-butyl ketone, CAS Number 591-78-6, is subject to...

  6. Prepsolv (TM): The optimum alternative to 1,1,1-trichloroethane and methyl ethyl ketone for hand-wipe cleaning of aerospace materials

    NASA Technical Reports Server (NTRS)

    Gallagher, R. Scott; Purvis, John A.; Moran, Wade W.

    1995-01-01

    Engineers at Hercules Aerospace, a rocket motor manufacturer in Utah, have worked closely with chemists at Glidco Organics to study the feasibility of using terpenes for zero-residue wipe cleaning. The result of this work is a technological breakthrough, in which the barrier to ultra-low non-volatile residue formation has been broken. After 2 years of development and testing, SCM Glidco Organics has announced the availability of Glidsafe(registered trademark) Prepsolv(TM): a state-of-the-art ultra-low residue terpene wipe cleaning agent that does not require rinsing. Prepsolv(TM) can successfully be used in simple hand-wipe cleaning processes without fear of leaving surface residues. Industry testing has confirmed that Prepsolv(TM) is not only highly effective, but can even be less expensive to use than traditional cleaning solvents like methyl chloroform. This paper addresses the features and benefits of Prepsolv(TM), and presents performance and material compatibility data that characterizes this unique cleaning agent. Since its commercialization, Hercules Aerospace has chosen Prepsolv(TM) as the optimum cleaning agent to replace ozone-depleting solvents in their weapons factory in Magna, UT. Likewise, Boeing has approved Prepsolv(TM) for cleaning components in the manufacture of commercial aircraft at their facilities in Seattle, WA and Wichita, KS. Additional approvals are forthcoming for this uniquely safe and effective solvent.

  7. Production of methyl-vinyl ketone from levulinic acid

    DOEpatents

    Dumesic, James A.; West; Ryan M.

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  8. 40 CFR 721.4925 - Methyl n-butyl ketone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methyl n-butyl ketone. 721.4925 Section 721.4925 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4925 Methyl n-butyl ketone....

  9. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.117 Methyl isobutyl ketone. (a)...

  10. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.117 Methyl isobutyl ketone. (a)...

  11. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.117 Methyl isobutyl ketone. (a)...

  12. 27 CFR 21.117 - Methyl isobutyl ketone.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Methyl isobutyl ketone. 21.117 Section 21.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.117 Methyl isobutyl ketone. (a)...

  13. Engineering of Bacterial Methyl Ketone Synthesis for Biofuels

    PubMed Central

    Goh, Ee-Been; Baidoo, Edward E. K.; Keasling, Jay D.

    2012-01-01

    We have engineered Escherichia coli to overproduce saturated and monounsaturated aliphatic methyl ketones in the C11 to C15 (diesel) range; this group of methyl ketones includes 2-undecanone and 2-tridecanone, which are of importance to the flavor and fragrance industry and also have favorable cetane numbers (as we report here). We describe specific improvements that resulted in a 700-fold enhancement in methyl ketone titer relative to that of a fatty acid-overproducing E. coli strain, including the following: (i) overproduction of β-ketoacyl coenzyme A (CoA) thioesters achieved by modification of the β-oxidation pathway (specifically, overexpression of a heterologous acyl-CoA oxidase and native FadB and chromosomal deletion of fadA) and (ii) overexpression of a native thioesterase (FadM). FadM was previously associated with oleic acid degradation, not methyl ketone synthesis, but outperformed a recently identified methyl ketone synthase (Solanum habrochaites MKS2 [ShMKS2], a thioesterase from wild tomato) in β-ketoacyl-CoA-overproducing strains tested. Whole-genome transcriptional (microarray) studies led to the discovery that FadM is a valuable catalyst for enhancing methyl ketone production. The use of a two-phase system with decane enhanced methyl ketone production by 4- to 7-fold in addition to increases from genetic modifications. PMID:22038610

  14. Rotational Spectroscopy of Methyl Vinyl Ketone

    NASA Astrophysics Data System (ADS)

    Zakharenko, Olena; Motiyenko, R. A.; Aviles Moreno, Juan-Ramon; Huet, T. R.

    2015-06-01

    Methyl vinyl ketone, MVK, along with previously studied by our team methacrolein, is a major oxidation product of isoprene, which is one of the primary contributors to annual global VOC emissions. In this talk we present the analysis of the rotational spectrum of MVK recorded at room temperature in the 50 -- 650 GHz region using the Lille spectrometer. The spectroscopic characterization of MVK ground state will be useful in the detailed analysis of high resolution infrared spectra. Our study is supported by high level quantum chemical calculations to model the structure of the two stable s-trans and s-cis conformers and to obtain the harmonic force field parameters, internal rotation barrier heights, and vibrational frequencies. In the Doppler-limited spectra the splittings due to the internal rotation of methyl group are resolved, therefore for analysis of this molecule we used the Rho-Axis-Method Hamiltonian and RAM36 code to fit the rotational transitions. At the present time the ground state of two conformers is analyzed. Also we intend to study some low lying excited states. The analysis is in progress and the latest results will be presented. Support from the French Laboratoire d'Excellence CaPPA (Chemical and Physical Properties of the Atmosphere) through contract ANR-10-LABX-0005 of the Programme d'Investissements d'Avenir is acknowledged.

  15. METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA

    PubMed Central

    Lukins, H. B.; Foster, J. W.

    1963-01-01

    Lukins, H. B. (University of Texas, Austin) and J. W. Foster. Methyl ketone metabolism in hydrocarbon-utilizing mycobacteria. J. Bacteriol. 85: 1074–1087. 1963.—Species of Mycobacterium especially M. smegmatis 422, produced the homologous methyl ketones during the oxidation of propane, n-butane, n-pentane, or n-hexane. A carrier-trapping experiment demonstrated the formation of 2-undecanone, as well as 1,11-undecanedioic acid, during the oxidation of undecane-1-C14. Aliphatic alkane-utilizing mycobacteria were able to grow at the expense of several aliphatic methyl ketones as sole sources of carbon. Other ketones which did not support growth were oxidized by resting bacterial suspensions. M. smegmatis 422 cells grown on propane or acetone were simultaneously adapted to oxidize both substrates, as well as n-propanol. n-Propanol cells were unadapted to propane or acetone. Acetone produced from propane in a medium enriched in D2O contained a negligible quantity of D, presumably eliminating propylene as an intermediate in the oxidation. Cells grown at the expense of alkanes or methyl ketones in the presence of O218 had a higher content of O18 than did cells grown on terminally oxidized compounds, e.g., primary alcohols or fatty acids. An oxygenase reaction is postulated for the attack on methyl ketones. Acetol was isolated and characterized as an oxidation product of acetone by M. smegmatis 422. Acetol-grown cells had a higher O18 content than did n-propanol cells, and its utilization appears to involve at least one oxygenase reaction. Acetol produced from acetone in the presence of O218 was not enriched in the isotope, indicating the occurrence of exchange reactions or of oxygenation reactions at a later stage in the assimilation of acetone and acetol. PMID:14043998

  16. Synthesis, conformational parameters and packing considerations of methyl bispyridyl ketones

    NASA Astrophysics Data System (ADS)

    Weck, Christian; Katzsch, Felix; Gruber, Tobias

    2015-10-01

    The crystal structures of two bispyridyl ketones featuring either two methyl residues or one methyl and one bromomethyl residue, respectively, are presented. In order to elucidate the influence of the substituents, a comprehensive comparison with the non-methylated mother compound has been performed. A special focus lies thereby on the relative position of the heteroatoms and their free electron pairs. The two methyl groups at the bispyridyl ketone result in two molecules in the asymmetric unit adopting rather different conformations. Due to the fast crystallization conditions and a melting point differing from the literature, a polymorph close to a local minimum in the energy hypersurface seems possible. After introducing a bromine atom to one of the two methyl groups, the molecular conformation is very similar to the unsubstituted molecule. The packing of both title compounds is dominated by weak contacts of the C-H⋯π and C-H⋯Y type (Y = O, N) and C-H⋯Br- and Br⋯π-contacts for the brominated molecule.

  17. Rhodium-Catalyzed Ketone Methylation Using Methanol Under Mild Conditions: Formation of α-Branched Products**

    PubMed Central

    Chan, Louis K M; Poole, Darren L; Shen, Di; Healy, Mark P; Donohoe, Timothy J

    2014-01-01

    The rhodium-catalyzed methylation of ketones has been accomplished using methanol as the methylating agent and the hydrogen-borrowing method. The sequence is notable for the relatively low temperatures that are required and for the ability of the reaction system to form α-branched products with ease. Doubly alkylated ketones can be prepared from methyl ketones and two different alcohols by using a sequential one-pot iridium- and rhodium-catalyzed process. PMID:24288297

  18. Homogenization and lipase treatment of milk and resulting methyl ketone generation in blue cheese.

    PubMed

    Cao, Mingkai; Fonseca, Leorges M; Schoenfuss, Tonya C; Rankin, Scott A

    2014-06-25

    A specific range of methyl ketones contribute to the distinctive flavor of traditional blue cheeses. These ketones are metabolites of lipid metabolism by Penicillium mold added to cheese for this purpose. Two processes, namely, the homogenization of milk fat and the addition of exogenous lipase enzymes, are traditionally applied measures to control the formation of methyl ketones in blue cheese. There exists little scientific validation of the actual effects of these treatments on methyl ketone development. The present study evaluated the effects of milk fat homogenization and lipase treatments on methyl ketone and free fatty acid development using sensory methods and the comparison of selected volatile quantities using gas chromatography. Initial work was conducted using a blue cheese system model; subsequent work was conducted with manufactured blue cheese. In general, there were modest effects of homogenization and lipase treatments on free fatty acid (FFA) and methyl ketone concentrations in blue cheese. Blue cheese treatments involving Penicillium roqueforti lipase with homogenized milk yielded higher FFA and methyl ketone levels, for example, a ∼20-fold increase for hexanoic acid and a 3-fold increase in 2-pentanone. PMID:24460517

  19. NTP technical report on the toxicity studies of Methyl Ethyl Ketone Peroxide (CAS No. 1338-23-4) in Dimethyl Phthalate (CAS No. 131-11-3) (45:55) Administered Topically in F344/N Rats and B6C3F1 Mice.

    PubMed

    Zeiger, Errol

    1993-02-01

    Methyl ethyl ketone peroxide (MEKP) is an unstable organic peroxide used in the manufacture of acrylic resins, as a hardening agent for fiberglass-reinforced plastics, and as a curing agent for unsaturated polyester resins. It is commercially available as a 40% to 60% solution in dimethyl phthalate (DMP). Because exposure to MEKP is typically through dermal contact, 2-week and 13-week toxicity studies were conducted by topical application of MEKP in DMP (45:55 w/w) to the clipped dorsal region of male and female Fischer 344/N rats and mice. Animals were evaluated for histopathology and for reproductive endpoints. In vitro genetic toxicity studies of MEKP included assessments of mutagenicity in Salmonella typhimurium and in mouse lymphoma L5178Y cells and analysis of chromosomal aberrations and sister chromatid exchanges in Chinese hamster ovary cells. In addition, the peripheral blood of mice from the 13-week study was evaluated in the micronucleus assay. In the 2-week studies, groups of 5 animals of each species and sex were administered MEKP in DMP for 5 days per week at doses of 50.6, 101.3, 202.5, 405, and 810 mg/kg body weight per day for rats and 112.5, 225, 450, 900, and 1800 mg/kg body weight per day for mice. Control groups received DMP or no treatment. No rats died during the studies, but at least 1 mouse in each group receiving MEKP died. Body weight gains of rats decreased with increasing doses of MEKP; body weight gains of mice were not affected by treatment. The primary effects of topical administration of MEKP in both rats and mice were an extensive coagulative necrosis of the epidermis and dermis, variable degrees of inflammation of the adnexa, and epidermal regeneration and hyperplasia at the application site. Lesions considered secondary to the dermal lesions included increased hematopoiesis in the spleen in rats and mice and increased myeloid hyperplasia of the bone marrow in mice, primarily at the higher doses. Mice showed a marked, dose

  20. 40 CFR 799.2700 - Methyl ethyl ketoxime.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Specific Chemical Test Rules § 799.2700 Methyl ethyl ketoxime. (a) Identification of test substance. (1... signs of cytotoxicity (e.g., a change in the ratio of polychromatic to normochromatic erythrocytes)...

  1. 40 CFR 799.2700 - Methyl ethyl ketoxime.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Specific Chemical Test Rules § 799.2700 Methyl ethyl ketoxime. (a) Identification of test substance. (1... signs of cytotoxicity (e.g., a change in the ratio of polychromatic to normochromatic erythrocytes)...

  2. 40 CFR 799.2700 - Methyl ethyl ketoxime.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 32 2011-07-01 2011-07-01 false Methyl ethyl ketoxime. 799.2700 Section 799.2700 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND MIXTURE TESTING REQUIREMENTS Specific Chemical Test Rules § 799.2700...

  3. Studies on the interaction between ethanol and two industrial solvents (methyl isobutyl ketone) in mice

    SciTech Connect

    Granvil, C.P.; Sharkawi, M.; Plaa, G.L. )

    1991-03-11

    Methyl n-butyl ketone (MnBK) and methyl isobutyl ketone (MiBK) prolong the duration of ethanol-induced loss of righting reflex (EILRR) in mice. MnBK was almost twice as potent in this regard. To explain this difference, the metabolism of both ketones was studied in male CD-1 mice using GC. MiBK was converted to 4-methyl-2-pentanol (4MPOL) and 4-hydroxy methyl isobutyl ketone (HMP). MnBK metabolites were 2-hexanol (2HOL) and 2,5-hexanedione (2,5HD). The effects of both ketones and metabolites on EILRR and ethanol (E) elimination were studied in mice. The ketones and their metabolites were dissolved in corn oil and injected intraperitoneally 30 min before E 4g/kg for EILRR and 2g/kg for E elimination. In the following doses: MnBK, 5; MiBK, 5; 2HOL, 2.5; 4MPOL, 2.5; and HMP 2.5, significantly prolonged EILRR. Concentrations of E in blood and brain upon return of the righting reflex were similar in solvent-treated and control animals. The mean elimination rate of E was slower in groups given MnBK or 2HOL than in control animals. No change in E elimination was observed with MiBK, HMP, 4MPOL, or 2, 5HD.

  4. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2... 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2'-(1,2-diazenediyl)bis - and...

  5. Reactions of methyl and ethyl radicals with uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Lyman, John L.; Laguna, Glenn

    1985-01-01

    We have measured the rates of reaction of both methyl and ethyl radicals with uranium hexafluoride (UF6) in the gas phase. The method we used was to photolyze samples of UF6 in the presence of either methane or ethane. The radicals produced by reaction of fluorine atoms with these species then react with either themselves or with UF6. We inferred the rate constants from ratios of the reaction products and the published rate constants for radical recombination. The diagnostic technique was gas chromatography. The resulting rate constants for reaction with UF6 were (1.6±0.8)×10-14 cm3 molecule-1 s-1 for methyl radicals and (4±2)×10-11 cm3 molecule-1 s-1 for ethyl radicals.

  6. 21 CFR 172.872 - Methyl ethyl cellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a cellulose ether having the general formula [C6H(10 -x-y)O5(CH3)x(C2H5)y]n, where x is the number of methyl groups and y is the number of ethyl groups. The average value of x is 0.3 and the average... the dry sample. (2) The viscosity of an aqueous solution, 2.5 grams of the material in 100...

  7. 21 CFR 172.872 - Methyl ethyl cellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... a cellulose ether having the general formula [C6H(10 -x-y)O5(CH3)x(C2H5)y]n, where x is the number of methyl groups and y is the number of ethyl groups. The average value of x is 0.3 and the average... the dry sample. (2) The viscosity of an aqueous solution, 2.5 grams of the material in 100...

  8. GENOTOXICITY OF ACRYLIC ACID, METHYL ACRYLATE, ETHYL ACRYLATE, METHYL METHACRYLATE, AND ETHYL METHACRYLATE IN L5178Y MOUSE LYMPHOMA CELLS (JOURNAL VERSION)

    EPA Science Inventory

    A series of monomeric acrylate/methacrylate esters (methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate) as well as acrylic acid were examined for genotoxic activity in L5178Y mouse lymphoma cells without exogenous activation. All five compounds induced c...

  9. Two-Carbon Homologation of Ketones to 3-Methyl Unsaturated Aldehydes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The usual scheme of two-carbon homologation of ketones to 3-methyl unsaturated aldehydes by Horner-Wadsworth-Emmons condensations with phosphonate esters, such as triethyl-2-phosphonoacetate, involves three steps. The phosphonate condensation step results in extension of the carbon chain by two carb...

  10. Novel Oxidation of Cyclosporin A: Preparation of Cyclosporin Methyl Vinyl Ketone (Cs-MVK)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclosporin A (CsA) was converted into cyclosporin methyl vinyl ketone (Cs-MVK) by either a biocatalytic method utilizing 1-hydroxybenzotriazole-mediated laccase oxidation or by a chemical oxidation using t-butyl hydroperoxide and potassium ­periodate as co-oxidants. Cs-MVK is a novel, versatile sy...

  11. Reaction of phenol with methyl 1-adamantyl ketone in the presence of aluminum phenolate

    SciTech Connect

    Kozlikovskii, Ya.B.; Chernyaev, B.V.; Yurchenko, A.G.

    1988-07-20

    The condensation of phenol with methyl 1-adamantyl ketone in the presence of aluminum phenolate leads to the formation of 1-(1-adamantyl)-1-(2-hydroxyphenyl)-ethene, 1-(1-adanamtyl)-1-(4-hydroxyphenyl)ethene, 3-methyl-2,3-(3,4-homoadamantano)-2,3-dihydrobenzofuran, and also the dimer and trimer of the initial ketone, i.e., 1,3-di(1-adamantyl)-2-buten-1-one and 1,3,5-tri(1-adamantyl)benzene. In an acidic medium 3-methyl-2,3-(3,4-homoadamantano)-2,3-dihydrobenzofuran is in equilibrium with 1-(1-adamantyl)-1-(2-hydroxyphenyl)ethene.

  12. DISCOVERY OF METHYL ACETATE AND GAUCHE ETHYL FORMATE IN ORION

    SciTech Connect

    Tercero, B.; Cernicharo, J.; Lopez, A.; Caro, G. M. Munoz; Kleiner, I.; Nguyen, H. V. L. E-mail: jcernicharo@cab.inta-csic.es E-mail: munozcg@cab.inta-csic.es E-mail: nguyen@pc.rwth-aachen.de

    2013-06-10

    We report on the discovery of methyl acetate, CH{sub 3}COOCH{sub 3}, through the detection of a large number of rotational lines from each one of the spin states of the molecule: AA species (A{sub 1} or A{sub 2}), EA species (E{sub 1}), AE species (E{sub 2}), and EE species (E{sub 3} or E{sub 4}). We also report, for the first time in space, the detection of the gauche conformer of ethyl formate, CH{sub 3}CH{sub 2}OCOH, in the same source. The trans conformer is also detected for the first time outside the Galactic center source SgrB2. From the derived velocity of the emission of methyl acetate, we conclude that it arises mainly from the compact ridge region with a total column density of (4.2 {+-} 0.5) Multiplication-Sign 10{sup 15} cm{sup -2}. The derived rotational temperature is 150 K. The column density for each conformer of ethyl formate, trans and gauche, is (4.5 {+-} 1.0) Multiplication-Sign 10{sup 14} cm{sup -2}. Their abundance ratio indicates a kinetic temperature of 135 K for the emitting gas and suggests that gas-phase reactions could participate efficiently in the formation of both conformers in addition to cold ice mantle reactions on the surface of dust grains.

  13. 40 CFR 721.1085 - Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenamine,4,4â²-methylenebis[N-ethyl-N-methyl-. 721.1085 Section 721.1085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1085 Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-. (a)...

  14. 40 CFR 721.1085 - Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzenamine,4,4â²-methylenebis[N-ethyl-N-methyl-. 721.1085 Section 721.1085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1085 Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-. (a)...

  15. 40 CFR 721.1085 - Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzenamine,4,4â²-methylenebis[N-ethyl-N-methyl-. 721.1085 Section 721.1085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1085 Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-. (a)...

  16. 40 CFR 721.1085 - Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzenamine,4,4â²-methylenebis[N-ethyl-N-methyl-. 721.1085 Section 721.1085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1085 Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-. (a)...

  17. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2...-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2′-(1,2-diazenediyl)bis - and 2,2... butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2),...

  18. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2...-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2′-(1,2-diazenediyl)bis - and 2,2... butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2),...

  19. Searching for trans ethyl methyl ether in Orion KL⋆

    NASA Astrophysics Data System (ADS)

    Tercero, B.; Cernicharo, J.; López, A.; Brouillet, N.; Kolesniková, L.; Motiyenko, R. A.; Margulès, L.; Alonso, J. L.; Guillemin, J.-C.

    2015-10-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 1015 cm-2 and ≤(1.0 ± 0.2) × 1015 cm-2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO, and NAOJ. This work was also based on observations carried out with the IRAM 30-m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.org

  20. Palladium-catalyzed cross-coupling of styrenes with aryl methyl ketones in ionic liquids: direct access to cyclopropanes.

    PubMed

    Cotugno, Pietro; Monopoli, Antonio; Ciminale, Francesco; Milella, Antonella; Nacci, Angelo

    2014-12-01

    The combined use of Pd(OAc)2 , Cu(OAc)2 , and dioxygen in molten tetrabutylammonium acetate (TBAA) promotes an unusual cyclopropanation reaction between aryl methyl ketones and styrenes. The process is a dehydrogenative cyclizing coupling that involves a twofold CH activation at the α-position of the ketone. The substrate scope highlights the flexibility of the catalyst; a reaction mechanism is also proposed. PMID:25283684

  1. PERSISTENCE OF METHYL AND ETHYL PARATHION FOLLOWING SPILLAGE ON CONCRETE SURFACES

    EPA Science Inventory

    Tests were carried out to determine the potential hazard of spillage of the pesticides, methyl parathion and ethyl parathion, on concrete surfaces. Results indicated that although a toxic hazard exists, especially for potential contamination of foodstuff, when liquid concentrates...

  2. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel.

    PubMed

    Sacia, Eric R; Balakrishnan, Madhesan; Deaner, Matthew H; Goulas, Konstantinos A; Toste, F Dean; Bell, Alexis T

    2015-05-22

    Aviation fuel (i.e., jet fuel) requires a mixture of C9 -C16 hydrocarbons having both a high energy density and a low freezing point. While jet fuel is currently produced from petroleum, increasing concern with the release of CO2 into the atmosphere from the combustion of petroleum-based fuels has led to policy changes mandating the inclusion of biomass-based fuels into the fuel pool. Here we report a novel way to produce a mixture of branched cyclohexane derivatives in very high yield (>94 %) that match or exceed many required properties of jet fuel. As starting materials, we use a mixture of n-alkyl methyl ketones and their derivatives obtained from biomass. These synthons are condensed into trimers via base-catalyzed aldol condensation and Michael addition. Hydrodeoxygenation of these products yields mixtures of C12 -C21 branched, cyclic alkanes. Using models for predicting the carbon number distribution obtained from a mixture of n-alkyl methyl ketones and for predicting the boiling point distribution of the final mixture of cyclic alkanes, we show that it is possible to define the mixture of synthons that will closely reproduce the distillation curve of traditional jet fuel. PMID:25891778

  3. Controlled Degradation of Poly(Ethyl Cyanoacrylate-Co-Methyl Methacrylate)(PECA-Co-PMMA) Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper describes a method for modifying poly(ethyl cyanoacrylate) in order to control the degradation and the stability as well as the glass transition temperatures. Copolymers of poly(ethyl cyanoacrylate-co-methyl methacrylate) (PECA-co-PMMA) with various compositions were synthesized by free ...

  4. Direct Construction of 4-Hydroxybenzils via Para-Selective C-C Bond Coupling of Phenols and Aryl Methyl Ketones.

    PubMed

    Xiang, Jia-Chen; Cheng, Yan; Wang, Miao; Wu, Yan-Dong; Wu, An-Xin

    2016-09-01

    A highly para-selective C-C bond coupling is presented between phenols C(sp(2)) and aryl methyl ketones C(sp(3)), which enables the direct construction of 4-hydroxybenzil derivatives. This practical method exhibits a broad substrate scope and large-scale applicability and represents a general gateway to the hydroxybenzil natural product family. Mechanistic investigations indicated that the combination of HI with DMSO realized the oxidative carbonylation of aryl methyl ketones, while boric acid acted as a dual-functional relay reagent to promote this transformation. PMID:27513164

  5. Lewis base activation of Lewis acids. Catalytic enantioselective addition of silyl enol ethers of achiral methyl ketones to aldehydes.

    PubMed

    Denmark, Scott E; Heemstra, John R

    2003-06-26

    A highly enantioselective addition of silyl enol ethers derived from simple methyl ketones is described. The catalyst system of silicon tetrachloride activated by a chiral bisphosphoramide (R,R)-7 effectively promotes the addition of a variety of unsubstituted silyl enol ethers to aromatic, olefinic, and heteroaromatic aldehydes in excellent yield. [reaction: see text] PMID:12816434

  6. Extraction of vanadium into isobutyl methyl ketone1 1 Publication authorized by the Director, U.S. Geological Survey.

    USGS Publications Warehouse

    Crump-Wiesner, Hans J.; Purdy, W.C.

    1969-01-01

    Because of its advantages in atomic-absorption spectroscopy, isobutyl methyl ketone was chosen as organic solvent for an extraction study on vanadium. Of eight chelating agents which were evaluated for completeness of extraction, ease of use, working pH range, and freedom from interference, cupferron was judged best. ?? 1969.

  7. β-Keto esters from ketones and ethyl chloroformate: a rapid, general, efficient synthesis of pyrazolones and their antimicrobial, in silico and in vitro cytotoxicity studies

    PubMed Central

    2013-01-01

    Background Pyrazolones are traditionally synthesized by the reaction of β-keto esters with hydrazine and its derivatives. There are methods to synthesize β-keto esters from esters and aldehydes, but these methods have main limitation in varying the substituents. Often, there are a number of methods such as acylation of enolates in which a chelating effect has been employed to lock the enolate anion using lithium and magnesium salts; however, these methods suffer from inconsistent yields in the case of aliphatic acylation. There are methods to synthesize β-keto esters from ketones like caboxylation of ketone enolates using carbon dioxide and carbon monoxide sources in the presence of palladium or transition metal catalysts. Currently, the most general and simple method to synthesize β-keto ester is the reaction of dimethyl or ethyl carbonate with ketone in the presence of strong bases which also requires long reaction time, use of excessive amount of reagent and inconsistent yield. These factors lead us to develop a simple method to synthesize β-keto esters by changing the base and reagent. Results A series of β-keto esters were synthesized from ketones and ethyl chloroformate in the presence of base which in turn are converted to pyrazolones and then subjected to cytotoxicity studies towards various cancer cell lines and antimicrobial activity studies towards various bacterial and fungal strains. Conclusion The β-keto esters from ethyl chloroformate was successfully attempted, and the developed method is simple, fast and applicable to the ketones having the alkyl halogens, protecting groups like Boc and Cbz that were tolerated and proved to be useful in the synthesis of fused bicyclic and tricyclic pyrazolones efficiently using cyclic ketones. Since this method is successful for different ketones, it can be useful for the synthesis of pharmaceutically important pyrazolones also. The synthesized pyrazolones were subjected to antimicrobial, docking and

  8. Mutagen production by chlorination of methylated alpha,beta-unsaturated ketones.

    PubMed

    Cheh, A M

    1986-01-01

    Mesityl oxide and isophorone, two beta-methylated-alpha,beta-unsaturated industrial solvent ketones, were found to be converted to mutagens by aqueous chlorination under conditions of pH and reactant concentration that may be relevant to waste water and drinking water chlorination. Chlorination of millimolar concentrations of isophorone generated mutagens at a pH as low as 8.5, while mutagens were formed from submillimolar concentrations of mesityl oxide at pH 8.5, or millimolar concentrations at pH 7.5. It is suggested that mutagen formation can occur via a haloform reaction at such low pH levels because of extended resonance stabilization of an intermediate carbanion. PMID:3945234

  9. Ca(OH)2-Catalyzed Condensation of Aldehydes with Methyl ketones in Dilute Aqueous Ethanol: A Comprehensive Access to α,β-Unsaturated Ketones

    PubMed Central

    Yu, Lei; Han, Mengting; Luan, Jie; Xu, Lin; Ding, Yuanhua; Xu, Qing

    2016-01-01

    Cheap, abundant but seldom-employed Ca(OH)2 was found to be an excellent low-loading (5–10 mol%) catalyst for Claisen-Schmidt condensation of aldehydes with methyl ketones under mild conditions. It was interesting that dilute aqueous ethanol (20 v/v%) was unexpectedly discovered to be the optimal solvent. The reaction was scalable at least to 100 mmol and calcium could be precipitated by CO2 and removed by filtration. Evaporation of solvent directly afforded the product in the excellent 96% yield with high purity, as confirmed by its 1H NMR spectrum. PMID:27443482

  10. Ca(OH)2-Catalyzed Condensation of Aldehydes with Methyl ketones in Dilute Aqueous Ethanol: A Comprehensive Access to α,β-Unsaturated Ketones

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Han, Mengting; Luan, Jie; Xu, Lin; Ding, Yuanhua; Xu, Qing

    2016-07-01

    Cheap, abundant but seldom-employed Ca(OH)2 was found to be an excellent low-loading (5–10 mol%) catalyst for Claisen-Schmidt condensation of aldehydes with methyl ketones under mild conditions. It was interesting that dilute aqueous ethanol (20 v/v%) was unexpectedly discovered to be the optimal solvent. The reaction was scalable at least to 100 mmol and calcium could be precipitated by CO2 and removed by filtration. Evaporation of solvent directly afforded the product in the excellent 96% yield with high purity, as confirmed by its 1H NMR spectrum.

  11. Ca(OH)2-Catalyzed Condensation of Aldehydes with Methyl ketones in Dilute Aqueous Ethanol: A Comprehensive Access to α,β-Unsaturated Ketones.

    PubMed

    Yu, Lei; Han, Mengting; Luan, Jie; Xu, Lin; Ding, Yuanhua; Xu, Qing

    2016-01-01

    Cheap, abundant but seldom-employed Ca(OH)2 was found to be an excellent low-loading (5-10 mol%) catalyst for Claisen-Schmidt condensation of aldehydes with methyl ketones under mild conditions. It was interesting that dilute aqueous ethanol (20 v/v%) was unexpectedly discovered to be the optimal solvent. The reaction was scalable at least to 100 mmol and calcium could be precipitated by CO2 and removed by filtration. Evaporation of solvent directly afforded the product in the excellent 96% yield with high purity, as confirmed by its (1)H NMR spectrum. PMID:27443482

  12. 40 CFR 180.483 - O-[2-(1,1-Dimethylethyl)-5-pyrimidinyl] O-ethyl-O-(1-methyl-ethyl) phosphorothioate; tolerances...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false O- O-ethyl-O-(1-methyl-ethyl) phosphorothioate; tolerances for residues. 180.483 Section 180.483 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.483...

  13. Microwave Spectroscopy of Trans-Ethyl Methyl Ether in the Torsionally Excited State 3

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Murata, Keigo; Tsunekawa, Shozo; Ohashi, Nobukimi

    2010-06-01

    The trans-ethyl methyl ether molecule (CH_3CH_2OCH_3) has two methyl group internal rotors which are equivalent to the two vibrational motions, ν28 and ν29. There is another low-lying torsional motion which is a skeltal torsion (ν30) and does not cause splitting. The microwave spectra of the trans-ethyl methyl ether molecule in the ν28 = 1, ν29 = 1, and ν30 = 1 have been studied and interactions between these states were discussed. In this paper we report results on the ν30 = 2, and 3 state. The analysis based on Hougen's tunneling matrix formulation considering two methyl groups are used. We try to interpret tunneling parameters obtained in the present analysis quantitatively from the viewpoint of torsion-torsion interaction.

  14. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to...

  15. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to...

  16. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to...

  17. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to...

  18. Copper-Mediated Cross-Dehydrogenative Coupling of 2-Methylpyridine and 8-Methylquinoline with Methyl Ketones and Benzamides.

    PubMed

    Kumar, Gadde Sathish; Boyle, Joshua William; Tejo, Ciputra; Chan, Philip Wai Hong

    2016-02-01

    A synthetic method to prepare (E)-(pyridin-2-yl)enones and (E)-(quinolin-8-yl)enones that relies on the respective copper(I)-catalyzed formal cross-dehydrogenative coupling (CDC) reaction of 2-methylpyridine and 8-methylquinoline with methyl ketones has been discovered. The mechanism was delineated to follow a pathway involving oxidation of the N-heterocycle to its corresponding aldehyde adduct prior to reaction with the methyl ketone. The versatility and substrate dependent divergence in the reactivity of the copper-mediated CDC strategy was exemplified by its application to the synthesis of N-(quinolin-8-ylmethyl)amide and N-(quinolin-8-ylmethyl)aniline adducts on switching the cross-coupling partner to benzamides or an aniline derivative. PMID:26586026

  19. Aqueous-phase oligomerization of methyl vinyl ketone through photooxidation - Part 1: Aging processes of oligomers

    NASA Astrophysics Data System (ADS)

    Renard, P.; Siekmann, F.; Salque, G.; Demelas, C.; Coulomb, B.; Vassalo, L.; Ravier, S.; Temime-Roussel, B.; Voisin, D.; Monod, A.

    2015-01-01

    It has recently been established that unsaturated water-soluble organic compounds (UWSOCs) might efficiently form oligomers in polluted fogs and wet aerosol particles, even for weakly soluble ones like methyl vinyl ketone (MVK). The atmospheric relevance of these processes is explored by means of multiphase process model studies in a companion paper. In the present study, we investigate the aging of these aqueous-phase MVK oligomers formed via •OH oxidation, as well as their ability to form secondary organic aerosol (SOA) upon water evaporation. The comparison between aqueous-phase composition and aerosol composition after nebulization of the corresponding solutions shows similar trends for oligomer formation and aging. The measurements reveal that oligomer aging leads to the formation of organic diacids. Quantification of the SOA mass formed after nebulization is performed, and the obtained SOA mass yields seem to depend on the spectral irradiance of the light used to initiate the photochemistry. Investigating a large range of initial MVK concentrations (0.2-20 mM), the results show that their •OH oxidation undergoes competition between functionalization and oligomerization that is dependent on the precursor concentration. At high initial MVK concentrations (≥ 2 mM), oligomerization prevails over functionalization, while at lower initial concentrations, oligomerization is not the major process, and functionalization dominates, resulting in small carbonyls, dicarbonyls and monoacids. The atmospheric implications of these processes are discussed.

  20. 40 CFR 721.1085 - Benzenamine,4,4′-methylenebis[N-ethyl-N-methyl-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenamine,4,4â²-methylenebis[N-ethyl-N-methyl-. 721.1085 Section 721.1085 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances §...

  1. Persistence of pyrazosulfuron-ethyl and halosulfuron-methyl in aqueous solutions: Comparing hydrolytic dissipation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrazosulfuron-ethyl and halosulfuron-methyl are two new highly active sulfonylurea herbicides that have been widely used for weed control in many crops. Chemical hydrolysis is a primary process to determine the environmental fates of this group of pesticides. The hydrolytic dissipation of two herbi...

  2. Transformation kinetics and mechanism of the sulfonylurea herbicides pyrazosulfuron ethyl and halosulfuron methyl in aqueous solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pyrazosulfuron ethyl (PE) and halosulfuron methyl (HM) are two new highly active sulfonylurea herbicides which have been widely used for weed control in a variety of vegetables and other crops. These two herbicides have similar molecular structure, differing only in the substitutions on the pyrazole...

  3. Contents of methyl-, ethyl-, propyl-, butyl- and benzylparaben in cosmetic products.

    PubMed

    Rastogi, S C; Schouten, A; de Kruijf, N; Weijland, J W

    1995-01-01

    The contents of methyl-, ethyl-, propyl-, butyl- and benzylparaben in 215 cosmetic products have been determined to elucidate the concentration and frequency of use of these parabens in cosmetic products, and to monitor whether the products complied with the Danish and EEC regulations. The results showed that 77% of the products investigated contained 0.01%-0.87% parabens. Nearly all (99%) of the leave-on cosmetics and 77% of rinse-off cosmetics were found to contain parabens. A maximum of 0.32% methyl- and propylparaben, 0.19% ethylparaben, and 0.07% butyl- and benzylparaben were present in paraben-positive cosmetics. A preferential use of methyl-/ethyl-/propyl-/butyl-/benzylparaben in various groups of cosmetic products was revealed. PMID:7720367

  4. Fumigation of wheat using liquid ethyl formate plus methyl isothiocyanate in 50-tonne farm bins.

    PubMed

    Ren, Yonglin; Lee, Byungho; Mahon, Daphne; Xin, Ni; Head, Matthew; Reid, Robin

    2008-04-01

    Australian Standard White wheat, Triticum aestivum L. (a marketing grade with mixed grain hardness),with a moisture content of 12.5% was fumigated with a new ethyl formate formulation (95% ethyl formate plus 5% methyl isothiocyanate) identified and developed by Commonwealth Scientific and Industrial Research Organization Entomology, Canberra, Australia. Wheat was fumigated with the formulation at a calculated application rate of 80 g/m3 in two 50-tonne sealed metal vertical silos located at Fisherman Islands, Queensland, Australia. Access was gained through the top of the silo where the application of the formulation was completed within a few minutes by pouring it onto the top of the wheat. After 2 h of recirculation, using a 0.5-kW fan, the in-bin concentrations of ethyl formate achieved equilibrium with a concentration variation < 7%. The ethyl formate concentration, in both silos 1 and 2, during the first day's exposure period remained above 10 g/m3. The concentration of ethyl formate by time product achieved was 790 and 650 g h/m3 in silos 1 and 2, respectively. In silo 1, the formulation was sufficient to kill all life stages of mixed age cultures of Sitophilus oryzae (L.), Rhyzopertha dominica (F.), and Tribolium castaneum (Herbst). In silo 2, control was 100% for R. dominica and T. castaneum and 99.4% for S. oryzae. After 5 d fumigation, the silo top-hatch was opened but no forced aeration was initiated. The in-bin concentration of ethyl formate was lower than the Australian experimental threshold limit value of 100 ppm. The ethyl formate and methyl isothiocyanate residues in the grain had declined to below the Australian experimental maximum residue limit of 0.2 and 0.1 mg/kg, respectively. The workspace and environmental levels of ethyl formate and methyl isothiocyanate were less than the detection limit of 0.1 ppm. The treatment with ethyl formate formulation had no affect on the wheat germination and seed color compared with untreated controls. PMID

  5. Diurnal profiles of isoprene, methacrolein and methyl vinyl ketone at an urban site in Hong Kong

    NASA Astrophysics Data System (ADS)

    Cheung, K.; Guo, H.; Ou, J. M.; Simpson, I. J.; Barletta, B.; Meinardi, S.; Blake, D. R.

    2014-02-01

    Methacrolein (MACR) and methyl vinyl ketone (MVK) are major oxidation products of isoprene, but they also have primary emissions in urban environments, for example from fuel use. To examine whether MACR and MVK could be used as a direct measurement of the oxidation rate of isoprene in an urban setting, the diurnal variations of isoprene, MACR and MVK were characterized at an urban site in Hong Kong from September to November, 2010. Ozone (O3), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen oxides (NOx) were simultaneously monitored. The average isoprene mixing ratio was 252 ± 204 pptv, with a bell-shaped distribution observed on most sampling days. Higher levels of isoprene were recorded in the beginning of the sampling period, when the temperature was higher. The average mixing ratios of MACR and MVK were 101 ± 85 pptv and 175 ± 131 pptv, respectively. While isoprene, MACR and MVK experienced peak concentrations from 11 a.m. to 3 p.m., increased levels of MACR and MVK during the morning rush hour did not coincide with isoprene. The low associations between isoprene and MACR/MVK suggest that either MACR/MVK were not formed from local isoprene oxidation and/or they could partly originate from primary emissions such as fuel evaporation or combustion. Statistical analyses of linear regression and positive matrix factorization revealed that approximately 20-29% of the measured MACR and MVK was associated with biogenic emissions, and 55-71% was impacted by vehicular emissions, particularly during morning rush hours. Since MACR and MVK originated from both primary emissions and biogenic emissions at this urban site, they can therefore overestimate the actual rate of isoprene oxidation and its contribution to O3 production in urban areas with strong primary emissions.

  6. Chemodynamics of Methyl Parathion and Ethyl Parathion: Adsorption Models for Sustainable Agriculture

    PubMed Central

    Rafique, Uzaira; Balkhair, Khaled S.; Ashraf, Muhammad Aqeel

    2014-01-01

    The toxicity of organophosphate insecticides for nontarget organism has been the subject of extensive research for sustainable agriculture. Pakistan has banned the use of methyl/ethyl parathions, but they are still illegally used. The present study is an attempt to estimate the residual concentration and to suggest remedial solution of adsorption by different types of soils collected and characterized for physicochemical parameters. Sorption of pesticides in soil or other porous media is an important process regulating pesticide transport and degradation. The percentage removal of methyl parathion and ethyl parathion was determined through UV-Visible spectrophotometer at 276 nm and 277 nm, respectively. The results indicate that agricultural soil as compared to barren soil is more efficient adsorbent for both insecticides, at optimum batch condition of pH 7. The equilibrium between adsorbate and adsorbent was attained in 12 hours. Methyl parathion is removed more efficiently (by seven orders of magnitude) than ethyl parathion. It may be attributed to more available binding sites and less steric hindrance of methyl parathion. Adsorption kinetics indicates that a good correlation exists between distribution coefficient (Kd) and soil organic carbon. A general increase in Kd is noted with increase in induced concentration due to the formation of bound or aged residue. PMID:24689059

  7. Poly[1-ethyl-3-methyl­imidazolium [tri-μ-chlorido-chromate(II)

    PubMed Central

    Danford, James J.; Arif, Atta M.; Berreau, Lisa M.

    2009-01-01

    The title compound, {(C6H11N2)[CrCl3]}n, was generated via mixing of the ionic liquid 1-ethyl-3-methyl­imidazolium chloride with CrCl2 in ethanol. Crystals were obtained by a diffusion method. In the crystal structure, the anion forms one-dimensional chains of chloride-bridged Jahn–Teller distorted chromium(II) centers extending along the [100] direction. The imidazolium cations are positioned between these chains. PMID:21581818

  8. 40 CFR 721.4468 - 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1H-Imidazole, 2-ethyl-4,5-dihydro-4... Specific Chemical Substances § 721.4468 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  9. 40 CFR 721.4468 - 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 1H-Imidazole, 2-ethyl-4,5-dihydro-4... Specific Chemical Substances § 721.4468 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  10. 40 CFR 721.4468 - 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1H-Imidazole, 2-ethyl-4,5-dihydro-4... Specific Chemical Substances § 721.4468 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  11. 40 CFR 721.4468 - 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 1H-Imidazole, 2-ethyl-4,5-dihydro-4... Specific Chemical Substances § 721.4468 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  12. 40 CFR 721.4468 - 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 1H-Imidazole, 2-ethyl-4,5-dihydro-4... Specific Chemical Substances § 721.4468 1H-Imidazole, 2-ethyl-4,5-dihydro-4-methyl-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  13. Production of methyl vinyl ketone and methacrolein via the hydroperoxyl pathway of isoprene oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Y. J.; Herdlinger-Blatt, I.; McKinney, K. A.; Martin, S. T.

    2013-06-01

    The photo-oxidation chemistry of isoprene (ISOP; C5H8) was studied in a continuous-flow chamber under conditions such that the reactions of the isoprene-derived peroxyl radicals (RO2) were dominated by the hydroperoxyl (HO2) pathway. A proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS) with switchable H3O+ and NO+ reagent ions was used for product analysis. The products methyl vinyl ketone (MVK; C4H6O) and methacrolein (MACR; C4H6O) were differentiated using NO+ reagent ions. The MVK and MACR yields via the HO2 pathway were (3.8 ± 1.3)% and (2.5 ± 0.9)%, respectively, at +25 °C and < 2% relative humidity. The respective yields were (41.4 ± 5.5)% and (29.6 ± 4.2)% via the NO pathway. Production of MVK and MACR via the HO2 pathway implies concomitant production of hydroxyl ((6.3 ± 2.1)%) and hydroperoxyl ((6.3 ± 2.1)%) radicals, meaning a HOx recycling of (12.6 ± 4.2)% given that HO2 was both a reactant and product. Other isoprene oxidation products, believed to be mostly organic hydroperoxides, also contributed to the ion intensity at the same mass-to-charge (m/z) ratios as the MVK and MACR product ions for HO2-dominant conditions. These products were selectively removed from the gas phase by placement of a cold trap (-40 °C) inline prior to the PTR-TOF-MS. When incorporated into regional and global chemical transport models, the yields of MVK and MACR and the concomitant HOx recycling reported in this study can improve the accuracy of the simulation of the HO2 reaction pathway of isoprene, which is believed to be the fate of approximately half of atmospherically produced isoprene-derived peroxy radicals on a global scale.

  14. Catalytic upgrading of biomass-derived methyl ketones to liquid transportation fuel precursors by an organocatalytic approach.

    PubMed

    Sankaranarayanapillai, Shylesh; Sreekumar, Sanil; Gomes, Joseph; Grippo, Adam; Arab, George E; Head-Gordon, Martin; Toste, F Dean; Bell, Alexis T

    2015-04-01

    A highly efficient water-tolerant, solid-base catalyst for the self-condensation of biomass-derived methyl ketones to jet-diesel fuel precursors was developed by grafting site-isolated secondary amines on silica-alumina supports. It is shown that apart from the nature and density of amine groups and the spatial separation of the acidic and basic sites, the acidity of the support material plays a critical role in defining the catalytic activity. It is also found that a combination of weakly acidic silanol/aluminol with secondary amine groups can mimic proline catalysts and are more effective in catalyzing the selective dimerization reaction than the combination of amines with organic acids. In situ FTIR measurements demonstrate that acidic groups activate methyl ketones through their carbonyl groups leading to a favorable CC bond formation step involving an enamine intermediate. DFT analysis of the reaction pathway confirms that CC bond formation is the rate-limiting step. PMID:25704593

  15. Effects on wildlife of ethyl and methyl parathion applied to California rice fields

    USGS Publications Warehouse

    Custer, T.W.; Hill, E.F.; Ohlendorf, H.M.

    1985-01-01

    Selected rice fields on the Sacramento National Wildlife Refuge Complex were aerially sprayed one time during May or June 1982 with either ethyl (0.11 kg Al/ha) or methyl (0.84 kg AI/ha) parathion for control of tadpole shrimp, Triops longicaudatus. No sick or dead vertebrate wildlife were found or adjacent to the treated rice fields after spraying. Specimens of the following birds and mammals were assayed for brain cholinesterase (ChE) activity to determine exposure to either form of parathion; house mouse, Mus musculus; black-tailed jackrabbit, Lepus californicus; mallard, Anas platyrhynchos; ring-necked pheasant, Phasianus colchicus; American coot, Fulica americana; and red-winged blackbird, Agelaius phoeniceus. Both mice and pheasants from methyl parathion-treated fields had overall mean ChE activities that were significantly (P < 0.05) inhibited compared with controls, and 7, 40, 54 and 57% of individual blackbirds, pheasant, mice, and coots, respectively, had inhibited brain ChE activities (i.e., less than -2 SD of control mean). Although no overall species effect was detected for ethyl parathoid treatment, pheasants (43%), coots (33%), and mice (37%) had significantly inhibited brain ChE activities. Neither of the parathion treatment appeared acutely hazardous to wildlife in or adjacent to rice fields, but sufficient information on potential hazards was obtained to warrant caution in use of these chemicals, especially methyl parathion, in rice fields.

  16. Effects of wildlife of ethyl and methyl parathion applied to California USA rice fields

    USGS Publications Warehouse

    Custer, T.W.; Hill, E.F.; Ohlendorf, H.M.

    1985-01-01

    Selected rice fields on the Sacramento National Wildlife Refuge Complex were aerially sprayed one time during May or June 1982 with either ethyl (0.11 kg Al/ha) or methyl (0.84 kg AI/ha) parathion for control of tadpole shrimp, Triops longicaudatus. No sick or dead vertebrate wildlife were found or adjacent to the treated rice fields after spraying. Specimens of the following birds and mammals were assayed for brain cholinesterase (ChE) activity to determine exposure to either form of parathion; house mouse, Mus musculus; black-tailed jackrabbit, Lepus californicus; mallard, Anas platyrhynchos; ring-necked pheasant, Phasianus colchicus; American coot, Fulica americana; and red-winged blackbird, Agelaius phoeniceus. Both mice and pheasants from methyl parathion-treated fields had overall mean ChE activities that were significantly (P < 0.05) inhibited compared with controls, and 7, 40, 54 and 57% of individual blackbirds, pheasant, mice, and coots, respectively, had inhibited brain ChE activities (i.e., less than -2 SD of control mean). Although no overall species effect was detected for ethyl parathoid treatment, pheasants (43%), coots (33%), and mice (37%) had significantly inhibited brain ChE activities. Neither of the parathion treatment appeared acutely hazardous to wildlife in or adjacent to rice fields, but sufficient information on potential hazards was obtained to warrant caution in use of these chemicals, especially methyl parathion, in rice fields.

  17. Methyl ketones in high altitude Ecuadorian Andosols confirm excellent conservation of plant-specific n-alkane patterns

    NASA Astrophysics Data System (ADS)

    Jansen, B.; Nierop, K. G. J.

    2009-04-01

    Montane forest composition and specifically the position of the upper forest line (UFL) is very sensitive to climate change and human interference. As a consequence, reconstructions of past altitudinal UFL dynamics and forest species composition are crucial instruments to infer relationships between climate change and vegetation dynamics, and assess the impact of (pre)historic human settlement. One of the most detailed methods available to date to reconstruct past vegetation dynamics is the analysis of fossil pollen. Unfortunately, fossil pollen analysis does not distinguish beyond family or generic level in most cases, while its spatial resolution is limited amongst others by windblown dispersal of pollen, affecting the accuracy of pollen based reconstructions of UFL positions. To overcome these limitations, we developed a new method based on the analysis of plant-specific groups of biomarkers preserved in suitable archives, such as peat deposits, that are unravelled into the plant species of origin by the newly developed VERHIB model. In a study of UFL positions in the Northern Ecuadorian Andes we found longer chain-length n-alkanes, (C19-C35) to occur in plant-specific patterns in the dominant vegetation in the area as well as preliminary soil and peat samples. A crucial factor in determining the applicability of these n-alkanes as biomarkers for past vegetation is their preservation in soils and peat deposits. Therefore, we investigated the preservation of C19-C35 n-alkanes in a peat core and in five excavations along an altitudinal transect (3500-3860 m.a.s.l) in the study area. We were able to establish that n-methyl ketones are the main degradation product of the n-alkanes in question, while the degradation of the n-alkanes was the main source of the n-methyl ketones. This allowed us to use the relationship between the concentrations and carbon chain length patterns of n-alkanes and n-methyl ketones to assess possible (selective) degradation of the n

  18. Kinetics of the gas-phase reaction between ozone and three unsaturated oxygenated compounds: Ethyl 3,3-dimethyl acrylate, 2-methyl-2-pentenal and 6-methyl-5-hepten-2-one at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Gaona Colmán, Elizabeth; Blanco, María B.; Barnes, Ian; Teruel, Mariano A.

    2015-05-01

    Rate coefficients for the gas-phase reactions of O3 molecules with three unsaturated oxygenated compounds have been determined using the relative kinetic technique in an environmental chamber with FTIR detection of the reactants at (298 ± 2) K in 760 Torr total pressure of synthetic air. The following rate coefficients (in units of 10-17 cm3 molecule-1 s-1) were determined: ethyl 3,3-dimethyl acrylate (0.82 ± 0.19), 2-methyl-2-pentenal (0.71 ± 0.16) and 6-methyl-5-hepten-2-one (26 ± 7). The different reactivity of the unsaturated oxygenated compounds toward O3 is discussed in terms of their chemical structure. In addition, a correlation between the reactivity of structurally different unsaturated compounds (alkenes and unsaturated oxygenated VOCs, such as ethers, esters, aldehydes, ketones and alcohols) toward O3 molecules and the HOMO (Highest Occupied Molecular Orbital) of the compounds is presented. Using the kinetic parameters determined in this work, residence times of these unsaturated compounds in the atmosphere with respect to reaction with O3 have been calculated. In urban and rural areas the main sink of 6-methyl-5-hepten-2-one is reaction with O3 molecules with a residence time in the order of few minutes.

  19. Mononuclear and Dinuclear Manganese(II) Complexes from the Use of Methyl(2-pyridyl)ketone Oxime

    PubMed Central

    Efthymiou, Constantinos G.; Nastopoulos, Vassilios; Raptopoulou, Catherine; Tasiopoulos, Anastasios; Perlepes, Spyros P.; Papatriantafyllopoulou, Constantina

    2010-01-01

    The reactions of methyl(2-pyridyl)ketone oxime, (py)C(Me)NOH, with manganese(II) sulfate monohydrate have been investigated. The reaction between equimolar quantities of MnSO4 · H2O and (py)C(Me)NOH in H2O lead to the dinuclear complex [Mn2(SO4)2{(py)C(Me)NOH}4] · (py)C(Me)NOH, 1 · (py)C(Me)NOH, while employment of NaOMe as base affords the compound [Mn(HCO2)2{(py)C(Me)NOH}2] (2). The structures of both compounds have been determined by single crystal X-ray diffraction. In both complexes, the organic ligand chelates through its nitrogen atoms. The IR data are discussed in terms of the nature of bonding and the structures of the two complexes. PMID:20671965

  20. Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis.

    PubMed

    Marous, Daniel R; Lloyd, Evan P; Buller, Andrew R; Moshos, Kristos A; Grove, Tyler L; Blaszczyk, Anthony J; Booker, Squire J; Townsend, Craig A

    2015-08-18

    Despite their broad anti-infective utility, the biosynthesis of the paradigm carbapenem antibiotic, thienamycin, remains largely unknown. Apart from the first two steps shared with a simple carbapenem, the pathway sharply diverges to the more structurally complex members of this class of β-lactam antibiotics, such as thienamycin. Existing evidence points to three putative cobalamin-dependent radical S-adenosylmethionine (RS) enzymes, ThnK, ThnL, and ThnP, as potentially being responsible for assembly of the ethyl side chain at C6, bridgehead epimerization at C5, installation of the C2-thioether side chain, and C2/3 desaturation. The C2 substituent has been demonstrated to be derived by stepwise truncation of CoA, but the timing of these events with respect to C2-S bond formation is not known. We show that ThnK of the three apparent cobalamin-dependent RS enzymes performs sequential methylations to build out the C6-ethyl side chain in a stereocontrolled manner. This enzymatic reaction was found to produce expected RS methylase coproducts S-adenosylhomocysteine and 5'-deoxyadenosine, and to require cobalamin. For double methylation to occur, the carbapenam substrate must bear a CoA-derived C2-thioether side chain, implying the activity of a previous sulfur insertion by an as-yet unidentified enzyme. These insights allow refinement of the central steps in complex carbapenem biosynthesis. PMID:26240322

  1. Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis

    PubMed Central

    Marous, Daniel R.; Lloyd, Evan P.; Buller, Andrew R.; Moshos, Kristos A.; Grove, Tyler L.; Blaszczyk, Anthony J.; Booker, Squire J.; Townsend, Craig A.

    2015-01-01

    Despite their broad anti-infective utility, the biosynthesis of the paradigm carbapenem antibiotic, thienamycin, remains largely unknown. Apart from the first two steps shared with a simple carbapenem, the pathway sharply diverges to the more structurally complex members of this class of β-lactam antibiotics, such as thienamycin. Existing evidence points to three putative cobalamin-dependent radical S-adenosylmethionine (RS) enzymes, ThnK, ThnL, and ThnP, as potentially being responsible for assembly of the ethyl side chain at C6, bridgehead epimerization at C5, installation of the C2-thioether side chain, and C2/3 desaturation. The C2 substituent has been demonstrated to be derived by stepwise truncation of CoA, but the timing of these events with respect to C2–S bond formation is not known. We show that ThnK of the three apparent cobalamin-dependent RS enzymes performs sequential methylations to build out the C6-ethyl side chain in a stereocontrolled manner. This enzymatic reaction was found to produce expected RS methylase coproducts S-adenosylhomocysteine and 5′-deoxyadenosine, and to require cobalamin. For double methylation to occur, the carbapenam substrate must bear a CoA-derived C2-thioether side chain, implying the activity of a previous sulfur insertion by an as-yet unidentified enzyme. These insights allow refinement of the central steps in complex carbapenem biosynthesis. PMID:26240322

  2. Crystal structure of the tetra-gonal polymorph of bis-(1-ethyl-3-methyl-imidazolium) tetra-bromido-cadmate.

    PubMed

    Đorđević, Tamara; Gerger, Sabrina; Karanović, Ljiljana

    2016-07-01

    Both unique Cd atoms in the tetra-gonal polymorph of bis-(1-ethyl-3-methyl-imidazolium) tetra-bromido-cadmate, (C6H11N2)2[CdBr4], occupy special positions (site symmetry -4). The crystal structure consists of isolated tetra-hedral [CdBr4](2-) anions which are surrounded by 1-ethyl-3-methyl-imidazolium cations. The methyl and ethyl side chains of the cations show positional disorder in a 0.590 (11):0.410 (11) ratio. In the crystal, (C6H11N2)(+) cations display three weak C-H⋯Br hydrogen-bond inter-actions through the imidazolium ring H atoms with the Br(-) ligands of the surrounding complex anions. The alkyl groups of the side chains are not involved in hydrogen bonding. PMID:27555953

  3. Stereoselective Reduction of Prochiral Ketones by Plant and Microbial Biocatalysts.

    PubMed

    Javidnia, K; Faghih-Mirzaei, E; Miri, R; Attarroshan, M; Zomorodian, K

    2016-01-01

    Chiral alcohols are the key chiral building blocks to many enantiomerically pure pharmaceuticals. The biocatalytic approach in asymmetric reduction of corresponding prochiral ketones to the preparation of these optically pure substances is one of the most promising routes. The stereoselective reduction of different kinds of prochiral ketones catalyzed by various plants and microorganisms was studied in this work. Benzyl acetoacetate, methyl 3-oxopentanoate, ethyl 3-oxopentanoate, and ethyl butyryl acetate were chosen as the model substrates for β-ketoesters. Benzoyl acetonitrile, 3-chloro propiophenone, and 1-acetyl naphthalene were chosen as aromatic aliphatic ketones. Finally, 2-methyl benzophenone and 4-chloro benzophenone were selected as diaryl ketones. Plant catalysis was conducted by Daucus carota, Brassica rapa, Brassica oleracea, Pastinaca sativa, and Raphnus sativus. For microbial catalysis, Aspergillus foetidus, Penicillum citrinum, Saccharomyces carlbergensis, Pichia fermentans, and Rhodotrula glutinis were chosen. Chiral alcohols were obtained in high yields and with optical purity. A superiority in the microorganisms' performance in the bioreduction of prochiral ketones was detected. Among microorganisms, Rhodotrula glutinis showed remarkable results with nearly all substrates and is proposed for future studies. PMID:27168684

  4. Stereoselective Reduction of Prochiral Ketones by Plant and Microbial Biocatalysts

    PubMed Central

    Javidnia, K.; Faghih-Mirzaei, E.; Miri, R.; Attarroshan, M.; Zomorodian, K.

    2016-01-01

    Chiral alcohols are the key chiral building blocks to many enantiomerically pure pharmaceuticals. The biocatalytic approach in asymmetric reduction of corresponding prochiral ketones to the preparation of these optically pure substances is one of the most promising routes. The stereoselective reduction of different kinds of prochiral ketones catalyzed by various plants and microorganisms was studied in this work. Benzyl acetoacetate, methyl 3-oxopentanoate, ethyl 3-oxopentanoate, and ethyl butyryl acetate were chosen as the model substrates for β-ketoesters. Benzoyl acetonitrile, 3-chloro propiophenone, and 1-acetyl naphthalene were chosen as aromatic aliphatic ketones. Finally, 2-methyl benzophenone and 4-chloro benzophenone were selected as diaryl ketones. Plant catalysis was conducted by Daucus carota, Brassica rapa, Brassica oleracea, Pastinaca sativa, and Raphnus sativus. For microbial catalysis, Aspergillus foetidus, Penicillum citrinum, Saccharomyces carlbergensis, Pichia fermentans, and Rhodotrula glutinis were chosen. Chiral alcohols were obtained in high yields and with optical purity. A superiority in the microorganisms' performance in the bioreduction of prochiral ketones was detected. Among microorganisms, Rhodotrula glutinis showed remarkable results with nearly all substrates and is proposed for future studies. PMID:27168684

  5. Microwave Spectroscopy of Trans-Ethyl Methyl Ether in the Ground State

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Sakai, Yusuke; Tsunekawa, Shozo; Miyamoto, Taihei; Fujitake, Masaharu; Ohashi, Nobukimi

    2013-06-01

    The trans-ethyl methyl ether molecule (CH_3CH_2OCH_3) has two inequivalent methyl group internal rotors which corresponds to the two vibrational motions, ν_{28} and ν_{29}. Due to these internal rotations, a rotational transition could be split into maximum five components. The skeletal torsion (ν_{30}) is another low-lying state (ν_{30}) that interacts with the ν_{28} and ν_{29} modes. The microwave spectra of the trans-ethyl methyl ether molecule in the ν_{28} = 1, ν_{29} = 1, and ν_{30} = 1, 2 and 3 have been extensively studied by using Hougen's tunneling matrix formalism. The microwave spectroscopy in the ground state was studied by several groups. The splitting due to the ν_{28} mode (C-CH_3 internal rotation) is small in the ground state and was not fully resolved in most of the previous studied rotational transitions. In this paper, we report the results of the pulsed nozzle-jet Fourier transform microwave spectroscopy so as to measure the fully resolved spectra. The submillmeter wave spectroscopy was also carried out. Our analysis including the previously reported transitions would be useful for astronomical observations. K. Kobayashi, T. Matsui, N. Mori, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc. {269}, 242 2011. K. Kobayashi, T. Matsui, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc. {255}, 164 2009. K. Kobayashi, T. Matsui, N. Mori, S. Tsunekawa, and N. Ohashi J. Mol. Spectrosc.{251}, 301 2008. K. Kobayashi, K. Murata, S. Tsunekawa, and N. Ohashi Int. Symposium on Mol. Spectrosc., 65th Meeting TH15 2010.} M. Hayashi, and K. Kuwada J. Mol. Structure {28}, 147 1975. M. Hayashi, and M. Adachi J. Mol. Structure {78}, 53 1982. S. Tsunekawa, Y. Kinai, Y. Kondo, H. Odashima, and K. Takagi Molecules {8}, 103 2003. U. Fuchs, G. Winnewisser, P. Groner, F. C. De Lucia, and E. Herbst Astrophys. J. Suppl. {144}, 277 2003.

  6. 40 CFR 721.8450 - 2-Propenoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ester. 721.8450 Section 721.8450 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.8450 2-Propenoic acid, 2-methyl-, 2- ethyl ester. (a) Chemical substance... acid, 2-methyl-, 2- ethyl ester, (PMN P-90-333) is subject to reporting under this section for...

  7. Effect of Ionization on Infrared and Electronic Absorption Spectra of Methyl and Ethyl Formate in the Gas Phase and in Astrophysical H2O Ice: A Computational Study

    NASA Astrophysics Data System (ADS)

    Naganathappa, Mahadevappa; Chaudhari, Ajay

    2011-04-01

    This work reports infrared and electronic absorption spectra of trans and gauche conformers of neutral ethyl formate, trans and cis conformers of neutral methyl formate, their ions in the gas phase, and neutral ethyl and methyl formate in astrophysical H2O ice. The second-order Møller-Plesset perturbation (MP2) method with TZVP basis set has been used to obtain ground-state geometries. An influence of ice on vibrational frequencies of neutral ethyl and methyl formate was obtained using integral equation formalism polarizable continnum model (IEFPCM). Significant shift in vibrational frequencies for neutral methyl and ethyl formate when studied in H2O ice and upon ionization is observed. Rotational and distortion constants for neutral ethyl and methyl formate from this work are in excellent agreement with the available experimental values. Electronic absorption spectra of conformers of ethyl and methyl formate and their ions are obtained using time-dependent density functional method (TDDFT). The nature of electronic transitions is also identified. We suggested lines especially good to detect these molecules in interstellar medium. Using these lines, we can identify the conformers of ethyl and methyl formate in gas phase and H2O ice in interstellar medium. This comparative study should provide useful guidelines to detect conformers of ethyl and methyl formate and their ions in gas phase and neutral molecules in H2O ice in different astronomical environment.

  8. Interactions in 1-ethyl-3-methyl imidazolium tetracyanoborate ion pair: Spectroscopic and density functional study

    SciTech Connect

    Mao, James X; Lee, Anita S; Kitchin, John R; Nulwala, Hunaid B; Luebke, David R; Damodaran, Krishnan

    2013-04-24

    Density Functional Theory is used to investigate a weakly coordinating room-temperature ionic liquid, 1-ethyl-3-methyl imidazolium tetracyanoborate ([Emim]{sup +}[TCB]{sup -}). Four locally stable conformers of the ion pair were located. Atoms-in-molecules (AIM) and electron density analysis indicated the existence of several hydrogen bonds. Further investigation through the Natural Bond Orbital (NBO) and Natural Energy Decomposition Analysis (NEDA) calculations provided insight into the origin of interactions in the [Emim]{sup +}[TCB]{sup -} ion pair. Strength of molecular interactions in the ionic liquid was correlated with frequency shifts of the characteristic vibrations of the ion pair. Harmonic vibrations of the ion pair were also compared with the experimental Raman and Infrared spectra. Vibrational frequencies were assigned by visualizing displacements of atoms around their equilibrium positions and through Potential Energy Distribution (PED) analysis.

  9. Searching for trans ethyl methyl ether in Orion KL★,★★

    PubMed Central

    Tercero, B.; Cernicharo, J.; López, A.; Brouillet, N.; Kolesniková, L.; Motiyenko, R. A.; Margulès, L.; Alonso, J. L.; Guillemin, J.-C.

    2015-01-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH3CH2OCH3, through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH3CH2CH2OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 1015 cm−2 and ≤(1.0 ± 0.2)× 1015 cm−2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH3OCOH, CH3CH2OCOH, CH3OCH3, CH3OH, and CH3CH2OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N(CH3OCH3)/N(tEME) ≥ 150 in the compact ridge of Orion. PMID:26869726

  10. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the following prescribed conditions: (a)...

  11. Determination of enthalpy of formation of methyl and ethyl esters of fatty acids.

    PubMed

    Lapuerta, Magín; Rodríguez-Fernández, José; Oliva, Fermín

    2010-02-01

    Biofuels composed by fatty acid methyl esters are widely used as partly substituting fuels for diesel fossil fuels. Additionally, it is expected that the diesel biofuel norms will be extended to ethyl esters produced from bioethanol in the upcoming years. A precise knowledge of the standard enthalpy of formation is necessary for the calculation of some parameters useful for the analysis of the combustion process and emissions of a diesel engine operating with different fuels, such as the heating value, the adiabatic flame temperature or the kinetic mechanisms. However, experimental data for this property are scarce, and only available for short-chain, saturated methyl esters. In this work, four estimation methods for the calculation of the enthalpy of formation are examined and compared. Three of them are simple methods based on groups or bonds contribution, and another one is a computational method (with Gaussian 03 software). After presenting the implementation rules for each of them, conclusions are stated based on the results attained. Gaussian and Benson-Groups methods seem to be more accurate in predicting the actual values of the enthalpy of formation, both methods considering the separation between double bonds and the edge effects in the molecule. However, only the Gaussian method considers the effect of the position of the double bond in the molecule for all the unsaturated esters. PMID:19917272

  12. Flexural properties of ethyl or methyl methacrylate-UDMA blend polymers.

    PubMed

    Kanie, Takahito; Kadokawa, Akihiko; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2010-10-01

    Light-curing polyethyl methacrylate (PEMA)-urethane dimethacrylate (UDMA) resins and polymethyl methacrylate (PMMA)-UDMA resins were prepared by two processes. For first step, PEMA or PMMA powders were fully dissolved in ethyl methacrylate (EMA) or methyl methacrylate (MMA) and then the PEMA-EMA/PMMA-MMA mixtures were mixed with UDMA. The flexural properties of cured PEMA-UDMA and PMMA-UDMA polymers were measured using two PEMA (Mw: 300,000-400,000 and 650,000-1,000,000) and three PMMA (Mw: 30,000-60,000, 350,000 and 650,000-1,000,000) powders with different molecular weight, four mixing ratios of PMMA-MMA, and three mixing ratios of PMMA-MMA mixture and UDMA oligomer. Polymers with PMMA(Mw: 350,000) MMA=25/50, and with PMMA(Mw: 350,000)-MMA/UDMA=1/2 and =1/1, showed no-fracture in a flexural test at 1 mm/min and flexural strength and flexural modulus showed no significant difference compared with those of commercially available heat- and self-curing acrylic resins (p>0.01). Within limitation of this investigation, methyl methacrylate-UDMA blend polymer of this composition is available for denture base resin. PMID:20733259

  13. A one-pot copper catalyzed biomimetic route to N-heterocyclic amides from methyl ketones via oxidative C-C bond cleavage.

    PubMed

    Subramanian, Parthasarathi; Indu, Satrajit; Kaliappan, Krishna P

    2014-12-01

    A direct one-pot Cu-catalyzed biomimetic oxidation of methyl ketones to pharmaceutically important N-heterocyclic amides is reported. The scope of the method is broad, scalable, and mild, and the reaction is tolerant with various acid, base sensitive functionalities with multiple heteroatoms and aryl halides. The extensive mechanistic studies suggest that this reaction follows the Luciferin-Luciferase-like pathway. PMID:25409417

  14. Aqueous phase oligomerization of methyl vinyl ketone through photooxidation - Part 2: Development of the chemical mechanism and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Renard, P.; Ravier, S.; Clément, J.-L.; Monod, A.

    2014-08-01

    We developed a chemical mechanism based on laboratory experiments that have shown efficient oligomerization from methyl vinyl ketone (MVK) in the bulk aqueous phase. Kinetic data are applied (if known) or fitted to the observed MVK decay and oligomer mass increase. The mechanism is then implemented into a multiphase box model that simulates (i) oligomer formation upon uptake of MVK from the gas phase, and (ii) SOA formation from isoprene, as a precursor of MVK and methacrolein (MACR) in the aqueous and gas phases. Model results show that under atmospheric conditions, the oligomer formation rate strongly depends on the availability of dissolved oxygen. If oxygen is consumed too quickly or its solubility is kinetically or thermodynamically limited, oligomerization is accelerated, in agreement with the laboratory studies. The comparison of predicted oligomer formation shows that for most model assumptions (e.g. depending on the assumed partitioning of MVK and MACR), SOA formation from isoprene in the gas phase exceeds aqueous SOA formation by a factor 3-4. However, at high aerosol liquid water content and potentially high partitioning of oligomer precursors into the aqueous phase, SOA formation in both phases might be equally efficient.

  15. Aqueous-phase oligomerization of methyl vinyl ketone through photooxidation - Part 2: Development of the chemical mechanism and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Ervens, B.; Renard, P.; Tlili, S.; Ravier, S.; Clément, J.-L.; Monod, A.

    2015-08-01

    Laboratory experiments of efficient oligomerization from methyl vinyl ketone (MVK) in the bulk aqueous phase were simulated in a box model. Kinetic data are applied (if known) or fitted to the observed MVK decay and oligomer mass increase. Upon model sensitivity studies, in which unconstrained rate constants were varied over several orders of magnitude, a set of reaction parameters was found that could reproduce laboratory data over a wide range of experimental conditions. This mechanism is the first that comprehensively describes such radical-initiated oligomer formation. This mechanism was implemented into a multiphase box model that simulates secondary organic aerosol (SOA) formation from isoprene, as a precursor of MVK and methacrolein (MACR) in the aqueous and gas phases. While in laboratory experiments oxygen limitation might occur and lead to accelerated oligomer formation, such conditions are likely not met in the atmosphere. The comparison of predicted oligomer formation shows that MVK and MACR likely do negligibly contribute to total SOA as their solubilities are low and even reduced in aerosol water due to ionic strength effects (Setchenov coefficients). Significant contribution by oligomers to total SOA might only occur if a substantial fraction of particulate carbon acts as oligomer precursors and/or if oxygen solubility in aerosol water is strongly reduced due to salting-out effects.

  16. Modulation of the Inhibitor Properties of Dipeptidyl (Acyloxy)methyl Ketones Toward the CaaX Proteases

    PubMed Central

    Dechert, Anne-Marie R.; MacNamara, James P.; Breevoort, Sarah R.; Hildebrandt, Emily R.; Hembree, Ned W.; Rea, Adam C.; McLain, Duncan E.; Porter, Stephen B.; Schmidt, Walter K.; Dore, Timothy M.

    2010-01-01

    Dipeptidyl (acyloxy)methyl ketones (AOMKs) have been identified as mechanism-based inhibitors of certain cysteine proteases. These compounds are also inhibitors of the integral membrane proteins Rce1p and Ste24p, which are proteases that independently mediate a cleavage step associated with the maturation of certain isoprenylated proteins. The enzymatic mechanism of Rce1p is ill-defined, whereas Ste24p is a zinc metalloprotease. Rce1p is required for the proper processing of the oncoprotein Ras and is viewed as a potential target for cancer therapy. In this study, we synthesized a small library of dipeptidyl AOMKs to investigate the structural elements that contribute to the inhibitor properties of this class of molecules toward Rce1p and Ste24p. The compounds were evaluated using a fluorescence-based in vitro proteolysis assay. The most potent dipeptidyl AOMKs contained an arginine residue and the identity of the benzoate group strongly influenced potency. A “warhead” free AOMK inhibited Rce1p and Ste24p. The data suggest that the dipeptidyl AOMKs are not mechanism-based inhibitors of Rce1p and Ste24p and corroborate the hypothesis that Rce1p is not a cysteine protease. PMID:20696584

  17. Intracellular Metabolism of α,β-Unsaturated Carbonyl Compounds, Acrolein, Crotonaldehyde and Methyl Vinyl Ketone, Active Toxicants in Cigarette Smoke: Participation of Glutathione Conjugation Ability and Aldehyde-Ketone Sensitive Reductase Activity.

    PubMed

    Horiyama, Shizuyo; Hatai, Mayuko; Takahashi, Yuta; Date, Sachiko; Masujima, Tsutomu; Honda, Chie; Ichikawa, Atsushi; Yoshikawa, Noriko; Nakamura, Kazuki; Kunitomo, Masaru; Takayama, Mitsuo

    2016-01-01

    The major toxicants in cigarette smoke, α,β-unsaturated aldehydes, such as acrolein (ACR) and crotonaldehyde (CA), and α,β-unsaturated ketone, methyl vinyl ketone (MVK), are known to form Michael-type adducts with glutathione (GSH) and consequently cause intracellular GSH depletion, which is involved in cigarette smoke-induced cytotoxicity. We have previously clarified that exposure to cigarette smoke extract (CSE) of a mouse melanoma cell culture medium causes rapid reduction of intracellular GSH levels, and that the GSH-MVK adduct can be detected by LC/MS analysis while the GSH-CA adduct is hardly detected. In the present study, to clarify why the GSH-CA adduct is difficult to detect in the cell medium, we conducted detailed investigation of the structures of the reaction products of ACR, CA, MVK and CSE in the GSH solution or the cell culture medium. The mass spectra indicated that in the presence of the cells, the GSH-CA and GSH-ACR adducts were almost not detected while their corresponding alcohols were detected. On the other hand, both the GSH-MVK adducts and their reduced products were detected. In the absence of the cells, the reaction of GSH with all α,β-unsaturated carbonyls produced only their corresponding adducts. These results show that the GSH adducts of α,β-unsaturated aldehydes, CA and ACR, are quickly reduced by certain intracellular carbonyl reductase(s) and excreted from the cells, unlike the GSH adduct of α,β-unsaturated ketone, MVK. Such a difference in reactivity to the carbonyl reductase might be related to differences in the cytotoxicity of α,β-unsaturated aldehydes and ketones. PMID:27250793

  18. Mouse Pig-a and micronucleus assays respond to N-ethyl-N-nitrosourea, benzo[a]pyrene, and ethyl carbamate, but not pyrene or methyl carbamate.

    PubMed

    Labash, Carson; Avlasevich, Svetlana L; Carlson, Kristine; Berg, Ariel; Torous, Dorothea K; Bryce, Steven M; Bemis, Jeffrey C; MacGregor, James T; Dertinger, Stephen D

    2016-01-01

    This laboratory previously described a method for scoring the incidence of peripheral blood Pig-a mutant phenotype rat erythrocytes using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). The current work extends the method to mouse blood, using the frequency of CD24-negative reticulocytes (RET(CD24-)) and erythrocytes (RBC(CD24-)) as phenotypic reporters of Pig-a gene mutation. Following assay optimization, reconstruction experiments demonstrated the ability of the methodology to return expected values. Subsequently, the responsiveness of the assay to the genotoxic carcinogens N-ethyl-N-nitrosourea, benzo[a]pyrene, and ethyl carbamate was studied in male CD-1 mice exposed for 3 days to several dose levels via oral gavage. Blood samples were collected on Day 4 for micronucleated reticulocyte analyses, and on Days 15 and 30 for determination of RET(CD24-) and RBC(CD24-) frequencies. The same design was used to study pyrene, with benzo[a]pyrene as a concurrent positive control, and methyl carbamate, with ethyl carbamate as a concurrent positive control. The three genotoxicants produced marked dose-related increases in the frequencies of Pig-a mutant phenotype cells and micronucleated reticulocytes. Ethyl carbamate exposure resulted in moderately higher micronucleated reticulocyte frequencies relative to N-ethyl-N-nitrosourea or benzo[a]pyrene (mean ± SEM = 3.0 ± 0.36, 2.3 ± 0.17, and 2.3 ± 0.49%, respectively, vs. an aggregate vehicle control frequency of 0.18 ± 0.01%). However, it was considerably less effective at inducing Pig-a mutant cells (e.g., Day 15 mean no. RET(CD24-) per 1 million reticulocytes = 7.6 ± 3, 150 ± 9, and 152 ± 43 × 10(-6), respectively, vs. an aggregate vehicle control frequency of 0.6 ± 0.13 × 10(-6)). Pyrene and methyl carbamate, tested to maximum tolerated dose or limit dose levels, had no effect on mutant cell or micronucleated reticulocyte frequencies. Collectively, these results

  19. Diffusion of 1-ethyl-3-methyl-imidazolium acetate in glucose, cellobiose, and cellulose solutions.

    PubMed

    Ries, Michael E; Radhi, Asanah; Keating, Alice S; Parker, Owen; Budtova, Tatiana

    2014-02-10

    Solutions of glucose, cellobiose and microcrystalline cellulose in the ionic liquid 1-ethyl-3-methyl-imidazolium ([C2mim][OAc]) have been examined using pulsed-field gradient (1)H NMR. Diffusion coefficients of the cation and anion across the temperature range 20-70 °C have been determined for a range of concentrations (0-15% w/w) of each carbohydrate in [C2mim][OAc]. These systems behave as an "ideal mixture" of free ions and ions that are associated with the carbohydrate molecules. The molar ratio of carbohydrate OH groups to ionic liquid molecules, α, is the key parameter in determining the diffusion coefficients of the ions. Master curves for the diffusion coefficients of cation, anion and their activation energies are generated upon which all our data collapses when plotted against α. Diffusion coefficients are found to follow an Arrhenius type behavior and the difference in translational activation energy between free and associated ions is determined to be 9.3 ± 0.9 kJ/mol. PMID:24405090

  20. Diffusion of 1-Ethyl-3-methyl-imidazolium Acetate in Glucose, Cellobiose, and Cellulose Solutions

    PubMed Central

    2014-01-01

    Solutions of glucose, cellobiose and microcrystalline cellulose in the ionic liquid 1-ethyl-3-methyl-imidazolium ([C2mim][OAc]) have been examined using pulsed-field gradient 1H NMR. Diffusion coefficients of the cation and anion across the temperature range 20–70 °C have been determined for a range of concentrations (0–15% w/w) of each carbohydrate in [C2mim][OAc]. These systems behave as an “ideal mixture” of free ions and ions that are associated with the carbohydrate molecules. The molar ratio of carbohydrate OH groups to ionic liquid molecules, α, is the key parameter in determining the diffusion coefficients of the ions. Master curves for the diffusion coefficients of cation, anion and their activation energies are generated upon which all our data collapses when plotted against α. Diffusion coefficients are found to follow an Arrhenius type behavior and the difference in translational activation energy between free and associated ions is determined to be 9.3 ± 0.9 kJ/mol. PMID:24405090

  1. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models

    SciTech Connect

    Saeed, Noha M.; El-Demerdash, Ebtehal; Abdel-Rahman, Hanaa M.; Algandaby, Mardi M.; Al-Abbasi, Fahad A.; Abdel-Naim, Ashraf B.

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ► Efficacy of MP and EP in combating inflammation was displayed in several models. ► MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ► MP and EP decreased TNF-α and IL-6 levels in experimental endotoxemia. ► MP and EP reduced NF-κB expression and histological changes in rat liver and lung. ► MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.

  2. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models.

    PubMed

    Saeed, Noha M; El-Demerdash, Ebtehal; Abdel-Rahman, Hanaa M; Algandaby, Mardi M; Al-Abbasi, Fahad A; Abdel-Naim, Ashraf B

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. PMID:22842335

  3. An XAFS study of nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; G Cheek; K Pandya; W OGrady

    2011-12-31

    Nickel chloride was studied with cyclic voltammetry and X-ray absorption spectroscopy in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Acidic melts display metal stripping peaks which are not observed in the basic melt. EXAFS analysis shows that the nickel is tetrahedrally coordinated with chloride ions in the basic solution. In the acidic solution the nickel is coordinated by six chloride ions that are also associated with aluminum ions.

  4. Crystal structure of (eth­oxy­ethyl­idene)di­methyl­aza­nium ethyl sulfate

    PubMed Central

    Tiritiris, Ioannis; Saur, Stefan; Kantlehner, Willi

    2015-01-01

    In the title salt, C6H14NO+·C2H5SO4 −, the C—N bond lengths in the cation are 1.2981 (14), 1.4658 (14) and 1.4707 (15) Å, indicating double- and single-bond character, respectively. The C—O bond length of 1.3157 (13) Å shows double-bond character, indicating charge delocalization within the NCO plane of the iminium ion. In the crystal, C—H⋯O hydrogen bonds between H atoms of the cations and O atoms of neighbouring ethyl sulfate anions are present, generating a three-dimensional network. PMID:26870525

  5. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  6. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells

    PubMed Central

    2012-01-01

    Background Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. Methods The present study assessed the role of Brahmarasayana (BR) on Ethyl methanesulfonate (EMS)-and Methyl methanesulfonate (MMS)-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5 g or 8 mg / day) for two months and 24 h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. Results The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05). On the other hand, the frequencies of chromosomal aberrations induced by EMS (240 mg / kg body weight) or MMS (125 mg / kg body weight) were significantly higher (p<0.05) to that of the control group. The treatment of BR for 60 days and single dose of EMS or MMS on day 61, resulted in significant (p <0.05) reduction in the frequency of chromosomal aberrations in comparison to EMS or MMS treatment alone, indicating a protective effect of BR. Constitutive base excision repair capacity was also increased in BR treated animals. Conclusion The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life. PMID:22853637

  7. POLLUTION PREVENTION DEMONSTRATION AND EVALUATION OF PAINT APPLICATION EQUIPMENT AND ALTERNATIVES TO METHYLENE CHLORIDE AND METHYL ETHYL KETONE

    EPA Science Inventory

    The report gives results of demonstrations of technologies to prevent or control emissions of hazardous air pollutant (HAPs) and volatile organic compounds (VOCs) from processes with high solvent usage: (1) paint stripping using methylene chloride, (2) cleaning paint equipment wi...

  8. 77 FR 15015 - Revocation of Tolerance Exemptions for Diethyl Phthalate and Methyl Ethyl Ketone; No Data Being...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-14

    ... potential to disrupt the endocrine system. 21 U.S.C. 345a(p)(3). The statute also ties the availability of... Review (58 FR 51735, October 4, 1993). Because this proposed rule has been exempted from review under... Use (66 FR 28355, May 22, 2001). This proposed rule does not contain any information...

  9. Comparative Study on the EC50 Value in Single and Mixtures of Dimethylformamide, Methyl Ethyl Ketone, and Toluene

    PubMed Central

    Won, Yong Lim; Park, Dong Jin; Kim, Doh-Hee; Song, Kwan Young

    2014-01-01

    The aim of this research was to improve our understanding of human toxicity due to exposure to DMF, MEK, or TOL individually as compared to exposure to DMF-MEK or DMF-TOL mixtures, by comparing EC50 values as well as the morphological changes in HepG2 cells treated with these substances. We found that there was marked cell necrosis in the groups treated with mixtures than in those treated with the compounds alone, and that the amount of cell death and the EC50 value were more dependent on MEK and TOL than on DMF. Moreover, analysis of the changes in effective concentration curves revealed that MEK had an antagonistic effect on the human toxicity of DMF, whereas TOL had a synergistic effect. Accordingly, these results suggest that in workplaces involved in the manufacture of synthetic leather, mixtures of DMF and TOL should be avoided as much as possible in order to minimize environmental toxicity and protect the health of the workers. PMID:25343014

  10. Raspberry Ketone

    MedlinePlus

    Raspberry ketone is a chemical from red raspberries, as well as kiwifruit, peaches, grapes, apples, other berries, vegetables such as rhubarb, and the bark of yew, maple, and pine trees. People take raspberry ketone by mouth for ...

  11. Highly regio- and stereoselective synthesis of alpha-(N-alkyl-N-p-toluenesulfonyl)-beta-bromo-ketones via Ni(OAc)2-catalyzed aminobromination of chalcones.

    PubMed

    Sun, Hao; Zhi, San-Jun; Han, Jian-Lin; Li, Guigen; Pan, Yi

    2010-03-01

    The combinations of N-methyl-p-toluenesulfonamide/NBS and N-ethyl-p-toluenesulfonamide/NBS were found to be good nitrogen/halogen resources for the aminohalogenation of alpha,beta-unsaturated ketones in the presence of Ni(OAc)(2) as the catalyst for the synthesis of vicinal haloamino ketone derivatives. The introduction of N-alkyl groups to the nitrogen resources resulted in excellent regio- and stereoselectivity for both electron-donating and electron-withdrawing group-attached unsaturated ketone substrates. The structure of the resulting products has been unambiguously confirmed by X-ray crystal structure analysis. PMID:20331646

  12. Carcinogen-induced DNA repair in nucleotide-permeable Escherichia coli cells. Induction of DNA repair by the carcinogens methyl and ethyl nitrosourea and methyl methanesulfonate.

    PubMed

    Thielmann, H W; Vosberg, H P; Reygers, U

    1975-08-15

    Ether-permeabilized (nucleotide-permeable) cells of Escherichia coli show excision repair of their DNA after having been exposed to the carcinogens N-methyl-N-nitrosourea (MeNOUr), N-ethyl-N-nitrosourea (EtNOUr) and methyl methanesulfonate (MeSO2OMe) which are known to bind covalently to DNA. Defect mutations in genes uvrA, uvrB, uvrC, recA, recB, recC and rep did not inhibit this excision repair. Enzymic activities involved in this repair were identified by measuring size reduction of DNA, DNA degradation to acid-soluble nucleotides and repair polymerization. 1. In permeabilized cells methyl and ethyl nitrosourea induced endonucleolytic cleavage of endogenous DNA, as determined by size reduction of denatured DNA in neutral and alkaline sucrose gradients. An enzymic activity from E. coli K-12 cell extracts was purified (greater than 2000-fold) and was found to cleave preferentially methyl-nitrosourea-treated DNA and to convert the methylated supercoiled DNA duplex (RFI) of phage phiX 174 into the nicked circular form. 2. Degradation of alkylated cellular DNA to acid solubility was diminished in a mutant lacking the 5' leads to 3' exonucleolytic activity of DNA polymerase I but was not affected in a mutant which lacked the DNA polymerizing but retained the 5' leads 3' exonucleolytic activity of DNA polymerase I. 3. An easily measurable effect is carcinogen-induced repair polymerization, making it suitable for detection of covalent binding of carcinogens and potentially carcinogenic compounds. PMID:170107

  13. An XAFS Study of Niobium chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride/ aluminum chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Niobium chloride was studied with extended X-ray absorption fine structure spectroscopy (EXAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride (EMIC) ionic liquids. Although anhydrous Nb2Cl10 is more soluble in the basic melt than in the acidic melt, the EXAFS data shows that the coordination shell around the niobium does not change in the different ionic liquids. Both the acidic and basic melts show a coordination of five chlorides in the first shell. This indicates that in this series of ionic liquids, the Nb2Cl10 breaks up into two NbCl5 entities in both the acidic and the basic melts.

  14. Enantioselective Reduction by Crude Plant Parts: Reduction of Benzofuran-2-yl Methyl Ketone with Carrot ("Daucus carota") Bits

    ERIC Educational Resources Information Center

    Ravia, Silvana; Gamenara, Daniela; Schapiro, Valeria; Bellomo, Ana; Adum, Jorge; Seoane, Gustavo; Gonzalez, David

    2006-01-01

    The use of biocatalysis and biotransformations are important tools in green chemistry. The enantioselective reduction of a ketone by crude plant parts, using carrot ("Daucus carota") as the reducing agent is presented. The experiment introduces an example of a green chemistry procedure that can be tailored to fit in a regular laboratory session.…

  15. A Conversion of Methyl Ketones into Acetylenes: A Project for a Problem-Oriented or Microscale Organic Chemistry Course.

    ERIC Educational Resources Information Center

    Silveira, Augustine, Jr.; Orlando, Steven C.

    1988-01-01

    Describes a process for producing terminal or internal alkynes from ketones. Recommends using the experiment to aid in understanding acid-base strength, enolate anion chemistry, reaction at carbon versus oxygen, use of polar aprotic solvents, and elimination and nucleophilic substitution reactions. (ML)

  16. Iodine-Promoted Oxidative Cross-Coupling of Unprotected Anilines with Methyl Ketones: A Site-Selective Direct C-H Bond Functionalization to C4-Dicarbonylation of Anilines.

    PubMed

    Wu, Xia; Gao, Qinghe; Geng, Xiao; Zhang, Jingjing; Wu, Yan-Dong; Wu, An-Xin

    2016-05-20

    An unprecedented direct dual C-H bond functionalization of unprotected anilines and methyl ketones has been demonstrated. It is the first example of iodine-promoted highly chemo- and site-selective oxidative C-H/C-H cross-coupling of anilines and methyl ketones to furnish the C4-dicarbonylation of anilines in moderate to good yields. Moreover, coproduct HI acted as a catalyst in the reaction. The salient feature of this approach is unprecedented C-H functionalization rather than N-H functionalization of unprotected anilines. PMID:27181791

  17. Addition of dimethylsulphoxide to methyl-tert-butyl ether and ethyl propionate increases cholesterol dissolving capacity and cholesterol gall stone dissolution in vitro.

    PubMed Central

    Bergman, J J; Groen, A K; Huibregtse, K; Tytgat, G N

    1994-01-01

    There is a discrepancy between in vitro cholesterol dissolving efficacy of methyl-tert-butyl ether (MTBE) and ethyl propionate and cholesterol gall stone dissolution in vivo. This study investigated whether the presence of bile changes the cholesterol dissolving capacity of MTBE and ethyl propionate. The addition of dimethylsulphoxide to MTBE or ethyl propionate was also studied to discover if it improves the dissolving capacity for cholesterol gall stones. The presence of bile caused a 25% decrease in cholesterol dissolving capacity of both MTBE and ethyl propionate (p < 0.0001). This inhibitory effect of bile could be overcome by the addition of dimethyl-sulphoxide: dimethylsulphoxide caused an increase in cholesterol dissolving capacity of MTBE and ethyl propionate, the increase depending on the dimethyl-sulphoxide/bile ratio in the mixture. Mean dissolution time of weight, size, and patient matched cholesterol gall stones was 220 minutes in MTBE and 130 minutes in MTBE/dimethylsulphoxide (p < 0.0001). No stones dissolved completely in ethyl propionate or ethyl propionate/dimethyl-sulphoxide within 300 minutes. In conclusion, MTBE/dimethylsulphoxide is a more potent dissolving agent for cholesterol gall stones than MTBE, giving a 40% reduction in dissolution time. Addition of dimethylsulphoxide to ethyl propionate does not result in faster stone dissolution. MTBE and MTBE/dimethylsulphoxide are far superior to ethyl propionate as solvents for cholesterol gall stones. PMID:7828992

  18. Crystal structure of the tetra­gonal polymorph of bis­(1-ethyl-3-methyl­imidazolium) tetra­bromido­cadmate

    PubMed Central

    Đorđević, Tamara; Gerger, Sabrina; Karanović, Ljiljana

    2016-01-01

    Both unique Cd atoms in the tetra­gonal polymorph of bis­(1-ethyl-3-methyl­imidazolium) tetra­bromido­cadmate, (C6H11N2)2[CdBr4], occupy special positions (site symmetry -4). The crystal structure consists of isolated tetra­hedral [CdBr4]2− anions which are surrounded by 1-ethyl-3-methyl­imidazolium cations. The methyl and ethyl side chains of the cations show positional disorder in a 0.590 (11):0.410 (11) ratio. In the crystal, (C6H11N2)+ cations display three weak C—H⋯Br hydrogen-bond inter­actions through the imidazolium ring H atoms with the Br− ligands of the surrounding complex anions. The alkyl groups of the side chains are not involved in hydrogen bonding. PMID:27555953

  19. Influence of life history differences of two tachinid parasitoids ofHelicoverpa zea (Boddie) (Lepidoptera: Noctuidae) on their interactions with glandular trichome/methyl ketone-based insect resistance in tomato.

    PubMed

    Farrar, R R; Kennedy, G G; Kashyap, R K

    1992-03-01

    The effects of glandular trichome/methyl ketone (2-tridecanone and 2-undecanone) -based insect resistance in the wild tomato,Lycopersicon hirsutum f.glabratum C.H. Mull, accession PI 134417, onArchytas marmoratus (Townsend) andEucelatoria bryani (Sabrosky) (Diptera: Tachinidae), both parasitoids ofHelicoverpa (=Heliothis)zea (Boddie) (Lepidoptera: Noctuidae), were investigated in the laboratory.A. marmoratus deposits larvae (planidia) on the foliage of its host's food plant; planidia attach to passing hosts, penetrate the cuticle, and develop in the host pupae.E. bryani larviposits directly into its host; its larvae develop in the host larva.A. marmoratus planidia are killed by glandular trichomes of PI 134417 and also by trichomes of hybrid lines with no methyl ketones. The methyl ketones are toxic to planidia, but at least part of the effect is due to other factors, possibly physical entanglement. Both species can be affected indirectly by methyl ketones in the diet of the host. 2-Undecanone reduces the percentage ofA. marmoratus larvae that reach pupation. This effect is evidently due to premature death and desiccation of the host pupa caused by 2-undecanone. 2-Tridecanone in host diets had no effect onA. marmoratus. InE. bryani, 2-tridecanone in the diet of the host reduced the number of parasitoids yielded by each parasitized host, although not the overall percentage of hosts parasitized. 2-Undecanone in the diet of the host had no effect onE. bryani. PMID:24254953

  20. Weathering and chemical degradation of Methyl Eugenol and Raspberry Ketone solid dispensers for detection, monitoring and male annihilation of Bactrocera dorsalis (Hendel) and Bactrocera cucurbitae (Coquillett)(Diptera:Tephri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid male lure dispensers containing methyl eugenol (ME) and raspberry ketone (RK), or mixtures of the lures (ME + RK), and dimethyl dichloro-vinyl phosphate (DDVP) were evaluated in AWPM bucket or Jackson traps in commercial papaya (Carica papaya L.) orchards where both oriental fruit fly, Bactroc...

  1. Experimental study of the autoignition of C{sub 8}H{sub 16}O{sub 2} ethyl and methyl esters in a motored engine

    SciTech Connect

    Zhang, Yu.; Boehman, Andre L.

    2010-03-15

    Autoignition of two biodiesel surrogates, methyl heptanoate and ethyl hexanoate, was studied in a motored CFR engine at an equivalence ratio of 0.25 and an intake temperature of 155 C. The engine compression ratio was gradually increased from the lowest point (4.43) to the point where significant high temperature heat release (HTHR) occurred. Within the test range of this work, both of the two esters exhibited evident cool flame behavior. At the same compression ratio, methyl heptanoate was observed to have both an earlier onset and a higher magnitude of low temperature heat release (LTHR) than ethyl hexanoate, indicating that methyl heptanoate is more reactive in the low temperature region than ethyl hexanoate. GC-MS analyses of the reaction intermediates from the oxidation of the two esters showed that the alkyl chain of fatty acid esters experiences the typical paraffin-like low temperature oxidation sequence. Based on the observations from GC-MS analyses, major low temperature oxidation pathways of ethyl hexanoate are proposed in this work. Also, it is observed that the abstraction of H-atoms on the {alpha}-carbon of the ester carbonyl group plays an important role in the oxidation of fatty acid esters. In addition, the identification of hexanoic acid among the reaction intermediates from low temperature oxidation of ethyl hexanaoate together with the observation of more fuel carbon being converted to C{sub 2}H{sub 4} during ethyl hexanoate oxidation than during methyl heptanoate oxidation provide evidence for the existence of the six-centered unimolecular elimination reaction during low temperature oxidation of ethyl esters. (author)

  2. Ketones urine test

    MedlinePlus

    Ketone bodies - urine; Urine ketones; Ketoacidosis - urine ketones test; Diabetic ketoacidosis - urine ketones test ... Urine ketones are usually measured as a "spot test." This is available in a test kit that ...

  3. An XAFS Study of Tantalum Chloride in the Ionic Liquid 1-ethyl-3-methyl Imidazolium Chloride/ aluminum Chloride

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    Tantalum chloride was studied with extended X-ray absorption fine structure spectroscopy (XAFS) in acidic and basic aluminum chloride/1-ethyl-3-methyl imidazolium chloride ionic liquids (ILs). Anhydrous Ta2Cl10 is more soluble in the basic solution than in the acidic solution and the X-ray absorption data shows that the coordination shell of chlorides around the tantalum is larger in the basic solution. In the acidic solution, tantalum has five chlorides in its coordination shell while in the basic solution; the tantalum is coordinated by seven chlorides. This indicates that the Lewis acidity of the tantalum chloride causes the Ta to coordinate differently in the acidic and the basic solutions.

  4. [Role of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) in the obtaining of stabilized magnetite nanoparticles for biomedical application].

    PubMed

    Vazhnichaya, Ye M; Mokliak, Ye V; Kurapov, Yu A; Zabozlaev, A A

    2015-01-01

    Magnetite nanoparticles (NPs) are studied as agents for magnetic resonance imaging, hyperthermia of malignant tumors, targeted drug delivery as well as anti-anemic action. One of the main problems of such NPs is their aggregation that requires creation of methods for magnetite NPs stabilization during preparation of liquid medicinal forms on their basis. The present work is devoted to the possibility of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) use for solubilization of magnetite NPs in hydrophilic medium. For this purpose, the condensate produced by electron-beam evaporation and condensation, with magnetite particles of size 5-8 nm deposited into the crystals of sodium chloride were used in conjunction with substance of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate), and low molecular weight polyvinylpyrrolidone (PVP). The NP condensate was dispersed in distilled water or PVP or mexidol solutions. NPs size distribution in the liquid phase of the systems was determined by photon correlation spectroscopy, iron (Fe) concentration was evaluated by atomic emission spectrometry. It is shown that in the dispersion prepared in distilled water, the major amount of NPs was of 13-120 nm in size, in mexidol solution - 270-1700 nm, in PVP solution - 30-900 nm. In the fluid containing magnetite NPs together with mexidol and PVP, the main fraction (99.9%) was characterized by the NPs size of 14-75 nm with maximum of 25 nm. This system had the highest iron concentration: it was similar to that in the sample with mexidol solution and 6.6-7.3 times higher than the concentration in the samples with distilled water or PVP. Thus, in the preparation of aqueous dispersions based on magnetite NPs condensate, mexidol provides a transition of Fe to the liquid phase in amount necessary to achieve its biological activity, and PVP stabilizes such modified NPs. PMID:26215417

  5. Biodegradation of the gasoline oxygenates methyl tert-butyl ether, ethyl tert-butyl ether, and tert-amyl methyl ether by propane-oxidizing bacteria.

    PubMed Central

    Steffan, R J; McClay, K; Vainberg, S; Condee, C W; Zhang, D

    1997-01-01

    Several propane-oxidizing bacteria were tested for their ability to degrade gasoline oxygenates, including methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). Both a laboratory strain and natural isolates were able to degrade each compound after growth on propane. When propane-grown strain ENV425 was incubated with 20 mg of uniformly labeled [14C]MTBE per liter, the strain converted > 60% of the added MTBE to 14CO2 in < 30 h. The initial oxidation of MTBE and ETBE resulted in the production of nearly stoichiometric amounts of tert-butyl alcohol (TBA), while the initial oxidation of TAME resulted in the production of tert-amyl alcohol. The methoxy methyl group of MTBE was oxidized to formaldehyde and ultimately to CO2. TBA was further oxidized to 2-methyl-2-hydroxy-1-propanol and then 2-hydroxy isobutyric acid; however, neither of these degradation products was an effective growth substrate for the propane oxidizers. Analysis of cell extracts of ENV425 and experiments with enzyme inhibitors implicated a soluble P-450 enzyme in the oxidation of both MTBE and TBA. MTBE was oxidized to TBA by camphor-grown Pseudomonas putida CAM, which produces the well-characterized P-450cam, but not by Rhodococcus rhodochrous 116, which produces two P-450 enzymes. Rates of MTBE degradation by propane-oxidizing strains ranged from 3.9 to 9.2 nmol/min/mg of cell protein at 28 degrees C, whereas TBA was oxidized at a rate of only 1.8 to 2.4 nmol/min/mg of cell protein at the same temperature. PMID:9361407

  6. Intermolecular electron transfer states of 1-methyl-3-(N-(1,8-naphthalimidyl)ethyl)imidazolium iodide obtained by constrained density functional theory.

    PubMed

    Otsuka, Takao; Sumita, Masato; Izawa, Hironori; Morihashi, Kenji

    2016-07-21

    Electron transfer (ET) states of 1-methyl-3-(N-(1,8-naphthalimidyl)ethyl)imidazolium iodide are responsible for its photophysics. Investigation of an ET state based on constrained density functional theory (CDFT) revealed that nonradiative decay from the ET excited state is mediated by the interaction of the iodine atom with the 1,8-naphthalimide or the imidazolium group. PMID:27222312

  7. 40 CFR 721.8450 - 2-Propenoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2-Propenoic acid, 2-methyl-, 2- ethyl ester. 721.8450 Section 721.8450 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses...

  8. 40 CFR 721.8450 - 2-Propenoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propenoic acid, 2-methyl-, 2- ethyl ester. 721.8450 Section 721.8450 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses...

  9. 40 CFR 721.8450 - 2-Propenoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2-Propenoic acid, 2-methyl-, 2- ethyl ester. 721.8450 Section 721.8450 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses...

  10. 40 CFR 721.8450 - 2-Propenoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propenoic acid, 2-methyl-, 2- ethyl ester. 721.8450 Section 721.8450 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses...

  11. Synthesis and properties of new derivatives of ethyl 7-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrido [2,3-d]pyrimidine-5-carboxylate.

    PubMed

    Sladowska, H; Bartoszko-Malik, A; Zawisza, T

    1990-01-01

    Condensation of diethyl 2-amino-6-methylpyridine-3,4-dicarboxylate with phenyl or cyclohexyl isocyanates gave the corresponding derivatives of ethyl 7-methyl-2,4-dioxo-1,2,3,4-tetrahydropyrido [2,3-d]pyrimidine- 5-carboxylate[(V), (VI)]. Alkylation of (V) and (VI) afforded the corresponding N-1 substituted derivatives (XI-XIX). PMID:2337441

  12. Raspberry Ketone

    MedlinePlus

    Natural Medicines Comprehensive Database rates effectiveness based on scientific evidence according to the following scale: Effective, Likely ... keep in mind that there is no reliable scientific evidence that raspberry ketone improves weight loss when ...

  13. 3-Ethyl-2-methyl-5-methyl-ene-6,7-di-hydroindol-4(5H)-one.

    PubMed

    Sonar, Vijayakumar N; Parkin, Sean; Crooks, Peter A

    2007-01-01

    The title compound, C(12)H(15)NO, a degradation product of molindone hydro-chloride, was prepared by the reaction of molindone with methyl iodide and subsequent reaction of the resulting quaternary ammonium salt with 2N aqueous sodium hydroxide. The newly formed double bond is exocyclic in nature and the carbonyl group is conjugated with the π-electrons of the pyrrole ring. The six-membered ring is in the half-chair conformation. The H atom attached to the N atom is involved in an inter-molecular hydrogen bond with the O atom of a screw-related mol-ecule, thus forming a continuous chain. PMID:21200723

  14. Synthesis and characterization of bis-(2-cyano-1-methyl-3-{2- {{(5-methylimidazol-4-yl)methyl}thio}ethyl)guanidine copper(II) sulfate tetrahydrate

    NASA Astrophysics Data System (ADS)

    Rahardjo, Sentot B.; Endah Saraswati, Teguh; Pramono, Edy; Fitriana, Nur

    2016-02-01

    Complex of copper(II) with 2-cyano-1-methyl-3-{2-{{(5-methylimidazol-4- yl)methyl}thio}ethyl)guanidin(xepamet) had been synthesized in 1 : 4 mole ratio of metal to the ligand in methanol. The complex was characterized by metal analysis, thermal gravimetry/differential thermal analyzer (TG/DTA), molar conductivity meter, (Fourier transform infrared spectroscopy) FT-IR, UV-Vis spectroscopy, and magnetic susceptibility balance. The molar conductivity measurement shows that the complex was 2: 1 for electrolyte and SO42- which was acting as a counter ion. The thermal analysis by Thermogravimetric (TG) indicates that the complex contained four molecules of H2O. The Infrared spectral data indicates that functional groups of (C=N) imidazole and (C-S) are coordinated to the center ion Cu2+. Magnetic moment measurement shows that the complex is paramagnetic with peff = 1.78 ± 0.01 BM. Electronic spectra of the complex show a broad band at 608 nm (16447.23 cm-1) are due to Eg→T2g transition. Based on those of characteristics, The complex formula was estimated as [Cu(xepamet)2]SO4.4H2O. The structure of [Cu(xepamet)2]SO4.4H2O complex is probably square planar.

  15. Synthesis, and anticonvulsant activity of new amides derived from 3-methyl- or 3-ethyl-3-methyl-2,5-dioxo-pyrrolidin-1-yl-acetic acids.

    PubMed

    Obniska, Jolanta; Rapacz, Anna; Rybka, Sabina; Góra, Małgorzata; Kamiński, Krzysztof; Sałat, Kinga; Żmudzki, Paweł

    2016-04-15

    This paper describes the synthesis of the library of 22 new 3-methyl- and 3-ethyl-3-methyl-2,5-dioxo-pyrrolidin-1-yl-acetamides as potential anticonvulsant agents. The maximal electroshock (MES) and the subcutaneous pentylenetetrazole (scPTZ) seizure models were used for screening all the compounds. The 6Hz model of pharmacoresistant limbic seizures was applied for studying selected derivatives. Six amides were chosen for pharmacological characterization of their antinociceptive activity in the formalin model of tonic pain as well as local anesthetic activity was assessed in mice. The pharmacological data indicate on the broad spectra of activity across the preclinical seizure models. Compounds 10 (ED50=32.08mg/kg, MES test) and 9 (ED50=40.34mg/kg, scPTZ test) demonstrated the highest potency. These compounds displayed considerably better safety profiles than clinically relevant antiepileptic drugs phenytoin, ethosuximide, or valproic acid. Several molecules showed antinociceptive and local anesthetic properties. The in vitro radioligand binding studies demonstrated that the influence on the sodium and calcium channels may be one of the essential mechanisms of action. PMID:26970661

  16. Macroscopic and microscopic study of 1-ethyl-3-methyl-imidazolium acetate-DMSO mixtures.

    PubMed

    Radhi, Asanah; Le, Kim Anh; Ries, Michael E; Budtova, Tatiana

    2015-01-29

    Macroscopic (steady-state viscosity, density) and microscopic (NMR chemical shifts, (1)H NMR relaxation times, and diffusion) properties of the 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc])-dimethyl sulfoxide (DMSO) mixture were studied in detail as a function of DMSO molar fraction at various temperatures. Temperature dependencies were used to calculate the activation energies. NMR results indicate that at low molar fraction of DMSO (<0.4), it weakly associates with the cation and in doing so disrupts the strong ion-ion association that exists in the pure ionic liquid. Stokes-Einstein equation, which linearly correlates the diffusion coefficient of a spherical molecule and macroscopic viscosity, was shown to work well for the [EMIM][OAc]-DMSO mixture. The influence of DMSO on the "anomalous" diffusion in [EMIM][OAc] ("quick" cation vs "slow" anion) was investigated; it was demonstrated that DMSO makes the cation diffusion slower. All parameters studied showed relatively small deviations from the ideal mixing rule behavior (from 20% to 50% difference between experimental and theoretically predicted results), confirming weak interactions between the components. PMID:25565058

  17. Chirped Pulse-Fourier Transform Microwave Spectroscopy of Ethyl 3-METHYL-3-PHENYLGLYCIDATE (strawberry Aldehyde)

    NASA Astrophysics Data System (ADS)

    Shipman, Steven T.; Neill, Justin L.; Muckle, Matt T.; Suenram, Richard D.; Pate, Brooks H.

    2009-06-01

    Strawberry aldehyde (C_{12} O_3 H_{14}), a common artificial flavoring compound, has two non-interconvertible conformational families defined by the relative stereochemistry around its epoxide carbons. In one family, referred to as the trans because the two large substituents (a phenyl ring and an ethyl ester) are on opposite sides of the epoxide ring, these two substituents are unable to interact with each other. However, in the cis family, there is a long-range interaction that is difficult to accurately capture in electronic structure calculations. Three trans and two cis conformations have been assigned by broadband chirped pulse Fourier transform microwave spectroscopy, along with the C-13 isotopomers in natural abundance for one conformer from each of the families. The agreement of the rotational constants, relative dipole moments, and relative energies between theory and experiment is excellent, even at relatively crude levels of theory, for the trans family, but is quite poor for the cis conformers. In addition, due to the reactivity of strawberry aldehyde and the high temperature to which it must be heated to yield a suitable vapor pressure, several decomposition products have been assigned, and more, as of yet unassigned, are likely to be present. This project demonstrates some of the challenges in performing large-molecule rotational spectroscopy.

  18. Analytical validation applied to simultaneous determination of solvents dichloromethane (DCM), methyl isobutyl ketone (MIBK), tetrahydrofuran (THF) and toluene (TOL) in urine by headspace extraction and injection on chromatographic system with a flame ionization detector

    NASA Astrophysics Data System (ADS)

    Muna, E. D. M.; Pereira, R. P.

    2016-07-01

    The determination of the volatile organic solvents dichloromethane (DCM), methyl isobutyl ketone (MIBK), tetrahydrofuran (THF) and toluene (TOL) is applied on toxicological monitoring of employees in various industrial activities. The gas chromatography technique with flame ionization detector and headspace injection system has been applied. The analytical procedure developed allows the simultaneous determination of the above-mentioned solvents and the accuracy of the method was tested following the INMETRO guidelines through the DOQ-CGRE 008 Rev.04-July/2011.

  19. Solvent extraction of N-Cyclohexyl-N-Nitrosohydroxylamine (cnha) into some organic solvents and of the Cu(II)-cnha complex into methyl isobutyl ketone.

    PubMed

    Rauret, G; Pineda, L; Ventura, M; Compaño, R

    1986-02-01

    The distribution equilibria of N-cyclohexyl-N-nitrosohydroxylamine (cnha) in the water-chloroform, water-hexane, water-methyl isobutyl ketone (MIBK) and water-isopentyl alcohol systems, and of the Cu(II)-cnha complex in the water-MIBK system have been studied. From the distribution data the dissociation and distribution constants of the reagent have been calculated; their values are pK(a) = 5.55 +/- 0.10; log K(DR) = 2.46 +/- 0.05 (chloroform), 1.76 +/- 0.11 (MIBK), 1.06 +/- 0.07 (hexane) and 1.48 +/- 0.06 (isopentyl alcohol). In the same way the values of the distribution and stability constants of the Cu(II) complex have been obtained; log K(DC) = 3.51; log beta(1) = 7.23 +/- 0.10 and log beta(2) = 12.00 +/- 0.08. For the determination of cnha in the aqueous phase saturated with MIBK, a spectrophotometric method based on the coloured complex formed by the reagent with Fe(III) has been established. Finally, an analytical method for Cu(II) by atomic-absorption spectrometry after its extraction with cnha into MIBK, is proposed. Its detection limit is 4.6 mug l ., its precision +/- 2.1% and its accuracy 97.5%. This method has been applied to the determination of the copper content in the surface water of the Congest River of Catalonia (Spain). PMID:18964050

  20. Kinetics of Exchange Between Zero-, One-, and Two-Hydrogen-Bonded States of Methyl and Ethyl Acetate in Methanol

    PubMed Central

    Chuntonov, Lev; Pazos, Ileana M.; Ma, Jianqiang; Gai, Feng

    2015-01-01

    It has recently been shown that the ester carbonyl stretching vibration can be used as a sensitive probe of local electrostatic field in molecular systems. To further characterize this vibrational probe and extend its potential applications, we studied the kinetics of chemical exchange between differently hydrogen-bonded (H-bonded) ester carbonyl groups of methyl acetate (MA) and ethyl acetate (EA) in methanol. We found that while both MA and EA can form zero, one, or two H-bonds with the solvent, the population of the 2hb state in MA is significantly smaller than that in EA. Using a combination of linear and non-linear infrared measurements and numerical simulations, we further determined the rate constants for the exchange between these differently H-bonded states. We found that for MA the chemical exchange reaction between the two dominant states (i.e., 0hb and 1hb states) has a relaxation rate constant of 0.14 ps−1, whereas for EA the three-state chemical exchange reaction occurs in a predominantly sequential manner with the following relaxation rate constants: 0.11 ps−1 for exchange between 0hb and 1hb states, 0.12 ps−1 for exchange between 1hb and 2hb states. PMID:25738661

  1. Synthesis of magnetron sputtered WO₃ nanoparticles-degradation of 2-chloroethyl ethyl sulfide and dimethyl methyl phosphonate.

    PubMed

    Verma, Monu; Chandra, Ramesh; Gupta, Vinod Kumar

    2015-09-01

    In the present study, tungsten oxide nanoparticles were synthesized using DC magnetron sputtering and investigated their potential for decontamination of 2-chloroethyl ethyl sulfide (CEES) and dimethyl methyl phosphonate (DMMP). The tungsten oxide nanoparticles were characterized by Powder XRD, FE-SEM, EDS, TEM, TGA, N2-BET and FT-IR techniques. The XRD patterns of as-deposited and post annealed tungsten oxide nanoparticles reveal that the crystallite size of detected monoclinic phase WO3 nanoparticle was increased with increasing annealing temperatures. The phase and increase in particles size of WO3 nanoparticles were also confirmed by Raman and TEM analyses. The obtained surface area (∼63-33 m(2)/g) of magnetron sputtered WO3 nanoparticles was found to be enhanced significantly as compared to reported surface area of WO3 nanoparticles synthesis by various techniques. The study of degradation reactions of CEES and DMMP on the surface of obtained nanoparticles was carried out by using GC and GC-MS techniques. The decontamination reactions were found to be pseudo first order steady state with rate constant (k) and half life values 0.143-0.109 h(-1) and 4.82-6.49 h for CEES and 0.018-0.010 h(-1) and 36.87-66.65 h for DMMP, respectively. The FT-IR data reveal the role of hydrolysis reactions in the decontamination of CEES as well as DMMP. PMID:25965433

  2. Biocatalytic Resolution of Rac-α-Ethyl-2-Oxo-Pyrrolidineacetic Acid Methyl Ester by Immobilized Recombinant Bacillus cereus Esterase.

    PubMed

    Zheng, Jian-Yong; Liu, Yin-Yan; Luo, Wei-Feng; Zheng, Ren-Chao; Ying, Xiang-Xian; Wang, Zhao

    2016-04-01

    A new esterase-producing strain (Bacillus cereus WZZ001) which exhibiting high hydrolytic activity and excellent enantioselectivity on rac-α-ethyl-2-oxo-pyrrolidineacetic acid methyl ester (R, S-1) has been isolated from soil sample by our laboratory. In this study, the stereoselective hydrolysis of (R, S-1) was performed using the recombinant Bacillus cereus esterase which expressed in Escherichia coli BL21 (DE3). Under the optimized conditions of pH 8.0, 35 °C, and concentration of substrate 400 mM, a successful enzymatic resolution was achieved with an e.e. s of 99.5 % and conversion of 49 %. Immobilization considerably increased the reusability of the recombinant esterase; the immobilized enzyme showed excellent reusability during 6 cycles of repeated 2 h reactions at 35 °C. Thereby, it makes the recombinant B. cereus esterase a usable biocatalyst for industrial application. PMID:26695776

  3. Laboratory simulated dissipation of metsulfuron methyl and chlorimuron ethyl in soils and their residual fate in rice, wheat and soybean at harvest.

    PubMed

    Sanyal, Nilanjan; Pramanik, Sukhendu Kumar; Pal, Raktim; Chowdhury, Ashim

    2006-03-01

    Two sulfonylurea herbicides, metsulfuron methyl (Ally 20 WP) and chlorimuron ethyl (Classic 25 WP) were evaluated for their dissipation behaviour in alluvial, coastal saline and laterite soils under laboratory incubated condition at 60% water holding capacity of soils and 30 degrees C temperature was maintained. In field study herbicides were applied twice for the control of grasses, annual and perennials broad leaves weeds and sedges in rice, wheat and soybean to find out the residual fate of both the herbicides on different matrices of respective crops after harvest. Extraction and clean up methodologies for the herbicides were standardized and subsequently analyzed by HPLC. The study revealed that the half-lives of metsulfuron methyl and chlorimuron ethyl ranged from 10.75 to 13.94 d irrespective of soils and doses applied. Field trials with rice, wheat and soybean also revealed that these two herbicides could safely be recommended for application as no residues were detected in the harvest samples. PMID:16502507

  4. Photooxidation Dynamics of Model Ketones and Alcohols on TiO2(110)

    NASA Astrophysics Data System (ADS)

    Kershis, Matthew; Wilson, Daniel; White, Michael

    2014-03-01

    The photooxidation dynamics of model ketones and alcohols on TiO2(110) were studied using pump-probe laser spectroscopy under UHV conditions. Butanone photooxidation was chosen as a model reaction to demonstrate a fast ion imaging system using pixel imaging mass spectrometry (PImMS). Butanone photooxidation proceeds via ejection of both an ethyl and methyl radical. In the former case, multiple species are observed in product mass spectra which previous studies have shown are the result of ethyl radical fragmentation due to dissociative ionization. Results obtained using this imaging technique agree with previous work and demonstrate the utility of this technique in elucidating fundamental surface photochemical mechanisms. Results from the study of ethanol and isopropanol photooxidation on this surface will also be presented. These results show that methyl radicals are ejected during the photooxidation of these molecules. Comparison of methyl radical final state distributions measured here with those obtained for acetaldehyde and acetone photooxidation indicate that methyl radicals are produced as secondary photoproducts following the photooxidation of the primary aldehyde-ketone photoproducts. Support from U.S. Dept. of Energy, contract DE-AC02-98CH10886.

  5. A Simple and Fast Method for the Production and Characterization of Methylic and Ethylic Biodiesels from Tucum Oil via an Alkaline Route

    PubMed Central

    de Oliveira, Marcelo Firmino; Vieira, Andressa Tironi; Batista, Antônio Carlos Ferreira; Rodrigues, Hugo de Souza; Stradiotto, Nelson Ramos

    2011-01-01

    A simple, fast, and complete route for the production of methylic and ethylic biodiesel from tucum oil is described. Aliquots of the oil obtained directly from pressed tucum (pulp and almonds) were treated with potassium methoxide or ethoxide at 40°C for 40 min. The biodiesel form was removed from the reactor and washed with 0.1 M HCl aqueous solution. A simple distillation at 100°C was carried out in order to remove water and alcohol species from the biodiesel. The oxidative stability index was obtained for the tucum oil as well as the methylic and ethylic biodiesel at 6.13, 2.90, and 2.80 h, for storage times higher than 8 days. Quality control of the original oil and of the methylic and ethylic biodiesels, such as the amount of glycerin produced during the transesterification process, was accomplished by the TLC, GC-MS, and FT-IR techniques. The results obtained in this study indicate a potential biofuel production by simple treatment of tucum, an important Amazonian fruit. PMID:21629751

  6. A simple and fast method for the production and characterization of methylic and ethylic biodiesels from tucum oil via an alkaline route.

    PubMed

    de Oliveira, Marcelo Firmino; Vieira, Andressa Tironi; Batista, Antônio Carlos Ferreira; de Souza Rodrigues, Hugo; Stradiotto, Nelson Ramos

    2011-01-01

    A simple, fast, and complete route for the production of methylic and ethylic biodiesel from tucum oil is described. Aliquots of the oil obtained directly from pressed tucum (pulp and almonds) were treated with potassium methoxide or ethoxide at 40°C for 40 min. The biodiesel form was removed from the reactor and washed with 0.1 M HCl aqueous solution. A simple distillation at 100°C was carried out in order to remove water and alcohol species from the biodiesel. The oxidative stability index was obtained for the tucum oil as well as the methylic and ethylic biodiesel at 6.13, 2.90, and 2.80 h, for storage times higher than 8 days. Quality control of the original oil and of the methylic and ethylic biodiesels, such as the amount of glycerin produced during the transesterification process, was accomplished by the TLC, GC-MS, and FT-IR techniques. The results obtained in this study indicate a potential biofuel production by simple treatment of tucum, an important Amazonian fruit. PMID:21629751

  7. Common and distinct gene expression patterns induced by the herbicides 2,4-dichlorophenoxyacetic acid, cinidon-ethyl and tribenuron-methyl in wheat.

    PubMed

    Pasquer, Frédérique; Ochsner, Urs; Zarn, Jürg; Keller, Beat

    2006-12-01

    In wheat, herbicides are used to control weeds. Little is known about the changes induced in the metabolism of tolerant plants after herbicide treatment. The impact of three herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), cinidon-ethyl and tribenuron-methyl] on the wheat transcriptome was studied using cDNA microarrays. Gene expression of plants grown in a controlled environment or in the field was studied between 24 h and 2 weeks after treatment. Under controlled conditions, 2,4-D induced genes of the phenylpropanoid pathway soon after treatment. Cinidon-ethyl triggered peroxidase and defence-related gene expression under controlled conditions, probably because reactive oxygen species are released by photo-oxidation of protoporphyrin-IX. The same genes were upregulated in the field as under controlled conditions, albeit at a weaker level. These results show that cinidon-ethyl specifically induces genes involved in plant defence. Under controlled conditions, tribenuron-methyl did not change the expression profile immediately after treatment, but defence-related genes were upregulated after 1 week. Sulfonylurea compounds such as tribenuron-methyl specifically inhibit acetolactate synthase and are rapidly detoxified, but the activity of some of the resulting metabolites could explain later changes in gene expression. Finally, overexpression of the isopropylmalate synthase gene, involved in branched-chain amino acid synthesis, and of defence-related genes was observed in the field after sulfonylurea treatment. PMID:17054088

  8. New asymmetrical per-substituted cyclodextrins (2-O-methyl-3-O-ethyl- and 2-O-ethyl-3-O-methyl-6-O-t-butyldimethylsilyl-beta-derivatives) as chiral selectors for enantioselective gas chromatography in the flavour and fragrance field.

    PubMed

    Bicchi, Carlo; Cagliero, Cecilia; Liberto, Erica; Sgorbini, Barbara; Martina, Katia; Cravotto, Giancarlo; Rubiolo, Patrizia

    2010-02-12

    Asymmetrically substituted 6(I-VII)-O-t-butyldimethylsilyl(TBDMS)-3(I-VII)-O-ethyl-2(I-VII)-O-methyl-beta-cyclodextrin (MeEt-CD) and 6(I-VII)-O-TBDMS-2(I-VII)-O-ethyl-3(I-VII)-O-methyl-beta-cyclodextrin (EtMe-CD) were synthesised to evaluate the role of the substitution pattern in positions 2 and 3 on the enantioselectivity, in particular in view of their application to routine analysis in fast enantioselective gas chromatography (Es-GC). The chromatographic properties and enantioselectivities of the new derivatives were tested by separating the enantiomers of a series of medium-to-high volatility racemates in the flavour and fragrance field, and compared to those of the corresponding symmetrically substituted 6(I-VII)-O-TBDMS-2(I-VII),3(I-VII)-O-methyl-beta-CD (MeMe-CD) and 6(I-VII)-O-TBDMS-2(I-VII),3(I-VII)-O-ethyl-beta-CD (EtEt-CD), and were then applied to analysis of real-world essential oil (e.o.) samples. A new synthetic process including the sonochemical approach to obtain synthetic reproducibility and significant yields of the per-substituted derivatives with acceptable reaction times was developed. The results show that asymmetrically substituted methyl/ethyl CDs compared to the methyl or ethyl symmetrical derivatives in general provide better enantioselectivity in terms of both enantiomer resolution and number of separated chiral compounds, and show how the substitution pattern in positions 2 and 3 of the CD ring can influence the separation. Moreover, these new CD derivatives with better enantioselectivity are also shown to be very useful in routine analysis for the exhaustive control of samples containing several chiral characterizing markers in a single run. PMID:19846102

  9. 12C/ 13C kinetic isotope effects of the gas-phase reactions of isoprene, methacrolein, and methyl vinyl ketone with OH radicals

    NASA Astrophysics Data System (ADS)

    Iannone, Richard; Koppmann, Ralf; Rudolph, Jochen

    The stable-carbon kinetic isotope effects (KIEs) for the gas-phase reactions of isoprene, methacrolein (MACR), and methyl vinyl ketone (MVK) with OH radicals were studied in a 25 L reaction chamber at (298 ± 2) K and ambient pressure. The time dependence of both the stable-carbon isotope ratios and the concentrations was determined using a gas-chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) system. The volatile organic compounds (VOCs) used in the KIE experiments had natural-abundance isotopic composition thus KIE data obtained from these experiments can be directly applied to atmospheric studies of isoprene chemistry. All 12C/ 13/C KIE values are reported as ɛ values, where ɛ = (KIE - 1) × 1000‰, and KIE = k12/ k13. The following average stable-carbon KIEs were obtained: (6.56 ± 0.12)‰ (isoprene), (6.47 ± 0.27)‰ (MACR), and (7.58 ± 0.47)‰ (MVK). The measured KIEs all agree within uncertainty to an inverse molecular mass (MM) dependence of OHɛ(‰) = (487 ± 18)MM -1, which was derived from two previous studies [ J. Geophys. Res.2000, 105, 29329-29346; J. Phys. Chem. A2004, 108, 11537-11544]. Upon adding the isoprene, MACR, and MVK OHɛ values from this study, the inverse MM dependence changes only marginally to OHɛ(‰) = (485 ± 14)MM -1. The addition of these isoprene OHɛ values to a recently measured set of ɛO3 values in an analogous study [ Atmos. Environ.2008, 42, 8728-8737] allows for estimates of the average change in the 12C/ 13C ratio due to processing in the troposphere.

  10. Conducting polymer blends: Polypyrrole and polythiophene blends with polystyrene, polycarbonate resin, poly(vinyl alcohol) and poly(vinyl methyl ketone)

    SciTech Connect

    Wang, H.L.

    1992-01-01

    Various aromatic compounds can be polymerized by electrochemical oxidation in solution containing a supporting electrolyte. Most studies have been devoted to polypyrrole and polythiophene. In situ doping during electrochemical polymerization yields free standing conductive polymer film. One major approach to making conducting polymer blends is electrochemical synthesis after coating the host polymer on a platinum electrode. In the electrolysis of pyrrole or thiophene monomer, using (t-Bu[sub 4]N)BF[sub 4] as supporting electrolyte, and acetonitrile as solvent, monomer can diffuse through the polymer film, to produce a polypyrrole or polythiophene blend in the film. Doping occurs along with polymerization to form a conducting polymer alloy. The strongest molecular interaction in polymers, and one that is central to phase behavior, is hydrogen bonding. This mixing at the molecular level enhances the degree of miscibility between two polymers and results in macroscopic properties indicative of single phase behavior. In this dissertation, the authors describes the syntheses of conducting polymer blends: polypyrrole and polythiophene blends with polystyrene, poly(bisphenol-A-carbonate), polyvinyl alcohol and poly(vinyl methyl ketone). The syntheses are performed both electrochemically and chemically. Characterization of these blends was carried out by Fourier Transform Infrared spectroscopy, Differential Scanning Calorimetry, Thermogravimetric Analysis, Scanning Electron Microscopy, and X-ray diffraction. Percolating threshold conductivities occur from 7% to 20% for different polymer blends. The low threshold conductivity is attributed to blend homogeneity enhanced by hydrogen bonding between the carbonyl group in the insulating polymer and the N-H group in polypyrrole. Thermal stability, environmental stability, mechanical properties, crystallinity and morphological structure are also discussed. The authors have also engaged in the polymerization of imidazoles.

  11. Impacts of aqueous phase radical mechanism of oligomerization of methyl vinyl ketone (MVK) on SOA formation: on the prevailing role of dissolved oxygen

    NASA Astrophysics Data System (ADS)

    Renard, P.; Ervens, B.; Siekmann, F.; Vassalo, L.; Ravier, S.; Clement, J.; Monod, A.

    2012-12-01

    It is now recognized that the aqueous phase photochemistry of organic compounds in cloud droplets and deliquescent aerosol particles lead to the formation of oligomers and thus it might produce a substantial amount of atmospheric Secondary Organic Aerosol (SOA) with unique properties. However, the chemical mechanisms leading to these oligomers are still poorly understood, and consequently, their atmospheric impacts are difficult to assess. The goal of this study was to investigate the atmospheric impact of an aqueous phase radical mechanism of oligomerization of methyl vinyl ketone (MVK: one of the main reaction products of isoprene) on SOA formation. Aqueous phase photooxidation of MVK was investigated in a photoreactor using photolysis of H2O2 as OH radical generator. Electrospray high resolution mass spectrometry analysis of the solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1800 Da within less than 15 minutes of reaction. Highest oligomer formation rates were obtained under conditions of low dissolved oxygen, highest temperature and highest MVK initial concentrations. A radical mechanism of polymerization is proposed to explain this oligomer formation. Furthermore, we quantified the total amount of carbon present in oligomers, and the initial radical branching ratios. Kinetic parameters of the proposed oligomerization mechanism are constrained by means of a box model that is able to reproduce the temporal evolution of intermediates and products as observed in the laboratory experiments. Additional model simulations for atmospherically-relevant conditions will be presented that show the extent to which these radical processes contribute to SOA formation in the multiphase system as compared to other aqueous phase as well as traditional SOA sources.

  12. Radical mechanisms of methyl vinyl ketone oligomerization through aqueous phase OH-oxidation: on the paradoxical role of dissolved molecular oxygen

    NASA Astrophysics Data System (ADS)

    Renard, P.; Siekmann, F.; Gandolfo, A.; Socorro, J.; Salque, G.; Ravier, S.; Quivet, E.; Clément, J.-L.; Traikia, M.; Delort, A.-M.; Voisin, D.; Thissen, R.; Monod, A.

    2013-01-01

    It is now accepted that one of the important pathways of Secondary Organic Aerosol (SOA) formation occurs through aqueous phase chemistry in the atmosphere. However, the liquid phase chemical mechanisms leading to macromolecules are still not well understood. For α-dicarbonyl precursors, such as methylglyoxal and glyoxal, radical reactions through OH-oxidation produce oligomers, irreversibly and faster than accretion reactions. Methyl vinyl ketone (MVK) was chosen in the present study as it is an α, β-unsaturated carbonyl that can undergo such reaction pathways in the aqueous phase and forms even high molecular weight oligomers. We present here experiments on the aqueous phase OH-oxidation of MVK, performed under atmospheric relevant conditions. Using NMR and UV absorption spectroscopy, high and ultra-high resolution mass spectrometry, we show that the fast formation of oligomers up to 1800 Da is due to radical oligomerization of MVK, and 13 series of oligomers (out of a total of 26 series) are identified. The influence of atmospherically relevant parameters such as temperature, initial concentrations of MVK and dissolved oxygen are presented and discussed. In agreement with the experimental observations, we propose a chemical mechanism of OH-oxidation of MVK in the aqueous phase that proceeds via radical oligomerization of MVK on the olefin part of the molecule. This mechanism highlights the paradoxical role of dissolved O2: while it inhibits oligomerization reactions, it contributes to produce oligomerization initiator radicals, which rapidly consume O2, thus leading to the supremacy of oligomerization reactions after several minutes of reaction. These processes, together with the large ranges of initial concentrations investigated (60-656 μM of dissolved O2 and 0.2-20 mM of MVK) show the fundamental role that O2 likely plays in atmospheric organic aerosol.

  13. Radical mechanisms of methyl vinyl ketone oligomerization through aqueous phase OH-oxidation: on the paradoxical role of dissolved molecular oxygen

    NASA Astrophysics Data System (ADS)

    Renard, P.; Siekmann, F.; Gandolfo, A.; Socorro, J.; Salque, G.; Ravier, S.; Quivet, E.; Clément, J.-L.; Traikia, M.; Delort, A.-M.; Voisin, D.; Vuitton, V.; Thissen, R.; Monod, A.

    2013-07-01

    It is now accepted that one of the important pathways of secondary organic aerosol (SOA) formation occurs through aqueous phase chemistry in the atmosphere. However, the chemical mechanisms leading to macromolecules are still not well understood. It was recently shown that oligomer production by OH radical oxidation in the aerosol aqueous phase from α-dicarbonyl precursors, such as methylglyoxal and glyoxal, is irreversible and fast. Methyl vinyl ketone (MVK) was chosen in the present study as it is an α,β-unsaturated carbonyl that can undergo radical oligomerization in the aerosol aqueous phase. We present here experiments on the aqueous phase OH-oxidation of MVK, performed under various conditions. Using NMR and UV absorption spectroscopy, high and ultra-high resolution mass spectrometry, we show that the fast formation of oligomers up to 1800 Da is due to radical oligomerization of MVK, and 13 series of oligomers (out of a total of 26 series) are identified. The influence of atmospherically relevant parameters such as temperature, initial concentrations of MVK and dissolved oxygen are presented and discussed. In agreement with the experimental observations, we propose a chemical mechanism of OH-oxidation of MVK in the aqueous phase that proceeds via radical oligomerization of MVK on the olefin part of the molecule. This mechanism highlights in our experiments the paradoxical role of dissolved O2: while it inhibits oligomerization reactions, it contributes to produce oligomerization initiator radicals, which rapidly consume O2, thus leading to the dominance of oligomerization reactions after several minutes of reaction. These processes, together with the large range of initial concentrations investigated show the fundamental role that radical oligomerization processes likely play in polluted fogs and atmospheric aerosol.

  14. Temperature dependence of the yields of methacrolein and methyl vinyl ketone from the OH-initiated oxidation of isoprene under NOx free conditions

    NASA Astrophysics Data System (ADS)

    Navarro, M. A.; Dusanter, S.; Stevens, P. S.; Hites, R. A.

    2010-12-01

    Isoprene, the dominant biogenic hydrocarbon emitted into the atmosphere by deciduous trees, can contribute significantly to the production of tropospheric ozone and secondary organic aerosols due to its high reactivity with oxidants. It is therefore important to correctly describe its oxidation chemistry in models of atmospheric chemistry. However, recent measurements of HOx (OH + HO2) radicals in forest environments show serious discrepancies with modeled concentrations, bringing into question our understanding of the atmospheric chemistry of isoprene and other reactive biogenic compounds. A previous study conducted in our group on the OH-initiated oxidation of isoprene under NOx free conditions indicated that the yields of methacrolein (MAC) and methyl vinyl ketone (MVK) are dependent on the ratio of HO2-to-isoprene-based peroxy radicals (ISORO2). It is likely due to a competition between ISORO2 self- and cross-reactions that leads to the formation of the primary products, with reactions between these peroxy radicals and HO2 which can lead to the formation of peroxides. This presentation will expand the scope of the abovementioned study by investigating the temperature dependence of the yields of MAC and MVK in the range 30-70°C. We will present results from experiments conducted using a small UV-irradiated reaction chamber coupled to an on-line mass spectrometer. In addition, we will compare the measured yields to that predicted by the Master Chemical Mechanism (MCM), including recently proposed radical recycling reactions, to determine whether current models of atmospheric chemistry provide a complete description for the formation of these primary products as a function of temperature.

  15. Weathering and Chemical Degradation of Methyl Eugenol and Raspberry Ketone Solid Dispensers for Detection, Monitoring, and Male Annihilation of Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii.

    PubMed

    Vargas, Roger I; Souder, Steven K; Nkomo, Eddie; Cook, Peter J; Mackey, Bruce; Stark, John D

    2015-08-01

    Solid male lure dispensers containing methyl eugenol (ME) and raspberry ketone (RK), or mixtures of the lures (ME + RK), and dimethyl dichloro-vinyl phosphate (DDVP) were evaluated in area-wide pest management bucket or Jackson traps in commercial papaya (Carica papaya L.) orchards where both oriental fruit fly, Bactrocera dorsalis (Hendel), and melon fly, Bactrocera cucurbitae (Coquillett), are pests. Captures of B. dorsalis with fresh wafers in Jackson and bucket traps were significantly higher on the basis of ME concentration (Mallet ME [56%] > Mallet MR [31.2%] > Mallet MC [23.1%]). Captures of B. cucurbitae with fresh wafers in Jackson and bucket traps were not different regardless of concentration of RK (Mallet BR [20.1%] = Mallet MR [18.3%] = Mallet MC [15.9%]). Captures of B. dorsalis with fresh wafers, compared with weathered wafers, were significantly different after week 12; captures of B. cucurbitae were not significantly different after 16 wk. Chemical analyses revealed presence of RK in dispensers in constant amounts throughout the 16-wk trial. Degradation of both ME and DDVP over time was predicted with a high level of confidence by nonlinear asymptotic exponential decay curves. Results provide supportive data to deploy solid ME and RK wafers (with DDVP) in fruit fly traps for detection programs, as is the current practice with solid TML dispensers placed in Jackson traps. Wafers with ME and RK might be used in place of two separate traps for detection of both ME and RK responding fruit flies and could potentially reduce cost of materials and labor by 50%. PMID:26470301

  16. Measurements of the yields of methacrolein and methyl vinyl ketone from the OH-initiated oxidation of isoprene under NOx free conditions.

    NASA Astrophysics Data System (ADS)

    Navarro, M. A.; Dusanter, S.; Stevens, P. S.; Hites, R. A.

    2008-12-01

    The chemical mechanism for the oxidation of isoprene is a subject of considerable interest in atmospheric chemistry. Isoprene, the dominant natural hydrocarbon emitted into the atmosphere by deciduous trees, can contribute significantly to the production of ozone, organic nitrates, and secondary VOCs in the troposphere because of its high reactivity with the hydroxyl radical (OH). The accuracy of urban and regional air quality models depends on a complete understanding of the mechanism of isoprene oxidation and the product branching ratios under atmospheric conditions. Recent measurements of OH and HO2 radicals in forest environments show serious discrepancies with modeled concentrations of these radicals, bringing into question our understanding of the atmospheric chemistry of isoprene and other reactive biogenic emissions. A small UV-irradiated reaction chamber was coupled to an on-line mass spectrometer to investigate the formation of isoprene oxidation products under NOx free conditions. UV-photolysis of hydrogen peroxide (H2O2) was employed as the OH precursor to initiate the oxidation of isoprene. During experiments carried out at 50°C and various concentrations of H2O2, yields of methacrolein (MAC) and methyl vinyl ketone (MVK) were derived from their time-resolved concentration profiles. The measured yields exhibit a strong dependence on the initial concentration of H2O2 and decrease with increasing H2O2, suggesting that the relative yields of MVK and MAC depend on the concentration of radicals. Experimental concentration profiles were compared to model predictions to test current mechanisms of isoprene chemistry. In addition, preliminary measurements of the temperature dependence of the MAC and MVK yields over the temperature range of 30-70°C will be presented.

  17. Degradation of methyl and ethyl mercury into inorganic mercury by oxygen free radical-producing systems: involvement of hydroxyl radical.

    PubMed

    Suda, I; Totoki, S; Takahashi, H

    1991-01-01

    Degradation of methyl mercury (MeHg) and ethyl Hg (EtHg) with oxygen free radicals was studied in vitro by using three well-known hydroxyl radical (.OH)-producing systems, namely Cu2(+)-ascorbate, xanthine oxidase (XOD)-hypoxanthine (HPX)-Fe(III)EDTA and hydrogen peroxide (H2O2)-ultraviolet light B. For this purpose, the direct determination method for inorganic Hg was employed. MeHg and EtHg were readily degraded by these three systems, though the amounts of inorganic Hg generated from MeHg were one half to one third those from EtHg. Degradation activity of XOD-HPX-Fe(III)EDTA system was inhibited by superoxide dismutase, catalase and the .OH scavengers and stimulated by H2O2. Deletion of the .OH formation promoter Fe(III)EDTA from XOD-HPX-Fe(III)EDTA system resulted in the decreased degradation of MeHg and EtHg, which was enhanced by further addition of the iron chelator diethylenetriamine pentaacetic acid. In all these cases, a good correlation was observed between alkyl Hg degradation and deoxyribose oxidation determining .OH. By contrast, their degradation appeared to be unrelated to either superoxide anion (O2-) production or H2O2 production alone. We further confirmed that H2O2 (below 2 mM) itself did not cause significant degradation of MeHg and EtHg. These results suggested that .OH, but not O2- and H2O2, might be the oxygen free radical mainly responsible for the degradation of MeHg and EtHg. PMID:1647758

  18. Atomistic simulations of the solid-liquid transition of 1-ethyl-3-methyl imidazolium bromide ionic liquid.

    PubMed

    Feng, Haijun; Zhou, Jian; Qian, Yu

    2011-10-14

    Achieving melting point around room temperature is important for applications of ionic liquids. In this work, molecular dynamics simulations are carried out to investigate the solid-liquid transition of ionic liquid 1-ethyl-3-methyl imidazolium bromide ([emim]Br) by direct heating, hysteresis, void-nucleation, sandwich, and microcanonical ensemble approaches. Variations of the non-bonded energy, density, diffusion coefficient, and translational order parameter of [emim]Br are analyzed as a function of temperature, and a coexisting solid-liquid system is achieved in the microcanonical ensemble method. The melting points obtained from the first three methods are 547 ± 8 K, 429 ± 8 K, and 370 ± 6 K; while for the sandwich method, the melting points are 403 ± 4 K when merging along the x-axis by anisotropic isothermal-isobaric (NPT) ensemble, 393 ± 4 K when along the y-axis by anisotropic NPT ensemble, and 375 ± 4 K when along the y-axis by isotropic NPT ensemble. For microcanonical ensemble method, when the slabs are merging along different directions (x-axis, y-axis, and z-axis), the melting points are 364 ± 3 K, 365 ± 3 K, and 367 ± 3 K, respectively, the melting points we get by different methods are approximately 55.4%, 21.9%, 5.1%, 14.5%, 11.6%, 6.5%, 3.4%, 3.7%, and 4.3% higher than the experimental value of 352 K. The advantages and disadvantages of each method are discussed. The void-nucleation and microcanonical ensemble methods are most favorable for predicting the solid-liquid transition. PMID:22010721

  19. Identification of 2-ethyl-4-methyl-3-thiazoline and 2-isopropyl-4-methyl-3-thiazoline for the first time in nature by the comprehensive analysis of sesame seed oil.

    PubMed

    Agyemang, David; Bardsley, Kathryn; Brown, Sharon; Kraut, Kenneth; Psota-Kelty, Linda; Trinnaman, Laurence

    2011-04-01

    Toasted sesame seed oil was comprehensively analyzed. It was extracted using the SAFE (Solvent-Assisted Flavor Evaporation) technique. The extract was analyzed by GC and GC-MS on 2 phases and a total of 87 components were identified, confirmed, and are presented in this paper. The major components were methylpyrazine; 2,5-dimethylpyrazine; 2,6-dimethylpyrazine; 2-ethyl-3,6-dimethylpyrazine; furfuryl alcohol; and guaiacol. In addition, as part of this analysis, 2-ethyl-4-methyl-3-thiazoline and 2-isopropyl-4-methyl-3-thiazoline were confirmed as being present in a natural product for the first time. Their identification, confirmation, and sensory evaluation have been documented here. PMID:21535804

  20. Toxicity and carcinogenicity of methyl isobutyl ketone in F344N rats and B6C3F1 mice following 2-year inhalation exposure.

    PubMed

    Stout, Matthew D; Herbert, Ronald A; Kissling, Grace E; Suarez, Fernando; Roycroft, Joseph H; Chhabra, Rajendra S; Bucher, John R

    2008-02-28

    Methyl isobutyl ketone (MIBK) is primarily used as a denaturant for rubbing alcohol, as a solvent and in the manufacture of methyl amyl alcohol. Inhalation of vapors is the most likely route of exposure in the work place. In order to evaluate the potential of MIBK to induce toxic and carcinogenic effects following chronic exposure, groups of 50 male and 50 female F344/N rats and B6C3F1 mice were exposed to MIBK at concentrations of 0, 450, 900, or 1800ppm by inhalation, 6h/day, 5 days per week for 2 years. Survival was decreased in male rats at 1800ppm. Body weight gains were decreased in male rats at 900 and 1800ppm and in female mice at 1800ppm. The primary targets of MIBK toxicity and carcinogenicity were the kidney in rats and the liver in mice. In male rats, there was increased mineralization of the renal papilla at all exposure concentrations. The incidence of chronic progressive nephropathy (CPN) was increased at 1800ppm and the severity was increased in all exposed groups. There were also increases in renal tubule hyperplasia at all exposure concentrations, and in adenoma and adenoma or carcinoma (combined) at 1800ppm; these lesions are thought to represent a continuum in the progression of proliferative lesions in renal tubule epithelium. These increases may have resulted from the increased severity of CPN, either through alpha2micro-globulin-dependent or -independent mechanisms. An increase in mononuclear cell leukemia at 1800ppm was an uncertain finding. Adrenal medulla hyperplasia was increased at 1800ppm, and there was a positive trend for increases in benign or malignant pheochromocytomas (combined). In female rats, there were increases in the incidence of CPN in all exposure concentrations and in the severity at 1800ppm, indicating that CPN was increased by mechanisms in addition to those related to alpha2micro-globulin. There were renal mesenchymal tumors, which have not been observed in historical control animals, in two female rats at 1800ppm. The

  1. Ethyl Radical Ejection During Photodecomposition of Butanone on TiO2(110)

    SciTech Connect

    Henderson, Michael A.

    2008-10-15

    The photodecomposition of acetone and butanone were examined on the (110) surface of rutile TiO2 using temperature programmed desorption (TPD) and photon stimulated desorption (PSD). In both cases, photodecomposition was proceeded by a required thermal reaction between the adsorbed ketone and coadsorbed oxygen resulting in a diolate species. The diolate photodecomposed by ejection of an organic radical from the surface leaving behind a carboxylate species. In the acetone case, only methyl radical PSD was detected and acetate was left on the surface. In the butanone case there was a possibility of either methyl or ethyl radical ejection, with propionate or acetate left behind, respectively. However, only ethyl radical PSD was detected and the species left on the surface (acetate) was the same as in the acetone case. The preference for ethyl radical ejection is linked to the greater thermal stability of the ethyl radical over that of the methyl radical. Unlike in the acetone case, where the ejected methyl radicals did not participate in thermal chemistry on the TiO2(110) surface after photoactivation of the acetone diolate, ethyl radicals photodesorbing at 100 K from butanone diolate showed a preference for dehydrogenation to ethene through the influence of coadsorbed oxygen. These results reemphasize the mechanistic importance of organic radical production during photooxidation reactions on TiO2 surface. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. Ethyl Radical Ejection During Photodecomposition of Butanone on TiO2(110)

    SciTech Connect

    Henderson, Michael A.

    2008-10-15

    The photodecomposition of acetone and butanone were examined on the (110) surface of rutile TiO2 using temperature programmed desorption (TPD) and photon stimulated desorption (PSD). In both cases, photodecomposition was proceeded by a required thermal reaction between the adsorbed ketone and coadsorbed oxygen resulting in a diolate species. The diolate photodecomposed by ejection of an organic radical from the surface leaving behind a carboxylate species. In the acetone case, only methyl radical PSD was detected and acetate was left on the surface. In the butanone case there was a possibility of either methyl or ethyl radical ejection, with propionate or acetate left behind, respectively. However, only ethyl radical PSD was detected and the species left on the surface (acetate) was the same as in the acetone case. The preference for ethyl radical ejection is linked to the greater thermal stability of the ethyl radical over that of the methyl radical. Unlike in the acetone case, where the ejected methyl radicals did not participate in thermal chemistry on the TiO2(110) surface after photoactivation of the acetone diolate, ethyl radicals photodesorbing at 100 K from butanone diolate showed a preference for dehydrogenation to ethene through the influence of coadsorbed oxygen. These results reemphasize the mechanistic importance of organic radical production during photooxidation reactions on TiO2 surface.

  3. Ketones blood test

    MedlinePlus

    ... Ketones - serum; Nitroprusside test; Ketone bodies - serum; Ketones - blood ... A blood sample is needed. ... When the needle is inserted to draw blood, some people feel slight ... there may be some throbbing or a slight bruise. This soon ...

  4. Atmospheric chemistry of methyl and ethyl N,N,N',N'-tetramethylphosphorodiamidate and O,S-dimethyl methylphosphonothioate.

    PubMed

    Aschmann, Sara M; Atkinson, Roger

    2013-10-31

    Rate constants for the reactions of OH radicals with methyl N,N,N',N'-tetramethylphosphorodiamidate [CH3OP(O)[N(CH3)2]2; MTMPDA], ethyl N,N,N',N'-tetramethylphosphorodiamidate [C2H5OP(O)[N(CH3)2]2; ETMPDA], and O,S-dimethyl methylphosphonothioate [CH3OP(O)(CH3)SCH3; OSDMMP] have been measured over the temperature range 281-349 K at atmospheric pressure of air using a relative rate method. The rate expressions obtained were 4.96 × 10(-12) e((1058±71)/T) cm(3) molecule(-1) s(-1) (1.73 × 10(-10) cm(3) molecule(-1) s(-1) at 298 K) for OH + MTMPDA, 4.46 × 10(-12) e((1144±95)/T) cm(3) molecule(-1) s(-1) (2.07 × 10(-10) cm(3) molecule(-1) s(-1) at 298 K) for OH + ETMPDA, and 1.31 × 10(-13) e((1370±229)/T) cm(3) molecule(-1) s(-1) (1.30 × 10(-11) cm(3) molecule(-1) s(-1) at 298 K) for OH + OSDMMP. The rate constant for OH + OSDMMP was independent of O2 content over the range 2.1-71% O2 at 296 ± 2 K. In addition, rate constants for the reactions of NO3 radicals and O3 with MTMPDA, of (1.4 ± 0.1) × 10(-12) cm(3) molecule(-1) s(-1) and <3.5 × 10(-19) cm(3) molecule(-1) s(-1), respectively, were measured at 297 ± 2 K. Products of the OH radical- and, for MTMPDA, NO3 radical-initiated reactions were investigated using gas chromatography and in situ atmospheric pressure ionization mass spectrometry. A product of molecular weight 180 was observed from the OH and NO3 radical-initiated reactions of MTMPDA, and this is attributed to CH3OP(O)[N(CH3)2]N(CH3)CHO. Similarly, a product of molecular weight 194 was observed from the OH + ETMPDA reaction and attributed to C2H5OP(O)[N(CH3)2]N(CH3)CHO. Possible reaction mechanisms are discussed. PMID:24134801

  5. The stable-carbon kinetic isotope effects of the reactions of isoprene, methacrolein, and methyl vinyl ketone with ozone in the gas phase

    NASA Astrophysics Data System (ADS)

    Iannone, Richard; Koppmann, Ralf; Rudolph, Jochen

    The stable-carbon kinetic isotope effects (KIEs) for the gas-phase reactions of isoprene, methacrolein (MACR), and methyl vinyl ketone (MVK) with ozone were studied in a 25 L reaction chamber at 298 ± 2 K and ambient pressure. The time dependence of both the stable-carbon isotope ratios and the concentrations was determined using a gas chromatography combustion isotope ratio mass spectrometry (GCC-IRMS) system. The volatile organic compounds (VOCs) used in the KIE experiments had natural-abundance isotopic composition thus KIE data obtained from these experiments can be directly applied to atmospheric studies of isoprene chemistry. All 13C/ 12C KIEs reported herein are as per mille ɛ values, where ɛ = (KIE - 1) × 1000‰, and KIE = k12/ k13. The following average stable-carbon KIEs were obtained: (8.40 ± 0.11)‰ (isoprene), (8.38 ± 0.42)‰ (MACR), and (8.01 ± 0.07)‰ (MVK). The stable-carbon KIE values of three 1-alkenes, which were used as reference compounds for relative rate experiments, were also determined: (5.48 ± 0.09)‰ (1-heptene), (4.67 ± 0.17)‰ (1-octene), and (4.59 ± 0.56)‰ (1-nonene). The ɛ values for the reactions of isoprene and 1-heptene with ozone agree with measurements in a previous study [Iannone, R., Anderson, R.S., Rudolph, J., Huang, L., Ernst, D., 2003. The carbon kinetic isotope effects of ozone-alkene reactions in the gas-phase and the impact of ozone reactions on the stable carbon isotope ratio of alkenes in the atmosphere. Geophysical Research Letters 30, 1684, doi: 10.1029/2003GL017221.], but the values presented here have a substantially improved accuracy. The ɛ values for 1-octene and 1-nonene reactions with ozone have not been measured before and closely follow the 1/ NC dependence (where NC represents the number of carbon atoms in the alkene) derived in the aforementioned study. MACR and MVK had ɛ values that were somewhat below the expected range of values predicted by the 1/ NC dependence found for alkenes.

  6. Crystal structures of ethyl 6-(4-methyl-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate and ethyl 6-(4-fluoro-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate.

    PubMed

    Gomes, Ligia R; Low, John Nicolson; Fernandes, Carlos; Gaspar, Alexandra; Borges, Fernanda

    2016-01-01

    The crystal structures of two chromone derivatives, viz. ethyl 6-(4-methyl-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate, C19H16O4, (1), and ethyl 6-(4-fluoro-phen-yl)-4-oxo-4H-chromene-2-carboxyl-ate C18H13FO4, (2), have been determined: (1) crystallizes with two mol-ecules in the asymmetric unit. A comparison of the dihedral angles beween the mean planes of the central chromone core with those of the substituents, an ethyl ester moiety at the 2-position and a para-substituted phenyl ring at the 6-position shows that each mol-ecule differs significantly from the others, even the two independent mol-ecules (a and b) of (1). In all three mol-ecules, the carbonyl groups of the chromone and the carboxyl-ate are trans-related. The supra-molecular structure of (1) involves only weak C-H⋯π inter-actions between H atoms of the substituent phenyl group and the phenyl group, which link mol-ecules into a chain of alternating mol-ecules a and b, and weak π-π stacking inter-actions between the chromone units. The packing in (2) involves C-H⋯O inter-actions, which form a network of two inter-secting ladders involving the carbonyl atom of the carboxyl-ate group as the acceptor for H atoms at the 7-position of the chromone ring and from an ortho-H atom of the exocyclic benzene ring. The carbonyl atom of the chromone acts as an acceptor from a meta-H atom of the exocyclic benzene ring. π-π inter-actions stack the mol-ecules by unit translation along the a axis. PMID:26870574

  7. Effect of molecular oxygen on the UV-polymerization of methyl methacrylate initiated by 2,2-dimethoxy-2-phenylaceto-phenone and 1-hydroxycyclohexyl phenyl ketone in solution

    SciTech Connect

    Phan, X.T.

    1986-01-01

    The photopolymerization of methyl methacrylate (MMA) in a dilute benzene solution containing 2,2-dimethoxy-2-phenylacetophenone (DMPA) or 1-hydroxycyclohexyl phenyl ketone (HCPK) was investigated. Product analyses indicate that under a nitrogen atmosphere in the presence of MMA both radicals from HCPK are involved in polymerization of MMA whereas only 30% of the benzoyl radicals and 15% of the 1,1-dimethoxybenzyl radicals from DMPA are involved in radical polymerization. Under an oxygen atmosphere, products are formed in increased amounts, resulting in fewer radicals available for polymerization. The polymerization is inhibited by oxygen, as shown by a five-fold decrease in polymerization quantum efficiency, and lower yields of poly(methyl methacrylate). The addition of amines is not effective in relieving this effect.

  8. Chemo-Enzymatic Synthesis of Chiral Epoxides Ethyl and Methyl (S)-3-(Oxiran-2-yl)propanoates from Renewable Levoglucosenone: An Access to Enantiopure (S)-Dairy Lactone.

    PubMed

    Peru, Aurélien A M; Flourat, Amandine L; Gunawan, Christian; Raverty, Warwick; Jevric, Martyn; Greatrex, Ben W; Allais, Florent

    2016-01-01

    Chiral epoxides-such as ethyl and methyl (S)-3-(oxiran-2-yl)propanoates ((S)-1a/1b)-are valuable precursors in many chemical syntheses. Until recently, these compounds were synthesized from glutamic acid in four steps (deamination, reduction, tosylation and epoxide formation) in low to moderate overall yield (20%-50%). Moreover, this procedure requires some harmful reagents such as sodium nitrite ((eco)toxic) and borane (carcinogen). Herein, starting from levoglucosenone (LGO), a biobased chiral compound obtained through the flash pyrolysis of acidified cellulose, we propose a safer and more sustainable chemo-enzymatic synthetic pathway involving lipase-mediated Baeyer-Villiger oxidation, palladium-catalyzed hydrogenation, tosylation and treatment with sodium ethoxide/methoxide as key steps. This route afforded ethyl and methyl (S)-3-(oxiran-2-yl)propanoates in 57% overall yield, respectively. To demonstrate the potentiality of this new synthetic pathway from LGO, the synthesis of high value-added (S)-dairy lactone was undertaken from these epoxides and provided the target in 37% overall yield from LGO. PMID:27483225

  9. Investigations on the synthesis and properties of new derivatives of ethyl 3H-2-imino-7-methyl-4-oxopyrido [3,2-e]-1,3-thiazine-6-carboxylate and isomeric compounds.

    PubMed

    Sladowska, H; Zawisza, T

    1982-04-01

    Condensation of diethyl 2-chloro-6-methylpyridine-3,5-dicarboxylate (IV) with thiourea and alkyl or alkenyl N-mono- and N,N'-disubstituted thioureas gives mainly the corresponding derivatives of ethyl 3H-2-imino-7-methyl-4-oxopyrido [3,2-e]-1,3-thiazine-6-carboxylate (VI-XII). As by-products isomeric derivatives of ethyl 7-methyl-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrido [2,3-d) pyrimidine-6-carboxylate (XIII-XVIII) are formed. PMID:7084447

  10. 40 CFR 721.10122 - 2-Propenoic acid, 2-methyl-, 1,1′-[2-ethyl-2-[[(2-methyl-1-oxo-2-propen-1-yl)oxy]methyl]- 1,3...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...- methyl]- 1,3-propanediyl] ester, polymer with 1,3-butadiene, ethenylbenzene and 2-hydroxyethyl 2-methyl-2..., polymer with 1,3-butadiene, ethenylbenzene and 2-hydroxyethyl 2-methyl-2-propenoate. (a) Chemical...-propenoic acid, 2-methyl-, 1,1′- methyl]- 1,3-propanediyl] ester, polymer with 1,3-butadiene,...

  11. 40 CFR 721.10122 - 2-Propenoic acid, 2-methyl-, 1,1′-[2-ethyl-2-[[(2-methyl-1-oxo-2-propen-1-yl)oxy]methyl]- 1,3...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...- methyl]- 1,3-propanediyl] ester, polymer with 1,3-butadiene, ethenylbenzene and 2-hydroxyethyl 2-methyl-2..., polymer with 1,3-butadiene, ethenylbenzene and 2-hydroxyethyl 2-methyl-2-propenoate. (a) Chemical...-propenoic acid, 2-methyl-, 1,1′- methyl]- 1,3-propanediyl] ester, polymer with 1,3-butadiene,...

  12. 40 CFR 721.10122 - 2-Propenoic acid, 2-methyl-, 1,1′-[2-ethyl-2-[[(2-methyl-1-oxo-2-propen-1-yl)oxy]methyl]- 1,3...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...- methyl]- 1,3-propanediyl] ester, polymer with 1,3-butadiene, ethenylbenzene and 2-hydroxyethyl 2-methyl-2..., polymer with 1,3-butadiene, ethenylbenzene and 2-hydroxyethyl 2-methyl-2-propenoate. (a) Chemical...-propenoic acid, 2-methyl-, 1,1′- methyl]- 1,3-propanediyl] ester, polymer with 1,3-butadiene,...

  13. 40 CFR 721.10122 - 2-Propenoic acid, 2-methyl-, 1,1′-[2-ethyl-2-[[(2-methyl-1-oxo-2-propen-1-yl)oxy]methyl]- 1,3...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...- methyl]- 1,3-propanediyl] ester, polymer with 1,3-butadiene, ethenylbenzene and 2-hydroxyethyl 2-methyl-2..., polymer with 1,3-butadiene, ethenylbenzene and 2-hydroxyethyl 2-methyl-2-propenoate. (a) Chemical...-propenoic acid, 2-methyl-, 1,1′- methyl]- 1,3-propanediyl] ester, polymer with 1,3-butadiene,...

  14. 3-(2-Chloro­ethyl)-2-methyl-4H-pyrido[1,2-a]pyrimidin-4-one

    PubMed Central

    Jasinski, Jerry P.; Butcher, Ray J.; Hakim Al-Arique, Q. N. M.; Yathirajan, H. S.; Narayana, B.

    2009-01-01

    In the title mol­ecule, C11H11ClN2O, the pyrido[1,2-a]pyrimidine ring system is planar (maximum deviation = 0.0148 Å) and the methyl C and carbonyl O atoms are nearly coplanar to it. The chloro­ethyl side chain is in a synclinal conformation, nearly orthogonal to the pyrimidine ring, with a dihedral angle between the chloro­ethyl side chain and the pyrimidine ring of 88.5 (1)°. Weak inter­molecular C—H⋯N and C—H⋯Cl hydrogen bonds along with π–π inter­actions between the pyrimidine and pyridine rings [centroid–centroid distance is 3.538 (2) Å] form a three-dimensional network. The crystal is a racemic twin with a 0.68 (12):0.32 (12) domain ratio. MOPAC AM1 and density functional theory (DFT) theoretical calculations at the B3-LYP/6–311+G(d,p) level support these observations. PMID:21583662

  15. Crystal structure of ethyl 2-[2-(4-methyl­benzo­yl)-5-p-tolyl-1H-imidazol-1-yl]acetate

    PubMed Central

    Prabha, E. Arockia Jeya Yasmi; Kumar, S. Suresh; Padala, Anil K.; Ahmed, Qazi Naveed; Athimoolam, S.

    2016-01-01

    In the title compound, C22H22N2O3, the plane of the five-membered ring is oriented at dihedral angles of 45.4 (1) and 52.5 (1)° to the phenyl rings. Furthermore, this ring makes an angle of 85.2 (2)° with the plane of the ethyl acetate substituent. The mol­ecular structure is affected by an intra­molecular C—H⋯O hydrogen bond between an H atom from the p-tolyl group and the carbonyl O atom of the acetate. The methyl group of the ethyl acetate residue is disordered over two sites with equal occupancies. The crystal structure features inter­molecular C—H⋯O and C—H⋯N inter­actions. One of the C—H⋯O hydrogen bonds forms a C(5) chain motif extending along the a axis. In addition, C—H⋯N contacts form inversion dimers with R 2 2(12) ring motifs, linking the imidazole ring system to the benzene ring of the p-tolyl substituent. PMID:27006805

  16. Crystal structure of ethyl 2-[2-(4-methyl-benzo-yl)-5-p-tolyl-1H-imidazol-1-yl]acetate.

    PubMed

    Prabha, E Arockia Jeya Yasmi; Kumar, S Suresh; Padala, Anil K; Ahmed, Qazi Naveed; Athimoolam, S

    2016-03-01

    In the title compound, C22H22N2O3, the plane of the five-membered ring is oriented at dihedral angles of 45.4 (1) and 52.5 (1)° to the phenyl rings. Furthermore, this ring makes an angle of 85.2 (2)° with the plane of the ethyl acetate substituent. The mol-ecular structure is affected by an intra-molecular C-H⋯O hydrogen bond between an H atom from the p-tolyl group and the carbonyl O atom of the acetate. The methyl group of the ethyl acetate residue is disordered over two sites with equal occupancies. The crystal structure features inter-molecular C-H⋯O and C-H⋯N inter-actions. One of the C-H⋯O hydrogen bonds forms a C(5) chain motif extending along the a axis. In addition, C-H⋯N contacts form inversion dimers with R 2 (2)(12) ring motifs, linking the imidazole ring system to the benzene ring of the p-tolyl substituent. PMID:27006805

  17. Fatal ethyl and methyl alcohol-related poisoning in Ankara: A retrospective analysis of 10,720 cases between 2001 and 2011.

    PubMed

    Celik, Safa; Karapirli, Mustafa; Kandemir, Eyup; Ucar, Fatma; Kantarcı, Muhammed Nabi; Gurler, Mukaddes; Akyol, Omer

    2013-04-01

    Methyl and ethyl alcohol poisoning are still responsible for high morbidity and mortality rates. The purpose of this retrospective study was to examine ethyl and methyl alcohol poisoning related deaths in Ankara and surrounding cities between 2001 and 2011 and compare them with previous studied conducted in Turkey and other countries. For this purpose, 10,720 medico-legal autopsy cases performed in Ankara Branch of the Council of Forensic Medicine were reviewed in terms of alcohol poisonings. The deaths due to methanol and ethanol poisoning were 74 (0.69% of all medico-legal autopsies performed) and the distribution among them was 35 (47.3%) for methanol poisoning and 39 (52.7%) for ethanol poisoning. Overwhelming majority of the cases were male (n = 67, 90.5%). The mean age of the victims was 44.9 ± 10.9 years and ranging from 21 to 92 years. The age group of 35-49 years was the mostly affected. Most of the cases were seen in 2004 (n = 12, 16.2%). The levels of postmortem blood alcohol levels were available for all cases and the mean alcohol levels were 322.8 ± 155.5 mg/dL ranging from 74 to 602 mg/dL for methanol and 396.8 ± 87.1 mg/dL and ranging from 136 to 608 mg/dL for ethanol. Early diagnosis is essential for successful treatment in methanol and ethanol poisoning. Besides increased awareness, more sensitive/specific diagnostic tools, and the prompt approach to the poisoned individual should be implemented in the hospitals. PMID:23472793

  18. Ethyl radical ejection during photodecomposition of butanone on TiO 2(1 1 0)

    NASA Astrophysics Data System (ADS)

    Henderson, Michael A.

    2008-10-01

    The photodecomposition of acetone and butanone were examined on the (1 1 0) surface of rutile TiO 2 using temperature programmed desorption (TPD) and photon stimulated desorption (PSD). In both cases, photodecomposition was preceded by a required thermal reaction between the adsorbed ketone and coadsorbed oxygen resulting in an adsorbed diolate species. The diolate photodecomposed by ejection of an organic radical from the surface leaving behind a carboxylate species. In the acetone case, only methyl radical PSD was detected and acetate was left on the surface. In the butanone case there was a possibility of either methyl or ethyl radical ejection, with propionate or acetate left behind, respectively. However, only ethyl radical PSD was detected and the species left on the surface (acetate) was the same as in the acetone case. The preference for ethyl radical ejection is linked to the greater stability of the C-CH 3 bond in butanone over that of the C-C 2H 5 bond. Unlike in the acetone case, where the ejected methyl radicals did not participate in thermal chemistry on the TiO 2(1 1 0) surface after photoactivation of the acetone diolate, ethyl radicals photodesorbing at 100 K from butanone diolate showed preference for dehydrogenation to ethene on the surface through the influence of coadsorbed oxygen. These results reemphasize the mechanistic importance of organic radical production during photooxidation reactions on TiO 2 surface.

  19. Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea, maleic hydrazide, sodium azide, and ethyl methanesulfonate.

    PubMed

    Rank, J; Nielsen, M H

    1997-04-24

    The Allium anaphase-telophase assay was used to show genotoxicity of N-methyl-N-nitrosourea (MNU), maleic hydrazide (MH), sodium azide (NaN3) and ethyl methanesulfonate (EMS). All agents induced chromosome aberrations at statistically significant levels. The rank of the lowest doses with positive effect was as follows: NaN3 0.3 mg/l < MH 1 mg/l < MNU 41 mg/l < EMS 100 mg/l. The results were compared with results from other plant assays (Arabidopsis, Vicia, Tradescantia) and for MH and MNU the values were found to be within the same range, whereas the results in the Allium test for NaN3 and EMS were in a lower range than that found for the other plant assays. EMS and MMS (methyl methanesulfonate), two chemicals used as positive controls in mutagenicity testing, were compared in the Allium test, and MMS was found to be about ten times more potent in inducing chromosome aberrations than EMS. Recording of micronuclei in interphase cells showed that this endpoint does not give more information of clastogenicity than recording of chromosome aberrations in anaphase-telophase cells. PMID:9150760

  20. Steric vs. electronic effects in the Lactobacillus brevis ADH-catalyzed bioreduction of ketones.

    PubMed

    Rodríguez, Cristina; Borzęcka, Wioleta; Sattler, Johann H; Kroutil, Wolfgang; Lavandera, Iván; Gotor, Vicente

    2014-01-28

    Lactobacillus brevis ADH (LBADH) is an alcohol dehydrogenase that is commonly employed to reduce alkyl or aryl ketones usually bearing a methyl, an ethyl or a chloromethyl as a small ketone substituent to the corresponding (R)-alcohols. Herein we have tested a series of 24 acetophenone derivatives differing in their size and electronic properties for their reduction employing LBADH. After plotting the relative activity against the measured substrate volumes we observed that apart from the substrate size other effects must be responsible for the activity obtained. Compared to acetophenone (100% relative activity), other small substrates such as propiophenone, α,α,α-trifluoroacetophenone, α-hydroxyacetophenone, and benzoylacetonitrile had relative activities lower than 30%, while medium-sized ketones such as α-bromo-, α,α-dichloro-, and α,α-dibromoacetophenone presented relative activities between 70% and 550%. Moreover, the comparison between the enzymatic activity and the obtained final conversions using an excess or just 2.5 equiv. of the hydrogen donor 2-propanol, denoted again deviations between them. These data supported that these hydrogen transfer (HT) transformations are mainly thermodynamically controlled. For instance, bulky α-halogenated derivatives could be quantitatively reduced by LBADH even employing 2.5 equiv. of 2-propanol independently of their kinetic values. Finally, we found good correlations between the IR absorption band of the carbonyl groups and the degrees of conversion obtained in these HT processes, making this simple method a convenient tool to predict the success of these transformations. PMID:24302226

  1. DIPPR Project 871 For 1995 - Thermodynamic Properties and Ideal-Gas Enthalpies of Formation for Methyl Benzoate, Ethyl Benzoate, (R)-(+)-Limonene, Tert-Amyl Methyl Ether, Trans-Crotonaldehyde, and

    SciTech Connect

    Steele, W.V.

    2002-07-01

    Ideal-gas enthalpies of formation of methyl benzoate, ethyl benzoate, (R)-(+)-limonene, tert-amyl methyl ether, trans-crotonaldehyde, and diethylene glycol are reported. The standard energy of combustion and hence standard enthalpy of formation of each compound in the liquid phase has been measured using an oxygen rotating-bomb calorimeter without rotation. Vapor pressures were measured to a pressure limit of 270 kPa or the lower decomposition point for each of the six compounds using a twin ebulliometric apparatus. Liquid-phase densities along the saturation line were measured for each compound over a range of temperature (ambient to a maximum of 548 K). A differential scanning calorimeter was used to measure two-phase (liquid + vapor) heat capacities for each compound in the temperature region ambient to the critical temperature or lower decomposition point. For methyl benzoate and tert-amyl methyl ether, critical temperatures and critical densities were determined from the DSC results and corresponding critical pressures derived from the fitting procedures. Fitting procedures were used to derive critical temperatures, critical pressures, and critical densities for each of the remaining compounds. The results of the measurements were combined to derive a series of thermophysical properties including critical temperature, critical density, critical pressure, acentric factor, enthalpies of vaporization (restricted to within {+-}50 K of the temperature region of the experimentally determined vapor pressures), and heat capacities along the saturation line. Wagner-type vapor-pressure equations were derived for each compound. All measured and derived values were compared with those obtained in a search of the literature. Recommended critical parameters are listed for each of the compounds studied. Group-additivity parameters, useful in the application of the Benson gas-phase group-contribution correlations, were derived.

  2. 40 CFR 721.10122 - 2-Propenoic acid, 2-methyl-, 1,1′-[2-ethyl-2-[[(2-methyl-1-oxo-2-propen-1-yl)oxy]methyl]- 1,3...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propenoic acid, 2-methyl-, 1,1â²- methyl]- 1,3-propanediyl] ester, polymer with 1,3-butadiene, ethenylbenzene and 2-hydroxyethyl 2-methyl-2-propenoate. 721.10122 Section 721.10122 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL...

  3. Ethyl cellulose and hydroxypropyl methyl cellulose buoyant microspheres of metoprolol succinate: Influence of pH modifiers

    PubMed Central

    Raut, Neha S; Somvanshi, Sachin; Jumde, Amol B; Khandelwal, Harsha M; Umekar, Milind J; Kotagale, Nandkishor Ramdas

    2013-01-01

    Introduction: Incorporation of pH modifier has been the usual strategy employed to enhance the dissolution of weakly basic drug from floating microspheres. Microspheres prepared using a combination of both ethyl cellulose (EC) and hydroxypropyl methylcellulose (HPMC) which shows highest release were utilize to investigate the effect of fumaric acid (FA), citric acid (CA), ascorbic acid (AA) and tartaric acid (TA) (all 5-20% w/w) incorporation on metoprolol succinate (MS) release. Materials and Methods: EC, HPMC alone or in combination were used to prepare microspheres that floated in simulated gastric fluid and evaluated for a percent yield, drug entrapment, percent buoyancy and drug release. The higher drug release in combination (MS:HPMC:EC, 1:1:2) was selected for the evaluation of influence of pH modifiers on MS release. CA (5-20% w/w), AA (5-20% w/w), FA (5-20% w/w) and TA (5-20% w/w) were added and evaluated for drug release. Present investigation is directed to develop floating drug delivery system of MS by solvent evaporation technique. Results: The microspheres of MS:HPMC:EC (1:1:2) exhibited the highest entrapment (74.36 ± 2.18). The best percentage yield was obtained at MS:HPMC (1:1) (83.96 ± 1.50) and combination of MS:HPMC:EC (1:1:2) (79.23 ± 1.63). Conclusion: MS release from the prepared microspheres was influenced by changing MS-polymer, MS-polymer-polymer ratio and pH modifier. Although significant increment in MS release was observed with CA (20% w/w), TA (20% w/w) and AA (20% w/w), addition of 20% w/w FA demonstrated more pronounced and significant increase in drug entrapment as well as release from MS:HPMC:EC (1:1:2) buoyant microspheres. PMID:24167789

  4. Growth of tantalum nitride film as a Cu diffusion barrier by plasma-enhanced atomic layer deposition from bis((2-(dimethylamino)ethyl)(methyl)amido)methyl(tert-butylimido)tantalum complex

    NASA Astrophysics Data System (ADS)

    Han, Jeong Hwan; Kim, Hyo Yeon; Lee, Sang Chan; Kim, Da Hye; Park, Bo Keun; Park, Jin-Seong; Jeon, Dong Ju; Chung, Taek-Mo; Kim, Chang Gyoun

    2016-01-01

    A new bis((2-(dimethylamino)ethyl)(methyl)amido)methyl(tert-butylimido)tantalum complex was synthesized for plasma-enhanced atomic layer deposition (PEALD) of tantalum nitride (TaN) film. Using the synthesized Ta compound, PEALD of TaN was conducted at growth temperatures of 150-250 °C in combination with NH3 plasma. The TaN PEALD showed a saturated growth rate of 0.062 nm/cycle and a high film density of 9.1-10.3 g/cm3 at 200-250 °C. Auger depth profiling revealed that the deposited TaN film contained low carbon and oxygen impurity levels of approximately 3-4%. N-rich amorphous TaN films were grown at all growth temperatures and showed highly resistive characteristic. The Cu barrier performance of the TaN film was evaluated by annealing of Cu/TaN (0-6 nm)/Si stacks at 400-800 °C, and excellent Cu diffusion barrier properties were observed even with ultrathin 2 nm-thick TaN film.

  5. Reanalysis of the ground and three torsional excited states of trans-ethyl methyl ether by using an IAM-like tunneling matrix formalism

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kaori; Sakai, Yusuke; Tsunekawa, Shozo; Miyamoto, Taihei; Fujitake, Masaharu; Ohashi, Nobukimi

    2016-03-01

    The trans-ethyl methyl ether has two inequivalent methyl internal rotors and shows tunneling splittings of maximum up to five components. However, the barrier of these two internal rotation potentials were relatively high and the five components were not resolved in the ground state microwave spectra. In this study, well-resolved Fourier transform microwave ground state spectrum was measured for the first time to resolve the five components. The ground state microwave spectra were reanalyzed based on these new measurements and the additional millimeter-wave spectra as well as those studied previously by Fuchs et al. Ninety Fourier transform microwave spectral lines were assigned to 107 transitions in the ground state and 3508 conventional microwave absorption lines were assigned up to Ka = 16 of the ground state, including all 707 lines reported by Fuchs et al. In addition, 10 transitions were observed by the double resonance experiment. They were least-squares-analyzed by the use of an internal axis method (IAM)-like tunneling matrix formalism based on an extended permutation-inversion group theoretical idea. Twenty-two molecular parameters composed of rotational constants, centrifugal distortion constants, internal rotation parameters and internal rotation tunneling parameters were determined for the ground state. The microwave spectra in the three torsionally excited states, that is, the ν28 = 1 C-CH3 torsional state, the ν29 = 1 O-CH3 torsional state and the ν30 = 1 skeletal torsional state, were also reanalyzed by using the IAM-like tunneling matrix formalism and somewhat extended line assignments.

  6. Post-Intake of S-Ethyl Cysteine and S-Methyl Cysteine Improved LPS-Induced Acute Lung Injury in Mice

    PubMed Central

    Hsia, Te-chun; Yin, Mei-chin

    2016-01-01

    The effects of S-ethyl cysteine (SEC) and S-methyl cysteine (SMC) on lipopolysaccharide (LPS)-induced acute lung injury in mice were examined. Eight hours after LPS challenge, SEC or SMC was supplied in drinking water at 0.5% or 1% for 3 days. LPS increased lung myeloperoxidase activity, neutrophil counts and edema. SEC or SMC post-intake attenuated these events. SEC or SMC suppressed LPS-induced lung expression of cyclooxygenase-2, nuclear factor-κB and mitogen-activated protein kinase, and lowered the generation of tumor necrosis factor-alpha, monocyte chemoattractant protein-1 and prostaglandin E2. LPS enhanced the expression of p47phox, gp91phox, Bax and cleaved caspase-3, and increased the production of reactive oxygen species in the lung. SEC or SMC post-intake reversed these alterations. These findings suggest that these agents could protect the lung through their anti-inflammatory, anti-oxidative and anti-apoptotic activities. PMID:27548215

  7. Dendrite-Free Aluminum Electrodeposition from AlCl3-1-Ethyl-3-Methyl-Imidazolium Chloride Ionic Liquid Electrolytes

    NASA Astrophysics Data System (ADS)

    Pradhan, Debabrata; Reddy, Ramana G.

    2012-06-01

    A novel, dendrite-free electrorefining of aluminum scrap alloys (A360) was investigated by using a low-temperature AlCl3-1-ethyl-3-methyl-imidazolium chloride (EMIC) ionic liquid electrolyte on copper/aluminum cathodes. The bulk electrodeposition of aluminum was carried out at a fixed voltage of 1.5 V, temperatures 323 K to 383 K (50 °C to 110 °C), stirring rate (0 to 120 rpm), concentration (molar ratio AlCl3:EMIC = 1.25 to 2.0), and electrode surface modification (modified/unmodified). The study investigated the effect of electrode surface modification, cathode materials, temperature, stirring rate, electrolyte concentration, and deposition time on the deposit morphology of aluminum, cathode current density, and their role in production of dendrite-free aluminum deposit, which is essential for decreasing the production cost. The deposits were characterized using scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and X-ray diffraction (XRD). It was shown that electrode surface modification, cathode overpotential, and stirring rate play an important role in dendrite-free deposit. Modified electrodes and stirring (60 rpm) eliminate dendritic deposition by reducing cathode overpotential below critical overpotential ( η_{{crt}} ≈ - 0.53V ) for dendrite formation. Pure aluminum (>99 pct) was deposited for all experiments with a current efficiency of 84 to 99 pct and energy consumption of 4.51 to 5.32 kWh/kg Al.

  8. Dopaminergic neurotoxicity of S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, and S-methyl-N,N-diethylthiocarbamate (MeDETC) in Caenorhabditis elegans

    PubMed Central

    Caito, Samuel W.; Valentine, William M.; Aschner, Michael

    2013-01-01

    Epidemiological studies corroborate a correlation between pesticide use and Parkinson’s disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S-methyl-N,N-diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. Additionally, worms treated with the three test compounds showed a drastic loss of DAergic-dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD. PMID:23786526

  9. Post-Intake of S-Ethyl Cysteine and S-Methyl Cysteine Improved LPS-Induced Acute Lung Injury in Mice.

    PubMed

    Hsia, Te-Chun; Yin, Mei-Chin

    2016-01-01

    The effects of S-ethyl cysteine (SEC) and S-methyl cysteine (SMC) on lipopolysaccharide (LPS)-induced acute lung injury in mice were examined. Eight hours after LPS challenge, SEC or SMC was supplied in drinking water at 0.5% or 1% for 3 days. LPS increased lung myeloperoxidase activity, neutrophil counts and edema. SEC or SMC post-intake attenuated these events. SEC or SMC suppressed LPS-induced lung expression of cyclooxygenase-2, nuclear factor-κB and mitogen-activated protein kinase, and lowered the generation of tumor necrosis factor-alpha, monocyte chemoattractant protein-1 and prostaglandin E₂. LPS enhanced the expression of p47(phox), gp91(phox), Bax and cleaved caspase-3, and increased the production of reactive oxygen species in the lung. SEC or SMC post-intake reversed these alterations. These findings suggest that these agents could protect the lung through their anti-inflammatory, anti-oxidative and anti-apoptotic activities. PMID:27548215

  10. Aluminium triggers genotoxic adaptation to methyl mercuric chloride and ethyl methane sulfonate, but not to maleic hydrazide in plant cells in vivo.

    PubMed

    Patra, J; Baisakhi, B; Mohapatro, M K; Panda, B B

    2000-02-16

    Non-toxic, conditioning doses of aluminium chloride were tested for induction of adaptive response to the genotoxic challenge doses of methyl mercuric chloride (MMCl), maleic hydrazide (MH) and ethyl methane sulfonate (EMS). Embryonic shoot cells of Hordeum vulgare and root meristem cells of Allium cepa were employed as the assay systems. Plant tissues fixed at different recovery hours following the challenge treatments with or without prior Al-conditioning were analyzed for cells with genotoxicity markers that include spindle and/or chromosome aberrations and micronuclei (MNC). The results provided evidence that Al(3+) triggered adaptive response that protected the plant cells from the genotoxicity of MMCl and EMS. Al(3+), however, failed to induce adaptive response against the genotoxicity of MH. A comparison of Al-induced adaptive response with that induced by heavy metals: Cd(2+), Cu(2+), Hg(2+), Ni(2+), Pb(2+), Zn(2+) and oxidative agents: hydrogen peroxide (H(2)O(2)) and paraquat (PQ) pointed to the similarity of Al-adaptive response to that of PQ rather than to other heavy metals or H(2)O(2). Al-induced adaptive response demonstrated in the present study to MMCl and EMS possibly involved antioxidant defense and DNA repair systems, respectively. PMID:10708964

  11. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization

    PubMed Central

    Zheng, Junlin; Zhu, Junhua; Xu, Xuan; Wang, Wanmin; Li, Jiwen; Zhao, Yan; Tang, Kangjian; Song, Qi; Qi, Xiaolan; Kong, Dejin; Tang, Yi

    2016-01-01

    Hydrogenation of levulinic acid (LA) and its esters to produce γ-valerolactone (GVL) and 2-methyl tetrahydrofuran (2-MTHF) is a key step for the utilization of cellulose derived LA. Aiming to develop a commercially feasible base metal catalyst for the production of GVL from LA, with satisfactory activity, selectivity, and stability, Al2O3 doped Cu/SiO2 and Cu/SiO2 catalysts were fabricated by co-precipitation routes in parallel. The diverse physio-chemical properties of these two catalysts were characterized by XRD, TEM, dissociative N2O chemisorptions, and Py-IR methods. The catalytic properties of these two catalysts were systematically assessed in the continuous hydrogenation of ethyl levulinate (EL) in a fixed-bed reactor. The effect of acidic property of the SiO2 substrate on the catalytic properties was investigated. To justify the potential of its commercialization, significant attention was paid on the initial activity, proper operation window, by-products control, selectivity, and stability of the catalyst. The effect of reaction conditions, such as temperature and pressure, on the performance of the catalyst was also thoroughly studied. The development of alumina doped Cu/SiO2 catalyst strengthened the value-chain from cellulose to industrially important chemicals via LA and GVL. PMID:27377401

  12. Continuous hydrogenation of ethyl levulinate to γ-valerolactone and 2-methyl tetrahydrofuran over alumina doped Cu/SiO2 catalyst: the potential of commercialization

    NASA Astrophysics Data System (ADS)

    Zheng, Junlin; Zhu, Junhua; Xu, Xuan; Wang, Wanmin; Li, Jiwen; Zhao, Yan; Tang, Kangjian; Song, Qi; Qi, Xiaolan; Kong, Dejin; Tang, Yi

    2016-07-01

    Hydrogenation of levulinic acid (LA) and its esters to produce γ-valerolactone (GVL) and 2-methyl tetrahydrofuran (2-MTHF) is a key step for the utilization of cellulose derived LA. Aiming to develop a commercially feasible base metal catalyst for the production of GVL from LA, with satisfactory activity, selectivity, and stability, Al2O3 doped Cu/SiO2 and Cu/SiO2 catalysts were fabricated by co-precipitation routes in parallel. The diverse physio-chemical properties of these two catalysts were characterized by XRD, TEM, dissociative N2O chemisorptions, and Py-IR methods. The catalytic properties of these two catalysts were systematically assessed in the continuous hydrogenation of ethyl levulinate (EL) in a fixed-bed reactor. The effect of acidic property of the SiO2 substrate on the catalytic properties was investigated. To justify the potential of its commercialization, significant attention was paid on the initial activity, proper operation window, by-products control, selectivity, and stability of the catalyst. The effect of reaction conditions, such as temperature and pressure, on the performance of the catalyst was also thoroughly studied. The development of alumina doped Cu/SiO2 catalyst strengthened the value-chain from cellulose to industrially important chemicals via LA and GVL.

  13. Dopaminergic neurotoxicity of S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, and S-methyl-N,N-diethylthiocarbamate (MeDETC) in Caenorhabditis elegans.

    PubMed

    Caito, Samuel W; Valentine, William M; Aschner, Michael

    2013-12-01

    Epidemiological studies corroborate a correlation between pesticide use and Parkinson's disease (PD). Thiocarbamate and dithiocarbamate pesticides are widely used and produce neurotoxicity in the peripheral nervous system. Recent evidence from rodent studies suggests that these compounds also cause dopaminergic (DAergic) dysfunction and altered protein processing, two hallmarks of PD. However, DAergic neurotoxicity has yet to be documented. We assessed DAergic dysfunction in Caenorhabditis elegans (C. elegans) to investigate the ability of thiocarbamate pesticides to induce DAergic neurodegeneration. Acute treatment with either S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, or a common reactive intermediate of dithiocarbamate and thiocarbamate metabolism, S-methyl-N,N-diethylthiocarbamate (MeDETC), to gradual loss of DAergic cell morphology and structure over the course of 6 days in worms expressing green fluorescent protein (GFP) under a DAergic cell specific promoter. HPLC analysis revealed decreased DA content in the worms immediately following exposure to MeDETC, EPTC, and molinate. In addition, worms treated with the three test compounds showed a drastic loss of DAergic-dependent behavior over a time course similar to changes in DAergic cell morphology. Alterations in the DAergic system were specific, as loss of cell structure and neurotransmitter content was not observed in cholinergic, glutamatergic, or GABAergic systems. Overall, our data suggest that thiocarbamate pesticides promote neurodegeneration and DAergic cell dysfunction in C. elegans, and may be an environmental risk factor for PD. PMID:23786526

  14. The Structure of Nickel Chloride in the Ionic Liquid 1-Ethyl-3-methyl Imidazolium Chloride/Aluminum Chloride: X-ray Absorption Spectroscopy

    SciTech Connect

    D Roeper; K Pandya; G Cheek; W OGrady

    2011-12-31

    The structure of anhydrous nickel chloride in the ionic liquid 1-ethyl-3-methyl imidazolium chloride and aluminum chloride has been investigated with extended X-ray absorption fine structure (EXAFS) in both Lewis acid and Lewis base solutions. The EXAFS data of NiCl{sub 2} {center_dot} 6H{sub 2}O crystals were also recorded and analyzed to demonstrate the difference file technique. The difference file technique is used to obtain the structural information for the very closely spaced coordination shells of chloride and oxygen in NiCl{sub 2} {center_dot} 6H{sub 2}O and they are found to agree very closely with the X-ray diffraction data. The difference file technique is then used to analyze the nickel chloride in the ionic liquid solutions. Even though anhydrous NiCl{sub 2} is more soluble in the basic solution than in the acidic solution, the EXAFS data show a single coordination of four chlorides in a tetrahedron around the nickel atom in the basic solution. In a weak acid solution, there are six chlorides in a single octahedral coordination shell around the nickel. However, in a strong acid solution, in addition to the octahedral chloride-coordination shell, there is a second coordination shell of eight aluminum atoms in the form of a simple cube.

  15. XAFS Studies of Ni Ta and Nb Chlorides in the Ionic Liquid 1-Ethyl-3-Methyl Imidazolium Chloride / Aluminum Chloride

    SciTech Connect

    W OGrady; D Roeper; K Pandya; G Cheek

    2011-12-31

    The structures of anhydrous nickel, niobium, and tantalum chlorides have been investigated in situ in acidic and basic ionic liquids (ILs) of 1-methyl-3-ethylimidazolium chloride (EMIC)/AlCl{sub 3} with X-ray absorption spectroscopy (XAS). The coordination of NiCl{sub 2} changes from tetrahedral in basic solution to octahedral in acidic solution. The NiCl{sub 2} is a strong Lewis acid in that it can induce the AlCl{sub 3} to share its chlorides in the highly acidic IL, forming a structure with six near Cl{sup -} ions and eight further distant Al ions which share the chloride ions surrounding the Ni{sup 2+}. When Nb{sub 2}Cl{sub 10}, a dimer, is added to the acidic or basic solution, the dimer breaks apart and forms two species. In the acid solution, two trigonal bipyramids are formed with five equal chloride distances, while in the basic solution, a square pyramid with four chlorides forming a square base and one shorter axial chloride bond. Ta{sub 2}Cl{sub 10} is also a dimer and divides into half in the acidic solution and forms two trigonal bipyramids. In the basic solution, the dimer breaks apart but the species formed is sufficiently acidic that it attracts two additional chloride ions and forms a seven coordinated tantalum species.

  16. Why are ionic liquid ions mainly associated in water? A Car-Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture

    NASA Astrophysics Data System (ADS)

    Spickermann, C.; Thar, J.; Lehmann, S. B. C.; Zahn, S.; Hunger, J.; Buchner, R.; Hunt, P. A.; Welton, T.; Kirchner, B.

    2008-09-01

    In this study we present the results of a first principles molecular dynamics simulation of a single 1-ethyl-3-methyl-imidazolium chloride [C2C1im][Cl] ion pair dissolved in 60 water molecules. We observe a preference of the in plane chloride coordination with respect to the cation ring plane as compared to the energetic slightly more demanding on top coordination. Evaluation of the different radial distribution functions demonstrates that the structure of the hydration shell around the ion pair differs significantly from bulk water and that no true ion pair dissociation in terms of completely autonomous solvation shells takes place on the timescale of the simulation. In addition, dipole moment distributions of the solvent in distinct solvation shells around different functional parts of the [C2C1im][Cl] ion pair are calculated from maximally localized Wannier functions. The analysis of these distributions gives evidence for a depolarization of water molecules close to the hydrophobic parts of the cation as well as close to the anion. Examination of the angular distribution of different OH(H2O )-X angles in turn shows a linear coordination of chloride accompanied by a tangential orientation of water molecules around the hydrophobic groups, being a typical feature of hydrophobic hydration. Based on these orientational aspects, a structural model for the obvious preference of ion pair association is developed, which justifies the associating behavior of solvated [C2C1im][Cl] ions in terms of an energetically favorable interface between the solvation shells of the anion and the hydrophobic parts of the cation.

  17. Comparative study of the hydrolytic metabolism of methyl-, ethyl-, propyl-, butyl-, heptyl- and dodecylparaben by microsomes of various rat and human tissues.

    PubMed

    Ozaki, Hitomi; Sugihara, Kazumi; Watanabe, Yoko; Fujino, Chieri; Uramaru, Naoto; Sone, Tomomichi; Ohta, Shigeru; Kitamura, Shigeyuki

    2013-12-01

    Hydrolytic metabolism of methyl-, ethyl-, propyl-, butyl-, heptyl- and dodecylparaben by various tissue microsomes and plasma of rats, as well as human liver and small-intestinal microsomes, was investigated and the structure-metabolic activity relationship was examined. Rat liver microsomes showed the highest activity toward parabens, followed by small-intestinal and lung microsomes. Butylparaben was most effectively hydrolyzed by the liver microsomes, which showed relatively low hydrolytic activity towards parabens with shorter and longer alkyl side chains. In contrast, small-intestinal microsomes exhibited relatively higher activity toward longer-side-chain parabens, and showed the highest activity towards heptylparaben. Rat lung and skin microsomes showed liver-type substrate specificity. Kidney and pancreas microsomes and plasma of rats showed small-intestinal-type substrate specificity. Liver and small-intestinal microsomal hydrolase activity was completely inhibited by bis(4-nitrophenyl)phosphate, and could be extracted with Triton X-100. Ces1e and Ces1d isoforms were identified as carboxylesterase isozymes catalyzing paraben hydrolysis by anion exchange column chromatography of Triton X-100 extract from liver microsomes. Ces1e and Ces1d expressed in COS cells exhibited significant hydrolase activities with the same substrate specificity pattern as that of liver microsomes. Small-intestinal carboxylesterase isozymes Ces2a and Ces2c expressed in COS cells showed the same substrate specificity as small-intestinal microsomes, being more active toward longer-alkyl-side-chain parabens. Human liver microsomes showed the highest hydrolytic activity toward methylparaben, while human small-intestinal microsomes showed a broadly similar substrate specificity to rat small-intestinal microsomes. Human CES1 and CES2 isozymes showed the same substrate specificity patterns as human liver and small-intestinal microsomes, respectively. PMID:23742084

  18. Why are ionic liquid ions mainly associated in water? A Car-Parrinello study of 1-ethyl-3-methyl-imidazolium chloride water mixture.

    PubMed

    Spickermann, C; Thar, J; Lehmann, S B C; Zahn, S; Hunger, J; Buchner, R; Hunt, P A; Welton, T; Kirchner, B

    2008-09-14

    In this study we present the results of a first principles molecular dynamics simulation of a single 1-ethyl-3-methyl-imidazolium chloride [C(2)C(1)im][Cl] ion pair dissolved in 60 water molecules. We observe a preference of the in plane chloride coordination with respect to the cation ring plane as compared to the energetic slightly more demanding on top coordination. Evaluation of the different radial distribution functions demonstrates that the structure of the hydration shell around the ion pair differs significantly from bulk water and that no true ion pair dissociation in terms of completely autonomous solvation shells takes place on the timescale of the simulation. In addition, dipole moment distributions of the solvent in distinct solvation shells around different functional parts of the [C(2)C(1)im][Cl] ion pair are calculated from maximally localized Wannier functions. The analysis of these distributions gives evidence for a depolarization of water molecules close to the hydrophobic parts of the cation as well as close to the anion. Examination of the angular distribution of different OH(H(2)O)-X angles in turn shows a linear coordination of chloride accompanied by a tangential orientation of water molecules around the hydrophobic groups, being a typical feature of hydrophobic hydration. Based on these orientational aspects, a structural model for the obvious preference of ion pair association is developed, which justifies the associating behavior of solvated [C(2)C(1)im][Cl] ions in terms of an energetically favorable interface between the solvation shells of the anion and the hydrophobic parts of the cation. PMID:19044922

  19. Rat Pig-a mutation assay responds to the genotoxic carcinogen ethyl carbamate but not the non-genotoxic carcinogen methyl carbamate

    PubMed Central

    Bemis, Jeffrey C.; Labash, Carson; Avlasevich, Svetlana L.; Carlson, Kristine; Berg, Ariel; Torous, Dorothea K.; Barragato, Matthew; MacGregor, James T.; Dertinger, Stephen D.

    2015-01-01

    Determination of the mode of action of carcinogenic agents is an important factor in risk assessment and regulatory practice. To assess the ability of the erythrocyte-based Pig-a mutation assay to discriminate between genotoxic and non-genotoxic modes of action, the mutagenic response of Sprague Dawley rats exposed to methyl carbamate (MC) or ethyl carbamate (EC) was investigated. EC, a potent carcinogen, is believed to induce DNA damage through the formation of a DNA-reactive epoxide group, whereas the closely structurally related compound, MC, cannot form this epoxide and its weaker carcinogenic activity is thought to be secondary to inflammation and promotion of cell proliferation. The frequency of Pig-a mutant phenotype cells was monitored before, during, and after 28 consecutive days of oral gavage exposure to either MC (doses ranging from 125 to 500mg/kg/day) or EC (250mg/kg/day). Significant increases in the frequency of mutant reticulocytes were observed from Days 15 through 43, with a peak mean frequency of 19.9×10−6 on Day 29 (i.e. 24.9-fold increase relative to mean vehicle control across all four sampling times). As expected, mutant erythrocyte responses lagged behind mutant reticulocyte responses, with a maximal mean frequency of 8.2×10−6 on Day 43 (i.e. 16.4-fold increase). No mutagenic effects were observed with MC. A second indicator of in vivo genotoxicity, peripheral blood micronucleated reticulocytes, was also studied. This endpoint was responsive to EC (3.3-fold mean increase), but not to MC. These results support the hypothesis that genotoxicity contributes to the carcinogenicity of EC but not of MC, and illustrates the value of the Pig-a assay for discriminating between genotoxic and non-genotoxic modes of action. PMID:25833916

  20. Anxiolytic- and antidepressant-like effects of the methadone metabolite 2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline (EMDP).

    PubMed

    Forcelli, Patrick A; Turner, Jill R; Lee, Bridgin G; Olson, Thao T; Xie, Teresa; Xiao, Yingxian; Blendy, Julie A; Kellar, Kenneth J

    2016-02-01

    The enhancement of GABAergic and monoaminergic neurotransmission has been the mainstay of pharmacotherapy and the focus of drug-discovery for anxiety and depressive disorders for several decades. However, the significant limitations of drugs used for these disorders underscores the need for novel therapeutic targets. Neuronal nicotinic acetylcholine receptors (nAChRs) may represent one such target. For example, mecamylamine, a non-competitive antagonist of nAChRs, displays positive effects in preclinical tests for anxiolytic and antidepressant activity in rodents. In addition, nicotine elicits similar effects in rodent models, possibly by receptor desensitization. Previous studies (Xiao et al., 2001) have identified two metabolites of methadone, EMDP (2-ethyl-5-methyl-3,3-diphenyl-1-pyrroline) and EDDP (2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine), which are considered to be inactive at opiate receptors, as relatively potent noncompetitive channel blockers of rat α3β4 nAChRs. Here, we show that these compounds are likewise highly effective blockers of human α3β4 and α4β2 nAChRs. Moreover, we show that they display relatively low affinity for opiate binding sites labeled by [(3)H]-naloxone. We then evaluated these compounds in rats and mice in preclinical behavioral models predictive of potential anxiolytic and antidepressant efficacy. We found that EMDP, but not EDDP, displayed robust effects predictive of anxiolytic and antidepressant efficacy without significant effects on locomotor activity. Moreover, EMDP at behaviorally active doses, unlike mecamylamine, did not produce eyelid ptosis, suggesting it may produce fewer autonomic side effects than mecamylamine. Thus, the methadone metabolite EMDP may represent a novel therapeutic avenue for the treatment of some affective disorders. PMID:26365569

  1. Ontogenic profile of seizures evoked by the beta-carboline DMCM (methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate) in rats

    PubMed Central

    Kulick, Catherine; Gutherz, Samuel; Kondratyev, Alexei; Forcelli, Patrick A.

    2014-01-01

    The beta-carboline, methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM), is a potent chemoconvulsant. While it has been utilized in adult rodents, it has not been previously examined for effects across postnatal development. DMCM is a negative allosteric modulator of benzodiazepine-sensitive GABAA receptors, receptor subtypes that are particularly enriched in limbic brain regions. This raises the possibility that DMCM may be particularly effective at evoking forebrain seizures, which is a challenge in neonatal animals due to the relative immaturity of the forebrain seizure network. The ability to selectively evoke forebrain seizures is desirable when screening for drugs to use in temporal lobe epilepsy, which is characterized by seizures within the forebrain (limbic) network. To determine the profile of DMCM action across development, we examined the dose-dependent ability of DMCM to induce seizures in rats at P7, P10, P13, P14, P21 and in adulthood. We found that the highest sensitivity to DMCM occurred in P10, P13, and P14 rats. The lowest sensitivity occurred in P21 rats. Neonatal (P7) and adult (P60+) rats displayed moderate sensitivity. With moderate (0.2–0.4mg/kg) doses of DMCM, we were able to reliably evoke limbic motor seizures without tonic-clonic components in animals as young as P7. These data support the utility of DMCM in assessing seizure threshold during development and raise the possibility for future exploration of DMCM as an agent to screen anticonvulsant drugs during the postnatal period. PMID:24967532

  2. FTIR gas-phase kinetic study on the reactions of OH radicals and Cl atoms with unsaturated esters: Methyl-3,3-dimethyl acrylate, (E)-ethyl tiglate and methyl-3-butenoate

    NASA Astrophysics Data System (ADS)

    Colomer, Juan P.; Blanco, María B.; Peñéñory, Alicia B.; Barnes, Ian; Wiesen, Peter; Teruel, Mariano A.

    2013-11-01

    The relative-rate technique has been used to obtain rates coefficients for the reactions of the unsaturated esters methyl-3,3-dimethyl acrylate, (E)-ethyl tiglate and methyl-3-butenoate with OH radicals and chlorine atoms at (298 ± 2) K in synthetic air at a total pressure of (760 ± 10) Torr. The experiments were performed in an environmental chamber using in situ FTIR detection to monitor the decay of the esters relative to different reference compounds. The following room temperature rate coefficients (in units of cm3 molecule-1 s-1) were obtained: k1(OH + (CH3)2Cdbnd CHC(O)OCH3) = (4.46 ± 1.05) × 10-11, k2(Cl + (CH3)2Cdbnd CHC(O)OCH3) = (2.78 ± 0.46) × 10-10, k3(OH + CH3CHdbnd C(CH3)C(O)OCH2CH3) = (8.32 ± 1.93) × 10-11, k4(Cl + CH3CHdbnd C(CH3)C(O)OCH2CH3) = (2.53 ± 0.35) × 10-10, k5(OH + CH2dbnd CHCH2C(O)OCH3) = (3.16 ± 0.57) × 10-11, k4(Cl + CH2dbnd CHCH2C(O)OCH3) = (2.10 ± 0.35) × 10-10. With the exception of the reaction of Cl with methyl-3,3-dimethyl acrylate (k2), for which one determination exists in the literature, this study is the first kinetic study for these reactions under atmospheric pressure. Reactivity trends are discussed in terms of the effect of the alkyl and ester groups attached to the double bond on the overall rate coefficients towards OH radicals. The atmospheric implications of the reactions were assessed by the estimation of the tropospheric lifetimes of the title reactions.

  3. Intermolecular reductive coupling of esters with benzophenones by low-valent titanium: synthesis of diarylmethyl ketones revisited.

    PubMed

    Kise, Naoki; Sakurai, Toshihiko

    2015-04-01

    The reductive coupling of aliphatic esters with benzophenones by Zn-TiCl4 in THF gave two- and four-electron reduced products, diaryl(hydroxy)methyl ketones, and diarylmethyl ketones selectively by controlling the reaction conditions. In the reaction of aromatic esters with benzophenones, diarylmethyl ketones were obtained as the sole products. N-(Alkoxycarbonyl)-(S)-α-amino acid methyl esters gave optically active diphenylmethyl ketones by reduction with benzophenone. The obtained diphenylmethyl ketones were transformed to 4,5-cis-disubstituted oxazolidin-2-ones stereoselectively. PMID:25748528

  4. Crystal structure of ethyl 5-[3-(di-methyl-amino)-acrylo-yl]-2-{[(di-methyl-amino)-methyl-idene]-amino}-4-methylthio-phene-3-carb-oxy-late.

    PubMed

    Krishnamurthy, M S; Prasad, N L; Nagarajaiah, H; Begum, Noor Shahina

    2015-12-01

    In the title compound, C16H23N3O3S, the dihedral angles between the thio-phene ring and the almost planar di-methyl-amino-methyl-ene-amino (r.m.s. deviation = 0.005 Å) and di-methyl-amino-acryloyl (r.m.s. deviation = 0.033 Å) substituents are 6.99 (8) and 6.69 (7)°, respectively. The ester CO2 group subtends a dihedral angle of 44.92 (18)° with the thio-phene ring. An intra-molecular C-H⋯O hydrogen bond generates an S(6) ring. In the crystal, inversion dimers linked by pairs of C-H⋯O hydrogen bonds generate R (2) 2(14) loops. In addition, a weak C-H⋯π inter-action is observed. PMID:26870521

  5. Field trials of solid triple lure (trimedlure, methyl eugenol, raspberry ketone, and DDVP) dispensers for detection and male annihilation of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii.

    PubMed

    Vargas, Roger I; Souder, Steven K; Mackey, Bruce; Cook, Peter; Morse, Joseph G; Stark, John D

    2012-10-01

    Solid Mallet TMR (trimedlure [TML], methyl eugenol [ME], raspberry ketone [RK]) wafers and Mallet CMR (ceralure, ME, RK, benzyl acetate) wafers impregnated with DDVP (2,2-dichlorovinyl dimethyl phosphate) insecticide were measured in traps as potential detection and male annihilation technique (MAT) devices. Comparisons were made with 1) liquid lure and insecticide formulations, 2) solid cones and plugs with an insecticidal strip, and 3) solid single and double lure wafers with DDVP for captures of Mediterranean fruit fly, Ceratitis capitata (Wiedemann); oriental fruit fly, Bactrocera dorsalis Hendel; and melon fly, B. cucurbitae Coquillett. Bucket and Jackson traps were tested in a coffee plantation near Eleele, Kauai Island, HI (trials at high populations) and avocado orchards near Kona, HI Island, HI (trials at low populations). Captures of all three species with Mallet TMR were not different from Mallet CMR; therefore, subsequent experiments did not include Mallet CMR because of higher production costs. In MAT trials near Eleele, HI captures in AWPM traps with Mallet TMR wafers were equal to any other solid lure (single or double) except the Mallet ME wafer. In survey trials near Kona, captures of C. capitata, B. cucurbitae, and B. dorsalis with Mallet TMR wafers were equal to those for the standard TML, ME, and C-L traps used in FL and CA. A solid Mallet TMR wafer is safer, more convenient to handle, and may be used in place of several individual lure and trap systems, potentially reducing costs of large survey and detection programs in Florida and California, and MAT programs in Hawaii. PMID:23156150

  6. Icosapent Ethyl

    MedlinePlus

    ... weight loss, exercise) to reduce the amount of triglycerides (a fat-like substance) in your blood. Icosapent ... ethyl may work by decreasing the amount of triglycerides and other fats made in the liver.

  7. Sulphur and oxygen sequestration of n-C37 and n-C38 unsaturated ketones in an immature kerogen and the release of their carbon skeletons during early stages of thermal maturation

    USGS Publications Warehouse

    Koopmans, M.P.; Schaeffer-Reiss, C.; De Leeuw, J. W.; Lewan, M.D.; Maxwell, J.R.; Schaeffer, P.; Sinninghe, Damste J.S.

    1997-01-01

    Sedimentary rock from the Gessoso-solfifera Formation (Messinian) in the Vena del Gesso Basin (northern Italy) containing immature (Ro = 0.25%) S-rich organic matter was artificially matured by hydrous pyrolysis at temperatures from 160 to 330??C for 72 h to study the diagenetic fate of n-C37 and n-C38 di-and tri-unsaturated methyl and ethyl ketones (alkenones) biosynthesised by several prymnesiophyte algae. During early diagenesis, the alkenones are incorporated into the kerogen by both sulphur and oxygen cross-linking as indicated by chemical degradation experiments with the kerogen of the unheated sample. Heating at temperatures between 160 and 260??C, which still represents early stages of thermal maturation, produces large amounts (up to 1 mg/g TOC) of S-bound, O-bound, and both S-and O-bound n-C37 and n-C38 skeletons, saturated n-C37 and n-C38 methyl, ethyl, and mid-chain ketones, C37 and C38 mid-chain 2,5-di-n-alkylthiophenes, C37 and C38 1,2-di-n-alkylbenzenes, and C37 and C38 n-alkanes. With increasing thermal maturation, three forms of the n-C37 and n-C38 skeletons are relatively stable (saturated hydrocarbons, 1,2-di-n-alkylbenzenes and saturated ketones), whereas the S-and O-bound skeletons are relatively labile. These results suggest that in natural situations saturated ketones with an n-C37 and n-C38 skeleton can be expected as well as the corresponding hydrocarbons. Copyright ?? 1997 Elsevier Science Ltd.

  8. Identification of 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF) with DNA breaking activity in soy sauce.

    PubMed

    Li, X; Hiramoto, K; Yoshida, M; Kato, T; Kikugawa, K

    1998-04-01

    Components with DNA breaking activity in soy sauce were investigated. It was found that there were water soluble high molecular weight DNA breaking components in soy sauce. Two DNA breaking components in the ethyl acetate extract of soy sauce were identified as fragrant components, 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF), in addition to the previously characterized DNA breaking fragrant component 4-hydroxy-5-methyl-3(2H)-furanone (HMF) (Hiramoto et al., 1996b). Characterization of DNA breaking activity of HEMF was performed, and the mechanisms for the breaking were considered. HEMF cleaved the single strands of supercoiled pBR 322 DNA at pH 7.4 dose dependently and time dependently. DNA breaking was inhibited by superoxide dismutase, catalase, hydroxyl radical scavengers, spin trapping agents and metal chelators, and enhanced by Fe(III) ion. Electron spin resonance-spin trapping technique revealed the generation of hydroxyl radical. Hence, active oxygen species derived from interaction of HEMF with metal ions and oxygen participated in the cleavage. HEMF exhibited mutagenicity to Salmonella typhimurium TA100 without metabolic activation and induced micronucleated mouse peripheral reticulocytes. PMID:9651047

  9. KEY COMPARISON: Final report on international key comparison CCQM-K65: Gas standards containing methyl and ethyl mercaptans (at the level of 20-30 µmol/mol) in methane

    NASA Astrophysics Data System (ADS)

    Konopelko, L. A.; Kustikov, Y. A.; Vishnyakov, I. M.; Pavlov, M. V.; Efremova, O. V.; Woo, Jin-Chun; Kim, Yong-Doo; Wessel, Rob M.; Ziel, Paul R.; Milton, Martin J. T.; Vargha, G.; Brown, A.; Uprichard, Ian

    2010-01-01

    The key comparison CCQM-K65 was intended to compare the capabilities for the preparation and value assignment of gas standards for methyl and ethyl mercaptans in methane, maintained at the participating national metrological institutes: VNIIM (Russia), KRISS (Korea), VSL (Netherlands) and NPL (United Kingdom). The range of the nominal amount of substance fractions of the comparison gas mixtures was 20 µmol/mol to 30 µmol/mol, which is close to regulatory level (in several countries including Russia) for mercaptans in odorated natural gas. This comparison was proposed at the 12th GAWG meeting in October 2004 and was conducted in 2008. Conclusions are as follows: The results of all laboratories are consistent with the reference values. The observed differences between the reference and reported values are within +/-0.9% for methyl mercaptan and +/-0.75% for ethyl mercaptan relative to the gravimetric values, and do not exceed the appropriate assigned expanded uncertainties. The prepared mixtures were found to be stable during about a year within the uncertainty of the measurements. The gravimetric values were successfully validated with a dynamic method. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  10. Methyl isobutyl ketone exposure-related increases in specific measures of α2u-globulin (α2u) nephropathy in male rats along with in vitro evidence of reversible protein binding.

    PubMed

    Borghoff, S J; Poet, T S; Green, S; Davis, J; Hughes, B; Mensing, T; Sarang, S S; Lynch, A M; Hard, G C

    2015-07-01

    Chronic exposure to methyl isobutyl ketone (MIBK) resulted in an increase in the incidence of renal tubule adenomas and occurrence of renal tubule carcinomas in male, but not female Fischer 344 rats. Since a number of chemicals have been shown to cause male rat renal tumors through the α2u nephropathy-mediated mode of action, the objective of this study is to evaluate the ability of MIBK to induce measures of α2u nephropathy including renal cell proliferation in male and female F344 rats following exposure to the same inhalation concentrations used in the National Toxicology Program (NTP) cancer bioassay (0, 450, 900, or 1800ppm). Rats were exposed 6h/day for 1 or 4 weeks and kidneys excised approximately 18h post exposure to evaluate hyaline droplet accumulation (HDA), α2u staining of hyaline droplets, renal cell proliferation, and to quantitate renal α2u concentration. There was an exposure-related increase in all measures of α2u nephropathy in male, but not female rat kidneys. The hyaline droplets present in male rat kidney stained positively for α2u. The changes in HDA and α2u concentration were comparable to d-limonene, an acknowledged inducer of α2u nephropathy. In a separate in vitro study using a two-compartment vial equilibration model to assess the interaction between MIBK and α2u, the dissociation constant (Kd) was estimated to be 1.27×10(-5)M. This Kd is within the range of other chemicals known to bind to α2u and cause nephropathy. Together, the exposure-related increase in measures of α2u nephropathy, sustained increase in renal cell proliferation along with an indication of reversible binding of MIBK to α2u, support the inclusion of MIBK in the category of chemicals exerting renal effects through a protein droplet α2u nephropathy-mediated mode of action (MoA). PMID:25797582

  11. Ethyl carbamate

    Integrated Risk Information System (IRIS)

    Ethyl carbamate ; CASRN 51 - 79 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  12. Ethyl chloride

    Integrated Risk Information System (IRIS)

    Ethyl chloride ; CASRN 75 - 00 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  13. Ethyl ether

    Integrated Risk Information System (IRIS)

    Ethyl ether ; CASRN 60 - 29 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  14. Ethyl acetate

    Integrated Risk Information System (IRIS)

    Ethyl acetate ; CASRN 141 - 78 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  15. Vanillin as a modulator agent in SMART test: inhibition in the steps that precede N-methyl-N-nitrosourea-, N-ethyl-N-nitrosourea-, ethylmethanesulphonate- and bleomycin-genotoxicity.

    PubMed

    Sinigaglia, Marialva; Lehmann, Maurício; Baumgardt, Paula; do Amaral, Viviane Souza; Dihl, Rafael Rodrigues; Reguly, Maria Luíza; de Andrade, Heloísa Helena Rodrigues

    2006-09-01

    Vanillin (VA), the world's major flavoring compound used in food industry and confectionery products - that has antimutagenic and anticarcinogenic activity against a variety of mutagenic/carcinogenic agents - was tested for the interval between the formation of premutational lesion and it is finalization as a DNA lesion. The overall findings using co-treatment protocols in SMART test suggest that VA can lead to a significant protection against the general genotoxicity of ethylmethanesulphonate (EMS), N-ethyl-N-nitrosourea (ENU), N-methyl-N-nitrosourea (MNU) and bleomycin sulphate (BLEO). Considering MNU, ENU and EMS the desmutagenic activity observed could result from VA-stimulation of detoxification, via induction of glutathione S-transferase. However, the protector effect related to BLEO could be attributed to its powerful scavenger ability, which has the potential to prevent oxidative damage induced by BLEO. PMID:16777474

  16. New spectrofluorimetric methods for determination of melatonin in the presence of N-{2-[1-({3-[2-(acetylamino)ethyl]-5-methoxy-1H-indol-2-yl}methyl)-5-methoxy-1H-indol-3-yl]- ethyl}acetamide: a contaminant in commercial melatonin preparations

    PubMed Central

    2012-01-01

    Background Melatonin (MLT) has many health implications, therefore it is of valuable importance to develop specific analytical methods for determination of MLT in the presence of its main contaminant, N-{2-[1-({3-[2-(acetylamino)ethyl]-5-methoxy-1H-indol-2-yl}methyl)-5-methoxy-1H-indol-3-yl]ethyl}acetamide (10). For development of these analytical methods, compound 10 had to be prepared in an adequate amount. Results Compound 10 was synthesized in six steps starting from 5-methoxyindole-2-carboxylic acid (1). Analytical performance of the proposed spectrofluorimetric methods was statistically validated with respect to linearity, accuracy, precision and specificity. The proposed methods were successfully applied for the assay of MLT in laboratory prepared mixtures containing up to 60 % of compound 10 and in commercial MLT tablets with recoveries not less than 99.00 %. No interference was observed from common pharmaceutical additives and the results were favorably compared with those obtained by a reference method. Conclusions This work describes simple, sensitive, and reliable second derivative spectrofluorimetric method in addition to two multivariate calibration methods, principal component regression (PCR) and partial least square (PLS), for the determination of MLT in the presence of compound 10. PMID:22551394

  17. Discovery of 3-Chloro-N-{(S)-[3-(1-ethyl-1H-pyrazol-4-yl)phenyl][(2S)-piperidine-2-yl]methyl}-4-(trifluoromethyl)pyridine-2-carboxamide as a Potent Glycine Transporter 1 Inhibitor.

    PubMed

    Yamamoto, Shuji; Shibata, Tsuyoshi; Abe, Kumi; Oda, Koji; Aoki, Takeshi; Kawakita, Yasunori; Kawamoto, Hiroshi

    2016-01-01

    A novel glycine transporter 1 (GlyT1) inhibitor was designed by the superposition of different chemotypes to enhance its inhibitory activity. Starting from 2-chloro-N-{(S)-phenyl[(2S)-piperidin-2-yl]methyl}-3-(trifluoromethyl)benzamide (2, SSR504734), the introduction of heteroaromatic rings enabled an increase in the GlyT1 inhibitory activity. Subsequent optimization led to the identification of 3-chloro-N-{(S)-[3-(1-ethyl-1H-pyrazol-4-yl)phenyl][(2S)-piperidine-2-yl]methyl}-4-(trifluoromethyl)pyridine-2-carboxamide (7w), which showed a powerful GlyT1 inhibitory activity (IC50=1.8 nM), good plasma exposure and a plasma to brain penetration in rats that was sufficient to evaluate the compound's pharmacological properties. Compound 7w showed significant effects in several rodent models for schizophrenia without causing any undesirable central nervous system side effects. PMID:27581637

  18. Induction of cytotoxicity, apoptosis and cell cycle arrest by 1-t-butyl carbamoyl, 7-methyl-indole-3-ethyl isothiocyanate (NB7M) in nervous system cancer cells

    PubMed Central

    Brard, Laurent; Singh, Rakesh K; Kim, Kyu Kwang; Lange, Thilo S; Sholler, Giselle L Saulier

    2008-01-01

    Our group has recently developed 1-tbutyl carbamoyl, 7-methyl-indole-3-ethyl isothiocyanate (NB7M), a novel indole ethyl isothiocyanate analog. We now describe its selective cytotoxicity in both central nervous system (CNS) and neuroblastoma (NB) cancer cells. In an effort to understand its mechanism of action we examined the effects of NB7M on apoptosis, cell cycle arrest, and pro-survival/mitogen-activated protein kinase (MAPK) signaling in neuroblastoma cells. NB7M proved highly cytotoxic to NB cell lines (SMS-KCNR, SK-N- SH, SH-SY5Y, IMR-32) with IC50 values ranging from 1.0–2.0 μM, whereas lung fibroblasts were less affected (IC50≥10 μM). In the NCI 60 cell screen 1-dose assay, NB7M (10 μM) reduced the growth (−89 to −27 % growth) of CNS cancer cell lines SF-268, SF-295, SNB-75 (glioblastoma), SF-539 (gliosarcoma), and U251 (astroglioma) while SNB-19 glioblastoma cells were relatively resistant (19% growth). Hoechst staining of SMS-KCNR cells treated with NB7M (3 μM) for 24 hrs exhibited significant chromatin condensation and DNA fragmentation, whereas Annexin-v/7AADstaining revealed that the majority of cells accumulated in the early-apoptotic and late-apoptotic/necrotic stages. NB7M treatment of SMS-KCNR and SH-SY5Y cells also led to the cleavage of procaspases-3, and PARP-1 while causing activation of pro-apoptotic MAPKs and down-regulation of pro-survival factors AKT and PI-3K. Furthermore, NB7M treatment caused S-phase arrest in SMSKCNR and G1-phase arrest in SH-SY5Y cells. NB7M is active against CNS cancers and NB. PMID:19920894

  19. Fabrication and characterization of superparamagnetic and thermoresponsive hydrogels based on oleic-acid-coated Fe 3O 4 nanoparticles, hexa(ethylene glycol) methyl ether methacrylate and 2-(acetoacetoxy)ethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Papaphilippou, Petri C.; Pourgouris, Antonis; Marinica, Oana; Taculescu, Alina; Athanasopoulos, George I.; Vekas, Ladislau; Krasia-Christoforou, Theodora

    2011-03-01

    Stimuli-responsive hydrogel nanocomposites comprised of swollen polymer networks, in which magnetic nanoparticles are embedded, are a relatively new class of "smart" soft materials presenting a significant impact on various technological and biomedical applications. A novel approach for the fabrication of hydrogel nanocomposites exhibiting temperature- and magneto-responsive behavior involves the random copolymerization of hexa(ethylene glycol) methyl ether methacrylate (HEGMA, hydrophilic, thermoresponsive) and 2-(acetoacetoxy)ethyl methacrylate (AEMA, hydrophobic, metal-chelating) in the presence of preformed oleic-acid-coated magnetite nanoparticles (OA·Fe 3O 4). In total, two series of hydrogel nanocomposites have been prepared in two different solvent systems: ethyl acetate (series A) and tetrahydrofuran (series B). The degrees of swelling (DSs) of all conetworks were determined in organic and in aqueous media. The nanocrystalline phase adopted by the embedded magnetic nanoparticles was investigated by X-ray diffraction (XRD) spectroscopy. The obtained diffraction patterns indicated the presence of magnetite (Fe 3O 4). Deswelling kinetic studies that were carried out at ˜60 °C in water demonstrated the thermoresponsive properties of the hydrogel nanocomposites, attributed to the presence of the hexaethylene glycol side chains within the conetworks. Moreover, thermal gravimetric analysis (TGA) measurements showed that these materials exhibited superior thermal stability compared to the pristine hydrogels. Further to the characterization of compositional and thermal properties, the assessment of magnetic characteristics by vibrational sample magnetometry (VSM) disclosed superparamagnetic behavior. The tunable superparamagnetic behavior exhibited by these materials depending on the amount of magnetic nanoparticles incorporated within the networks combined with their thermoresponsive properties may allow for their future exploitation in the biomedical field.

  20. Thermal Decomposition of Ethyl Formate behind the Reflected Shock Waves in the Temperature Range of 909-1258K

    NASA Astrophysics Data System (ADS)

    Balaganesh, M.; Sudhakar, G.; Rajakumar, B.

    Ethyl formate is the simplest model of ethyl esters which are considered as biodiesel. Systematic tests on properties and reactivity of biodiesel have been reported[1, 2]. Methyl and ethyl ester mix can offer improved physical properties. Generally, ethyl esters are slightly more reactive than the methyl esters[3]. Also ethyl formate is an interstellar molecule. It was first detected in interstellar space by Belloche et al.[4]. So studies of this molecule are required to understand the fuel properties and interstellar chemistry.

  1. Crystal structures of tetra-methyl-ammonium (2,2'-bi-pyridine)-tetra-cyanidoferrate(III) trihydrate and poly[[(2,2'-bi-pyridine-κ(2) N,N')di-μ2-cyanido-dicyanido(μ-ethyl-enedi-amine)(ethyl-enedi-amine-κ(2) N,N')-cadmium(II)iron(II)] monohydrate].

    PubMed

    Chanthee, Songwuit; Punyain, Wikorn; Namuangrak, Supawadee; Chainok, Kittipong

    2016-05-01

    The crystal structures of the building block tetra-methyl-ammonium (2,2'-bi-pyridine-κ(2) N,N')tetra-cyanidoferrate(III) trihydrate, [N(CH3)4][Fe(CN)4(C10H8N2)]·3H2O, (I), and a new two-dimensional cyanide-bridged bimetallic coordination polymer, poly[[(2,2'-bi-pyridine-κ(2) N,N')di-μ2-cyanido-dicyanido(μ-ethyl-enedi-amine-κ(2) N:N')(ethyl-enedi-amine-κ(2) N,N')cadmium(II)iron(II)] monohydrate], [CdFe(CN)4(C10H8N2)(C2H8N2)2]·H2O, (II), are reported. In the crystal of (I), pairs of [Fe(2,2'-bipy)(CN)4](-) units (2,2'-bipy is 2,2'-bi-pyri-dine) are linked together through π-π stacking between the pyridyl rings of the 2,2'-bipy ligands to form a graphite-like structure parallel to the ab plane. The three independent water mol-ecules are hydrogen-bonded alternately with each other, forming a ladder chain structure with R 4 (4)(8) and R 6 (6)(12) graph-set ring motifs, while the disordered [N(CH3)4](+) cations lie above and below the water chains, and the packing is stabilized by weak C-H⋯O hydrogen bonds. The water chains are further linked with adjacent sheets into a three-dimensional network via O-H⋯O hydrogen bonds involving the lattice water mol-ecules and the N atoms of terminal cyanide groups of the [Fe(2,2'-bipy)(CN)4](-) building blocks, forming an R 4 (4)(12) ring motif. Compound (II) features a two-dimensional {[Fe(2,2'-bipy)(CN)4Cd(en)2]} n layer structure (en is ethyl-enedi-amine) extending parallel to (010) and constructed from {[Fe(2,2'-bipy)(CN)4Cd(en)]} n chains inter-linked by bridging en ligands at the Cd atoms. Classical O-H⋯N and N-H⋯O hydrogen bonds involving the lattice water mol-ecule and N atoms of terminal cyanide groups and the N-H groups of the en ligands are observed within the layers. The layers are further connected via π-π stacking inter-actions between adjacent pyridine rings of the 2,2'-bipy ligands, completing a three-dimensional supra-molecular structure. PMID:27308032

  2. Crystal structures of ethyl 6-(4-methyl­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate and ethyl 6-(4-fluoro­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate

    PubMed Central

    Gomes, Ligia R.; Low, John Nicolson; Fernandes, Carlos; Gaspar, Alexandra; Borges, Fernanda

    2016-01-01

    The crystal structures of two chromone derivatives, viz. ethyl 6-(4-methyl­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate, C19H16O4, (1), and ethyl 6-(4-fluoro­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate C18H13FO4, (2), have been determined: (1) crystallizes with two mol­ecules in the asymmetric unit. A comparison of the dihedral angles beween the mean planes of the central chromone core with those of the substituents, an ethyl ester moiety at the 2-position and a para-substituted phenyl ring at the 6-position shows that each mol­ecule differs significantly from the others, even the two independent mol­ecules (a and b) of (1). In all three mol­ecules, the carbonyl groups of the chromone and the carboxyl­ate are trans-related. The supra­molecular structure of (1) involves only weak C—H⋯π inter­actions between H atoms of the substituent phenyl group and the phenyl group, which link mol­ecules into a chain of alternating mol­ecules a and b, and weak π–π stacking inter­actions between the chromone units. The packing in (2) involves C—H⋯O inter­actions, which form a network of two inter­secting ladders involving the carbonyl atom of the carboxyl­ate group as the acceptor for H atoms at the 7-position of the chromone ring and from an ortho-H atom of the exocyclic benzene ring. The carbonyl atom of the chromone acts as an acceptor from a meta-H atom of the exocyclic benzene ring. π–π inter­actions stack the mol­ecules by unit translation along the a axis. PMID:26870574

  3. Ketone bodies as signaling metabolites

    PubMed Central

    Newman, John C.; Verdin, Eric

    2014-01-01

    Traditionally, the ketone body β-hydroxybutyrate (βOHB) has been looked upon as a carrier of energy from liver to peripheral tissues during fasting or exercise. However, βOHB also signals via extracellular receptors and acts as an endogenous inhibitor of histone deacetylases (HDACs). These recent findings support a model in which βOHB functions to link the environment, in this case the diet, and gene expression via chromatin modifications. Here, we review the regulation and functions of ketone bodies, the relationship between ketone bodies and calorie restriction, and the implications of HDAC inhibition by the ketone body βOHB in the modulation of metabolism, and diseases of aging. PMID:24140022

  4. Green organocatalytic α-hydroxylation of ketones.

    PubMed

    Voutyritsa, Errika; Theodorou, Alexis; Kokotos, Christoforos G

    2016-06-28

    An efficient and green method for the α-hydroxylation of substituted ketones has been developed. This method includes the in situ conversion of various ketones into the corresponding silyl enol ethers and their oxidation to the corresponding α-hydroxy ketones. Two protocols have been established leading either to protected α-hydroxy carbonyls or free α-hydroxy ketones. Both procedures are easy to follow and lead to good to high yields for a variety of ketones. PMID:26867154

  5. Differential induction of adaptive responses by paraquat and hydrogen peroxide against the genotoxicity of methyl mercuric chloride, maleic hydrazide and ethyl methane sulfonate in plant cells in vivo.

    PubMed

    Patra, J; Panda, K K; Panda, B B

    1997-10-24

    Induction of adaptive response by conditioning doses of paraquat (PQ) and hydrogen peroxide (H2O2) in embryonic shoot cells of Hordeum vulgare and root meristem cells of Allium cepa was tested against the genotoxicity of challenge doses of methyl mercuric chloride (MMCl), maleic hydrazide (MH) or ethylmethane sulfonate (EMS). Plant tissue fixed at different recovery hours following the challenge treatments was analysed for cells with genotoxicity markers that include spindle or chromosome aberrations and micronuclei. The results provided clear-cut evidence that whereas H2O2 induced adaptive response for the chromosome damage caused by MMCl and MH, PQ induced the same for MMCl and EMS, but not for damage caused by MH. The findings pointed to the differences in the underlying mechanisms of oxidative responses induced by H2O2 and O2-. PMID:9393614

  6. Iridium-Catalyzed Diastereoselective and Enantioselective Allylic Substitutions with Acyclic α-Alkoxy Ketones.

    PubMed

    Jiang, Xingyu; Chen, Wenyong; Hartwig, John F

    2016-05-01

    The asymmetric alkylation of acyclic ketones is a longstanding challenge in organic synthesis. Reported herein are diastereoselective and enantioselective allylic substitutions with acyclic α-alkoxy ketones catalyzed by a metallacyclic iridium complex to form products with contiguous stereogenic centers derived from the nucleophile and electrophile. These reactions occur between allyl methyl carbonates and unstabilized copper(I) enolates generated in situ from acyclic α-alkoxy ketones. The resulting products can be readily converted into enantioenriched tertiary alcohols and tetrahydrofuran derivatives without erosion of enantiomeric purity. PMID:27038004

  7. Dopamine D-2 receptor imaging radiopharmaceuticals: synthesis, radiolabeling, and in vitro binding of (R)-(+)- and (S)-(-)-3-iodo-2-hydroxy-6-methoxy-N- ((1-ethyl-2-pyrrolidinyl)methyl)benzamide

    SciTech Connect

    Kung, H.F.; Kasliwal, R.; Pan, S.G.; Kung, M.P.; Mach, R.H.; Guo, Y.Z.

    1988-05-01

    In developing central nervous system (CNS) dopamine D-2 receptor imaging agents, enantiomers, R-(+) and S-(-) isomers, of 3-(/sup 125/I)iodo-2-hydroxy-6-methoxy-N-((1-ethyl-2- pyrrolidinyl)methyl)benzamide, (/sup 125/I)IBZM, were synthesized, and their in vitro binding characteristics were evaluated in rat striatum tissue preparation. The (S)-(-)-(/sup 125/I)IBZM showed high specific dopamine D-2 receptor binding (Kd = 0.43 nM, Bmax = 0.48 pmol/mg of protein). Competition data of various ligands for IBZM binding displayed the following rank order of potency: spiperone greater than (S)-(-)-IBZM greater than (+)-butaclamol much greater than (R)-(+)-IBZM greater than (S)-(-)-BZM greater than dopamine greater than ketanserin greater than SCH23390 much greater than propanolol. The results indicate that (/sup 125/I)IBZM binds specifically to the dopamine D-2-receptor with stereospecificity. The (/sup 125/I)IBZM is potentially useful as an imaging agent for the investigation of dopamine D-2 receptors in humans.

  8. Ethyl­enediammonium tetra­kis({2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato}nickel(II)) bis­(perchlorate) dimethyl­formamide monosolvate

    PubMed Central

    Assey, Gervas; Gultneh, Yilma; Butcher, Ray J.

    2010-01-01

    The title compound, (C2H10N2)[Ni(C16H14N2O2)]4(ClO4)2·C3H7NO, crystallizes with four Ni(salen) mol­ecules {salen is 2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate}, one ethyl­enediammonium cation (actually two half-cations, each located on a center of inversion), two perchlorate anions and one dimethyl­formamide solvent mol­ecule in the asymmetric unit. Each NiII cation in the Ni(salen) complex is four-coordinated by two imine N atoms and two phenolate O atoms from the tetra­dentate ligand. The Ni(salen) units form parallel slipped stacks with Ni⋯Ni separations of 3.4541 (4) and 3.6442 (6) Å. The crystal packing is stabilized by inter­molecular hydrogen bonds between the ammonium H atoms and the perchlorate and salen O atoms, which generate a three-dimensional structure. PMID:21579300

  9. Screening of High-Level 4-Hydroxy-2 (or 5)-Ethyl-5 (or 2)-Methyl-3(2H)-Furanone-Producing Strains from a Collection of Gene Deletion Mutants of Saccharomyces cerevisiae

    PubMed Central

    Watanabe, Jun; Akao, Takeshi; Watanabe, Daisuke; Mogi, Yoshinobu; Shimoi, Hitoshi

    2014-01-01

    4-Hydroxy-2 (or 5)-ethyl-5 (or 2)-methyl-3(2H)-furanone (HEMF) is an important flavor compound that contributes to the sensory properties of many natural products, particularly soy sauce and soybean paste. The compound exhibits a caramel-like aroma and several important physiological activities, such as strong antioxidant activity. HEMF is produced by yeast species in soy sauce manufacturing; however, the enzymes involved in HEMF production remain unknown, hindering efforts to breed yeasts with high-level HEMF production. In this study, we identified high-level HEMF-producing mutants among a Saccharomyces cerevisiae gene deletion mutant collection. Fourteen deletion mutants were screened as high-level HEMF-producing mutants, and the ADH1 gene deletion mutant (adh1Δ) exhibited the maximum HEMF production capacity. Further investigations of the adh1Δ mutant implied that acetaldehyde accumulation contributes to HEMF production, agreeing with previous findings. Therefore, acetaldehyde might be a precursor for HEMF. The ADH1 gene deletion mutant of Zygosaccharomyces rouxii, which is the dominant strain of yeast found during soy sauce fermentation, also produces HEMF effectively, suggesting that acetaldehyde accumulation might be a benchmark for breeding industrial yeasts with excellent HEMF production abilities. PMID:25362059

  10. Screening of high-level 4-hydroxy-2 (or 5)-ethyl-5 (or 2)-methyl-3(2H)-furanone-producing strains from a collection of gene deletion mutants of Saccharomyces cerevisiae.

    PubMed

    Uehara, Kenji; Watanabe, Jun; Akao, Takeshi; Watanabe, Daisuke; Mogi, Yoshinobu; Shimoi, Hitoshi

    2015-01-01

    4-Hydroxy-2 (or 5)-ethyl-5 (or 2)-methyl-3(2H)-furanone (HEMF) is an important flavor compound that contributes to the sensory properties of many natural products, particularly soy sauce and soybean paste. The compound exhibits a caramel-like aroma and several important physiological activities, such as strong antioxidant activity. HEMF is produced by yeast species in soy sauce manufacturing; however, the enzymes involved in HEMF production remain unknown, hindering efforts to breed yeasts with high-level HEMF production. In this study, we identified high-level HEMF-producing mutants among a Saccharomyces cerevisiae gene deletion mutant collection. Fourteen deletion mutants were screened as high-level HEMF-producing mutants, and the ADH1 gene deletion mutant (adh1Δ) exhibited the maximum HEMF production capacity. Further investigations of the adh1Δ mutant implied that acetaldehyde accumulation contributes to HEMF production, agreeing with previous findings. Therefore, acetaldehyde might be a precursor for HEMF. The ADH1 gene deletion mutant of Zygosaccharomyces rouxii, which is the dominant strain of yeast found during soy sauce fermentation, also produces HEMF effectively, suggesting that acetaldehyde accumulation might be a benchmark for breeding industrial yeasts with excellent HEMF production abilities. PMID:25362059